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A B S T R A C T

High diversity seabed habitats, such as shellfish aggregations, play a significant role in marine ecosys-
tem sustainability but are susceptible to bottom disturbance induced by anthropogenic activities. Regular
monitoring of these habitats with effective mapping methods is therefore essential. Multibeam echosounder
(MBES) has been widely used in recent decades for seabed characterization due to its non-destructive manner
and extensive spatial coverage compared to traditional methods like bottom sampling. Nevertheless, bottom
sampling remains essential to link ground truth with acoustic seabed classification. Using seabed samples
and MBES measurements, machine learning techniques are commonly employed to model their relationships
and generate classification maps of an extended seabed. However, limited ground truth data, resulting from
constraints in regulations, budget, or time, may impede the development of robust machine learning models. To
address this challenge, we applied a semi-supervised machine learning method to classify seabed sediments of
a blue mussel (Mytilus edulis) cultivation area in the Oosterschelde, the Netherlands. We utilized nine boxcore
samples to generate pseudo-labels on MBES data. These pseudo-labels enlarged the training data size, facilitated
the training of three comprehensive machine learning algorithms (Gradient Boosting, Random Forest, and
Support Vector Machine), and helped to classify the study site into mussel and non-mussel areas. We found
the geomorphological and backscatter-related features to be complementary for mussel culture detection. Our
classification results were demonstrated effective through expert knowledge of this cultivation area and brought
insights for future research on natural mussel habitats.
1. Introduction

Preserving seabed habitats, such as oyster reefs and shellfish ag-
gregations, is crucial for ensuring sustainable utilization of the ocean
environment (Brown and Collier, 2008; Brown et al., 2011). These
habitats can be threatened by overexploitation or other forms of bottom
disturbance, such as sand extraction. To alleviate the pressure faced
by marine habitats and maintain a healthy ocean ecosystem, human
activities such as fisheries are strictly regulated in marine protected
areas (Teixeira et al., 2013; Diesing et al., 2020). Furthermore, in the
North Sea, extracting sand has been prohibited within a distance of
100 m from the living shellfish beds since 2008 (Ministerie van Verkeer
en Waterstaat, 2010). These obligations, on the other hand, require
effective methods for mapping the seabed habitats, especially the oc-
currence of marine benthos (Ierodiaconou et al., 2011). Traditional
seabed biodiversity monitoring relies on bottom sampling (e.g., box-
cores, grabs, and dredges), which provides detailed seabed information
but is labor-intensive and destructive. Moreover, it can only deliver
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sparsely distributed measurements. To achieve a spatially continuous
map product, assumptions about areas between the sampling stations
are often needed (Herkül et al., 2017; Norberg et al., 2019).

Acoustic remote sensing techniques offer efficient alternatives
(Van Walree et al., 2005; Simons and Snellen, 2009; Snellen et al.,
2011; McGonigle and Collier, 2014). Multibeam echosounder (MBES)
has been widely used over the past decades to survey extended parts
of the seafloor. MBES emits pings in a wide swath perpendicular to the
sailing direction. Moreover, the beam steering technique implemented
in MBES helps to distinguish signals backscattered from different direc-
tions. Combined with the navigation system and motion sensors on the
surveying vessel, large-scale mapping of the seafloor can be realized
using MBES. Although bathymetry has traditionally been the primary
product of MBES, the intensity of the backscattered signal is also a
crucial measurement since it can provide indications of the reflective
and scatter properties of seabed materials. Geophysical properties of
the seabed sediment such as grain size, roughness, and porosity, can
affect the level of backscatter strength at a certain incident angle as
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well as the backscatter angular variation characteristics (Lurton, 2002;
Lamarche and Lurton, 2018). Some marine benthos such as oysters
and mussels can affect the sediment geoacoustic properties due to
the presence of their shells (Hutin et al., 2005). Their aggregations
can also modify the seafloor geomorphology, which can be linked to
bathymetry. These characteristics enable the discrimination of ‘acous-
tically hard’ marine benthos from the bare sediment using bathymetry
and backscatter data (Snellen et al., 2008).

While MBES provides a non-destructive and efficient way for ex-
tensive seabed habitat mapping, ground truthing is still essential for
establishing a link between the acoustic data and sedimentological
and macrofauna properties. Physical models have been developed to
describe the backscatter strength of various sediment types (Jackson,
1994), providing a powerful tool for sediment classification using only
acoustic measurements. However, how to account for the occurrence of
marine benthos in the physical models is still an ongoing research topic.
Some studies assessed the impact of benthos on seafloor backscatter
by examining deviations from model predictions based solely on sed-
iment properties (Lee et al., 2022). Ideally, these models also require
calibrated backscatter strengths as input. Due to the varied sensitivity
of echosounders in different water environments (Roche et al., 2018),
absolute backscatter calibration is difficult to achieve for every single
survey and requires a deeper understanding of the varying sonar me-
chanical properties. By contrast, empirical or data-driven methods can
be more applicable to uncalibrated backscatter data from a single sur-
vey, offering an alternative solution for seabed sediment classification
and benthos monitoring.

Data-driven methods can be distinguished based on how to com-
bine ground truth information in seabed classification. For instance,
unsupervised methods first identify patterns in acoustic data and assign
these patterns to certain classes according to the ground truth. These
methods range from statistical approaches based on assumptions for
the probability distribution function of backscatter strengths (Simons
and Snellen, 2009), to machine learning methods such as K-means
clustering (Seber, 2009). On the other hand, supervised methods fit a
model between predictor variables and the target, which are used to
predict seabed habitat classes as a function of acoustic features (Misiuk
and Brown, 2023). Various machine learning and deep learning mod-
els have been applied in supervised seabed habitat mapping (Diesing
et al., 2014; Cui et al., 2021; Ji et al., 2024). Sophisticated models
improve the ability to deal with multi-dimensional features and com-
plex predictor-outcome relations, but often require a large amount of
training data (Safonova et al., 2023). In marine applications, however,
obligations such as minimizing the seabed disturbance along with
restrictions in time and budget usually result in selecting a limited num-
ber of ground truth stations, where bottom samples and/or underwater
photographs are taken. Limited ground truth can pose challenges to es-
tablishing the relationships between MBES data and seabed properties
using supervised methods.

Regardless of the limited ground truth samples, the abundant acous-
tic measurements bring up the possibility of leveraging the distri-
bution of unlabeled data to assist training. Combining both labeled
and unlabeled data in training is the core idea of semi-supervised
learning (Minelli et al., 2021; Asghar et al., 2020), which is another
important category in data-driven methods. Different techniques have
been developed in semi-supervised learning, including but not re-
stricted to graph-based learning, self-training, co-training, multi-view
learning, low-density separation, and generative models (Sheikhpour
et al., 2017). Semi-supervised machine learning techniques have been
successfully adopted in many fields, including classifying MBES data.
For instance, Minelli et al. (2021) used semi-supervised machine learn-
ing to enhance the detection of fish schools from the MBES water
column data. However, the applications in seabed characterization,
especially for marine benthos monitoring, are still scarce.

In this research, we highlight the advantage of semi-supervised

methods in mitigating the problem of limited ground truth in seabed
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mussel habitat mapping. We applied a graph-based learning method,
specifically label spreading (Zhou et al., 2003), to MBES bathymetry
and backscatter data to facilitate mussel detection. Compared to other
semi-supervised techniques, such as self-training that starts with train-
ing a full-supervised model on the labeled data, label spreading can
be less prone to overfitting and achieve higher classification accu-
racy (Ligthart et al., 2021). To further ensure the performance of label
spreading, we also proposed to optimize the hyperparameter selection
during graph construction by assessing the Silhouette coefficient of
pseudo-labels.

We considered a mussel cultivation area in the Oosterschelde tidal
basin of the Netherlands. The blue mussels (Mytilus edulis), one of the
most important aquaculture product of the Netherlands, are cultivated
here. Using MBES data and only nine seabed bottom samples, we
classified the seabed into mussel and non-mussel regions. With label
spreading, pseudo-labels were generated using a few ground truth
samples. These pseudo-labels were further employed to train three
machine learning algorithms: Gradient Boosting (GB), Random Forest
(RF), and Support Vector Machine (SVM). We then applied the trained
models to classify the entire study area. The effectiveness of the classi-
fication results was qualitatively validated by comparing them with the
ecological knowledge of the study area. Given the artificial cultivation
situation of this area and well-documented mussel farming locations,
the validation process is straightforward. This enhances the confidence
in the accuracy of the classification outcomes and will facilitate the
conservation of natural mussel habitats in the future.

2. Study area and dataset

The study area is located in the Oosterschelde, a tidal basin in the
southwest of the Netherlands (Fig. 1). The Oosterschelde has an impor-
tant economic value due to shellfish culture and has been intensively
researched during the past decades (Nieuwhof, 2018). The water depth
of the study area ranged from 3.0 to 14.8 m. Sand ripples extended from
the northwest to the south of the surveyed area. The area is a known
site for mussel bottom cultures, in which mussels are typically seeded
in circular patterns on the seabed sediment (Capelle, 2017). Dredging
activities during this type of mussel farming can form circular crests
and troughs that are also visible in bathymetry (see the zoomed-in plot
in Fig. 1).

We acquired the MBES dataset in the study area on May 2, 2023,
using a dual-head system Kongsberg EM2040c (Kongsberg Gruppen,
Kongsberg, Norway), which was operated at a frequency of 300 kHz.
The swath coverage was 140◦, with the nominal beam opening angle
of 1.0◦ in both along- and across-track directions. We used a nominal
pulse length of 37 μs during the survey. The collected MBES data,
including bathymetry [m] and beam-averaged backscatter strengths
[dB], were saved in the Kongsberg logging format .kmall.

For ground truthing, sediment samples at 9 stations (Fig. 1) were
collected using a cylindrical boxcore sampler with a diameter of 30 cm.
Grain size distributions were determined afterwards through labora-
tory analysis. Median grain size of the samples ranged from 114.0 to
264.8 μm (Table 1). In addition, according to the particle size distribu-
tion classification (Blott and Pye, 2012), no gravel content was found
in any of the stations, while mud content ranged from 0 to 42.4%,
indicating a small change in sediment types from muddy sand to sand.
Mussel occurrence at each sampling station was determined onboard by
visual inspections. Living mussels were found in four boxcore samples,
and two of them (stations 5 and 8) showed a high coverage (Table 1).
The boxcore samples, therefore, were classified into two classes, ‘sedi-
ment’ (sediment without mussels) and ‘mussel’ (sediment with mussel
coverage).

Additionally, mussel culture plots documented by the Netherlands
Enterprise Agency show the extent of mussel cultivation. Among them,
mussel productions within three culture plots are available. It was

reported that plot OSWD87 (Fig. 1) was covered by mussel seeds and
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Fig. 1. Study area. (Left) Location of the surveyed area in the Oosterschelde tidal basin, the Netherlands; (Right) Bathymetry map acquired by the MBES, with a grid size of
0.25 × 0.25 m. East of a tidal channel, mussel occurrence of nine boxcore samples and mussel culture plots covered by the study area are also displayed. The shapefiles of the
mussel culture plots were provided by the Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland, RVO). The zoomed-in figure shows the circular pattern in
bathymetry caused by dredging during mussel farming. Available information regarding mussel productions of three culture plots (OSWD87, 88, and 89) were acquired from the
Dutch Mussel Auction.
Table 1
Detailed properties of 9 boxcore samples.
Sampling stations Median grain size %mud Description of mussel occurrence Class Boxcore picture example

1 215.4 μm 4.0

No mussels Sediment
2 204.9 μm 7.0
4 179.9 μm 5.8
6 258.7 μm 0.0
9 200.2 μm 6.6

3 170.8 μm 34.2 A few living mussels Mussel7 264.8 μm 0.0

8 178.2 μm 12.3 30% covered by mussels Mussel

5 114.0 μm 42.4 70% covered by mussels Mussel
medium-sized mussels of 400,000 kg at the time of our survey, while
OSWD88 (Fig. 1) was empty, which means that there were no mussels
or very few mussels that were too small to be harvested. Moreover,
288,000 kg of large mussels were collected from the OSWD89 plot
(Dutch Mussel Auction, pers. comm.). These mussel culture plots are
located east of the sand ripples in the surveyed area, while the sand
ripples are on the eastern slope of a tidal channel according to the
bathymetric information of the Oosterschelde (documented by the
Current Dutch Elevation Dataset, Ministry of Infrastructure and Water
Management of the Netherlands, Hydrographic Service of the Royal
Netherlands Navy, and the European Marine Observation and Data
Network).

3. Methodology

Our workflow for detecting the mussel occurrence from the MBES
data comprises three main steps (see Step 1–3 in Fig. 2). Initially, we
3 
extracted and selected secondary features from the MBES measure-
ments (Section 3.1). These features, combined with the ground truth
samples, were then employed to generate pseudo-labels (Section 3.2).
Following this, we trained machine learning models using the expanded
labeled dataset and conducted classification across the entire study area
(Section 3.3). In Section 3.4, we present the validation procedure of
our semi-supervised classification results, including comparisons with
the full-supervised method.

3.1. Step 1: MBES feature extraction

Extraction of effective features from the raw MBES measurements
is the prerequisite for training reliable machine learning algorithms
applicable for seabed habitat monitoring. We processed the MBES
bathymetry and backscatter data using both software and in-house
MATLAB scripts. Before feature extraction, it is important to clean the
data and apply all required corrections.
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Fig. 2. Workflow of the semi-supervised mussel classification method using the MBES data.
We cleaned the bathymetric data for bottom misdetections through
a spline filter and manual edits in the QPS software Qimera. The
bathymetric data were then rasterized as GeoTIFF with a grid size of
0.25 × 0.25 m for the entire area (Fig. 1).

Since mussels inhabit the seabed surface, their presence will mod-
ify the seafloor geomorphology. Surface slope and curvature are two
geomorphological features that have been widely used to describe
landforms in various fields (Mokarram and Sathyamoorthy, 2018).
While the slope represents the steepness of each surface patch relative
to the horizontal plane, curvature describes the amount of bending
of a local surface along a certain direction on the surface (MacMillan
and Shary, 2009). This direction can be, for instance, along the slope
line or the contours. We computed the slopes and curvatures from
bathymetry in Esri ArcGIS Pro using the Surface Parameter tool. In this
study, we calculated the Casorati curvature (Kowalczyk, 2008), which
is a combinatorial metric, with high positive values showing areas of
sharp bending in multiple directions. Moreover, the local surface patch
size was determined by the variability in the local terrain.

Backscatter strength is also a powerful discriminator in seafloor clas-
sification and benthic habitat monitoring (Misiuk and Brown, 2023).
Although absolute backscatter calibration was not available, uncali-
brated backscatter strengths collected within our survey can still be
comparable. We considered both the backscatter strength values and
their angular dependence by generating the backscatter mosaic and
angular response curve (ARC).

The cleaned soundings in Qimera were exported as generic sensor
format (GSF) files, which were further used to generate the backscatter
mosaic in the software FMGT with a grid size of 1 × 1 m. Since the
backscatter strength is a function of the incident angle, the mosaicking
process involves eliminating this variation through the angle-varying
gain correction (Janowski et al., 2018), which requires setting a subset
of incident angles (usually around 45◦ (Lamarche et al., 2011)) as
reference. Then backscatter strengths at other angles are normalized
to this reference.

The angular variation itself, however, is also intrinsic to seabed
properties (Lamarche and Lurton, 2018). To account for this varia-
tion in our analysis, we extracted the incident angle and backscatter
strength of each beam from the .kmall files using the CoFFee library
in MATLAB. Before building the ARCs, a slope correction (Gaida et al.,
2018) was conducted to achieve the actual incident angle 𝜙 [◦] relative
to the local seabed according to

cos(𝜙) =
sin(90 − 𝜙𝑓𝑙) + cos(90 − 𝜙𝑓𝑙)𝜖𝑎𝑐

√

1 + 𝜖2𝑎𝑙 + 𝜖2𝑎𝑐

(1)

where 𝜙𝑓𝑙 [◦] is the beam angle with respect to the flat seabed. 𝜖𝑎𝑐
and 𝜖𝑎𝑙 [radians], the across- and along-track slope, were calculated
from the bathymetry data with respect to the vessel heading and sonar
axis via a 2D finite difference method using a moving average window
of 60 pings, covering a distance about 12 m in our study area. We
then subtracted a term 10log𝐴 from the backscatter strength of each
beam to account for the changes in the ensonified footprint area. The
footprint area 𝐴 [m2] was the smaller value between the pulse-limited
4 
Fig. 3. Illustration of the extracted features from a half-swath ARC.

footprint area 𝐴𝑝 and the beam-limited footprint area 𝐴𝑏. 𝐴𝑝 and 𝐴𝑏
are calculated as

𝐴𝑝 = 𝛺𝑡𝑅
𝑐𝜏𝑒

2sin(𝜙𝑓𝑙 − 𝜖𝑎𝑐 )cos(𝜖𝑎𝑙)
(2)

and

𝐴𝑏 = 𝑅2𝛺𝑡𝛺𝑟, (3)

with 𝑅 [m] the slant range of each sounding, 𝑐 [m/s] the sound speed,
and 𝜏𝑒 [s] the effective pulse length. 𝛺𝑡 and 𝛺𝑟 are the beam opening
angles for transmission and reception, respectively.

To reduce noise, the ARCs were also averaged over 10 consecutive
pings, which covered a distance of about 2 m. We divided a half-swath
ARC (either port or starboard side) into three angular ranges, 0–25◦

(near-range), 25◦–55◦ (far-range), and 55◦–70◦ (outer-range) (Fonseca
and Mayer, 2007). The mean values of the near- and far-range were
then calculated. Considering the ARC shape, we also calculated the
slopes (with respect to incident angle) of both ranges through a linear
least-squares fit (Fig. 3). For the outer-range, only the mean value was
calculated, since outer-mean can be the most relevant to the critical
angle of reflection at the sediment-water interface (Fonseca and Mayer,
2007).

All extracted features, including two bathymetric derivatives (slope
and curvature), the backscatter mosaic, and five ARC features (near-
mean, far-mean, outer-mean, near slope, and far-slope) were rasterized
as 1 × 1 m grids. When the spatial resolution of a feature was worse
than 1 m (such as the ARC features), bilinear interpolation was con-
ducted. To avoid including redundant information in learning, we also
analyzed the correlation among features and eliminated features having
Pearson’s coefficient higher than 0.8 with others (see Section 4.1).

3.2. Step 2: Pseudo-labeling of MBES features using label spreading

Label spreading is a graph-based semi-supervised learning method
proposed by Zhou et al. (2003). It assumes that the structure of unla-
beled data is consistent with the structure of the ground truth classes,
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and hence data points having similar features are likely to be classified
identically. This will subsequently allow propagating classes of the
labeled data to the unlabeled observations. To achieve this propagation,
a graph representation is built based on the features of all data points.

Given a point set 𝜒 = {𝑥1,… , 𝑥𝑙 , 𝑥𝑙+1,… , 𝑥𝑛} ⊂ R𝑚, each point is
epresented by a feature vector with length 𝑚. The first 𝑙 points have
abels from the label set ℒ = {1,… , 𝑐}, and the remaining points are
nlabeled. Each data point serves as a node in the graph 𝐺 = (𝑉 ,𝐸). The
raph can be fully connected or constructed using 𝑘-nearest neighbors
KNN) to ease the computational burdens. The vertices 𝑉 equals the
oint set 𝜒 . The edges 𝐸 represent the connections between data points
nd are weighted by a similarity matrix 𝑊 , with 𝑊𝑖𝑗 = exp(−‖𝑥𝑖 −
𝑗‖

2∕2𝜎2) if 𝑖 ≠ 𝑗 and 𝑊𝑖𝑖 = 0. 𝜎2 is a scaling parameter.
In label spreading, the classification rule of 𝜒 is denoted by a 𝑛 × 𝑐

atrix 𝐹 = [𝐹 𝑇
1 ,… , 𝐹 𝑇

𝑛 ]𝑇 . 𝐹 𝑇
𝑖 represents the classification rule for point

𝑖, resulting in its label 𝑦𝑖 = argmax𝑢≤𝑐𝐹𝑖𝑢. 𝐹 is determined by an
terative process and initialized as 𝑌 , which is also a 𝑛 × 𝑐 matrix and
onsistent with the information from the initial labeled points. 𝑌𝑖𝑢 = 1
f 𝑥𝑖 is labeled as 𝑦𝑖 = 𝑢 ∈ {1,… , 𝑐}. 𝑌𝑖𝑢 = 0 if 𝑥𝑖 is unlabeled. The label
preading algorithm further defines the cost function associated with 𝐹
s

(𝐹 ) = 1
2
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⎠

, (4)

where 𝐷 is a diagonal matrix with the (𝑖, 𝑖)-entry equal to the sum
of the 𝑖th row of 𝑊 , and 𝜇 > 0 is the regularization parameter. 𝐷
normalizes the weight matrix 𝑊 and helps to increase the robust-
ness of the label spreading algorithm regarding data noise (Ligthart
et al., 2021). Without normalization, nodes with more connections (and
thereby potentially high degrees) may dominate the labeling process.
In addition, the first term on the right-hand side of Eq. (4) makes sure
that neighboring points in the feature space have similar classification
rules. The second regularization term adds constraint in the algorithm
so that the final classification does not deviate too much from the initial
label assignment. The final classification rule of 𝜒 will be achieved by
argmin 𝑄(𝐹 ).

In this study, we used the label spreading algorithm implemented
in the scikit-learn machine learning library in Python. Given the ground
truth classes of the boxcore samples (Table 1), the label of each MBES
data point would be either ‘sediment’ or ‘mussel’. We treated MBES
points within a 3 m radius around each boxcore sampling station as
labeled data. Considering both efficiency and the need for enlarging the
training dataset, we randomly sampled 5000 points from the unlabeled
MBES data. A KNN graph was then constructed based on these points
and the labeled data. Via label spreading, we further propagated the
class (‘sediment’ or ‘mussel’) of the labeled data to those 5000 MBES
points.

The generated 5000 pseudo-labels served as additional training
data, which helps to make better use of high-dimensional features
and alleviate overfitting. In addition, the value of 𝑘 for building the
KNN graph concerns how many neighboring points are connected to
each node in the feature space. Choosing an optimal 𝑘, however, is
not trivial. We selected the 𝑘 value by assessing the Silhouette coef-
ficient (Rousseeuw, 1987) of the pseudo-labeled data, which measures
how well different clusters are separated and helps to ensure enough
distinction between different classes of the pseudo-labeled data. The
Silhouette coefficient is a normalized metric, with 1 the best, −1 the
worst, and 0 indicating overlapping clusters.

3.3. Step 3: Training with pseudo-labels and map prediction

The expanded training dataset from step 2 comprised the labeled
MBES points near the sampling stations and 5000 pseudo-labeled
points. Each point was associated with the selected MBES features

and a class (‘sediment’ or ‘mussel’). Using these training data, we
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trained three machine learning models that have been extensively
used in seafloor mapping applications (Loureiro et al., 2024): Gradient
Boosting (GB), Random Forest (RF), and Support Vector Machine
(SVM) with the Radial Basis Function (RBF) kernel. We determined
the hyperparameters of these machine learning algorithms through an
exhaustive grid search based on a 5-fold cross-validation (Hastie et al.,
2009). Following this, each trained model was used to predict a mussel
classification map for the entire study area. We then conducted a
qualitative assessment for all these classification maps (see Section 3.4).

3.4. Step 4: Validation of the classification method

We evaluated our classification method both qualitatively and quan-
titatively. For the qualitative evaluation, we assessed the classification
maps obtained in step 3 based on expert knowledge of the study
area, including the interpretation of the bathymetric data and mussel
productions of different culture plots (Fig. 1). Due to the scarcity of
bottom samples, these classification maps were predicted by models
trained with all 9 boxcore samples.

Regarding the quantitative validation, we conducted the Leave-
One-Station-Out (LOSO) cross-validation using the ground truth data
(Fig. 2). LOSO was built upon the concept of Leave-One-Out cross-
validation (Hastie et al., 2009) that is commonly used in machine
learning for small datasets. As explained in Section 3.2, we associated
ground truth labels of the boxcore samples with the nearby MBES
features. Thus, nine sampling stations resulted in nine groups of labeled
MBES points. During each round of the LOSO cross-validation, one
group (out of nine) was left out and considered as the validation
dataset. The other groups of labeled MBES points were used to perform
pseudo-labeling and model training. We then predicted the classes of
the validation data using the trained model. Afterwards, predictions
from nine rounds of LOSO cross-validation were assessed based on their
ground truth labels and two metrics, which are accuracy and F1 score.

Accuracy is the proportion of correctly labeled points, while F1
score is calculated according to

F1 = 2 × Precision × Recall
Precision + Recall , (5)

where Precision measures how many positive predictions are correct.
Recall is calculated as the number of true positives divided by the
sum of true positives and false negatives. The F1 score is a more
objective metric than the accuracy when class imbalance is present.
Both accuracy and F1 score have the best value of 1 and the worst
value of 0.

To investigate the effectiveness of adding pseudo-labeled data in
training, we also compared the classification maps (from step 3) and
LOSO cross-validation scores (from step 4) with the full-supervised
learning results, in which model training only involved the ground
truth data. The impact of pseudo-labels was also assessed by differences
in the feature importance from the ensemble machine learning methods
(GB and RF) between the full- and semi-supervised classification. In
GB and RF, feature importance is determined by assessing the impact
of each feature on reducing uncertainty across the ensemble of mod-
els (Menze et al., 2009). Thus, it can be a measure of the significance
of each feature to the overall predictive performance of the combined
models.

4. Results and discussion

4.1. Feature extraction and selection

Different spatial patterns per region can be observed from the
extracted MBES features (Fig. 4). Circular patterns caused by the mussel
farming activities are highlighted in the geomorphological features
(slope and curvature). Regions with sand ripples also show high values,
especially in slope. These sand ripples were outside the extent of mussel

culture plots and much less likely to contain cultivated mussels. This
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Fig. 4. Features extracted from the MBES measurements.
Fig. 5. Correlation among all extracted MBES features, annotated by Pearson’s
coefficient.

indicates that solely relying on these two geomorphological features is
insufficient to discriminate mussels from sand ripples. Conversely, sand
ripples show the lowest values in the backscatter mosaic, far-mean, and
outer-mean. The highest values of these three features are located in
the mussel cultivation areas. Near-mean shows a more mixed pattern
across the study area but highlights the tidal channel in the west.
Backscatter mosaic, far-mean, and outer-mean also show high values
for the channel, possibly indicating coarser sediments. In addition,
near-slope and far-slope present distinct patterns, with high values in
the mussel cultivation area and a lot of variation in the regions of sand
ripples.

The aforementioned similarity in the backscatter mosaic, far-mean,
and outer-mean is also confirmed by the strong correlation among them
(Fig. 5). To reduce redundant information, we eliminated far-mean
from the feature set. There also exist a large number of striped arte-
facts in far-mean, so this exclusion will avoid bringing these artefacts
to the classification results. The remaining seven features were then
considered in pseudo-labeling and model training.
6 
Fig. 6. Boxplots for the selected MBES features of the labeled data, with the sediment
and mussel class plotted separately. Features were collected within a radius of 3 m
around each boxcore sampling station.

Using a radius of 3 m around the nine sampling stations (Fig. 1),

we collected 284 MBES points in total. These points were labeled with
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Fig. 7. Silhouette coefficient of 5000 pseudo-labels with different 𝑘 in label spreading.
The solid curve and shaded area indicate the mean and standard deviation of randomly
selecting 5000 points and running label spreading ten times.

the ground truth class of the corresponding boxcore sample, namely
‘sediment’ (160 points) or ‘mussel’ (124 points). Each labeled point
was also associated with the seven selected MBES features. We further
analyzed the relationship between these features and their ground truth
labels using boxplots (Fig. 6). It can be observed that the occurrence of
mussels has increased the value of all features. It is also evident that
the range of far-slope, belonging to two ground truth classes, overlap
the most. Moreover, values of outer-mean show the clearest division
between the sediment and mussel classes. This indicates that mussels
can modify the seabed surface roughness to a large degree (Jackson,
1994).

4.2. Pseudo-labeling results using all boxcore samples

Using all ground truth data (284 points) and 5000 randomly se-
lected unlabeled points, we performed label spreading and assessed
different values of 𝑘 ∈ [10, 5000] for building the KNN graph. The Sil-
houette coefficient of the pseudo-labeled data reaches the peak when 𝑘
is around 1200 (Fig. 7). The results for 𝑘 values larger than 2500 are not
presented since all pseudo-labels belong to the same class (sediment)
in those cases. Therefore, we selected 𝑘 = 1200 as an optimal value
for pseudo-labeling, as it maximizes the Silhouette coefficient and at
the same time ensures clustering the data into two classes. It is noted
that the best Silhouette coefficient is around 0.23, indicating that MBES
features of the sediment and mussel class can overlap to some extent.
This is what we would expect since the mussel class encompasses cases
where the seabed sediment contains only a limited number of mussels.

We also present the pseudo-labeling results in the feature space
using principal component analysis (PCA) (Greenacre et al., 2022) of
all selected features (Fig. 8). From the first three principal components
(PCs), which contribute to the total variability of 73% (32%, 21%, and
20%, respectively), it is observed that pseudo-labeled points from the
‘sediment’ and ‘mussel’ class are generally distinct in the PCA space.
To easily compare pseudo-labels with the ground truth, we also present
them on the two-dimensional space using the first two PCs. The general
observation is that the pseudo-labeled points closely follow the pattern
of the ground truth points. Overlapping of features from the sediment
and mussel class exists to some extent, especially near sampling stations
3 and 7, where only a limited number of living mussels were found.

4.3. Semi-supervised classification results

4.3.1. Prediction maps of the study area and qualitative evaluation
We trained GB, RF, and SVM in both full- and semi-supervised

manner. While only 284 ground truth points were used for model train-

ing in full-supervised learning, 5000 pseudo-labeled points generated
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using the ground truth data were also used as input in semi-supervised
learning. Compared to SVM, GB and RF have more tuning parameters,
such as the number of trees and the depth of each tree. Through an
exhaustive grid search, we chose the optimal number of trees as 60
for full- and semi-supervised GB, with depth of 3 and 4, respectively.
Regarding RF, 5 trees and depth of 4 were selected for the full-
supervised method, while 30 trees and depth of 4 were used in the
semi-supervised method.

We further compared the classification maps achieved by the full-
and semi-supervised methods (Fig. 9). It can be observed from the full-
supervised prediction results that the mussel class is overall consistent
with areas showing high values in the backscatter mosaic and ARC
mean features. Lots of nadir striped artefacts in the ARC features are
also included in the mussel class. This indicates that the classification
was sensitive to noise, possibly due to overfitting caused by an insuffi-
cient number of ground truth samples (Safonova et al., 2023). The tidal
channel located west of the study area is not distinguished from mussels
in all three full-supervised predictions. Moreover, many parts of sand
ripples are classified as mussels in GB and SVM predictions. Both the
mussel cultivation area and sand ripples can be prominent in geo-
morphological features, but they show different characteristics in the
backscatter-related features. These misclassified results indicate that
the full-supervised models were unable to handle complex relationships
among high-dimensional features and could be overfitted.

As for the semi-supervised methods, classification maps of GB, RF,
and SVM show similar spatial patterns in general. The identified mussel
class reveals the circular patterns of the mussel bottom culture in detail.
Compared to the full-supervised results, misclassification in areas of
sand ripples and the channel is largely reduced. Most striped noise is
also avoided, except for a small amount in the east. The reported mussel
production in culture plots OSWD87 (abundant), OSWD88 (empty) and
OSWD89 (abundant) (see Section 2) is more consistent with the semi-
supervised classification results, but to a lesser extent also with the
full-supervised predictions.

From the semi-supervised learning results, we extracted an averaged
ARC for both classes (Fig. 10). The three machine learning algorithms,
GB, RF, and SVM, produced consistent ARC shapes. ARCs of the mus-
sel class show larger backscatter strengths than the sediment class,
especially in the outer beams. In the nadir, the ‘mussel’ ARCs have a
flatter shape than ‘sediment’ ARCs. This indicates the possible impact
of mussels on the seabed surface roughness. On the other hand, ARC
shape features can be important predictors for identifying mussels on
the sediment.

4.3.2. Feature importance in full- and semi-supervised classification
As explained in Section 3.4, feature importance in tree-based meth-

ods (GB and RF) measures the impact of different features on model
performance. Comparing the feature importance between the full- and
semi-supervised classification will help to assess if machine learning
models handle multi-dimensional features better after adding pseudo-
labels in training data.

Regarding GB, the full-supervised classification depended mostly on
outer-mean and near-mean (Fig. 11). Geomorphological features, which
can provide spatial patterns of mussel cultivation, were overlooked.
With limited training data (284 points), it is difficult to account for the
interplay among all features. One important feature, including the noise
in it, might dominate the classification process. Compared to GB, the
importance of different features in RF was more balanced, and near-
slope played a bigger role. During the hyperparameter search of the
supervised methods, fewer trees were selected for RF than GB. Simple
models are less prone to overfitting, which might explain why RF made
better use of all features and brought less misclassification in the sand
ripple area compared to GB.

After using pseudo-labels to enlarge the training data size, the
feature importance of both GB and RF exhibited significantly improved

consistency. Although outer-mean was still the most influential feature,
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Fig. 8. Visualization of 5000 pseudo-labeled points (with the optimal 𝑘 = 1200) in the feature space using PCA of the selected MBES features. (Left) 5000 randomly sampled
points plotted on the span of the first three PCs, with the point color defined by their pseudo-labels; (Right) Comparison between the ground truth and pseudo-labels using the
first two PCs. The cross symbols represent the mean and standard deviation of PC1 and PC2 from the labeled MBES data points. Sampling stations 3, 7, 5, and 8, which contained
mussels, are also indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Prediction maps of the entire study area from the full- and semi-supervised classification methods, shaded by bathymetry.
the importance of slope and curvature increased in both GB and RF
classification. Far-slope was found to be the least influential feature
in both GB and RF. Semi-supervised methods involve exploiting the
data distribution outside the ground truth data, which might help
to gain a better understanding of the relations among features and
mitigate the risk of the model becoming overfitted on certain features.
From a spatial point of view, these pseudo-labeled data also provide
information on the study area other than the seabed sampling stations.

4.3.3. Quantitative evaluation: LOSO cross-validation results
LOSO cross-validation helps to estimate the model performance

with limited ground truth by considering different train–test splits.
Through splitting based on locations of the ground truth sampling
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stations, it can also reduce the spatial dependency between the train
and test data (Misiuk et al., 2019; Mastrantonis et al., 2024).

Among the full-supervised learning methods, GB delivered the best
accuracy and F1 score (Table 2). Regarding semi-supervised learning
results, we performed label spreading and model training with three
sets of randomly selected MBES data points. The accuracy values and F1
scores from these three experiments were generally consistent, with RF
showing the largest fluctuations. Although misclassification and noise
were shown to be reduced in the semi-supervised prediction maps, the
cross-validation scores were lower than the full-supervised methods.
This indicates that the full-supervised classification models were better
fitted at the ground truth sampling locations.
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Fig. 10. Averaged ARC of the sediment and mussel class from the semi-supervised learning results.
Fig. 11. Comparison between feature importance of the full- and semi-supervised classification using GB and RF.
Table 2
Averaged accuracy and F1 score of the LOSO cross-validation. Mean and standard deviation of semi-supervised results with 3
sets of randomly sampled MBES points for label spreading are presented.

Accuracy
F1 score Gradient Boosting Random Forest SVM (RBF kernel)

Semi-supervised methods 0.53 ± 0.000
0.57 ± 0.005

0.51 ± 0.017
0.54 ± 0.022

0.54 ± 0.009
0.57 ± 0.005

Full-supervised methods 0.72
0.78

0.64
0.72

0.58
0.66
Details regarding the predictions in LOSO cross-validation are also
provided (see Fig. 12), further showing that semi-supervised classi-
fication using three different machine learning algorithms achieved
consistent results. MBES points associated with one sampling station
were kept as validation data in each round of LOSO cross-validation.
When comparing the percentage of ‘mussel’ predictions with the box-
core sample descriptions, GB delivered the most aligned results among
the full-supervised classification methods. With ‘sediment’ seabed sam-
ples 1 and 2 used for validation, full-supervised methods tended to
predict many more ‘mussel’ presence than semi-supervised methods,
especially when employing SVM. For the ‘sediment’ sample 9, both full-
and semi-supervised classification failed to deliver correct predictions.
Although no mussels were found in the boxcore sample 9, this sampling
station was located in the mussel culture plot OSWD91, indicating that
mussels might exist in the surroundings. However, this is difficult to
validate given no production recordings for plot OSWD91. Moreover,
semi-supervised methods were not able to predict the mussel presence
around sampling stations 3, 7, and 8 when they were defined as the
validation set. Only semi-supervised GB predicted a few points as
‘mussel’ near station 3. For stations 3 and 7, this might be attributed
to the presence of a few mussels, according to descriptions based on
the boxcore sample pictures. Sample 8 contained a certain amount of
mussels. When it was not used for pseudo-labeling, critical information
regarding the MBES features of the sediment-mussel mixture (Fig. 8)
9 
could be lost. For sample 5, both full- and semi-supervised classi-
fication indicated the mussel presence, but semi-supervised ‘mussel’
predictions were less. In general, semi-supervised methods tended to
predict the mussel occurrence more conservatively than full-supervised
classification.

Comparison between the predictions and sample descriptions
(Fig. 12) might show the limitation in quantitative evaluation using
traditional seabed samples. With boxcore samples that usually cover
very small seabed areas, it is difficult to accurately label all MBES
points around each sampling station. General descriptions based on
visual inspection of the samples (like ‘a few mussels’ and ‘30% covered
by mussels’) are not reflected on the hard labels (‘sediment’ or ‘mussel’).
Moreover, considering that only nine seabed samples were available in
this research, the quantitative evaluation of classification for the entire
study area is very challenging.

Although semi-supervised classification delivered lower validation
scores for the ground truth sampling stations, the overall prediction
performance within the study area was proven better (Section 4.3.1).
Combining knowledge from sources other than traditional bottom sam-
pling is therefore important for assessing seabed habitat classification.
For instance, the known spatial patterns of cultivated mussels in the
Oosterschelde helped the evaluation largely, which will be less easy
to achieve in the case of natural mussel habitats. Information from
environmental conditions and optical measurements at multiple spatial
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Fig. 12. Percentage of points predicted as ‘mussel’ in each round of LOSO
cross-validation for (Left) full-supervised and (Right) semi-supervised classification.
Descriptions of the ground truth sample reserved for validation in each round are
presented and sorted based on the mussel coverage. The semi-supervised results are
averaged values based on 3 sets of randomly sampled MBES points for label spreading.

scales can be helpful for natural seabed habitat monitoring (Nieuwhof,
2018).

4.4. Limitations and future work

In this research, we investigated the application of semi-supervised
machine learning in seabed classification by presenting a specific case
for identifying mussel cultures. Our study area represents the bottom
mussel cultivation in the Netherlands but is relatively small. Moreover,
although the surveyed area provides various seabed features regarding
geomorphology, it shows a specific spatial pattern of mussel distribu-
tions and a preference for certain sediment types. This limited study
scope poses challenges to estimating the performance of the proposed
method on MBES data from other seabed environments. For instance,
naturally growing mussels attach to harder substrates like rocks. They
can also present distinct spatial patterns compared to cultivated mus-
sels. Therefore, future work should investigate this semi-supervised
method for diverse mussel habitats on different seabeds, by collecting
acoustic data from more locations or combining open datasets. This will
require enhanced collaboration among researchers and practitioners
from various fields. Besides acoustic datasets, ground truth information
other than point-based seabed sampling, such as underwater images
with a broader spatial extent and field knowledge regarding mussel
growth, can assist the training of robust machine learning models
and ease the validation process. In addition, when comparing MBES
datasets of different study areas, it is necessary to consider backscatter
calibration or strategies for combining backscatter data from different
surveys.

5. Conclusion

With MBES data and a limited number of ground truth bottom
samples collected in a mussel cultivation area in the Oosterschelde, the
10 
Netherlands, we showed the advantage of a semi-supervised machine
learning approach for detecting the occurrence of mussels. We used
label spreading to generate pseudo-labels, which helped to enlarge the
training data size and alleviated overfitting. Trained with the pseudo-
labeled data, the prediction maps of three machine learning algorithms
(Gradient Boosting, Random Forest, and Support Vector Machine) show
consistency. When using machine learning methods in specific applica-
tions, it is highly recommended to compare different algorithms and
see if consistent results can be achieved.

Based on evaluation using the abundant ecological knowledge of
the cultivation area, the mussel occurrence predicted by the semi-
supervised classification method is in line with areas having large
slopes and curvatures caused by dredging activities during mussel
farming. However, seabed geomorphology cannot be the deterministic
feature for mussel detection, since some mussel culture areas are empty
and sand ripples can also induce varied geomorphology. In this case,
the backscatter-related features are an important indicator. In general,
mussels increase the backscatter strength of the seabed compared to the
bare sediment. They may also affect the characteristics of the backscat-
ter angular response curves, especially for the outer beams. During
the evaluation stage, we also highlight the importance of studying the
spatial patterns of mussels from methods other than traditional bottom
sampling, especially in the research for natural mussel habitats.
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