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Abstract: In the present paper, a flight dynamics model is adopted to represent the trim and stability
characteristics of a side-by-side helicopter in hovering conditions. This paper develops a numerical
representation of the rotorcraft behavior and proposes a set of guidelines for trimming and linearizing
the highly coupled rotor dynamics derived by the modeling approach. The trim algorithm presents
two nested loops to compute a solution of the steady-state conditions averaged around one blade’s
revolution. On the other hand, a 38-state-space linear representation of the helicopter and rotor
dynamics is obtained to study the effects of flap, lead–lag, and inflow on the overall stability. The
results are compared with an analytical framework developed to validate the rotorcraft stability and
compare different modeling approaches. The analysis showed that non-uniform inflow modeling
led to a coupled longitudinal inflow–phugoid mode which made the vehicle prone to dangerous
instabilities. The flap and lead–lag dynamics introduced damping in the system and can be considered
beneficial for rotor dynamics.

Keywords: flight dynamics; side-by-side helicopter; numerical modeling; trim algorithm; linearization
methodology; stability

1. Introduction

Considerable research has been performed over the past 50 years to improve the
fidelity of mathematical models for rotorcraft flight dynamics [1–3]. In this respect, differ-
ent approaches have been developed, summarised in order of complexity: (1) the most
classical one formulates rotor nonlinearity analytically by using blade element theory to
calculate forces and moments generated by the rotor system [4]; (2) a second type of model-
ing technique considers numerical differential equations for both rigid body motion and
blades’ flexibility, proposing an integral nonlinear formulation of the rotorcraft loads [5,6];
(3) a third type employs the principles of multi-body dynamics to describe rotorcraft
behavior [7,8], an example of which can be seen in the known flight dynamics software
FLIGHTLABTM (Release v3.6.0) [9]; and (4) a more refined approach consists of cou-
pling computational fluid dynamics (CFD) with computational structural dynamics (CSD)
solutions [10]. While each approach has proven its applicability for rotorcraft, most of
the above-mentioned models use the common ’time scale separation’ assumption when
calculating the trim and performing the linearization. This means that the rotor (i.e., inflow,
flapping, and lead–lag) dynamics are typically stable and significantly faster than that of
the rigid body, and a residualization method can be applied by employing singular pertur-
bation theory [11]. This approach removes the need to estimate higher-order rotor dynamic
states while retaining information on the influence of the residualized dynamics on the

Aerospace 2024, 11, 927. https://doi.org/10.3390/aerospace11110927 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11110927
https://doi.org/10.3390/aerospace11110927
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-1794-5812
https://orcid.org/0000-0003-4531-3660
https://orcid.org/0000-0002-7164-5346
https://orcid.org/0000-0002-0715-4200
https://doi.org/10.3390/aerospace11110927
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11110927?type=check_update&version=1


Aerospace 2024, 11, 927 2 of 23

slower rigid body dynamics [12]. While the residualization procedure is commonly applied
for the design of control systems, since it allows the state-space system to be simplified by
separating slower and faster dynamics, this procedure should be carefully implemented in
highly nonlinear systems such as rotorcraft where the time scale separation assumption is
not always valid [13].

The main goal of this paper is to fundamentally understand the effects of blade flexi-
bility on rigid body dynamics by implementing a novel method for performing trim and
linearization in a highly coupled nonlinear system. Specifically, a side-by-side helicopter
was studied and flight-tested by SAB Group s.r.l. and the University of Bologna to un-
derstand the potential of this configuration for future VTOL developments in Urban Air
Mobility (UAM). A first modeling approach was developed for a preliminary analysis [14]
involving an analytical representation of the vehicle flight dynamics. This framework,
however, highlighted a disagreement between the predicted stability and the rotorcraft
behavior. The 14 degrees of freedom (dof)analytical model predicted overall stable behavior,
except for a slightly unstable, oscillatory phugoid mode. On the other hand, a qualitative
analysis of the preliminary flight tests revealed a tendency of the rotorcraft to diverge from
its hovering condition, behaving as a longitudinally unstable system with a real, positive
pole. As expected, a typical unstable phugoid in rotorcraft flight dynamics appeared as
a divergence of the pitch angle [15]. For this reason, a higher-complexity framework has
been developed and described in this paper by including additional rotor effects and a nu-
merical representation of the aerodynamic blade loads. It will be demonstrated that, while
a numerical approach eliminates the need for complex algebraic expansions of the blade’s
nonlinear structural dynamics, it also requires a methodology for in-place linearization
and trim analysis. To this extent, three major issues were identified when dealing with
numerical formulations:

1. The model describes the aerodynamic loads on each single blade by applying a blade
element approach in a rotating frame of reference, and sums up their contributions in
the two rotors. This single-blade representation leads to a loss of physical meaning
when developing linear state-space representation;

2. Rotor dynamics obtained by a Lagrangian approach on the single-blade representation
produce a high level of coupling between flap and lead–lag dynamics;

3. The presence of complex, nonlinear terms derived by numerical integration makes
the linearization process impractical with an explicit version of the equations.

In order to achieve the main purpose of this paper, a set of guidelines has been
provided to overcome the listed issues and provide a 38-state-space representation of the
side-by-side helicopter flight dynamics. The methodology presented in this paper will
provide motivation for a more in-depth analysis of mathematical modeling techniques to
be used in future advanced rotorcraft configurations [16].

This paper is organized as follows: in the modeling section, the numerical model is
presented for the case studied in this paper, with a focus on the rotor dynamics and its
suitable representation. Trim and linearization methodologies are proposed for this type of
mathematical representation and equilibrium results are summarized and compared with
an analytical framework. The following section shows the results of the stability of rigid
body dynamics, as affected by different levels of complexity: the effects of flap, lead–lag,
and non-uniform inflow will be addressed in this section. Finally, the particular rotor
dynamic characteristics of this configuration are reproduced by including the collective,
advancing, and regressive flap–lead–lag modes and their coupling. This work terminates
with some concluding remarks. Rotorcraft data and matrix calculations are reported in the
Appendices A and B.

2. Materials and Methods
2.1. Modeling Overview

This case study is of a symmetric side-by-side helicopter, whose data (and their
notation) are recalled in Appendix A. The rotorcraft has two counter-rotating, ducted, and
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synchronous rotors which were modeled as isolated ones. The rotors are located on each
side of the fuselage and do not present any intermeshing section. For this reason and
by considering the geometry of the case study (Figure 1), it is reasonable to assume that
the aerodynamic interactions between the rotors can be neglected. The rotors rotate at a
constant angular speed and they are actuated with a typical helicopter swashplate. The
system is thus over-actuated, meaning that the single-rotor controls have to be mixed in
order to reduce them to classical helicopter ones, i.e., the global collective pitch (θ0) for
vertical motion, lateral (A1s) and longitudinal (B1s) cyclics for in-plane movement, and yaw
control (∆B1s) are obtained as follows:

θ0 = θ
(1)
0 = θ

(2)
0 (1)

A1s = A(1)
1s = A(2)

1s (2)

B1s =
B(1)

1s + B(2)
1s

2
(3)

∆B1s =
B(1)

1s − B(2)
1s

2
(4)

where the superscript numbers (1) and (2) identify the rotor. The mathematical framework
adopted in this paper is a 24 dof numerical model, which describes the flight dynamics
of the rotorcraft under the hypothesis of a rigid body moving on a flat and non-rotating
Earth. Second-order coupled flap–lag dynamics was integrated into the main rotor de-
scription and a non-uniform, first-order, dynamic inflow provided by Peters et al. [17] was
included as well. The fuselage aerodynamic loads ( Ff and M f ) are represented with a
flat-plate approximation by using the software OpenVSP (Release 3.34.0) to calculate the
parasite drag of the frontal, side, and top equivalent areas [14]. The effect of the shrouds
is taken into account as well with the integration of semi-analytical results produced by
Bourtsev et al. [18] on the Leishman representation of the thrust with ducted fans [19]). In
their work, Bourtsev et al. provide a simple and analytical model for calculating the wake
contraction factor (aw) of a fan-in-fin rotor, where the effect of the shroud depends on the
characteristics of its geometry, such as lip radius, type, or depth. The total thrust of each
rotor (T) is given by the rotor force component perpendicular to the tip-path plane (Tr) plus
the contribution of the shroud, such that

T = Tr + Td where
Td
T

= 1 − 1
2aw

(5)

and aw is derived from Bourtsev’s results. For the sake of simplicity, the model does not take
into account the aerodynamic interactions between rotor and shroud, and the contraction
factor is kept constant for the duct geometry. The latter approximation makes the model
suitable for hovering studies, while it lacks proper validation in the case of forward flight.
The rotorcraft’s body frame of reference (centered in the center of gravity CG) and rotor
directions are shown in Figure 1.
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Figure 1. Side-by-side helicopter (technical data in Appendix A). The rotorcraft has a take-off mass of
20.62 kg, a rotor radius of 0.5 m, and an overall size of 2.5 m.

The numerical modeling approach described in this work allows for isolating the influ-
ence of rotor dynamic effects (flap, lead–lag, and inflow) on the overall rotorcraft stability.
This single-blade representation can be employed for a deeper study of the blade design
and vibration analysis, as well as to consider particular chord distributions and unbalanced
rotors. The results are compared with an already developed and validated analytical model
described in Ref. [14]. The model has 14 dof and is based on Talbot’s formulation for
classical helicopter configuration [4]. The latter provides analytical expressions of the
total forces and moments generated by the rotor (so not requiring numerical integration)
and includes second-order tip-path plane dynamics and a uniform dynamic inflow. A
comparison between the two modeling approaches is performed in this paper to validate
the results obtained with the numerical approach at an equivalent level of complexity.

2.2. Frames of Reference

The mathematical framework adopts three main frames of reference (f.o.r.), as shown
in Figure 2. The first one is the body f.o.r. ([xB yB zB]), a right-handed f.o.r. identified by
the superscript B in the equations. It is centered in the center of gravity (CG) and coherent
with the rotorcraft attitude: the lateral axis yB is directed towards the right-hand side rotor,
while zB is directed towards the underneath of the vehicle. The second f.o.r. to be described
is the local hub-body frame ([xHB yHB zHB]), identified by the superscript HB in the text.
This right-handed f.o.r. is centered on each main rotor center of rotation, with the vertical
axis zHB directed downwards and parallel to the rotor shaft. The horizontal axis xHB is
instead perpendicular to the rotor shaft and pointed towards the nose of the rotorcraft.
The third f.o.r. to be described is the local blade frame of reference (superscript bl): this
is centered on the aerodynamic center of each blade section, coherent with the azimuthal
position of the blade (ψ), and its flap (β), lead–lag (ξ), and twist (θb) angles. The orientation
of this f.o.r. is depicted in Figure 2. The Figure also provides the positive direction of the
blade’s angles in a clockwise rotor. In general, a positive ψ starts from the rotorcraft’s tail
and increases with the rotor’s sense of rotation, a positive β is defined when the blade flaps
up, and a positive ξ is defined when the blade lags with respect to the sense of rotation.
The general rotation matrix between two of these f.o.r. is represented by the letter R.
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Figure 2. Schematic representation of hub-body and blade frames of reference.

2.3. Forces and Moments

The main rotor forces and moments were modeled with a blade element approach by
dividing each blade into a finite number of sections governed by 2D aerodynamics, and
by integrating the infinitesimal contributions along the span. The main rotor forces are
divided into three contributions: (1) aerodynamic (Fa), (2) inertial (Fi), and (3) centrifugal
(Fc). The main rotor moments are provided by their (1) aerodynamic (Ma), (2) inertial (Mi),
and (3) flap hinge stiffness (Ms) components. Considering the single-blade contribution
of a Γ-rotating rotor [20] (where Γ = 1 for a counter-clockwise rotor and Γ = −1 for a
clockwise rotor), the aerodynamic force in the hub-body frame of the i-th blade (subscript
i) is computed as

Fai
HB =

∫ R−e0

rc
RHB−bl(dLbl + dDbl)dr (6)

where the infinitesimal force given by the sum of lift and drag (dL and dD), rotated from
the blade to the hub-body frame of reference, is integrated along the blade span, from
the root cutout to the blade tip. RHB−bl = RHB−bl(ψi, βi, ξi, θbi

) is the rotation matrix
between the two mentioned frames; it is specific for each blade section and depends on its
radial (r) and azimuthal (ψi) locations. The infinitesimal lift and drag contributions can be
summarized as

dLbl =
1
2

ρ|Va|2CL(αi, Rei)c

 Γ sin αi
0

− cos αi

, (7)

dDbl =
1
2

ρ|Va|2CD(αi, Rei)c

−Γ cos αi
0

− sin αi

 (8)

where CL and CD are the aerodynamic lift and drag coefficients of the specific blade section

subjected to the Reynolds number Re =
c|Va|

ν
and angle of attack α = arctan

(
Vaz

ΓVax

)
. The

airfoil’s aerodynamics were modeled by employing look-up tables of conventional NACA
profiles and by extending them with semi-analytical formulas developed by Viterna [21].
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The local twist angle is instead the parameter where the pilot controls enter into the
computation. In particular,

θbi
= θ0 + A1s cos(ψi + ψθ) + B1s sin(ψi + ψθ) +

r
R

θw − Ktξ ξi − Ktββi (9)

where θ0, A1s, and B1s are the collective pitch, lateral, and longitudinal cyclic input applied
to the j-th rotor. The parameter ψθ is used to consider the swashplate’s phase angle in the
local twist definition. The aerodynamic velocity at the blade section Va = [Vax Vay Vaz ] is
instead computed from the inertial velocity (VI

HB, see Ref. [6]) as

Va = Rbl−HB(VI
HB −

 0
0
vi

− Vg) (10)

where Vg is the gust velocity in the hub-body frame. The local inflow velocity is

vi = ΩR
(

λ0 + λs
r
R

sin ψi + λc
r
R

cos ψi

)
(11)

and its coefficients λ = [λ0 λs λc] are derived from Peters et al. [17]. Each blade is also
subjected to inertial and centrifugal forces, which are, respectively, modeled as

Fii
HB = mbηξ ξ̈i

Γ cos ψi
− sin ψi

0

, and Fci
HB =

1
2

mb(ΩR)2

Γ sin ψi
cos ψi

0

 (12)

where ηξ = R − eP − eL. The expressions of Fii and Fci were provided by Taamallah [6]
and re-arranged for a Γ-rotating rotor. The aerodynamic moment in the hub-body frame of
the i-th blade is computed as the integral of the infinitesimal contributions at each blade
section, given by the cross product between the section position vector with respect to the
hub center and the aerodynamic force. In mathematical terms,

Mai
HB =

∫ R−e0

rc
r × [RHB−bl(dLbl + dDbl)]dr (13)

Additional moments come from the flap hinge stiffness and inertial contributions and
depend on the rotor disc tilt coordinates a1 and b1 (see Section 3.2). These are, respectively,

Msi
HB =

1
1 − e0

R

NbKsβ

2

Γb1
a1
0

, and Mii
HB =

Nb
2

mbe0rGΩ2

Γb1
a1
0

 (14)

Finally, the total external force and moment in the body f.o.r. applied by the j-th rotor is
computed by the sum of the contributions of each blade plus the moment derived by the
cross product between the rotor hub position and the external force. In particular,

Fj
B = RB−HB

Nb

∑
i=1

(Fai + Fci + Fii ) (15)

Mj
B = rHB × Fj

B +RB−HB

Nb

∑
i=1

(Mai + Msi + Mii ) (16)

The two rotors share the same design and operate at equal and constant angular speed;
their only differences are their location with respect to the rotorcraft’s CG and the sense



Aerospace 2024, 11, 927 7 of 23

of rotation. The total external force and moment acting on the VTOL, expressed in body
f.o.r., are

F = F(1) + F(2) + Ff (17)

M = M(1) + M(2) + M f (18)

2.4. Rotor Flap–Lag Dynamics

The rotor dynamics is described by a system of second order ordinary differential
equations (ODE), derived with a Lagrangian method by Tamallah (Ref. [22]) for a P-L-F
(Pitch-Lag-Flap) small-scale helicopter rotor. The system has 6 degrees of freedom for each
rotor and describes the coupled flap and lead-lag dynamics in a rotating frame of reference.
In particular, for the i-th blade,

β̈i =
1

A1
(−Dβ

i ξ̇i + Qβ
i − Fβ

i )

ξ̈i =
1

A2
(−Dξ

i β̇i + Qξ
i − Fξ

i )

(19)

where A1 = mb(R−e0)
2

3 and A2 = mb(e2
F + 2eFrG + (R−e0)

2

3 ) are constants which depend on

the blade’s inertia. The terms Dβ
i and Dξ

i are nonlinear coupling terms whose expression
can be found in Ref. [6] and is specific for the i-th blade. Similarly, Qi − Fi is the excitation
of each ODE and represents the generalized force that creates the flapping and lead–lag
motion [6]. For the sake of this paper, the flap–lag equations derived in this form present
some criticalities: the equations are highly nonlinear and include numerical integration
into the Q terms. In addition, the rotating frame representation is suitable for the rotor-
craft simulation but at the same time, it loses physical meaning when studying the rotor
stability and its regressive and advancing modes. In order to overcome these problems,
Equation (19) was adapted to represent the tip-path plane and rotor center of gravity dy-
namics, which are indeed described by the flapping and lead-lag coefficients, in a partially
decoupled system [23]. As a first step, Equation (19) was re-written in a non-rotating frame
by describing the rotor flap and lead-lag angles with the Coleman representation for a
3-bladed rotor [24]. In particular, for the i-th blade,

βi = a0 − a1 cos ψi − b1 sin ψi

β̇i = ȧ0 − ȧ1 cos ψi − ḃ1 sin ψi + a1Ω sin ψ − b1Ω cos ψ

β̈i = ä0 − ä1 cos ψi − b̈1 sin ψi + (a1Ω2 − 2ḃ1Ω − b1Ω̇) cos ψi + (b1Ω2 + 2ȧ1Ω + a1Ω̇) sin ψi

ξi = ξ0 − ξc cos ψi − ξs sin ψi

ξ̇i = ξ̇0 − ξ̇c cos ψi − ξ̇s sin ψi + ξcΩ sin ψ − ξsΩ cos ψ

ξ̈i = ξ̈0 − ξ̈c cos ψi − ξ̈s sin ψi + (ξcΩ2 − 2ξ̇sΩ − ξsΩ̇) cos ψi + (ξsΩ2 + 2ξ̇cΩ + ξcΩ̇) sin ψi

(20)

where the tip-path plane dynamics are described by the cone-shapedrotor coordinates,
i.e., the coning angle a0 and the lateral and longitudinal flap coordinates a1 and b1. The
motion of the rotor center of gravity is instead described by the lead–lag coordinates in
the non-rotating frame, i.e., the collective ξ0, and the advancing/regressive lag, ξc and ξs.
By substituting Equation (20) into (19), the rotor dynamics can be then expressed in the
following form: {

β̈ = −Kβ
1 β̇ − Kβ

0 β + Cβ
1 ξ̇ + Cβ

0 ξ + Eβ

ξ̈ = −Kξ
1 ξ̇ − Kξ

0ξ + Cξ
1 β̇ + Cξ

0 β + Eξ
(21)

where β = [a0 a1 b1] and ξ = [ξ0 ξc ξs]. The expression of the K, C, and E terms can be
found in Appendix B. In particular, K0 and K1 are constant matrices (at each time step)
derived from the frame transformation, while C0 and C1 are representative of the level of
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coupling between flap and lead–lag dynamics. These matrices are highly nonlinear, and
an explicit transformation from a rotating to a non-rotating frame was not feasible. This
criticality will be addressed in Section 2.6 by approximating them with Taylor expansion.
Eβ and Eξ are instead the excitation of the second-order ODE, represented by the flapping
and lead–lag moments computed with numerical integration.

The system in Equation (21) represents the rotor dynamics in a non-rotating frame
and can be solved with classical numerical methods [25]. However, the main goal of this
paper is to fundamentally understand the effect of rotor dynamics on the overall stability
of the rotorcraft and identify the major cause of longitudinal instabilities. For this reason, a
highly coupled system is not suitable for isolating the influence of flap and lead–lag and
a partially decoupled solution has to be found. To overcome this issue, the dynamic was
solved with a Simulink scheme depicted in Figure 3. At each time step, t, the flap and
lead–lag dynamics equations (Equation (21)) were solved separately by approximating the
coupling and forcing terms with the values of the rotor flap and lead–lag coordinates at
the previous time step (t − ∆t). In the algorithm, ψ = [ψ1 ψ2 ψ3] is the vector of a single
blade’s azimuthal coordinates used to compute the constant matrices (K0 and K1). With the
same azimuthal positions and the single blade flap and lead–lag angles, derived from the
inverse Coleman transformation, the C0, C1, and E terms of the equations are computed
and used to solve the dynamics. The algorithm allows for solving the rotor equations with
a partial decoupling so one dynamic or the other can be excluded by simply cutting off its
branch and isolating its effect on the overall system.

i i

ii

Figure 3. Simulink algorithm to partially decouple and solve rotor dynamics in a non-rotating frame
of reference.

2.5. Trim

The side-by-side helicopter dynamics can be described by a set of 24 equations, in-
volving 6 for the rigid body motion, 12 for the rotor, and 6 for the dynamic inflow of the
two main rotors. Computing the trim condition means solving the system in a steady-state
configuration, thus setting all the first- and second-order derivatives to equal zero. The full
set of equations to be solved is

mtoU̇ = −mtoω × U + Fg + F
Iω̇ = M − ω × Iω

β̈
(1/2)

= [−Kβ
1 β̇ − Kβ

0 β + Cβ
1 ξ̇ + Cβ

0 ξ + Eβ](1/2)

ξ̈
(1/2)

= [−Kξ
1 ξ̇ − Kξ

0ξ + Cξ
1 β̇ + Cξ

0 β + Eξ ](1/2)

λ̇
(1/2)

= −Ω(MλL1L2)
−1λ + ΩM−1

λ Caero

where


U̇ = ω̇ = 0;
β̈ = β̇ = 0;
ξ̈ = ξ̇ = 0;
λ̇ = 0;

(22)

and Fg is the weight vector force. The inflow dynamics are provided by Peters [17], and
the expression of the matrices Mλ, L1, and L2 can be found in this reference, as well as
Caero. The latter is a vector of the aerodynamic coefficients of thrust, rolling, and pitching
moments. The calculation of the equilibrium conditions with a numerical, single-blade
model requires a nonconventional approach. The presence of numerical integrations in the
mathematical framework makes it very impractical to solve the system with a symbolic
routine. In addition, with the rotor loads being time-dependent, the trim solution is not
unique for each flight condition. Having a single-blade representation of the rotor disc
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leads to a dependency between the rotor dynamics and the current blades’ configuration
(ψ), and it has been observed that the tip-path plane and rotor CG coordinates depend on
the blade location at which the numerical algorithm has started. Flap wobbling and rotor
vibrations are observed such that β and ξ change during one revolution. For these reasons,
a general steady-state solution to the trim problem which is able to keep the rotorcraft
in equilibrium cannot be found if considering a unique blade setup. In order to find a
condition that minimizes the average rotor acceleration in each blade ψ location, the trim
has to be computed based on an average rotor force and moment in a Nc number of blade
symmetric configurations. For example, by setting the parameter Nc = 3, the trim is solved
as an average between the equispaced blade configurations depicted in Figure 4.

Figure 4. Blade configurations for a clockwise rotor with Nb = 3 and Nc = 3.

In general, considering ψ0 = [ψ1 ψ2 ψ3] as the vector containing the initial position of each
blade, the k-th configuration can be computed as

ψk = ψ0 + k
2π

NbNc
where k = 0, 1, 2, ...Nc − 1; (23)

The trim algorithm is described in Figure 5. The solution to the problem is found by
iteratively solving the steady-state flap–lag equations, the steady-state 6 dof equations of
motion (EoM), and the non-uniform steady-state inflow. In order to help the convergence
of the algorithm, it was observed that the iterations should be split into an internal loop,
which solves the EoM system and the steady inflow for fixed rotor coordinates, and an
external loop which solves and updates at each step the flap and lead-lag values. Each
block of nonlinear equations was solved with a Newton–Raphson algorithm. The algorithm
works as follows:
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(1/2)

(1/2)

(1/2)

(1/2) (1/2) (1/2)

Figure 5. Trim algorithm.

(a) The algorithm starts with the initial condition of the 26 unknowns (6 flap coefficients,
6 lead–lag coefficients, 6 inflow coefficients, 2 collective pitches, 4 cyclic controls, roll
(ϕ), and pitch (θ) attitudes).

(b) The rotor dynamic equations are solved for an Nc finite number of equispaced blades’
configurations and the disc tilt and rotor CG coordinates are derived for each of them.

(c) The average values of βk and ξk are computed.
(d) Knowing the average rotor coordinates, the main rotor forces and moments are

computed with Equations (15) and (16). Again, this computation is repeated for Nc
blade configurations.

(e) The average main rotor loads are computed.
(f) With the average rotor disc tilts, CG coordinates and main rotor loads, the system of

steady-state equations of motion is solved. Two additional Equations, (1) and (2), are
included to take the control mix into account and close the system.

(g) With the new state obtained on the averaged EoM, the inflow dynamics is solved. The
equations of the 3-states inflow model are summarised in Peters et al. [17];

(h) The internal loop that solves EoM and inflow is repeated until the stopping criterion
(maximum relative error between the rotorcraft state, inflow, and controls at each
internal iteration) is satisfied.

(i) Once the internal loop has converged, the rotorcraft state is updated and a new
external iteration is started. The external loop is repeated until the stopping criterion
(maximum relative error between the TPP and rotor CG coordinates at each external
iteration) is satisfied.

The results at a variable forward speed are reported in Figure 6, together with a
comparison with the 14 dof analytical model previously developed by the authors [14]. The
curves are typical helicopter trim curves, with a collective pitch control of approximately
10◦ at hover which has a decreasing trend as the forward speed increases (up to the
minimum power condition). A positive longitudinal cyclic control (push effort for the pilot)
is adopted at a positive forward speed together with a nose-down, negative-pitch attitude.
The two models have a good agreement in both attitude and control results, with a small
discrepancy in the pitch angle.
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Figure 6. Pilot controls (left) and rotorcraft attitude (right) in trim condition at variable forward speeds.

2.6. Linearization

In order to study the flight dynamic properties and open-loop stability of a rotorcraft,
the numerical model has to be linearized around a specific trim condition. While the
development of state-space linearized models for the analytical frameworks has already
been described in several works [26–28], the process of linearizing a numerical, single-blade
model, such as the one presented in this paper, still needs to be properly stated. The higher
degrees of freedom, the numerical integration of forces and moments along each single
blade, and the high level of coupling between flap and lead–lag dynamics create challenges
in the derivation of an approximated linear model that describes the rotorcraft behavior
around specific flight conditions. In this section, a methodology to overcome this problem
and to develop a 38-state linear model is presented. The 38 ordinary differential equations
describing the rigid body motion, rotor, and inflow dynamics are

mtoU̇ = −mtoω × U + Fg + F
Iω̇ = M − ω × Iω

ϕ̇ = p + q sin ϕ tan θ + r cos ϕ tan θ

θ̇ = q cos ϕ − r sin ϕ

β̇
(1/2)

= [dβ](1/2)

ḋβ
(1/2)

=
[
−Kβ

1 dβ − Kβ
0 β + Cβ

1 dξ + Cβ
0 ξ + Eβ

](1/2)

ξ̇
(1/2)

= [dξ](1/2)

ḋξ
(1/2)

=
[
−Kξ

1dξ − Kξ
0ξ + Cξ

1 dβ + Cξ
0 β + Eξ

](1/2)

λ̇
(1/2)

= −Ω(MλL1L2)
−1λ + ΩM−1

λ Caero

(24)

where the first 8 equations represent the rigid body motion plus the Euler angle definition.
The second-order flap and lead–lag dynamics described in a non-rotating frame of reference
in Equation (21), with a set of 6 equations per each rotor, are reduced to 24 first-order ODEs
by applying a separation of variables. In particular, dβ = [ȧ0 ȧ1 ḃ1] and dξ = [ξ̇0 ξ̇c ξ̇s] are
the variables added to reduce the second- to first-order ODEs. The system of equations is
linearized and reduced to the form

ẋ = Ax + Bτ (25)

where A, B, x, and τ are the state and control matrices and the state and control vectors.
In particular,
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x =
[
u w q θ v p ϕ r β(1) β(2) dβ(1) dβ(2) ξ(1) ξ(2) dξ(1) dξ(2) λ(1) λ(2)

]
(26)

τ = [θ0 A1s B1s ∆B1s] (27)

In order to reduce Equation (24) to (25), the small perturbation theory is applied. Each
general state x is described as a perturbation from the trim condition, thus x = x0 + δx,
where δx is a small perturbation and the superscript 0 identifies the trim values. The second-
order terms are neglected and the equations are written in terms of small perturbations, to
describe the linear dynamics of the system around a specific trim condition. The external
forces and moments (F = [X Y Z] and M = [L M N]) and the excitation of the rotor flap
and lead–lag dynamics (Eβ and Eξ) are the forcing terms of the respective ODEs. These
terms are represented by analytic functions of the disturbed motion variables and their
derivatives using Taylor’s theorem. They can be expressed as their trim value plus a sum
of contributions from each state and control variable, such that

F = F0 + Fuu + Fww + ... + F∆B1s ∆B1s (28)

where the first-order derivative about a generic perturbation δx of the x state is computed
numerically with a central finite difference formula as

Fx =
∂F
∂xi

∣∣∣
x0

=
F(x0 + δx)− F(x0 − δx)

2δx
(29)

The same approach is also applied to the inflow and the coupling terms in the rotor
dynamics equations (C0 and C1) which are nonlinear terms representing the coupling
between the flap and lead–lag dynamics of each rotor. In general, the forcing and coupling
terms in the rotor equations (C and E) are nonlinear functions of the rotor states themselves
and involve numerical integration for their computation. This makes it impossible to
rearrange these terms in an explicit form with the rotor states, and Taylor’s approximation
becomes a viable solution for their linearization. The state matrix A will indeed be a function
of the trim condition and the stability derivatives which describe the linear response of the
perturbed states. As a matter of fact, with the presented methodology, the stability of the
system is described not only by the classical rigid body derivatives but also by the coupling
body–rotor–inflow derivatives and the ones related to the flap and lead–lag forcing and
coupling terms. The general structure of the A matrix is as follows:

A =

 AB(8 × 38)
AR(24 × 38)
Aλ(6 × 38)

 =

 AB−B(8 × 8) AB−R(8 × 24) AB−λ(8 × 6)
AR−B(24 × 8) AR−R(24 × 24) AR−λ(24 × 6)
Aλ−B(6 × 8) Aλ−R(6 × 24) Aλ−λ(6 × 6)

 (30)

where AB, AR, and Aλ are, respectively, the linearized versions of the rigid body, rotor,
and inflow dynamics, and they are composed of a set of 3 submatrices for each of them.
Considering, for example, the rigid body dynamics, AB−B represents the 8-state linear
model of the rigid body equations of motion (excluding the heading contribution), while
AB−R and AB−λ represent the coupling effect of the flap, lead–lag, and inflow dynamics
on the body motion. On the other hand, AR−B for example, represents the coupling effect
of the rigid body motion on the rotor dynamics (flap and lead–lag). While the expression
of AB−B and the normalization of the stability derivatives can be found in Padfield [15],
AB−R (and similarly AB−λ) is made by the stability derivatives derived by the total forces
and moments, perturbed with a flap or lead–lag perturbation, i.e.,
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AB−R =



X
a(1)0

X
a(1)1

X
b(1)1

· · · X
ξ
(1)
0

· · ·
Z

a(1)0
· · · Z

ξ
(1)
0

· · ·
M

a(1)0
· · · M

ξ
(1)
0

· · ·
0 · · · 0 · · ·

L
a(1)0

· · · L
ξ
(1)
0

· · ·
0 · · · 0 · · ·

N
a(1)0

· · · N
ξ
(1)
0

· · ·


(31)

The flap and lead–lag dynamics, instead, are represented by the linearized version
of the rotor dynamics equations, i.e., AR. Similarly to the body dynamics, AR is made of
pure rotor–rotor dynamics (AR−R) plus the coupling effects of body and inflow on the rotor
itself. The structure of the matrix AR is derived from the linearization of Equation (21), and
is structured as follows:

AR =

Z24×8

Z6×6 I6 Z6×6 Z6×6

−Kβ
0 −Kβ

1 Cβ,0
0 Cβ,0

1
Z6×6 Z6×6 Z6×6 I6

−Kξ
0 −Kξ

1 Cξ,0
0 Cξ,0

1

Z24×6



+



Z6×1 · · ·[
Cβ

0x
ξ0 + Eβ

x

](1)
· · ·[

Cβ
0x

ξ0 + Eβ
x

](2)
· · ·

Z6×1 · · ·[
Cξ

0x
β0 + Eξ

x

](1)
· · ·[

Cξ
0x

β0 + Eξ
x

](2)
· · ·



(32)

where Cβ,0
0 and Cξ,0

0 are the coupling coefficients of the flap and lead–lag equations eval-

uated in the trim condition, while Cβ
0x

, Cξ
0x

, Eξ
x, and Eξ

x are the stability derivatives of the
coupling and forcing terms, computed with respect to the generic perturbed state x as
mentioned by Equation (29). Symbols Zi×j and Ii represent, respectively, a zero matrix of
dimensions i × j and an identity matrix of dimensions i × i. All of these terms are derived
for both the main rotors 1 and 2, and thus they are structured as, for example,

Kβ
0 =

Kβ(1)

0 Z3×3

Z3×3 Kβ(2)

0

 (33)

It can be observed that AR is split, for the sake of clarity, into two matrices: the first one
depends exclusively on the trim condition, while the second depends on the stability
derivatives. It is indeed a 24 × 38 matrix and the general notation applied for both terms
is with the x-perturbed state in the last subscript. In addition, β0 and ξ0 are the flap and
lead–lag coordinates at the trim, considering the average solution found in the trim section.
In general, in the i-th column of this matrix, the derivatives are computed for the i-th
perturbed state and for the rotor indicated by the superscript. A similar methodology was
applied to the inflow dynamics to derive the linearized version of the inflow equations
represented by the matrix Aλ.

In order to study the open-loop stability of the rotorcraft, an analysis of the eigenvalues
and eigenvectors of the matrix A is performed. In general, 38 different poles were identified
and related to the rigid body, flap, lead–lag, and inflow dynamics, and the effects of different
degrees of complexity were studied.
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3. Results and Discussion
3.1. Rigid Body Dynamics

The rigid body stability of the side-by-side helicopter in hovering conditions is studied
by analyzing the effects of single degrees of complexity. In particular, the investigation
starts by comparing the numerical and analytical mathematical frameworks in the same,
standard and simplest configuration, to validate and highlight the differences between the
two formulations. The analytical representation was described in Ref. [14] and validated
by comparing the implementation of the main rotor forces and moments with a classical
helicopter configuration. The comparison showed a good agreement and a reasonable
physical meaning of the results for a low-complexity framework. The first comparison is
made at the lowest level of modeling complexity, hence with:

• A uniform and dynamic inflow (λ = [λ0 0 0] in both rotors);
• Uniform flap dynamics (β = [a0 0 0] in both rotors);
• Lead–lag neglected (ξ = [0 0 0] in both rotors).

Starting from this condition, different levels of complexity are included, and their
effects on the rotorcraft stability (system poles and eigenvectors) are pointed out. At first,
complete flapping dynamics are considered in both models, then the lead–lag effect, and
finally, the influence of a dynamic, non-uniform inflow.

Figure 7 represents the rigid body poles on the complex plane. The two different
modeling approaches are distinguished with red and black markers, while the plain/empty
symbolsidentify the level of complexity. The first comparison is made with uniform flap
dynamics, meaning that lateral and longitudinal disc tilts are neglected and β = [a0 0 0].
On the other hand, the plain symbols introduce the effect of a1 and b1 in the rigid body
stability and, in this case, β = [a0 a1 b1]. The mode identification is made through
eigenvector analysis and by recalling classical aircraft nomenclature for low- and high-
frequency modes. The frequency of the poles is represented in Figure 8, highlighting a
clear difference between six low-frequency modes and two higher-frequency ones. Two
couples of oscillatory dynamics identify slightly unstable, low-frequency phugoid and
dutch-roll modes. The low-frequency behavior is also characterized by stable spiral and
heave subsidence. From the high-frequency point of view, a couple of stable short-period
and roll dynamics are reported. The plot shows a good agreement between the analytical
and numerical representations, contributing to the validation of the second. The typical
predicted modes are similar and the same stability properties arise. The complete flapping
dynamics represented by the solid markers in the plot introduce a first level of complex-
ity, identified as second-order flapping dynamics with lateral and longitudinal disc tilts
(a1 and b1). The two models behave similarly, with the tip-path plane dynamics affecting
the oscillatory poles by increasing their frequency and adding lateral and longitudinal
damping to the high-frequency system (short period and roll). This has an overall beneficial
effect on the rotorcraft stability. The short period and roll frequency are directly linked
to the lateral and longitudinal damping derivatives Mq and L′

p [15] which are reported
in Table 1 for the two cases, together with the rotor disc coordinates with a perturbed
pitch rate q. The rotorcraft reacts to a disturbance in angular rate with a damping moment
around the perturbed axis. The different modeling approach to the flap dynamics leads
to different disc tilts which are directly linked to the damping derivative. Indeed, the flap
hinge stiffness and inertial moments described in Equation (14) are proportional to a1 and
b1 which are, for a small perturbation of pitch rate (the same happens with a perturbation
of roll rate p), different in the two models (see Table 1). The discrepancy is, in absolute
values, quite small, and the disc tilts maintain the same order of magnitude, as well as the
damping derivatives.
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Complete

Flap

Uniform

Figure 7. Rigid body poles affected by lateral and longitudinal disc tilts, according to the numerical
(black markers) and analytical (red markers) frameworks.

Numerical - Complete Flap
Numerical - Uniform Flap

Analytical - Complete Flap

Analytical - Uniform Flap

Figure 8. Frequency (ω) of the rigid body poles affected by lateral and longitudinal disc tilts.

Table 1. Rotor disc tilt with a perturbed pitch rate ∆q = 0.01 rad/s and lateral/longitudinal damping
derivatives in the analytical and numerical models.

Analytical Numerical

a0 [deg] 0.55 0.53
a1 [deg] −0.0041 −0.0047
b1 [deg] 0.0103 0.0144
Mq [-] −3.60 −7.22
L′

p [-] −3.57 −5.83

A second level of complexity is the lead–lag, modeled in the numerical framework. The
methodology presented in this work to linearize numerical models allows us to partially
decouple the flap and lead–lag dynamics which are represented by a nonlinear system of
second-order ODEs. By implementing the scheme in Figure 3, one can easily neglect the
lead–lag effect both on the rigid body and the rotor dynamics itself. Figure 9 reports the
rigid body poles in the cases with and without blades’ lead–lag motion. While a small
stabilizing effect is observed on the oscillatory modes (phugoid and dutch-roll), very small
changes are observed in the frequency of these poles (Figure 10). The roll and short period
are instead more affected by the presence of the lead–lag, and the frequency of these
two stable and real dynamics moves from 5.8 to 10.7 rad/s and from 7.2 to 15 rad/s for,
respectively, the roll and short period modes. The reason why this higher complexity affects
the high-frequency poles is related to the coupling between the tip-path plane and the rotor
center of gravity dynamics. The lead–lag angle is not directly responsible for an additional
force/moment acting on the blades but affects the value of the flap. Table 2 reports the
values of rotor disc tilt and CG coordinates with a pitch perturbation ∆q = 0.01 rad/s
and the damping derivatives with and without lead–lag. It is observed that, while b1 is
similar in the two cases, a1 significantly changes in the case of coupled lead–lag dynamics.
The latter affects the absolute value of hinge stiffness and inertial moments computed by
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Equation (14) and increases the longitudinal damping Mq when the lead–lag is “on”. The
same process occurs with a roll rate perturbation p, and L′

p. In addition, the small variation
in oscillatory poles can be linked to the variation in the coning angle, which is, in the case
of a lagging rotor, larger.

Table 2. Effect of lead–lag dynamics on rotor flap and lead–lag coordinates with a perturbed pitch
rate ∆q = 0.01 rad/s and damping derivatives.

Lead–Lag OFF Lead–Lag ON

ξ0 [deg] 0 1.56
ξc [deg] 0 −0.065
ξs [deg] 0 0.009
a0 [deg] 0.53 0.69
a1 [deg] −0.0047 −0.023
b1 [deg] 0.0144 0.0125
Mq [-] −7.2 −15
L′

p [-] −5.8 −10.7

Figure 9. Rigid body poles with and without the effect of the lead-lag dynamics. The high-frequency
poles are represented on the left side of the plot, with a different x-axis scaling.

Figure 10. Frequency (ω) of the rigid body poles with the inclusion of a complete flap, dynamic
lead–lag, and non-uniform inflow complexities.

The last and highest level of complexity can be achieved by adding a non-uniform
inflow model, i.e., by considering, for both rotors, λ = [λ0 λs λc]. Figure 11 repre-
sents the rigid body poles in the cases of uniform and non-uniform dynamic inflow.
Three different x-axis scalings represent the low-, high-, and very-high-frequency poles in
the complex plane. The very high-frequency plot shows the inflow poles derived from the
38-state linearization method. These six poles (three per rotor) are real and stable dynamics
representing the uniform inflow at 33.5 rad/s and the lateral/longitudinal inflow modes at
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126 rad/s (0.5/rev). It is observed that the presence of a non-uniform inflow model affects
mostly the short period, dutch-roll, and phugoid dynamics.

Figure 11. Rigid body poles in the cases of uniform (black markers) and non-uniform dynamic inflow
(green markers).

Considering the first one, an increase in the longitudinal damping is observed, linked
to the mode coupling between the short period and longitudinal inflow λc (see Figure 12 for
the mode participation). A similar coupling effect which is highly detrimental to rotorcraft
stability is the one between the longitudinal inflow and the phugoid mode. Even with a
smaller mode participation, the longitudinal inflow contribution has the effect of moving
the phugoid poles from a pure oscillatory, slightly unstable, situation, to a couple of real
stable/unstable poles of similar frequency, as shown in Figure 10. On the other hand, the
dutch-roll stability remains unchanged although its frequency decreases by about 50%.
Coupling with both lateral and longitudinal inflows is observed in the dutch-roll and roll
poles as well, although without significant changes in the lateral stability. It can be assumed
that being the configuration that is symmetrical with respect to the longitudinal plane, the
effects of the lateral inflows of the two rotors balance themselves, while the longitudinal
contribution is detrimental to the low-frequency longitudinal stability.

Figure 12. Mode participation with non-uniform inflow.
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3.2. Rotor Dynamics and Flap/Lead–Lag Coupling

The linearization methodology presented in this paper allows a 38-state space repre-
sentation of the rotorcraft flight dynamics to be developed, including the rigid body, rotor,
and inflow modes. The out-of-diagonal submatrices of the state matrix A (Equation (30))
describe the coupling between the three dynamics, while AB−B, AR−R, and Aλ−λ are the
pure dynamic effects. In this section, the rotor–rotor modes are studied and represented for
one single rotor. It is observed that no differences occur in hovering conditions between
MR1 and MR2, and no particular coupling is present. Consider the complete numerical
framework: complete, coupled, second-order flap and lead–lag dynamics and first-order
non-uniform inflow description. A set of 12 oscillatory and stable poles is computed for
each rotor, 6 related to flap and 6 related to lead–lag dynamics. Figure 13 shows the cou-
pled collective, advancing, and regressive modes on the complex plane. The frequency
and damping of the same eigenvalues are reported in Table 3. In general, the system is
characterized by stable collective flap dynamics located at the angular frequency of the
rotor, and a couple of advancing/regressive modes that have the same real part and a ±Ω
on the imaginary axes with respect to the collective mode. A similar trend is observed on
the lead–lag, which is a stable high-frequency dynamic, more dampened with respect to
the flap. The high damping related to the lead–lag is connected to the spring damping
coefficient (KDξ

) adopted in this model (see Table A2).

Figure 13. Main rotor poles in the complex plane.

Table 3. Main rotor poles, frequency, and damping.

Pole Frequency [rad/s] Damping [s]

Uniform Inflow (w coupling) −55.7 55.7 -
Uniform Inflow (p coupling) −57.6 57.6 -
Collective Flap −34 ± 265i 267 0.12
Regressive Flap −34 ± 15i 37 0.9
Advancing Flap −34 ± 518i 519 0.07
Collective Lead–lag −223 ± 607i 647 0.34
Regressive Lead–lag −223 ± 356i 420 0.53
Advancing Lead–lag −223 ± 859i 887 0.25

The identification of the rotor poles was achieved through the eigenvector analysis. In
particular, the collective modes were characterized by the main contribution of the collective
flap and lead–lag coefficients (a0 and ξ0). On the other hand, advancing and regressive
dynamics are mainly related to the rotor disc tilt and non-uniform lead–lag coefficients,
i.e., a1, b1, ξc, and ξs. It can be observed from the plots of the mode participation (Figure 14)



Aerospace 2024, 11, 927 19 of 23

that a strong coupling was present between rotor dynamics, and the identification of the
flap and lead–lag poles was not straightforward. Indeed, while the lead–lag always had
a stronger contribution, the flap poles were identified by the frequency of the collective
mode (close to Ω) and its respective advancing/regressive poles. Coupling with rigid body
modes (mainly p and q) is also present in the regressive flap.

Finally, the methodology for linearizing highly coupled numerical models highlighted
the coupling between the flap, lead–lag, and inflow as well. In particular, Figure 15 shows
the mode participation uniform inflow poles (also plotted in Figure 13). The latter are
strongly coupled with the collective flap and lead–lag, as well as the rigid body dynamics.
Indeed, a contribution from the rolling rate p is present in one of the two poles, while the
other couples with the heave velocity w. This observation is coherent with the side-by-side
configuration, where an inflow variation can create both a heave and roll movement.

Collective Flap Collective Lead-Lag

Regressive Flap Regressive Lead-lag

Advancing Flap Advancing Lead-lag

Figure 14. Mode participation of the rotor-coupled poles.

Uniform inflow (   ) Uniform inflow (   )

Figure 15. Mode participation of the uniform inflow poles.

4. Conclusions

The study presented in this paper highlighted the effects of a numerical modeling
approach on side-by-side helicopter flight dynamics by introducing increased levels of
complexity on relevant rotorcraft dynamic features (coning, flap, lead-l-ag, and inflow).
To this aim, a 24 dof numerical model was obtained by integrating second-order flap and
lead–lag dynamics, with a non-uniform, first-order, dynamic inflow and integral computa-
tion of single-blade forces and moments. The model was partially validated with a 14 dof
analytical model on the trim and low-complexity features. The most outstanding results
are summarized as follows:
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• A suitable trim methodology was developed. The algorithm is made of two nested
loops and computes a trim solution averaged around one revolution. Trim curves at
variable forward speed show a good agreement with the reference analytical results
and provide typical helicopter behavior.

• A methodology for linearizing highly coupled numerical models has been presented
and validated by comparing the results with the analytical framework. The core
issues that had to be addressed were (1) the loss of physical meaning in linearizing
single-blade representations of rotor dynamics, (2) the high level of coupling between
the flap and lead–lag, and (3) the presence of nonlinear complex terms derived from
numerical integration. The guidelines to overcome these issues include (1) a non-
rotating frame representation of rotor dynamics, (2) the partial decoupling of flap
and lead–lag by approximating coupling and forcing terms with a previous time
step solution, and (3) the introduction of additional stability derivatives linked to the
coupling and excitation of rotor modes. Following these guidelines, a 38-state-space
linear representation of rotorcraft dynamics has been developed. Rigid body, rotor,
and inflow coupling effects are included in the representation.

• As a result of the linearization method, the effects of single levels of complexity and
rotor dynamics have been isolated and studied separately. It was observed that a
dynamic disc tilt significantly increases the short period and roll damping and the
lead–lag has a beneficial influence on the high-frequency modes. It was also observed
that, by increasing the number of degrees of freedom in the flight dynamics framework,
longitudinal instabilities arise, as observed from preliminary flight tests. Indeed, a
coupled longitudinal inflow–phugoid mode led to dangerous instabilities.

• Rotor dynamics have been addressed as well by showing the presence of coupled flap–
lead–lag poles which behave as collective, advancing, and regressive stable modes.
The collective flap is an oscillatory mode characterized by the angular frequency
of the rotor, while the lead–lag is a higher-frequency dynamic denoted by a higher
damping coefficient. The inflow has also been studied, showing coupling with the
rotor collective dynamics and the rigid body heave and rolling motion.

In conclusion, the presented paper highlighted the capabilities of high-complexity
numerical models in comparison with a simpler analytical representation of a side-by-
side helicopter. A complete trim and linearization methodology was presented and flight
dynamic characteristics were addressed.

Author Contributions: Conceptualization, F.M. and M.D.P.; methodology, F.M. and M.D.P.; software,
F.M., M.D.P. and D.F.; validation, F.M. and D.F.; formal analysis, F.M. and M.D.P.; investigation,
F.M. and M.D.P.; resources, M.D.P., E.L.d.A. and F.G.; data curation, F.M.; writing—original draft
preparation, F.M. and M.D.P.; writing—review and editing, F.M. and M.D.P.; visualization, F.M.;
supervision, M.D.P., E.L.d.A. and F.G.; project administration, M.D.P. and F.G.; funding acquisition,
E.L.d.A. and F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This study was carried out within the MOST-Sustainable Mobility National Research
Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE
DI RIPRESA E RESILIENZA (PNRR)-MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4-D.D.
1033 17/06/2022, CN00000023).This manuscript reflects only the authors’ views and opinions; neither
the European Union nor the European Commission can be considered responsible for them. The
publication of this study was funded by the Delft Technical University, through the Institutional
Open Access Program (IOAP) with MDPI.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The authors acknowledge and thank SAB Group S.r.l. for providing the investi-
gated rotorcraft prototype and sharing relevant data.

Conflicts of Interest: The authors declare no conflicts of interest



Aerospace 2024, 11, 927 21 of 23

Appendix A

Table A1. Side-by-side helicopter data.

Description Symbol Value

Take-Off Mass [kg] mto 20.62
Size [m] - 2.5
Inertia moment with regard to xB [kgm2] Ixx 3.532
Inertia moment with regard to yB [kgm2] Iyy 2.222
Inertia moment with regard to zB [kgm2] Izz 5.342
Inertia product with regard to xB [kgm2] Iyz 0
Inertia product with regard to yB [kgm2] Ixz -0.052
Inertia product with regard to zB [kgm2] Ixy -0.001

Table A2. Side-by-side helicopter’s rotor data (same design, counter-rotating).

Description Symbol Value

Sense of rotation Γ ± 1
Number of blades Nb 3
Radius [m] R 0.505
Mean chord [m] c 0.051
Solidity ratio [-] σ 0.0964
Angular velocity [rpm] Ω 2400
Total hinge offset [m] e0 0.075
Flap hinge offset [m] eF 0.0075
Root cutout from the flap hinge [m] rc 0.01
Blade mass [kg] mb 0.1613
Blade center of gravity with regard to the hub [m] rG 0.224
Spring restraint coefficient due to flap [Nm/rad] Ksβ 162
Spring restraint coefficient due to lag [Nm/rad] Ksξ 0
Spring damping coefficient due to flap [Nms/rad] KDβ 0
Spring damping coefficient due to lag [Nms/rad] KDξ 5
Pitch–Lag coupling ratio [-] Ktξ 0
Pitch–Flap coupling ratio [-] Ktβ 0
Blade twist coefficient [rad] θw 0
Longitudinal incidence angle [rad] is 0
Lateral incidence angle [rad] ic 0
Hub position of the MR1 with regard to body axes [m] r(1)HB

[0 −0.645 0.066]
Hub position of the MR2 with regard to body axes [m] r(2)HB

[0 0.645 0.066]

Appendix B

Kβ
1 =

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−10 2Ω sin ψ1 −2Ω cos ψ1
0 2Ω sin ψ2 −2Ω cos ψ2
0 2Ω sin ψ3 −2Ω cos ψ3

 (A1)

Kβ
0 =

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−10 Ω2 cos ψ1 + Ω̇ sin ψ1 Ω2 sin ψ1 − Ω̇ cos ψ1
0 Ω2 cos ψ2 + Ω̇ sin ψ2 Ω2 sin ψ2 − Ω̇ cos ψ2
0 Ω2 cos ψ3 + Ω̇ sin ψ3 Ω2 sin ψ3 − Ω̇ cos ψ3

 (A2)

For the sake of this paper, the same transformation is applied for both the flap and lead–lag,
meaning that Kξ

1 = Kβ
1 and Kξ

0 = Kβ
0 .
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Cβ
1 =

1
A1

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−1−Dβ
1 0 0

0 −Dβ
2 0

0 0 −Dβ
3


1 − cos ψ1 − sin ψ1

1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

 (A3)

Cβ
0 =

1
A1

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−1−Dβ
1 0 0

0 −Dβ
2 0

0 0 −Dβ
3


0 Ω sin ψ1 −Ω cos ψ1

0 Ω sin ψ2 −Ω cos ψ2
0 Ω sin ψ3 −Ω cos ψ3

 (A4)

Cξ
1 =

1
A2

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−1−Dξ
1 0 0

0 −Dξ
2 0

0 0 −Dξ
3


1 − cos ψ1 − sin ψ1

1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

 (A5)

Cξ
0 =

1
A2

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−1−Dξ
1 0 0

0 −Dξ
2 0

0 0 −Dξ
3


0 Ω sin ψ1 −Ω cos ψ1

0 Ω sin ψ2 −Ω cos ψ2
0 Ω sin ψ3 −Ω cos ψ3

 (A6)

Eβ =
1

A1

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−1Qβ
1 − Fβ

1
Qβ

2 − Fβ
2

Qβ
3 − Fβ

3

 (A7)

Eξ =
1

A2

1 − cos ψ1 − sin ψ1
1 − cos ψ2 − sin ψ2
1 − cos ψ3 − sin ψ3

−1Qξ
1 − Fξ

1
Qξ

2 − Fξ
2

Qξ
3 − Fξ

3

 (A8)
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