IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005 1

The CSI Multimedia Architecture

Dmitry Cheresiz, Ben Juurlink, Senior Member, IEEE, Stamatis Vassiliadis, Fellow, IEEE, and Harry A. G. Wijshoff

Abstract—An instruction set extension designed to accelerate
multimedia applications is presented and evaluated. In the pro-
posed complex streamed instruction (CSI) set, a single instruction
can process vector data streams of arbitrary length and stride and
combines complex memory accesses (with implicit prefetching),
program control for vector sectioning, and complex computations
on multiple data in a single operation. In this way, CSI eliminates
overhead instructions (such as instructions for data sectioning,
alignment, reorganization, and packing/unpacking) often needed
in applications utilizing MMX-like extensions and accelerates
key multimedia kernels. Simulation results demonstrate that a
superscalar processor extended with CSI outperforms the same
processor enhanced with Sun’s VIS extension by a factor of up
to 7.77 on key multimedia kernels and by up to 35% on full
applications.

Index Terms—Computing, high performance, image-processing,
video-processing.

1. INTRODUCTION

ULTIMEDIA applications, such as audio and video
compression/decompression and two-dimensional
(2-D) and three-dimensional (3-D) graphics, provide new
and highly valuable and appealing services to the consumer.
Consequently, they form a new important workload for the
general-purpose workstation and desktop processors. In order
to meet the computational requirements of these applications,
traditionally they have been implemented using general-pur-
pose processors applying DSPs and/or ASICs to accelerate
time-critical computations. General-purpose processors, how-
ever, are preferable to special-purpose media systems because
they are easier to program, have higher performance growth,
and are less costly [1]-[3]. Many microprocessor vendors have,
therefore, extended their instruction set architecture (ISA) with
instructions targeted at multimedia applications (e.g., [4]-[7]).
These ISA extensions exploit two characteristics exhibited
by multimedia applications. First, multimedia codes typically
process narrow data types (for example, 8-b pixels or 16-b
audio samples). Second, data-level parallelism (DLP) is in-
herent in almost all multimedia applications. Accordingly,

Manuscript received August 29, 2003; revised March 30, 2004.

D. Cheresiz was with the Computer Engineering Laboratory, Department of
Electrical Engineering, Mathematics, and Computer Science, Delft University
of Technology, 2628 CD Delft, The Netherlands. He is now with the Depart-
ment of Information and Software Technology, Philips Research Laboratories,
5656 AA Eindhoven, The Netherlands (e-mail: dmitry.cheresiz@philips.com;
cheresiz@ce.et.tudelft.nl).

B. Juurlink and S. Vassiliadis are with the Computer Engineering Labora-
tory, Department of Electrical Engineering, Mathematics, and Computer Sci-
ence, Delft University of Technology, 2628 CD Delft, The Netherlands (e-mail:
benj@ce.et.tudelft.nl; stamatis @ce.et.tudelft.nl).

H. A. G. Wijshoff is with the Leiden Institute of Advanced Computer Sci-
ence (LIACS), Leiden University, 2300 RA Leiden, The Netherlands (e-mail:
harryw @liacs.nl).

Digital Object Identifier 10.1109/TVLSL.2004.840415

void Add_Block (unsigned char *rfp, short *bp, int iincr)
{ int i,3;
for (i=0; 1i<8; i++) {
for (§=0; j<8; j++)
*rfp++ = Clip[*rfp + *bp++];
rfp += iincr;

}

Fig. 1. C code for saturating add.

media instructions exploit SIMD parallelism at the subword
level, i.e., they operate concurrently on, e.g., eight 8-b or four
16-b values packed in a 64-b register.

It has been shown that these extensions can improve the per-
formance of many multimedia kernels and applications (see,
e.g., [1], [8], and [9]). Nevertheless, they have several limita-
tions which can be summarized as follows.

* Because the size of the multimedia registers is visible at
the architectural level, loops have to be strip mined at the
length of these registers. This, however, implies that when
the register size is increased to exploit more data paral-
lelism, existing codes have to be modified to benefit from
the wider datapath. Furthermore, increasing the register
size may not be beneficial, because media kernels often
operate on submatrices and the vector length in both di-
rections is rather small.

e If the multimedia extension is implemented next to a su-
perscalar core, a second option to exploit more parallelism
is to add more multimedia functional units and to increase
the issue width. However, it is generally accepted that this
requires a substantial amount of hardware and may nega-
tively affect the cycle time [10], [11].

* Another limitation is the overhead for data conversion
and reorganization. Because the storage format (how data
is stored in memory) is often too small for intermediate
computations to occur without overflow, data needs to be
converted (unpacked) to a wider computational format.
In addition, alignment-related instructions are required if
data is not stored at an aligned address and rearrangement
instructions are needed if data is not stored consecutively.

* In addition, codes implemented using SIMD instructions
typically incur loop overhead instructions needed for man-
aging address and induction variables and branching.

The C-function depicted in Fig. 1 illustrates some of these
limitations. This function adds two blocks of pixels and is taken
from an MPEG decoder. The array C1ip is used to saturate the
result of the addition to the minimum/maximum value repre-
sentable by an unsigned byte.

In order to bring the data in a form amenable to SIMD pro-
cessing, a large number of instructions must be executed. First,
alignment instructions are required because the bp and rfp
pointers might not be 8-B aligned. Second, the data needs to be
loaded and the data within the registers needs to be rearranged so

1063-8210/$20.00 © 2005 IEEE

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

that the elements of bp and r f£p are at corresponding positions.
After that, the elements of rfp need to be unpacked to 16-b
values. Only then the addition can be performed. Thereafter, the
results need to be rearranged and packed again before they can
be written back to memory. We implemented this kernel using
Sun’s Visual Instruction Set (VIS) [6]. Our implementation is
available at http://ce.et.tudelft.nl/~benj/csi. It shows that in the
worst case 32 instructions are needed to compute 8 pixels of the
result. So, assuming perfect instruction and data caches and no
dependencies, a four-way VIS-enhanced superscalar processor
requires at least 8 x 32/4 = 64 cycles. If the bp and rfp
pointers are 8-B aligned, 15 instructions are needed.

In this paper, we propose an ISA extension called complex
streamed instructions (CSI) that addresses the limitations de-
scribed above. CSI instructions process 2-D data streams stored
in memory. There is no architectural (programmer-visible) con-
straint on the length of the streams, since the hardware is respon-
sible for sectioning, i.e., for dividing the streams into sections
which are processed in a SIMD manner. A single CSI instruc-
tion performs address generation and alignment, data loading
and reorganization, packing and unpacking, as well as the oper-
ation that needs to be performed. In addition, CSI provides some
special-purpose instructions that provide performance benefits
on key multimedia kernels.

This paper is organized as follows. Related work is discussed
in Section II. The CSI architecture is described in Section III
and a possible implementation is given in Section IV. The CSI
extension is experimentally validated and compared to VIS and
SSE in Section V. Conclusions are drawn in Section VI.

II. RELATED WORK

There are many media processing approaches, varying from
general-purpose processors (GPPs) extended with SIMD media
instructions to dedicated hardware implementations. Since CSI
belongs to the former class, we restrict ourselves to a discussion
of general-purpose processors enhanced with media instructions
and some programmable media processors based on vector
architectures.

As mentioned before, many GPPs have been extended with
SIMD instructions, e.g., MMX [4], SSE [5], VIS [6], MVI
[12], and AltiVec [7]. SIMD media instructions pack multiple,
small-data elements into a wide (typically 64- or 128-b) register
and process all elements (or subwords) in parallel. Fig. 2 illus-
trates a SIMD operation that adds two vector registers, each of
which contains four 16-b values. The main differences between
the various SIMD extensions are the location of the media or
vector registers, the size of these registers (which determines
the number of subwords that can be processed simultaneously),
and the number of instructions supported. MMX and VIS, for
example, provide 64-b wide SIMD operations and the media
registers correspond to the floating-point registers. SSE and
AltiVec, on the other hand, provide a separate file of 128-b wide
media registers. The number of SIMD instructions supported
varies significantly, from 13 in MVI to 121 in VIS.

Slingerland and Smith [13] study the performance of var-
ious SIMD instruction sets on several multimedia kernels.
Interestingly (and independently), they also found two factors

A0 A1l A2 A3 BO B1 B2 B3

S
))

' A0+BO| A1 +B1| A2+BZ| A3+B3’

Fig. 2. Packed addition of two 64-b registers containing four 16-b values.

that limit the performance of current media ISA extensions:
storage formats which are insufficient for computation (ne-
cessitating conversion overhead), and nonunit strides. They,
therefore, propose a SIMD architecture that implicitly unpacks
while loading, implicitly packs while storing, and provides
strided load and store instructions. They do not evaluate the
performance of the proposed architecture, however, and their
proposal requires overhead for managing address and loop con-
trol variables. Moreover, in their proposal the vector length
is architecturally visible.

The matrix oriented multimedia (MOM) extension [14]
contains instructions that can be viewed as vector versions of
SIMD instruction, i.e., they operate on matrices and each matrix
row corresponds to a packed data type. MOM allows an arbi-
trary stride between consecutive rows but requires a unit stride
between consecutive row elements and also requires explicit
(un)packing if the storage format is inappropriate for com-
putation. Furthermore, MOM does not provide floating-point
SIMD instructions and has only limited support for conditional
execution.

The Imagine processor [15] has a load/store architecture for
one-dimensional (1-D) streams of data records. It is suited for
applications performing many operations on each element of
a long, 1-D stream, but appears to be less suited when only a
few operations on each record are performed or when the vector
length is small.

The Vector IRAM (VIRAM) [16] is a register-to-register
vector architecture supporting narrow data types. The elements
in a vector register can be 16-, 32-, or 64-b wide. As in CSI,
a control register specifies the element size (called the Virtual
Processor Width or VPW in [16]). When the VPW is larger than
the size of data in memory, vector load and store instructions
imply a conversion between storage and computational format.
For example, when the VPW is 16 b, the vector-load-byte
instruction implicitly converts to 16-b values. VIRAM also
supports strided and indexed addressing modes. These tech-
niques reduce the overhead needed for managing address
variables, loop control, and (un)packing. However, VIRAM
seems less suited for algorithms that process 2-D submatrices.

CSI was originally presented in [17] and evaluated in [18].
Thereafter, Talla and John [19] also observed that the perfor-
mance of SIMD-enhanced processors is limited by the overhead
required for bringing data in a form suited for SIMD processing.

CHERESIZ et al.: THE CSI MULTIMEDIA ARCHITECTURE

element
size=2
-

horizontal

stride=4
-

Base=18

0 ta L[[][]

vertical t 16
stride=32 32
48

64
80
96
112

(@)

Fig. 3.

They proposed the MediaBreeze architecture, which contains
instructions that support five levels of looping. CSI instructions
support at least two levels and special-purpose CSI instructions
can support more (that could exceed five levels of looping).

Another proposal more recent than CSI is the reconfigurable
streaming vector processor (RSVP) [20]. The authors also ob-
served that in SIMD-enhanced processors, the amount of par-
allelism is determined by the width of the programmer-visible
media registers. In CSI, as well as the RSVP, the amount of
parallelism is limited only by resource limitations and algo-
rithm/data structure characteristics, which allows the same pro-
gram to take full advantage of a wide range of implementations.
The RSVP has a similar setup (i.e., host interaction) but requires
additional programming based on data flow graphs to perform
the CSI-like functions.

Finally, we remark that there have been several general-pur-
pose vector architectures in the past, e.g., [21] and [22]. For
such architectures, a single vector instruction could process
only a limited number of elements, called the section size [21].
Processing a longer vector required several loop iterations and
sectioning instructions. CSI differs from the mentioned ap-
proaches because it does not need explicit sectioning and,
therefore eliminates associated overhead instructions required
for loop control, address generation, and memory access. Ad-
ditionally, CSI allows deterministic prefetching for general
vector accesses. Finally, when operating on vectors with nonunit
strides, CSI does not need instructions to rearrange elements
as, for example, CDC Cyber 200 (Model 205) requires [21].

III. THE CSI ARCHITECTURE

In this section, we describe the CSI architecture, i.e., the
structure and functionality of the processor visible at the (as-
sembly) programming level.

A. CSI Streams

CSI is a memory-to-memory architecture for 2-D streams of
arbitrary length. CSI streams are divided into two categories:
arithmetic and bit streams. Elements of an arithmetic stream are
8-, 16-, or 32-b wide and represent fixed-point or floating-point
data. Streams are located in memory following the (2-D) strided
access pattern depicted in Fig. 3(a). We allow for an arbitrary
stride between consecutive row elements as well as between
consecutive rows. Commonly, consecutive row elements are

horizontal length = 4 elements

vertical 48
length=3 rows 64

112

Format of an arithmetic stream. Each cell represents a byte. Dark cells are stream data.

stored sequentially, but nonunit strides can be found, e.g., in
the color conversion phases of JPEG. As depicted in Fig. 3(b),
stream elements are addressed in row-major order. This means,
for example, that the sixth element is located in the second
column of the second row.

Elements of a CSI bit stream are 1-b wide and should be
stored contiguously in memory. Such streams are used for
masked/conditional operations, and therefore, are also referred
as mask streams. Bit streams need to be byte-aligned and the
first element corresponds to the most significant bit of the byte
located at the base address.

B. CSI Architecture State

Fig. 4 depicts all programmer-visible CSI registers. Rather
than encoding all parameters that specify a stream in the in-
struction (which would necessitate very long instructions), each
arithmetic stream is specified by a set of stream control registers
(SCR-set). There are 16 of such sets, each of which consists of
the following eight 32-b registers.

1) Base. This register contains the starting or base address
of the stream. The only alignment restriction is that the
address must be a multiple of the element size (in bytes).
The base address of the stream depicted in Fig. 3 is 18.

2) HStride. The horizontal stride, i.e., the stride in bytes
between consecutive stream elements in a row. In the ex-
ample, HStride = 4.

3) HLength. This register holds the number of stream ele-
ments in a row or the horizontal length. HLength = 4
in the example.

4) VStride. The vertical stride, i.e., the distance in bytes be-
tween consecutive rows. VStride = 32 in the example.

5) VLength. This register contains the vertical length or,
equivalently, the number of rows. VLength = 3 for the
example stream.

6) Format. This register consists of various fields which
mainly specify the storage and computational formats and
how conversion between these formats is performed. For
the example stream it specifies that each element consists
of 2 B, whether the elements are signed or unsigned, and
what the computational format is.

7) CurrRow. The number of the row to which the current
element belongs. It is used for interrupt handling.

8) CurrCol. The position of the current element within its
row. Also used for interrupt-handling. For example, if six

Stream Control
Registers

16 SCR-sets

Base
HStride
HLength
VStride
VLength
Format
CurrCol
CurrRow L

8 registers

32 bits
Mask Stream Control

Registers
16 MSCR-sets

3 registers I

Base
Length
CurrElem

32 bits
Stream Status Register

128 bits

CSI accumulation facility
| FP Packed Accumulator register (pacc_fp) E
h 8*SIMD_width*FPSN bits

| Integer Packed Accumulator register (pacc_int)

-
-

J

24*SIMD_width*IPSN bits

Fig. 4. CSI register space.

elements of the stream depicted in Fig. 3 have been com-
pletely processed, CurrRow = 1 and CurrCol = 2
(rows and columns are numbered from zero).

As indicated in this list, each stream control register in an
SCR-set has a number between O and 7 by which they are
addressed by the instructions that move data to/from them.
For example, the instruction csi mtscr SCRS1, 0, r4
copies the address contained in general-purpose register r4 to
the Base register of SCR-set SCRS1.

Similarly, a CSI mask stream is specified by a set of mask
stream control registers (MSCR-set). There are 16 such sets,
each consisting of three 32-b registers: Base, Length, and Cur-
rElem, which contain the base address, the number of elements,
and the number of the element that is currently being processed,
respectively.

The 128-b stream status register (SSR) contains control infor-
mation. If the mask bit (bit 0) is set masked versions of instruc-
tions are executed. The sequential mode bit (bit 1) controls if
stream elements are processed one by one or in parallel. This is
useful during debugging since it allows to identify the element
that caused an exception. The other three fields in this register
are used for interrupt handling. They identify the stream that
caused the exception, designate the type of exception, and con-
tain a copy of the instruction that caused the exception. Some

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

bits in the SSR are currently unused. They are provided for pos-
sible future extensions.

The two accumulation registers pacc_fp and pacc_int are
used by accumulation-related CSI instructions. They are de-
scribed in Section III-C2.

C. CSI Instruction Set

Table I summarizes the CSI instruction set. We use, e.g., the
notation AS x R — AS to denote that an instruction takes
an arithmetic stream and a scalar register as input and produces
an arithmetic stream. For reasons of space, not all 47 CSI in-
structions are included in this table. Detailed descriptions of all
instructions are available in [23].

The CSI instruction set is divided into the following cate-
gories: basic arithmetic and logical instructions, accumulation
instructions, special-purpose instructions, stream reorganization
instructions, and auxiliary instructions. In this section, these in-
struction categories are described.

1) Basic Arithmetic and Logical Instructions: These in-
structions perform pairwise addition, multiplication, bitwise
AND, and other elementary operations. Examples of such in-
structions are csi_add SCRS1, SCRS2, SCRS3, which
adds corresponding elements of the streams described by
SCRS2 and SCRS3 and writes the results to the stream des-
ignated by SCRS1, and csimul_reg SCRS1, SCRS2,
r1, which multiplies the stream specified by SCRS2 with the
scalar value contained in the integer register r1.

2) Accumulation Instructions: Accumulations are very
sensitive to latency because every accumulation needs the pre-
vious value as input. Our solution for this problem is common
in traditional vector architectures (e.g., [21]) and a similar
solution has been proposed for MOM [24]. Let SIMD_width
denote the number of bytes the CSI execution unit processes
in parallel. Furthermore, let n = SIMD_width/4 be the
number of single-precision FP values that can be processed
in parallel and let the floating-point partial sum number
(FPSN) be the ratio of the latency of an FP addition Lg,yqqs2
to Ttaqqs2, the reciprocal of the throughput. The accumu-
lator register pacc_fp consists of n - FPSN 32-b elements
(paccApy, ..., pacctp,, ppgn_1). Accumulation is per-
formed in two stages. In the first, n - FPSN partial sums are
produced as follows: the first n elements are added in parallel to
(paccApy,...,paccAp,,_1), Traa32 cycles later the next n
elements are added to (pacc_fp,,, ..., pacc_fp,,_;), and so
on. By the time the last n elements of the pacc_fp register have
been reached, the first n elements are available again and so the
computation “wraps-around.” In this way, the pipelines are fully
utilized. This stage is carried out by the instruction csi_acc.
When all elements have been processed, the csi_acc_psum
instruction accumulates the partial sums and places the result
in a general-purpose register.

Integer accumulations are performed similarly but employ
the integer packed accumulator register pacc_int. This register
is 3 - SIMD_width - IPSN bytes wide, where IPSN is the in-
teger partial sum number. Employing such a wide accumulator
avoids having to promote the operands to a wider format. Sim-
ilar accumulators are employed in DSP architectures as well as
MDMX [25].

CHERESIZ et al.: THE CSI MULTIMEDIA ARCHITECTURE

TABLE 1
OVERVIEW OF THE CSI INSTRUCTION SET
Operation Mnemonic Masked Data Types Operands
Arithmetic and Logical
add csi_add[_reg] yes all arith. AS x AS - AS, ASx R — AS
subtract csi_sub[._reg] yes all arith. AS x AS —+ AS, AS xR — AS
multiply csimul [_reg] yes all arith. AS x AS — AS, ASx R — AS
multiply-add csimul_add[-reg] yes all arith. AS x AS x AS — AS
AS X Rx AS — AS
compare csi_cmp [_reg] no all arith. AS x AS - BS, ASx R— BS
maximum csimax yes all arith. AS =R
count ones csi_cnt_ones no bl BS - R
bitwise AND csi_and[_reg] yes u8, ul6,u32 AS x AS - AS, ASx R — AS
csi_andbitstr no bl BS x BS -+ BS
bitwise OR csi.or[.reg] yes u8, ul6,u32 AS x AS -+ AS, ASx R— AS
csiorbitstr no bl BS x BS — BS
Accumulation
accumulate csi_acc yes all arith. AS — AccR
acc. partial sums csi_acc_psum no AccR - R
accumulate section csi_acc_section yes all arith. AS X R— AS
Special-purpose
SAD csi_sad no s8, u8, s16, ul6 | AS - R
Pacth predict csipaeth no 58, u8 AS x AS x AS — AS
IDCT csi_idet no s16 AS — AS
Stream reorganization
Extract stream csi_extract no all arith. AS x BS — AS
Insert stream csi_insert no all arith. AS x BS - AS
Auxiliary
Move to SCR csimtscr no all arith. R — SCR
Move to SCR immediate | csimtscri no all arith. imm16 — SCR
Legend:
Data Types Operands
u8, s8 (un)signed 8-bit integer AS CSI Arithmetic stream
ul6, si6 (un)signed 16-bit integer BS CSI Bit stream
u32, s32 (un)signed 32-bit integer R Scalar (integer or floating-point) register
32 32-bit floating-point AccR CSI accumulation register
bl single bit SCR CSI stream control register
all arith. all types except b/ imm16 16-bit immediate
Masked instruction under mask-mode control

In several media applications, every n consecutive elements
of a long stream of N elements need to be accumulated pro-
ducing an output stream of N/n elements. n is usually small
and since each CSlinstruction incurs a certain startup cost, using
separate csi_acc to accumulate every n consecutive elements
would be inefficient. CSI, therefore, provides an “accumulate
section” instruction csi_acc_section SCRSi, SCRSJ,rk
that (implicitly) divides the input stream specified by SCRS
into sections of rk consecutive elements, accumulates the ele-
ments within each section, and stores the obtained sums to the
stream specified by SCRS1i. This operation was found useful
for, e.g., the modeling and projection stages of the 3-D geom-
etry pipeline, where a small (3 X 3 or 4 X 4) matrix is multiplied
with a long sequence of small (3- or 4-element) vectors.

3) Special-Purpose Instructions: We found that many ker-
nels can be implemented using one or a few elementary CSI in-
structions. There are also kernels, however, that perform more
complex operations and so need to be synthesized using mul-
tiple basic CSlinstructions. It has been shown that many of these
complex operations can be implemented in an area comparable
to that of one or a few ALUs and do not require more cycles
than basic operations (see, e.g., [26] and [27]). The huge perfor-
mance benefits provided by such special-purpose instructions
warrant their implementation.

We provide three examples of such CSI instructions. The
csi_sad instruction computes the sum of absolute differences
of two streams. It is used to implement the most time-con-
suming routine in MPEG-2 encoding, motion estimation.

Thecsi_paeth instruction performs Paeth prediction, en-
coding, and decoding that is used in the PNG standard [28].
Finally, the csi_dct and csi_idct perform 1-D (inverse)
discrete cosine transform on every 8 consecutive elements of a
stream and are used in various image and video codecs.

4) Conditional Execution and Stream Reorganization
Instructions: Several multimedia kernels, in particular 3-D
graphics kernels, contain loops with if-then or if-then-else state-
ments in the loop body. Without proper architectural support,
these constructs prohibit the use of vector instructions. A solu-
tion commonly employed by conventional vector processors is
masking. First, a mask vector consisting of single bit elements
is produced. Thereafter, a masked instruction is executed that
only writes its result if the corresponding bit in the mask vector
is set. CSI employs the same technique, with mask streams
used to control conditional execution. To save opcode space,
the mask bit of the SSR determines if the masked or nonmasked
version of an instruction should be executed. For example, if the
mask bit is set, the instruction csi_mul SCRSi, SCRSJ,
SCRSk, MSCRS1 is executed under control of the mask
stream MSCRS1. If it is not set, the mask stream is ignored and
the instruction is executed unconditionally. Mask streams are
usually generated by the csi_cmp instruction.

The disadvantage of masked execution is that when many
masks are 0, the corresponding operations turn into no-ops,
i.e., they are performed but their results are discarded thereby
reducing the efficiency. A solution to this problem is to split
a data stream into shorter ones depending on the mask value

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

[15]. For this purpose CSI provides stream reorganization
instructions. For example, csi_extract extracts elements
that correspond to the nonzero bits in the mask stream. The
obtained stream can then be processed without no-ops, and
the results can be inserted back to the appropriate positions
by means of the csi_insert instruction.

5) Auxiliary Instructions: These instructions are used to
move data to or from individual stream control registers, accu-
mulation registers, and the SSR. For example, the instruction
csimtscr SCRSi, j, rk (move to stream control reg-
ister) copies the content of general-purpose register rk to SCR
j of SCR-set SCRS1i. The instruction csi_mtscri SCRSi,
j, imm16 is similar but moves a 16-b immediate to the SCR.
These instructions are commonly used to initialize the SCRs.

D. Example

The CSI code for the Add_Block kernel depicted in Fig. 1
is available at http://ce.et.tudelft.nl/~benj/csi. It shows that 12
setup instructions need to be executed to initialize the stream
control registers. After that, the nested loop is substituted by
a single csi_add instruction. We estimate the performance
of this kernel, assuming that the base processor is a four-way
superscalar, perfect instruction and data caches, and that the
datapath of the CSI execution unit is 128 b wide (the same
assumptions as in Section I). Since the setup instructions are
independent and processed by the superscalar core, it takes 12/4
cycles to execute them. Furthermore, the pipelined datapath
presented in the next section shows that there are eight stages,
each of which is assumed to take 1 cycle. It, therefore, takes
8 cycles before the first 8-B result is produced, and after that,
8 B of the result are produced every cycle. So, in total 18
cycles are required. Compared to the 64 cycles needed by a
four-way VIS-enhanced superscalar processor, this corresponds
to a speedup by a factor of 3.56. If all pointers would be
aligned, the speedup would still be 1.67.

IV. IMPLEMENTATION

In this section, we sketch a possible datapath for the CSI ex-
ecution unit and discuss some other implementation issues.

A. CSI Datapath

A CSlI instruction such as csi_add not only performs pair-
wise addition but also loading and storing, packing and un-
packing, etc. Since these operations are independent, they can
be pipelined. The CSI execution unit is, therefore, organized as
a pipeline consisting of eight stages, as depicted in Fig. 5. For
clarity, some parts have been omitted.

In the first stage, the source streams address generators AG1
and AG2 generate addresses aligned at cache-block-boundaries.
In addition, they generate a position mask that indicates the
bytes in the cache block that contain stream data. The aligned
addresses are appended to the load queue.

In the second stage, the addresses at the front of the load
queue are used to fetch blocks containing stream data from the
L1 data cache. We decided to interface the CSI execution unit
to the L1 cache rather than the L2 cache or main memory for
the following reasons: first, Ranganathan ef al. [1] as well as

(act) (ac2)
| —p load
queue
‘ extract extract)
l
input input
buffer buffer
(unpack j (unpack)
l
} inlatch] t inlatch l

I 1 |
| i
csl SIMD \ S| snvu)/ \CSI SIMD
adder mult SFU

L1 data cache

output
buffer

insert

store
queue

—

Fig. 5. Datapath of the CSI execution unit.

Slingerland and Smith [29] observed that multimedia applica-
tions exhibit high L1 data cache hit rates; second, since the L1
cache is on-chip, it is not expensive to implement a wide path
between the cache and the CSI execution unit, so that a whole
cache block can be transferred in a single access; and third, this
organization keeps the cache coherent with memory. Since a
two-ported cache is assumed, the cache ports need to be shared
between the load and store queues. We remark that data is im-
plicitly prefetched in two ways. First, data is loaded before it
is needed because the load queue fetches entire cache blocks
but the CSI processing units process only part of them. Second,
since the load queue has eight entries and attempts to access the
nonblocking L1 data cache each cycle, the memory latency can
be hidden.

In the third stage, the bytes that contain stream data are ex-
tracted based on the masks produced by the address generators
and placed consecutively in one of the input buffers. The extract
unit is similar to a collapsing buffer [30].

In the fourth stage, provided the input buffers contain suffi-
cient data, the data is unpacked from storage to computational
format. Signed values are sign-extended and unsigned values
are padded with zeroes. These operations are controlled by the
Format register of the corresponding SCR-sets.

In the fifth stage, the CSI SIMD processing units perform
packed operations on the data contained in the input latches.

CHERESIZ et al.: THE CSI MULTIMEDIA ARCHITECTURE

The inputs of these units are SIMD_width bytes wide, so they
process either SIMD _width bytes, SIMD _width/2 16-b values,
or SIMD _width /4 32-b values in parallel. The outputs are twice
as wide as the inputs, so no overflow occurs during computa-
tion. In Fig. 5, three SIMD units are shown: 1) a SIMD adder
that performs packed additions, subtractions, and logical oper-
ations; 2) a SIMD multiplier that performs packed multiply and
divide operations; and 3) a special functional unit (SFU) that
implements the special-purpose instructions.

In the sixth stage, the data contained in the output latch is
converted from computational to storage format, controlled by
the Format register of the destination stream.

In the seventh stage, the insert unit performs the inverse op-
eration of the extract unit, i.e., it “scatters” the stream elements
so that they are placed in their correct positions.

Finally, in the eighth stage, the store queue writes a cache
block of data to the L1 data cache. It performs a partial store op-
eration, similar to the VIS partial store instruction. The address
generator AG3 has already generated the cache-block-aligned
address for the destination stream.

It is assumed that each stage except the fifth stage takes one
cycle. The latency of each SIMD unit is taken to be equal to
the latency of the corresponding VIS or scalar unit. The extract
(insert) unit may require more than one cycle, but since the un-
pack (pack) unit is very simple, it is reasonable to assume that
they take 2 cycles collectively. We finally remark that in [31]
we presented a detailed description of the CSI execution unit
with a three-stage pipelined implementation of the CSI address
generators. We have performed experiments assuming a 3-cycle
latency instead of single-cycle one and found that this increases
the execution time by at most 5%.

B. In-Order Execution

It is important to realize that CSI instructions that access
memory are executed in-order, even though the base processor is
superscalar. For such instructions it needs to be ensured that there
is no memory dependency with other CSI instructions or scalar
load/store instructions. Furthermore, we do not speculatively
execute memory-to-memory CSI instructions. Instructions that
set control registers, however, are executed by the superscalar
core. This helps to keep the startup cost low. We, therefore, took
the following conservative approach. When a CSI instruction
that accesses memory is detected in the instruction stream,
the pipeline is stalled until all instructions prior to the CSI
instruction are completed. After that, the instruction is issued for
execution. Instruction fetching resumes when the CSIinstruction
is completed.

C. Interrupts and Context Switching

All CSI instructions can be interrupted during execution. For
multimedia applications, however, one does not always want to
detect arithmetic exceptions, because small differences in accu-
racy are acceptable as long as they are visually imperceptible.
CSI, therefore, allows interrupts to be disabled and when they
are, a bit in the Format control register signifies if wrap-around
or saturation arithmetic should be performed.

If arithmetic exceptions are enabled or if another type of ex-
ception occurs, they are handled as follows. The execution of

a CSI instruction is represented as a sequence of units of op-
eration (UOPs). In each UOP, a fixed number of consecutive
stream elements are processed. This number is determined by
the width of the CSI SIMD units and the size of the elements
during computation. If a UOP has been performed successfully
(i.e., the elements have been loaded, the SIMD operation has
been performed, and the results have been stored without excep-
tions), the Base, CurrCol, and CurrRow control registers are
advanced to the address of the first element to be processed by
the next UOP, and the row and column position of this element,
respectively. If an exception occurs during the current UOP, the
control registers are not updated. This allows to restart the in-
struction from the current UOP. The CurrCol and CurrRow
are reset when the instruction is completed, so they do not have
to be initialized explicitly.

On a context switch, all SCR-sets need in principle to be saved
and restored. In order to reduce the cost of context switching,
valid and dirty bits can be associated with each SCR-set [21].
The valid bits indicate the SCR-sets that are live, i.e., that will
be used again. They must be cleared by the compiler or pro-
grammer every time an SCR-set is released. The dirty bits indi-
cate which SCR-sets have changed since the last context switch.
Since, usually, only a few SCR-sets are active, this reduces the
amount of data that needs to be saved and restored on a context
switch.

V. EXPERIMENTAL VALIDATION

In order to validate the proposed ISA extension, we compare
the performance achieved by a superscalar processor extended
with CSI to the performance attained by a VIS-enhanced pro-
cessor using integer media benchmarks. Because VIS does not
support floating-point SIMD instructions, we use Intel’s SSE
extension for the 3-D graphics benchmark.

A. Experimental Setup

1) Benchmarks and Simulation Tool: 'We attempted to cover
a wide spectrum of media processing workloads: image com-
pression and decompression (JPEG), 2-D image processing (the
add8, blendS8, scale8, and convolve3 x 3 kernels from Sun’s
VIS Software Developer Kit (VSDK) [32]), video compression
(MPEG-2), and 3-D Graphics (SPEC’s Viewperf). The JPEG
and MPEG-2 codecs were taken from MediaBench [33].

We developed near cycle-accurate simulators of VIS-, SSE-,
and CSl-enhanced superscalar processors by extending the
sim-outorder simulator of SimpleScalar (release 3.0) [34].
A corrected version of SimpleScalar’s memory model was used
based on the SDRAM specifications given in [35].

2) Methodology: The most time-consuming routines were
identified using the sim-profile tool. Subsequently,
the kernels that contain a substantial amount of data-level
parallelism and whose key computations can be replaced
by VIS, SSE, or CSI instructions were coded in assembly.
The identified kernels are Add_Block (MPEG2 frame re-
construction), Saturate (saturation of 16-b elements to 12-b
range in MPEG decoder), dist/ (sum of absolute differ-
ences for motion estimation in MPEG), ycc_rgb_convert and
rgb_ycc_convert (color conversion in JPEG), h2v2_downsample

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

TABLE 1I
PROCESSOR PARAMETERS
Clock frequency 666 MHz
Issue width 4/8/16
Instruction window size 64/128/256
Load-store queue size 8-128

Branch Predictor
Bimodal predictor size 2K
Branch target buffer size | 2K
Return-address stack size | 8

FU type Number Latencylrecovery (cycles)
Integer ALU 4/8/16 11
Integer MULT 1/2/4
multiply 3/1
divide 20/19
Floating-point AL U 4/8/16 2/2
Floating-point MULT | 1/2/4
FP multiply 3/1
FP divide 20/19
sqrt 24/24
VIS adder 2/4/8 1/1
VIS multiplier 2/4/8
multiply and pdist 3/1
other 171
SSE unit 1/2/4 as corr. scalar/VIS FU
CSI execution unit 1
datapath width 16/32/64B
CSI SIMD units as corr. scalar/VIS FU
CSI 1D IDCT SFU 10/1

and h2v2_upsample (2:1 down- and upsampling of a color com-
ponent in JPEG), Fast_idct and jpeg_idct_islow (inverse discrete
cosine transform in MPEG2 and JPEG), and xform_points_4fv
and gl_color_shade_vertexes_fast (transform and lighting stages
of the 3-D geometry stage in Viewperf). We had to code the ker-
nels ourselves because, to our knowledge, there is no publicly
available compiler that generates VIS or SSE code.! However,
we based our implementations on vendor supplied codes [32],
[37], [38] when possible. We remark that in our experience,
coding kernels in assembly using CSI instructions is easier and
less error-prone than using VIS or SSE instructions, because
the programmer does not have to explicitly administer data
promotion and demotion, address alignment, or data reorgani-
zation, etc.

3) Modeled Processors: The base processor is four-way su-
perscalar but larger issue widths are also considered. The in-
struction window size [i.e., the number of entries in the register
update unit (RUU)] was fixed at 64 because larger sizes provided
no performance benefit. Table II summarizes the basic processor
parameters and lists the number of FUs of each type and the in-
struction latencies.

The VIS-enhanced processor has two VIS adders that per-
form partitioned add, subtract, merge, expand, and logical op-
erations, and two VIS multipliers that perform the partitioned
multiplication, compare, pack, and pixel distance (SAD) opera-
tion. VIS instructions operate on the floating-point register file
and have a latency of 1 cycle, except for the pixel distance and
packed multiply instructions which have a latency of 3 cycles.
This is modeled after the UltraSPARC [6] with two exceptions.
First, in the UltraSPARC the alignaddr instruction cannot
be executed in parallel with other instructions. This limitation

A compiler that translates loops to code that uses the SIMD extensions to
the Intel architecture has recently been described in [36].

is not present in the processor we simulated. Second, the Ultra-
SPARC has only one 64-b VIS multiplier. We assumed two in
order to perform a fair comparison between VIS- and CSI-en-
hanced processors, since the width of the CSI execution unit is
128 b. Any speedup of CSI over VIS should, therefore, not be
attributed to different degrees of parallelism. We remark that a
superscalar processor with two VIS adders and two VIS mul-
tipliers is, in fact, capable of processing 256 b in parallel, but
only when packed additions and multiplications are perfectly
balanced.

SSE instructions operate on a separate register file consisting
of 128-b registers. The basic SSE-enhanced processor has one
SSE unit that performs all packed floating-point operations. The
latencies of SSE instructions are taken to be equal to those of the
corresponding scalar instructions.

The datapath of the CSI execution unit is 128-b wide (16 x 8§,
8 x 16, or 4 x 32 b). The latency of a CSI instruction is non-
deterministic, since it depends on the stream length and the lo-
cation of data in the memory hierarchy. However, the latencies
of the CSI SIMD units are assumed to be equal to the latencies
of their scalar or VIS counterparts. Since there are two mul-
tiplications and four additions/subtractions on the critical path
of the implemented 1-D IDCT algorithm [39], the latency of
the SFU that performs the 8-point 1-D IDCT is assumed to be
2x34+4x1=10cycles.

The processors are equipped with a 64 KB, four-way set-as-
sociative L1 data cache with a line size of 64 B, and a 256 KB,
two-way set-associative L2 data cache with a line size of 128 B.
Both caches employ LRU replacement. The L1 hit time is 1cy-
cles and the L2 hit time is 6 cycles. Because the benchmarks
have small instruction working sets, a perfect instruction cache
is assumed. Furthermore, the number of cache ports is fixed at
two. Since CSI instructions access up to four data streams, this
means that the cache ports need to be shared. The main memory
is implemented using SDRAM with a row access, row activate,
and precharge time of 2-bus cycles. The 64-b wide memory bus
has a frequency of 166 MHz and the ratio of CPU frequency to
memory bus frequency was set to four, resulting in a CPU fre-
quency of 666 MHz.

B. Performance of Image and Video Benchmarks

Fig. 6 depicts the speedups achieved by the base four-way,
CSI-enhanced superscalar over the same processor extended
with VIS for VSDK and JPEG/MPEG kernels. The behavior of
rgb_ycc_convert is similar to ycc_rgb_convert (labeled ycc_rgb)
and h2v2_upsample is comparable to h2v2_downsample (la-
beled h2v2) and have, therefore, been omitted.

It can be seen that the processor extended with CSI clearly
outperforms the VIS-enhanced processor. The speedup varies
from 0.97 to 7.77. There are two cases where CSI is not much
more effective than VIS. The first is IDCT. This kernel can be
implemented using the special-purpose csi_idct instruction.
Since VIS does not provide an IDCT instruction, we did not use
the csi_idct instruction in order to make a fair comparison.
Instead, the CSI version is based on the standard definition of
the IDCT as two matrix multiplications. The VIS version of this
kernel, on the other hand, is based on a highly optimized IDCT
algorithm [39]. Therefore, the CSI version of idct executes much

CHERESIZ et al.: THE CSI MULTIMEDIA ARCHITECTURE

speedup (times)
9.

8 7.77

CSI/VIS speedup on kernels

7

5.1

a2

229

0.97

|

3.22

1.94
1.69 °
H H 1.14

distl AddBlock Saturate IDCT ycc_rgb
MPEG2/JPEG kernels

Fig. 6. Speedup of CSI over VIS for several kernels.

d . .
et CSI/VIS speedup on applications
1.6
14 1.35
1.18
1.2 109 1.06
1 E—
0.8 —
0.6 -
0.4
0.2
0 T
mpeg2dec mpeg2enc dipeg cjpeg
Fig. 7. Speedup of CSI over VIS for JPEG/MPEG codecs.

more operations than the VIS version. Nevertheless, its perfor-
mance is comparable to that of the VIS implementation. If the
csi_idct instruction is employed, CSI is faster than VIS by
a factor of 2.48. The second kernel for which CSI is not much
more efficient is conv3 X 3. The reason is that this kernel con-
tains a balanced mix of packed additions and multiplications. As
explained in Section V-A3, this means that the VIS-enhanced
processor can process 32 B in parallel, whereas the CSI-en-
hanced CPU processes only 16 B, simultaneously. The largest
speedup is obtained for the Saturate kernel. In this kernel, 16-b
signed values are clipped to the range [—2048, 2047] (the range
of 12-b values). VIS can only clip to the range of 8- or 16-b
values and, therefore, the required operation needs to be synthe-
sized. CSI, on the other hand, allows saturation to an arbitrary
range during the packing stage.

Fig. 7 shows how the kernel-level speedups translate to ap-
plication-level speedups. Of course, due to Amdahl’s law, the
speedups for complete applications are smaller than for kernels.
Nevertheless, CSI provides a performance improvement of up

h2v2 ‘ add8 blend8 scale8 conv3x3

VSDK kernels

to 35%. The smallest performance improvement is obtained for
the JPEG encoder cjpeg. This is because the kernels 7gb_ycc and
h2v2 together consume only about 10% of the execution time on
the VIS-enhanced processor. The largest speedup is achieved for
djpeg. The reason is that the ycc_rgb and jpeg_idct _islow kernels
account for a large part of the total execution time. The second
kernel not only performs IDCT but also dequantization and clip-
ping. While the CSI version of IDCT is 3% slower than the VIS
version, dequantization and clipping are significantly faster.

C. Scalability

To exploit more parallelism in a VIS-enhanced superscalar,
the issue width and the number of SIMD units have to be in-
creased. For CSI, on the other hand, exploiting more parallelism
does not involve issuing and executing more instructions but in-
creasing the datapath width of the CSI execution unit. In this
section the scalability of both approaches is investigated.

The amount of parallel execution resources is characterized
by the number of bytes that can be processed in parallel. As
before, we refer to this number as the SIMD width. For VIS,
it is determined by the number of VIS adders and multipliers.
For example, a processor with two VIS adders and two VIS
multipliers can process 16 B in parallel (32 B with the right
operation mix). For CSI, the SIMD width is determined by the
width of the CSI datapath.

To determine the scalability of a VIS-enhanced superscalar
processor, we consider issue widths of 4, 8, and 16, and scale
the number of functional units of each type accordingly. The
number of RUU entries is 64, 128, and 256, respectively,
because larger RUUs provided hardly any benefit [40]. Let a
VIS-enhanced superscalar processor with an issue width of
x, a window size of y, and a SIMD width of z B be denoted
by VIS(z,y, z). A similar notation is used for CSI-enhanced
CPUs. Fig. 8(a) depicts the speedup of VIS(z, y, z) relative to

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

speedup VIS scalability
3.5
. -
SIMD
25 - | WIDTH
2 - H168
15l [1 | Ha2s
[le4aB
] | || | =222
0.5 I [|
o o I8 Bl IHIH 1N Sl e e
isucwidh 4 8 16 4 8 16 4 8 18 4 8 16
RUUsize 64 128 256 64 128 256 64 128 256 64 128 256
conv3x3 idct yee_rghb h2v2
(a)
speedup CSl scalability
3
25 — 1]
n SIMD
P | - 1) WIDTH
H16B
157 ' W32E
14 - | ‘ |64 B
0.5
o - LElle - L ;. -
issuewidth 4 8 16 4 8 16 4 8 16 4 8 16
RUUsize 64 128 256 64 128 256 64 128 256 64 128 256
conv3x3 idet yee_rgb h2v2
(b)
Fig. 8. Scalability of VIS and CSI with respect to the amount of parallel

execution hardware.

VIS(4,64, z) for various kernels. The speedups of CSI(z, y, z)
relative to CSI(4, 64, z) are depicted in Fig. 8(b). All kernels ex-
hibited similar behavior and we, therefore, only present results
for four representative kernels.

It can be seen that when the issue width is fixed, increasing the
number of VIS units does not provide any benefit. Contention
for VIS resources is, therefore, not a problem in a VIS-enhanced
processor. Fig. 8(b) shows that CSI, on the other hand, is able
to utilize additional SIMD execution resources. The only case
where increasing the SIMD width does not yield a significant
performance improvement is the #2v2 kernel. The reason is that
this kernel is memory-bound. It incurs many cache misses (it
processes new image scanlines each time it is executed) and,
furthermore, the operation it performs is relatively simple. It
can also be observed that the performance of the CSI-extended
processors is rather insensitive to the issue width. This is ex-
pected since CSI does not exploit instruction-level parallelism
and, therefore, does not need to issue instructions in parallel.

It may be argued that the performance of the VIS-enhanced
processor does not scale with the number of VIS units because
the RUU is not large enough to find sufficient independent in-
structions. Fig. 9 shows, however, that this is not the case. It
depicts the instructions per cycle (IPC) attained by the VIS-en-
hanced CPUs, normalized with respect to the issue width. It can
be seen that’s attained by the four- and eight-way VIS-enhanced
processors are close to ideal. These IPCs are within 78% to 90%

IPC/(issue width), VIS

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2 1

conv3x3 idct ycc_rgb h2v2

Fig. 9. Ratio of achieved IPC to issue width for several kernels for
VIS-enhanced processors.

of the issue width, which means that performance cannot be im-
proved by more than 11-28% (1/0.9—1/0.78). Therefore, even
when the IPC approaches the issue width, the performance of the
VIS-enhanced processors will not approach that of the CSI-en-
hanced CPUs. This shows that the issue width together with the
large number of instructions that need to be executed limit the
performance of the VIS-enhanced processors.

D. Performance of a 3-D Graphics Benchmark

There are two important differences between 3-D graphics
applications and the integer benchmarks studied in the pre-
vious section. First, the main data type is single precision
floating-point. Because of the dynamic range of this data type,
packing/unpacking is not required. Second, the lighting kernel
of the geometry stage of the 3-D graphics pipeline contains
if-then-else statements. In this section we, therefore, investigate
if CSI also accelerates 3-D graphics processing.

Because VIS does not support floating-point SIMD instruc-
tions, we use SSE instead. We focus on the geometry stage of
the 3-D graphics pipeline. The other two stages (database tra-
versal and rasterization), are commonly performed by the CPU
and a graphics card, respectively. Although, some modern cards
also perform parts of the geometry computations, this dramati-
cally increases their cost. We employ the industry-standard 3-D
benchmark Viewperf from SPEC.

Since a 16-way processor is unlikely to be implemented in
the near future, we only consider four- and eight-way proces-
sors. They were configured with instruction windows of 128
and 256 entries, respectively, which is twice as large as for
the integer benchmarks. This was done to increase the possi-
bility of finding independent instructions, since floating-point
SIMD instructions take more time than integer SIMD instruc-
tions. Larger windows provided no significant improvements.
As was done in the previous section, we also varied the SIMD
width. The SSE-enhanced processor was configured with either
one, two, or four SSE units, each of which can perform four
single-precision floating-point operations in parallel. Accord-
ingly, the CSI execution unit was configured with a datapath
width of 16, 32, or 64 B. To investigate if the number of cache
ports constitutes a bottleneck, we also consider a 4-ported cache
in addition to a 2-ported cache.

Fig. 10 depicts the speedups attained by the SSE- and CSI-en-
hanced processors over the four-way SSE-enhanced processor

CHERESIZ et al.: THE CSI MULTIMEDIA ARCHITECTURE

speedup
4.0

xform

3.5

3.0 —

SIMD
width
H4FP
WEFP
16 FP

2.5

2.0

1.5

1.0 1

0.5

cache 2 4 2 4 2 4
ports
issue
width

4-way
SSE CSl

speedup
3.5

3.0

2.5 =

SIMD
width
H4FP
msFP
CI16FP |

2.0

1.5

1.0

0.5

cache 2 4 2 4 2 4 2 4
ports

issue
width

4—way 8-way

SSE Csl

Fig. 10. Speedups of the SSE- and CSI-enhanced processors over the four-way
SSE-enhanced processor with a SIMD width of 16 B.

with a SIMD width of four single-precision FP values. Fig. 10(a)
shows the results for the xform_points_4fv kernel and Fig. 10(b)
depicts the results for the gl_color_shade_vertexes_fast kernel.
For brevity, these kernels are referred to as xform and light.

It can be observed that although these kernels incur less
overhead due to the dynamic range of FP data, the CSI extension
provides significant performance gains. For example, on the
xform kernel the four-way CSI-enhanced processor that can
perform 16 FP operations in parallel outperforms the four-way
SSE-enhanced processor with the same processing capabilities
by a factor of 2.8. There are two reasons for this. First, CSI
eliminates the sectioning overhead (i.e., the overhead associated
with managing address and loop induction variables, branch
instructions, etc.). Although, SSE also reduces this overhead
compared to a conventional superscalar, it is not negligible.
Second, the results show that the number of cache ports
constitute a bottleneck for the SSE-enhanced processor. This
is more significant for the eight-way than for the four-way
SSE-enhanced processor, because the number of cache accesses
per cycle is smaller when the issue width is 4. There is also

11

speedup geometry

3.0

2.5

2.0 SIMD
width

1.5 - |maFpP
W8 FP
016 FP

1.0 | LI L

0.5

cache 2 4 ‘ 2 4 2 4 ‘ 2 4

ports

issue 4 _ _ =

width 4-way 8-way 4-way 8-way

SSE Csl
Fig. 11. Speedups of the SSE- and CSl-enhanced processors over the

four-way SSE-enhanced processor with a SIMD width of 16 b for the geometry
benchmark.

more cache port contention in the xform kernel than in the
light kernel. The reason is that the frequency of load/store
instructions is higher in the xform kernel than in the light kernel.
The performance of the CSI-enhanced processor, on the other
hand, is independent of the number of cache ports. The reason
is that the CSI execution unit accesses complete cache lines
but processes only parts of them (because the SIMD width
is smaller than the line size of 64 B). So, the CSI execution
unit does not need to perform multiple cache accesses per
cycle. Contention for cache ports could be avoided if SSE
would provide an instruction that loads multiple consecutive
SSE registers. We also remark that CSI performance again
scales well with the amount of parallel execution hardware
and does not require increasing the issue width. SSE, on the
contrary, requires such increases in order to utilize more parallel
hardware.

The speedups attained for the complete geometry stage of
the 3-D graphics pipeline are depicted in Fig. 11. Of course,
because large parts of the application have not been rewritten,
partly because of project time limitations and partly because
other kernels do not contain substantial amounts of data-level
parallelism, the application speedup is smaller than the kernel
speedups. Nevertheless, CSI provides a performance boost of
22% to 80%. We also observe that even though increasing the
issue width of the SSE-enhanced processor provided no perfor-
mance benefit for the xform and light kernels, it does speedup
the full application. This is because other code sections benefit
from a larger issue width.

VI. CONCLUSION

In this paper, we have proposed a novel media ISA extension
called the CSI instruction set. We have found that typically a
multimedia kernel must pass through seven steps: 1) generate
and align addresses; 2) load data; 3) align data; 4) convert
(unpack) data from storage to computational format; 5) process
data; 6) convert (pack) data back to storage format; and finally
7) store data. A single CSI instruction carries out all of these

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 1, JANUARY 2005

tasks. It has been shown that CSI significantly outperforms
current multimedia extensions such as VIS and SSE. For ex-
ample, a four-way CSI-enhanced superscalar processor with a
CSI datapath width of 16 B outperforms a four-way VIS-en-
hanced machine with similar execution resources by factors of
up to 7.77 on 2-D imaging and JPEG/MPEG kernels. These
kernel-level speedups translate to application speedups ranging
from 6% to 35% on image and video codecs. There are two
main reasons why CSI achieves higher performance than VIS
and SSE. First, CSI practically eliminates the overhead needed
to bring the data in a form so that it can be processed in a SIMD
manner, such as address and data alignment, (un)packing, and
managing address and loop induction variables. Second, even
though floating-point SIMD extensions incur less overhead due
to the dynamic range of floating-points, CSI reduces contention
for cache ports because it fetches complete cache blocks. As a
result, a CSI-enhanced superscalar processor accesses the cache
less often than processors extended with VIS or SSE. An addi-
tional advantage of CSI is that performance can be improved
by simply increasing the datapath width of the CSI execution
unit without having to increase the issue width. Furthermore,
since the code for the CSI architecture is independent of the
number of bits or elements that are processed in parallel, the
same program can run on different implementations, thereby
facilitating code maintenance.

Since CSI instructions that process streams incur a certain
startup cost, they are not very efficient when the streams are
short. However, because CSI processes 2-D streams, short
streams are commonly not encountered. Furthermore, there are
two reasons why the startup cost is usually tolerable. First, the
instructions that set the SCRs are executed by the superscalar
core. Second, CSI instructions often process many different
subblocks. This means that only for the first subblock all SCRs
need to be initialized. Thereafter, only the base address needs
to be changed. Only for one kernel (idct) we observed that
VIS was slightly more efficient than CSI. However, this was
because the CSI implementation was based on an O(n?) algo-
rithm, whereas the VIS version was based on an O(n?logn)
algorithm. If the csi_idct instruction is employed, CSI is
faster than VIS by a factor of 2.48.

There are several directions for future research. First, we are
currently investigating if CSI can be used to improve the per-
formance of scientific and engineering workloads. Second, we
intend to investigate if multiple CSI SIMD units can be chained
together to avoid having to write temporary streams to the L1
cache. Finally, we plan to develop a VHDL model of the CSI
execution unit in order to estimate the area, power, and timing
requirements of the CSI execution unit.

REFERENCES

[1] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of image
and video processing with general-purpose processors and media
ISA Extensions,” in Proc. Int. Symp. Computer Architecture, 1999,
pp. 124-135.

[2] K. Diefendorff and P. Dubey, “How multimedia workloads will change
processor design,” IEEE Computer, vol. 30, pp. 43-45, Sep. 1997.

[3] R.Lee and M. Smith, “Media processing: A new design target,” I[EEE
Micro, vol. 16, pp. 6-9, Aug. 1996.

(4]
(51
(6]
(71
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]
[29]

[30]

[31]

A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for multimedia PCs,”

Comm. ACM, vol. 40, no. 1, pp. 24-38, 1997.

S. Thakkar and T. Huff, “The internet streaming SIMD extensions,” Intel

Technol. J., pp. 26-34, May 1999.

M. Tremblay, J. O’Conner, V. Narayanan, and L. He, “VIS speeds new
media processing,” IEEE Micro, vol. 16, pp. 10-20, Aug. 1996.

L. Gwennap, “AltiVec Vectorizes Powerpc,”, vol. 12, Microprocessor
Report, 1998.

R. Bhargava, L. John, B. Evans, and R. Radhakrishnan, “Evaluating
MMX technology using DSP and multimedia applications,” in Proc. Int.
Symp. Microarchitecture, 1998, pp. 37-45.

H. Nguyen and L. John, “Exploiting SIMD parallelism in DSP and mul-
timedia algorithms using the altivec technology,” in Proc. Int. Conf. Su-
percomputing, 1999, pp. 11-20.

J. Hennessy and D. Patterson, Computer Architecture—A Quantitative
Approach, 3rd ed. New York: Elsevier, 2002.

S. Palacharla, N. Jouppi, and J. Smith, “Complexity-effective super-
scalar processors,” in Proc. Int. Symp. Computer Architecture, 1997, pp.
206-218.

P. Rubinfeld, B. Rose, and M. McCallig, “Motion video instruction ex-
tensions for Alpha,” White Paper, 1996.

N. Slingerland and A. Smith, “Measuring the performance of mul-
timedia instruction Sets,” [EEE Trans. Computers, vol. 51, pp.

1317-1332, Nov. 2002.

J. Corbal, M. Valero, and R. Espasa, “Exploiting a new level of DLP in
multimedia applications,” in Proc. Int. Symp. Microarchitecture, 1999,
pp. 72-81.

B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Owens,
B. Towles, A. Chang, and S. Rixner, “Imagine: Media processing with
streams,” IEEE Micro, vol. 21, pp. 35-47, Mar./Apr. 2001.

C. Kozyrakis and D. Patterson, “Vector Vs. superscalar and VLIW ar-
chitectures for embedded multimedia benchmarks,” in Proc. Int. Symp.
Microarchitecture, 2002, pp. 283-293.

S. Vassiliadis, B. Juurlink, and E. Hakkenes, “Complex streamed in-
structions: Introduction and initial evaluation,” in Proc. EUROMICRO
Conf., 2000.

B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H. Wijshoff, “Implemen-
tation and evaluation of the complex streamed instruction set,” in Proc.
Int. Conf. Parallel Architectures and Compilation Techniques, 2001, pp.
73-82.

D. Talla and L. John, “Cost-effective hardware acceleration of multi-
media applications,” in Proc. IEEE Int. Conf. Computer Design, 2001,
pp. 415-424.

S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris,
M. Schuette, and A. Saidi, “The reconfigurable streaming vector
processor (RSVP™)” in Proc. Int. Symp. Microarchitecture, 2003,
pp. 141-150.

A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz, “The IBM
system/370 vector architecture: Design considerations,” IEEE Trans.
Computers, vol. 37, no. 5, pp. 509-520, May 1988.

K. Hwang and F. Briggs, Computer Architecture and Parallel Pro-
cessing, 2nd ed. New York: McGraw-Hill, 1984.

D. Cheresiz. (2003) Complex Streamed Media Processor Architec-
ture. Leiden University, Leiden, The Netherlands. [Online]. Avail-
able: http://ce.et.tudelft.nl/publicationfiles/682_5_Dmitry_bw_13-
02_changed.pdf

J. Corbal, R. Espasa, and M. Valero, “On the efficiency of reductions
in p-SIMD media extensions,” in Proc. Int. Conf. Parallel Architectures
and Compilation Techniques, 2001, pp. 83-94.

MIPS Extension for Digital Media with 3-D [Online]. Available:
ftp.yars.free.net/pub/doc/SGI/Tech_Manuals/isa5_tech_brf.pdf

E. Hakkennes and S. Vassiliadis, “Multimedia execution hardware ac-
celerator,” J. VLSI Signal Processing, vol. 28, no. 3, pp. 221-234, 2001.
M. Sima, S. Cotofana, J. van Eindhoven, S. Vassiliadis, and K. Vis-
sers, “8 x 8 IDCT implementation on an FPGA-augmented trimedia,”
in Proc. IEEE Symp. FPGA’s for Custom Computing Machines, Rohnert
Park, CA, 2001.

G. Roelofs, PNG: The Definitive Guide.
Associates, 1999.

N. Slingerland and A. Smith, “Cache performance for multimedia ap-
plications,” in Proc. Int. Conf. Supercomputing, 2001, pp. 209-217.

T. Conte, K. Menezes, P. Mills, and B. Patel, “Optimization of instruc-
tion fetch mechanisms for high issue rates,” in Proc. Int. Symp. Computer
Architecture, 1995, pp. 333-344.

D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. Wijshoff, “Implemen-
tation of a streaming execution unit,” J. Syst. Architecture, vol. 49, pp.
599-617, 2003.

Sebastopol, CA: O’Reilly and

CHERESIZ et al.: THE CSI MULTIMEDIA ARCHITECTURE

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

VIS Software Development Kit. [Online] Available: http://www.
sun.com/processors/vis/vsdk.html

C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communication
systems,” in Proc. Int. Symp. Microarchitecture, 1997.

T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,” IEEE Computer, vol. 35, pp. 59-67, Feb.
2002.

M. Gries, “The impact of recent DRAM architectures on embedded sys-
tems performance,” in Proc. EUROMICRO Conf., 2000, pp. 282-289.
A. Bik, M. Girkar, P. Grey, and X. Tian, “Automatic intra-register vec-
torization for the intel architecture,” Int. J. Parallel Programming, vol.
30, no. 2, pp. 65-98, 2002.

Streaming SIMD Extensions—Matrix Multiplication, Application Note
AP-930 [Online]. Available: http://developer.intel.com/design/pentiu-
miii/sml/245 045.htm

Diffuse-Directional Lighting, Application Note AP-596 [Online]. Avail-
able: http://cedar.intel.com/cgi-bin/ids.dll/topic.jsp?catCode=DEC

W. Chen, C. Smith, and S. Fralick, “A fast computational algorithm
for the discrete cosine transformation,” IEEE Trans. Commun., vol.
COM-25, pp. 1004-1009, Sep. 1977.

D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. Wijshoff, “Performance
scalability of the multimedia instruction set extensions,” in Proc. Euro-
Par, 2002, pp. 678-686.

Dmitry Cheresiz graduated (cum laude) from
Novosibirsk State University, Novosibirsk, Russia,
in 1995, and received the Ph.D. degree in com-
puter engineering in 2003 from Delft University
of Technology, Delft, The Netherlands, and Leiden
University, Leiden, The Netherlands, research
collaboration.

In 2003, he worked as a Postdoctoral Researcher
at the Computer Engineering Laboratory of Delft
University of Technology. Currently, he is a Research
Scientist at Philips Research Laboratories, Eind-

hoven, The Netherlands. His research interests include computer architecture,
vector and multimedia processing, processor design, modeling, and evaluation.

13

Ben Juurlink (M’01-SM’04) received the M.S.
degree in computer science, from Utrecht Univer-
sity, Utrecht, The Netherlands, in 1992, and the
Ph.D. degree also in computer science from Leiden
University, Leiden, The Netherlands, in 1997.

In 1998, he joined the Department of Electrical
Engineering, Mathematics, and Computer Science
at Delft University of Technology, The Netherlands,
where he is currently an assistant professor. His
research interests include instruction-level parallel
processors, application-specific ISA extensions, low
power techniques, and hierarchical memory systems.

Stamatis Vassiliadis (M’86-SM’92-F’97) was born
in Manolates, Samos, Greece, in 1951.

He is currently a Chair Professor in the Electrical
Engineering Department of Delft University of
Technology (TU Delft), Delft, The Netherlands. He
has also served in the electrical engineering faculties
of Cornell University, Ithaca, NY, and the State
University of New York (S.U.N.Y.), Binghamton,
NY. He worked for a decade with IBM where he
had been involved in a number of advanced research
and development projects. For his work, he received
numerous awards including 24 publication awards, 15 invention awards and an
outstanding innovation award for engineering/scientific hardware design. His
72 USA patents rank him as the top all time IBM inventor.

Dr. Vassiliadis received an Honorable Mention Best Paper Award at the
ACM/IEEE MICRO?25, and the Best Paper Awards in the IEEE CAS in 1998
and 2002, IEEE ICCD in 2001 and at the PDCS in 2002.

Harry A. G. Wijshoff received the M.S. (cum laude)
and Ph.D. degrees from Utrecht University, Utrecht,
The Netherlands.

From 1987 to 1990, he was a visiting Senior
Computer Scientist at the Center for Supercom-
puting Research and Development, University of
Illinois at Urbana-Champaign. Currently, he is a
professor of computer science at the Leiden Institute
of Advanced Computer Science, Leiden University,
The Netherlands. His research interests include
performance evaluation, sparse matrix algorithms,
programming environments for parallel processing, and optimizing compiler
technology.

	toc
	The CSI Multimedia Architecture
	Dmitry Cheresiz, Ben Juurlink, Senior Member, IEEE, Stamatis Vas
	I. I NTRODUCTION

	Fig.€1. C code for saturating add.
	II. R ELATED W ORK

	Fig.€2. Packed addition of two 64-b registers containing four 16
	Fig.€3. Format of an arithmetic stream. Each cell represents a b
	III. T HE CSI A RCHITECTURE
	A. CSI Streams
	B. CSI Architecture State

	Fig.€4. CSI register space.
	C. CSI Instruction Set
	1) Basic Arithmetic and Logical Instructions: These instructions
	2) Accumulation Instructions: Accumulations are very sensitive t

	TABLE I O VERVIEW OF THE CSI I NSTRUCTION S ET
	3) Special-Purpose Instructions: We found that many kernels can
	4) Conditional Execution and Stream Reorganization Instructions:
	5) Auxiliary Instructions: These instructions are used to move d
	D. Example
	IV. I MPLEMENTATION
	A. CSI Datapath

	Fig.€5. Datapath of the CSI execution unit.
	B. In-Order Execution
	C. Interrupts and Context Switching
	V. E XPERIMENTAL V ALIDATION
	A. Experimental Setup
	1) Benchmarks and Simulation Tool: We attempted to cover a wide
	2) Methodology: The most time-consuming routines were identified

	TABLE II P ROCESSOR P ARAMETERS
	3) Modeled Processors: The base processor is four-way superscala
	B. Performance of Image and Video Benchmarks
	Fig.€6. Speedup of CSI over VIS for several kernels.
	Fig.€7. Speedup of CSI over VIS for JPEG/MPEG codecs.

	C. Scalability
	Fig.€8. Scalability of VIS and CSI with respect to the amount of

	Fig.€9. Ratio of achieved IPC to issue width for several kernels
	D. Performance of a 3-D Graphics Benchmark
	Fig.€10. Speedups of the SSE- and CSI-enhanced processors over t

	Fig.€11. Speedups of the SSE- and CSI-enhanced processors over t
	VI. C ONCLUSION
	P. Ranganathan, S. Adve, and N. Jouppi, Performance of image and
	K. Diefendorff and P. Dubey, How multimedia workloads will chang
	R. Lee and M. Smith, Media processing: A new design target, IEEE
	A. Peleg, S. Wilkie, and U. Weiser, Intel MMX for multimedia PCs
	S. Thakkar and T. Huff, The internet streaming SIMD extensions,
	M. Tremblay, J. O'Conner, V. Narayanan, and L. He, VIS speeds ne
	L. Gwennap, AltiVec Vectorizes Powerpc,, vol. 12, Microprocesso
	R. Bhargava, L. John, B. Evans, and R. Radhakrishnan, Evaluating
	H. Nguyen and L. John, Exploiting SIMD parallelism in DSP and mu
	J. Hennessy and D. Patterson, Computer Architecture A Quantitati
	S. Palacharla, N. Jouppi, and J. Smith, Complexity-effective sup
	P. Rubinfeld, B. Rose, and M. McCallig, Motion video instruction
	N. Slingerland and A. Smith, Measuring the performance of multim
	J. Corbal, M. Valero, and R. Espasa, Exploiting a new level of D
	B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Ow
	C. Kozyrakis and D. Patterson, Vector Vs. superscalar and VLIW a
	S. Vassiliadis, B. Juurlink, and E. Hakkenes, Complex streamed i
	B. Juurlink, D. Tcheressiz, S. Vassiliadis, and H. Wijshoff, Imp
	D. Talla and L. John, Cost-effective hardware acceleration of mu
	S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M
	A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz, The IBM sy
	K. Hwang and F. Briggs, Computer Architecture and Parallel Proce
	D. Cheresiz . (2003) Complex Streamed Media Processor Architectu
	J. Corbal, R. Espasa, and M. Valero, On the efficiency of reduct

	MIPS Extension for Digital Media with 3-D [Online] . Available:
	E. Hakkennes and S. Vassiliadis, Multimedia execution hardware a
	M. Sima, S. Cotofana, J. van Eindhoven, S. Vassiliadis, and K. V
	G. Roelofs, PNG: The Definitive Guide . Sebastopol, CA: O'Reilly
	N. Slingerland and A. Smith, Cache performance for multimedia ap
	T. Conte, K. Menezes, P. Mills, and B. Patel, Optimization of in
	D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. Wijshoff, Imple

	VIS Software Development Kit . [Online] Available: http://www. s
	C. Lee, M. Potkonjak, and W. Mangione-Smith, MediaBench: A tool
	T. Austin, E. Larson, and D. Ernst, SimpleScalar: An infrastruct
	M. Gries, The impact of recent DRAM architectures on embedded sy
	A. Bik, M. Girkar, P. Grey, and X. Tian, Automatic intra-registe

	Streaming SIMD Extensions Matrix Multiplication, Application Not
	Diffuse-Directional Lighting, Application Note AP-596 [Online] .
	W. Chen, C. Smith, and S. Fralick, A fast computational algorith
	D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. Wijshoff, Perfo

