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Abstract

Since the planet Earth was formed, about 4.5 billion years ago, it has always been a
complex and dynamic system due to internal and external forces. Examples of the man-
ifestation of these forces on the surface of the Earth are tsunami’s in South-East Asia
(2004) and earthquakes in Pakistan (2005), continental drift and glacial isostatic adjust-
ment (GIA) in the Baltic sea (Scandinavia). GIA is the response of the Earth due to
growth and melting of ice sheets and is known to have effect on the orientation of the
Earth rotation vector in both the direction and rotation rate. The perturbations due to
changes in the orientation of the rotation vector has, in parts of the world further away
from the formerly glaciated areas, a non-negligible contribution to the relative sea level
and can not be neglected. This contribution can reach up to 0.14 mm/year for present-day
relative sea level change where the rotational induced signal is a maximum.
In this study the effect of GIA induced change in the rotation vector is implemented self-
consistently in an existing model that solves the sea level equation using a pseudo-spectral
method on a spherically symmetric, incompressible, Maxwell-viscoelastic Earth model.
This model is used to perform a sensitivity analysis of different ice-load histories and GIA
induced rotational changes. The selected ice-load histories are the much used ICE-3G ice
model and the more recently developed ICE-5G and RSES ice models. In the following
step the prediction of the rotation observables are tested against the rotation observations
in the hotspot reference frame.
All the ice models give a distinct rotation signal which differ with the rotational obser-
vations in the hotspot reference frame. The ICE-3G ice model has a difference of 20
percent with respect to the rotational observations, the RSES ice model shows a relative
small discrepancy of about 10 percent and the ICE-5G model has a larger difference of
60 percent. This difference is most likely caused by the fact that compressibility effects
are not taken into account, other forcings than GIA are neglected and possible recent
deglaciation events are not included. Further the use of recently developed ice models and
the hotspot reference frame has a significant effect on the results and conclusions of older
mantle inversion research. For most mantle inversion studies this will result in a viscosity
stratification with a lower lower mantle viscosity, which can have a difference of 20 to 40
percent.

vii





Contents

1 Introduction 1

2 Earth rotation and Glacial Isostatic Adjustment 3

2.1 Rotation of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Motions of the Earth’s rotation axis . . . . . . . . . . . . . . . . . . 3

2.1.2 Earth rotation observations . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Glacial isostatic adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Mechanism of glacial isostatic adjustment . . . . . . . . . . . . . . . 8

2.2.2 Ice ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Structure and composition of the Earth . . . . . . . . . . . . . . . . 12

3 Rheology of the Earth 15

3.1 Response models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Elastic response model . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Viscous response model . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Viscoelastic response model . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Normal mode analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Postglacial sea level on a non-rotating Earth 23

4.1 GIA and the sea level equation . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Sea level equation on a non-rotating Earth . . . . . . . . . . . . . . . . . . . 23

4.3 Solving the sea level equation for a non-rotating Earth . . . . . . . . . . . . 26

4.3.1 Spatial approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Spectral approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Pseudo-spectral approach . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



x Contents

5 Postglacial sea level on a rotating Earth 31

5.1 Earth rotation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Sea level equation for a rotating Earth . . . . . . . . . . . . . . . . . . . . . 37

5.3 Solving the sea level equation for a rotating Earth . . . . . . . . . . . . . . 39

6 Model description 43

6.1 Earth models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Radial rigidity and density structure . . . . . . . . . . . . . . . . . . 43

6.1.2 Radial viscosity structure . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Ice models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 ICE-3G ice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.2 ICE-5G ice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.3 RSES ice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.4 Ice model implementation . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.5 Ice model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Results 53

7.1 Implementation of TPW in the sea level equation . . . . . . . . . . . . . . . 53

7.1.1 Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.2 Implementation process . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.3 Grid optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Sea level results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2.1 Relative sea level results on global scale . . . . . . . . . . . . . . . . 54

7.2.2 Relative sea level results on local scale . . . . . . . . . . . . . . . . . 57

7.3 TPW and the influence of ice and Earth models . . . . . . . . . . . . . . . . 60

7.3.1 TPW simulation with linear glaciation . . . . . . . . . . . . . . . . . 60

7.3.2 TPW simulation with different ice models and corresponding Earth
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.3 TPW and lower mantle viscosity . . . . . . . . . . . . . . . . . . . . 67

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8 Conclusions and Recommendations 71

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



Contents xi

A Benchmark comparisons 73

A.1 Perturbation of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2 Rotational parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 77





Chapter 1

Introduction

Since the planet Earth was formed, about 4.5 billion years ago, it has always been a
complex and dynamic system due to internal and external forces. Examples of the
manifestation of these forces on the surface of the Earth are tsunami’s in South-East
Asia (2004) and earthquakes in Pakistan (2005), continental drift and postglacial
rebound in the Baltic sea (Scandinavia) and Hudson bay (Canada). Earth science is the
all-embracing term of sciences related to the planet Earth which ultimately leads to a
better understanding of the processes that shape the planet as it is today. The science
that studies the Earth, its composition, structure, physical properties, history and the
processes that shape it, is known as geology.
The mechanical flow properties of our planet (also called rheology) can be determined by
examining geodynamic processes. These geodynamic processes act on different timescales,
from seconds for earthquakes up to millions of years for mantle convection. On the
intermediate timescale we will find processes like glacial isostatic adjustment (GIA),
which is the response of the Earth to periods of glaciation and deglaciation. Information
on the rheological properties of the Earth over short timescales comes mainly from seismic
waves. From this information it is possible to derive a spherically symmetric Earth model
which holds information on density and rigidity at different depths.
The information on rheological properties of the Earth over long and transient timescales
is derived from the Earth’s response to surface loading and unloading, for example
GIA. By studying the GIA process it is possible to derive the viscosity of the Earth at
different depths. GIA has also effect on both the rate and orientation of the rotation
vector of the Earth. In effect, this changes the centrifugal part of the gravity potential
of the Earth, which has an effect on predictions of present-day observables as radial
and horizontal displacement rates and changes in geoid height1. The perturbations
due to changes in the orientation of the rotation vector has, in parts of the world
further away from the uplifting areas, a non-negligible contribution to the observables
and have to be taken into account when GIA is studied. So when the changes in
the rotation are taken into account it is possible to derive a more accurate sea level
distribution. But the changes in the orientation of the rotation vector can also be used
to constrain the radial mantle viscosity profile of the Earth as result of the high cor-
relation with the lower mantle viscosity which has been done frequently in the last decades.

In this study the GIA induced changes in the rotation vector will be implemented
in an existing FORTRAN code that solves the sea level equation, based on the study of
Mitrovica and Peltier [1991]. This will be done self-consistently, i.e. the effect on the
potential field of the induced changes in the rotation vector has to be taken into account
in the computation of the induced changes, as described in [Milne and Mitrovica, 1998].
This model will be used to perform a sensitivity analysis of different ice-load histories
on GIA induced rotational changes. The selected ice-load histories are the much used
ICE-3G ice model and the more recent ICE-5G and RSES ice models. The prediction

1the geoid is an equipotential surface that coincides with the mean ocean surface
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2 Introduction

of the rotation observables are subsequently tested against the rotational observations
in the hotspot reference frame. Further this model will be used to investigate the effect
of recent improvements on the results and conclusions of older research concerning the
inference of mantle viscosity.

The structure of this report will be as follows. In chapter 2 an introduction to
Earth rotation and GIA is given and in chapter 3 a mathematical model of the response
of the Earth to ice age cycles is derived. Using these results, the sea level equation of
a non-rotating Earth is determined in chapter 4, followed by a discussion on the Earth
rotation theory and its implementation in the sea level equation in chapter 5. The input
with respect to Earth- and ice models that are used in the simulations are given in
chapter 6. The rotational behaviour of the Earth and the effect of different ice models
will be treated in chapter 7. Finally in chapter 8 the conclusions and recommendations
will be given.



Chapter 2

Earth rotation and Glacial Isostatic
Adjustment

The rotation of the Earth is not regular and changes both in the position of the axis and
rotation rate. These irregularities are caused by different internal and external forces over
a wide range of time-scales. The most dominant forcing is glacial isostatic adjustment
(GIA) which is the response of the Earth’s shape and gravitational field to surface ice-
mass loads. In section 2.1 the known motions of the rotation axis of the Earth will be
presented, followed by a treatment of the GIA phenomenon in section 2.2.

2.1 Rotation of the Earth

The rotation of the Earth changes continuously and has elements of secular and periodic
variation caused by numerous geophysical processes. This motion is complex and will be
discussed in following section, followed by a review on the available observations of Earth
rotation and a discussion on new developments in reference frames on which the the Earth
rotation observations are evaluated.

2.1.1 Motions of the Earth’s rotation axis

The position of the rotation axis changes on timescales that range from days to millions
of years and can be divided into two main categories: displacement of the axis of rotation
with respect to the fixed stars and a displacement of the axis of rotation with respect to
a fixed position on the Earth’s surface.
Displacements of the axis of rotation with respect to the fixed stars are e.g. precession
and nutation. These displacements are the result of external forces like the gravitational
interactions between the Earth and different celestial bodies in our solar system. The most
dominant external forces are the gravitational torques of the Moon and Sun exerted on the
spinning Earth’s equatorial bulge1. Precession generally refers to the slow motion with a
period of around 26,000 years and nutation is a small nodding motion with a period of
18.6 years and an amplitude of 284 m as depicted in figure 2.1.
Displacements of the axis of rotation with respect to a fixed position on the Earth’s surface
are the secular and periodic polar motion (see figure 2.2). These displacements are due
to mass displacements in the interior of the Earth, at its surface and in the hydro- and
atmosphere.

1ellipsoidal of the Earth as a result of flattening
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4 Earth rotation and Glacial Isostatic Adjustment

Figure 2.1 Precession (P), nutation (N) and rotation (R) of a rotating body.

Three periodic variations can be distinguished, namely an annual, Chandler and Markowitz
wobble:

the annual wobble is about 5 m per year with respect to the crust and is caused by
seasonally varying winds.

the Chandler wobble is the (Eulerian) free precession for a viscoelastic body with an
average amplitude of 10 m with respect to the crust and a period of 433 days (14
months). The causes of the Chandler wobble are still debated for. A study done
by Gross [2000] states that 2/3 is caused by a fluctuating pressure on the bottom
of the ocean and for 1/3 is caused by fluctuations in the atmospheric pressure. The
fluctuating pressure on the bottom of the ocean is mainly the result of temperature
and salinity changes and wind-driven changes in the circulation of the oceans.

the Markowitz wobble is relatively small with an average amplitude of 1 m and period
of approximately 30 years. The mechanism responsible to generate such a wobble is
still not identified and under discussion [Mound, 2005].

 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

time [years AC]

x 
[’’

] (
to

w
ar

ds
 G

re
en

w
ic

h)

 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

time [years AC]

y
 [

"]
 (

to
w

a
rd

s
 9

0
°W

)

Figure 2.2 X (left) and y (right) component of observed polar motion from 1962 till March 2006 (1 ” (arcsec)
≈ 31m). Periodic polar motion (red) and secular variation of polar motion (blue). Source: IERS.

The secular variation of polar motion is about 1 m per 10 year with respect to the crust
and is believed to be the result of numerous causes: GIA, mantle convection, subducting
slabs, mountain building, seismic activity (earthquakes), surface water fluctuations,
groundwater storage variations and cryospheric changes. When polar motion is modeled
using a reasonable Earth model and a forcing by the late-Pleistocene ice history it
corresponds with the observed rotation rate and direction [e.g., Nakiboglu and Lambeck,
1980; Sabadini and Peltier, 1981]. The direction of the secular variation of polar motion
is about 79 ◦W and directed towards the Hudson’s Bay region in Canada, which was
the center of the largest Pleistocene ice sheet. The direction of the secular variation
of polar motion suggests that the Pleistocene deglaciation causes the primary excita-
tion, but it must be noted that there are other contributions. available observational data.



2.1 Rotation of the Earth 5

The rotation axis does not only change its position but also its rate of rotation,
which has a direct effect on the length of day (LOD). The fluctuations in LOD occur on
different time scales (see figure 2.3):

short-time fluctuations (days till years) in LOD are the result of pressure distribution
and zonal winds and are responsible for variations in the order of ms.

decadal fluctuations (tens of years) are believed to be due to the transfer of angular
momentum between the fluid core and solid mantle. This requires torque at the core
mantle boundary and is possibly caused by a mechanism that generates pressure, in-
ertial, topographic, viscous or electromagnetic coupling. These variations are in the
order of 5-10 ms.

a long-term secular trend which is mainly due to GIA and tidal exchange between the
Earth and the Moon and the Earth and the Sun. Because the Earth is not perfectly
elastic and the Earth is rotating faster around its axis then the Moon is rotating around
the Earth this mechanism is responsible for a secular decrease in rotational velocity.
Earth rotational observations show that 500 million years ago one year counted about
420 days and since then the LOD linearly increased with more or less 2 ms per century
[Lambeck, 1980].
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Figure 2.3 Observed LOD from 1962 till march 2006. Source: IERS.

2.1.2 Earth rotation observations

Throughout the ages the variable rotation of the Earth is recorded in several ways. There
are generally three sources of information on the variable rotation, which depend on the
time scale under consideration. The primary source is the record of about 150 year of
observations collected by astronomers since the telescope was introduced till the use of
satellites nowadays. Following the discovery of the Chandler wobble in 1891 the Interna-
tional Latitude Service (ILS) was established to observe the motion of the Earth’s rotation
pole, which was later superseded by the International Earth Rotation Service (IERS). The
ILS used six observing stations to make regular optical astrometric observations of the
latitude variation from 1899 till 1979. The error, introduced in the process of cataloging
the stars, was decreased through the introduction of the Hipparcos star catalog, named
after the Hipparcos astrometric satellite launched in 1989. Nowadays the Earth’s ori-
entation can also be obtained from various space-geodetic techniques including Lunar
Laser Ranging (LLR), Satellite Laser Ranging (SLR), Global Positioning System (GPS),
Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS) and
Very Long Baseline Interferometry (VLBI). The permanent monitoring of the Earth’s ro-
tation requires the coordinated use of VLBI and satellite techniques. VLBI provides the
absolute reference for the determination of universal time, precession and nutation. The
satellite techniques (LLR, SLR, GPS) provide the daily interpolation and the short-term
prediction of universal time in the highly accurate but less frequent VLBI reference values.
The combination of all the independent space-geodetic Earth orientation measurements



6 Earth rotation and Glacial Isostatic Adjustment

is gathered in SPACE96 [Gross, 1997] and the more recent SPACE2001 [Gross, 2002].
Figure 2.4 shows the data of three polar motion series.

Figure 2.4 x and y component of different smoothed polar motion series. The x-component is defined positive
towards Greenwich meridian and the y-component is defined positive towards 90 ◦E and the values
are given in milliarcseconds (mas). For clarity the ILS series have been shifted up by 100 mas and
the SPACE96 series have been shifted down by 100 mas [Gross and Vondrák, 1999].

Secondly historical records from old cultures are used which date back to 1000 BC and
earlier. These records contain observations of eclipses, conjunctions and other configura-
tions of celestial bodies. These observations are used to investigate the LOD.
Thirdly fossil records are used to estimate respectively the position of the rotation axis
and the rotation rate during the geological past. Fossil records (e.g. corals, molluscs
and stromalites) contain information on daily and seasonal variations which can be linked
directly to the changing rotation. This information can be retrieved by analyzing their
physical and chemical properties of different layers or growth marks.

2.1.3 Reference frame

Estimates of the polar motion over the past century usually neglect plate motions or are
relative to the mean lithosphere. The secular shift of the rotation axis with respect to the
plate it points through is also called apparent polar wander (APW) and the secular shift of
the rotation axis with respect a mean lithosphere or mean lower mantle is called true polar
wander (TPW). Early observations from ILS were not corrected for plate motion [e.g.,
McCarthy and Luzum, 1996; Gross and Vondrák, 1999]. But to interpret observations
of the polar motion correctly it has to be considered relative to the mean solid Earth
and plate motions need to be taken into account. Also the mean lithosphere is not a
good reference frame because it still moves relative to the solid Earth. One solution is to
link the reference frame of the solid Earth to the lower mantle instead of the lithosphere,
because the lower mantle comprises 2/3 of the solid Earth’s volume. Argus and Gross [2004]
suggest to use the hotspot-reference frame because hotspots are thought to originate in and
move slowly relative to the lower mantle [Steinberger and O’Connell, 1998; Steinberger,
1998]. Hotspots are rather concentrated pointlike places on the Earth’s surface which show
a higher surface heat flow than the average value and often pours out large quantities
of basaltic rock. It is generally thought that these hotspots are associated with rising
plumes of hot material originating from the mantle. When the plates of the Earth move
with respect to the mantle, a track of basaltic rock outpourings will remain and create
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for example the Hawaiian Ridge. When the hotspot reference frame together with the
Hipparcos star catalog is used the direction of the secular variation of polar motion will
change 11 ◦ counterclockwise and the spin axis motion will differ 15% as can been seen
in table 2.1. The change in direction of the secular variation of polar motion can be seen

model ILS Hipparcos

speed path speed path
[ ◦Myr−1] [longitude ◦W] [ ◦Myr−1] [longitude ◦W]

uncorrected for plate motion1 0.92 75.0 - -
uncorrected for plate motion2 1.06 75.5 - -

mean lithosphere2 0.98 79.9 0.98 79.2
hotspots3 1.12 69.1 1.12 68.4

Table 2.1 Estimates of the motion of the spin axis over the past century. Source: 1) McCarthy and Luzum
[1996], 2) Gross and Vondrák [1999], 3) Argus and Gross [2004].

in figure 2.5. If the secular shift of the rotation axis with respect to the deep mantle is
considered, the motion is referred to as true polar wander (TPW).

Figure 2.5 secular variation of polar motion. Where X1 is the axis aligned with the Greenwich longitude, X2 is
the axis in the direction of 90 ◦E of X1, Xml is the spin axis motion relative to the mean lithosphere
and Xhs is the spin axis motion relative to the hotspots.
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2.2 Glacial isostatic adjustment

In the global process of GIA the Earth’s shape and gravitational field are modified in
response to the large scale changes in surface mass load as result of the ice ages. It
is commonly used to give more insight in the viscosity structure of the Earth. There
is a large interest in studying the response of the planet to these ice ages because of the
geological, geophysical and astronomical data which record them are of high quality. These
data are capable of providing constraints upon the viscoelastic properties of the interior of
the Earth. In this section first the mechanism of glacial isostatic adjustment is discussed
followed by a more detailed discussion on the elements that determine the behaviour of
GIA, namely the ice ages and the structure and composition of the Earth.

2.2.1 Mechanism of glacial isostatic adjustment

GIA is an important forcing mechanism in case of TPW and will be the only mechanism
considered in this study. The term isostasy was first mentioned by Dutton in 1889 to de-
scribe the compensated state of the Earth’s topography. This idea was already suggested
by Pratt and Airy in 1855 who used it to describe the compensation of mountains by
unobservable roots. The term isostasy can also be interpreted as ”the compensation of
applied external surface loads (continental glaciers and ice sheets) by variations in Earth’s
external shape and internal density distribution” [Peltier, 2004]. Where this definition
refers to a compensation steady state, glacial isostatic adjustment (GIA) is the dynamic
process of elastic and viscous deformation to loading and unloading of the Earth by ice
formation and removal. At the end of the nineteenth century observers began to relate
the raised beaches in Scandinavia and the tilting of the Great Lake in Canada to GIA,
and it was realized that viscous flow must occur in the mantle of the Earth. Already in
the 1930’s viscosity estimates for the mantle were produced using simple shorelines, and
later on estimates for the relaxation time were made [Lambeck, 1988]. Nowadays GIA
still accounts for a maximum uplift at the center of the former glaciated areas of about 1
cm per year for Scandinavia and up to 2 cm per year for Canada [Milne et al., 2001].
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Figure 2.6 Simplified interaction between different components of GIA.

The growing and melting of ice sheets is part of a complex geophysical system that
involves sea level, climate and wander of the rotation axis with respect to the Earth’s
surface. The changing ice sheets do not only have local effects, like the warping and
tilting of land underneath and around it, but also global effects. These global effects are
caused by the redistribution of mass, e.g. sea level and mantle flow. The melting of the
ice also has indirect effects, because the water salinity and temperature and wind changes
the ocean circulation, transfer of heat and moisture, and thus the climate. The changing
climate and sea level on its turn affect the dynamics of the ice sheets and ice topography
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which influences mantle flow. This redistribution of mass under and on the surface of
the Earth changes the moments of inertia of the Earth, which change the inertia tensor.
The change in inertia tensor results in a movement of Earth’s rotation pole with respect
to mean solid Earth (TPW) and a change in the length of a day (rate of rotation). The
change in Earth rotation affects both the sea level and climate again (see figure 2.6).

Figure 2.7 Schemetic drawing of the effect of self-gravitation on sea level.

The melted ice is not equally (eustatically) distributed over the oceans. This is
the result of the physical property that mass attracts other masses around it, see figure
2.7. This effect is called self-gravitation and has to be taken into account. The following
example illustrates the effect of self-gravitation on sea level rise: if all the Greenland ice
were concentrated on the southern tip of Greenland and were to melt, then the effect
of self-gravitation would cause a sea level drop at the coast of Iceland, a smaller than
eustatic rise at the coast near New York and a larger than eustatic rise at the coast of
Australia [Sabadini and Vermeersen, 2004].
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Figure 2.8 Global predictions of the present-day rate of change of relative sea level for a non-rotating Earth.

When an ice sheet melts this results in a eustatic sea level rise but also complex processes
take place as seen in figure 2.8. It must be noted here that the present-day relative sea
level, which is defined as the difference between the solid Earth and geoid, is also defined
on land. Some of these distinct processes can be globally divided in near- and far field
effects, which will be discussed below.

Near field GIA effects
In the near field (areas surrounding melting ice sheets) two effects can be distinguished
that are mainly dominated by the radial response of the solid Earth. First of all there
is a large postglacial relative sea level fall near the melting ice sheets. This is the result
of the upward radial response of the sea floor due to the melting of the ice (rebounding
effect) and the decreasing effect of self-gravitation. This postglacial relative sea level fall
is bigger than the present-day sea level rise as result of the melting of the ice sheets and
results in a present-day relative sea level fall of 1 to 2 cm a year as can be seen in figure
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2.9 at (1). It must be noted that figure 2.9 is a simplified representation and the effects of
self-gravitation and deformation have to be taken into account to obtain a more realistic
picture. Secondly, some distance further away from the melting ice sheets there is a clear
postglacial relative sea level rise, which is the consequence of the decreasing effect of self-
gravitation and due to the subsidence of the peripheral bulges2 that result in a downward
radial response of the solid Earth. Together with the present-day sea level rise this results
in a relative sea level rise with a maximum present-day value of 5 mm per year as can be
seen in figure 2.9 at (2).

Figure 2.9 Near field GIA effects. Left: schematic drawing of the near field effects without self-gravitation and
deformation effects. Right: present-day rate of change of relative sea level and near field effects at
Greenland.

Far field GIA effects
In the far field (near continents and on the oceans) also two effects can be distinguished.
First there is a relative postglacial sea level fall on the oceans, presently smaller than 1
mm per year, which is the result of the movement of ocean mass to the regions vacated
by the subsiding peripheral bulges. This leads to a subsidence of the geoid and to
a postglacial relative sea level fall greater than the relative sea level rise due to the
present-day melting of ice. This process has also been called ocean syphoning [Mitrovica
et al., 2001] and is explained in figure 2.10.

Figure 2.10 Far field GIA effects. Left: schematic drawing of ocean syphoning without self-gravitation and
deformation effects. Right: present-day rate of change of relative sea level and ocean syphoning
effect at the Atlantic Ocean.

Secondly, due to the offshore present-day relative sea level rise near continents and
subsequent increased sea-load, the continent is levered which gives an offshore region of
relative sea level rise of smaller than 1 mm per year and an onshore region of relative sea
level fall of more than 1 mm per year. This phenomenon is known as continental levering
[Mitrovica et al., 2001], see figure 2.11.

The geodynamic timescale of GIA processes (103 - 105 years) is intermediate be-
tween the short timescales of seismic activity, Earth tides and rotation period (10−3 -
101 years) and the long timescales of mantle convection and other tectonic processes
(106 - 108 years). The short timescales refer to a high frequency elastic response of the
Earth and the long timescales to a low frequency viscous response of the Earth. Because

2rings of mantle material around an ice sheet formed during the growing of the ice sheet which intro-
duced a flow of mantle material from beneath the ice sheet
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Figure 2.11 Far field GIA effects without self-gravitation and deformation effects. Left: schematic drawing of
continental levering. Right: present-day rate of change of relative sea level and continental levering
at South America.

the geodynamic timescale of GIA is intermediate it is also referred to as a (transient)
viscoelastic response. From the GIA process the response of the Earth to a surface load
can be determined. If the response of the Earth can be put into a model and the glacial
history and sea level are considered known, it is possible to derive the internal properties
of the Earth, in particular the viscosity. How the response of the Earth to a surface load is
integrated into a mathematical model will be discussed in the next chapter. The response
of GIA is dependent on loading during the ice ages and the structure and composition of
the Earth. These will be treated in the next section.

2.2.2 Ice ages

The very existence of ice ages had been a long time unknown, until Bernard Kuhn
in 1787 found the first evidence of glaciation in his research of boulders in the Swiss
Jura. Numerous theories have been developed and until this date there is still a lot of
controversy about them. The general consensus is that the ice ages are caused by a
combination of four factors: change in atmospheric composition (CO2 and methane),
changes in the Earth’s orbit around the sun (Milankovitch’s theory), changes in the
solar output, and the arrangement of continents [Imbrie and Imbrie, 1979]. Proof of
ice ages can be found in different scientific disciplines: glaciology (ice cores), geology
(marine and terrestrial sediments), biology (e.g. tree rings) and history (different kinds
of records). This data can be used to create an ice model as will be discussed in section 6.2.

The earliest well-documented ice age, and probably the most severe of the last 1
billion years, occurred from 800 to 600 million years ago (the Cryogenian period) and it
has been suggested that it produced a frozen Earth in which permanent sea ice extended
to or very near the equator (http://en.wikipedia.org/wiki/Ice age). A minor ice age
occurred from 460 to 430 million years ago, during the Late Ordovician Period. There
were extensive polar ice caps at intervals from 350 to 260 million years ago, during the
Carboniferous and early Permian Periods. The present ice age began 40 million years
ago with the growth of an ice sheet in Antarctica, but intensified during the Pleistocene
(starting around 2 million years ago) with the spread of ice sheets in the Northern
Hemisphere. Since then, the world has seen cycles of glaciation with ice sheets advancing
and retreating on 40,000 and 100,000 year time scales. With the help of isotopes and
14C radiocarbon dating of sea level data it is now generally known that the last glacial
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maximum occurred about 18,000 radiocarbon years (equivalent to 21,000 calendar years)
ago [Tushingham and Peltier, 1991]. Between present day and the last glacial maximum
a total ice mass of about 4.5 × 1019 kg has been melted, which led to an equivalent
eustatic sea level rise of about 120 m. During this last glacial maximum (LGM) large
parts of northern Europe, Asia and Canada were covered by large ice masses up to 3500
m high.

2.2.3 Structure and composition of the Earth

At the Earth’s surface, oceans and mountains contribute to a diverse scenery but inside
the Earth a dominant radial structure is present as a result of gravitation. The knowledge
of the radial structure comes from indirect measurements, like the measurement of arrival
times of seismic body waves and corresponding velocities. These body waves can be divided
into two categories: pressure and shear. The velocity of the pressure waves is the highest
of the two (5-13 km/s) and mostly dependent on the compressibility of the material.
The velocity of the shear waves is lower than the pressure waves (2-7 km/s) and mostly
dependent on the rigidity of the material. Finally the surface waves are the slowest but
also cause the most damage on the surface of the Earth. After a seismic wave is triggered
it can be measured by seismic stations directly and indirectly, because they are reflected
at the boundaries between different layers of the Earth. By analyzing the travel time it is
possible to determine the internal density profile of the Earth (figure 2.12). Dziewonski and
Anderson [1981] derived the Preliminary Reference Earth Model (PREM), which contains
a commonly applied radial variation of the elastic properties. To understand and explain
geological processes two different concepts of layering for the outer part of the Earth are
used: compositional layering (crust and mantle) and mechanical layering (lithosphere and
asthenosphere). These concepts are explained in more detail below.

Crust and upper mantle
The crust is a thin layer with a diverse chemical composition which is positioned above the
upper mantle. The crust has a clear distinction between continental and oceanic crust. The
oceanic crust is created at the midoceanic ridges from rising mantle material and spreads
out until it meets the continental plate and subducts beneath it at active margins. This
is why the oceanic crust has an average age of 80 million years compared up to 2 billion
years for continental crust [Schubert et al., 2001]. The thickness of oceanic crust varies
between roughly 2 km at the midoceanic ridge till 37 km in the direction of the continents
and is composed of sediments and a volcanic layer with a rather uniform constitution of
basaltic rock. The continental crust varies between 20 and 70 km (beneath mountains)
and is thicker than the oceanic crust because it is not recycled into the Earth’s interior.
The continental crust contains more silicates than the oceanic crust and is therefore more
deformable and has a lower density. The crust is separated from the upper mantle by
the Mohorovicic (Moho) discontinuity at 19 km, which is a weighted average of continents
and oceans. The Moho is characterized by an increase in seismic velocities. The Moho is
marked as a chemical boundary because it represents a change in chemical composition
between two layers. The upper mantle reaches until the seismic discontinuity at 670 km
and can be split into a shallow upper mantle and a transition zone. The shallow upper
mantle reaches until 400 km where a seismic discontinuity is present, which is the result of
a phase change from the silicate olivine to wadsleyite. The transition zone is characterized
by a sharp increase in density and reaches until the seismic discontinuity at 670 km.

Lithosphere and asthenosphere
The lithosphere is the rigid outer layer of the Earth and differs from the underlying as-
thenosphere in terms of its mechanical (or rheological) properties rather than its chemical
composition. Under the influence of the low-intensity, long-term stresses the lithosphere
responds practically as a rigid (elastic) shell while the asthenosphere behaves as a highly
viscous fluid. The lithosphere includes the crust and the uppermost part of the upper
mantle. Its thickness reaches from a few kilometers at midoceanic ridges and thickens to
about 100 - 150 km under the older parts of ocean basins and up to 250 - 300 km under
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continental areas. The asthenosphere includes the part immediately below the lithosphere
until the viscosity increases again.

Lower mantle
The lower mantle begins at a depth of 670 km where a seismic discontinuity is present
that is the result of a phase change from spinel to perovskite and magnesiowustite. Many
geophysicists thought that the subducted lithospheric slabs were unable to penetrate across
the discontinuity because of the lack of seismicity below it. They concluded that two
chemically distinct layers were present and the boundary was referred to as a chemical
boundary. More recent research [e.g., Hilst et al., 1997] indicates that some slabs are
delayed at 670 km, but eventually sink into the lower mantle, which suggests that partly a
phase change boundary is present. The lower mantle extends to the core-mantle boundary
at a depth of 2900 km, but little is known of this boundary. A few hundred kilometers
from the core-mantle boundary a sharp increase in seismic velocity is observed which is
the result from the interaction between the core and mantle. This is called the D” layer
which is interpreted as a hot boundary layer where heat is conducted from out of the core.
Because of its steep thermal gradients it is thought that the D” layer plays an important
role in the creation of mantle plumes.

Core
The outer core is found to be fluid because no shear waves propagate through it. The
main constituents are molten iron and nickel, which by movement around the solid inner
core drives the Earth’s magnetic field. The seismic boundary which separates the fluid
outer core from the solid inner core is located at a depth of about 5200 km.

Figure 2.12 Compositional layering of a symmetric radial Earth model. Source:
http://wikipedia.org/wiki/Earth’s core.





Chapter 3

Rheology of the Earth

To simulate the effects of GIA, the response of the Earth to a surface load is integrated
into a mathematical model. As mentioned before in the previous chapter, the geodynamic
timescale of the GIA process is intermediate and in this case a viscoelastic response model is
assumed. The behaviour of the viscoelastic response model will be studied using rheological
models. In section 3.1 the response of a viscoelastic body is determined. Together with the
equation of momentum and the Poisson equation this will form the basis of the normal-
mode theory. The normal mode theory is a well known and commonly used theory to
simulate the responses of a viscoelastic Earth to surface loads and is derived in the seventies
and eighties by Peltier [1974; Wu [1978; Wu and Peltier [1982; Sabadini et al. [1982]. In
section 3.2 the normal-mode theory will be derived for an incompressible, self-gravitating,
spherically symmetric Earth model with a Maxwell-viscoelastic rheology.

3.1 Response models

In this section the response of a viscoelastic body is determined, but first the basic elastic
and viscous response models will be derived in section 3.1.1 and 3.1.2. These models will
be combined in a viscoelastic response model in section 3.1.3.

3.1.1 Elastic response model

The elasticity theory describes the immediate short term response (in the range of seconds
to years) of materials. In this study the stress of elastic materials is considered linearly
proportional to the strain and the material is fully recoverable. The behaviour can also
be compared with a spring which is also fully recoverable after a load has been applied
to it. The Earth materials of which the behaviour can be considered elastic are rocks at
low pressure and temperature (e.g. in the lithosphere) and also materials in the mantle
for stresses at seismic frequencies.

Now consider an infinitesimal cube with the sides oriented in the coordinate direc-
tions x1, x2, x3. A component of the stress tensor σij acts on the plane normal to the
i-direction and in the j-direction. The normal stresses are the elements for which i = j
and the shear stresses are the elements for which i 6= j. The generalized form of Hooke’s
law for infinitesimal stress and strain is [Ranalli, 1995]:

σij =
3∑

k=1

3∑

`=1

Cijklεkl (3.1)

where σij is the stress, Cijkl the material constants tensor with the elastic properties
of materials and εkl is the strain. Now assume that the material is homogeneous and
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isotropic, then the material constant tensor Cijkl can be simplified to two independent
coefficients. Then equation 3.1 will become:

σij = λ

3∑

k=1

εkkδij + 2µεij (3.2)

where δij is the Kronecker delta, λ and µ are the elastic material constants generally
known as the Lamé parameters. The parameter µ is also known as the rigidity or shear
modulus.

3.1.2 Viscous response model

The counterpart of the elasticity theory is the viscosity theory, which describes the long
term response (in the range of thousands to billions of years) of materials. On large
timescales solid materials can be considered as fluids and the behaviour can be compared
to a dashpot. The Earth materials of which the behaviour can be considered viscous at
longer geological timescales are in the mantle, below the lithosphere.

In a Newtonian fluid, where the strain rate is linearly proportional to the stress,
the constitutive equations are given by [Ranalli, 1995]:

σij = −pδij + C ′ijklε̇ij (3.3)

where p is the fluid pressure for the fluid at rest, C ′ijkl is the material constants tensor
with the viscous properties of materials and ε̇ij is the strain rate. As in section 3.1.1 the
tensor C ′ijkl, assuming isotropic bodies, can be reduced to two parameters which gives:

σij = −pδij + λ′θ̇δij + 2ηε̇ij (3.4)

where λ′ and η are the viscous material constants and η is referred to as the dynamic or
Newtonian viscosity.

3.1.3 Viscoelastic response model

The elastic and viscous response models discussed in the last two sections will now be com-
bined to a linear viscoelastic response model. For demonstration purposes one-dimensional
and only shear components are taken into account (the full 3D viscoelastic response model
is given in section 3.2. The linear elastic model for shear components is:

σ = 2µε (3.5)

where µ is the rigidity. Now also assume a viscous model of a Newtonian body:

σ = 2ηε̇ (3.6)

where η is the Newtonian viscosity.

Several linear rheological models exist which couple the elastic response (represented by a
spring) and the viscous response (represented by a dashpot). Some models are visualized
in figure 3.1 and discussed below: (a) Kelvin model: the dashpot and spring are linked
in a parallel circuit. The rheological equation is obtained by the superposition of the
stresses of the elastic and viscous elements:

σ = 2µkε + 2ηk ε̇ (3.7)

Using the method of ’variation of a constant’ and assuming that the stress in the system
equals to σ = σ0 and the initial conditions of ε = 0 and t = 0 the strain is [Ranalli, 1995]:

ε(t) =
σ0

2µ
(1− e−t/τk) (3.8)
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Figure 3.1 Rheological models and strain-time diagrams for (a) Kelvin, (b) Maxwell and (c) Burger bodies. On
t0 the load is introduced and on t1 the load is removed. Source: [Ranalli, 1995].

where τk = η/µ is the Kelvin retardation time.

When the system is loaded, the response of the spring is delayed by the viscous
dashpot and after removal of the load the body reaches its initial position after infinite
time.

(b) Maxwell model: the dashpot and spring are linked in a series circuit. The rheolog-
ical equation is obtained by the superposition of strain rates:

ε̇ = ε̇spring + ε̇dashpot =
σ̇

2µM
+

σ

2ηM
(3.9)

When the strain rate is kept constant (ε̇ = 0) and the stress in the system equals to σ = σ0

the stress will be:

σ = σ0e
−t/τM (3.10)

where τM = η/µ is the Maxwell relaxation time. Equation 3.10 shows that a Maxwell
model has an exponential stress relaxation with a relaxation time of τM . When the load
is removed first the instantaneous elastic response takes place and then the irreversible
viscous response. The Maxwell relaxation time indicates at what time a material shows a
transition from predominantly elastic behaviour to viscous behaviour [Vermeersen, 2004].

(c) Burgers model: the Kelvin and Maxwell model linked in a series circuit. The sum
of the total strain is used to combine the both models. Take the time derivative of the
Kelvin rheological equation (equation 3.7) and use the total strain (ε = ε1 + ε2), where ε1



18 Rheology of the Earth

and ε2 are related to the Kelvin and Maxwell elements, to obtain the following equation:

σ̇ = 2µk(ε̇− ε̇2) + 2ηk(ε̈− ε̈2) (3.11)

Under constant stress (σ = σ0) this gives for the strain:

ε(t) =
σ̇0

2µ2
+

σ0

2µ1

[
1− e−µ1/η1·t

]
+

σ0

2µ2
t (3.12)

When the load is removed an instantaneous elastic recovery will take place, followed by a
transient creep and ultimately a steady-state creep. The transient creep is the result of
the Kelvin part of the model and the steady-state creep the result of the Maxwell part of
the model.

It would make most sense to use the Burgers model, but there is no general agree-
ment whether the transient behaviour can be neglected or not. Peltier et al. [1981]
found no evidence that it should be included, but Sabadini et al. [1985] and Karato
[1989] concluded that transient rheology is compulsory when describing the GIA process.
Because of the disagreement the transient rheology is still not included in GIA studies.
The simplest model to describe the observed GIA is the Maxwell model. Figure 3.2 shows
characteristic timescales for several geophysical phenomena in respect to the Maxwell
relaxation time. The Maxwell relaxation time separates the regimes of mantle creep for
anelastic deformation and steady-state flow.

Figure 3.2 Characteristic time-scales of mantle deformation processes. Source: [Ranalli, 1995].

The use of linear Newtonian rheology models for describing GIA phenomenon is still
a matter of debate in geophysics. There are studies referring to experimental results
[e.g., Melosh, 1980] indicating that non-linear rheology (non-Newtonian viscosity) should
be used. In this case the behaviour of materials is represented by a power-law. The
conclusions of Sabadini and Vermeersen [2004] p.2 is ”that there is no unambiguous
evidence in either the postglacial rebound event or in other types of geodynamic data
which absolutely requires a nonlinear viscoelastic rheology”.

3.2 Normal mode analysis

In this section the Maxwell viscoelastic response of the Earth will be extended to obtain
the response of a multi-layer, spherically symmetric Earth. To derive this theory we will
start with the following three equations: the equation of conservation of momentum, Pois-
son equation and the stress-strain rate relationship for a Maxwell model. These equations
will give a set of coupled differential equations that can be solved using different meth-
ods. Generally there are two widely used methods. The first is the normal mode theory
which obtains the viscoelastic response of a 2D or 3D, self-gravitating, linear viscoelastic
spherical Earth model in an analytical way [e.g., Peltier, 1974; Sabadini et al., 1982; Ver-
meersen et al., 1997]. Tromp and Mitrovica [1999] also derived a normal mode theory for
an aspherical Earth model. The second is the finite-element method [e.g., Gasperini and
Sabadini, 1989; Wu and Kaufmann, 1998; Forno et al., 2005] which obtains the viscoelas-
tic response of a linear or non-linear viscoelastic Earth model with arbitrary 2D and 3D
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viscosity structure using numerical integration techniques. Other methods are the spec-
tral finite-difference method [Martinec, 1999] and a perturbation approach in Cartesian
geometry [Kaufmann and Wolf, 2005].
A straightforward method is the finite-element method, with this method it is possible to
solve the deformation, stress field and gravity field from three differential equations using
numerical integration techniques and applying appropriate initial, boundary and continu-
ity conditions. The advantages of the finite-element method over normal mode theory are
that more complex models can be handled (which can include non-linear rheology and
lateral variations) and regional models are easier to use. The disadvantage is that it is
difficult to check the results for a global model and there is less physical insight in the
mechanism of relaxation. The normal mode theory will be used in the rest of the thesis.
First the three differential equations will be derived.

Assume the conservation of momentum of a free self-gravitation Earth without forcing
or loading on its surface or interior. For this case the linearized equation of momentum
can be derived which includes terms of stress, advection of (hydrostatic) pre-stress, self-
gravitation and compressibility [Sabadini and Vermeersen, 2004]:

∇ · σ1 −∇(ρ0guêr)− ρ0∇φ1 − ρ1gêr = 0 (3.13)

where σ is the stress, ρ the density, g the gravity, u the displacement vector, êr the unit
vector in radial direction and φ the potential field. The subscript 0 denotes the initial
(reference) state and the subscript 1 denotes the (infinitesimal) perturbed state. The
perturbed gravitational potential φ1 for a compressible Earth satisfies Poisson’s equation
[Sabadini and Vermeersen, 2004]:

∇2φ1 = 4πGρ1 (3.14)

in which G denotes the universal gravitational constant. In the case of incompressibility
(ρ1 = 0) the equation is known as Laplace’s equation:

∇2φ1 = 0 (3.15)

The stress-strain rate relationship for a 3D Maxwell model is obtained by combining
equations 3.2, 3.6 and 3.9 from the previous section:

σ̇ij +
µ

η

(
σij − 1

3

3∑

k=1

σkkδij

)
= 2µε̇ij + λ

3∑

k=1

ε̇kkδij (3.16)

The time-dependent viscoelastic response can be determined by applying the correspon-
dence principle deduced by Lee [1989] and Biot [1954]. The correspondence principle
assumes that the Laplace transformed rheological equations of a viscoelastic body are
identical with the equations for an elastic body with the same geometry. So the Laplace
transformed solutions are calculated with the standard elastic analysis and inverted into
the time dependent response. The Laplace transformed stress-strain rate relationship of
equation 3.17 is:

(s +
µ

η
)σ̃ij(s)− 1

3
µ

η

3∑

k=1

σ̃kk(s)δij = 2µsε̃ij(s) + λs

3∑

k=1

ε̃kkδij (3.17)

where s is the Laplace variable and the tilde denotes the Laplace transformed variable.
Equation 3.17 can also be written as the equivalent elastic or Hookean rheological equation:

σ̃ij(s) = λ̃(s)
3∑

k=1

ε̃kk(s)δij + 2µ̃(s)ε̃ij(s) (3.18)

with the Laplace transformed Lamé parameters defined as:

µ̃(s) =
µs

s + µ/η
, λ̃(s) =

λs + µk/η

s + µ/η
(3.19)
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The equation of momentum, Poisson’s equation and the stress-strain rate relationship for
a Maxwell model form a coupled set of three second-order differential equations. Now
the displacements, potential perturbation and dilatation (∇·u) are expanded in spherical
harmonics. Only taking into account the spheroidal solution (no toroidal or azimuthal
dependence), assuming incompressibility (∇ · u = 0), surface loading and homogeneity
of each layer, the 3 second order differential equations will be reduced to 6 first order
differential equations, and can be written as:

d

dr
y`(r, s) = A`(r, s) · y`(r, s) (3.20)

where ` is the spherical harmonic degree, A` is the system matrix and y`(r, s) is the
spheroidal solution vector defined as y` = (U`, V`, σr,`, σθ,`, φ`, Q`)T [Wu and Peltier,
1982].The spheroidal solution vector contains scalar harmonic coefficients of respectively
the radial and tangential displacement, radial and tangential stress, perturbation of the
gravitational potential and a coefficient referred to as the potential stress.

For each homogeneous layer (with constant material parameters and gravity) the
solution can be written as:

y`(r, s) = Y `(r, s)C`(r) (3.21)

in which Y `(r, s) is the fundamental matrix defined by Sabadini and Vermeersen [2004] in
equation 1.74 and C`(r) a 6-component vector integration constant. The solution vector
can be determined from the fundamental matrix for only one layer of a spherical Earth
model. When a multi-layer model is considered the top layer will be linked to the layer
below by assuming continuity of the components of the solution vector. The solution
vector at the surface of the Earth can now be related to the boundary conditions at
the core-mantle boundary as illustrated by Sabadini and Vermeersen [2004] in equation
1.95. Each layer is bounded by either another viscoelastic layer, internal or an external
layer and the internal boundary conditions between two viscoelastic layers are: constant
parameters in each layer, during deformation there will be no cavitation or slip, and no
material crosses the boundary.

For the situation where no loading occurs, the so-called constrained parameters of
the solution vector (σr,`, σθ,`, Q`) are zero at the surface. Then the solution of the
equation that links the solution vector of the surface to the boundary condition at the
core-mantle boundary are the roots of the so-called secular equation (equation 1.106 of
[Sabadini and Vermeersen, 2004]). These solutions (s = sk with k = 1, 2, ..K) are the
inverse relaxation times belonging to a particular relaxation mode (k) of the Earth model.
These modes emerge between distinct boundaries in the Earth model due to a density
discontinuity or more specifically a change in Maxwell relaxation time. Known modes
are: M0 (surface boundary), L0 (between lithosphere and viscoelastic mantle boundary),
Mi with i=1,2,..(buoyancy mode, between two viscoelastic layers with different density),
Ti with i=1,2,.. (transient mode, between two viscoelastic layers with different Maxwell
times) and C0 (between lowermost mantle layer and inviscid core). The solution of
the secular equation can be found using a root-solving procedure, which first splits the
s-domain in discrete intervals (grid-spacing) followed by a systematic search for the roots
in the intervals (bisection algorithm).

In order to retrieve the complete response of the Earth also the strength of each
mode has to be taken into account. The strength of the mode can be derived by applying
surface loading (e.g. point mass, tidal loading) or internal loading (e.g. earthquakes,
subduction). The constrained parameters of the solution vector now correspond to
the boundary condition of the loading case under consideration. Using the boundary
condition, the so-called unconstrained parameters of the solution vector (U`, V`, φ`) at
the surface can be determined in the Laplace domain. The inverse Laplace transform to
the time domain is carried out by applying complex contour integration introduced by
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[Wu, 1978]. In case of surface loading, the solution of the constrained parameters at the
surface of the Earth are usually expressed in dimensionless load Love numbers. These
Love numbers are named after A.E.H. Love, who first introduced them to describe the
elastostatic case in which the ”load” was associated with the variations of the gravity
field responsible for the solid-Earth tides. The dimensionless Love numbers in the time
domain are defined by [Peltier, 1974] as:

Me
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 =
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 δ(t) +
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k
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r′`k


 e−s`

kt (3.22)

where a is the mean radius of the Earth, Me the mass of the Earth, g the average surface
gravitational acceleration, h`(t) and ``(t) are the Love numbers of respectively radial
and horizontal displacement. The final Love number is 1 + k`(t) which is the geopotential
perturbation due to Earth deformation (k`) and direct effect of the load. The first term on
the right-hand side of equation 3.22 represents the immediate elastic response part and the
second term describes the viscoelastic response part (note that the viscouselastic response
has a non-zero contribution at the instant the load is applied). The immediate elastic
response part is described by the elastic love numbers (hE

` , `E
` , kE

` ) which are multiplied
by the Dirac delta response function δ. The viscoelastic response is characterized by a set
of K individual modes of exponential decay. Each mode is defined by an inverse decay
time (s`

k) and amplitude (r`
k, r′′`k, r′`k), that both depend on the viscoelastic profile of the

used Earth model.





Chapter 4

Postglacial sea level on a
non-rotating Earth

The corner stone of the modern theory of glacial isostatic adjustment (GIA) is the sea
level equation. With the use of relative sea level data from regions once covered with ice
it is possible to reconstruct the ice-load history since the last glacial maximum (LGM)).
The relationship between sea level and ice melting and growing seems straightforward but
is more complex due to effects like mantle flow or true polar wander (TPW). The basic
sea level equation by Farrell and Clark [1976] will be treated in section 4.1. In section
4.2 the load induced sea level equation will be presented in which the dimensionless Love
numbers derived in the previous chapter 3 will be used. The techniques for solving the
sea level will be treated in section 4.3.

4.1 GIA and the sea level equation

The interaction between GIA and sea level is complex, because of the coupling between
the sea level, (continental) ice, mantle flow, true polar wander and climate as described
in section 2.2. In GIA studies the effect of climate is left out of the equation and we will
discuss the TPW in chapter 5. Farrell and Clark [1976] derived the primitive form the
sea level equation which provided a theoretical framework for predicting gravitationally
self-consistent, post-glacial sea level changes, and is the standard reference for modern
analysis of the GIA process:

S = ρI
φ

g
∗ L + ρw

φ

g
∗ S + C (4.1)

where S is the change in sea level, L the change in continental ice mass, φ the Green’s
function for variation in the gravitational potential, g the surface gravity, ρI the density of
ice and ρw the density of water. The asterisk represents time convolution and the constant
C is present to assure that the sea level change conserves mass. Sea level change itself is
the result of the change in load induced by the ice mass and sea level, which can be solved
in an iterative manner.

4.2 Sea level equation on a non-rotating Earth

The load-induced sea level equation will be determined for a non-rotating, self-gravitating,
Maxwell viscoelastic Earth model [Farrell and Clark, 1976]. Time-dependent continent
margins and near-field water dumping, described by [Milne et al., 1999], will not be
treated in this study. The formalism is generally based upon [Milne and Mitrovica, 1998]
and [Mitrovica and Peltier, 1991]. From now on the superscripts L and T are used to
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24 Postglacial sea level on a non-rotating Earth

distinguish between parameters associated with the surface mass loading (discussed in
this chapter) and the rotational potential (discussed in chapter 5), respectively. The sea
level can be described by the difference between the geoid G (which is the equipotential
surface corresponding to the sea level) and the topography/bathymetry. So the change
in sea level can be defined as the relative change between the spatial and time-dependent
load-induced geoid anomaly G(θ, ψ, t) and the load-induced radial displacement of the
topography/bathymetry R(θ, ψ, t) multiplied by the ocean function [Munk and MacDon-
ald, 1960]:

S = C(θ, ψ)(GL(θ, ψ, t)−RL(θ, ψ, t)) (4.2)

where θ represents the co-latitude, ψ the east-longitude, t the time and C(θ, ψ) = 1 in case
of oceans and C(θ, ψ) = 0 in case of land. At this point the ocean-function is assumed
to be time-independent. In order to calculate the perturbations in both the geoid and
solid surface the impulse response of a Maxwell viscoelastic Earth model to a load will be
described by dimensionless surface load Love numbers. These Love numbers (defined in
chapter 3) are used to construct impulse response Green’s functions for the gravitational
potential perturbation of the undeformed surface ΦL(γ, t) and the radial displacement of
the solid surface ΓL(γ, t). ΦL(γ, t) can also be described as the potential perturbation due
to mass redistribution in the planetary interior. The Legendre polynomial expansion of
Green’s functions are [Mitrovica and Peltier, 1991]:
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kt

}
P`(cosγ) (4.4)

where γ represents the angular distance between the impulse load point and the observation
point. The first Dirac delta function on the right-hand side of equation 4.3 resembles the
direct effect of the impulse surface load on the Earth’s gravitational potential. The P`

are Legendre functions which are part of the spherical harmonics explained later. Now
the surface load, L(θ, ψ, t), to which the viscoelastic Earth is exposed, is introduced.
This function represents a model of the spatio-temporal variation in the ice-ocean mass
exchange. The surface load can be separated into contributions from the (land)ice sheets
and from the associated sea level variations as shown below:

L(θ, ψ, t) = ρiI(θ, ψ, t) + ρwS(θ, ψ, t) (4.5)

where ρi is the average density of ice, ρw the average density of water and I(θ, ψ, t) and
S(θ, ψ, t) are functions which describe chronological and spatial changes in ice and ocean
height. The solid surface radial displacement is calculated by convolving Green’s function
(equation 4.4) and the surface load in both time and space. This gives for the solid surface
radial displacement:

RL(θ, ψ, t) =
∫ t

−∞

∫∫

Ω

a2L(θ′, ψ′, t′)ΓL(γ′, t− t′)dΩ′dt′ (4.6)

where Ω represents the entire surface of the Earth, L(θ′, ψ′, t′) is the surface load specified
in equation 4.5 and ΓL(γ′, t− t′) is the Green’s function of the radial displacement defined
in equation 4.4 [Peltier, 1974]. The geoid anomaly is constructed in the same way as the
solid surface radial displacement:

GL(θ, ψ, t) =
Φ(θ, ψ, t) + ∆Φ(t)

g

=
1
g

∫ t

−∞

∫∫

Ω

a2L(θ′, ψ′, t′)ΦL(γ′, t− t′)dΩ′dt′ +
∆ΦL(t)

g
(4.7)

where ΦL is the Green’s function of the potential perturbation defined in equation 4.3
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[Peltier, 1976b] and [∆ΦL(t)]/g is a global uniform shift of the geoid which changes in time
and is determined by surface load mass conservation. The surface load mass conservation
is based upon the assumption that the total volume between the three dimensional geoidal
and solid Earth surface over the oceans is equal to the volume of water exchanged between
the ice sheets and oceans. This gives:

∆Φ(t)
g

= −MI(t)
ρwA0

− 1
A0

(∫ t

−∞

∫∫

Ωo

L(θ′, ψ′, t′)
{Φ(γ, t− t′)

g
−Γ(γ, t−t′)

}
dΩ′dt′

)
(4.8)

where MI is the total melted ice mass, Ωo represents the surface of the oceans and A0 is
the area of all the oceans, that is assumed to be constant. The first term on the right-hand
side of equation 4.8 represents the eustatic sea level change which is the sea level change
when assumed that the distribution of water is spatially independent. The second term
on the right-hand side is an integrated measure of the distance between the geoid and the
Earth’s solid surface and is responsible for ocean syphoning (see section 2.2.1) over the
oceans. Constructing the sea level defined in equation 4.2 from the difference between the
geoid anomaly (equation 4.6) and surface radial displacement (equation 4.7) gives:

S(θ, ψ) = C(θ, ψ, t)[GL(θ, ψ, t)−RL(θ, ψ, t)]

= C(θ, ψ)

[ ∫ t

−∞

∫∫

Ω

a2L(θ′, ψ′, t′)
{ΦL(γ, t− t′)

g

− ΓL(γ, t− t′)
}

dΩ′dt′ +
∆ΦL(t)

g

]
(4.9)

This is the sea level equation for a non-rotating Earth model. To solve the temporal
convolution in the sea level equation a discretization in time is needed. The surface load
from equation 4.5 is therefore modeled as a series of Heaviside loading increments (e.g.
[Farrell and Clark, 1976]. This gives:

L(θ, ψ, t) =
N∑

n=1

[ρiδI
n(θ, ψ) + ρwδSn(θ, ψ)]H(t− tn) (4.10)

where H(t) is the Heaviside step function. This special form of equation 4.10 allows for
an analytical solution for the time convolution in equation 4.9. Combining equation 4.3,
4.4, 4.5 and 4.9 gives:

S(θ, ψ, t) = C(θ, ψ)

[ ∫∫

Ω

a2(ρiI(θ′, ψ′, t) + ρwS(θ′, ψ′, t))ZL,E(γ)dΩ′

+
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]
(4.11)

in which:

ZL,E(γ) =
a

Me
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ZL,NE(γ, t− tn) =
a

Me

∞∑

`=0

βL
` (t− tn)P`(cosγ) (4.13)

where EL
` includes all the contributions of the elastic love numbers:

EL
` = 1 + kL,E

` − hL,E
` (4.14)
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and βL
` contains all the information on the viscous behaviour of a specific Earth model:

βL
` (t− tn) =

K∑

k=1

(r′`,Lk − r`,L
k )

s`
k

[1− e−s`
k(t−tn)] (4.15)

where the first and second term on the right-hand side refer to respectively the elastic
(superscript E) and non-elastic (superscript NE) response to a surface load.

4.3 Solving the sea level equation for a non-rotating Earth

Previously the load was modeled as a series of Heaviside loading increments to solve for
the temporal convolution in the sea level equation. This has the result that the sea
level equation, formulated in equation 4.11, can be solved by defining also the sea level
equation as a series of Heaviside increments in time. So δS(θ, ψ, tn) has to be determined
for successive values of n. When the jth Heaviside increment is considered, the increment
is defined as the difference in sea level between two successive time steps tj and tj−1:

δS(θ, ψ, tj) = S(θ, ψ, tj)− S(θ, ψ, tj−1) (4.16)

which gives for the sea level at the jth increment:

S(θ, ψ, tj) = S(θ, ψ, tj−1) + δS(θ, ψ, tj) (4.17)

where S(θ, ψ, tj) is the sea level to be determined, S(θ, ψ, tj−1) is known from the previous
calculation and δS(θ, ψ, tj) is determined iteratively. The first guess of the iteration is
given by the eustatic sea level change (e.g. [Mitrovica and Peltier, 1991]):

[δSn(θ, ψ)]i=1 = −ρi

{ ∫∫

Ω

δIn(θ, ψ)dΩ
}C(θ, ψ)

ρwA0
(4.18)

There are three approaches for solving the sea level equation and especially solving the
surface convolution integral. The convolution can be solved in the spatial or spectral
domain. Here the pseudo-spectral approach will be used to calculate the solution of the
sea level equation, which performs the calculation both in the spectral and spatial domain.
To give an overview also the spatial and spectral approach will also be discussed briefly
in the next paragraphs.

4.3.1 Spatial approach

The gravitationally self-consistent spatial solutions of the sea level equation are based upon
the ”discretized formulation” defined by [Peltier, 1976b], [Peltier et al., 1978] and [Wu
and Peltier, 1983] and uses both Green function and finite disc techniques. This technique
discretizes ocean surfaces using circular discs of varying radius where the resolution is
increased at continental shorelines. The convolution over the Earth’s surface is performed
in the space domain using a large set of interaction coefficients. It is very straightforward
to use the spatial approach, but it is not the preferred solution because the resolution on
a global scale is scattered, and it requires relatively a lot of computing power.

4.3.2 Spectral approach

In case of the spectral approach the convolution over the Earth’s surface is performed in
the spectral domain [e.g., Mitrovica and Peltier, 1991]. The spectral approach gives an
uniform distribution of global resolution that depends upon the truncation level of the
spherical harmonic expansion. The sea level equation is rewritten into a series expansion
in spherical harmonics as shown below.
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Assume a field X (θ, ψ) defined on a surface of a sphere which can be spectrally
decomposed into terms of spherical harmonic expansion:

X (θ, ψ) =
∑

`,m

X`,mY`,m(θ, ψ) (4.19)

where

∑

`,m

=
∞∑

`=0

∑̀

m=−`

(4.20)

and Y`,m are the normalized surface spherical harmonics that satisfy the following nor-
malization for the basis functions:∫∫

Ω

Y †
`′,m′(θ, ψ)Y`,m(θ, ψ)sinθ dθdψ = 4πδ`′,`δm′,m (4.21)

where † is the complex conjugate. This normalization is much used by Mitrovica and
Peltier. Extra care should be taken when the sea level theory is incorporated in existing
theory, because different types of normalization are commonly used. Much used normal-
izations are the fully normalization applied by [e.g., Sneeuw, 1994; Heiskanen and Moritz,
1967] and also used on the Department of Earth Observation and Space systems:

∫∫

Ω

Y †
`′,m′(θ, ψ)Y`,m(θ, ψ)sinθ dθdψ =

4π

2− δm0
δ`′,`δm′,m (4.22)

or the 1-normalization used by Martinec and Hagedoorn [2005]:
∫∫

Ω

Y †
`′,m′(θ, ψ)Y`,m(θ, ψ)sinθ dθdψ = δ`′,`δm′,m (4.23)

This results in:

[Y m
` (θ, ψ)]fully−normalized =

√
2− δm0[Y m

` (θ, ψ)]Mitrovica−normalized

=

√
2− δm0

4π
[Y m

` (θ, ψ)]1−normalized

(4.24)

The spatial convolution in 4.11 can now be done analytically by using the spectral de-
composition and normalization [e.g., Mitrovica and Peltier, 1991; Mitrovica and Milne,
1998]:

∫∫

Ω

X (θ, ψ)P`(cosγ) dΩ′ =
4π

(2` + 1)

∑̀

m=−`

X`,mY`,m(θ, ψ) (4.25)

This gives the following sea level equation in the spectral domain for a Maxwell viscoelastic,
non-rotating Earth model excited by a Heaviside loading history [Mitrovica and Peltier,
1991; Mitrovica and Milne, 1998]:

∑

`,m

S`,m(t)Y`,m(θ, ψ) =

C(θ, ψ)
∑

`,m

{
EL

` T`(ρiI`,m(t) + ρwS`,m(t)) + T`

N∑
n=1

(ρiδI
n
`,m

+ ρwδSn
`,m)βL

` (t− tn)H(t− tn) +
∆ΦL(t)

g
δ`,0δm,0

}
Y`,m(θ, ψ) (4.26)

where T` holds all the dimensional parameters:

T` =
4πa3

Me(2` + 1)
(4.27)
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and I`m, S`m, δI`m and δS`m are respectively the spherical harmonic coefficients of the
total and Heaviside increments of the ice and sea load functions. A purely spectral method
is derived by Dahlen [1976] for determining the equilibrium ocean tide of an elastic planet.
This theory is extended to the to the viscoelastic case by Mitrovica and Peltier [1991].
Due to complicated spatial convolutions and gridding schemes, as result of the multiplica-
tion of the ocean function with the sea level equation in the spherical harmonic domain,
a truncation level of about degree 30 (which equals to a maximum resolution of 667 km
at the equator) can be reached with this approach. A truncation level of 30 is not suffi-
cient enough to accurately determine the sea level, especially near irregular ice-sheets and
continental margins, so the pseudo-spectral approach was developed.

4.3.3 Pseudo-spectral approach

Rewrite equation 4.26 to the form of equation 4.16 and we obtain the increment in sea
level between time tj and tj−1:

∑

`,m

δSj
`,mY`,m(θ, ψ) =

−
∑

`,m

S`,m(tj−1)Y`,m(θ, ψ) + C(θ, ψ)
∑
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(
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)
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(ρiδI
n
`,m + ρwδSn

`,m)βL
` (tj − tn)

×H(t− tn) +
∆ΦL(tj)

g
δ`,0δm,0

}
Y`,m(θ, ψ) (4.28)

To calculate the sea level, the sea level increment, defined in equation 4.28, will be used
for an iterative algorithm. Introduce the (iteration) index i and assume that [δSj

lm]i is the
approximation and [δSj

lm]i+1 is the improved estimate of δSj
lm. Also a shorter notation is

introduced:
∑

`,m

[δSj
`,m]i+1Y`,m(θ, ψ) = −

∑

`,m

S`,m(tj−1)Y`,m(θ, ψ)

+C(θ, ψ)
[∑

p,q

[Rp,q(tj)]iYp,q(θ, ψ) +
[∆ΦL(tj)

g
δp,0δq,0

]i
]

(4.29)

where

[Rp,q(tj)]i = EL
p Tp

(
ρiIp,q(tj) + ρwSp,q(tj−1) + ρw[δSj

p,q]
i
)

+Tp

N∑
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βL
p (tj − tn)(ρiδI

n
p,q + ρwδSn

p,q) (4.30)

Rp,q in spherical coordinates will have the following representation:

Ri(θ, ψ, tj) =
∑
p,q

[Rp,q(tj)]iYp,q(θ, ψ) (4.31)

Now RO is introduced as the projection of R onto the ocean function in the spatial
domain. The transformation from the spectral to the spatial domain is done using the
Fast Fourier Transform in the the longitudinal direction on a fixed latitude. Then the
solution is integrated in the latitudinal direction using the Gaussian quadrature [Sneeuw,
1994]. In the final step R is transformed back again to the spectral domain by summation
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over degree (for fixed order) followed by an inverse Fourier Transform:

ROi(θ, ψ, tj) = C(θ, ψ)
∑
p,q

[Rp,q(tj)]iYp,q(θ, ψ)

= C(θ, ψ) Ri(θ, ψ, tj)

=
∑

`,m

[RO`,m(tj)]i Y`,m(θ, ψ) (4.32)

Now use 4.32 to rewrite equation 4.29 to the spectral domain:

[δSj
`,m]i+1 = −S`,m(tj−1) + [RO`,m(tj)]i +

[
∆Φ(tj)

g

]i

C`,m (4.33)

where the ocean function in spherical coordinates is:
∑

`,m

C`,mY`,m = C(θ, ψ) (4.34)

and the global uniform shift of the geoid of equation 4.8 is:

[
∆Φ(tj)

g

]i

=
(
− ρi

ρw
I0,0(tj)− [RO0,0(tj)]i

)
(C0,0)−1 (4.35)

Equation 4.33 provides the iterative pseudo-spectral solution to the sea level equation.
This technique is summarized in figure 4.1. To start the iterative process a first guess of
the solution has to be provided, which in this case is based upon the eustatic sea level
change. Equation 4.18 in spherical coordinates is written as:

[δSj
`,m]i−1 = −

{
ρi

ρw

4πa2

A0
δIj

0,0

}
C`,m (4.36)

A level of convergence is defined to determine the relative difference in solution of two
successive iterations:

ζi+1 =
∑

`,m

|[δSj
`,m]i+1| − |[δSj

`,m]i|
|[δSj

`,m]i| (4.37)

If ζ < 10−2 is assumed no more then two or three iterations are needed. This technique,
introduced by Mitrovica and Peltier [1991], is called pseudo-spectral because all the com-
putations are performed in the spectral domain except the projection of Ri(θ, ψ, t) on
the ocean function. This technique avoids the use of complicated spatial convolutions
and gridding schemes as used in the purely spectral method, which is the result of the
multiplication of the ocean function with the sea level equation in the spherical harmonic
domain. This allows for much higher truncation levels then 30 and nowadays maximum
truncation levels are reached well above 256.
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Figure 4.1 Pseudo-spectral solution to the sea level equation. Redrawn from: [Mitrovica and Peltier, 1991].



Chapter 5

Postglacial sea level on a rotating
Earth

Although the effect of Earth rotation on sea level change is small, the perturbations due
to changes in the orientation of the rotation vector can in some parts of the world be as
large as the signal using a non-rotating Earth model [Mitrovica et al., 2001]. Nakada
[2000, 2002] introduced a paradox, namely that the predictions of present-day TPW speed
for the case of a viscoelastic lithosphere did not converge to the predictions on an elastic
lithosphere. This paradox was solved by Mitrovica et al. [2005], who introduced a revised
rotation theory. In section 5.1 the classical Earth rotation theory and revised rotation
theory will be discussed, followed in section 5.2 by the implementation of the rotation
theory in the sea level equation derived in chapter 4. The techniques for solving the sea
level equation for a rotating Earth can be found in section 5.3.

5.1 Earth rotation theory

The rotation of the Earth is variable and changes in both position of the rotation axis
and the rotation rate. It is assumed that the rotational changes have a large impact as
there are indications that the emergence of the great ice cycles 2 million years ago were
triggered by a gradual shift of the rotation axis over the Earth’s surface, combined with
wandering of the continents and associated changes in the ocean currents [Sabadini and
Vermeersen, 2004].
The fundamental equations governing the rotation of a body are Euler’s dynamical equa-
tions. These equations describe the rotational response of a body (expressed in angular
momentum H) to an applied torque L with respect to an inertial reference frame:

dH

dt
= L (5.1)

It is more convenient to express forces, velocities and torques with respect to a reference
frame which is fixed to the rotating body:

dH

dt
+ ω ×H = L (5.2)

in which the angular velocity of the axis is denoted as ω. The angular momentum for a
rigid body is defined as:

H =
∫

ρr × (ω × r)dV =
∫

ρ(r2ω − (r · ω)r)dV = I · ω (5.3)

where the inertia tensor I has the following elements:

Iij =
∫

ρ(rkkδij − rij)dV (5.4)

31



32 Postglacial sea level on a rotating Earth

where ρ and r are respectively the density and the coordinates of the mass element under
consideration and δij is the Kronecker delta function. Equation 5.3 into equation 5.2 gives:

d

dt
(I · ω) + ω × (I · ω) = L (5.5)

The Earth’s actual motion differs from the rigid motion in two aspects: the inertia tensor
is time dependent because of mass displacements and the motion occurs relative to the
body fixed axis r. Hence the angular momentum must be written as:

H(t) = I(t) · ω + h(t) (5.6)

where the angular momentum vector due to motion is:

h(t) =
∫

ρr × udV (5.7)

Substituting equation 5.6 into equation 5.5 gives the Liouville equation [Munk and Mac-
Donald, 1960]:

d

dt
(I(t) · ω + h(t)) + ω × (I(t) · ω + h(t)) = L (5.8)

Assume a right-handed body fixed Cartesian coordinate system with the origin of this
system equal the the center of mass of the Earth model in unperturbed state. The system
is oriented in such a way that the x1 axis is aligned with the Greenwich longitude and the
x2 axis is 90 ◦E of x1 (see figure 5.1). Prior to surface loading the rotation vector ω can

Figure 5.1 Right-handed body fixed Cartesian coordinate system. X1 axis is aligned with the Greenwich
longitude and the X2 axis is 90 ◦E of X1.

be written in the body-fixed reference frame as:

ω0 = (0, 0,Ω) (5.9)

where Ω is the mean Earth rotation frequency. To solve the Liouville equation linearization
is applied by assuming small deviations from the axis of rotation vector from equation 5.9:

ω1 = (ω1, ω2, ω3) = Ω(m1,m2, 1 + m3) (5.10)

where mi are dimensionless quantities that represent the direction cosines of ω relative to
the principal axis. m1 and m2 are the components of polar motion or wobble in respectively
x1 and x2 direction defined above. m3 gives the change in length of day in radians per
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sidereal day and Ωdm3/dt is also known as the acceleration in diurnal motion1. In case of
small deviations in the rotation vector the assumption can be made that the changes in
h and I are small. This assumption makes it possible to write equation 5.8 as [Sabadini
and Vermeersen, 2004]:

ṁ1

σr
+ m2 = φ2 (5.11)

ṁ2

σr
+ m1 = −φ1 (5.12)

ṁ3 = φ̇3 (5.13)

in which φ1, φ2 and φ3 are dimensionless excitation functions given in [Sabadini and
Vermeersen, 2004] and σr is the Eulerian free precession frequency of a rigid body defined
as:

σr =
C −A

A
Ω (5.14)

where A is the moment of inertia for an equatorial principal axis and C is moment of
inertia for a polar principal axis. The Eulerian free precession frequency of the Earth
is about 1/306 revolutions per day and a period of 10 months. The linearized Liouville
equation for polar wander can be written in complex notation to achieve a more compact
form using equations 5.11, 5.12 and 5.13 and assuming m = m1 + im2:

i
ṁ

σr
+ m = Φ = ΦL + ΦR (5.15)

and

m3 = −φ3 =
∆I33

C
(5.16)

where the excitation function Φ can be split into to two parts: direct geodynamic forcing
(ΦL) and induced rotational deformation (ΦR), ∆I33 represents the small perturbations
of inertia of the polar principal axis due to both direct geodynamic forcing and induced
rotational deformation.

Direct geodynamic forcing
If only mass displacements are considered and the influence of relative motions, time varia-
tions of the inertia and external torques are neglected, then the direct geodynamic forcing
function of a rigid Earth (in complex notation) is defined as [Sabadini and Vermeersen,
2004]:

ΦL = φ1 + iφ2 =
∆IL

13

C −A
+ i

∆IL
23

C −A
(5.17)

where ∆IL
i3 (i=1,2,3) are matrix elements of the inertia tensor I representing the small

perturbations of inertia of the polar principal axis due to the change in mass along equato-
rial principal axis. The perturbation of inertia can be divided into separate contributions.
First there is the direct effect of the surface mass loads due to the redistribution of ice
and water on the Earth’s surface. Secondly there is a contribution due to redistribution
of mass in the planetary interior induced by the surface mass loads (also referred to as the
isostatic adjustment of the Earth). The perturbation of inertia due isostatic adjustment of
the Earth is calculated by convolving the perturbation of inertia, due to the direct effect
of the surface mass loads, with the surface load Love number of degree 2 (kL

2 ) [Wu and
Peltier, 1984]. This gives the following equation:

∆IL
i3 = ∆IS

i3 + ∆ID
i3 = ∆IS

i3 ∗ (1 + kL
2 ) (i = 1, 2, 3) (5.18)

1Diurnal motion is the apparent daily motion of stars in orbit around the Earth as a result of the
Earth’s rotation
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where ∆IS
i3 (i=1,2,3) denotes the perturbation of inertia due to surface loading and ∆ID

i3

(i=1,2,3) is the perturbation of inertia due to isostatic adjustment of the Earth and ∗ is
the time convolution.

Induced rotational deformation
The forcing function for induced rotational deformation of a rigid Earth can be written in
complex notation as in equation 5.17. But in this case the perturbations in the moments
of inertia are the result of the degree 2 contribution of the gravitational potential (∆IR

i3

(i=1,2,3)) as given by Sabadini and Vermeersen [2004] in their equations 3.34 and 3.35.
This gives:

ΦR =
∆IR

13

C −A
+ i

∆IR
23

C −A
≈ kT

2

kf
m (5.19)

where kT
2 is the tidal Love number 2 and kf denotes the fluid Love number (also called

the secular Love number) defined as:

kf =
3G(C −A)

a5Ω2
(5.20)

in which G is the universal gravitational constant and a is the mean radius of the Earth. If
the Earth is assumed to be rigid Eulerian free precession occurs. But geophysical forcing
occurs the so-called Chandler wobble arises, which has a period of four months larger than
the Eulerian free precession period as result of the elastic properties of the Earth. This
wobble is the result of the adjustment of the equatorial bulge. Assume an initial condition
where the rotation axis coincides with the axis perpendicular to the plane of equatorial
flattening. As a result of a mass change the rotation axis will change its position to the
maximum moment of inertia and the Chandler wobble is the result. If we move φR to the
left side in equation 5.15 and use equation 5.19 we get:

i
ṁ

σr
+

(
1− kT

2

kf

)
m = ΦL (5.21)

or, rearranged:

i
ṁ

σ0
+ m =

kf

kf − kT
2

ΦL (5.22)

in which

σ0 =
(
1− kT

2

kf

)
σr (5.23)

is the Chandler wobble frequency with a four months larger period as a result of the
factor kT

2 /kf . To calculate the polar wander only the secular term of polar wander is
evaluated and the periodic term is neglected: iṁ/σr = 0 [e.g., Vermeersen and Sabadini,
1996a; Mitrovica and Milne, 1998]. The two most commonly used methods to transform
the linearized Liouville equation to the Laplace domain and back to the time domain are
given by Sabadini et al. [1982] and Wu and Peltier [1984]. Both theories are basically
equivalent to each other as discussed by Vermeersen and Sabadini [1996a] and Mitrovica
and Milne [1998]. In this thesis the method of Wu and Peltier [1984] is adopted because it
is easier to implement into the existing sea level code. Using equations 5.15 and 5.18 and
assuming secular polar wander gives the linearized Liouville equation in the time domain:

m(t) =
1

C −A
[∆IR

i3(t) + kL
2 (t) ∗∆IR

i3(t)] +
kT
2 (t)

kf (t)
∗m(t) (i = 1, 2) (5.24)

and

m3(t) =
1
C

[∆IR
33(t) + kL

2 (t) ∗∆IR
33(t)] (5.25)
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Traditionally for GIA calculations the linearized Liouville theory is developed within the
Laplace-transformed domain, because of the difficulties concerning the calculation of m
with respect to the time convolutions [e.g., Wu and Peltier, 1984]. The Laplace transfor-
mations of equation 5.24 and equation 5.25 are respectively:

m(s) =
1

C −A

∆IR
i3(s)[1 + kL

2 (s)]
[1− (kT

2 (s)/kf )]
(i = 1, 2) (5.26)

and

m3(s) =
1
C

∆IR
33(s)[1 + kL

2 (s)] (5.27)

where the viscoelastic Love numbers (derived in chapter 3) in the Laplace transformed
domain are expressed by:

kL
2 (s) = kL,E

2 +
K∑

k=1

r′`=2,L
k

s + s`=2
k

(5.28)

kT
2 (s) = kT,E

2 +
K∑

k=1

r′`=2,T
k

s + s`=2
k

(5.29)

in which s is the Laplace transform variable. The fluid Love number kf is often approxi-
mated by the fluid limit, s = 0, of the s-domain kT

2 Love number [e.g., Wu and Peltier,
1984]:

kf ∼ kT
2 (s = 0) = kT,E

2 +
K∑

k=1

r′`=2,T
k

sk
(5.30)

The correctness of this approximation was questioned when Nakada [2002] introduced a
paradox, namely the predictions of present-day TPW speed for the case of a viscoelastic
lithosphere do not converge to the predictions of an elastic lithosphere. Mitrovica et al.
[2005] suggested that this paradox originates from an inaccuracy in the traditional rotation
theory and introduced the revised rotation theory that is insensitive for lithospheric rheol-
ogy or thickness. The revised rotation theory proposes an alternative theoretical treatment
of the rotation theory in which the fluid Love number is calculated for a model without
elastic lithosphere (LT=0), and is corrected for the excess ellipticity to include the other
geophysical contributions. The excess ellipticity is determined by taking the difference
between the observed fluid number, calculated by using the observed polar and equatorial
moments of inertia in equation 5.20, and the fluid number obtained by the second-order
hydrostatic theory which gives β = 0.9382 − 0.9305 = 0.0077. The second-order hydro-
static theory treats the Earth as an inviscid fluid to determine e.g. the equilibrium shape
of a rotating Earth. Another approach is to adopt the observed fluid Love number and
scale it to account for inaccuracies in the Love number theory. These analytical theoretical
treatments ultimately lead to identical expressions for the fluid Love number:

kf ∼ kT
2 (s = 0; LT = 0) + β (5.31)

Although the revised rotation theory is an improvement of the general rotation theory, it
is not used in this study because it is not yet implemented in the sea level theory of Milne
and Mitrovica [1998]. The alternative expression for the fluid Love number in the revised
rotation theory has profound implications on the previously adopted transformation from
the Laplace domain to the time domain, which is not valid anymore. This holds that the
derivation has to be done over again. So Mitrovica et al. [2005] solved the the Liouville
equation numerically in the time domain (equation 5.24). At the moment J.X.M. Mitrovica
solved the transformation and is writing a paper on this subject.
The transformation from the Laplace domain to the time domain gives the following
equations [Milne and Mitrovica, 1998]:

〈mi(t)〉 =
Ω

Aσ0

[
D1∆IR

i3(t) + D2

∫ t

0

∆IR
i3(t

′)dt′ +
K−1∑

k=1

Ek(∆IR
i3(t) ∗ e−λkt)

]
(i = 1, 2)
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(5.32)

and

m3(t) = − 1
C

[
D1∆IR

33(t) +
K∑

k=1

r`=2,L
k (∆IR

33(t) ∗ e−s`=2
k t)

]
(5.33)

where the symbol 〈〉 signifies that the Chandler wobble has been removed from the response
by deleting the corresponding rotational mode [Mitrovica and Milne, 1998] and λk are
the roots of the polynomial:

Q(s) =

∑K
q=1

[
r′`=2,T

q

s`=2
q

∏
p 6=q(s + s`=2

p )
]

∑K
j=1

r′`=2,T
k

s`=2
j

(5.34)

The constants D1, D2 and Ek used in equations 5.32 and 5.33 are defined as:

D1 = 1 + kL,E
2 (5.35)

D2 =
ls

∏K
p=1 s`=2

p∏K−1
p=1 λp

(5.36)

and

Ek =

−
[

ls
QK

p=1(s
`=2
p −λk)

λk
+

∑K
q=1

r′`=2,L
q

s`=2
q

∏
p 6=q(s

`=2
p − λk)

]

∏K−1
q 6=k (λq − λk)

(5.37)

where ls is known as the isostatic factor, which is controlled by the thickness of the
lithosphere [Wu and Peltier, 1982] and defined as:

ls = 1 + kL,E
2 +

K∑
p=1

r′`=2,L
p

s`=2
p

(5.38)

Milne and Mitrovica [1998] derived general expressions which relate the ∆IR
i3 in equations

5.32 and 5.33 to the spherical harmonic coefficients of an arbitrary surface load. The
expression for the 13-component of the perturbation of the inertia tensor (equation 43a in
[Milne and Mitrovica, 1998]) is corrected by a minus sign in front of the equation. These
expressions are defined as step increments:

[δ∆IR
13]

n = −4
3

√
6
5
a4π Re[ρiδI

n
21 + ρwδSn

21] (5.39)

[δ∆IR
23]

n = −4
3

√
6
5
a4π Im[ρiδI

n
21 + ρwδSn

21] (5.40)

[δ∆IR
33]

n =
8

3
√

5
a4π Re[ρiδI

n
20 + ρwδSn

20] (5.41)

in which Iij and Sij are the spherical harmonic expressions for the ice and sea load of
degree i and order j. The series of step increments can be written as a time series of
inertia perturbations:

∆IR
i3(t) =

N∑
n=1

[δ∆IR
i3]

nH(t− tn) (i = 1, 2) (5.42)

The time convolution used in equations 5.32 and 5.33 can also be written in an alternative
analytic expression [Mitrovica and Milne, 1998]:

∆IR
i3(t) ∗ e−λkt =

1
λk

K∑
n=1

[δ∆IR
i3]

nH(t− tn)(1− e−λk(t−tn)) (i = 1, 2) (5.43)
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The alternative expression of the convolution makes it possible to look in detail into the
physical interpretation of the equation. The rotational response of a viscoelastic planet,
as result of the kth surface load increment, involves no instantaneous perturbation in the
position of the rotation pole (also discussed in [Lambeck, 1980]). After the load is applied
the rotation vector undergoes a damped oscillation with a decay time of 1/λk.

5.2 Sea level equation for a rotating Earth

On a rotating Earth the geoid and solid surface are perturbed by both a changing ro-
tational potential and a changing surface load. The perturbation of the geoid and solid
surface due to the rotational potential are determined in the same way as the surface load
problem described in section 4.2. To calculate the sea level response to a changing poten-
tial, instead of load Love numbers, tidal Love numbers are introduced (defined in chapter
3). These describe the response of a Maxwell viscoelastic Earth model to a general po-
tential forcing. First the perturbation of the rotational potential will be derived and then
the implementation into the sea level equation will be treated. The rotational potential
perturbation at the surface of a spherical Earth can be written as [e.g., Lambeck, 1980]:

UR(γ) =
1
3
ω(t)2a2 − 1

3
ω(t)2a2P2,0(cosγ) (5.44)

in which ω(t) is defined in equation 5.10 but now dependent on time and γ is the angular
distance between ω(t) and an arbitrary field point (θ, ψ). The Legendre polynomial of
degree 2 and order 0 is defined as:

P2,0(cosγ) =
1
5

2∑
m=−2

Y †
2,m(θ′, ψ′)Y2,m(θ, ψ) (5.45)

where (θ′, ψ′) are the coordinates of ω(t). The perturbation to the rotational potential
from the equilibrium value depends on mi and can be written as [Milne and Mitrovica,
1998]:

Λ(θ, ψ, t) = Λ0,0(t)Y0,0(θ, ψ) +
2∑

m=−2

Λ2,m(t)Y2,m(θ, ψ) (5.46)

with the individual coefficients defined as:

Λ0,0(t) =
a2Ω2

3
[m2(t) + 2m3(t)] (5.47)

Λ2,0(t) =
a2Ω2

6
√

5
[m2

1(t) + m2
2(t)− 2m2

3(t)− 4m3(t)] (5.48)

Λ2,1(t) =
a2Ω2

√
30

[m1(t)(1 + m3(t))− im2(t)(1 + m3(t))] (5.49)

Λ2,2(t) =
a2Ω2

√
5
√

24
[(m2

2(t)−m2
1(t)) + i2m1(t)m2(t)] (5.50)

where i represents the complex number
√−1 and

Λ2,−m(t) = (−1)mΛ†2,m (5.51)

The rotational potential is completely described by degree 0 and degree 2 harmonics.
Perturbations of m3 due to GIA are several orders smaller then the perturbations in m1

or m2. This results in the fact that the Λ2,1(t) coefficient is dominant in equation 5.46
and accounts for about 99 percent of the signal [Milne and Mitrovica, 1998]. So the
potential forced sea level response due to GIA is dominated by degree 2 and order 1
harmonic signature, which is also discussed in [Han and Wahr, 1989]. The tidal Green’s
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function for the gravitational potential perturbation at the undeformed surface and the
radial displacement of the solid surface at degree ` are respectively:

ΦT
` (t) = δ(t) + kT,E

` δ(t) +
K∑

k=1

r′`,Tk e−s`
kt (5.52)

and

ΓT
` (t) =

1
g

[
hT,E

` δ(t) +
K∑

k=1

r`,T
k e−s`

kt

]
(5.53)

The tidal Green’s functions depend on time only, in contrast to the load Green’s functions
(equation 4.4 and 4.3) which depend on both space and time. So the perturbation to
the geopotential and solid surface radial displacement are calculated by convolving the
time variation of both the rotational potential (equation 5.46) with the Green’s functions
(equation 5.52 and 5.53). The tidal geoid anomaly and the surface radial displacement
are given by:

GT
`,m(t) =

1
g

∫ t

−∞
Λ`,m(t′)ΦT

` (t− t′)dt′ +
∆ΦT (t)

g
δ`,0δm,0 (5.54)

and

RT
`,m(t) =

∫ t

−∞
Λ`,m(t′)ΓT

` (t− t′)dt′ (5.55)

The time history of the rotational potential is modeled, just as for the load, as a series of
Heaviside loading increments:

Λ`,m(t) =
N∑

n=1

δΛn
`,mH(t− tn) (5.56)

Filling equation 5.56 into equation 5.54 and 5.55 gives:

GT (θ, ψ, t) =
∑

`,m

{
(1 + kT,E

` )
Λ`,m(t)

g
+

N∑
n=1

δΛn
`,m

g

K∑

k=1

r′`,Tk

s`
k

[1− e−s`
k(t−tn)+

∆ΦT (t)
g

δ`,0δm,0

}
Y`,m(θ, ψ) (5.57)

and

RT (θ, ψ, t) =
∑

`,m

{
hT,E

`

Λ`,m(t)
g

+
N∑

n=1

δΛn
`,m

g

K∑

k=1

r`,T
k

s`
k

[1− e−s`
k(t−tn)

}
Y`,m(θ, ψ) (5.58)

The contribution of the rotational potential to the sea level change is given by the difference
between equation 5.57 and 5.58 multiplied by the ocean function. When this contribution
is added to the sea level equation for the surface mass loading derived in chapter 4 the
following equation is obtained:

∑

`,m

S`,m(t)Y`,m(θ, ψ) =

C(θ, ψ, t)
∑

`,m

{
EL

` T`(ρiI`,m(t) + ρwS`,m(t)) + ET
`

Λ`,m(t)
g

+ (5.59)

N∑
n=1

[
T`(ρiδI

n
`,m + ρwδSn

`,m)βL
` (t− tn) +

δΛn
`,m

g
βT

` (t− tn)
]
×

H(t− tn) +
∆Φ(t)

g
δ`,0δm,0

}
Y`,m(θ, ψ)
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with T` defined in equation 4.27 and

ET
` = 1 + kT,E

` − hT,E
` (5.60)

and

βT
` (t− tn) =

K∑

k=1

(r′`,Tk − r`,T
k )

s`
k

[1− e−s`
k(t−tn)] (5.61)

Equation 5.59 is the spectral form of the sea level equation for a Maxwell viscoelastic
Earth model excited by both a surface mass load redistribution and a changing rotational
potential.

5.3 Solving the sea level equation for a rotating Earth

The pseudo-spectral approach (as described in section 4.3.3) is used to calculate the sea
level for a rotating Earth. The same iterative process is used but Rp,q(tj) from equation
4.30 is now replaced by:

[Rp,q(tj)]i = EL
p Tp

(
ρiIp,q(tj) + ρwSp,q(tj−1) + ρw[δSj

p,q]
i
)

+ ET
p

δΛj
p,q

g

+
N∑

n=1

Tp(βL
p (tj − tn)(ρiδI

n
p,q + ρwδSn

p,q)) + βT
p (tj − tn)

δΛn
p,q

g
(5.62)

In the first step of the iteration the sea level change is defined as the eustatic change
in sea level (equation 4.36) from which the perturbation of the rotational potential is
calculated. In the second step of the iteration the sea level is determined by using the
approximated values. This procedure is repeated until a certain level of convergence is
reached between two iterations (equation 4.37). The perturbation of inertia is calculated
from the sea-load and ice-load and is used to compute the rotational potential which is
used to calculate Rp,q(tj) as can be seen in figure 5.2. In order to determine the rotational
potential the rotational roots have to be determined from a polynomial (equation 5.34),
which is constructed from Love numbers and isostatic roots. This is done using rootfinding
procedures, which will be discussed in the next section.

Rootfinding procedures

There are different methods available to calculate the root of the polynomial described in
chapter 5 equation 5.34. The different methods used in this research are based on methods
described in Numerical Recipes for FORTRAN 77 [Press et al., 1992]. In this study three
methods are selected to determine the rotational roots:

Laguerre’s method and a root polishing method
In this method the roots of the polynomial of equation 5.34 are determined. This
method is a complex method which uses a relation between the polynomial, its roots
and derivatives. A major advantage of Laguerre’s method is that it is almost guaran-
teed to converge to some root of the polynomial no matter where the initial approxima-
tion is chosen. Although it must be noted that the theoretical proof of the algorithm
is limited. To increase the accuracy of the result a root polishing method based on
Newton-Raphson is used.

Eigenvalue method
Also in this method the roots of the polynomial of equation 5.34 are determined. The
eigenvalue method uses the eigenvalues of the matrix A to determine the roots of the
characteristic polynomial P (x) = det[A− xI]. This characteristic polynomial is again
equivalent to a general polynomial [Press et al., 1992].
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Ridder’s method
The roots can also be determined by constructing a polynomial from the isostatic
roots and using Ridder’s method to find the rotational roots. A general function is
determined with a set of parameters xi [Vermeersen and Sabadini, 1996a]:

xi =
σrk

T
i

kf
(5.63)

where xi are renormalized strengths of the load relaxation modes i. Ridder’s method
uses polynomial extrapolation to evaluate a function in an interval and works faster
than the much used bisection method, because it uses fewer function evaluations.
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Figure 5.2 Pseudo-spectral solution to the sea level equation including rotation.





Chapter 6

Model description

Now the sea level equation of a rotating Earth is determined it will be used to model GIA
with different combinations of Earth models and ice models in chapter 7. But first the
input of the model with respect to the selected Earth- and ice models will be introduced
in this chapter. A general rigidity and density structure is introduced together with three
different mantle viscosity profiles (VM1, VM2, KL) in section 6.1, followed by a discussion
on three selected ice models (ICE-3G, ICE-5G and RSES) in section 6.2. Finally in section
6.3 the applied topography is treated shortly.

6.1 Earth models

During the last decades, GIA studies have been frequently used to determine the mantle
viscosity, mostly by inversion studies in combination with rotational data. In this section
three Earth models will be discussed and each of the considered Earth models will have
the same radial density and rigidity structure but a different radial viscosity structure.

6.1.1 Radial rigidity and density structure

The rigidity and density structure used in this thesis is derived from the Preliminary Ref-
erence Earth model (PREM) created by Dziewonski and Anderson [1981], which contains
94 layers. At each boundary the rigidity and density parameters change discontinuously
and inside the layer the variation is assumed to be polynomial. There are two possibilities
to derive a model of less layers: by volume-averaging or keeping the discontinuities the
same as in PREM (also referred to as fixed boundary). The volume averaged is preferred
because it is in closer agreement with models that have more layers or a continuum dis-
tribution [Vermeersen and Sabadini, 1999]. The volume-averaging procedure sums the
contribution of each PREM layer with respect to the rigidity and density properties within
the defined layer, which is then weighted according to the radial distance. The rigidity
and density parameters for the 6 layer Earth model obtained from the PREM model by
volume averaging are found in table 6.1.

6.1.2 Radial viscosity structure

A much used method to determine the radial viscosity structure of the Earth is by analyz-
ing observations related to geodynamical deformation of the Earth. The mantle viscosity
can be inferred by observations of the GIA during the ice-age cycles and observations
related to mantle convection. Observations of GIA (e.g. coastlines, perturbations in the
Earth’s gravitational field and changes in Earth’s rotation) have been used to constrain
both the thickness of the elastic lithosphere and the viscosity of the viscoelastic mantle.
Also observations related to mantle convection (e.g. perturbations of large scale geoid
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layer radius density rigidity description
[km] [kg/m3] [N/m2]

1 6371 - 6250 3188.01 0.602178 · 1011 lithosphere
2 6250 - 5951 3460.22 0.742623 · 1011 shallow upper mantle
3 5951 - 5701 3885.88 0.109871 · 1012 transient zone
4 5701 - 5041 4554.19 0.183485 · 1012 shallow lower mantle
5 5041 - 3480 5110.06 0.245394 · 1012 deep lower mantle
6 3480 - 0 10925.0 0.00 inviscid fluid core

Table 6.1 Volume averaged density and rigidity stratification from PREM for the 6 layer Earth model.

and gravity anomalies) have been used to constrain mantle viscosity. In this study three
different radial viscosity stratifications are used which are mostly based on the inference
by GIA observations. These models are VM1, VM2 and the Kaufmann-Lambeck model
which are treated in more detail below.

VM1 Earth model
The VM1 model is a simple model of the radial viscoelastic structure used by Tushing-
ham and Peltier [1991] to create ICE-3G. The radial viscoelastic structure model was later
named VM1 by Peltier [2002]. This inference was based upon solutions of the forward prob-
lem, in which an a priori model of the deglaciation history (ICE-1) [Peltier and Andrews,
1976a] was used. When the VM1 model was employed 15 years ago, the forward modeling
of the GIA process showed that RSL, free air gravity, and Earth rotation constraints are
very well fitted with a relatively simple model of the radial viscoelastic structure [Peltier,
1989]. This results in a radial viscosity structure with a elastic lithosphere thickness of 120
km, an upper mantle viscosity of 1 · 1021Pas and a lower mantle viscosity of 2 · 1021Pas.

VM2 Earth model
The VM2 model is the successor of VM1 and has a completely different mantle viscosity
stratification, which is the result of different assumptions as can be seen in figure 6.1).
This model also is used by Peltier [1994, 2004] to create ICE-4G and ICE-5G. The VM2
model is derived on the basis of Bayesian inversion [Tarantola and Valette, 1982], in which
VM1 is used as a starting model. The improvement is accomplished by including 23 site-
dependent relaxation times from Canada and Fennoscandia (Scandinavia), a relaxation
time spectrum for the rebound of Fennoscandia and the observed rate of rotation to
constrain the viscosity [Peltier, 2002]. The applied viscosity stratification as shown in
table 6.2 is a simplification of the VM2 model as derived by Wang and Wu [2006].

Figure 6.1 Radial profiles of mantle viscosity of VM1 and VM2. Source: [Peltier, 2002].

Kaufmann-Lambeck Earth model
The third Earth model is the Kaufmann-Lambeck (KL) Earth model, which is derived
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by Kaufmann and Lambeck [2002] by using an inverse procedure to infer mantle viscosity
profiles from observations related to the GIA process and the RSES ice model (see section
6.2.3). A formal inverse procedure is used to infer the radial viscosity profile by solving
a damped, weighted, nonlinear inverse problem for the viscosity profile [e.g., Mitrovica
and Peltier, 1991]. The observational data includes Late Pleistocene and Holocene coast-
lines, present-day sea level and crustal response, and rotational data. The rotational data
includes both the observed TPW speed and observed rate of change of the spherical har-
monic degree-two component of the Earth’s gravitational field (J̇2). To reduce the least
squares misfit not all available data is used. The radial viscosity profile is based on 569
RSL sites from Scandinavia, the observed present-day TPW-speed and the present-day J̇2.
The result is a radial viscosity structure with an elastic lithosphere thickness of 80 km, a
volume averaged upper mantle viscosity of 7 · 1020Pas and a volume averaged lower man-
tle viscosity of 2 · 1022Pas. The volume averaged lower mantle viscosity is used because
of lack of detailed information of the viscosity stratification suggested by Kaufmann and
Lambeck [2002]. The simplified model we apply will have a modified elastic lithosphere
thickness of 120 km instead of 80 km. This inconsistency will not have a large impact on
the simulated present-day TPW, because the relatively high lower mantle viscosity results
in a present-day TPW almost insensitive to variations in lithospheric thickness, which is
the case in both the classical and revised rotation theory [Mitrovica et al., 2005].

Table 6.2 lists the different viscosity stratifications used in this study.

VM1 VM2 KL
layer radius viscosity viscosity viscosity

[km] [Pas] [Pas] [Pas]

1 6371 - 6250 elastic elastic elastic
2 6250 - 5951 1 · 1021 6 · 1020 7 · 1020

3 5951 - 5701 1 · 1021 6 · 1020 7 · 1020

4 5701 - 5041 2 · 1021 1.6 · 1021 2 · 1022

5 5041 - 3480 2 · 1021 3 · 1021 2 · 1022

6 3480 - 0 0.00 0.00 0.00

Table 6.2 Viscosity stratification of VM1, VM2 and the Kaufmann-Lambeck (KL) Earth model.

6.2 Ice models

In the last years, multiple ice models have been developed which are generally created
with the same method. The common approach to create an ice model is by placing
constraints on the extent of the ice sheets and the distribution of ice within the ice sheets.
The constraints for the extent of the ice sheet are determined by geological evidence in the
form of glacial tills, striations, moraines and other features which indicate that an ice sheet
once covered the land. With these constraints it is possible to determine the boundaries of
the ice sheets at a certain time, which is mostly limited to the last Pleistocene deglaciation.
In order to determine the distribution of ice (ice height) within these boundaries mostly
RSL data, coral reefs and oxygen isotope records (δ18O) of ocean sediments is used. The
relative sea level can be locally constrained at different times by the following observations
as Lambeck [1998] used for the construction of ice sheets of Fennoscandia:

Geographical position of isolation basins, which were created when the sea-level re-
treated. When the age-height observations of a number of basins are combined, in
some instances, a sea-level curve of the area in question can be formed.

Varve records contained in deltaic sediments. A varve is a rhythmic sequence of sedi-
ments deposited in annual cycles in glacial lakes at the edge of a glacier.

Shorelines of distinct ages with relatively constant sea level, which can be correlated
over long distances.
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Submerged peat deposits or present depths of shell beds which give an indication of
the upper limit of past sea level.

Global constraints on eustatic sea level can be placed by using observations outside the
ice covered regions [Tushingham and Peltier, 1991]:

Analyzing age and elevation of the coral reefs using Uranium/Thorium and carbon
dating.

Oxygen isotope (δ18O/δ16O) ratio variation in sea water found in micro fossils. These
marine sediments give a complete record of variation in 16O isotopes in the sea during
the past millions of years and are an indication for the changes in global ice volume.
The ice volume fluctuations affect the ratio of light 16O and heavy 18O isotopes in sea
water. During the glacial period the water in the oceans is depleted in 16O. So during
an interglacial period the ice sheets melt, raising the sea level and enriching the oceans
again with 16O.

The most important and crucial method to date the coral, sample deposits or sediments
is radiocarbon dating. Radiocarbon dating is a radiometric dating method that uses the
naturally occurring isotope 14C to determine the age of carbonaceous materials up to
60 kiloyears (kyr) before present (BP1). 14C is a radioactive isotope of carbon, with a
half-life of 5.73 kyr, and would have disappeared a long time ago, if it was not contin-
uously created through collisions of neutrons generated by cosmic rays with nitrogen in
the upper atmosphere. The 14C ends up as a trace component in atmospheric carbon
dioxide (CO2) which is acquired by an organism during its lifetime. When an organ-
ism dies, it ceases to acquire new 14C and the proportion of 14C left when the remains
of the organism are examined provides an indication of the time lapsed since its death
(http://en.wikipedia.org/wiki/Radiocarbon dating). Carbon dating is used for dating ob-
jects not older than 50 kyr BP because at this point all radioactive 14C has decayed.
Recently the 14C time is found to deviate from actual, calendar, time with about 15 per-
cent. This is the result of the variation in the level of atmospheric 14C during the span
of time that can be radiocarbon dated. The level 14C of is affected by variations in the
cosmic ray intensity, 14C release from reservoirs (e.g. organic matter, the ocean, ocean
sediments and sedimentary rocks) and human activity. The raw radiocarbon dates are
therefore calibrated to give calendar dates. The calibration is accomplished by dating and
comparing tree rings and by simultaneously dating a collection of coral samples using both
the 14C method and Uranium/Thorium (U/Th) method. The U/Th method can be used
to date objects with a certain chemical composition which are older than 50 kyr BP by
measuring the decay of U/Th. In practise it is possible to date objects until an age of 800
kyr BP.
With the use of the constraints summarized above, both the radial viscoelastic structure
and deglaciation history have to be determined. The solution of this inverse problem can
be obtained in an iterative way as explained in the next section. In the first iterative step
the deglaciation history is given and the radial viscoelastic structure is determined. In
the second step the deglaciation history is refined given an acceptable radial viscoelastic
structure.
The evaluated ice models in the next section are the older and frequently used ICE-3G
model and the more recent ICE-5G and RSES model. It must be noted that the Earth
model used to create the ice model is implicitly present in the ice model and should always
be used together to obtain correct results.

6.2.1 ICE-3G ice model

A much used ice model in a wide range of GIA and rotation studies is ICE-3G. This model
was developed by Tushingham and Peltier [1991] and describes the deglaciation history of

1BP represents the number of calibrated years before 1950 and bp is used in case of uncalibrated years
before 1950
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the late Pleistocene deglaciation. ICE-3G starts at the last glacial maximum (LGM) at 18
kyr bp and finishes at 5 kyr bp. When in this thesis a complete ice cycle (glaciation and
deglaciation) is considered a 90 kyr linear glaciation is assumed. It must be noted that this
timescale is based on 14C and not on the calendar timescale. The deglaciation histories of
the Laurentide and Fennoscandian ice sheets are used in the forward solution to get a best
fit to RSL data (from coral reefs and δ18O), gravity anomaly measurements and observed
drift of the rotation axis. This resulted in an Earth model which has a lithospheric thick-
ness of 120 km and a upper mantle viscosity of 1 ·1021 Pa s and a lower mantle viscosity of
2 ·1021 Pa s, also denoted as VM1 (see section 6.1). The inverse solution, to determine the
ice thickness, is obtained by varying the ice thickness over areas covered with ice sheets
at specified times during deglaciation, until a best fit is obtained between the resulting
sea-level curves and dated sea levels at 192 (mostly near-field) sites. The ICE-3G model
is constructed using a finite disc grid which consists of 808 circular discs of different sizes.
This method might create inaccurate ice sheets because it can result in regions where two
discs overlap and areas which are not covered as can be seen in figure 6.3.
In order to obtain the ICE-3G model some assumptions were made. First of all no shore-
line evolution is considered for simplicity and isostatic equilibrium at LGM is assumed.
Because of the time discretization minor advances and retreats on timescales smaller then
1 kyr are not included. It is also assumed that the ice is melted instantaneously at the
time steps (Heaviside loading is applied).
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Figure 6.2 Global distribution of the ice melted during the last deglaciation period assumed by the ICE-3G ice
model.

Ice model characteristics
The ICE-3G ice model includes ice height data of the last deglaciation period and provides
ice height information from 18 kyr bp till 5 kyr bp (see figure 6.6). The model assumes a
total ice mass which melts from LGM till the end of deglaciation of 3.66 · 1019 kg, which
gives an equivalent sea level rise of about 101 m in this study. It must be noted that
ICE-3G is given in uncalibrated years in contrast with the other ice models. Taking this
into account it is somewhat odd that previous studies using the ICE-3G ice model assumed
an ice cycle period of 100 kyr, a number that is based on data in calibrated years. The
ICE-3G model is not rewritten to calibrated years because in this study the ICE-3G model
will be used to compare TPW results from new ice models with older TPW results which
were calculated using ICE-3G in uncalibrated years.
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Figure 6.3 Global distribution of the ice melted during the last deglaciation period assumed by the ICE-3G ice
model. Zoomed in on the Laurentide ice sheet

6.2.2 ICE-5G ice model

The successor of ICE-3G is the ICE-4G model which is produced by W.R. Peltier of the
Department of Physics in the University of Toronto, Canada and published in [Peltier,
1994, 1996]. Although this model will not be used in the simulations the model will
shortly be discussed here to give a better overview of the evolution of the ICE models
developed by Peltier. The method to construct this ice model has not changed much with
respect to ICE-3G, but some improvements have been made by using calibrated carbon
years instead of uncalibrated carbon years. This means that 3 kyrs are added to the
radiocarbon age of 18 kyr bp to get a calendar date of 21 kyr BP for the Last Glacial
Maximum (LGM). The calibration is done using the long record of postglacial relative sea
level change at Barbados, based on the Uranium/Thorium dating of the coral which allows
for an extremely accurate time calibration [Peltier, 1995]. Secondly, it is based upon a
more accurate spherically symmetric internal viscosity structure of the solid Earth, also
known as VM2 (section 6.1.2). The circular discs are no longer used, instead a pointlike
ice distribution is implemented. Finally the model is constrained by new and improved
observational constraints including data on RSL, coral reefs and δ18O. This results in an
increase in land-based ice at certain regions and gives an equivalent sea level rise of 120
m. Just like in ICE-3G the system of Earth, ice and ocean was in a state of isostatic
equilibrium at LGM and no time-dependent shorelines were assumed.
ICE-5G is a more recent global ice sheet reconstruction published by Peltier [2004]. ICE-
5G is considered to be one of the most accurate ice models available at the moment, which
is the result of the use of a more complex combination of thermo-mechanical models
of ice-sheet evolution and climate models. The refinement with respect to ICE-4G is
accomplished by using better models of the individual regions, investigated by different
authors, geomorphological analysis, and taking ġ and VLBI observations into account. As
a result of these observations extra ice is added to the Hudson Bay region and the eustatic
sea level has increased to 125 m instead of 120 m for ICE-4G. In this model time dependent
shorelines are used, which has some interesting effects like the fact that the North Sea was
assumed to be dry during the LGM, which allowed for ice sheet development in the North
Sea basin. ICE-5G is just as ICE-4G based on the VM2 Earth model.
Ice model characteristics
The ICE-5G data record contains a larger amount of information which includes both the
deglaciation and glaciation phase from 122 kyr BP till 0.5 kyr after present (AP) (see
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Figure 6.4 Global distribution of the ice melted during the last deglaciation period assumed by the ICE-5G ice
model.

figure 6.6). The deglaciation period extends from 122 kyr BP till 30 kyr BP and contains
data every 2 kyr. From 30 kyr BP till 18 kyr BP the interval between each data point
will be 1 kyr and from 17 kyr BP till 0.5 kyr AP an interval of 0.5 kyr is used. Two extra
data points are found at 0.1 kyr BP and 0.1 kyr AP. ICE-5G has a total ice mass which
melts from LGM till the end of deglaciation of 4.57 · 1019 kg which gives an equivalent
sea level rise of about 126 m in this study. Originally the ICE-5G ice height data is
given in a grid of 256x513 but is transformed to a 256x512 grid by excluding the double
point at 0 degrees longitude to avoid the double use of this point. The transformation
to the standard 257x512 grid is achieved by transforming the data on the 256x512 grid
to spherical harmonic coefficients, truncated at 256 degrees, which are transformed back
again to a 257x512 grid.

6.2.3 RSES ice model

The RSES model is developed by K. Lambeck of the Research School of Earth Sciences
(RSES) of the Australian National University. The Laurentide ice sheet (over North
America) and Greenland follow the model of ICE-1 [Peltier and Andrews, 1976a] and the
rest of the ice sheets are based on earlier research and published articles by Lambeck and
colleagues. The ice sheets of Fennoscandia, Barentsz Sea and British Isles are of a high
spatial and temporal resolution and are consistent with the majority of the field evidence
for ice-margin retreat and rebound data. The Antarctic and Laurentide ice sheet are on
the other hand of coarse resolution and less suitable for high-resolution rebound modeling
[Kaufmann and Lambeck, 2002]. This ice model is constrained using geomorphological
data, sea level curves and assumptions on the local viscosity structure of the Earth. During
the construction of each individual ice sheet not a global but a local viscosity structure
was assumed. For the construction of the ice sheets of Fennoscandia an extensive database
is used as explained in the introduction of this section. In a later study Kaufmann and
Lambeck [2002] derived a global viscosity structure from the RSES ice model (see section
6.1).
Ice model characteristics
This ice model provides ice height data from 30 kyr BP till 2 kyr BP with a time step of 1
kyr and includes a deglaciation phase till LGM at 21 kyr BP and has a period of relative
constant ice mass from 22 kyr till 30 kyr (see figure 6.6). RSES has a total ice mass which
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Figure 6.5 Global distribution of the ice melted during the last deglaciation period assumed by the RSES ice
model.

melts from LGM till the end of deglaciation of 4.73 · 1019 kg which gives an equivalent sea
level rise of about 130 m in this study.

6.2.4 Ice model implementation

To investigate the present-day TPW and its behaviour correctly, also the glaciation phase
and even multiple ice cycles have to be considered because of the relatively long relaxation
time of the Earth to the ice load. In this study the late Pleistocene Ice Ages (about
800 kyr till 5 kyr BP) will be reconstructed and used to determine the effect on TPW.
The structure of the ice age history will be based on known records of the ice cycles, but
simplified to allow for faster computations and to make it easier to implement in the code.
From oxygen isotope analysis of ocean sediments (δ18O) a main ice-age rhythm, with a
100 kyr cyclicity, can be identified [e.g., Shackleton and Opdyke, 1976; Shackleton, 2000].
Further analysis indicates an average glaciation period of 90 kyr followed by a 10 kyr
deglaciation period. In this study 8 ice-cycles of 100 kyr will be considered to model the
late Pleistocene Ice Ages. For the ice-cycles a simplified saw-tooth loading is assumed as
suggested by Vermeersen et al. [1997]. The glaciation period of the last ice-cycle will have
time steps of 2 kyr to include all the data available in ICE-5G and to exclude any difference
in results as resulting from use of different time steps. The last deglaciation period will
have time steps of 0.5 kyr and the ice-cycles before the last ice-cycle will have time steps
of 10 kyr. The increase in time steps is possible because the inaccuracy introduced by this
simplified loading has only limited effect on present-day TPW as a result of the relatively
fast relaxation of the loads.
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Figure 6.6 Comparison of the total mass distribution of different ice models in time. LG=linear glaciation,
OG=original glaciation.

6.2.5 Ice model overview

The three ice-load histories as discussed above will have a large influence on the behaviour
of TPW because they all represent a different mass distribution on the Earth, which
consequently influences the moments of inertia and the behaviour TPW. The ice-load
histories differ with respect to each other in both spatial and temporal distribution of ice.
In figure 6.7 and 6.8 and table 6.3 the ice distribution of melted ice since LGM is given
for different areas.

Ice sheet ICE-3G ICE-5G RSES
mass [1018 kg] mass [1018 kg] mass [1018 kg]

Antarctica 9.13 6.62 10.00
Fennoscandia, Barentsz Sea and British Isles 4.35 7.53 5.45

Kara Sea and East-Siberia 3.10 0.66 0.44
North America 17.10 29.22 29.17

Greenland and Iceland 2.91 1.75 2.25
All 36.59 45.79 47.33

Table 6.3 Ice distribution of the considered ice models over different areas.

6.3 Topography

The used topography is derived from ETOPO2 which is a global elevation database
with a resolution of two minutes (about 4 km at the equator) in latitude and longi-
tude. This database, put together from several different institutes, contains information
from sources like satellite radar altimetry and shipboard echo-sounding measurements
(http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html). From this elevation database an
ocean function is constructed by assigning a value of 1 when the elevation is greater than
0 m and 0 when it is lower than 0 m (see figure 6.9). A consequence of this assumption
is that land which lies below zero meters is noted as ocean, so a large part of Holland is
virtually covered with water, but this is not of a great importance on a global scale.
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Figure 6.7 Absolute Ice distribution of the considered ice models over different areas at LGM.
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Figure 6.9 Topography (based on ETOPO2) from which the ocean function can be derived. Red: elevation
greater than 0 m.



Chapter 7

Results

During the last decades true polar wander (TPW) has been frequently used to constrain
the radial mantle viscosity profile of the Earth [e.g., Vermeersen et al., 1998; Kaufmann
and Lambeck, 2002]. Recent improvements in the field of ice models (ICE-5G and RSES)
and the use of the hotspot reference frame make it interesting to investigate the impact
on results and conclusions of older research.
In this chapter first the sea level results, including the effects of rotation, are discussed in
section 7.2 for three different ice models with corresponding Earth models. In section 7.3
TPW and the influence of ice and Earth models is discussed. Finally the discussion of the
impact of the improvements on older research can be found in section 7.4.

7.1 Implementation of TPW in the sea level equation

The implementation of the sea level theory is not always straightforward and in this section
some practical issues will be addressed. The program structure and the implementation
of the rotation into the sea level equation is described in section 7.1.1. In section 7.1.2
the implementation process in treated and in section 7.1.3 the optimization of the grid is
discussed.

7.1.1 Program structure

The theory described in the previous chapters is now implemented into a Fortran code
to investigate the effect glacial isostatic adjustment (GIA) has on TPW. The viscoelastic
Love numbers, which describe the response of a specified Earth model as discussed in chap-
ter 3, are determined with the Fortran code developed by Dr. L.L.A. Vermeersen of Delft
University of Technology. These codes have been frequently used and have been verified
with other codes [e.g., Vermeersen et al., 1997]. The pseudo-spectral sea level equation
from chapter 4 is solved by a sea level code provided by G. Di Donato of the University
of Milan and has been modified and optimized by Ir. W. van der Wal and Ir. H.H.A.
Schotman. In this study the traditional rotation theory is added in a self-consistent way
as described in chapter 5. In figure 5.2 as detailed description of the implementation of
rotation in the sea level equation is given.
In the beginning of the program, before the iterations are started, the rotational para-
meters and rotational roots are calculated. This is done in a subroutine which reads the
viscoelastic Love numbers and calls other subroutines that contain the rootfinding meth-
ods (as described in section 5.3). To determine the rotational potential a subroutine is
created which computes the perturbations of inertia by using the sea-load and the known
ice-load. In first instance the sea-load will be estimated from a eustatic sea level change as
result of a certain ice melt or grow. From the perturbations of inertia, rotational roots and
parameters the direction of polar wander is determined and subsequently the rotational
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potential. The rotational potential is used to calculate the new sea level, which will be
used as new input for the iteration. The iteration will continue until the predefined level
of convergence is reached.

7.1.2 Implementation process

The new subroutines were tested separately as much as possible. The rotational roots and
parameters were tested qualitatively with the help of earlier research [e.g., Mitrovica and
Milne, 1998; Martinec and Hagedoorn, 2005]. The qualitative behaviour of the direction of
polar wander was tested using [Milne and Mitrovica, 1998] and [Sabadini and Vermeersen,
2004]. When the code was completed a start was made to benchmark the complete sea
level code which can be found in appendix A. but due to lack of time by the other party
the benchmark was ended after the verification of the rotational roots, parameters and
the perturbation of inertia.
Some problems which arose during the implementation were with respect to choosing the
right normalization (equation 4.21 till 4.24) and using the correct analytic expression for
the time convolution (equation 5.43).

7.1.3 Grid optimization

The sea level equation for a rotating Earth is solved with an iterative procedure in the
spectral domain as explained in chapter 5. For this study the spherical harmonic expansion
is truncated at degree 256, which allows for results with satisfactory accuracy. Higher
truncation levels are possible but impractical because there is only limited CPU power
available to do the simulations in a reasonable time. A simulation of the sea level on
a rotating Earth during the late Pleistocene (including 180 sea level calculations) takes
approximately 8 hours to finish on a R120001 workstation when a truncation level of 256
is used. To do the spherical harmonics computation with a high accuracy the number
of nodes on which the ice-load and ocean function is given should be optimized. The
optimization is dependent on the method selected to calculate the spherical harmonics
coefficients, which will be explained below. To obtain the spherical harmonics coefficients,
first a Fourier transformation is applied along the parallels of the grid followed by the
computation of spherical harmonics coefficients from the obtained Fourier coefficients.
The most efficient method to obtain the spherical harmonics coefficients is the so-called
Gauss-Legendre quadrature [Sneeuw, 1994]. The Gauss-Legendre quadrature requires the
nodes to be given on a Gauss-grid, which is still quite close to an equi-angular grid. In
this Gauss-grid the latitude circles are chosen to coincide with the zeros of the Legendre
polynomial of degree `+1. The Gauss-Legendre quadrature requires less nodes (2`×(`+1))
than other methods, like the Gauss method of least squares (2` × (2` + 1)), to compute
the spherical harmonics coefficient up to degree `. So when a truncation level of 256 is
applied, subsequently a grid of 257x512 nodes is used to optimize the spherical harmonics
computation.

7.2 Sea level results

The implementation of rotation in the sea level equation has a relatively small but non-
negligible effect on the sea level. These effects are first discussed on a global scale followed
by a discussion on local scale in comparison with observations from different sites.

7.2.1 Relative sea level results on global scale

The global predictions of the present-day speed of relative sea level (RSL) without rota-
tion for the ICE-3G(VM1), ICE-5G(VM2) and RSES(KL) models is given in figure 7.1.

1A Silicon graphics workstation with a 270 Mhz processor and 2048 MB of RAM
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Figure 7.1 Global predictions of the present-day speed of RSL without rotation for respectively (from top till
bottom) the ICE-3G(VM1), ICE-5G(VM2) and RSES(KL) model.

In this case eight ice cycles are simulated on a spherically symmetric, incompressible,
Maxwell-viscoelastic Earth model as explained in the previous chapter. The predictions
show a large RSL fall in the former glaciated areas and a large sea level rise in the area
surrounding it. In the far field the RSL change is positive and relatively small. The details
of the GIA phenomena are treated in more detail in section 2.2.
The ICE-3G(VM1) model shows a straightforward RSL signal with continental leverag-

ing near continents. The ICE-5G(VM2) model has, with respect to the ICE-3G(VM1),
about the same near field GIA effect even though the total ice mass present at last glacial
maximum (LGM) is much higher. This is partly the result of a relatively low upper mantle
viscosity of 6 · 1020 Pas, which leads to a faster relaxation of the Earth. Although it must
be noted that the present-day speed RSL is the result of a complex interaction between
the Earth and the loads and there are many causes to a certain result. The continental
leveraging effect is negligible because of the low upper mantle viscosity, which has a large
influence on small scale effects, and causes a faster relaxation of the Earth to the load.
The RSES(KL) model has a more dominant near field GIA effect, than the other models.
This is among others caused by the high lower mantle viscosity of 2 · 1022 Pas, which
causes the large scale GIA effect to relax slowly. The rotation induced component of RSL
is mostly dominated by the degree 2, order 1 harmonic coefficient, which accounts for 99
percent of the signal as can be seen in figure 7.2. This dominance can be traced back to
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Figure 7.2 Global predictions of the present-day speed of RSL solely due to variations in the Earth’s rotation of
respectively (from top till bottom) the ICE-3G(VM1), ICE-5G(VM2) and RSES(KL) model. Note
that the scale is different from figure 7.3 and 7.1.

equation 5.49, which is dependant in first order on the direction of TPW (m1 and m2).
The positioning of the degree 2, order 1 signal on the Earth is determined by the direction
of the TPW. The rotational potential will show a maximum change along the meridian,
which points in the direction of TPW at mid-latitudes. In case of ICE-3G(VM1) this
will be about 70 ◦W and 76 ◦W for ICE-5G(VM2) and RSES(KL). A minimum change
is shown at both 90 longitudinal degrees from this meridian and along the equator. The
RSL changes shown in figure 7.2 reflect this pattern. The magnitude of the 2,1 signal is
dependant on the TPW speed and thus the amount of mass distribution and response of
the Earth. Note that the net effect of the rotational induced RSL change is zero because
the total mass is conserved. The more mass that is displaced and the higher the viscosity
of the lower Earth layers is, the greater the magnitude of the rotational effect is.
When observing the figures it can be concluded that ICE-3G(VM1) has the weakest ro-
tational signal and RSES(KL) the strongest. This is the result of the fact that the RSL
change is determined as the geoid rate of change minus the radial displacement of the
Earth (equation 4.2).
A larger ice mass present at LGM in the ICE-5G(VM2) model with respect to ICE-
3G(VM1) model, gives a larger geoid height change at present day. Because a roughly
similar viscosity stratification gives an equal radial displacement, the rotation induced
RSL change will increase.
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Figure 7.3 Global predictions of the present-day speed of RSL with rotation of respectively (from top till
bottom) the ICE-3G(VM1), ICE-5G(VM2) and RSES(KL) model.

The RSES(KL) model with respect to the ICE-5G(VM2) model has a slightly higher rota-
tional induced RSL change. This is the result of the higher lower mantle viscosity, which
leads to a lower radial displacement of the Earth and a similar ice mass at LGM which
gives an about equal geoid height change. Finally in figure 7.3 the rotational effects are
taken into account in the GIA induced RSL. In the far field and near the maximum of
the 2,1 signal the effects of rotation can be as large as effects like ocean syphoning or
continental levering. The rotational induced RSL change has only a small contribution
to the whole signal but at far-field areas it can have a significant effect which can not be
neglected. This is especially the case at periods between ice ages (at present) when the
GIA effect on the relative sea level is small.

7.2.2 Relative sea level results on local scale

In this chapter the RSL with and without rotation is discussed at different sites and
compared with observations. The RSL curves describes the RSL from the LGM till
present. In case of the ICE-3G(VM1) model the LGM is located at 18 kyr before present
(bp) in the 14C timescale. In case of ICE-5G(VM2) and the RSES(KL) model the LGM
is located at 21 kyr before present (BP), in calibrated (calendar) years.
Three different locations are chosen such to demonstrate the spatial distribution of the
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minimum and maximum amplitudes of the rotation induced RSL signal near and further
away from uplifting areas (see figures 7.1 and 7.2). The location should also have an
acceptable amount of sea level observations available. The chosen sites are Brigantine
(United States), Bahia Blanca (Argentina) and Merseyside (England).

Firstly the sea level at Brigantine (United States) is considered in figure 7.4. Brig-
antine is chosen because it is located near the former Laurentide ice sheet and close to a
maximum positive value of the rotational signal. The melting of the ice after LGM gives
a decrease in polar wander, because mass is moved away from the poles in the direction of
the equator. This decrease in polar wander has a direct effect on the rotational potential
and thus the RSL. When the ice melt stops the relaxation of the Earth continues and
mass is redistributed over the Earth which gives a rise in RSL. The rotation induced
RSL can have a significant maximum difference of 13 m during the deglaciation period
as can be observed with the RSES(KL) model. The observations fit quite good with the
predictions of RSL of ICE-5G(VM2) and RSES(KL), although the observations are only
available of the last 8 kyr. Note that the rotational induced RSL signal is relatively small
at LGM with respect to the GIA induced RSL signal, but is of larger importance near
the present as the GIA induced RSL signal approaches zero.
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Figure 7.4 Sea level curve of Brigantine (United States) at 39.5 degrees latitude and 285.5 degrees longitude.
Different ice models are used: Left: ICE-3G(VM1) in 14C time, middle: ICE-5G(VM2) in calibrated
time, right: RSES(KL) in calibrated time. The upper figures hold the sea level with and without
rotational effects where the solid line is the sea level without rotational effects, the dashed is the sea
level with rotational effects and the observations are indicated by crosses with error bars. The lower
figures hold the rotation induced component the sea level.

Secondly Bahia Blanca (Argentina) is chosen because it is located further away from
former GIA and close to a maximum negative of the globally distributed rotational
signal. At Bahia Blanca the rotational induced RSL shows the opposite behaviour as in
Brigantine and is the result of the same causes. The observations fit quite good with the
predictions of RSL of ICE-5G(VM2) and RSES(KL). Thirdly Merseyside (England) is
located near the former glaciated area of British Isles and near a minimum of the globally
distributed rotational signal. In this case it is clear that the rotation induced RSL is
negligible over the whole deglaciation period. The observations fit quite good with the
predictions of RSL of ICE-3G(VM2) and ICE-5G(VM2), but less well with RSES(KL).
It can be concluded, as in the previous section, that the effect of rotation on RSL is
non-negligible and its contribution depends on the location on the Earth.
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Figure 7.5 Sea level curve of east Bahia Blanca (Argentina) at -39.6 degrees latitude and 297.9 degrees
longitude. The same description applies here as in figure 7.4.
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Figure 7.6 Sea level curve of Merseyside (England) at 53.5 degrees latitude and 356.8 degrees longitude. The
same description applies here as in figure 7.4.
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7.3 TPW and the influence of ice and Earth models

First the assumption of linear glaciation is discussed in section 7.3.1 followed by a dis-
cussion of the results of different TPW simulations using ice models and original Earth
models in section 7.3.2. Finally in section 7.3.3 the relation between TPW and the lower
mantle viscosity is discussed.

7.3.1 TPW simulation with linear glaciation

The results presented in this section are based on model predictions on a spherically sym-
metric, incompressible, Maxwell-viscoelastic Earth model. In earlier studies glacial cycles
were mostly assumed to be structured as a saw-tooth with linear glaciation period and a
more detailed deglaciation period. In this section the assumption of a linear glaciation his-
tory on present-day TPW-speed and path is investigated using the ICE-5G(VM2) model,
because it describes both a glaciation and deglaciation period. One model will have a
linear glaciation history and the other the original glaciation history. Both models will
have the same time steps as in the original ice-load history as discussed in section 6.2.2.
The results are presented in figure 7.7 and table 7.1.
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Figure 7.7 Predicted TPW with a linear and original glaciation history during the last ice-cycle. First figure:
TPW in the direction of 90◦W, second figure: TPW in the direction of Greenwich.

From figure 7.7 it can be concluded that the assumption of a linear glaciation history is a
very reasonable assumption, even though the original glaciation history differs significantly
as can be seen in the comparison of total mass distribution of different ice models (fig-
ure 6.6). The results show that present-day TPW-speed and path differ about 1 percent,
which is mainly caused by a small discrepancy in TPW towards Greenwich.
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model glaciation speed path
[ ◦Myr−1] [longitude ◦W]

ICE-5G(VM2) original 1.06 77.5
ICE-5G(VM2) linear 1.08 77.1

Table 7.1 Predicted present-day TPW-speed and path with a linear and original glaciation history during the
last ice-cycle. The predicted present-day TPW-speed is the average TPW-speed of the last 1000
year.

This is probably caused by the melting of the ice of the Greenland ice sheet shortly before
last glacial maximum (LGM). Due to the melting of the ice during the original glaciation
the shift of the rotation axis will be, with respect to the TPW as result of linear glacia-
tion, smaller because the melting of Greenland will counteract the motion caused by the
growing of the dominant Laurentide ice sheet. The ice sheet on Greenland is positioned
between the two axes along which the rotation is defined (see figure 5.1), but this effect is
mostly visible in the TPW towards Greenwich. This is because the melting of the Green-
land ice sheet is of relatively large importance for the determination of the TPW towards
Greenwich and of minor importance in the determination of TPW towards 90◦W, as a
result of the dominant presence of the Laurentide ice sheet.
Of minor importance is the difference in the ice mass growth and the geographical location
of the ice close before LGM. There is a gradual increase in ice mass in case of linear glacia-
tion and the sudden large increase in ice mass at 35 kyr BP. As can be seen in figure 7.7
this effect is not completely relaxed at present-day. But the impact which the application
of the original glaciation will have on older research is not significant.

7.3.2 TPW simulation with different ice models and corresponding
Earth model

In this section the present-day TPW of three different ice-load histories with their cor-
responding Earth stratification are compared. The verification of results using the ICE-
3G(VM1) model will be done, followed by the verification of results using observations
and finally the ice models with corresponding Earth model are compared with each other.

The ICE-3G deglaciation history has been used for mantle inversions and GIA research
frequently, but lately this model has been exceeded by the ice models RSES and ICE-5G
(see section 6.2). The TPW will be simulated with the ICE-3G, ICE-5G and RSES ice
models and corresponding Earth models. Because an ice model is usually created with a
specific Earth model, this Earth model is implicitly present in the ice model. So to obtain
correct TPW results the corresponding Earth model has to be used. In case of ICE-3G
and ICE-5G the corresponding Earth models (VM1 and VM2 respectively) will be applied
that were used to create the ice models. For RSES a single corresponding Earth model
did not exist because regional Earth models were used to create the ice model, instead the
Kaufmann-Lambeck (KL) Earth model will be applied. The stratification of the applied
Earth models are explained in more detail in the previous chapter. The results of the
TPW simulations of the ice models with original Earth model are presented in figure 7.8
and table 7.2.

model glaciation speed path
[ ◦Myr−1] [longitude ◦W]

ICE-3G(VM1) linear 1.33 70.1
ICE-5G(VM2) original 1.83 76.1

RSES(KL) linear 1.21 76.0

Table 7.2 Predicted present-day TPW-speed and path using an ice-load history with corresponding Earth
model.
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Figure 7.8 Predicted TPW-speed using an ice-load history with corresponding Earth model. First figure: TPW
in the direction of 90◦E, second figure: TPW in the direction of Greenwich.

Verification of results using ICE-3G(VM1)

The correctness of the TPW results can be verified, till some degree, by comparing the
ICE-3G(VM1) model with two earlier obtained results from Vermeersen et al. [1997] and
Mitrovica et al. [2001].

The first study is done by Vermeersen et al. [1997] and investigates the rotational
response of the Earth to Pleistocene deglaciation. For this study a volume-averaged
5-layer Earth model is used together with a saw-tooth ice-load history as input. It
must be noted that in this paper the ice and water distribution is assumed to be
redistributed eustatically over the oceans. There will be a noticeable difference with
respect to the moments of inertia and TPW, which are based on a graviationally
self-consistent redistribution. This result differs about 9 percent with the predicted
present-day TPW-speed obtained in this study, which is most likely the result of the
assumption of eustatic redistribution of water. The small differences in the radial
density and rigidity stratification and the difference in time steps are negligible.

The second study is carried out by Mitrovica et al. [2001] and investigates the rotational
response of the Earth to Pleistocene deglaciation but now self-gravitating compressible
Earth models are used. The secular TPW speed is about 60 percent lower than the
results obtained in this study. Mitrovica et al. [2001] simulated the TPW with a
similar mantle viscosity stratification but with a thinner elastic lithosphere of 95 km.
The difference is possibly the result of the use of an incompressible Earth model in
this study instead of a compressible Earth model. At low viscosities of the lower
mantle the effect of compressibility on present-day TPW-speed is relatively large in
comparison with higher viscosities [e.g., Mitrovica and Milne, 1998; Vermeersen et al.,
1996b]. This effect is about 25 till 30 percent for a viscosity of 2 · 1021Pas for the



7.3 TPW and the influence of ice and Earth models 63

lower mantle [Mitrovica and Milne, 1998]. Another cause of the difference could be
the use of a thicker elastic lithosphere (120 km) together with a relatively low lower
mantle viscosity which will overestimate the results of an elastic lithosphere thickness
of 95 km with about 15 till 20 percent [Mitrovica et al., 2005]. A final cause of the
difference could be the difference in the radial rigidity and density stratification used
by [Mitrovica and Milne, 1998] which is not given in detail but is assumed to be based
on PREM like the other Earth models used. The differences in the radial viscosity
stratification are most likely the explanation for the discrepancies in TPW results.

Verification of results using observations

In this section the predicted present-day TPW-speed and path resulting from an ice model
with corresponding Earth model (table 7.2) are compared with the observed TPW-speed
(1.12 ◦Myr−1) and path (68.4 ◦W) in the hotspot reference frame using the Hipparcos star
catalog.
When these results are compared it appears, at a first glance, that the present-day TPW-
speed of the RSES(KL) model comes closest with 8 percent difference and the present-day
TPW path of the ICE-3G(VM1) model resembles the observations the best with 2 percent
difference. Both rotational observables of the ICE-3G(VM1) model differ at maximum
with 20 percent to the observations, the RSES(KL) model with 10 percent and ICE-
5G(VM2) shows a discrepancy of more than 60 percent. The reason these models produce
different results is because in this thesis the effect of compressibility is not taken into
account, other forcings causing TPW are not taken into account and recent deglaciation
events are neglected in the ice model. It must be noted that all the used Earth models
were constructed using earlier TPW observational data, which also has an indirect effect
on the present-day TPW-speed and path. These probable causes will be explained in more
detail below.

When the results are compared with observations, a compressible model is preferred
over an incompressible model because it is a better approximation of the Earth. So
when compressibility is taken into account, the present-day TPW-speed for the ICE-
3G(VM1) and ICE-5G(VM2) model drop with 25 percent for models have an average
lower mantle viscosity of 2 · 1021Pas as can be seen in figure 2 of [Mitrovica and
Milne, 1998]. It is assumed that the behaviour of present-day TPW-speed as a result
of changing lower mantle viscosity for the compressible and incompressible model is
the same in this study. This changes the present-day TPW-speed of ICE-3G(VM1)
into 1.00 ◦Myr−1 and ICE-5G(VM2) into 1.37 ◦Myr−1. In the RSES(KL) model com-
pressibility has only a marginal effect on the present-day TPW-speed as a result of the
relatively high lower mantle viscosity of 2 · 1022Pas.

The discrepancies could also be due to the neglect of other forcings than GIA in the
TPW simulations like: tectonic processes associated with mountain building [Ver-
meersen et al., 1994], subduction of oceanic lithosphere [Ricard et al., 1992] and man-
tle convection. The influence of mantle convection on present-day TPW can be as large
as 0.39 ◦Myr−1 towards 24 ◦W [Steinberger and O’Connell, 1997]. This counteracts
the larger predicted present-day TPW-path from the ICE-5G(VM2) and RSES(KL)
model but decreases the part of the TPW-speed which is caused by GIA.

Any recent deglaciation events which are not taken into account in the ice model can
have a large influence on the predicted present-day TPW. A recent decrease in ice
mass of Antarctica, Greenland and mountain glaciers might lead to a higher predicted
present-day TPW-speed [Gasperini et al., 1986].

Until now all the studies that use TPW observations assumed that the observed TPW is
only caused by GIA. This assumption is made because TPW caused by other phenomena
are out of the scope of this thesis. When, for example, mantle convection is also taken
into account as one of the drivers of TPW then this will have a profound effect on the
observed TPW as result of GIA. When the results of Steinberger and O’Connell [1997]
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are subtracted from the observed TPW, the present-day TPW-speed as result of GIA will
drop and the present-day TPW-path will be pointing more in the direction of the meridian
longitude 90◦W. For older mantle inversion studies, which used the observed present-day
TPW, this will result in a higher predicted lower mantle viscosity than was concluded in
first instance.

Comparison between ice models with corresponding Earth model

Before the models can be compared properly with each other they will be separated into
an Earth and ice model to get more insight in what part of the model is responsible for
certain behaviour. To investigate to what extent the Earth models influence the present-
day TPW, the present-day TPW will be simulated with a simplified Laurentide ice sheet
in combination with different Earth models. A simplified Laurentide ice model is chosen,
because it is a simple forcing which makes it relatively easier to interpret the results. The
simple ice-load is a parabolic ice distribution on North America with a maximum height of
4000 m at LGM. The maximum height of the ice sheet is located at 90◦W and 60◦N with
a radius of 15◦. The ice-load history consists of 8 glacial cycles with 90 kyr of glaciation
and 10 kyr of deglaciation with time steps of 10 kyr. The results are presented in figure
7.9 and table 7.3.
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Figure 7.9 Predicted TPW with a simplified ice-load and three Earth models.

To investigate to what respect the ice models influence the present-day TPW, the present-
day TPW will be simulated with the same Earth model (VM2) and different ice models.
The results are presented in figure 7.10 and table 7.4.
From table 7.4 it can be seen that the ice models can differ significantly in both TPW-

speed and path and from table 7.3 it can be concluded that the Earth model has a large
influence on the TPW-speed but not on the TPW-path. These findings can be explained as
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model glaciation speed path
[ ◦Myr−1] [longitude ◦W]

ICE(VM1) linear 1.51 87.1
ICE(VM2) linear 1.03 87.0
ICE(KL) linear 0.51 87.3

Table 7.3 Predicted present-day TPW-speed and path with a simplified ice-load and three Earth models. The
predicted present-day TPW-speed is the average TPW-speed of the last 1000 year.
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Figure 7.10 Predicted TPW using three ice-load histories and the VM2 Earth model. First figure: TPW in the
direction of 90◦E, second figure: TPW in the direction of Greenwich.

model glaciation speed path
[ ◦Myr−1] [longitude ◦W]

ICE-3G(VM2) linear 0.96 68.9
ICE-5G(VM2) original 1.83 76.1
RSES(VM2) linear 1.92 75.1

Table 7.4 Predicted present-day TPW-speed and path using three ice-load histories and the VM2 Earth model.
The predicted present-day TPW-speed is the average TPW-speed of the last 1000 year.

the differences in TPW-speed, which are the result of the amount of ice distributed relative
to the axis of rotation in combination with the reaction of the Earth to the changing loads.

ICE-5G(VM2) and ICE-3G(VM1)
When the results of the ICE-3G(VM1) and ICE-5G(VM2) models are investigated there
are some distinct differences to be observed:

There is a 38 percent discrepancy in present-day TPW-speed between the ICE-



66 Results

5G(VM2) model and the ICE-3G(VM1) model. This discrepancy can be explained
by the different ice distribution of both ice models and a different lower mantle viscos-
ity of both Earth models.

– A higher TPW-speed for ICE-5G(VM2) is the result of the 25 percent more ice
at LGM on the Northern Hemisphere which is included in ICE-5G. Also the less
equally distributed ice around to the North Pole has to be taken into account. In
ICE-5G there is relatively more ice on Fennoscandia, Barentsz Sea and Laurentide
ice sheet (see figure 6.8). This gives an even higher predicted TPW-speed towards
both Greenwich and 90◦W than the 25 percent increase in mass would suggest. The
increase in mass for ICE-5G is of great influence on the present-day TPW, even
though the present-day TPW-speed as result of ICE-5G(VM2) is also somewhat
lower because less mass is melted at the end of deglaciation in comparison to ICE-
3G (see figure 6.6).

– The average lower mantle viscosity of VM2 is considerably higher than VM1, as can
be seen in figure 6.1. A shift in the average lower mantle viscosity from 2·1021Pas for
VM1 to 1.6 ·1021Pas for the upper lower mantle and 3 ·1021Pas for the lower lower
mantle for VM2 can already result in a predicted present-day TPW-speed which
will be about 15 till 20 percent lower as can be seen in figure 9 of [Vermeersen
et al., 1997]. This shows the impact a change in the lower mantle viscosity has
on present-day TPW, which is larger in the lower regions of mantle viscosity until
about 3 · 1021Pas. The lower mantle viscosity determines for a large part the
viscous behaviour of a planet and thus how fast the Earth can return to its original
isostatic equilibrium and thus the damping of TPW motion. This effect is visible
in the long-term TPW trend that appears as a result of the long glaciation phase
followed by a short deglaciation phase. After an ice-cycle is completed the Earth is
still out of isostatic equilibrium and the long-term linear trend appears. This trend
is mainly dependent on the lower mantle viscosity which is visible in the relaxation
times of some viscoelastic modes, which are longer than an ice-cycle period of 100
kyr. The lower upper mantle viscosity has only a negligible effect on the predicted
present-day TPW-speed.

The TPW-path of ICE-3G(VM1) is directed 7◦ more West than ICE-5G(VM2). This
shift is caused in ICE-3G(VM1) by a relatively larger predicted present-day TPW-speed
towards 90◦W than the predicted present-day TPW-speed towards Greenwich. This
is the result of the ice at LGM which is, in case of ICE-3G, more equally distributed
over the West and East Hemisphere as result of relatively more mass at the Antarctica
ice sheet and less mass on the Laurentide ice sheet with respect to ICE-5G (see figure
6.8).

ICE-5G(VM2) and RSES(KL)
When the results of the recent ICE-5G(VM2) and RSES(KL) models are investigated
there are also some interesting phenomena to observe.

The present-day TPW-speed of the ICE-5G(VM2) model is 52 percent higher in com-
parison to the RSES(KL) model. From table 7.4 it appears that the ice models ICE-5G
and RSES almost have the same response when the same Earth model is used. This
difference is not caused by the ice model without Earth model, but the difference is
mainly the result of the different Earth models used as can be seen in figure 7.9 and
table 7.3. The large difference in the mantle viscosity of both VM2 and KL is the re-
sult of slightly different observational data and the very different a priori model which
was used for the refinement. The small difference in the predicted present-day TPW-
speed could also be the result of the difference in the ice model, because ICE-5G has
a slightly slower melting of the ice at the middle of the deglaciation period as can be
seen in figure 6.6.

The present-day TPW-path is nearly the same because the ice with respect to the axis
towards Greenwich and 90 ◦W is nearly equally distributed. Where ICE-5G has more
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ice on the East Laurentide and Fennoscandia/Barentsz Sea, the RSES ice model has
more ice on West North America as can be seen in figure 7.11.

180˚

210˚

24
0˚

270˚
300˚

330˚
0˚

30˚

60
˚

90˚

120˚

150˚

180˚180˚

210˚

24
0˚

270˚
300˚

330˚
0˚

30˚

60
˚

90˚

120˚

150˚

180˚

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000

ice height [m]

Figure 7.11 Difference in ice height between the ICE-5G and RSES ice model. Blue represents the presence of
more ice in the ICE-5G model and red in the RSES model.

ICE-3G(VM1) and RSES(KL)
The predictions for TPW for the ICE-3G(VM1) and RSES(KL) model also have some
distinct difference, especially the predicted present-day TPW-path.

The predicted present-day TPW-speed differs about 10 percent. Firstly this can be
the result of the 25 till 30 percent more ice mass of RSES at LGM which leads to a
higher present-day TPW-speed. Secondly this can be the result of the higher lower
mantle viscosity of the KL Earth model, which is responsible for a 40 till 45 percent
lower present-day TPW-speed as can be seen in figure 9 of [Vermeersen et al., 1997].

As mentioned before the RSES and ICE-5G ice models are the quite similar and pro-
duce the same present-day TPW-path as a result of the similar effect of ice distribution
on the present-day TPW-path. So in case of ICE-3G the ice is more equally distrib-
uted over the West and East Hemisphere as a result of relatively more mass at the
Antarctica ice sheet and less mass on the Laurentide ice sheet with respect to RSES
(see figure 6.8).

7.3.3 TPW and lower mantle viscosity

As mentioned earlier TPW is highly dependent on the lower mantle viscosity. In this
section only the lower mantle viscosities of the used Earth models are changed and the
rest of the viscosity stratification is unadapted. The result is presented in figure 7.12.
More research on this dependency has been done by [e.g., Sabadini and Vermeersen, 2004;
Peltier, 1996]. When the used models are split in an Earth and ice model, the ice model
is considered to have the strongest influence on the predicted TPW-speed apart from
the varying lower mantle viscosity. The influence of the Earth model, not considering
the lower mantle viscosity, is negligible. In this case the total mass of the ice and its
distribution determines the magnitude of the present-day TPW, as was also the case with
the simulation of TPW with similar Earth model discussed in section 7.3.2.
The recent developments in ice models and reference frame will have impact on a lower

mantle inversion. Although it is trivial to draw conclusions from the use of recent ice
models on the lower mantle viscosity, because the ice models were created with the Earth
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Figure 7.12 Dependency of TPW-speed on different lower mantle viscosities of different models. The gray line
depicts the observed present-day TPW, with a value of 0.925 ◦Myr−1, as given by McCarthy and
Luzum [1996] and the black line gives the observed present-day TPW, with a value of 1.12 ◦Myr−1,
as given by Argus and Gross [2004].

models. When the hotspot reference frame is used instead of the predictions by [McCarthy
and Luzum, 1996] for a mantle inversion from present-day TPW data, a significant change
in lower mantle viscosity can be observed. For the ICE-5G(VM2) and RSES(KL) model
this gives about a 40 percent lower lower mantle viscosity and about 20 percent lower
lower mantle viscosity for ICE-3G(VM1).
Relative to older research [e.g., Sabadini and Vermeersen, 2004] the qualitative behaviour
of the TPW-speed with respect to the lower mantle viscosity of ICE-3G(VM1) is the
same. But the value of the TPW-speed itself is somewhat different when comparing with
[Sabadini and Vermeersen, 2004], especially with respect to the crossing of the predictions
and the observations. This is the result of a different forcing, namely a different eustatic
sea level change and ice distribution at LGM. Beside different Earth and ice models also
the number of layers, depth of the boundary between the lower and upper mantle and the
upper mantle viscosity have influence of the TPW-speed as a function of the lower mantle
viscosity [Vermeersen et al., 1997].

7.4 Discussion

In this section a qualitative investigation is performed on previous mantle inversion re-
search, which uses TPW observations as a constraint. It is examined if recent develop-
ments (new ice models and the hotspot-reference frame) will have effect on the results and
conclusions drawn in previous studies.

Vermeersen et al. [1998] performed a mantle viscosity inversion using, at that time, a new
SLR analysis and observed present-day TPW. In this study the SLR data of four geodetic
satellites was used over a time span of 14 years to obtain the zonal components of the geopo-
tential (Jn). The observational present-day TPW-speed value of 0.925±0.022 ◦Myr−1 used
in this study is taken from McCarthy and Luzum [1996] and uses an average lithosphere
frame. In this study the ICE-3G ice model and a radial density and rigidity stratification,
including an elastic lithospheric thickness of 120 km is used. For a 2-layer viscosity model
this resulted in an upper mantle viscosity in the range of 1020Pas to a few times 1020Pas
and a lower mantle viscosity of 5 ·1021Pas when the TPW observation is included. Uneven
and even harmonics of the geopotential give different results for the lower mantle viscosity,
which could be the result of inaccuracies in the deglaciation history of ICE-3G and other
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forcings.
But what are the consequences if a recent ice model (ICE-5G or RSES) or the observed
present-day TPW-speed relative to the hotspot reference frame (1.12 ◦Myr−1) is assumed?
In general the recent ice models account for more ice mass melted during the last deglacia-
tion (25 to 30 percent) and a different distribution of ice which can result in an even larger
present-day TPW-speed (till 200 percent) as can be seen in table 7.4.
Firstly a higher present-day TPW-speed will be expected when more ice mass is present
at LGM, which will result after mantle inversion in a higher lower mantle viscosity.
Secondly a larger observed present-day TPW-speed will constrain the lower mantle after
a mantle inversion to a lower viscosity. These results contradict each other, but it is as-
sumed that the ice model has a larger influence on the lower mantle viscosity and so it is
expected that the lower mantle viscosity will increase. This would be in better agreement
with the results of even/uneven harmonics of the geopotential change without taken into
account the present-day TPW-speed.

In the research done by Vermeersen et al. [1997] the rotational response of the Earth to
Pleistocene deglaciation is studied by means of a multilayered viscoelastic Earth model. In
this study a simplification is used, namely the ice and water distribution is redistributed
eustatically over the oceans. A forward simulation is performed using the ICE-3G ice model
regarding both the second-degree component of the geopotential (J̇2) and the present-day
TPW-speed. The mantle viscosity is constrained by comparing the simulations and the
observations from McCarthy and Luzum [1996] of both present-day TPW-speed and J̇2.
In this research the present-day TPW-speed and J̇2 is plotted against the lower mantle
viscosity and compared directly with the observed present-day TPW-speed and J̇2. The
lower mantle viscosity is determined from the area where the observed and simulated
present-day TPW and J̇2 cross. In this way also the depth of viscosity contrast and
upper mantle viscosity is examined. For a 2-layer viscosity model this results in an upper
mantle viscosity of 1 till 5 · 1020Pas and a lower mantle viscosity of 2.5 till 4 · 1021Pas. A
higher observed TPW-speed has some important consequences for the interpretation of the
results as performed by Vermeersen et al. [1997] and results in a decrease in lower mantle
viscosity. When a recent ice model is used, that contains more ice mass and has a different
distribution of ice, this would lead to a significant increase in present-day TPW-speed, as
can be seen in figure 7.12.

The results of two important mantle viscosity inversion studies are used in this study,
namely the studies of Peltier [1998] who derived the VM2 model and Kaufmann and Lam-
beck [2002] who derived the so-called Kaufmann-Lambeck model. These mantle viscosity
stratifications were both constrained by the observed present-day TPW-path for an av-
erage plate motion [McCarthy and Luzum, 1996]. If the higher observed present-day
TPW-speed is used as a constraint in the inference of the mantle viscosity this will most
likely result in a lower lower mantle viscosity for both models.

In general the mantle viscosity inversion studies are somewhat biased because usually an
ice model, which is most likely based on an Earth model and observations, is used together
with new observations to place inferences on the mantle viscosity. If the observations are
the same, the Earth model which was used to construct the ice model will be the outcome of
the investigation. Even though the mantle viscosity inversion study provides more insight
in the behaviour of the Earth it should be used with care. An alternative solution is to
use an ice-dynamical model (e.g. IMAU-model from the University of Utrecht [Bintanja
et al., 2002]) where the influence of an Earth model is much lower. This ice model is
based as much as possible on independent information such as geomorphical evidence (e.g.
glacial moraines and erratic boulders) and glacialogical model constraints.





Chapter 8

Conclusions and Recommendations

In this study the effect of changes in the rotation vector are implemented in an existing
model that solves the sea level equation. This model is used to perform a sensitivity
analysis of different ice-load histories on glacial isostatic adjustment (GIA) induced rota-
tional changes. The prediction of the rotation observables are tested against the rotation
observations in the hotspot reference frame. Further the model is used to investigate if
recent developments in the area of ice models and the hotspot reference frame impose any
possible changes in the results and conclusions of older mantle inversion research. Section
8.1 summarizes the most important conclusions. Recommendations for further research
on the thesis subject are formulated in section 8.2

8.1 Conclusions

From this research the following conclusions can be drawn:

The traditional rotation theory has been successfully implemented in the existing code
that calculates the sea level equation. This is done self-consistently, i.e. the effect on the
potential field of the induced changes in the rotation vector was taken into account in
the computation of the induced changes. The results of this model are verified firstly by
a benchmark of the perturbation of inertia and the rotational parameters and secondly
by a comparison of the predicted TPW with TPW from older publications.

The assumption of a linear glaciation phase in a saw-tooth ice-loading, which is fre-
quently used in older research, is very reasonable and causes minor differences in the
predicted present-day TPW in relation to a more detailed glaciation model.

The predicted TPW observables of recent ice models and the present-day TPW obser-
vations in the hotspot reference frame can differ significantly. The ICE-3G ice model
has a difference of 20 percent, the RSES ice model shows a relative small discrepancy of
about 10 percent and the ICE-5G model has a larger difference of 60 percent. This dif-
ference is most likely caused by the fact that compressibility is not taken into account,
other forcings are neglected and possible recent deglaciation events are not included.
The fact that TPW data is used to construct these ice models could bias the outcome
of this result.

The use of recently developed ice models and the hotspot reference frame has a signif-
icant effect on the results and conclusions of older mantle inversion research. For most
mantle inversion studies this will result in a stratification with a lower lower mantle
viscosity, which can be as large as 20 to 40 percent.
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8.2 Recommendations

The recommendations for this research are:

It is advised to continue the benchmark of the sea level equation for a rotating Earth
beyond the comparison of perturbation of inertia and rotational parameters. Further
benchmarking should be focused on comparing the perturbation of inertia as a result
of both ice and sea load followed by a comparison of RSL predictions at certain sites.

A compressible Earth model is preferred, because in case of low lower mantle viscosities
this can have a large impact on the predicted present-day TPW.

The revised rotation theory should be implemented in the sea level equation for a
rotating Earth to remove the inaccuracy introduced by the traditional rotation theory.
The derivation of the revised rotation theory from the Laplace domain to the time
domain should be continued, to allow for the implementation of the theory into the
sea level equation for a rotating Earth.

More studies could be done on the present-day TPW caused by other forcings than
GIA, like tectonic processes associated with mountain building, subduction of oceanic
lithosphere and mantle convection. When the effects of these forcings are known a
better estimate of the TPW observables as a result of GIA can be given. With these
better estimates of the TPW observables the mantle viscosity can be better constrained.

It would be interesting to perform a new mantle viscosity inference research in com-
bination with a new ice model and the TPW observations in the hotspot reference
frame, as the use of a different reference frame can have a large impact on the mantle
viscosity inversion.

An ice-dynamical model could be used that is based on as much as possible Earth-
model independent information such as geomorphical evidence (e.g. glacial moraines
and erratic boulders) and glacialogical model constraints, because the used ice models
are created using certain Earth models which make the conclusions sometimes biased.



Appendix A

Benchmark comparisons

The Fortran codes are tested with other codes to verify the correctness by using the
same input and comparing the results. Two separate benchmarks were done. In the first
benchmark the perturbation of inertia was tested (section A.1), in the second benchmark
some rotational parameters were tested (section A.2)

A.1 Perturbation of inertia

The benchmark of the perturbation of inertia is done in cooperation with Dr. Jan Hage-
doorn at GeoForschungsZentrum Potsdam who developed, together with Professor Zdeněk
Martinec, a code to calculate the rotational response of a viscoelastic Earth directly in
the time domain [Martinec and Hagedoorn, 2005]. This rotational theory is still under
development and is developed until the forward computation of the perturbation of inertia
from surface and internal loading.

A.1.1 Model parameters

Earth model
The Earth model is a spherically symmetric, self-gravitating, incompressible, Maxwell
viscoelastic 4 layer Earth model also used by Martinec and Hagedoorn [2005]. The elastic
structure is a simplified version of the original PREM model (see table A.1).

layer radius density rigidity viscosity description

[km] [kg/m3] [N/m2] [Pas]

1 6371 - 6271 4449.4 0.67 · 1011 elastic lithosphere

2 6271 - 5701 4449.4 1.4519 · 1011 5 · 1020 upper mantle

3 5701 - 3480 4449.4 1.4519 · 1011 1 · 1022 lower mantle
4 3480 - 0 10986.9 0.00 0.00 inviscid fluid core

Table A.1 4 layer Earth model used for perturbation of inertia benchmark.

Load history
The ice model is based on the global ICE-3G deglaciation history (discussed in section
6.2.1). A 100 kyr glaciation phase is assumed and the maximum extent is scaled with RSL
from far-field sites. The data is irregularly spread in time as result of the transformation
from uncalibrated years to uncalibrated years, in which the data was originally given.
These ice heights are linearly interpolated with time steps of 10 years. Also fixed coastlines
are assumed.

Topography
The topography file is based upon the ETOPO5 global topography in a Gaussian grid of
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512 x 1024 points. ETOPO5 is a global elevation database with a horizontal resolution of
five minutes (about 9 km at the equator) in latitude and longitude.

A.1.2 Output

Due to lack of computation power the ice heights are not linearly interpolated and the
ice height on the given times are used for the simulation. For the direct perturbation of
inertia as result of ice and sea load only an average difference of 0.4 percent was found,
despite of the fact that no linear interpolation of the ice heights was used.
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Figure A.1 Perturbation of inertia of degree 1 and order 3, where δIR of the simulation and Hagedoorn are
almost on top of each other.
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Figure A.2 Perturbation of inertia of degree 2 and order 3, where δIR of the simulation and Hagedoorn are
almost on top of each other.

A.2 Rotational parameters

The benchmark of the rotational parameters is done together with Dr. Glenn Milne
from the University of Durham who developed the theory on which the self-consistent
implementation of rotation in the sealevel code is based [Milne and Mitrovica, 1998].
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Figure A.3 Perturbation of inertia of degree 3 and order 3, where δIR of the simulation and Hagedoorn are
almost on top of each other.

A.2.1 Model parameters

Earth model
For the benchmark we assume a Maxwell viscoelastic, incompressible, self-gravitating
Earth model. Further a 5 layer fixed boundary model (based on PREM) will be used
with a viscosity contrast at 670 km and a lithosphere thickness of 100 km as shown in
table A.2.

layer radius density rigidity viscosity description

[km] [kg/m3] [N/m2] [Pas]

1 6371 - 6271 4120 7.28 · 1010 elastic lithosphere

2 6271 - 5951 4120 9.54 · 1010 1 · 1021 shallow upper mantle

3 5951 - 5701 4220 1.10 · 1011 1 · 1021 transition zone

4 5701 - 3480 4508 1.99 · 1011 2 · 1021 lower mantle
5 3480 - 0 10925 0.00 0.00 inviscid fluid core

Table A.2 5 layer Earth model used for benchmark.

Load history
The loading history is represented by a simplified parabolic ice sheet on Greenland with a
radius of 10 degrees (see figure A.4) which instantaneously melts at 10 kyr before present.

Topography
The topography file is based upon the ETOPO2 global topography in a Gaussian grid
of 512 x 1024 points. ETOPO2 is a global elevation database and is the successor of
ETOPO5 and has an increased resolution of two minutes (about 4 km at the equator) in
latitude and longitude.

A.2.2 Output

Glenn Milne uses a method which is capable of calculating the Love numbers for a com-
pressible Earth instead of an incompressible Earth as in Delft. Problems arose when he
tried to calculate the Love numbers for an incompressible Earth. It was decided to directly
use the Love numbers calculated in Delft, because the intention was not to verify the Love
number calculation routine. The rotational parameters correspond nicely as can be seen
in table A.3. It must be noted that Milne scales his Love numbers by dividing with the
corresponding degree, in first instance this gave a discrepancy but was solved afterward.
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Figure A.4 Ice load-distribution on Greenland at LGM.

Unfortunately due to lack of time on the side of Glenn Milne the benchmark was stopped
at this point. Further benchmarking should be focused on comparing the perturbation of
inertia as result of both ice and sea load followed by a comparison of RSL predictions at
certain sites.

parameter Milne Delft

λ1 1.360012868110 · 10−5 1.360012733618 · 10−5

λ2 1.901739492600 · 10−3 1.901739560344 · 10−3

λ3 9.057738235687 · 10−2 9.057738276403 · 10−2

λ4 0.618301272958 0.618301290392
λ5 3.015297746428 3.015297751653
λ6 3.042085759717 3.042085769663
λ7 3.435453527906 3.435453611664
λ8 3.461576155423 3.461576091314

E1 2.1955395 · 10−2 2.1955390 · 10−2

E2 0.1834799 0.1834799

E3 4.2494338 · 10−2 4.2494332 · 10−2

E4 0.2604155 0.2604155

E5 3.9907576 · 10−5 3.9904058 · 10−5

E6 8.9070236 · 10−6 8.9003609 · 10−6

E7 8.2485050 · 10−5 8.2426382 · 10−5

E8 1.7363449 · 10−4 1.7367961 · 10−4

`s 0.5097450 0.5097450
D1 0.8689550 0.8689550

D2 2.6085360 · 10−2 2.6085358 · 10−2

Table A.3 Results comparison.
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