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Abstract

Genomics, the study of an organism’s complete set of DNA, including all of its genes, has revolutionized
our understanding of biological processes and disease mechanisms. The field’s rapid advancements
have paved the way for personalized medicine, offering targeted therapies and improved healthcare
outcomes. These advancements are a result of significant improvements in sequencing technology,
bioinformatics, and computational power. Next-generation or long-read sequencing has reduced
the cost and time required to sequence entire genomes, and Oxford Nanopore Technologies (ONT)
sequencers provide 100–1000× longer contiguous reads, simplifying genome assembly. However,
bioinformatics-driven advances in accuracy have come at the cost of high computational requirements
because of the dependency on large deep neural networks (DNNs), and the basecalling step now
takes 43% of the time in the nanopore sequencing pipeline.

This thesis addresses the large computational demands for high accuracy nanopore basecalling of
nanopore reads. Bonito, ONT’s research basecaller, and other basecallers use DNNs at their core. The
five Long Short-Term Memory (LSTM) layers used by the basecaller are the primary bottleneck to more
efficient basecalling, taking almost 90% of the whole model’s execution time when basecalling a single
read. To alleviate this bottleneck, three approaches are investigated: pruning, model architecture,
and quantization. Preliminary results show that pruning is the most impactful approach and has not
successfully been used in previous work.

We propose learning structured sparsity using a delayed masking penalty scheduler. By adapting
and improving on previous work, each LSTM layer is able to learn its optimal size during training,
simultaneously with learning to basecall accurately. The method is optimized for the basecalling
application and can be generalized to other tasks. We find that the required number of computations
in the LSTM layers can be significantly reduced by up to 21 times with a reduction in match rate of
just 1.3% compared to the high accuracy Bonito model. Furthermore, the newly introduced penalty
parameter can be tuned to find the optimal trade-off between compute and accuracy for users’
requirements.

The results indicate that state-of-the-art basecalling models are overparameterized and that their
size can be reduced drastically without significantly affecting accuracy. Future work is suggested
to investigate the benefits of pruning the whole model, and to assess the feasibility of combining
pruning with advanced quantization methods. This work helps increase the accessibility of nanopore
DNA sequencing, broadening the reach and impact of this technology.

The code with the masking mechanism to reproduce the results is available at https://github.com
/meesfrensel/efficient-basecallers
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1
Introduction

Genomics is the field of biology that focuses on the structure, function, evolution, mapping, and
editing of genomes. A genome is the complete set of DNA, including all of its genes, within an organism.
Genomics has revolutionized our understanding of biological processes and disease mechanisms,
and personalized medicine can uncover more from a person’s DNA than ever. To read the genome of
a human or other organism requires sequencing pieces of DNA and assembling the pieces into e.g.
chromosomes.

Short-read or second generation sequencing reads strands of DNA that are 100–300 base pairs (bp) in
length. Because some repeating structures in the human genome like long terminal repeats span 200–
600 bp [45], short-read sequencing traditionally has not been able to assemble complete genomes
without fragmented results and missing portions [86]. As a result, assembling the whole genome
from short reads requires vast amounts of compute to run the algorithms that are able to perform
assembly with many short reads.

Long-read sequencing, also described as third or next-generation sequencing (NGS), can sequence
DNA fragments that are two or three orders of magnitude longer at 10–100 kbp, with even longer reads
of up to 2 Mbp possible with nanopore sequencing technologies [45]. While historically suffering from
low accuracy and high cost, recent advances have nearly closed the gap to short-read sequencing
accuracy [86]. Long-read sequencing allows the sequencing and assembly of the entire human
genome, which opens up possibilities for genome annotation and single-base as well as structural
variation analysis, among others, opening up possibilities for personalized medicine. Combined with
significantly reduced time-to-result, long-read sequencing is expected to find applications in clinical
settings for diagnosis and genome-based treatments, especially for neurological diseases and cancer.

The basecalling bottleneck
Nanopore sequencing is one form of long-read sequencing, in which DNA strands pass through a
nanopore to read the nucleotides. This way of sequencing, developed by Oxford Nanopore Tech-
nologies (ONT) competes mostly with PacBio’s single molecule real-time sequencing (SMRT), which
is not discussed further. A grid of nanopores is situated in a membrane that separates two voltage
biases [55]. While DNA strands pass through the nanopore, the individual bases disrupt the ionic
current through the nanopore, which is measured and is the output of the sequencer. The noisy
current disruption measurements can be traced back to bases by ‘basecalling’ software. Although
basecallers have been much improved over time, now achieving up to 99.5% accuracy, this comes at
the cost of much higher computational requirements.

Modern basecallers rely on deep neural networks (DNNs) for their high accuracy. Over the years, these
networks have become larger and more complex, requiring large, powerful and expensive graphics
processing units (GPUs) to keep up with sequencing output. GPUs can perform many operations
simultaneously, which is a good fit for the many matrix multiplications that neural networks have to
calculate. However, keeping up with sequencing output in real-time requires powerful hardware and
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consumes substantial amounts of energy. In the literature, a number of works address this problem
and propose a more efficient neural network or other method to improve the energy consumption and
basecalling speed. Nevertheless, none of these works achieve large improvements without significant
losses in accuracy.

Objectives and approach
The main problem this thesis attempts to address is the large computational demands for high-
accuracy nanopore basecalling. For real-time basecalling, an efficient basecaller requires less powerful
hardware to keep up, and re-basecalling previously sequenced data can be done faster and using
less energy. This problem can be further subdivided into the following questions:

1. What bottlenecks exist in basecalling models and how can these be alleviated?
2. What improvement avenues are feasible for the basecalling application?
3. How much more efficient can basecalling models become without sacrificing too much accuracy?

Outline
A broad overview of the nanopore sequencing landscape is presented in Chapter 2, with a detailed
introduction to basecalling. Chapter 3 discusses previous work on efficient basecalling and introduces
three neural network-oriented methods to improve efficiency. Pruning is one method that is discussed
in detail in Chapter 4, along with some experiments. Chapter 5 proposes learning structured sparsity
by masking the Long Short-Term Memory (LSTM) layers of the model. Using this method, the model
learns the optimal size simultaneously with learning to perform basecalling accurately. In Chapter 6,
the validity and benefits of the method are tested in several experiments regarding a number of
evaluation metrics: accuracy, model size, and throughput. Chapter 7 closes the thesis with conclusions
and recommendations for future research directions.



2
Background

Nanopore sequencers measure electric current as DNA molecules pass through nanopores in a
membrane, with these measurements being converted into nucleotide sequences by basecalling
software. Long-read sequencing technologies, of which nanopore sequencing is one type, address
the challenges of short-read sequencing by producing longer contiguous genome reads, significantly
simplifying genome assembly. While traditional short reads average 200 base pairs, Oxford Nanopore
Technologies (ONT) long reads offer about 100,000 base pairs, reducing the number of reads needed
for human genome assembly from 450 million to 900 thousand reads [45]. This simplification aids
in aligning long repeat sequences and determining haplotypes, a specific combination of genetic
variations on a chromosome inherited as a unit [6]. Early long-read sequencing faced issues of being
slow, error-prone, and expensive, but advancements over the past decade have increased accuracy
from approximately 60% in 2015 to around 99.5% today with ONT sequencers in the best scenario.
Despite some accuracy challenges, long-read sequencing is poised to replace short-read sequencing,
with hybrid approaches likely to remain common [6, 86].

Discussing basecallers requires some context of nanopore sequencing. The primary stages of the
sequencing pipeline are sample collection and preparation, sequencing, basecalling, and alignment,
after which downstream tasks can be performed. Examples of these include variant calling, methyla-
tion calling, and (de novo) genome assembly. At this stage, the sequenced data is useful for drawing
conclusions about gene mutations, diseases, pathogen detection, cancer identification, etc. Sec-
tion 2.1 presents an overview of the long read DNA sequencing pipeline, highlighting the importance
of accurate and fast basecalling.

Then, Section 2.2 presents a deep dive into (challenges of) the basecalling process, its history and
future within the context of the sequencing pipeline. Currently, nanopore sequencing is primarily used
‘in production’ for analysis of viral and bacterial DNA, as well as a research tool for cancer research
and diagnosis, wastewater analysis, and remote sequencing. These applications really benefit from
portable and low-power sequencing and basecalling and are presented in Section 2.3.

2.1. DNA sequencing pipeline
This section briefly presents a common long-read DNA sequencing pipeline, consisting primarily of
sample collection and preparation, sequencing, basecalling, alignment, and finally many different
‘downstream tasks’, which are discussed last.

2.1.1. Sample preparation
Before sequencing starts, the DNA or RNA samples have to be prepared according to one of the three
main strategies recommended by ONT: tagmentation, ligitation, and PCR amplification [73]. These
so-called library prep strategies heavily influence the sequencing output and picking one over the
other doesn’t have clear trade-offs but instead depends on the species, post-sequencing workflow
(see Section 2.1.4) and requirements on the output sequences. For example, one strategy might
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2.1. DNA sequencing pipeline 4

Figure 2.1: Illustration of a DNA strand passing through a nanopore in the membrane. A small piece of electronics, not shown,
measures changes in current depicted on the right. Image credit: Laura Olivares Boldú, Wellcome Connecting Science.

produce longer sequences with lower accuracy whereas another might produce shorter sequence
with higher accuracy and less homopolymer errors.

One notable sample prep technique is barcoding. By attaching a ‘barcode’ sequence to the DNA
strands, multiple DNA samples can be sequenced in one go by a single sequencer or flowcell [55].
This reduces cost and can increase sequencing throughput if the number of sequencing devices
presents a bottleneck. After sequencing, reads can be separated by finding the barcode sequence
and grouping reads by barcode. As an example, one paper claims to be able to sequence more than
10,000 specimen samples in one sequencing run at high accuracy [80].

2.1.2. Sequencing
Sequencing is the process of reading the bases of DNA strands in the prepared sample fluid. In the
case of nanopore sequencing, DNA strands are fed through a pore in a membrane. The sequencing
device measures current flowing through the nanopore, which is disrupted when molecules pass
through the pore. This current, which is in the order of around 100 pA, is measured at a rate of 4 or
5 kHz and is the output of the sequencer.

The physical makeup and functioning of nanopores is well described by MacKenzie and Argyropoulos
[55], but a short overview, illustrated by Figure 2.1, is given here. The DNA molecules are fed through
by a motor protein that separates the double helix structure and feeds them through the nanopore.
At any given time, a number of bases are present in the nanopore, which influence the flow of current
across the membrane. This short sequence of bases is called a k -mer, and for the nanopore chemistry
R9.4.1, which is used in the experiments, k = 5. Multiple bases being inside the nanopore at the same
time implies that the sequencer cannot measure current by individual bases, but only the change
in current when one of the bases is replaced by another one. This is partially why basecalling is so
difficult.

2.1.3. Basecalling and alignment
After sequencing the prepared DNA samples, basecalling is the first step in the analysis pipeline.
Basecalling is the process of assigning or ‘calling’ bases, i.e. A, C, G or T (U for RNA), to the signal
produced by the sequencing device. This critical first step determines the value of reads in the
downstream tasks, since any errors introduced here are propagated throughout the whole pipeline.
This might mean that mutations are introduced erroneously or that bases present in the DNA are
missed completely. Polishers like Medaka and NanoPolish can find and correct some of these errors
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after a draft sequence assembly to remove artifacts of the basecalling and assembly process [46], but
in general, the accuracy that a basecaller achieves is an important metric. Basecalling is discussed
in-depth in Section 2.2.

The next step is alignment of the reads to the reference sequence. This can be a whole genome, or
gene-specific references. Alignment can conceptually be split up into overlap finding, assembly and
read mapping. For short reads, alignment can be done with algorithms like Smith-Waterman [79] which
finds an optimal alignment of two sequences, but for long reads it is computationally unpractical
to use. Instead, heuristic approaches are used with tools like BLAST [5] which provides significantly
higher throughput supporting larger datasets. However, for long reads, alignment is commonly done
with optimized tools like Minimap2 [47]. Sequence alignment is an ongoing field of study, with new
research appearing each year [4].

2.1.4. Downstream tasks
Although many different downstream tasks exist, some predominant ones are discussed here: variant
calling, methylation calling, and de novo genome assembly.

Variant calling
Variant calling is a critical downstream task in the genome sequencing process, involving the identifi-
cation of genetic variations by comparing a sequenced genome to a reference genome or database of
genomes. This task is fundamental in genome analysis, as it helps to pinpoint genetic differences
that may be associated with diseases, traits, or evolutionary changes.

The primary types of genetic variations identified through variant calling include:

• Single nucleotide variations (SNVs): these are isolated changes in a single nucleotide base
within the DNA sequence.

• Insertions and deletions (indels): these variations involve the insertion or deletion of one or
more nucleotide bases in the DNA sequence.

• Repeat regions: variations in the length of DNA repeat regions, which can be either shorter or
longer than those in the reference genome.

Long-read sequencing offers significant advantages for variant calling over traditional short-read
sequencing. Long reads provide a more comprehensive view of the genome, enabling better detection
and characterization of genetic variations. In particular, long-read sequencing excels in two areas:
long reads can span entire repeat regions, which are often fragmented across multiple short reads
in short-read sequencing. This comprehensive coverage allows for more accurate measurement of
repeat length and structure [41, 45]. Second, the longer contiguous sequences provided by nanopore
sequencing facilitate the accurate identification and characterization of insertions and deletions,
which can be challenging to detect with short reads [45].

Traditionally, variant calling has been performed by aligning sequenced reads to a reference genome
and identifying discrepancies [67]. This approach, which generally uses dynamic programming algo-
rithms, relies heavily on the accuracy of the reference genome and the quality of the read alignment.
This is prone to errors that do not stem from the sequencing experiment, but instead from the
reference data.

Recent advancements have introduced the use of deep learning and neural networks in variant
calling [67, 3]. These methods can identify genetic variations independent of a reference genome,
leveraging patterns learned from large datasets to detect variations directly from the sequencing data.
This ‘connectionless’ approach offers increased portability: without the need for extensive reference
databases, variant calling can be integrated into more portable sequencing devices, making it feasible
to perform genetic analysis in various settings, including remote or low-resource environments.
Furthermore, deep learning algorithms can streamline the variant calling process, potentially reducing
the time required to identify genetic variations [67].

Methylation calling
Methylation calling is a process in epigenetics that involves identifying and quantifying DNA methyla-
tion patterns across the genome [59]. DNA methylation, a biochemical modification where methyl
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groups are added to cytosine (C) or adenine (A) nucleotides, plays a pivotal role in gene expression
regulation, genomic stability, and development. The primary goal of methylation calling is to accu-
rately determine the methylation status at specific genomic loci, typically CpG sites1, throughout the
genome [51, 59].

Several approaches are employed for methylation calling, each with its strengths and considerations.
One common method involves bisulfite sequencing, which selectively converts unmethylated cytosines
to uracils, leaving methylated cytosines (5mC) unchanged [48]. By aligning bisulfite-treated sequencing
reads to a reference genome and comparing them to the original sequence, researchers can infer
methylation status. Another approach utilizes nanopore sequencing technology, which can detect
DNA modifications directly as the DNA passes through a nanopore, providing real-time methylation
information without the need for bisulfite treatment [51].

Challenges in methylation calling arise from various sources, including sequencing errors, incomplete
bisulfite conversion, and biological variability [59]. Computational algorithms must account for these
challenges to accurately distinguish methylated from unmethylated cytosines. Furthermore, the inter-
pretation of methylation data often involves statistical modeling and bioinformatics tools to identify
differential methylation patterns between different biological conditions or tissues. As methylation
patterns are increasingly recognized for their roles in disease mechanisms and environmental re-
sponses, advances in methylation calling techniques continue to be vital for understanding epigenetic
regulation in health and disease [59]. Nanopore sequencing plays an especially important role in this
regard, allowing to perform methylation calling on sequencing data without any modification to the
samples [51].

De novo genome assembly
Reconstructing the genome of a species or sample in a population is one of the most important
tasks in genomics [60]. De novo – meaning ‘from the beginning’ or ‘from scratch’ – genome assembly
involves reconstructing a genome from sequenced reads without using a reference genome [15]. Long-
read sequencing has significantly simplified this process by reducing the number of reads needed for
accurate genome reconstruction. A widely used approach for genome assembly utilizes string graphs,
where entire reads are compared using minimizers and MinHash techniques [45].

Recent work demonstrates the use of personalized de novo genome assemblies for the detection of
somatic mutations – changes to the DNA that occur after conception – in breast cancer samples [91].
Many cancers are the results of accumulated somatic mutations. Specifically, by using a personal
genome reference instead of the standard human genome reference, it is possible to accurately
detect somatic mutations that had not been uncovered before. Using a standard human genome
reference, there are too many structural variations (SVs) to distinguish genetic differences from
somatic mutations. This work is one of a larger body of research that explores the possibilities of
personalized medicine, which is only possible with personalized genome references assembled from
long reads.

Challenges in this process primarily stem from the accuracy of sequencing and basecalling rather than
algorithmic limitations. Currently, a substantial amount of time in de novo assembly is dedicated to
correcting errors in the sequenced reads [15]. Achieving error-free, end-to-end assembly of genomes,
from telomere to telomere across chromosomes, has recently become feasible by employing novel
techniques aimed at enhancing read accuracy [45].

2.2. Basecalling
Basecalling is a critical step in the nanopore sequencing pipeline, translating raw signal data into
nucleotide sequences. Understanding the intricacies of basecalling is essential for leveraging the full
potential of nanopore sequencing technologies. As illustrated in Figure 2.2, the basecalling step takes
the longest amount of time in the sequencing pipeline for long-read technologies and therefore, this
thesis focuses on optimizing the throughput and efficiency of this step.

1CpG sites refer to CG dinucleotides, i.e. base C followed by G, and not to a C-G base pair.
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Figure 2.2: Top: basecalling takes 43% of the time in a nanopore genome sequencing pipeline. Bottom: during basecalling,
almost 90% of the computing time is spent computing the LSTM layers’ outputs. Illustration from [27].

2.2.1. Historical context and evolution
Initially, basecalling in nanopore sequencing relied heavily on simpler algorithms, which often pro-
duced high error rates. Early methods, such as Hidden Markov Models (HMMs), provided the ground-
work for interpreting ionic current disruptions but were limited by their ability to accurately distinguish
between similar signal patterns. While their implementation is relatively simple, the statistical ap-
proach is lacking, with match rates of 60–70%. Nanocall [20], a research basecaller, mimicked the
HMM architecture which was state-of-the-art at that time, but only achieved a maximum match rate
of 68%.

As technology and computational methods advanced, more sophisticated basecalling algorithms
emerged using deep learning techniques, significantly improving the accuracy and reliability of
sequence data. The first deep neural network (DNN)-based network for basecalling was implemented
in Guppy, the graphics processing unit (GPU)-accelerated basecaller that was the production tool
for many years. This implementation, by ONT, used only a single layer of recurrent neural networks
(RNNs) at first, resulting in still quite low read accuracy of around 88% [89]. This accuracy is too low
to perform any useful post-sequencing analysis [45].

Around the same time that this GPU implementation was introduced, independent researchers
developed Chiron, a basecaller whose neural network was inspired by speech-to-text models [82].
Chiron combined convolutional layers with RNNs, which meant that the raw nanopore signal could be
processed directly, without a separate segmentation preprocessing step. By utilizing a convolutional
neural network (CNN), the model extracts useful features of the raw signal instead of feeding just
the signal into the RNN directly. Finally, the outputs are classified as bases using a Connectionist
Temporal Classification (CTC) decoder. The authors of Chiron state that using both convolutional and
recurrent layers is crucial in basecalling networks, as accuracy will otherwise drop significantly [82].

The original RNN-based architectures use Gated Recurrent Unit (GRU) layers, which are a type of RNN.
While these are simpler to implement and faster to train, they lack a memory unit which turns out to
be instrumental for basecalling. In 2020, ONT introduced Bonito and Dorado, which are open-source
basecaller implementations mostly based on five Long Short-Term Memory (LSTM) layers and a mixed
CTC-CRF decoder. Combined with improvements in pore technology, this is the most important driver
of increasing accuracy and the next section and Section 3.1 provide more detail on this subject.

2.2.2. Modern basecalling algorithms
Today, the most advanced basecalling algorithms use deep learning techniques. These algorithms
are trained on large datasets of known sequences and their corresponding raw signal data, enabling
them to recognize complex patterns and make more accurate predictions.

Neural networks, particularly CNNs and RNNs, have revolutionized basecalling. CNNs are adept at
handling spatial data and can efficiently process the signal data generated by nanopore sequencing.
RNNs on the other hand, are designed to handle sequential data, making them ideal for interpreting
the continuous stream of signals produced as DNA or RNA passes through the nanopore.

One prominent example is the Dorado basecaller developed by ONT. Dorado employs deep learning
models to perform high-accuracy basecalling, reducing error rates and improving the quality of the
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sequencing data. Primarily using LSTM layers to handle sequential data dependencies, it is optimized
to handle noisy input data through the use of three convolutional layers. It uses a connectionist
temporal classification-conditional random field (CTC-CRF) output head, where the CTC part allows
the output sequence of k-mers to be shorter than the input sequence, and the Conditional Random
Field (CRF) part ensures dependencies between scores at each position. During inference, a beam
search approximates the most probable sequence of k-mers, which is then converted to a nucleotide
sequence. Dorado reaches 99.5% raw read accuracy and higher when using the newest flowcells and
super accuracy (SUP) model [10, 64].

2.2.3. Challenges in basecalling
Despite advancements, basecalling remains a challenging task due to several factors.

Signal noise The raw signal data generated by nanopore sequencing is often noisy, with various
sources of error introduced during the sequencing process, such as electrical interference, sensor
drift, and biological variability [55]. High-fidelity basecalling must accurately filter out this noise to
produce reliable nucleotide sequences.

Homopolymer regions Sequences with long runs of the same nucleotide (e.g. AAAAAA) can produce
indistinguishable signals, complicating the basecalling process. The uniform signal produced by these
homopolymer regions makes it difficult for basecallers to determine the exact number of repeated
nucleotides, leading to potential errors in sequence interpretation. Especially ONT sequencers suffer
from low accuracy in homopolymer regions, and this is an active area of research [46, 68, 75].

Speed and throughput Achieving high accuracy in basecalling is computationally intensive. Balancing
speed and accuracy is a significant challenge, particularly in high-throughput applications [72]. Real-
time basecalling requires efficient algorithms that can process large volumes of data quickly without
compromising the accuracy of the results. Additionally, basecalling sometimes needs to be performed
in resource-constrained environments, such as in the field or on portable sequencing devices. These
scenarios demand basecalling algorithms that are not only accurate and fast but also optimized for
low power consumption and minimal computational resources like memory [66].

Data volume The large volume of data generated by long-read sequencing technologies poses a
significant challenge. For example, 30 Gbases of sequencing output, not unlikely for a long sequencing
run, results in a POD5 file of around 210 GBytes (see Appendix A for details). Efficiently managing
and processing this data without overwhelming computational infrastructure requires advanced data
handling and storage solutions.

2.2.4. Impact of basecalling on sequencing quality
The accuracy of basecalling directly impacts the quality of sequencing data. The literature has often
described how the constantly improving accuracy of nanopore sequencing stems from equal parts
biotechnology (nanopore composition among others) and bioinformatics (primarily basecalling) [45,
86]. Errors in basecalling can propagate through subsequent analyses, affecting everything from
variant calling to genome assembly. Therefore, improving basecalling algorithms is a critical area of
ongoing research and development.

The future of basecalling lies in further integrating machine learning and artificial intelligence. Contin-
uous improvements in training algorithms with larger, more diverse datasets will enhance the ability
to accurately decode even the most complex signal patterns. Additionally, developing hybrid models
that combine the strengths of different neural network architectures may offer further enhancements
in basecalling performance.

Basecalling is a foundational component of the nanopore sequencing pipeline, converting raw signal
data into meaningful nucleotide sequences. Advances in deep learning have significantly improved
basecalling accuracy, but ongoing challenges remain. Continued innovation in this area will be crucial
for fully realizing the potential of nanopore sequencing technology in various scientific and clinical
applications.
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2.3. Applications of nanopore sequencing
Nanopore sequencing offers distinct advantages for DNA sequencing, particularly in low-resource
environments or situations requiring quick results. Compared to the traditional sequencing workflow,
requiring freezers and large sequencing devices in a lab, the fast turnaround time of nanopore se-
quencing enables new applications to use DNA sequencing. This section outlines various applications
of nanopore sequencing, emphasizing its adaptability and efficiency in different contexts.

2.3.1. Application domains
Species analysis in off-grid/remote locations
Nanopore sequencing proves invaluable for species analysis in off-grid or remote areas where tradi-
tional sequencing methods may be impractical. When doing species analysis in remote locations,
it is not always feasible to take samples, prepare them, and then take them back to the lab. This
might be a journey of several days, up to a week. In this case, it is critical to be able to perform
sequencing on-site, removing the need to transport samples to distant laboratories, which can be
time-consuming and challenging.

For instance, one team used nanopore sequencing during expeditions in the Kabobo biodiversity
hotspot in the Democratic Republic of Congo [23]. They aimed to discover new species and study
wildlife diversity, utilizing the portability of the technology for on-site analysis. Similarly, Ineke Knot
used MinION sequencing in the Sumatran jungle to collect molecular data on parasites threatening
orangutans, providing essential insights without needing laboratory facilities [43]. Another study [29]
demonstrated the use of solar-powered nanopore sequencing to analyze microbial communities on
an ice cap, showcasing complete offline capability from sample preparation to basecalling.

Grid power and an internet connection are usually not available in such remote locations, so it is
paramount that all principal steps of the sequencing pipeline can be performed offline. When carrying
out multiple sequencing experiments, it is infeasible to store all raw sequencing data, so basecalling
is an important step to reduce storage requirements. Furthermore, it should ideally be possible to
perform basecalling on solar or battery power, and the bioinformatics pipeline should be easy to use,
or one has to bring a bioinformatician on the team as well.

Essential requirements for these applications include a lightweight form factor, low power consump-
tion, and user-friendliness, ensuring sequencing can be performed entirely off-grid.

Wastewater analysis for pathogen detection
Wastewater monitoring and analysis has been standard practice to monitor diseases for a long time,
starting in the 1940s, and has gained more traction during the Covid-19 pandemic [16]. However,
conventional methods require taking samples on-site, and transferring those to a clinical facility. This
increases the time to result, and lowering this latency can help react to emergency situations and
guide policymakers. For some applications, it is possible to generate the first results within one hour
(Ebola) to six hours (pathogens in ICU patients) [62].

Research underscores the potential of nanopore sequencing in wastewater surveillance, enabling
quicker responses in public health crises, such as the COVID-19 pandemic [25]. Moreover, the UN Envi-
ronment Program promotes wastewater surveillance using nanopore sequencing as a cost-effective
disease monitoring method, especially in areas lacking formal sewage systems or laboratory facili-
ties [92]. In these cases, being able to do sequencing in the field is even more important than fast
results.

Key requirements for wastewater analysis include speed, simplicity, and low power consumption,
with a preference for a stand-alone form factor.

Low-cost/volume cancer research
The capability to provide rapid, high-resolution genomic data makes portable sequencing a valuable
tool for early cancer detection and personalized treatment. However, rural areas generally lack large
hospitals or medical centers with the expertise and funds for traditional sequencing technologies:
“a major disadvantage of traditional short-read genome sequencing technology has been the need
for high capital investment, which resulted in sequencing infrastructure being located in dedicated
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sequencing centres. Consequently, the shipment of samples can become the most time-consuming
step of an investigation, rather than the sequencing or analysis work itself. Research shows that such
limitations can be overcome by using portable sequencing technology, such as the MinION.” [62]

Patients who can benefit most from long read sequencing are rural and remote populations. Research
shows that these demographics have shorter life expectancies and higher disease mortality rates [78].
Being able to bring more accurate diagnosis and variant specific treatment to more and more people
is a key benefit of portable long-read sequencing. Specific to cancer is the ability to benefit from
the long reads that ONT and PacBio can provide, since detecting cancer often relies on mutations in
one of multiple repetitions in DNA. Therefore, long read sequencing with devices like the MinION can
benefit both remote and poor communities that do not have access to traditionally big and expensive
machines [8].

Key requirements for cancer research include speed, accuracy, and ease of use, with a stand-alone
form factor preferred for deployment in diverse settings.

2.3.2. Requirements
Successful sequencing experiments depend on many different factors, and the basecalling step
depends mostly on storage, compute, and energy requirements. Furthermore, some applications
depend on the portability and ease-of-use of equipment.

Energy usage The MinION uses just 5 W of power and has a very small form-factor, making it ideal
for experiments outside the lab. To facilitate this end-to-end, the energy use of basecalling must be
contained within acceptable levels, which is not the case for the current state-of-the-art.

Throughput In general, users want to perform basecalling simultaneously with sequencing, and
this has been a supported (and encouraged) workflow by ONT for quite some time now. The MinION
outputs around 1.5–1.6 Msamples/s on average, so the basecaller/computer hardware combination
must allow for this. Empirical results show that basecalling with the high accuracy (HAC) model
requires the hardware to perform around 2–3 TFLOPS. Appendix B compares several systems ranging
from server hardware to mobile phones and NVIDIA Jetsons.

Accuracy Most downstream tasks require high accuracy basecalling to be of any use. In practice,
this means that users will want to use the HAC or SUP models, and the Fast model is only useful for
preliminary species identification or similar tasks. This requirement, combined with the throughput
to keep up with sequencing, currently presents the largest challenge in nanopore sequencing.

Storage Although storage in the form of solid-state drives (SSDs) is becoming cheaper by the year,
the storage size of (POD5) sequencing output adds up over time. A single MinION run of 72 hours
can add up to 400 GB of raw data and basecalled sequences (see Appendix A for details). When on
an expedition, researchers may prefer to perform sequencing and basecalling simultaneously, but
keep raw sequencing output for re-basecalling with the SUP model afterward as well. Over multiple
experiments, data requirements easily add up to terabytes of storage.



3
Efficient basecaller architectures

3.1. Overview
In the past decade, ONT has created a plethora of tools surrounding the nanopore sequencing pipeline,
many of which are basecallers. Since the history of basecallers has been discussed in detail before [55,
65], we will focus on recent developments here. From ONT’s side, Bonito is the open-source research
basecaller that has been in development since 2020 and is often used as comparison material by
independent researchers. Since August 2023, the production basecaller in the sequencing toolkit has
changed to Dorado [63], which is a from-scratch C++ implementation of a high-performance basecaller
and aligner, among other things [10]. Dorado’s neural network architecture is the same as Bonito’s.

While products like the MinION are promoted by emphasizing their portability, it is generally not
feasible to basecall sequencing data without powerful GPUs [66]. Notably, ONT heavily invests in
optimizing the Dorado basecaller for NVIDIA’s datacenter GPUs like the A100, exploiting specific
architectural improvements that do not apply to older or cheaper GPUs [17]. This is contradictory
to the goal of portability, since it is not generally possible to take a bulky and power-hungry server
along on expeditions where power and space are scarce [29].

This section discusses the neural network that is at the core of basecallers and why this network
is so computationally expensive. Section 3.2 reviews previous work on fast and energy-efficient
basecallers, and most importantly, some high-level approaches to reducing the computational burden
of basecalling are presented in Section 3.3.

The neural network
The production basecaller Dorado and research and development basecaller Bonito share the same
neural networks and architectures to allow training and researching models that can directly be used
by Dorado. This section will discuss these networks, referring to Bonito, but this applies to Dorado as
well. In general, there are three model architectures that all are trained on different sets of data for
different flowcells, sequencing configurations, etc. These are the Fast model, the high accuracy model
(HAC), and the super high accuracy model (SUP). Users can choose between these for a different
trade-off between basecalling throughput and accuracy.

As of June 2024, the SUP model transitioned from the LSTM-based model to a new transformer-
based network, improving on many accuracy metrics within the same compute budget. However,
the Fast and HAC models remain LSTM-based. Figure 3.1 illustrates the overall architecture of these
networks, consisting of a number of convolutional layers, five LSTM layers, and finally the mixed
CTC-CRF decoder. The LSTM stack uses a ‘flip-flop’ architecture, reversing after each layer. Since the
LSTM stack takes around 87.5% of the compute time during basecalling (see Figure 2.2), this research
focuses on optimizing the size and throughput of these layers.

Comparing the Fast and HAC models, the only difference is the size of the LSTM layers: for the Fast
model, the LSTM input and hidden sizes are both 96, while the HAC sizes are 384 for both. While the
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Figure 3.1: Architecture of the Fast and HAC Bonito models

HAC model is more accurate than the Fast model, this brings an 8× increase in compute requirements.
As a result, the Fast model is usable on a wide range of hardware, while the HAC model requires a high
performance GPU to get even close to real-time basecalling. Because of this, we consider a reduction
in the LSTM stack without a large compromise in accuracy a viable way to optimize basecalling.

3.2. Previous work
Basecaller design has been a research topic since the first commercially available nanopore sequencing
device, with Nanocall being the first open-source basecaller to be developed [20]. At that time, ONT’s
basecalling software did not yet use neural networks, but used a HMM instead. Nanocall uses a pore
model to estimate the 6-mer that is in the pore at a given time – nowadays this would be a 5-mer with
newer pore technology. While this method is highly efficient, being able to keep up with a MinION
sequencer using only 4 CPU cores, its 68% match rate is poor compared to the current basecallers
that reach match rates of 99% and up.

Most research on nanopore basecallers has focused on using different neural network types and
architectures, with the goal of creating a basecaller that is more accurate than ONT’s own basecaller,
i.e., Bonito or one of its predecessors [40, 44, 54, 94]. Pagès-Gallego and de Ridder [65] provide a great
overview of all prominent basecallers developed until 2023, and benchmark them on many different
metrics, with the models being trained on the exact same datasets [65]. However, all discussed
basecallers focus on accuracy and do not consider basecalling speed to be an important metric.

A few works have nonetheless attempted to develop efficient basecallers that can run on a battery-
powered laptop, for example, while keeping the accuracy at an acceptable level when compared to
the state-of-the-art. The rest of this section discusses fast or efficient basecallers DeepNano-blitz [12],
DeepNano-coral [66], Guppy on Jetson Xavier NX [31], and its hybrid edge/cloud successor [30].
Furthermore, recent research explored the possibilities of pruning basecallers [77]. However, in this
work only single-shot pruning and training is tested, and conclude that this approach does not lead
to significant savings in compute without sacrificing accuracy. This work is discussed at the end of
this section, together with some examples of previous work on accelerating (short-read) genomics
algorithms.

DeepNano-blitz
DeepNano-blitz is one of the first basecallers focused on low-power hardware, without a GPU. To
get the highest throughput possible, DeepNano-blitz uses a small network consisting of a single
convolutional layer and a maxpool layer followed by four 64-cell wide GRU layers in alternating
direction, ending with a softmax layer and a CTC decoder to convert the predictions into bases. The
GRU layers and CTC decoder perform the bulk of the work and were also used by Bonito at that point.
The architecture is much smaller than commonly used networks that stack multiple convolutions
and have wider layers. Furthermore, to get the most out of the hardware, the implementation uses
cache-aware memory layouts and approximations for the sigmoid and tanh functions.

The paper evaluates multiple different configurations of the model, of which the most accurate model
that can keep up with live basecalling from a MinION sequencer is around 2% below Guppy’s accuracy.
When using a slightly slower configuration, DeepNano-blitz’s accuracy is the on par with Guppy’s while
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still being 3× as fast.

DeepNano-coral
The second basecaller by the same authors is DeepNano-coral, using a CNN-based architecture that
is focused on power efficiency through the use of the Core Edge tensor processing unit (TPU). It
achieves real-time basecalling of a single MinION device using just 10 W of power. By shrinking and
re-engineering the convolutional layers of Bonito and replacing the recurrent layers with a different
type of convolution, it is possible to run the entire network, in real-time, on the Coral TPU. This
method uses about half the energy that Guppy uses [66].

As is the case with the previous DeepNano basecaller, the model is evaluated in different configurations.
The most accurate version that can keep up with sequencing output, defined as 1.5 M samples/s, is on
par or better than Guppy with the fast model. However, about 4% fewer reads of the tested human
dataset are successfully mapped, which suggests that difficult to basecall reads are skipped and
therefore excluded from the accuracy evaluation.

Guppy on Jetson Xavier NX
Grzesik and Mrozek [31] take a different approach, opting to use existing basecallers on low-power
edge hardware. Because of its on-board GPU, the Jetson Xavier NX from NVIDIA is one of the few
single-board computers (SBCs) capable enough to run basecallers like Guppy. While other devices
with an integrated or on-board GPU exist on the market, this is one of the few with enough memory
to run the Kraken 2 classification software. This is not as relevant for basecalling, but an important
consideration when selecting hardware with the goal of running the whole sequencing pipeline.

Impressively, the Jetson Xavier NX is able to basecall 3.8 M samples/s in its lowest power configuration,
easily processing about two MinION sequencing outputs in real-time. However, when the HAC model is
required, throughput peaks at 480 k samples/s. It is important to note that by using the stock Guppy
basecaller, accuracy is as good as one can get and users benefit from improvements in basecalling
accuracy (and speed) that ONT provides in the future.

Hybrid edge/cloud basecalling
The same authors extend their edge analysis in later work with a hybrid edge/cloud setup to offload
work to the cloud when network is available [30]. They consider full edge processing to be too
expensive, and propose offloading processing parts of the data to a cloud service. While the premise
is interesting, at the network speeds tested (up to 512 kB/s), cloud computing cannot solve the problem
simply because nanopore sequencers generate so much data.

While the total time to process a dataset is reduced by 15-20% in ideal conditions, the dependence
on a stable and sufficiently fast network cannot necessarily compete with the simple workflow of
fully offline processing. Although a higher-speed internet connection could significantly reduce the
processing time, this requirement does not align with the expected infrastructure at more remote
locations. Nowadays, however, a Starlink connection might be a viable option, providing 5–25 Mbps
upload bandwidth [81], but this does mean bringing extra equipment on expeditions. Lastly, especially
for independent researchers, setting up cloud infrastructure for 15% time savings seems like a skewed
trade-off.

RUBICON
The Rubicon framework by Singh et al. addresses the challenge of efficient basecalling through a
framework optimizing for hardware. The paper introduces Rubicall, the first hardware-optimized
mixed-precision basecaller, outperforming current models in throughput. The framework uses QABAS,
a quantization-aware basecalling architecture search framework, and SkipClip, which removes skip
connections without accuracy loss [77].

The framework generates a mixed-precision neural network architecture, with bit widths as low as 2
or 3 bits. While the paper reports impressive speedups of 3.8× over previous work like Dorado Fast, it
requires the use of specialized hardware that supports these mixed-precision operations. On a GPU,
reported basecalling throughput is about 15× slower than Dorado with the Fast model. Furthermore,
in the paper, a study into pruning is performed, but for both structured and unstructured pruning,
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the authors are not able to obtain a significant speedup without severely impacting accuracy. This
is an important point, and is discussed at length in Chapter 4 and we propose a solution to fix this
accuracy drop in Chapter 5.

Short-read algorithms
There is also a large body of research that uses dedicated hardware accelerators for genomics
algorithms [1, 37, 38]. These algorithms can be effectively accelerated on hardware due to their
dataflow nature [2]. However, the accelerated algorithms are classical algorithms commonly based on
dynamic programming [69] such as Smith-Waterman or probabilistic analyses [70], which is different
from the LSTM-based approach used in Bonito.

Conclusion
The evolution of efficient basecallers highlights the difficult trade-off between model complexity,
speed, and accuracy. Basecallers such as DeepNano-blitz and DeepNano-coral demonstrate high
efficiency and competitive accuracy on low-power hardware, showcasing implementation approaches
like cache-aware memory layouts and the use of the Coral Edge TPU. Despite their simpler architectures,
these models achieve high throughput with minimal energy consumption, making them suitable for
resource-constrained environments. However, basecalling accuracy lags behind when compared to
the state-of-the-art.

Conversely, leveraging existing high-accuracy basecallers on advanced low-power devices, such as
using Guppy on the Jetson Xavier NX, presents another effective strategy. This method balances
power efficiency with high basecalling accuracy, demonstrating the potential of advanced hardware in
improving computational performance. However, this approach does not lead to savings in compute.
While hybrid edge/cloud basecalling offers intriguing possibilities, its current limitations due to
network constraints highlight the ongoing challenge of optimizing both accuracy and efficiency in
basecaller design.

3.3. Reducing the computational burden
Although many strategies exist to reduce the computational burden of basecalling, we argue that
optimizing the existing Bonito models is the best way forward, for a number of reasons. First, the
convolution-LSTM-CRF architecture is a proven model architecture. Over the years, a large body of
research has attempted to improve over the state-of-the-art basecallers, but the LSTM has never
disappeared. Second, ONT provides some support for research into basecallers via the Bonito
repository, which is up-to-date with the state-of-the-art Dorado basecaller [76]. This makes it easy to
keep developments in line with new implementations in Bonito.

In this section, three possible optimization avenues are explored: quantization, to represent weights
in fewer bits, changing the model size and architecture, and finally pruning. This is the process of
removing (redundant) weights from the model to save space and reduce compute.

3.3.1. Quantization
In machine learning, quantization refers to the process of reducing the precision of the numbers
used to represent a model’s parameters (weights) and/or inputs and outputs [49]. This is typically
done to optimize the performance of models in terms of memory usage and computational efficiency,
making them more suitable for deployment on resource-constrained devices like mobile phones
and embedded systems. GPUs have increasingly added support for higher throughput compute in
lower precision, e.g. INT8 (an 8-bit integer). Recently, a broad group of manufacturers standardized
microscaling formats, including an FP4, that will find support in upcoming hardware [71]. Combined
with the order(s) of magnitude higher floating-point operations per second (FLOPS) that these devices
can perform using tensor cores [61], quantization is a viable way to accelerate basecalling throughput
without sacrificing accuracy.

Types and techniques
Quantization can be categorized into several types based on how the precision reduction is applied.
Uniform quantization involves mapping continuous values to a fixed number of uniformly spaced
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Figure 3.2: Average match rate and AUC of reads sorted by decreasing PhredQ score

levels, making it straightforward to implement and widely used. Non-uniform quantization uses
varying step sizes between levels, optimizing precision in value ranges that occur most frequently,
thus improving accuracy where it is needed most [11]. Dynamic quantization applies quantization
only during inference, allowing the model to maintain higher precision during training and switch
to lower precision for deployment. Conversely, static quantization quantizes both weights and
activations during training, ensuring the model operates at lower precision throughout both training
and inference [11, 49]. Each type has its specific use cases and advantages, tailored to different
deployment scenarios and performance requirements.

Second, quantization techniques focus on how and when quantization is applied to a model. Post-
training quantization involves quantizing a pre-trained model, which is simpler to implement but can
lead to a drop in accuracy due to the abrupt precision reduction [49]. On the other hand, quantization-
aware training incorporates quantization during the training process itself, allowing the model to
learn and adapt to the lower precision throughout training. This approach generally results in better
performance and accuracy retention compared to post-training quantization, as the model parameters
are fine-tuned with the quantization constraints in mind from the beginning. Each technique offers
different trade-offs in terms of complexity, accuracy, and ease of deployment, and the choice between
them depends on the specific requirements and constraints of the application.

Quantizing Bonito
To test the possibilities of quantization for basecalling specifically, we compare baseline Bonito-HAC
to the same model, with the LSTM layers dynamically quantized post-training to INT8. Firstly, the match
rates are nearly the same at 52.2%, which is unexpected due to the loss of precision. However, this is
partially explained by the difference in pass rates: the baseline has a pass rate of 95.8% compared to
86.3% for the quantized model. This indicates that the quantized model might basecall some reads so
badly, that they cannot be aligned; then, these reads are not considered when calculating the match
rate.

The area under the curve (AUC) results in Figure 3.2 show that while the average match rate over all
reads is the same for both models, the downward slop of the non-quantized model indicates that it
is able to distinguish (in)correct reads and assign a quality score accordingly. In contrast, the curve
of the quantized model is much flatter and shows little decay from the ‘good’ to the ‘bad’ reads –
according to the model. For downstream applications, the PhredQ score can be used by algorithms
for alignment or other tasks, but if the average score is nearly the same for both correct and incorrect
reads, it is not a useful measure.

Post-training quantization is not ideal, as the model is not adjusted to the reduced precision of
calculations. This is acknowledged by the data in Figure 3.2, and using quantization-aware training
should result in much closer AUC curves. However, since many successful examples of quantization in
machine learning and specifically basecalling exist [77], this is not explored any further.
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State-of-the-art
Quantization has been a topic of much research for a long time. These days, many neural networks
used in production employ quantization [49]. Dorado is also quantized to a large extent: depending
on the input and hidden sizes, the LSTMs are quantized to FP16 or INT8 wherever hardware supports
it. This is a form of dynamic quantization because full precision is used during training. Interestingly,
the basecalling match rate is not noticeably reduced due to quantization. In fact, it is suspected that
quantization in general can improve model accuracy due to better generalization over the dataset,
when using static quantization [49]. Because a model is trained in lower precision as well, it learns to
classify noisy and less accurate data. Since Dorado can run INT8 quantized LSTMs, and previous work
has explored quantization to much lower bit representations [77], this thesis will not go into more
detail on quantization.

3.3.2. Model size and architecture
One of the best ways to increase a model’s performance, be it in terms of latency or throughput, is to
reduce the model’s size. By changing the architecture to only three LSTM layers for example, 40% of
the compute in the LSTM stack is removed, leading to a 25% reduction in total compute. Additionally,
by making the CTC-CRF output decoder less complex, some compute can be saved there as well.

Another approach is to reduce sizes of the layers, as is done for Bonito Fast. Essentially, Fast and HAC
are the same model, with one main exception: the final convolution output size and all LSTM input
and hidden sizes are reduced from 384 to 96. Since memory requirements are reduced accordingly,
the batch size can be much higher as well. This is reflected by an increase in basecalling throughput
of 5–6× [33].

To quantify the effect of the aforementioned reduction in LSTM layers, Figure 3.3 illustrates the change
in match rate. As can be seen, when trained on the same data for the same number of epochs, the final
match rate ends just 0.7% below Bonito HAC for the three layer version. Additionally, the removal of
two layers results in an increase in basecalling throughput of around 35%, matching our expectations
since the LSTMs are the main bottleneck.

Transformer architecture
With the rise of transformer-based [83] large language models [13], it is only natural to perform
some research into adapting the LSTM-based model to use attention layers. Two basecallers that use
attention exist: SACall [40] and CATCaller [54]. However, both basecallers cannot keep up with Bonito
in terms of accuracy [65] and place no focus on speed and throughput, being orders of magnitude
slower than Dorado.

The intuition is that attention can improve basecalling accuracy, allowing for a smaller model to settle
at the same accuracy as the LSTM-based model. However, as previous work has shown [40, 54], this is
non-trivial. Drawing inspiration from speech-to-text techniques [7, 14, 39] and transformer models
aimed at sequence-to-sequence tasks [18, 26], our experiments have been unsuccessful at achieving
accuracy results comparable to Bonito.
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Since May 2024, Bonito’s SUP model uses FlashAttention [19] layers instead of the LSTM stack. ONT
claims [21] that using the same amount of compute, the new model achieves higher accuracy across
the board: higher match rate, lower homopolymer error rates, etc. However, at lower compute budgets
suitable for Fast and HAC models, the LSTMs remain competitive and so these models are unchanged.

3.3.3. Pruning
Pruning is a model optimization technique used to reduce the size and complexity of neural networks
by removing parts that are deemed unnecessary. This can be applied to single weights (connections
between neurons), neurons, blocks of weights, or even complete layers [36, 49]. In the context of
basecalling, pruning can significantly enhance computational efficiency and reduce memory usage
without substantially compromising accuracy. By identifying and eliminating redundant or less
impactful parts of the network, pruning helps streamline the model, making it faster and more
suitable for deployment on resource-constrained hardware [58].

Model compression through pruning not only accelerates inference times but also lowers the overall
resource demands, facilitating real-time sequencing applications. The following chapter, Chapter 4,
provides an overview of various pruning methods and their specific applications and benefits in
basecalling through experiments.

3.3.4. Selecting a method
To reach the goal of reducing the computational burden of basecalling and specifically, the LSTM
stack, three methods have been presented in this section. While a first investigation shows promising
results in each direction, we attempt to push the boundaries on just a single front, in the interest of
time.

Quantization excels at reducing the overparameterization in neural networks: if a neuron can only
be in two states, a 1-bit number is able to represent that state. In theory, quantization can provide
enormous reductions in the compute requirements, but implementations heavily lean on field-
programmable gate array (FPGA) and custom hardware platforms. GPUs do have more and more
support for quantization, but bit widths of less than INT8 are not well-supported at the moment
in data center GPUs, let alone consumer ones. The lack of GPU support, combined with previous
work [77] approaching the limits of low bit width representations, means that quantization is not a
viable research direction for this thesis.

Changing the neural network’s architecture is the option that most previous work has opted for.
However, after about ten different papers each trying something different, the LSTM-based network is
still the standard, and this is not expected to change. Furthermore, improving the throughput and
accuracy using a different network architecture requires in-depth knowledge of machine learning,
training strategies, and access to high-quality training data.

Pruning, on the other hand, offers versatile approaches to optimizing basecallers, particularly in
reducing the compute requirements of the LSTM stack that dominates compute. The lack of stan-
dardized pruning approaches and research into pruning LSTMs and RNNs in general highlights a
scientific gap that can be closed in the process. Unlike quantization, pruning does not rely heav-
ily on specialized hardware, allowing for broader applicability across various platforms, including
standard GPUs. Moreover, pruning can be implemented with a relatively shallow understanding of
neural network architectures, making it accessible for researchers and engineers with limited machine
learning expertise. Given these advantages, pruning emerges as a practical and achievable method
for enhancing the efficiency of basecalling neural networks in this thesis.



4
Pruning

Pruning (deep) neural networks is the process of removing redundant weights (connections) or
neurons from a given network. Pruning received a lot of interest in the past decade, starting with
the research of Han et al. who propose the three step iterative pipeline of training, pruning, then
fine-tuning [34]. While their work results in a large reduction in the number of connections, it does
not focus on neuron (or structured) pruning, thus preventing effective reduction in computing needs.
This is explained in more detail in Section 4.1.1. Furthermore, this and many subsequent works focus
on CNNs for computer vision tasks [49], whose concepts in general cannot be directly applied to RNNs
which operate on sequences.

This chapter presents an exploration into pruning Bonito’s neural network. Section 4.1 discusses
the general strategies of unstructured and structured pruning, as well as two specific methods. The
results of the latter are presented in Section 4.2.

4.1. Methods
Many different pruning strategies exist for different layer types, network architectures, hardware
architectures, etc. Since the LSTM stack takes up the majority of the computation time (87.5% for the
HAC model), we focus primarily on reducing the size of the LSTM layers. These can help achieve the
highest level of compression but mainly the highest speedup.

For theoretical savings, unstructured magnitude pruning is the simplest strategy available: take the x%
smallest weights and remove them. L2 pruning can achieve higher accuracy but requires retraining [34].
However, these methods introduce unstructured sparsity, which is non-trivial to accelerate. Block
pruning exploits speedup via block sparsity, which can be hard to achieve but is definitely possible.
Neuron pruning does not induce sparsity but instead removes entire rows/columns from the weights
matrices because the whole neuron and its connections are removed. This method can highly affect
accuracy as not just unimportant weights are removed, but weights with a large magnitude can be
pruned as well.

4.1.1. Unstructured pruning
Unstructured pruning is a simple method for reducing the number of nonzero weights in a model [34].
It follows a typical three-step process: first, a large model is trained; second, the weights with the
smallest magnitudes are pruned, effectively setting them to zero; and finally, the model undergoes
fine-tuning to recover any lost accuracy. The final two steps can be repeated with smaller pruning
rates to retain more accuracy. This process essentially removes connections or synapses between
neurons from the model, as illustrated by Figure 4.1.

The downside of this method is that it introduces random and unstructured sparsity in the weight
matrices, which makes it nontrivial to speed up training and inference on current computer hardware.
Conventional math and tensor libraries cannot take advantage of a low degree of unstructured
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Figure 4.1: Visual explanation of pruning synapses (weights) and neurons. Image from [34].

sparsity: most require sparsity levels of 99% and above to reduce the required computations [36]. At
lower sparsity levels, the overhead associated with managing and accessing sparse data can outweigh
the benefits, making the approach less feasible for deep neural networks.

Unlike dense matrix-matrix operations, sparse matrices suffer from irregular data access patterns
and poor temporal and spatial locality [90]. For neural networks, unstructured sparsity is not well-
supported on today’s hardware architectures [36]. 90% sparse workloads perform slower than
computing zeros in a dense workload in one example on GPU [35] and another example, on a CPU,
shows that an 89% sparse neural network performs 25% slower [93]. Implementations for unstructured
sparsity at lower levels of sparsity are not mature enough for production use and real-world speedup.

4.1.2. Structured pruning
While unstructured pruning methods that simply prune individual weights can be applied to LSTMs
and other RNNs, these are of limited use and a shift towards structured pruning is needed. The
process involves evaluating the importance of each neuron which can be based on several indicators,
like the magnitude of its associated weights, its effect on the output of a layer or the whole network,
and adding some influence on the value of the loss function [36]. Some previous work focuses on
mathematically reducing the size of a network by monitoring neuron activity [74] or using new criteria
to identify the optimal pruning rate [28]. Wang et al., focusing on an FPGA implementation, prune
the columns of weight matrices with the smallest L1 norm [84]. Another FPGA-based method uses a
compression technique with block-circulant matrices instead of sparse matrices [85].

This chapter mainly deals with magnitude-based pruning, and as such, an exploration of magnitude-
based columnar pruning methods is presented here. Similarly to unstructured pruning, it is possible to
perform an iterative process of training, pruning, and fine-tuning. This approach is easy to implement in
frameworks like PyTorch and gives a good indication of the possible savings in model size. Furthermore,
columnar pruning, or neuron pruning, directly allows faster and more efficient inference [36].

Our method is closely aligned with [84] with the major difference being the shift from FPGA to GPU.
The pruning step is as follows: a critical value Cw determines that a column should be pruned away
if the sum of its elements is smaller than Cw . Furthermore, weights that are kept are multiplied by a
factor based on the critical value and the sum of the column. This ensures that output magnitudes
do not reduce by too much. The results of the columnar pruning exploration in Bonito are presented
in Section 4.2.

Neuron selection
The downside of magnitude-based structured pruning is that many of the weights are removed at the
same time. While a model’s accuracy can be state-of-the-art before pruning, it is often hard to obtain
accuracy close to the original after pruning, even with fine-tuning. Wen et al. present intrinsically
sparse structures (ISS) for LSTMs [88], one of the first works proposing to learn structured sparsity in
RNNs. Later research adapts this method for GRUs [52], which is then improved by introducing the
concept of neuron selection to structurally shrink the size of LSTM layers [87]. This approach treats
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number of nonzero parameters remaining in the model after pruning.

structured sparsity as an attribute that can be turned on or off for each input and hidden neuron in
the LSTM layer. This selection mechanism is built into the LSTM as a mask and thus, the sparsity can
be learned like any other parameter [87]. Using a penalty hyperparameter the model can be tuned to
achieve the desired sparsity/accuracy trade-off. The neuron selection mechanism is adapted and
improved on in Chapter 5.

4.2. Results
To get an idea of the obtainable level of sparsity, we follow the L1 regularization procedure originally
described in [34] to prune a pre-trained Bonito-HAC model by zeroing out the weights with the smallest
magnitude, until the desired sparsity percentage is reached. Then, the resulting model is fine-tuned
for two epochs while keeping the ‘pruned’ weights set at zero. Additionally, we test the columnar
pruning method described earlier.

Unstructured pruning The results of this pruning and fine-tuning are shown in Figure 4.2, with
different lines corresponding to pruning different sets of layers. For each configuration, we prune
those layers by some percentage, shown in the left plot. Second, we align the results by the number
of nonzero parameters left in the model, shown in the right plot. This illustrates a clear, coherent
downward trend as the number of parameters is reduced.

While we do not fine-tune the model over the whole dataset for the same number of epochs as the
original model has trained, as described in [34], the pattern is clear: pruning is an effective way of
decreasing the number of parameters with a minimal decrease in accuracy, i.e. about 1.5% when
pruning the middle three layers by 90%. As mentioned before though, unstructured sparsity is not
suitable for speedup.

Structured pruning The results for the columnar pruning method are shown in Figure 4.3. Especially
the match rates, that remain close to the baseline up to 30% pruning rates, are a positive sign that
pruning is a viable optimization method. However, the stark decline of the pass rate, which is how
many of the reads can be aligned after basecalling, signals that the model struggles to keep up with
difficult reads. Notably, after slowly decreasing over higher pruning rates, the match rate ends up
increasing to above baseline levels at a pruning rate of 50%. As noted before, this suggests that
difficult reads are skipped after alignment while easier reads are successfully basecalled.
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5
Learning structured sparsity

5.1. Introduction
The fundamental problem with most pruning methods is the lack of structured sparsity. Intuitively, an
element-wise operation on a matrix that is 50% sparse, should take 50% less floating-point operations
(FLOPs) compared to a fully dense matrix. Unfortunately, conventional math and tensor libraries
cannot take advantage of a low degree of unstructured sparsity, as discussed in Section 4.1.1.

Dorado and other basecallers rely on DNNs for their high accuracy. Over the years, these networks
have become larger and more complex, requiring large, powerful and expensive GPUs to keep up with
sequencing output. Figure 2.2, presented before in Section 2.2, illustrates that about 43% of the time
in the nanopore sequencing pipeline is spent on basecalling, with nearly 90% of this time dedicated
to computing the LSTM layers. This hampers field deployment because, while mobile sequencing is
very much possible, analyzing the data is not.

The size of many DNNs is prohibitive to deployment on resource-constrained devices due to their
high memory requirements and the substantial number of operations needed to process inputs.
Furthermore, the energy required to process DNNs is typically well above the limits of mobile devices
[34]. Neural networks are often over-parameterized, resulting in significant redundancy in DNNs
[24]. Research indicates that it is often possible to prune at least half of the parameters without
affecting accuracy, and with an effective retraining strategy, up to 90% of parameters can be removed
without significantly impacting accuracy. Recent work [77] explored the possibilities of pruning
basecallers specifically, but the authors conclude that this approach does not lead to significant
savings in compute without sacrificing accuracy. However, their approach is a single-shot pruning and
fine-tuning method, which is known to be suboptimal [36].

This work proposes a pruning approach that is highly effective in reducing the size and computational
complexity of DNNs and apply it to basecalling models. Results show that the required number of
operations can be reduced by 21× and throughput is increased by 2.4×, while maintaining accuracy
within 1% of the baseline model, Bonito-HAC. Pruning neurons decreases the number of calculations
needed and the storage size on both disk and in memory, reducing the size and energy requirements
of the basecalling pipeline.

In Chapter 4, the limitations of the pruning and fine-tuning pipeline have been discussed. This
chapter introduces the concept of neuron selection in Section 5.2 and the addition of a delayed
masking scheduler is presented. Alternative pruning and model compression techniques in general
are discussed in Section 5.3. These methods did not work well for our application and have been
discarded. For the benchmark results as well as a basecalling speed comparison and ablation study,
refer to Chapter 6.

22



5.2. Neuron selection 23

Input-to-hidden
mask Ŵ
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Figure 5.1: Illustration of the masking mechanism

5.2. Neuron selection
The principal optimization method used in this work is structured pruning of LSTMs through neuron
selection, proposed originally by Wen et al., which regularizes a neural network by adding a mask over
the neurons and penalizing nonzero mask entries [87]. By making this penalty part of the loss function,
the network can learn the weights for accurate basecalling as well as which neurons are required to
maximize the accuracy, at the same time. In practice, this requires a custom LSTM implementation
and thus training is slower than using standard highly optimized LSTM implementations.

After training, the model can be compressed and inference is much faster than the original model, by
up to 20× for a simple language processing experiment. Unfortunately, the authors do not provide
benchmarks on larger or more difficult tasks. Furthermore, our implementation is, to the best of our
knowledge, the first adaptation and implementation of [87].

5.2.1. Method
By introducing a set of binary random variables, which can be interpreted as switches for indi-
vidual neurons, it is possible to structurally prune the LSTMs through neuron selection. Let W =
{Wi ,Wf ,Wo ,Wc} and U = {Ui ,Uf ,Uo ,Uc} be the input-to-hidden and hidden-to-hidden weight
matrices, respectively. Furthermore, let mask s = {s i }, which controls the presence of the hidden
neuron i , where s i ∈ {0, 1} and |s | is the number of hidden neurons, or the ‘hidden size’. While
training, the weight matrices are masked by ‘turning off’ rows and columns when the input or output
neurons are masked with s . This gating mechanism is visualized in Figure 5.1. For convenience, the
original matricesW and U are re-parameterized to Ŵ =W ⊙ 1s⊤ and Û = U ⊙ ss⊤ where 1 is the
all-ones vector.

Conceptually, the binary random variable s is sampled from a Bernoulli distribution with s i ∼
Bern(πs i ) where πs i denotes the probability of the random variable s i taking value 1. However, it is
impossible to simply minimize its L0 norm by gradient optimization, since the Bernoulli distribution
is not differentiable. By remodeling to a hard concrete distribution [53], a modification of the concrete
distribution [56], we obtain the following procedure to obtain mask variable s :

u ∼ Uniform[0,1],

τ̂ = σ ((logu − log(1 − u) + logα)/β ),
τ = τ̂ (ζ − γ) + γ,

s = min(1,max(0, τ)),

(5.1)

where τ̂ is a sample from the concrete distribution with location and temperature parameters logα
and β , respectively, which is then stretched to the (ζ, γ) interval and clamped in a hard-sigmoid
fashion. Note that instead of optimizing α , logα is directly optimized. This results in a function that
is differentiable and can therefore be implemented in and optimized by machine learning frameworks
with autograd like PyTorch and Tensorflow. The probability of s being non-zero, which is used in the
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loss function, is then computed by the cumulative density function Φ:

Φs (s , 0|φs ) = σ (logα − β log
−γ
ζ
), (5.2)

where φ = {α , β , γ, ζ} denotes the parameters of the hard concrete distribution.

5.2.2. Optimizing training time
The original method from [87] imposes an additional mask z over the input neurons of each LSTM
layer. However, in our experiments we find that none or only a couple of input neurons get pruned in
practice when the penalty is small. This can be attributed to the fact that there are 4096 possible
5-mers that could be in the nanopore1. Pruning away the input neurons removes too much state
information from the model, which has a large impact on the model accuracy. This effect is observed
in the original paper as well, but the authors do not suggest any remedy except for lowering the
penalty value for the input neurons. However, this does not lead to better model compression but
instead results in keeping all input neurons for our model.

Since the neuron selection mechanism is not implemented in the standard LSTM implementations in
PyTorch, we resort to a handwritten implementation in Python, with each tensor multiplication or
other operation explicitly written out. This results in highly inefficient training due to overhead, data
movement, and lack of parallelism. Therefore, by removing the input neuron mask and its random
sampling and preprocessing, training is more efficient. This adjustment decreases the training time
by 10–20% while maintaining the effectiveness of the neuron selection mechanism.

Without the extra mask z , the loss function can be simplified a bit. Given that | |x | | is the input size,
the loss and objective functions are formulated as follows:

L(W ,U ,φ) = ÅΦ (s |φ ) [ÅD (W ,U , s)]
+ λ

∑
i

( | |x | | · Φs i (s i , 0|φs i ))

+ λ

i,j∑
i ,j

(Φs i (s i , 0|φs i )Φs j (s j , 0|φs j ))

+ λ
∑
i

Φs i (s i , 0|φs i )

(5.3)

(W ∗,U ∗,φ∗) = arg min
W ,U ,φ

L(W ,U ,Φ) (5.4)

5.2.3. Delayed masking
Another new contribution is the addition of a warm-up scheduler to prevent the model from collapsing
at the start of training. We find that at high penalty rates, e.g. > 3 · 10−7, the autograd optimizer
is eagerly pruning the model to reduce the value of the loss function, but this happens so quickly
that the model does not have enough time to learn patterns in the data at all. The result is that the
model is pruned to a hidden size of (nearly) 0, with the accuracy also sitting at 0%. This effect is a
result of the model’s performance during training: as can be seen in Figure 5.2 (top), the loss value
stays consistently high at 1.4–1.5 until dropping off after 6000 training steps. It is at this state that
the model grasps the structure of the nanopore squiggle, as the validation accuracy jumps from 0 to
about 70% in subsequent steps.

We propose a penalty scheduler to prevent this issue from happening at larger λ penalty values. By
delaying the masking to a later moment, we give the network time to train and learn before more
aggressively turning off neurons. For example, using a step function from a modest 0.5 · 10−7 at the
start, to λ’s intended value at 10000 training steps (see Figure 5.2) keeps the model at about 90%
of its original size for the first part of training. After this time, the full penalty value is used and the

1There are always 5 bases in a nanopore at the same time, each base can be one of 4, so there are 45 = 4096 total possible
states.
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model is masked much more aggressively. While we use a step function with a fixed step moment in
this paper, more elaborate schemes using linear or sigmoid functions and a dynamic step moment
can be tested in the future. The penalty warm-up is a novel contribution that we believe can benefit
any application that is learning structured sparsity in a neural network.

5.2.4. Efficient inference
During training, the weight mask is recalculated with every forward step, with each neuron being
(de-)activated based on a random sample from its entry in s . As the neurons are ‘selected’ over the
course of the training steps, the probability of a neuron being active is generally not truly zero, to
allow correction based on the output accuracy. Consequently, no practical speedup is obtained over
the complete starting model. When training is complete, the model can be structurally pruned by
removing rows and columns that are all zeros from Ŵ and Û , as well as the bias vector. Then, these
weights can be used for a plain LSTM layer with a reduced hidden size of | |s | |0.

To motivate and quantify the benefit of smaller LSTM layers, consider that the computational intensity
is dominated by the hidden size: the approximate number of FLOPs per batched LSTM step is N ×D ×
(I +D ) × 8 FLOPs2 where N is the batch size and I and D are the input and hidden size, respectively.
An LSTM with an input and hidden size of 384, like Bonito’s, therefore requires 2.4M FLOPs for a single
timestep with batch size 1. If the hidden size is reduced to around 120, as shown in Table 6.1 with
λ = 6 · 10−7 for example, the inference step requires just 484k or 0.2× the FLOPs. This reduction of
the hidden size D for the LSTM’s O(D 2) computational complexity results in a substantially more
efficient model.

The layers in the LSTM stack are placed back-to-back or output-to-input, meaning that a reduction of
the hidden size in one layer can be directly transferred to the next layer’s input size. If the same mask
is used, the model outputs are exactly the same, but there is ‘free lunch’ for speeding up the model
and this is actively exploited in our experiments.

2×4 · 2 because the LSTM has 4 gates that each operate on the input, and a multiplication and addition have to be performed
for each element.



5.3. Evaluation of alternative pruning methods 26

5.3. Evaluation of alternative pruning methods
In the process of enhancing the efficiency of nanopore basecalling models, we evaluated several
alternative pruning methods proposed in the literature. Despite their promise, the methods discussed
in this section did not perform as well in our specific application as reported in the original papers.
For example, the Selfish-RNN sparse-to-sparse training method proposed in [50] did not perform
nearly as well as the standard dense training method. Using the implementation provided by the
authors, the final match rate was 10–13% lower than the baseline. This could be due to the model
being small from the start, without being trained on the data at full size first.

The C-LSTM method involves compressing LSTM networks using block-circulant matrices, which sig-
nificantly reduce the number of parameters and computational complexity [85]. The approach uses
block-circulant instead of sparse matrices to compress weight matrices and reduces the storage re-
quirement from O(n2) to O(n) and Fast Fourier Transforms to reduces the computational complexity
from O(n2) to O(n log n). Although this technique demonstrated impressive results on FPGA imple-
mentations, it did not translate well to our GPU-based environment. The block-circulant structure
introduced challenges in adapting the model to our specific basecalling tasks, and we were not able
to successfully train a model.

A linear surrogate of the LSTM cell using linear recurrence [57] is a promising replacement for the
standard LSTM cells in the LSTM layers. As a precursor to linear state-space models like S4 [32], it
changes the iterative nature of recurrent models to a parallel scan algorithm. This parallel linear
recurrence can be efficiently computed by parallel solvers like GPUs and thus appears to be a good
alternative. For our basecalling application, however, experiments show that the accuracy did not get
close to the baseline accuracy. Similar to Selfish-RNN, accuracy was about 9–11% below baseline.

Despite the initial promise of these methods, our experiments highlight the importance of domain-
specific optimization. The unique challenges posed by nanopore basecalling, such as electrical
noise and highly variable sequencing speed, necessitate pruning techniques that can maintain
high accuracy while efficiently reducing computational requirements. This suggests that not all
sparsification methods are created equal, and that one can not directly apply a single best method to
any application. As such, our focus shifted towards structured sparsity and neuron selection, which
proved to be most effective for our purposes.



6
Experiments and results

This chapter presents several experiments on the model with masked LSTM layers through neuron
selection. Section 6.1 and Section 6.2 present the experimental setup and datasets used, respectively.
In Section 6.3, the accuracy of basecalling is compared among the Fast and HAC models, as well as
our method over a number of λ penalty values. The corresponding FLOPs savings and throughput
increases are presented in Section 6.4. Furthermore, an ablation study is performed in Section 6.5
and the chapter ends with a discussion in Section 6.6.

6.1. Experimental setup
Hyperparameters The model is trained with nearly the same hyperparameter settings as in [65],
using the Adam optimizer with an initial learning rate of 1.5e-3, β1 = 0.9, β2 = 0.999, weight decay =
0. The learning rate is linearly increased for the first 5000 training steps from 0 to the initial optimizer
rate as a warm-up, then decreased using a cosine function to a minimum of 1e-5 by the final step.
The batch size is doubled from 64 to 128, and the initial learning rate is increased accordingly from
1e-3 to 1.5e-3. Gradients are clipped between -2 and 2 to improve model stability. All standard LSTM
parameters are initialized from N(0, 0.05).
For the neuron selection mechanism, we initially choose λ = 2 · 10−7 with smoothing parameter set
φ = {β = 2/3, γ = −0.1, ζ = 1.1}. α is a learnable parameter directly trained as logα , initialized
from N(1.5, 0.1) which corresponds to a 90% probability that a neuron is active on average. Since
the model contains no dropout layers, the dropout keep ratio does not have to be increased.

Computational Environment The experiments are run in an HPC environment [22] on nodes with
Xeon E5-6448Y 32C CPUs @ 2.10 GHz and an NVIDIA A100 80GB PCIe GPU. In this environment, a full
training run of 5 epochs takes 23.5 hours to complete. We use Python 3.9.8 with PyTorch 1.12.1. To
deterministically find the throughput numbers in Figure 6.3, we disable the cuDNN backend in PyTorch,
as that may (non-deterministically) choose different algorithms based on batch size, model size, free
memory, etc. that can drastically impact performance. Other dependencies and versions are listed in
the code repository on GitHub1.

6.2. Datasets
The training, evaluation, and test datasets are the same benchmark datasets from [65], in which
the authors propose a standardized benchmark for nanopore basecaller evaluation. We use the
cross-species task for training and evaluation of all models. Therefore, our results are not directly
comparable to [65], focusing solely on the human task.

The dataset consists of 3 human datasets from [42], 1 Lambda phage dataset sequenced in-house
[65], and 60 bacterial datasets encompassing 26 different bacterial species originally published in

1The code is available on https://github.com/meesfrensel/efficient-basecallers
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Figure 6.2: Illustration of the masks of the hidden-to-hidden weight matrix Û for each LSTM layer in the λ4 model

[89]. All data is sequenced using R9.4 or R9.4.1 pore chemistry. Notably, performance improvements in
newer pore chemistries, such as the current R10.1, would similarly enhance our results, reflecting the
ongoing advancements in nanopore sequencing technology.

6.3. Basecalling accuracy
For evaluating our work, we reference the benchmark established in [65], which addresses the need
for standardized benchmarking in nanopore sequencing, where basecalling accuracy is crucial and
often improved through new neural network architectures. Due to varying evaluation metrics and
datasets across different publications, it has been challenging to differentiate between data-driven and
model-driven improvements. By using this comprehensive benchmark, we ensure fair and consistent
comparisons of our basecaller with state-of-the-art models, thereby validating our performance
claims.

The primary results are shown in Figure 6.1, highlighting the performance of Bonito fast, HAC, and our
method with different pruning rates denoted by λx for λ = x · 10−7. The AUC (Figure 6.1a), with reads
sorted by decreasing PhredQ score, shows that all models have a clear correlation between read
quality and average match rate. This conclusion is backed up by the high amount of separation in the
PhredQ quality scores (in Figure 6.1b), allowing downstream applications to use this as a measure
of certainty that a base is correct. Bonito-HAC performs best with an AUC of 0.848 and our pruned
model with λ = 2 · 10−7 following closely behind with an AUC of 0.847. The match rates differ by just
0.13%, while the number of FLOPs required is decreased by 2.2×.

One key observation is the nearly identical results of the λ20 and Fast models. The AUC plots in
Figure 6.1a overlap to the point that they are indistinguishable apart from the slightly different AUC’s
of 0.835 and 0.839 for λ20 and Fast, respectively.

Pass rates are an important measure against ‘cheating’: basecalling models could achieve higher
match rates by skipping reads that are harder to basecall correctly [65]. However, as can be seen
in Figure 6.1c, the models with higher pruning rates do not sacrifice the pass rate for accuracy. This
is important but not straightforward, as many experiments with prune/fine-tune methods resulted
primarily in very low pass rates.

Overall, the trend is that at higher pruning rates all metrics tend to suffer somewhat equally: we do
not observe that pruning affects some metric more than others. This is both positive and negative,
as on one hand smaller models could be useful for users who do not care about that one metric,
allowing them to save on compute. On the other hand, being able to play with the penalty value to
get just the precision you need at the least amount of compute is useful for users who do not have a
data center at their disposal.

6.4. Basecalling throughput
Smaller models are theoretically faster at basecalling than large models. As explained in Section
5.2.4, the number of FLOPs for a single inference step is mostly dependent on the hidden size, and
the input size has some influence as well. Our method’s focus is on reducing the layer’s hidden size,
which has an O(n2) effect on the computational complexity. By reducing the hidden size with 1/3, the
number of FLOPs decreases by 2.8×, while the accuracy is barely affected. Furthermore, by allowing
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Figure 6.3: Theoretical FLOPs for the LSTM stack compared to the basecalling throughput of the whole neural network
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Figure 6.4: Results of the ablation study, with λ20 as closest model to Bonito Fast

the match rate to drop by 0.4%, it is possible to reduce the LSTM stack’s theoretical FLOPs by 5.1×,
and this trend is shown in Figure 6.3 as well.

The possible gains from reducing the hidden size are illustrated with the mask Û , as shown in Figure 6.2.
Since we induce structured sparsity, we can ‘physically’ remove neurons and the corresponding
rows/columns from the model. During training, which neurons are important, is automatically decided
by backpropagation, and during inference, we benefit by reloading the LSTM cells with smaller hidden
sizes. This results in faster inference during basecalling, improving energy usage and throughput.

The resulting throughput speedup achieved with structured sparsity depends on many factors besides
the number of FLOPs, which includes batch size, sequence length among others. Figure 6.3 shows
the average throughput of the whole neural network (see the architecture in Figure 3.1) for different
models, with constant batch size and sequence length. The curve shows the direct relationship
between the theoretical gains and real throughput increase: at λ2, throughput is already 1.5× higher
than the baseline. This trend continues with all subsequently smaller models.

Notably, the fastest model λ20 is 2.4× faster compared to the HAC baseline and requires 24% less
FLOPs compared to the Fast model. However, because of the constantly larger overhead of the
convolutional layers and the CTC-CRF decoder, which are not pruned with our method, the λ20 model
is not able to achieve higher throughput than the Fast model. Instead, the Fast model reaches 2.7×
and 1.1× higher throughput than HAC and λ20, respectively.
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6.5. Ablation study
To thoroughly evaluate the impact of structured pruning on our basecalling model, we conduct an
ablation study focusing on varying λ values, which control the neuron penalty during training. Another
way to think about this, is how sensitive the model is to varying λ penalty values. This study is essential
to understand the trade-offs between model size, throughput, and read accuracy. Our findings are
illustrated in Figure 6.4 summarized in Table 6.1.

For λ = 2 · 10−7, we observed no significant change in basecalling accuracy compared to the baseline
model, while achieving a 2.8× reduction in FLOPs. This indicates that a moderate sparsity penalty can
effectively prune the network without compromising performance. Increasing the penalty to 4 · 10−7,
the match rate decreases by a further 0.2% while compressing the model to a third of its original size.
This level of pruning strikes a good balance between maintaining accuracy and enhancing efficiency.

At higher penalty values, such as λ = 8 · 10−7, the model experiences a more noticeable drop in
accuracy (around 0.7%), but the model FLOPs are drastically reduced, by 9.3× in the LSTM layers.
This suggests that while aggressive pruning can significantly decrease computational requirements,
it may also impact the model’s performance. These results highlight the importance of selecting
an appropriate sparsity penalty to balance the trade-offs between model efficiency and basecalling
accuracy, which is similar to selecting a basecalling model from Bonito/Dorado’s Fast, HAC or SUP
models.

Comparing the throughput results to the baseline can help understand the effects of pruning, and
outline the limit of speedup. Figure 6.5 illustrates the change in the profile timeline previously shown
in Figure 2.2. Bonito has slightly different ratios between the convolutions, LSTM stack, and CRF
decoder, with the LSTM stack taking around 67% of the time in the baseline HAC model. This explains
the relatively limited speedup overall: although the LSTM stack takes 60% less time, in this benchmark
example the overall reduction is just 40%. Because the GPU kernels are synchronized between each
model layer to obtain consistent timings, this is much less than the previously reported 2.4× speedup.
The important thing to note is the significant reduction in the part that the LSTM stack plays, from
67% to 46%.

Overall, the ablation study underscores the potential of structured pruning to optimize nanopore
basecalling models, making high-quality sequencing more accessible for field applications. The
results show the great performance benefit of learning which neurons should be active at the same
time as learning the connection weights between them. Between Bonito’s Fast and HAC models, we
consider λ = 6 · 10−7 the best trade-off between accuracy and speed, measuring just 0.44% below
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λ penalty Match Hidden sizes FLOPs Improvement

Baseline 84.14% 384, 384, 384, 384, 384 5.90M
2 · 10−7 84.01% 213, 126, 119, 291, 324 2.07M 2.8×
4 · 10−7 83.92% 149, 68, 74, 212, 261 1.16M 5.1×
6 · 10−7 83.70% 111, 48, 55, 179, 229 0.81M 7.2×
8 · 10−7 83.47% 96, 39, 48, 155, 201 0.63M 9.3×

10 · 10−7 83.39% 82, 36, 38, 133, 190 0.52M 11.4×
20 · 10−7 82.81% 55, 22, 21, 88, 145 0.28M 21.0×

Fast 82.83% Input & hidden size: 96 0.36M 16.0×

Table 6.1: Ablation study of the penalty parameter of the LSTM layers

HAC’s match rate while achieving a 5.1× reduction in FLOP count, ending nicely in between Bonito’s
models.

6.6. Discussion
We propose learning structured sparsity to make basecalling neural networks substantially more
efficient while maintaining high accuracy. This makes nanopore sequencing faster, cheaper, and
more accessible by using less compute resources. Moreover, our results show the extent to which
the state-of-the-art models are over-parameterized when considering their accuracy. As previous
works on efficient basecalling rightly point out, the ever-increasing accuracy, and as a result, size of
these models does not outweigh the implications of resulting compute requirements for everyone.
Moreover, available power and compute can be a decisive variable in selecting a basecalling model.

Aside from pruning, the other most common approach to model compression, be it for storage or
compute savings, is quantization. By representing numbers with fewer bits or even as integers, one
can save space and utilize specialized hardware to do these lower precision computations. Mixed
precision math is widely used in Dorado and the Rubicon paper performed an in-depth analysis [77]
that can be readily integrated with our work, as quantization is orthogonal to pruning. One limitation
of our work is the scope: by reducing only the LSTM layers, the LSTM stack’s input size is fixed, the
convolutional layers cannot be adjusted, limiting the overall reduction in parameters and FLOPs. We
therefore recommend further research into whole-model structural pruning, in combination with
quantization.



7
Conclusions and recommendations

This thesis investigated bottlenecks in the nanopore DNA sequencing pipeline, specifically in the
basecalling step, and identified the five LSTM layers as the primary restriction in fast and efficient
basecalling. This finding essential to the subsequent approach. Furthermore, three possible ap-
proaches to reduce the impact of basecalling have been explored, which answers the second research
question. Quantization, a new model architecture, and pruning are different (and orthogonal) methods
to reduce the compute required for basecalling. Previous work has investigated quantization and
model architectures at length, so we explored pruning in much more detail.

A new pruning approach is presented to enhance the efficiency of DNNs through the use of structured
sparsity in the LSTM layers, and the approach is applied to nanopore DNA basecalling models. By
leveraging neuron selection techniques to prune redundant parameters, we can significantly reduce
the computational and memory requirements of the basecalling models without compromising
accuracy. The approach adds a mask on the LSTM’s hidden neurons, that can be turned on or off
during training. By making the number of active neurons part of the loss function, the size of each
LSTM layer is reduced more and more until it would impact accuracy.

Results show that the second-to-smallest model is 11.4× more efficient and 2.1× faster, with a
reduction in match rate of just 0.8% compared to Bonito-HAC, answering the third research question.
This advancement is particularly beneficial for field deployments of portable sequencing devices like
the MinION, enabling efficient basecalling on resource-constrained devices. Our approach facilitates
DNA analysis in various field applications, by allowing users to select an appropriate trade-off between
accuracy and basecalling time for their demands and available resources. There is ample room to
maneuver this spectrum, with an efficiency increase between 2.8− 21× and a corresponding accuracy
drop of 0.1–1.3% compared to the baseline Bonito-HAC model. Future work will explore further
structured optimization techniques and better delayed masking schedulers to further improve the
performance and efficiency of basecalling models.

Apart from this, a closer look at the results reveals that the presented pruning method is particularly
fit for smaller pruning rates, i.e. up to λ4. For a 5.1× reduction in FLOPs, match rate drops by just 0.2%.
When going beyond this knee point, the match rate does drop off faster than before, although the
accuracy is still only reduced by 0.8% at λ10. In general, this suggests that for higher pruning rates,
some modifications might be required to retain the maximum possible accuracy. A couple of ideas
are an improved penalty scheduler, different or auto-adjusting penalty values per layer, and changing
the learning rate based on the number of nonzeros in the mask.

Furthermore, this thesis hasn’t considered pruning the other layers in the neural network. For example,
the final convolution layer outputs a feature size of 384 into the first LSTM. It is not unthinkable that
this feature size can be reduced at larger pruning rates (for higher λ values), shrinking the overall
compute requirements even more. The same holds for the output of the last LSTM layer: although it
is shrunk to less than half its original size in the smallest models, the tensors have to be ‘upscaled’

33



34

to fit into the CTC-CRF decoder. This is done by inserting zeros but should be done by shrinking the
input layer of the CTC-CRF decoder.

The advent of long-read sequencing has transformed our knowledge of genomics, and with that,
our understanding of genetic diversity, evolutionary biology, and the underlying mechanisms of
genetic disorders. Today, researchers are using nanopore long-read sequencing to assist surgeons
during cancers surgery and to investigate biodiversity all over the world. Increasing the efficiency
of basecallers improves accessibility of this technology, and as data and algorithms improve, it is
expected that neural networks can be compressed even more. On the other hand, practical long-read
sequencing is just a decade old, and it will be interesting to see what biotechnological improvements
to pore technology and sequencing hardware can bring over the next decade(s). For now, basecalling
is the largest step in the nanopore sequencing pipeline, but it is likely that highly accurate and
deterministic sequencing hardware shifts the pipeline’s center of gravity towards assembly and
polishing over time.



A
Storage requirements

Flow cell output POD5 size FASTQ.gz size Unaligned BAM with Sum
(Gbases) (GBytes) (GBytes) modifications (GBytes)

Flongle: 2.6 18.2 1.69 1.56 21.45 GB
10 70 6.5 6 82.5 GB
15 105 9.75 9 123.75 GB
30 210 19.5 18 247.5 GB
MinION: 48 336 31.2 28.8 396 GB
5x MinION: 240 1200 156 144 1.5 TB

Table A.1: Example file sizes are based on different throughputs from an individual flow cell, with a run saving POD5, FASTQ, and
BAM files with a read N50 of 23 kb. Theoretical maximum output of a MiniION is 48 Gb when doing 400 b/s for 72 hours, with a

Flongle adapter the theoretical maximum output is 2.6 Gb when doing 400 b/s for 16 hours. Data is an extension from the
MinION IT requirements.
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B
Comparison of systems

As a reference for the FLOPs numbers provided throughout this thesis, this appendix presents a
comparison of many systems that are eligible to perform basecalling. Considering that the inference
over a single time step of a single sample requires around 0.3 MFLOPs, basecalling the MinION’s
output of 1.5M samples/s should cost around 0.5 TFLOPS. Due to imperfect implementations and
added overhead of the convolutional layers and CTC-CRF decoder, in practice devices with around
2–3 TFLOPS of performance can do live basecalling with the Fast model and about 30–35 TFLOPS is
required for HAC basecalling.

Table B.1 lists details of many different platforms that could be suitable for basecalling. Considering
that most (somewhat) low-power platforms do not have enough performance to perform live HAC
basecalling motivates the need for more efficient neural networks.
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System Form factor Power Performance Fast HAC

RTX 2080 Ti Server 350 W 107.6 TFLOPS1/ 215.2 TOPS1 35 / 71 3 / 7
Laptop with dedicated GPU All in one 90–200 W 11.6 FLOPS / 100 TOPS1 3 / 33 - / 3
Laptop with M.2 Axelera All in one 38–108 W 100 TOPS 33 3
Laptop with M.2 Hailo2 All in one 38–108 W 26 TOPS 8 -
Laptop with M.2 Blaize3 All in one 37–107 W 16 TOPS 5 -
Laptop with M.2 Coral4 All in one 34–104 W 8 TOPS 2 -
Laptop with USB Coral5 USB device 32–102 W 4 TOPS 1 -
Snapdragon 8 Gen 3 (NPU) Phone/tablet 10–15 W 34 TOPS 11 1
A17 Pro (neural engine) Smartphone 10–15 W 35 TFLOPS 11 1
Tensor G3 (edge TPU) Smartphone 10–15 W 8 TOPS 2 -
Jetson AGX Orin Stand-alone 15–60 W 275 TOPS 91 9
Jetson Orin NX Stand-alone 10–25 W 100 TOPS 33 3
Jetson Orin Nano Stand-alone 7–15 W 40 TOPS 13 1
Jetson TX2 Stand-alone 7.5–15 W 1.3 TFLOPS 17 -
Jetson Nano Stand-alone 5–10 W 0.472 TFLOPS - -

TOPS always INT8, FLOPS always FP16.
1 Tensor-TOPS and -FLOPS
2 Hailo-8 M.2 AI Acceleration Module, 26 TOPS with unknown power usage
3 Blaize AI Xplorer X1600E EDSFF PCIe 3 x4, 16 TOPS at 7 W
4 Coral dual Edge M.2 TPU, 8 TOPS at 4 W
5 Coral USB Edge TPU, 4 TOPS at 2 W
6 Based on RTX 4060 Mobile which has a TDP of 115 W
7 MinION Mk1C uses TX2 internally and is able to basecall live [9]

Table B.1: Comparison of some ‘AI’ systems, specifically for form factor, peak power usage and peak performance. For real-time
basecalling with Fast model, about 3 TFLOPS is enough. High accuracy basecalling in real-time requires 30–35 TFLOPS. The Fast

and HAC columns list the theoretical number of sequencing outputs the system can keep up with.
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