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Energy-Aware Vision Model Partitioning for Edge Al

Dewant Katare ®%, Mengying Zhou ©%, Yang Chen ©7, Marijn Janssen ®%, Aaron Yi Ding ®%
SDelft University of Technology, "Fudan University

ABSTRACT

Deploying scalable Vision Transformer applications on mobile and
edge devices is constrained by limited memory and computational
resources. Existing model development and deployment strate-
gies include distributed computing and inference methods such
as federated learning, split computing, collaborative inference and
edge-cloud offloading mechanisms. While these strategies have
deployment advantages, they fail to optimize memory usage and
processing efficiency, resulting in increased energy consumption.
This paper optimizes energy consumption by introducing adaptive
model partitioning mechanisms and dynamic scaling methods for
ViTs such as EfficientViT and TinyViT, adjusting model complex-
ity based on the available computational resources and operating
conditions. We implement energy-efficient strategies that minimize
inter-layer communication for distributed machine learning across
edge devices, thereby reducing energy consumption from data flow
and computation. Our evaluations on a series of benchmark models
show improvements, including up to a 32.6% reduction in latency
and 16.6% energy savings, while maintaining mean average preci-
sion sacrifices within 2.5 to 4.5% of baseline models. These results
show that our proposal is a practical approach for improving edge
Al sustainability and efficiency.

CCS CONCEPTS

« Computing Methodologies — Vision Transformers; Energy-
aware Computing; « Computer Systems — Edge Al; Edge Com-
puting.
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1 INTRODUCTION

Advanced artificial intelligence (AI) models, particularly Vision
Transformers (ViTs) [6], have shown improved performance for
computer vision systems and applications [12, 19, 27]. However,
deploying these models in real-world applications, especially in
resource-constrained environments like mobile and edge devices,
presents optimization challenges. This is critical for applications
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and use cases such as connected autonomous vehicles (CAVs), where
balancing computational efficiency, energy consumption, and real-
time processing is necessary. CAVs rely on sensing, computing, and
communication within their ecosystems, necessitating low-latency
processing [8] and the transmission of large volumes of data and
model parameters [25] between the connected vehicles, heteroge-
neous edge devices, and the cloud. These requirements introduce
memory bottleneck and computational challenges [9, 10, 20, 21, 24].
Model partitioning offers a promising solution for deploying effi-
cient and scalable applications in distributed environments [7, 9, 24].
By decomposing a model into submodels, less complex submodels
can be executed locally on edge devices, while high-computational-
demand submodels are offloaded to powerful devices or cloud
servers [9, 21]. Compared with the fully offloading strategies, model
partitioning approach reduces data transmission by processing raw
inputs locally [20] and decreases inference time by using more pow-
erful servers than resource-constrained local devices [21]. These
advantages make the execution of complex models more energy-
efficient and faster, particularly for limited battery-powered devices.

Current research primarily focuses on reducing latency in of-
floading partitioned models and improving model accuracy [12, 15].
However, these studies often introduce a notable energy overhead,
impacting the range of vehicles powered by limited-capacity batter-
ies. Our motivation measurements reveal that three classic models
can trade some precision for substantial energy savings, while
maintaining acceptable accuracy for fault-tolerant applications. In-
spired by this, we propose an energy-efficient model partitioning
algorithm tailored to heterogeneous edge devices, which considers
energy consumption, multi-metric evaluation, and adaptability to
various vision models. This work advances the state-of-the-art by
prioritizing energy efficiency in edge AI deployments within het-
erogeneous environments while maintaining accuracy and latency
performance. The contributions of this paper are as follows:

1) Energy-Efficient Model Partitioning: Addressing the issue
of energy efficiency in edge devices by developing algorithms that
optimize model partitioning based on the computational capabilities
of the heterogeneous devices, enhancing on-device processing and
overall energy sustainability in edge deployments.

2) Reduced Communication Overhead: We minimize energy
consumption from frequent device communications in distributed
AT on edge networks to alleviate network congestion and improve
system efficiency.

3) Multi-Metric Evaluation: We evaluate the performance
of our partitioning method using energy consumption as the pri-
mary metric and secondarily considering accuracy and latency. This
combined evaluation empirically assesses the proposed method in
real-world edge scenarios. We believe these results can be used as
a reference for making balanced trade-offs across multiple metrics.
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2 BACKGROUND: MODEL PARTITIONS

Al 'models can be partitioned by parallelizing matrix operations [18].
In Convolutional Neural Networks (CNNs), model partitioning
can be implemented by independently computing tensors for a
given input image while maintaining the model’s input and output
dimensions. The classic channel partitioning approach on CNNs for
classification tasks [28] shows the principles of parallel execution of
layers in a CNN model, e.g., differentiating sequential and parallel
operations. In the convolutional layer, a feature map is generated
from each filter, which can be separated with respective channels for
partitioning. Also, output feature maps can be partitioned along the
channel dimension so that each participating edge device computes
a subset of the output feature maps [9]. Here, the corresponding set
of filters is mapped to distributed devices, which at the same time
also contain the dimensions of the model to prevent any adversarial
effects by the model.

Similarly, fully connected layers can also be executed in parallel
using spatial partitioning across height and width dimensions. In
this case, output feature maps are considered. Similar to the convo-
lutional layer, participating devices maintain dimensions (structure)
and compute a subset of the output feature maps independently
for the fully connected layer operations. In these operations, only
a subset of input must be transferred, reducing overall communi-
cation costs. Based on the principles of channel partitioning, our
proposed mechanism for CNN includes three dedicated approaches:
Meta, Ensembled and Hybrid, respectively (also shown in Figure 1).
These approaches are covered in detail in section 3.

2.1 ViTs for Mobile and Edge Devices

Recent studies have also explored various approaches to reduce
the computational demands of the complex model like ViTs, with-
out compromising their performance. Yu et al. [26] explored the
“Width & Depth Pruning" method that addresses the width and
depth dimensions of modules in ViTs. Its evaluation on ILSVRC-12
showed a decrease in Floating Point Of Operations (FLOPs) with
maintaining baseline accuracy. Chen et al. [3] integrated the con-
cept of sparsity in CNNs into ViTs to reduce training memory
requirements and inference complexity. Their method dynamically
extracted and trained sparse subnetworks throughout the train-
ing phase, while maintaining robust model performance. Zheng et
al. [29] proposed SAVIT, a structure-aware pruning method that
leverages the interactions between different ViT components. This
approach enhanced model efficiency and improved accuracy on
benchmark datasets such as ImageNet and COCO by considering
the structural interactions within the model. Liu et al. [13] utilised
token pruning for dense prediction tasks such as object detection
and instance segmentation. They proposed methods that preserve
pruned tokens within feature maps for potential reactivation. This
approach allowed for enhanced flexibility, reduced performance
decline, and speed improvements during inference.

2.2 Collaborative Training and Inference

The deployment of ViTs in distributed heterogeneous edge envi-
ronments requires collaborative training and inference strategies,
which enable these models to benefit from the diverse computa-
tional resources available across different nodes. This approach
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Figure 1: Resource-based Model Partitioning Approaches

involves partitioning the ViT model so that different blocks can
be processed on various devices, optimizing latency and energy
efficiency [15]. The inference speed can be improved by distributing
or offloading the workload, and the training phase can be paral-
lelized for computations and data handling [17]. This methodology
ensures that edge devices with limited computational capabilities
can still perform complex vision tasks by sharing the computational
load across the network and extending the applicability of ViTs to
resource-constrained environments in real-world applications.

2.3 Energy Efficient Mechanisms

Several approaches have been proposed to improve the energy
efficiency of ViTs. Xu et al. [21] presented a decomposition-and-
ensemble algorithm that breaks down large ViTs into smaller parts
for collaborative inference, reducing latency and energy consump-
tion with minimal performance loss. An approach to reduce the
computational demand of ViTs is proposed by Nag et al. [14] by
integrating ViTs with Weightless Neural Networks. They replaced
computationally intensive layers with weightless alternatives to
reduces hardware requirements and enhance energy efficiency and
latency on edge devices. Li et al. [11] addressed inefficiencies in
softmax computations within ViTs by approximating softmax func-
tions with simpler or minimum computational elements, reducing
resource consumption while maintaining high accuracy.

3 MOTIVATION AND SCOPE

The previous section provides background on the techniques for
partitioning Al models, such as CNNs and ViTs, across different
devices for distributed computing. This section will describe the
motivation and fundamentals behind energy-saving partitioning
strategies. Specifically, we explore how a balanced tradeoff can be
established for energy and accuracy. These approaches are suitable
for application optimization in error-tolerable scenarios and use
cases. In this motivating experiment, we use classic CNN models,
including ResNet, MobileNet, and SqueezeNet, to examine how
partitioning impacts energy usage and model accuracy.
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3.1 Model Partitioning for Classic Models

Based on channel partitioning principles, our partitioning mecha-
nism includes three approaches: Meta, Ensembled, and Hybrid, as
shown in Figure 1.

Meta Partitioning;: In this approach, the channel partitioning
technique is used to separate each layer independently, as shown
in Figure 1(a). In this partitioning approach, a model can be parti-
tioned by calculating the tensors of the current layer as a subgroup.
Each output of the subgroup (independent layers) is combined to
calculate the relative tensors before processing the next layer. As
each layer is compiled independently, the output tensors from all
layers should be merged to combine calculated weights and provide
respective outputs. Within a dynamic wireless network, this ap-
proach results in excessive communication costs. However, in fully
connected vehicular ecosystem scenario, the tradeoff in layer-wise
parallel execution can be balanced with excessive communication
costs from the individual vehicle and vision sensors generating and
transferring large volumes of data.

Ensembled Partitioning: Meta approach requires frequent
data transfer between layers, which increases communication costs.
Therefore, to reduce the communication costs inherent in the Meta
approach, the Ensembled approach combines layers with similar
dimensions to counter this problem, which can further optimize
end-to-end energy consumption. It has also been used as a hardware
acceleration approach for machine learning applications to reduce
memory footprints. We explore this approach by combining opera-
tions from multiple convolutional layers as a single block, as shown
in Figure 1(b), instead of the single layers described in the Meta
approach. Partitioning is implemented following the concept of the
same dimension of input and output. The number of fused layers
can vary depending on the availability and computation resources
of participating devices. However, it is important to note increasing
the number of blocks will further increase the communication cost.
This approach is ideal for edge-cloud use cases and for Al models
with repetitive layers, such as ResNet.

Hybrid Partitioning: Vehicle-edge ecosystem is formed of hy-
brid devices with different computing and processing abilities. The
model partition approach should be dynamic and adjusted flexibly,
as shown in Figure 1(c), according to each participating device’s
task requirements and current computational resource availability.
In this approach, the coordinator device or host is aware of the
computational resources currently available on the participating de-
vices. The partitioning algorithm optimizes the partition depending
on the vehicular task and resources required for layers. Computing
resources (e.g., CPU, GPU), estimated memory, and latency can be
three parameters we have considered in this approach as they can
be directly associated with power consumption. It is important to
note, an extra computing load is encountered on the coordinator
device, which may increase power consumption on it. However,
from the holistic perspective, we achieve a optimized end-to-end
energy savings across all other devices.

3.2 Test and Analysis

We evaluate the above three partioning approaches on three classic
models, namely MobileNet, SqueezeNet, and ResNet. We conduct
experiments on an NVIDIA Jetson Nano and use the nuScenes [1]
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Table 1: Impact of Partitioning Approaches on Accuracy and
Energy of Classic Models

Model Approach  Accuracy (%) Power (Wh)
. Meta 70.90 1.93
?;[C;bﬁ;l\)let Ensembled  67.40 1.69
’ Hybrid 65.10 1.81
S seNet Meta 78.59 1.88
(lqlugj\;) " | Ensembled  79.38 2.58
’ Hybrid 74.29 2.34
Meta 88.43 5.71
EZSI:;ZB) Ensembled  89.61 5.49
’ Hybrid 84.31 5.22

object classification dataset to assess model accuracy. To measure
on-board power, we use Tegrastats and HV power monitor for
energy measurements. The tested results are listed in Table 1.

We find that accuracy and energy consumption are influenced by
the model type, partitioning method, and the corresponding trans-
mitted partitions. Different partitioning methods result in varying
energy consumptions, with reductions of up to 27%. However, this
reduction in energy consumption also sacrifices a certain accuracy.
For the SqueezeNet model, the meta-partitioning approach shows
reduced energy consumption along with around 1% loss in accuracy,
which is acceptable for some applications. We also observe that,
in terms of accuracy, the accuracy of meta and ensembled meth-
ods is comparable, while the hybrid method achieves the lowest
accuracy. This is because the hybrid approach creates large-sized
ensembled partitions along with smaller meta partitions. In such
cases, the computed results from meta partitions could be over-
shadowed by the results from ensembled partitions during merging,
resulting in small numerical differences that could be concealed
during backpropagation.

Takeaway: From the above preliminary measurements, it is
empirical that energy consumption and accuracy are influenced by
model architecture, partitioning method, and convergence mech-
anism. By adjusting these parameters within the system, we can
meet user energy consumption requirements while maintaining
an acceptable level of accuracy. This has inspired us to propose
an energy-aware model partitioning system, with energy as the
primary optimization criterion.

4 ENERGY-AWARE MODEL PARTITIONING

Inspired by the above insight, we propose the Layer-Adaptive
Partitioning with Dynamic Task Redistribution (LAP-DTR) ap-
proach for partitioning large-scale ViTs, such as ViT [6], DeiT [16],
and Swin [2], across edge devices. The approach considers energy
consumption and resource allocation for used devices by ensuring
efficient collaborative strategies without excessive communication
or model performance degradation.

4.1 Modeling and Formulation

The LAP-DTR method partitions ViT tasks across heterogeneous
edge devices (CPU, GPU), by dynamically adjusting allocation based
on device memory, computational capabilities, and energy con-
sumption (Algorithm 1). This algorithm describes the step-by-step
process for the distribution mechanism and reallocation among
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individual devices, ensuring that each device operates within its op-
timal parameters. Using Algorithm 1, the method enables real-time
inference with minimal accuracy tradeoff, optimizing resource uti-
lization and energy efficiency across the entire system. The follow-
ing subsections cover detailed problem descriptions and definitions
of the relevant formulas.

Energy and Resource Allocation-Aware Partitioning: To
ensure efficient deployment, the LAP-DTR framework includes an
energy and resource allocation model that guides how the large ViT
is partitioned. For each edge device, the available computational
power, memory, and current energy level are factored into the
partitioning strategy.

Let E; be the remaining energy on device i, C; the computational
capacity (in terms of GFLOPs), and M; is the available memory. The
layer partitioning is solved as an optimization problem to minimize
overall energy consumption and computational load while meeting
latency constraints. The objective is to allocate layers such that:

N N
min Z (,Tl -L; such that: Z Li = Lyotals
=1 i=1

where L; is the computational load (number of layers) assigned to
device i, and L4 is the total number of layers in the ViT. Each
layer [ of the transformer has a computational complexity C; and
a memory footprint M;. The partitioning seeks to ensure that for
any device i:

C <G

ensuring that the assigned layer fits within the device’s computa-
tional and memory constraints. The framework dynamically up-
dates the partitioning based on the current energy state of each
device.

Dynamic Task Redistribution: In addition to energy-aware
partitioning, the LAP-DTR framework continuously monitors the
workload and battery levels of each edge device during runtime. If
a device’s energy E; falls below a threshold Ej,;p or if its current
workload exceeds its computational limits, the task is dynamically
redistributed to other devices.

This redistribution is achieved by solving the following mini-
mization problem, which seeks to balance the computational load
across devices while considering their energy constraints:

N
C; 1
i E — 4+ ) — ,
min (L El)

i=1 \!

and M; < M;,

where A is a weighting factor that adjusts the importance of energy
savings relative to computational load balancing. The objective
is to offload tasks to devices that have both available energy and
computational capacity, avoiding bottlenecks.

Attention-based Feature Summarization: To further reduce
communication overhead, an attention-based feature summariza-
tion mechanism is used. Instead of transmitting full feature maps,
only the most important attention weights and features are shared
between devices. Given an attention matrix A generated by a self-
attention layer, the feature summarization is performed by applying
a compression function f(-) to extract key elements:

Xsummarized = f(A) - X,
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Algorithm 1 Selecting a Model Partition Strategy

Require: Device capability set C, required accuracy Acc, required energy
E, required latency L, weights for accuracy wacc, energy wg, and
latency wr,

1: Initialize the list of candidate profiles Candidates = 0
2: for each model partition profile do
3:  Get the accuracy Accprofile from the profile
4 Get the energy consumption Epofile from the profile
5. Get the latency Lpofile from the profile
6:  if Aceprofile = Acc and Eppofile < E and Lyofie < L then
7: Add the profile to Candidates
8: endif
9: end for
10: if Candidates is empty then
1 return profilewhereAccprofieismax
12: end if
13: Initialize the best model partition BestProfile = None
14: Initialize the best score BestScore = —oo
15: for each candidate profile do
16:  Get the accuracy Acceandidate from the candidate profile
17:  Get the energy consumption E ,ndidate from the candidate profile
18:  Get the latency Leandidate from the candidate profile
19:  Calculate the accuracy score Scoreacc = Wace * ACCeandidate
20: Calculate the energy score Scoreenergy = WE * %
21:  Calculate the latency score Scorejatency = WL - %
22 Calculate the overall score Score = Scoreacc + ScOreenergy +
Scorelatency
23:  if Score > BestScore then
24: Update the best model partition BestProfile = candidate
25: Update the best score BestScore = Score
26:  endif
27: end for

28: return The best model partition BestProfile

where X is the original feature map, and Xsymmarized 1S the com-
pressed version that is transmitted between devices. This helps
reduce the communication load while preserving the essential in-
formation required for accurate inference.

Knowledge Transfer Between Sub-networks: Knowledge
transfer across sub-networks is facilitated by passing intermediate
representations from one device to another. Each sub-network out-
puts a feature map X; on device i, which is used as input to the next
sub-network on device j. The transfer function T(+) ensures that
the knowledge from Xj is optimally adapted to the sub-network on
device j:

Xj=T(X;) where T(X;)=W-X;

where W is a learned transformation matrix that adjusts the in-
termediate feature map to match the dimensions and structure
expected by the sub-network on device j.

Layer Elasticity: To enhance resource efficiency, non-contributing
layers of the transformer are rendered elastic. This enables them
to dynamically adjust their complexity by reducing the number of
attention heads h or the hidden dimension size d in response to the
available device resources. The elastic adjustment is given as:

E; )

max

h

=hmax-(1— ) and d=dmax-(l—

max
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where hyax and dpgx are the maximum values for the number
of heads and hidden dimension, and E; is the current energy of
device i. As the energy level decreases, the number of heads and
dimension size are scaled down, reducing the computational load
on the device.

4.2 Model Partitioning Profile: ViTs

ViTs are structured differently from traditional CNNs. They consist
of layers of multi-head self-attention mechanisms and feed-forward
networks, which are known to be computationally demanding. In
particular, the attention mechanism requires each input token to
interact with every other token, making the computation complex-
ity grow quadratically with input size. For partitioning ViTs, the
main objective is to distribute the attention heads and feed-forward
layers across the available devices, balancing the workload and
ensuring that the computational or memory demands are within
device range. Each layer in a ViT can be characterized by the fol-
lowing factors:

o Attention Heads: The number of attention heads in a self-
attention layer directly influences the computation cost. De-
vices with higher computational capacity are assigned layers
with more heads.

o Embedding Dimension: The size of the embedding dimension
affects the memory and processing power required. Larger
embedding dimensions increase the complexity of matrix
operations, so they are allocated to devices with sufficient
resources.

o Feed-Forward Network Size: Each transformer layer includes
a feed-forward network that processes the output of the
attention heads. The size of this network is a key factor in
determining the memory and computation needs.

e Token Count: The number of tokens passed through the
layers influences the overall complexity, as the attention
mechanism scales quadratically with the number of tokens.

The partitioning profile for ViTs is optimized to minimize energy
consumption and maximize efficiency. Layers with more attention
heads and larger embedding dimensions are assigned to devices
with higher capabilities, while the layers with reduced complexity
are allocated to less powerful devices. During runtime, the system
dynamically adjusts the partitioning based on the energy availabil-
ity of each device. If a device becomes low on energy, the frame-
work can reduce the number of attention heads or compress the
feed-forward network to allow the model to continue processing
without interruption. The partitioning profile for ViTs considers
both the computational and memory requirements, ensuring that
the workload is appropriately distributed across the edge-device
network.

5 ENERGY-AWARE EDGE FRAMEWORK

As the framework operates in a distributed manner, where edge de-
vices collaboratively perform inference tasks. Intermediate results
are cached locally to ensure robustness, and the system adapts to
network conditions by redistributing tasks when necessary. Com-
munication is minimized through the attention-based summariza-
tion technique, while fault tolerance is ensured by local result
caching.
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Algorithm 2 Distributed Training for ViTs

Require: ViT model M, dataset D, edge devices E = {Ej,Ez,...,EN}
with properties energy E;, computation capacity C;, memory M;, and
communication bandwidth B;; between devices E; and E;.

Ensure: Optimized and partitioned model M distributed across E.

1: Initialization: Profile energy, compute resources, and memory for
each device in E.
2: for all [ € layers(M) do
Compute Cr, and My, for layer L

Assign layer [ to device Ex where k = arg min; (% -Cp,M; < Mi)
: for all E; € E do
: Train sub-model M; using data D;

3
4
5: end for
6
7
8 Transfer intermediate feature maps X; to Ejy;, where Xgum =

Attention(X;)
9:  if Ej runs out of energy then
10: Reassign layers of M; to minimize energy consumption:
. Cj
11: Lj = argmin; (Zflzl (L—j +A- El—j))
122 endif
13: end for

5.1 Orchestration of Training and Inference

The LAP-DTR framework orchestrates both training and inference
phases across multiple devices by dynamically partitioning the
model and adapting to device constraints. The following steps show
how the orchestration is managed using multiple mixed metrics
and the specific steps involved in managing the orchestration.

Evaluation Metrics: The LAP-DTR framework is evaluated
using the following metrics for training and inference:

e Latency: The total time taken for inference across all edge
devices.

¢ Energy Consumption: The energy used by each device
during inference, including both computation and commu-
nication.

e Accuracy: The model’s performance in terms of classifica-
tion accuracy.

e Resource Utilization: The proportion of available compu-
tational and memory resources used by each device.

e Communication Overhead: The data transmitted between
edge devices during inference.

Training Procedure: The training process is managed as de-
scribed in the Algorithm 2, which details the steps for distributing
and managing model layers across multiple edge devices. This al-
gorithm ensures that each device is assigned layers based on its
available energy, computational capacity, and memory. By follow-
ing Algorithm 2, the system achieves a balanced load distribution,
optimizing energy consumption while maintaining efficient train-
ing performance across the entire network.

o The system first profiles each device’s available energy, com-
pute capacity, and memory.

e Layers are assigned based on the energy and computational
capacities of devices, ensuring balanced load distribution.

e During training, intermediate feature maps are transferred
between devices using attention-based summarization, min-
imizing the communication overhead.
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Algorithm 3 Distributed Inference for ViTs

Require: Trained models {M;, My, ..., M} assigned across devices E.
Ensure: Aggregated inference results Y.
1: for all inference tasks do

2: for all E; € E do
3: Monitor current energy E; and workload
4 Adjust layer settings for current energy state:
50 hi=he (1= 5 ), di = doe (1 7L
6: Execute inference on M;
7: Transfer summarized features Xguy, to E;41
8: if E; fails or disconnects then
9: Resume inference using cached results at E;4
10: end if
11:  end for
12:  Aggregate  outputs from all models: Y =
G(M(X), M2(X), ..., MN (X))
13: end for

o If a device runs out of energy, its layers are redistributed to
other devices in the network based on available resources.

Inference Steps: The inference steps are managed by Algo-
rithm 3, which outlines the procedures for monitoring device states
and adjusting layer complexities in real-time. This algorithm en-
ables the dynamic redistribution of tasks and ensures that each
device operates within its current energy constraints. By imple-
menting Algorithm 3, the framework maintains robust inference
performance and minimizes communication overhead, even in en-
vironments with heterogeneous and fluctuating device capabilities.

e For each inference task, the system monitors the workload
using Flops, latency and energy levels of each device.

e As an optimized strategy during partition, the algorithm ad-
justs assigned layers’ complexity based on its current energy
level (e.g., reducing the number of attention heads or hidden
dimensions) for devices.

e Intermediate feature maps are transferred between devices
using summarized attention scores to minimize inter-layer
data transmission.

o If a device fails or disconnects, the cached intermediate re-
sults are used to resume inference from the last state.

o Once all devices complete their assigned tasks, the final result
is aggregated using a simple aggregation function G.

The orchestration handles device heterogeneity, ensuring transi-
tions between energy states and task redistribution. The system is
highly adaptable and fault-tolerant, providing robust performance
even under varying network and hardware conditions.

5.2 Complexity Analysis

The computational complexity of this algorithm consists of : the
partitioning and the distributed training/inference phases.
Partitioning Phase: For the partitioning of L layers among N
edge devices, each layer’s computational complexity C; and memory
M must be calculated. This involves O(L) complexity for profiling
the model. Assigning layers to the edge devices involves solving a
resource allocation problem that depends on the device’s energy E;,
computational capacity C;, and memory M;. This allocation is done
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in O(L - N) time, as each layer is assigned based on minimizing the
energy-to-computation ratio.

Training and Inference Phase: During training, each device
trains its assigned sub-model. The overall time complexity is mea-
sured by communication overhead and the computational complex-
ity of each sub-model. The communication complexity between
devices is reduced by summarizing attention features, resulting in
O(N) communication rounds, where N is the number of edge de-
vices. Since the layers are partitioned adaptively, the computational
load on each device is balanced, ensuring no single device becomes
a bottleneck. The overall training time can be approximated as:

N
Tirain = T(M;) + O(N),
i=1
where T(M;) is the training time of sub-model M; on device E;.

Inference follows a similar complexity profile, where each device
processes its assigned layers, adjusting complexity based on energy
availability. The dynamic adjustment of layer complexity results in
a time complexity for inference as:

N
D cy) -
i=1

where C(M;) is the computation cost of sub-model M; on device E;
and O(N) accounts for communication overhead.

E;

Emax

Tinfer = O

)+O(N),

6 MULTI-METRIC EVALUATION

To validate our energy-aware partitioning approach, we conduct
tests using following hardware setup and ViT models.

Hardware Setup: We utilize a heterogeneous set of edge de-
vices, including Nvidia Xavier NX, Jetson TX2, and Raspberry Pi
4, featuring both CPU and GPU resources. These devices provide
varying levels of computational power and memory resources, en-
abling us to test the adaptability of our partitioning strategies in
real-world edge Al scenarios. Each device’s energy consumption
and latency are recorded during training and inference.

ViT Models: We evaluate the following ViT models:

e ViT [6]: The original ViT model that applies transformer
architectures to image recognition tasks, leveraging self-
attention mechanisms for high performance in various com-
puter vision applications.

e EdgeVit [4]: A ViT variant for edge devices, enhancing com-
putational efficiency and reducing memory usage to enable
real-time processing in resource-constrained environments.

e TinyViT [19]: A compact transformer designed for resource-
constrained environments, offering reduced size and compu-
tational requirements without significant loss in accuracy.

e DeiT-B [16]: A data-efficient image transformer that en-
hances training efficiency and performance by utilizing knowl-
edge distillation techniques, making it suitable for scenarios
with limited labeled data.

e EfficientViT [12]: Lightweight version of ViT optimized for
inference on edge devices, balancing performance and en-
ergy consumption for deployment in low-resource settings.

Tested Datasets: These above five ViT models are tested on
the OPV2V dataset [24], which is the first large-scale open dataset
focused on vehicle-to-vehicle (V2V) communication for perception
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Figure 2: Latency and Throughput Comparison for Distributed Models

Table 2: Accuracy and Energy Comparison Between Central-
ized and LAP-DTR on GPU

Models Methods mAP (%) | Latency (ms) | Energy (m])
. Centralized 56.7 4.18 362.5
EdgeviT LAP-DTR 54.2 3.95 301.1
. . Centralized 55.3 3.82 418.3
TinyViT LAP-DTR 52.7 3.15 376.5
. . Centralized 54.8 3.75 450.7
EfficientViT | |\ p TR 53.1 3.22 392.4
ViT Centralized 48.3 4.60 481.2
LAP-DTR 43.8 3.11 413.4
. Centralized 45.9 4.93 421.5
DeiT-B LAP-DTR 414 3.64 351.4

tasks [23, 24]. This dataset, collected using the OpenCDA frame-
work and CARLA simulator [5, 22], contains: 73 diverse driving
scenes across 9 cities and 6 road types. 12K frames of LiDAR point
clouds and RGB camera images. 230K annotated 3D bounding boxes.
Benchmarks with 4 LIDAR detectors and 4 different fusion strategies
(16 models in total). This dataset provides a comprehensive evalua-
tion platform for multi-vehicle sensing and cooperation, which is
particularly relevant for autonomous driving scenarios.

Metrics: We measure three key metrics: Energy Consumption,
the total energy usage by each device during inference, measured
using external power monitoring tools; Accuracy, the model’s per-
formance on 3D object detection tasks using the annotated bound-
ing boxes; latency, the time taken for model inference across the
distributed edge devices.

Trade-off Between Accuracy and Energy: Table 2 com-
pares the performance of the centralized method and the LAP-DTR
method across five ViT models. Overall, the LAP-DTR method re-
duces energy consumption and latency. For example, EdgeViT’s
energy consumption decreased by approximately 17%, and latency
decreased by about 5%. Similarly, TinyViT and EfficientViT saw
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energy reductions of around 10% and 13%, respectively, along with
significant decreases in latency. Although the accuracy of ViT and
DeiT-B decreased from 48.3% to 43.8% and from 45.9% to 41.4%,
respectively, the reductions in energy consumption and latency
remain within acceptable ranges. This indicates that the LAP-DTR
method can achieve energy savings while maintaining model perfor-
mance, making it suitable for applications that require high energy
efficiency and can tolerate minor losses in accuracy.

Latency and Throughput: Figures 2 compare the latency and
throughput of models across three devices: Raspberry Pi, Xavier NX,
and Jetson TX2. Latency is measured in milliseconds and shows
the time each device takes to process an input for each model.
Throughput is measured as images processed per second. Raspberry
Pi shows higher latency across all models, for example around
68 ms for EdgeViT and 259 for DeiT-B due to limited processing
power, while Xavier NX shows the highest throughput because
of processing power, showing its efficiency in handling intensive
computations.

Energy Consumption: We monitor energy consumption us-
ing the NVIDIA Management Library (NVML) and Tegrastats for
NVIDIA devices. The library allows tracking and optimization of
power consumption during computational tasks. Figure 3 shows
energy usage across memory, CPU, and GPU on a device. Because
of the large output feature map and complex computation in han-
dling token representations the GPUs consume most energy, while
memory and CPUs use less energy which is associated with input
feature map, optimizers and activations. Additionally, the energy
consumption of memory and CPUs varies depending on the ViT
model architecture. For all ViT models except DeiT-B, CPU energy
consumption exceeds that of memory. Also as shown, DeiT-B model
consumes more energy in memory than on CPUs, reflecting their
optimizations for memory efficiency.
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7 CONCLUSION AND FUTURE WORK

This paper introduces the LAP-DTR framework which dynamically
partitions Vision Transformer (ViT) models across heterogeneous
edge devices to enhance energy efficiency and optimize resource
use. The focus is to adapt model complexity during training and
inference based on the device’s resources, memory and process-
ing capacity. The strategy also considers device heterogeneity to
ensure robust performance under varying operational conditions,
making it a practical solution for error-tolerable distributed ViTs
on edge networks. Our test on various ViT models shows that LAP-
DTR can reduce energy consumption by up to 17% and decrease
latency with a balanced tradeoff in accuracy. The analysis shows
the practicality of LAP-DTR in real-world edge Al scenarios, es-
pecially for applications where energy resources are limited and
minor accuracy trade-offs are acceptable. While LAP-DTR shows
potential results, few areas require further exploration: 1). Extend-
ing to Other Architectures. Using LAP-DTR to multi-modality
and transformer models, such as vision language models, to fur-
ther test potentials. 2). Model Approximation Strategies. Com-
bine model partitioning with bit-wise approximation techniques
to achieve device-specific energy savings with balanced trade-offs
for applications. 3). User-Centric Optimization. Incorporate user
preferences and quality-of-service requirements to balance energy
consumption, latency, and accuracy. Addressing these areas will
improve the LAP-DTR framework, making it more adaptable and
effective for data and compute-intensive applications.
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