

Delft University of Technology

Leveraging Data in Algorithm Design
for Problems in Bilevel Optimization, Adaptable Robust Optimization, and Phylogenetics
Julien, E.A.T.

DOI
10.4233/uuid:3df57b28-1976-4d62-a483-2c513e062d89
Publication date
2025
Document Version
Final published version
Citation (APA)
Julien, E. A. T. (2025). Leveraging Data in Algorithm Design: for Problems in Bilevel Optimization,
Adaptable Robust Optimization, and Phylogenetics. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:3df57b28-1976-4d62-a483-2c513e062d89

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:3df57b28-1976-4d62-a483-2c513e062d89
https://doi.org/10.4233/uuid:3df57b28-1976-4d62-a483-2c513e062d89

Leveraging Data
in Algorithm
Design
for Problems in Bilevel
Optimization, Adaptable
Robust Optimization,
and Phylogenetics

Esther Julien

Leverag
in

g
 D

ata in
 A

lg
orith

m
 D

esig
n

E
sth

er Ju
lien

LEVERAGING DATA IN ALGORITHM DESIGN
FOR PROBLEMS IN BILEVEL OPTIMIZATION, ADAPTABLE

ROBUST OPTIMIZATION, AND PHYLOGENETICS

LEVERAGING DATA IN ALGORITHM DESIGN
FOR PROBLEMS IN BILEVEL OPTIMIZATION, ADAPTABLE

ROBUST OPTIMIZATION, AND PHYLOGENETICS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, Prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on Wednesday 17 September 2025 at 10:00 o’clock

by

Esther Anna Theresia JULIEN

Master of Science in Econometrics and Management Science,
Erasmus University Rotterdam, the Netherlands

born in Geldrop, the Netherlands.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Dr.ir. L.J.J. van Iersel, Delft University of Technology, promotor
Prof.dr. L. Stougie, Vrije Universiteit Amsterdam, promotor

Independent members:
Dr. M. Bodur, The University of Edinburgh, Scotland
Dr. S. Linz, The University of Auckland, New Zealand
Prof.dr. W. Romeijnders, The University of Groningen
Prof.dr. M.M. de Weerdt Delft University of Technology
Prof.dr. D.C. Gijswijt Delft University of Technology, reserve member

Other members:
Prof.dr. Ş.İ. Birbil, University of Amsterdam

This research was partly funded by the Dutch Research Council (NWO), under project
OCENW.GROOT.2019.015.

Keywords: Discrete Optimization, Machine Learning, Robust Optimization,
Bilevel Optimization, Phylogenetics

Printed by: Proefschriften.nl

Front & Back: Proefschriften.nl

Copyright © 2025 by E.A.T. Julien

ISBN 978-94-6473-887-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Summary ix

Samenvatting xi

1 Introduction 1
1.1 Machine Learning for Optimization. 1
1.2 Thesis Outline . 3
1.3 Part I: Hierarchical Optimization . 3
1.4 Part II: Phylogenetics . 9

I Hierarchical Optimization 19

2 Preliminaries 21
2.1 Value Function Approximation . 21

3 Neural Bilevel Optimization 27
3.1 Introduction . 28
3.2 Background . 30
3.3 Related Work . 31
3.4 Methodology . 32
3.5 Experimental Setup . 36
3.6 Experimental Results . 38
3.7 Conclusion . 41

Appendices of Chapter 3 43
3.A NEUR2BILO Pseudocode . 43
3.B Upper- v.s. Lower-level Approximations. 44
3.C Proofs for Approximation Guarantees . 44
3.D Problem Formulations . 47
3.E Learning-Based Approach of Zhou et al. [233]. 49
3.F Objective & Incumbent Results . 50
3.G Distributional Results for Relative Error 50
3.H Ablation. 54
3.I Computing Setup . 56
3.J Machine Learning Details . 56

4 Neural Two-Stage Robust Integer Optimization 59
4.1 Introduction . 60
4.2 Background . 61
4.3 Related Work . 63
4.4 Methodology . 64

v

vi CONTENTS

4.5 Experimental Setup . 67
4.6 Experimental Results . 69
4.7 Conclusion . 71

Appendices of Chapter 4 73
4.A 2RO Problems. 73
4.B 2RO Algorithms . 73
4.C Detailed Formulation . 76
4.D Extended NN Architecture . 76
4.E 2RO with Fixed First-Stage Decisions . 77
4.F Convergence . 77
4.G Distributional Results for Relative Performance. 78
4.H Ablation. 80
4.I Machine-Learning Model Details . 85

5 Machine Learning for K -adaptability 89
5.1 Introduction . 90
5.2 Preliminaries . 92
5.3 ML Methodology . 96
5.4 Experiments . 103
5.5 Conclusion and Future Work . 118

Appendices of Chapter 5 119
5.A Attribute Descriptions . 119
5.B Omitted Pseudocodes. 122
5.C Problem Formulations . 123
5.D Parameter Tuning . 125
5.E Full Results . 128

II Phylogenetics 139

6 Cherry-Picking Heuristic for Binary Trees 141
6.1 Introduction . 142
6.2 Preliminaries . 144
6.3 Solving the Hybridization Problem via Cherry-Picking Sequences 146
6.4 Predicting Good Cherries via Machine Learning 152
6.5 Experiments . 155
6.6 Conclusions. 167

Appendices of Chapter 6 169
6.A Time Complexity . 169
6.B Random Forest Models . 171
6.C Heuristic Performance of ML Models . 174

7 Cherry-Picking Heuristic for Non-Binary Trees 177
7.1 Introduction . 178
7.2 Methods . 180
7.3 Results . 189

CONTENTS vii

7.4 Conclusions. 197

8 Proximity Measure for Orchard Networks 199
8.1 Introduction . 200
8.2 Preliminaries . 202
8.3 Leaf Addition Proximity Measure . 206
8.4 Hardness Proof . 207
8.5 Upper Bound . 210
8.6 MILP Formulation . 211
8.7 Discussion . 215

Appendices of Chapter 8 217
8.A Remark and Omitted Proofs. 217

9 Conclusion & Discussion 223

Acknowledgements 229

Curriculum Vitæ 231

List of Publications 233

Bibliography 235

SUMMARY

This thesis explores the integration of machine learning (ML) into algorithm design for
solving complex combinatorial optimization problems. We focus on solving problems
that arise in bilevel optimization, two-stage robust optimization, and phylogenetics. Al-
though these problem classes seem vastly different, they share the common characteris-
tic of being extremely challenging to solve. Current solution methods for these problems
are computationally heavy and their solving duration is often impractical for already
small-sized instances. Adding a component of machine learning also adds complexity.
We primarily attempt to mitigate this effect by proposing learning methods that utilize
efficient training data generation schemes that rely on solving sub-problems or are even
based on a simple procedure, instead of learning from optimal solutions of many in-
stances similar to the target problem.

In the first part of the thesis, data-driven algorithms for bilevel and two-stage ro-
bust optimization are introduced. By utilizing techniques like neural network repre-
sentations (as a mixed-integer linear program), bilevel problems are transformed into
single-level formulations. Column-and-constraint generation, a well-known algorithm
that requires iterative steps to solve two-stage robust optimization problems, is simpli-
fied by using similar neural network representations. These proposed methods, respec-
tively NEUR2BILO and NEUR2RO, can find similar quality solutions as state-of-the-art
methods within a fraction of their runtimes. For another algorithm that solves two-stage
robust optimization problems (approximately), K -adaptability branch-and-bound, an
ML-based node selection strategy, is proposed to more efficiently traverse within the
branch-and-bound search tree. Similar quality solutions as obtained by using the de-
fault random strategy are achieved up to 90% faster with the ML-based strategy. All three
proposed methods require a data generation scheme based on solving single-level prob-
lems.

In the second part, we focus on a problem that arises in phylogenetics: the recon-
struction of phylogenetic networks based on multilocus data, i.e., data based on different
parts of the species’ genomes, giving rise to different phylogenetic trees. The combina-
torial problem that emerges is then how we can construct a phylogenetic network such
that all trees are displayed in the network. This problem is already NP-hard for two bifur-
cating trees. In this thesis, a class of heuristics is proposed based on the mathematical
characterization of cherry picking and machine-learning techniques. We demonstrate
the practicality of these heuristics through experiments on multifurcating tree sets with
missing leaves, which show good overall performance and particularly strong results on
large instances with up to 100 trees and 100 leaves. Applying these heuristics creates a
so-called orchard network. We show that a related theoretical problem, which is also
biologically motivated, is NP-hard: how many auxiliary leaves should be added to an
arbitrary network to make it orchard?

ix

SAMENVATTING

Dit proefschrift focust zich op het gebruik van machine learning (ML) voor de ontwikke-
ling van algoritmes die gebruikt worden om complexe combinatorische optimalisering
problemen op te lossen. In het bijzonder worden deze methoden toegepast op proble-
men die voorkomen in bilevel optimalisering, two-stage robuuste optimalisering en fy-
logenetica. Hoewel deze probleemklassen sterk van elkaar lijken te verschillen, zijn ze
alle drie uiterst moeilijk om op te lossen. Huidige oplossingsmethoden kunnen alleen
erg kleine instanties binnen een redelijke tijd oplossen. Het toevoegen van een ML-
component brengt zelf ook extra complexiteit met zich mee. Dit effect proberen we te
beperken door ML methodes te introduceren die gebruik maken van efficiënte datage-
neratie methoden. Die methoden baseren zich op de oplossingen van sub-problemen of
zelfs op simpele processen, in plaats van de optimale oplossingen van vele vergelijkbare
probleem instanties.

In het eerste gedeelte van het proefschrift worden algoritmes geïntroduceerd voor
bilevel en two-stage robuuste optimalisering waarin het gebruik van data centraal staat.
Zo worden neurale netwerk representaties (als een gemengd geheeltallig lineair pro-
gramma) gebruikt om van een bilevel probleem een enkel-level probleem te maken.
Daarnaast wordt een bekend algoritme voor het oplossen van two-stage robuuste op-
timalisering problemen, genaamd column-and-constraint generation, vereenvoudigd
door vergelijkbare neurale netwerk representaties toe te passen. De twee ontwikkelde
methoden, NEUR2BILO en NEUR2RO, kunnen beide kwalitatief vergelijkbare oplossin-
gen vinden als de huidige beste methoden, in een fractie van hun tijdsduur. Voor een al-
goritme dat een lichtelijk versimpelde versie van two-stage robuuste optimalisering op-
lost, genaamd K -adaptability branch-and-bound, wordt een op ML gebaseerde knoop-
selectiestrategie voorgesteld, om efficiënter door de branch-and-bound zoekboom heen
te gaan. Kwalitatief vergelijkbare oplossingen worden tot 90% sneller gevonden wan-
neer de knoopselectiestrategie op ML is gebaseerd, vergeleken met de standaard kans-
gestuurde strategie. Ieder van de drie bovengenoemde technieken leert op basis van
oplossingen van enkel-level problemen.

In het tweede gedeelte van het proefschrift focussen we ons op problemen die voor-
komen in fylogenetica. Namelijk, op het reconstrueren van fylogenetische netwerken,
gebaseerd op multilocus data, d.w.z., data gebaseerd op verschillende delen van de ge-
nomen van meerdere organismen, wat resulteert in verschillende fylogenetische bomen.
Het combinatorische probleem wat vervolgens ontstaat is hoe we een fylogenetisch net-
werk kunnen reconstrueren zodat alle bomen erin worden weergegeven. Dit probleem
is al NP-hard voor twee binaire bomen. In dit proefschrift wordt een klasse van heu-
ristieken geïntroduceerd die zijn gebaseerd op de wiskundige karakterisatie van cherry
picking en ML technieken. Door deze heuristieken te gebruiken, wordt een zogenaamd

xi

xii SAMENVATTING

orchard netwerk gereconstrueerd. We bewijzen dat het volgende gerelateerde theoreti-
sche probleem, dat ook biologisch gemotiveerd is, NP-hard is: hoeveel bijkomende ‘bla-
deren’ moeten aan een arbitrair netwerk worden toegevoegd om het orchard te maken?

1
INTRODUCTION

1.1. MACHINE LEARNING FOR OPTIMIZATION
This thesis focuses on leveraging machine-learning (ML) methods to solve combinato-
rial optimization problems. In the following, we discuss the applicability of machine
learning in optimization and the types of roles it can take. The problems studied in this
thesis are then presented alongside the goals.

ROLES OF MACHINE LEARNING IN OPTIMIZATION

There are many different reasons for adopting ML techniques to solve optimization
problems. For instance, the problem description is known, but (parts of) the parame-
ters are not, which can be predicted. The parameters define an instance of a problem,
e.g., for routing problems, the duration times of traversing over roads can be uncertain
in advance. A straightforward way to deal with this uncertainty is simply predicting these
parameters by using any predictor that best suits the application; this is an initial step
after which the predicted values are used as input for an existing solution algorithm.
Whether this approach is advised is another issue. Some might suggest that considering
the uncertainty while solving the problem leads to better, more frequently feasible, so-
lutions. Robust and stochastic optimization can then be adopted. These problem struc-
tures are unfortunately very complex and solving them takes substantially longer than
their deterministic counterparts. Another approach for predicting unknown problem
parameters lies in the ‘end-to-end predict-then-optimize’ paradigm [69, 194]. The pre-
dictor is trained not for the accuracy of the uncertain parameters it aims to predict, but
for the optimal solution that corresponds to the predictions. This idea stems from the
observation that the model cannot always predict accurately. As we mainly care about
the decisions of the solution and not the correct values of the parameters, this alternative
objective is assumed for training the prediction model.

Another setting where ML can be utilized is the following. Often when solving a
problem, one can derive the correct formulations of the mixed-integer programming
(MIP) [158] problem relatively easily. As is the case with problems that resemble classic
problem structures such as that of knapsack, machine scheduling, or routing problems.

1

1

2 1. INTRODUCTION

However, sometimes the problem description is unknown and ML can help define it:
the objective value function or constraints of an MIP problem can be predicted. A model
is trained on historical (or simulated) data that, for example, can classify good and/or
feasible decisions based on some features of problem instances [71]. This usually en-
tails that the machine-learning model needs to be integrated into the solution algorithm,
which is a challenging setting. Decision trees and neural networks can be formulated as
mixed-integer linear programming variables and constraints, which can then be added
to the original MIP [75, 145]. These added formulations serve as a proxy for the missing
elements.

Assumed setting in this thesis. Most problems studied in combinatorial optimization
are very complex: the runtime does not have a polynomial relationship with the problem
size but grows much faster. This brings us to the application of machine learning in
optimization considered in this thesis. Namely, when the problem is known, but a

data-driven algorithm design that leads to better performance

is proposed. Algorithms typically involve iterative steps where the choice made per step
shapes the path forward. This influences the duration of the algorithm and/or the qual-
ity of the solution, making effective decisions critical. Machine learning can be used in
each iteration to predict which choice leads to the most efficient or best solution. In
some cases, existing algorithms can be improved by adding ML for these choices. In
other cases, new algorithms are designed specifically for the integration of ML embed-
ding. Simulated or historical data that describe the states and best actions of each step
can then be used as expert data for practical applications. This is the supervised learning
approach. Reinforcement learning can also be applied [147], where no historical data is
required. This is an unsupervised learning approach.

Problems studied in this thesis. We focus on data-driven algorithm design for prob-
lems of the following types. There is a natural divide that can be made between the
problems, which gives rise to the thesis being split into two parts:

I. Hierarchical Optimization: Bilevel and two-stage robust optimization,

II. Phylogenetics: Reconstructing phylogenetic networks describing evolutionary
histories.

For the methods we introduce, supervised learning techniques are used where data is
necessary for training the learning model. We focus on developing an effective solution
algorithm for unseen problem instances. To achieve this, we need solutions from many
similar problem instances. Sometimes the necessary data is not available. The challenge
is then

to generate training data efficiently,

which can be considered as another goal of this thesis. A potentially ineffective approach
would be to solve many training instances, that are similar in complexity as the target
problem, to optimality. Various alternatives are presented throughout this thesis: (a)
solving not the entire problem but instead subproblems and (b) generating problem in-
stances from solutions; option (a) is used in Part I, and option (b) in Part II.

1.2. THESIS OUTLINE

1

3

HIGH-LEVEL GOALS OF THIS THESIS

The first main goal of this thesis is to design data-driven algorithms that lead to improved
performance for solving bilevel optimization problems, two-stage robust optimization
problems, and reconstructing a phylogenetic network. To minimize the burden of apply-
ing machine learning to an algorithm, we have considered the added complexity intro-
duced and tried to mitigate these effects. This can be achieved by choosing ML models
that are well-suited to the application while prioritizing those that use fewer parame-
ters. Another way is by designing efficient training data generation methods, which can
be viewed as the second goal of the thesis. The two goals are intertwined: the efficiency
of data generation goes hand-in-hand with the design of the algorithm, as the learning
task depends on its algorithmic application.

1.2. THESIS OUTLINE
As previously mentioned, this thesis is divided into two parts: Part I for hierarchical op-
timization and Part II for phylogenetics. An introduction of each part follows in this
chapter. We start Part I with preliminaries in Chapter 2. This chapter explains neu-
ral network representations as mixed-integer linear programming models, used in the
two subsequent chapters. We then move on to the chapters introducing how machine
learning can be integrated into algorithm design for hierarchical optimization problems.
In Chapter 3, a learning-based method for bilevel optimization is presented. In Chap-
ter 4, a method using machine-learning techniques is proposed for the existing algo-
rithm column-and-constraint generation to solve two-stage robust optimization prob-
lems more efficiently. In Chapter 5, we present a learning-based node selection strat-
egy for another algorithm that solves two-stage robust optimization problems: the K -
adaptability branch-and-bound algorithm.

We then proceed to Part II, where we apply machine learning to problems in phyloge-
netics and examine related theoretical questions specific to phylogenetics. In Chapter 6,
a learning-based heuristic for the hybridization problem on binary phylogenetic trees is
introduced. Then, in Chapter 7, this heuristic is adapted to generalize to non-binary (or
multifurcating) trees. By applying the introduced heuristics, one creates an orchard net-
work. We explore a more theoretically motivated question in Chapter 8 on this class of
networks. Namely, whether we can attach leaves to a phylogenetic network to transform
it into an orchard network. We show that this is NP-hard and present a mixed-integer lin-
ear programming (MILP) formulation to solve this problem. Finally, concluding remarks
and future directions are given in Chapter 9.

1.3. PART I: HIERARCHICAL OPTIMIZATION
The first part of the thesis deals with two problem classes: bilevel and two-stage robust
optimization. Their formulations share a similar mathematical structure in which mul-
tiple problems appear in a hierarchical or nested order; a problem of a higher level re-
quires the optimal solution of some decisions of a lower-level problem. This structure
comes at a cost: problems from both optimization classes are generally NP-hard, even
when their nested problems are polynomially solvable. The two classes face similar is-
sues, and consequently, the high-level ideas of some of the methods proposed in this

1

4 1. INTRODUCTION

thesis are shared. In Chapter 3 and Chapter 4 we use ML to avoid the nested structure of
bilevel and two-stage robust optimization problems to some degree, respectively.

Although similar in structure, the literature on robust and bilevel optimization has
mostly been developed in parallel throughout the years. In this thesis, the classes are also
studied individually, as the methods must be tailored to class-specific characteristics. A
clear misalignment is that bilevel optimization has two nested problems, whereas two-
stage robust optimization has three, and a generalization to higher numbers of nested
problems is not trivial. In an attempt to bridge the gap between the two research fields,
Goerigk et al. [87] have shown similarities between (two-stage) robust and bilevel opti-
mization and illustrate that sometimes the same algorithm can be used to solve prob-
lems of the two classes when certain restrictions hold.

Only recently there has been increasing interest in machine learning for hierarchical
optimization classes with mixed-integer variables, of which the works presented in this
thesis are some of the first. For the simpler class of non-nested optimization problems,
i.e., regular combinatorial problems, there is a richer history of literature on using ML,
with people focusing on solving specific (types of) problems [114] and accelerating exact
algorithms like branch-and-bound and cutting planes for solving general mixed-integer
linear programs. For extensive surveys of this research field, we refer the reader to [23,
175].

1.3.1. PROBLEM CLASSES
In the following, bilevel optimization (BiLO) and two-stage robust optimization (2RO)
will be introduced. The formulations of general mixed-integer programming (MIP) and
robust optimization (RO) are additionally provided for completeness.

MIXED INTEGER PROGRAMMING (MIP)
Mixed-integer programming is a class of mathematical optimization problems where
some decision variables are restricted to integer values, while others can be continuous.
Many real-life problems in which ‘yes’ or ‘no’ (i.e., binary) or discrete decisions need to
be made, can be formulated as an MIP:

min
x∈X

F (x)

s.t. G(x) ≥ 0,
(MIP)

where x are the decisions in some domain X ⊆ Rn , that can be restricted such that
(some) variables can only take integer values. The objective function is given as F : X →
R, and the constraints as G : X →Rm , which can in the general setting all be non-linear.
MIP has many applications in industries such as logistics, manufacturing, and energy.
We only consider non-linearity to appear in the bilevel optimization problems we study
in Chapter 3. The objective and constraint functions for the two-stage robust optimiza-
tion problems in Chapter 4 and Chapter 5 are all linear. In this linear case, we deal with
MILPs, which are already NP-hard [158]. With non-linearity, the problems are in gen-
eral nonconvex, which implies there can be multiple locally optimal solutions; finding
a globally optimal solution is also NP-hard, already for problems with only continuous
variables. This makes mixed-integer non-linear programs (MINLP) harder than MILPs

1.3. PART I: HIERARCHICAL OPTIMIZATION

1

5

[78]. For an overview of solvers for MINLPs, such as Benders decomposition and branch
and bound, we refer the reader to [78].

BILEVEL OPTIMIZATION (BILO)
Bilevel optimization (BiLO) deals with hierarchical problems where one agent ‘the
leader’ makes decisions x ∈ X and optimizes their problem given the best response of
another agent, ‘the follower’, y ∈ Y ; the sets X and Y represent the domains of the
variables (continuous, mixed-integer, or pure integer). This problem structure occurs
in many different domains; for example, in transportation network design where a city
builds roads to minimize the average travel time of its inhabitants. The city is the leader
and the group of inhabitants is the follower. Another example arises in security, where
someone decides on safety measures to undermine the activities of criminals. The per-
son taking safety measures is the leader and the criminal is the follower. And there are
many other applications [59]. Generally, a problem in which the decision maker is await-
ing a response from someone else can be formulated as a multi-level optimization prob-
lem, where bilevel indicates that two levels are considered. The origin of bilevel opti-
mization stems from works such as Stackelberg games [207, 208] and the first formula-
tion from Bracken and McGill [42]. For a thorough introduction to bilevel optimization,
we refer to [59]. The nested problem structure of BiLO is formulated as follows:

min
x∈X ,y

F (x,y)

s.t. G(x,y) ≥ 0,

y ∈ argmax
y′∈Y

{ f (x,y′) : g (x,y′) ≥ 0},

(BiLO)

where the upper-level problem is the optimization problem of the leader, consisting of
the objective function F (·) and constraints G(·). The lower-level problem is the opti-
mization problem of the follower, with f (·) as its objective function and g (·) as its con-
straints. The constraint with the argmax term over the follower’s problem illustrates that
the leader considers an optimal solution y, that is not necessarily unique. It also shows
that the leader’s decisions x parameterize the follower’s problem; the follower responds
to the leader. In this thesis, the so-called optimistic setting is considered: if the follower
has multiple optima for a given leader’s decision, the one that optimizes the leader’s
objective is implemented. Therefore, in the upper level we also optimize over y which
comprises all the optimal solutions of the lower level. We consider the general mixed-
integer non-linear case with F, f : X ×Y → R, G : X ×Y → Rm1 , and g : X ×Y → Rm2

non-linear functions of the upper-level x and lower-level variables y.
As an illustration, in Example 1.1 the knapsack interdiction problem is given. Inter-

diction problems are a special case of bilevel optimization where the leader disrupts the
actions of the follower such that the objective functions of the two members are in direct
opposition [60].

Example 1.1 (Bilevel Knapsack Interdiction Problem). The knapsack problem is a classic
and well-studied problem in combinatorics and integer programming. As an example of
BiLO, the knapsack interdiction problem as described by Tang et al. [195] is presented. The
leader decides to interdict (a maximum of k) items of the knapsack solved in the follower’s

1

6 1. INTRODUCTION

problem, n the number of items, pi the profits, ai the cost of item i , respectively, and the
budget of the knapsack is b. The decisions of the leader are formulated as binary variables
x, where xi = 1 if the follower (with decisions y) cannot select the i -th item of the knapsack,
i.e., yi = 0. This is caused by the constraint yi + xi ≤ 1, i ∈ [n], in the follower’s problem of
the formulation:

min
x∈{0,1}n ,y

n∑
i=1

pi yi

s.t.
n∑

i=1
xi ≤ k,

y ∈ argmax
y′∈{0,1}n

n∑
i=1

pi y ′
i

s.t.
n∑

i=1
ai y ′

i ≤ b,

y ′
i +xi ≤ 1, i ∈ [n],

Solution approaches of BiLO. If the follower’s problem has only continuous variables,
the bilevel problem can be reformulated into a single-level problem by applying Karush-
Kuhn-Tucker (KKT) conditions or duality techniques. When it contains integer variables,
the problem becomes considerably more challenging. In this case, branch and cut [61,
76] is most appropriate for general linear problems. However, these do not scale well for
larger instances. Kleinert et al. [118] survey more exact methods for bilevel optimization.
Many problem-specific algorithms have been introduced. Bilevel optimization knows a
rich literary history of meta-heuristics, as reviewed in [183]. Bilevel optimization also
knows many applications in machine learning (e.g., hyperparameter optimization [106]
and neural architecture search [138]), usually without constraints and with continuous
variables. Gradient-based methods are often used in this setting.

ROBUST OPTIMIZATION (RO)
In robust optimization, the outer problem optimizes over decisions whereas the inner
problem optimizes over uncertain parameters:

min
x∈X

max
ξ∈Ξ

c(ξ)⊺x

s.t. T (ξ)x ≤ h(ξ), ∀ξ ∈Ξ,
(RO)

where x ∈ X ⊆ Rn are the decisions and the uncertain parameters ξ are assumed to be
contained in a convex and bounded uncertainty set Ξ ⊆ Rq . The coefficients of the ob-
jective function and constraints of the problem, c(ξ) ∈ Rn , T (ξ) ∈ Rr×n , and h(ξ) ∈ Rr ,
may depend on the scenario ξ. The intuition behind this problem is the following: the
decision maker wants to find the best response to the worst-case scenario while the con-
straints are simultaneously satisfied for all scenarios. Hence, to solve the problem in a
robust setting. Generally, the scenarios are assumed to be continuous and when this is
the case, the problem can be transformed into a mathematically tractable formulation
that uses the dual problem of the uncertainty set [21]. This is comparable to the tech-
niques used for bilevel optimization when the follower’s problem only has continuous

1.3. PART I: HIERARCHICAL OPTIMIZATION

1

7

variables. In both cases, the problem becomes a single-level, or regular, MIP which is
constructed by using KKT or duality techniques. Another approach is constraint gen-
eration [154] where iteratively violating scenarios are added to the problem until none
pertain.

TWO-STAGE ROBUST OPTIMIZATION (2RO)
For two-stage robust optimization, another inner problem is added, where after the un-
certain parameters ‘are realized’, another set of decisions are made:

min
x∈X

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x+d(ξ)⊺y

s.t. T (ξ)x+W (ξ)y ≤ h(ξ),
(2RO)

where x ∈ X ⊆ Rn and y ∈ Y ⊆ Rm are referred to as the here-and-now (or first-stage)
and wait-and-see (or second-stage) decisions, respectively, and the uncertain parame-
ters ξ ∈Ξ⊂ Rq . The objective function and constraints of the problem, c(ξ) ∈ Rn ,d(ξ) ∈
Rm ,T (ξ) ∈ Rr×n ,W (ξ) ∈ Rr×m , and h(ξ) ∈ Rr , may again depend on the scenario ξ. This
problem structure allows for making another round of decisions after the scenario is
known, in a way, to adapt to the revealed uncertain parameters. This problem can be
generalized to multi-stage robust optimization, where the min-max-min structure is
repeated such that multiple stages of decisions and uncertainties are allowed. For in-
stance, multi-day scheduling problems can be formulated this way, where daily inven-
tory and delivery decisions depend on the uncertain daily demand.

Example 1.2 (Two-Stage Robust Facility Location Problem). As a classic example of 2RO,
consider the two-stage robust facility location problem. A planner must open a subset of n
facilities to serve m clients with uncertain demands while minimizing the cost of opening
the facilities and serving the clients. A facility with capacity Ci can be opened at cost ci .
A customer has a demand b j (ξ) that depends on an uncertain scenario ξ. Specifically, for
a nominal demand b̄ j and some deviation ∆ j , the demand is b j (ξ) = b̄ j +∆ j · ξ j where
we assume there is a budget B on the total percental amount of deviation, modeled by the
budgeted uncertainty set Ξ= {ξ ∈ [0,1]m :

∑m
j=1 ξ j ≤ B}. Facility i can serve customer j at

cost di j . The planner must decide which facilities to open before the uncertain demands
are observed. Allocating facilities to customers is done after the uncertain (demand) sce-
nario is realized. This gives the following formulation:

min
x∈X

max
ξ∈Ξ

min
y∈Y

c⊺x+d⊺y

s.t.
m∑

j=1
yi j · (b̄ j +∆ j ·ξ j) ≤Ci · xi , ∀i ∈ {1, . . . ,n},

n∑
i=1

yi j = 1, ∀ j ∈ {1, . . . ,m}.

Here, X = {0,1}n and entry xi = 1 if facility i is opened in the first stage; Y = {0,1}n×m and
yi j = 1 if facility i is assigned to customer j in the second-stage. The constraints enforce
that the facility capacities are not exceeded and ensure that each customer is served by

1

8 1. INTRODUCTION

exactly one facility. The planner is concerned with finding the subset of facilities that min-
imizes the total cost over all scenarios while ensuring the selected facilities can serve the
customers for any demand scenario, i.e., the first-stage decision x gives a feasible second-
stage decision y for all ξ ∈Ξ.

Solution approaches of 2RO. Both single- and multi-stage robust mixed-integer prob-
lems are NP-hard even when their deterministic counterparts are polynomial-time solv-
able [46], where two-stage robust problems are much harder to solve than single-stage
robust problems, especially when the second-stage decisions are integer. In fact, as Go-
erigk et al. [88] show, multi-stage robust optimization with budgeted uncertainty set with
S stages isΣp

2S−1-complete, while other forms stay in N P . When dealing with integer first
stage and continuous second stage, column-and-constraint generation (CCG) is one of
the key approaches [197, 227]. While an extension of CCG has been proposed for mixed-
integer recourse [232], it is often intractable and does not apply to pure integer second-
stage problems. We use this CCG framework in Chapter 4 to both accelerate the method
and also generalize it to mixed-integer recourse. A more thorough literature review on
existing solvers for linear recourse will be given in this chapter as well.

Besides these exact solution methods, one heuristic approach is K -adaptability [28,
95, 189]. This is a relaxation of the problem in which the uncertainty set Ξ is (indirectly)
partitioned into a pre-determined number of K subsets. A separate copy of the second-
stage decisions y is then assigned to each subset. This means that the j -th copy of y
gives a feasible and optimal worst-case solution to all scenarios of the j -th uncertainty
subset. In Chapter 5, we introduce a learning-based approach to accelerate the branch-
and-bound algorithm of Subramanyam et al. [189].

1.3.2. CONTRIBUTIONS OF PART I
The following are the main contributions of the first part of the thesis.

Machine-learning based single-level formulation for generic bilevel optimization
problems: In Chapter 3, the method NEUR2BILO is introduced. This method lever-
ages neural network predictions to transform the bilevel problem into a single-level
problem. By eliminating the nested problem structure, the problem becomes much less
complex. This becomes evident in the empirical study on four benchmark problems
where NEUR2BILO performs approximately 100 to 1000 times faster than the state-of-
the-art solvers for the harder instances while obtaining high-quality solutions for all. For
training data generation, an efficient data generation approach is proposed based on
only solving one of the nested problems. The procedure, performed offline, uses the so-
lutions of the lower-level problem, an MIP. Solving this is considerably less complex than
the bilevel problem, regardless of the complexity of the lower-level problem itself.

Learning-based formulation of the column-and-constraint-generation algorithm for
two-stage robust optimization problems: In Chapter 4, the method NEUR2RO is in-
troduced. This method, like NEUR2BILO, leverages neural network predictions to sim-
plify the problem formulation such that fewer variables and constraints are required.
However, NEUR2RO has a more intricate structure as it involves an iterative algorithm

1.4. PART II: PHYLOGENETICS

1

9

(unlike the single-level formulation of NEUR2BILO) where the main and sub-problem of
column-and-constraint generation (CCG) [227] are amended with neural network em-
beddings. This method has shown to be performing better than state-of-the-art for large
instance sizes of two benchmark problems, with significant computational speed-ups
while obtaining similar or better solutions. Training data generation takes a similar ap-
proach as in Chapter 3 where the solutions of the second-stage problem are used. Hence,
also the solutions of only one nested problem are required. This problem is an MILP and
therefore much easier to solve than the two-stage robust optimization problem.

An efficient modular neural network architecture for NEUR2RO: For the algorithm
proposed in Chapter 4, a specific machine-learning model is proposed, as more generic
ones would not suffice. Due to the iterative nature of CCG, repeatedly embedding neu-
ral networks would become problematic due to the extra variables and constraints re-
quired for NN embeddings. For NEUR2RO, a tailored architecture is proposed that uses
a modular structure, such that only parts of the learned model cumulatively need to be
embedded in the two problems.

Learning-based node selection strategy to accelerate the K -adaptability B&B algo-
rithm for solving two-stage robust optimization problems: In Chapter 5, we pro-
pose a learning-based method to more effectively traverse the search tree of the K -
adaptability branch-and-bound (B&B) algorithm [189]. The B&B algorithm does not
scale well for higher instance sizes. Finding better solutions faster is dictated by the order
in which one traverses through the search tree. The learning-based node-selection strat-
egy we propose finds similar or better solutions up to 90% faster compared to a default
random node-selection strategy.

A training data generation scheme inspired by Monte-Carlo Tree Search: A special-
ized training data generation scheme is proposed in Chapter 5 to represent the state
space of the K -adaptability B&B search tree accurately. This method is also instance-
size independent, which makes it possible to train on small instances and generalize to
larger instances. This approach leverages the structure of Monte-Carlo Tree Search to es-
timate and assign labels to the data points, as assigning exact values is computationally
intractable.

1.4. PART II: PHYLOGENETICS
The second part of this thesis continues with the combination of machine learning and
optimization, but now for problems of a very different nature, arising in phylogenet-
ics. This field studies evolutionary relationships among various organisms, using graph
structures to represent the evolutionary events over time. Due to the complexity of infer-
ring information from biological data onto graphs, this field has attracted many mathe-
maticians and computer scientists. In what follows, a simplified biological background
is given of the phylogenetic combinatorial problems studied in this thesis. First, phy-
logenetic trees are defined and subsequently phylogenetic networks, to which the main
contributions pertain. Deriving an optimal network is known to be NP-hard for almost

1

10 1. INTRODUCTION

all known problem formulations, and consequently exact methods do not scale well for
larger instances. We explore the role of machine learning in creating good networks,
which has not been done before. In recent years, machine learning has been used for
reconstructing trees, primarily used for faster and accurate computations needed for
tree inference [9, 10]. Like these approaches, we aim at methods that scale well and are
widely applicable. However, we focus on constructing networks rather than trees. We
do not apply ML directly to biological data, as is usually done for the generation of trees,
but rather combine it with mathematical characterizations like cherry-picking sequences,
which will be introduced later.

1.4.1. TREES

A rooted phylogenetic tree is a directed acyclic graph with a root (i.e., a node with in-
degree 0 and out-degree more than 1), and labeled leaves (i.e. nodes of in-degree 1 and
out-degree 0). These leaves represent taxa, which can be various groups of organisms,
like different groups of plant species, as illustrated in Figure 1.1a. A phylogenetic tree
shows a (hypothetical) evolutionary history by representing speciation events at every
tree node (i.e., all other nodes than the root and leaves are of in-degree 1 and out-degree
more than 1). Such an event symbolizes the evolution from one ancestral taxon into (at
least two) transformed taxa caused by, for instance, geographical isolation of one group
of the species or natural selection. A tree is binary when the root and tree nodes have an
out-degree of exactly two, it is non-binary if the out-degree is more than two for at least
one tree node or for the root. Even though it is in many cases unlikely that a speciation
event creates more than two new species, non-binary trees are still beneficial as they can
reflect uncertainty in the order of speciation events [122].

TREE RECONSTRUCTION METHODS

A phylogenetic tree is constructed by comparing the biological data (e.g., DNA se-
quences, protein sequences, or ecological traits) of various taxa. Commonly used phy-
logenetic tree reconstruction methods are of the following types. Distance-based meth-
ods (e.g., Neighbor-joining and unweighted pair group method with arithmetic mean,
UPGMA) use pairwise distances of sequence alignments. These distances are for ex-
ample used to heuristically obtain a tree by iteratively clustering the closest pair. More
exhaustive search methods are also possible. Instead of summarizing distance met-
rics, character-based methods (e.g., maximum likelihood, maximum parsimony, and
Bayesian inference) rather focus on each character of the sequence alignment. Maxi-
mum likelihood and Bayesian interference are statistical methods that search the pa-
rameter space (e.g., tree topologies and branch lengths) and select the best one(s) based
on the likelihood of the parameter values. This likelihood is the probability that the
evolutionary model given these parameters correctly models the underlying sequence
alignment. For details on the above mentioned methods, among others, we refer the
reader to Nei and Kumar [157] and Felsenstein [72]. Maximum likelihood methods and
Bayesian inference are usually computationally intractable [55] and can only find opti-
mal solutions for limited-sized datasets. To initialize the parameters for maximum like-
lihood methods, a tree can also be constructed using distance-based methods. Recently,
machine-learning techniques have been introduced to accelerate the search for trees

1.4. PART II: PHYLOGENETICS

1

11

with a high likelihood score [9, 10]. Other methods have also been introduced for tree
inference, where machine learning and a more combinatorial approach is are used [234].

A PHYLOGENETIC FOREST

For some of the problems we solve in this thesis, the input is a forest or set of phyloge-
netic trees on the same set, or on similar sets, of taxa. Various trees can be reconstructed
from the same set of organisms by using different methods, or, for example, by creat-
ing so-called gene trees based on different data. A gene is a segment of DNA that carries
hereditary information, which includes encoding instructions used for building proteins
or for supporting other genes. A gene tree is based on the DNA sequence of one specific
gene present in all, or most, of the organisms studied. The evolutionary history of the
species can be different from the gene trees if there is incomplete lineage sorting [58]. We
however assume that this phenomenon does not occur in the data we study.

In the following example, two gene trees are constructed for three groups of plant
species. The two trees in Figure 1.1 are not isomorphic; different evolutionary histories
are shown. Whenever there is a conflicting set of trees on the same taxa, while assuming
incomplete lineage sorting does not occur, it can suggest several things: incorrect data,
inaccuracy of the method, or occurrences of complex evolutionary events that trees can-
not express. Such events can be represented by phylogenetic networks, which will be
discussed after the example.

H F L
(a) Gene A Tree

H F L
(b) Gene B Tree

H : GATCTACGA
F : GATCTACGG
L : GATTTACTG

(c) Gene A DNA Sequence

H : GATCTGGTT
F : GACCTAGTA
L : GACCTAGTT

(d) Gene B DNA Sequence

Figure 1.1: Gene trees of the (fictional) A and B genes for Hornworts (H), Ferns (F), and Lycophytes (L) groups
of plant species. Example 1.3 demonstrates the reconstruction of the phylogenetic trees using the sequence
alignment. These trees are inspired by the network created in Soucy et al. [187, Figure 5].

Example 1.3 (Gene Trees on Plant Species). We study two phylogenetic gene trees dis-
playing the evolutionary relationships between three groups of plant species: Hornworts,
Ferns, and Lycophytes. The first tree is based on the (fictional) A gene and the second tree
on the (fictional) B gene. The resulting trees along with the (fictional) DNA sequences of
each gene and taxon are given in Figure 1.1. We briefly show the high-level idea of how
the trees can be derived via the distance-based method UPGMA. The (Hamming) distance
between each pair of species is determined by simply determining the number of conflicts
in the sequence alignment and then grouping the pair with the fewest conflicts (i.e., the
closest) in the tree. Since only three taxa exist in this example, the tree can be constructed
after one step. Otherwise a process would follow that repeatedly calculates a new distance

1

12 1. INTRODUCTION

matrix explaining the updated state as leaves are grouped at each step. For the A gene, we
see that the DNA sequences of Hornworts and Ferns are the pair with the smallest distance.
For the B gene, Ferns and Lycophytes are the closest pair. These pairs are grouped first in
their respective gene trees.

1.4.2. NETWORKS

Non-treelike events representing complex evolutionary processes are called reticula-
tions. Such events characterize merging of species, whereas the speciations in trees
characterize diverging events. Phylogenetic networks can express both types in a directed
acyclic graph, keeping the description of trees as described before with additional reticu-
lation nodes (i.e., a node of in-degree more than 1, and out-degree of 1), symbolizing the
merging of ancestors. Reticulations can, for example, represent the evolutionary events
of hybridization (e.g., hybrid speciation and introgression), lateral gene transfer (LGT)
(e.g., transformation, transduction, and conjugation [187], primarily observed in bacte-
ria and archaea), and recombination [122]. In Figure 1.2, an example of a network on
three plant taxa displaying a lateral gene transfer is given.

H F L

Figure 1.2: A phylogenetic network on three groups of plant species: Hornworts (H), Ferns (F), and Lycophytes
(L). The circular nodes indicate the root, tree nodes, and leaf nodes. The square node is a reticulation node. The
solid arcs show an embedding of Gene A Tree and the dashed arcs an embedding of Gene B Tree of Figure 1.1.
This network is a subnetwork of the one reconstructed in Soucy et al. [187, Figure 5]. The directed horizontal
(reticulation) arc corresponds to a lateral gene transfer from Hornworts to Ferns.

Many solution approaches for generating a network are based on multilocus data
(i.e., sequence data of multiple genes, or loci). Some of the methods used to recon-
struct trees are generalized to the reconstruction of networks. This includes maximum
parsimony [156], maximum likelihood [224], and Bayesian inference [212], contained
in phylonet [213] and phylonetworks [186]. These methods were already computa-
tionally expensive for reconstructing trees and their scalability has only worsened in this
new setting. Such approaches are generally restricted to a small number of reticulations
and taxa. The measures are still useful for comparing candidate networks by assigning
performance scores to each, such as the likelihood or parsimony score.

Instead of directly inferring a phylogenetic network from multilocus data, many
methods for reconstructing networks are based on combining sampled gene trees. While
there exist more complex models that can identify hybridization events despite incom-
plete lineage sorting [148, 225], we will focus on the combinatorial variant that aims at
constructing a network that displays all its gene trees. To illustrate, in Figure 1.2 a net-

1.4. PART II: PHYLOGENETICS

1

13

work is given where the labeled arcs indicate how the two gene trees of Figure 1.1 are
displayed: Gene A Tree via the solid arcs and Gene B Tree via the dashed ones.

NETWORK RECONSTRUCTION WITH GENE TREES AS INPUT

This thesis focuses on combinatorial optimization methods for inferring rooted phyloge-
netic networks from estimated gene trees. Following the parsimony principle, it is com-
mon to search for networks with as few reticulations as possible, as reticulation events
are often considered relatively uncommon. The objective of our combinatorial problem
is then to minimize the number of reticulations in the resulting network, while still dis-
playing all the gene trees. This brings us to the informal description (see Section 6.2 for
the formal definitions) of the associated computational problem: HYBRIDIZATION. To
illustrate, the trees of Figure 1.1 can serve as the input, and the network of Figure 1.2 is a
corresponding output of this problem.

HYBRIDIZATION

Input: A set of phylogenetic trees on similar, but not necessarily equal, sets of
taxa.
Output: A phylogenetic network displaying the trees with minimum possible
reticulation number.

This problem is already NP-hard for two binary trees with equal taxon sets [39]. How-
ever, the authors of this paper show that this problem is fixed-parameter tractable (FPT)
and van Iersel and Linz [206] generalize this result by proving this holds for binary tree
sets of any size. FPT problems can be solved by a computationally tractable algorithm
with the restriction that some problem parameters are fixed. These results have given
rise to the construction of numerous other algorithms, many of which are based on
agreement forests [17, 37, 56, 215], all for two binary trees on the same taxon set. Excep-
tions of algorithms that share these assumptions are hybroscale [3], which can handle
an arbitrary-sized tree set, and the algorithm of Huson and Linz [102], which applies to
two non-binary trees on overlapping, but not equal, taxon sets. On a high level, an agree-
ment forest is a set of subtrees on a subset of taxa, called components, which appear in
each tree and are thus in agreement. Under some acyclicity assumption of the agree-
ment forest, the reticulation number of the resulting phylogenetic network is equal to
the number of components minus one [15]. To obtain the minimum reticulation num-
ber, the minimum sized forest is soughtf, which is called the maximum acyclic agreement
forest.

Other combinatorial methods are, for example, Piovesan and Kelk [168] who propose
an FPT algorithm for two non-binary trees on the same taxa, and CASS [205], which can
be applied to generic inputs, but only for small reticulation numbers. The algorithm
PIRN [220] can be applied to multiple non-binary trees and PIRNs [149] on multiple bi-
nary trees, both on the same sets of taxa. The latter two methods do not scale well for
large taxon sets. There also exist many other methods that make restrictive assumptions
on the network [103] and/or the input set [135, 204] and will due to their impracticality
to general input trees not be discussed further.

1

14 1. INTRODUCTION

As far as we know, there is no algorithm or heuristic that can handle tree sets of more
than two multifurcating (i.e., non-binary) trees with overlapping, but not exactly equal,
leaf sets. The proposed class of heuristics (in Chapter 6 and Chapter 7) solves exactly
these types of instances, in which the mathematical characteristic of cherry picking plays
a vital role.

Some years ago, the notion of cherry picking was introduced [101, 134]. This char-
acterization has proven to be very effective for reconstructing phylogenetic networks on
large instances. van Iersel et al. [201] propose an exact algorithm for reconstructing ‘tree-
child’ networks using cherry picking. Their algorithm was applied to instances of up to
100 binary trees with equal taxon sets but can only handle reasonably small reticula-
tion numbers. If the input trees are non-binary, a preprocessing heuristic makes them
binary. However, the cherry-picking characterization is more general than assumed in
their study; it can also directly be applied to multifurcating trees and to mostly overlap-
ping, but not exactly equal, sets of taxa.

CHERRY PICKING

A cherry is an ordered leaf pair with a common parent. The name ‘cherry picking’ is
inspired by the shape its incoming arcs depict. ‘Picking’ cherry (a,b) entails deleting leaf
a and its incoming arc, and ‘cleaning’ everything up (i.e., suppressing the resulting in-
degree 1 and out-degree 1 node). One can ‘reduce’ a tree by iteratively picking different
cherries until only one leaf remains. Once all the trees are (simultaneously) reduced,
a network can be constructed using the sequence of cherries used to reduce the trees.
Formal definitions of these moves are given in Section 7.2.2. See the following example
for a demonstration on plant gene trees.

Example 1.4 (Cherry Picking Applied to Plant Trees). In this example, we show how the
network in Figure 1.2 can be reconstructed from the gene trees in Figure 1.1by using cherry
picking. The cherry-picking steps are illustrated in Figure 1.3a. where the cherries are
simultaneously picked from the trees. If the cherry is not present in a tree, the tree remains
the same. Suppose we pick cherry (F, H) first, thus F is deleted in Gene A Tree, and nothing
changes for Gene B Tree. Then suppose cherry (F,L) is picked, present in Gene B Tree only.
Finally, suppose cherry (H ,L) is picked in both trees, leaving one leaf. The tree set is now
fully reduced.

Now that we have a cherry-picking sequence S = (F, H), (F,L), (H ,L), we can recon-
struct a network. This is done in Figure 1.3b. From right to left, we first initialize the
network with cherry (H ,L). Then, we add (F,L) by adding F to L. Note that now all the
leaves are in the network. However, one cherry, (F, H), is left. This cherry is added by plac-
ing an arc from (the incoming arc of) H to (the incoming arc of) F , creating a node with
in-degree 2 and out-degree 1: the reticulation node. Note that different choices may lead
to a different network.

In Example 1.4 we assumed to know which cherries to pick. In practice, this is not
the case. The number of possible actions can be high; it corresponds to the number
of unique cherries across all the trees, which can become very large as the tree set and
taxon set(s) increase in size. This creates the necessity for an algorithm or heuristic to
guide these decisions. In Chapter 6, we present a class of heuristics for reconstructing

1.4. PART II: PHYLOGENETICS

1

15

H F L

H F L H L

H F L H L

H L

L

L

(F, H) (F, L) (H, L)Gene A

Gene B
(F, H) (F, L) (H,L)

(a) Cherry picking of gene trees

H F L H F L H L

(F, L) (H, L)(F, H)Network

(b) Network reconstruction

Figure 1.3: A simulation of cherry picking for the example of three taxa: Hornworts (H), Ferns (F), and Lyco-
phytes (L). In (a) the two gene trees are simultaneously reduced by cherry picking, resulting in the sequence
S = (F, H), (F,L), (H ,L). In (b) this sequence is used to reconstruct the network (from right to left). Example 1.4
gives a more detailed description of the reduction.

1

16 1. INTRODUCTION

phylogenetic networks for binary trees, where cherry picking plays the central role. Then
in Chapter 7, this heuristic is tailored to handle non-binary trees with missing leaves
(i.e., the taxon sets per tree are mostly overlapping but not equal). In the heuristics,
iteratively, one of the available cherries is picked, until all trees are reduced. We aim
to find the shortest cherry-picking sequence that reduces all trees as the length of the
sequence directly affects the number of reticulations in the constructed network [202].
Thus, we must choose the right cherry in each iteration of the heuristic. One approach
to deciding which cherry to pick is via a machine-learning prediction.

ORCHARD NETWORKS

As demonstrated earlier, applying cherry picking to ’merge’ gene trees reconstructs a
phylogenetic network. These networks belong to the orchard class, defined by their
construction and reduction through a cherry-picking sequence [70, 109]. Apart from
the computational implications, this class also has biologically motivated structures.
Namely, an orchard network can be described as a tree with additional horizontal arcs
[200]. The inverse is also true: each network with only lateral gene transfer (LGT) events
is an orchard network, assuming there are no unsampled taxa. This brings us to the
last chapter of Part II, Chapter 8, where we answer the following question: what is the
minimum number of leaves that needs to be added to a network to make it orchard?
This question could be relevant when one knows that all reticulations are caused by LGT
events but the reconstructed network is not orchard. The studied question would then
answer how many unsampled taxa prevent the network from only depicting horizontal
events. We show this problem turns out to be NP-hard. The proof and an MILP formula-
tion for solving this problem are introduced in Chapter 8. The results of the MILP model
also give an hypothesis of the locations of the unsampled taxa in the network (i.e., to
which arcs the auxiliary taxa can be added to make the network orchard).

Linz and Semple [134] propose adding leaves to trees to construct an optimal arbi-
trary network, and not an optimal ‘tree-child’ network. While our methods do not di-
rectly apply to this setting, they have inspired us with ideas for future work related to this
concept. This discussion is reserved for Chapter 9.

1.4.3. CONTRIBUTIONS OF PART II
The following are the main contributions of the second part of the thesis.

An efficient and widely applicable class of cherry-picking heuristics for solving the
HYBRIDIZATION problem on non-binary gene trees with missing leaves: In Chapter 6
we introduce a class of heuristics that combine cherry picking and machine learning to
solve the HYBRIDIZATION problem for binary gene trees. We design a machine-learning
model for predicting the correct cherries to pick in each iteration, based on features
that describe the structure of the tree set. In Chapter 7, we apply this heuristic to in-
stances of non-binary trees that may have missing leaves. The machine-learning ele-
ment is changed to better handle this general class of inputs. We propose to add another
predictor solely for the leaves before predicting the correct cherries, as the number of
cherries in multifurcating trees with missing leaves grows quadratically in the number
of taxa, compared to linearly for binary trees. We show that this method is practical as

1.4. PART II: PHYLOGENETICS

1

17

demonstrated by the experiments on synthetic and real data of up to 100 trees and 100
leaves. Especially for large instances, the experiments show that using machine learning
to search the solution space leads to good performances.

An efficient data generation scheme for training the ML models of the heuristic, based
on creating labels by obtaining instances from solutions: For the heuristic proposed
in Chapter 6, we propose a training data generation scheme that utilizes the relationship
between phylogenetic networks and their displayed trees. From synthetically generated
networks, which could be interpreted as the solution to the HYBRIDIZATION problem, a
corresponding problem instance can be built by (randomly) selecting the network’s dis-
played trees. In this way, “expert” data can be derived easily without having to construct
an optimal network for a given instance.

The operation TREE EXPANSION when picking ‘trivial’ cherries which reduces the cre-
ation of unnecessary new cherries in intermediate steps: To improve the heuristic
proposed in Chapter 6 with a simple deterministic step, this operation is proposed.
When picking ‘trivial’ cherries (i.e., cherries occurring in every tree where both leaves are
present), sometimes unnecessary complications in intermediate steps can arise, lead-
ing to higher reticulation numbers. We experimentally show that the obtained cherry-
picking sequences are shorter when performing the TREE EXPENSION operation and
prove that the resulting network is always feasible (i.e., the original trees are displayed
in the network). We believe this operation can be utilized outside our specific frame-
work and could therefore be seen as an independent contribution.

An NP-hardness proof of the orchard leaf distance problem: In Chapter 8, we define
the proximity measure of the minimum number of leaves that need to be added to make
a network orchard. We prove this measure is NP-hard to compute by giving a polynomial
time reduction from DEGREE-3 VERTEX COVER.

An MILP formulation for the orchard leaf distance problem that labels reticulation
arcs as horizontal or vertical: In Chapter 8, we reformulate the orchard leaf distance
problem by using another definition of orchard networks: as trees with horizontal arcs.
We can label all the reticulation arcs in the network to determine which are horizontal
and which are not. To make the network orchard, a leaf is added to one of the incoming
arcs for each reticulation with only vertical incoming arcs. The labeling is not unique,
and to minimize the number of vertical reticulation arcs, we model this problem as a
mixed integer linear program. Experimental results show that this method is very ef-
ficient for the real (with up to 32 reticulations) and simulated (up to 200 reticulations)
networks we studied with most instances finishing within a fraction of a second.

I
HIERARCHICAL OPTIMIZATION

19

2
PRELIMINARIES

In this part, the three works on hierarchical optimization are presented. The first
two chapters make use of value function approximations, where Chapter 3 introduces
NEUR2BILO, a learning-based method for bilevel optimization problems, and Chapter 4
introduces NEUR2RO, a learning-based method for two-stage robust optimization prob-
lems. For both methods, a trained neural network, or any mixed integer linear program
(MILP) representable machine-learning model, is embedded in the mixed integer pro-
gram (MIP) as a substitution of the value function it aims to predict. This can entail
(parts of) the objective value function and/or the constraints. In Section 2.1, we provide
more details of this technique and discuss how the designed neural network architecture
can generalize to larger instances while training on smaller ones.

2.1. VALUE FUNCTION APPROXIMATION
Integrating a machine-learning model into an MIP is a vital element of NEUR2BILO and
NEUR2RO. Both methods use a neural network. The initial (and offline) step is obtaining
training data and training a neural network. Then, this trained model is embedded into
an MIP. This section explains what this entails and how it works for neural networks with
rectified linear unit (ReLU) activation functions. Other predictors like classification or
regression trees can be used instead, as long as the ML model can be expressed as MILP
variables and constraints.

APPROXIMATION-BASED MODEL FORMULATION

Consider the following general problem formulation:

min
x∈X ,y

F (x)+ f (y) (2.1a)

s.t. y ∈Y (x), (2.1b)

where x ∈ X ⊆ Rn and y ∈ Y (x) ⊆ Rm are variables. The feasible regions X and Y can
also be pure-integer or mixed-integer and Y (x) depends on variables x. Moreover, F (·)
and f (·) are real-valued functions.

21

2

22 2. PRELIMINARIES

With value function approximations, we substitute part of this problem with a
trained neural network. To illustrate, we substitute the objective function that corre-
sponds with y given its feasible region Y (x) of Problem (2.1) with a neural network:

NN(x) ≈ min
y

{
f (y) : y ∈Y (x)

}
.

After substitution of the neural network with its predicted value results, Problem (2.1) is
transformed into:

min
x∈X

F (x)+NN(x). (2.2)

The neural network takes as input the variables x, making the variables y redundant.
Exploring the option of deleting a part of the variable set and constraints would be in-
teresting for problems in which f or Y are unknown, or when Y (x) constitutes complex
constraints [53, 90, 113, 121, 123, 153, 174]. In the case of NEUR2BILO where we deal
with bilevel problems, Y (x) is the solution to the follower’s problem that is parameter-
ized by x, see (BiLO).

Then, what does optimizing over a neural network mean? Note again that we deal
with a trained neural network (i.e., all weights and biases are fixed), that takes x as input
and predicts p = NN(x). If we minimize over NN we aim to find the input x that mini-
mizes the prediction p. This is achievable, in part, due to MILP representations of neural
networks [54, 75, 177, 196]. One can alternatively use ML-based methods for “adversar-
ial attacks”, where gradient-based methods are used [127]. This works best if optimizing
over the neural network is the sole goal. When other constraints or another objective
function are present, MILP representations are very effective as you can easily combine
the multiple optimization components into one model.

NEURAL NETWORK EMBEDDING

In the following, we use the formulation of Fischetti and Jo [75] with a feed-forward neu-
ral network of N hidden layers. For an illustration, see Figure 2.1 where the input (layer
0), the output (layer N +1), and two of the N hidden layers (layers 1 and 2) are shown.
Every i -th node in layer l is assigned a continuous variable φl

i and for the hidden layers

(l ∈ {1, . . . , N }) a continuous slack variable sl
i and a binary variable z l

i , which is 1 if the
node is ‘active’ and 0 otherwise. We haveφ0 = x for the input layer and a regression task
is assumed in this formulation. In neural networks, non-linearity can be introduced by
applying a non-linear activation function to the hidden nodes. This enables the model
to learn complex and non-linear relationships. Often, as is also the case in the works of
this thesis, ReLU functions are used. The value of each hidden node is then given as:

φl
i = ReLU(w⊺φl−1 +bl

i) = max(0,w⊺φl−1 +bl
i),

where w is the vector of weights between all the (l −1)-layer nodes and the i -th node of
layer l (sub- and super-scripts are omitted), and bl

i the bias (i.e., an added constant for
what cannot be represented solely from the input) of node i in layer l . By introducing
the variables sl

i and z l
i , we can reformulate the above expression in linear terms:

φl
i − sl

i = w⊺φl−1 +bl
i , and indicator constraints z l

i = 1 → sl
i = 0, z l

i = 0 →φl
i = 0,

2.1. VALUE FUNCTION APPROXIMATION

2

23

with additional bounds on φ and s. These expressions force the binary variable to be 1
when a node is ‘active’, i.e., when w⊺φl−1 +bl

i > 0, and φl
i = w⊺φl−1 +bl

i . Otherwise, it is

set to 0 with sl
i =−w⊺φl−1+bl

i . Indicator constraints are formulated as linear expressions
using big-M formulations. This often causes issues with implementations, which can
be remedied by good bounds on the continuous variables appearing in the indicator
constraints.

For the i -th position in the output layer, we haveφN+1
i = OUTPUT(w⊺φN +bN+1

i) = pi .
The function OUTPUT(·) is an activation function that maps the output layer’s input to
the desired output format; e.g., for regression usually the linear function, and for clas-
sification, the softmax function is used. In Fischetti and Jo [75], the activation function
of the output layer is a ReLU function. By selecting the linear function instead, we sim-
plify the model as no slack and binary variables are required for this layer. Other output
functions such as sigmoid or softmax require non-linear constraints. (Piecewise-)linear
approximations can also be leveraged to avoid non-linearity in the model.

NN representations are improved [5, 90, 210] and provided as open software in
[24, 51, 199]; we used gurobi-machinelearning [93] in the implementations of
NEUR2BILO and NEUR2RO.

Figure 2.1: Feed-forward neural network with ReLU activations.

GENERALIZING OVER INSTANCES WITH DEEPSETS

Ideally when using machine learning in optimization, the same predictor can be used
for different instances, and also of different sizes. For example, the neural network in
the formulation of Problem (2.2), with input x ∈ Rn , can be applied to problems with
different values of n. In our work, to meet this requirement we use DeepSets [226]: a
neural network architecture design based on a set as input instead of a fixed dimensional
vector. That is, instead of having a vector

[z1, . . . zn],

as input of the neural network, now we have a set

Z = {z1, . . . , zn}.

DeepSets proposes an architecture that guarantees the invariance under permutation in
the order of items in the set and can handle different-sized sets. This means that when

2

24 2. PRELIMINARIES

we train an NN with this architecture, we can apply the model to instances of different-
sized inputs than that of Z , and the order of the items does not influence the prediction.

The high-level idea of the architecture is as follows. Each item z of input set Z is
transformed into some representation Φ(z), which is a fixed length vector. The sum of
the representations ofΦ(z) over all z ∈ Z is processed using some non-linear function ρ.
The prediction is then computed by:

p = ρ(∑
z∈Z

Φ(z)
)
, (2.3)

which shows that Z can be of arbitrary size, as Φ is the same for all items of the set.
Alternatively, graph neural networks have been used in the field of optimization as

MILP instances have an effective bipartite graph encoding [82] and combinatorial opti-
mization often consists of graph problems already [114]. This class of neural networks
can also be trained and applied to problem instances of different sizes. However, we
opted for DeepSets as, at the time, NN representations for graph neural networks had
not been studied extensively yet, and DeepSets turned out to be very flexible and effec-
tive for our purposes.

How is DeepSets applied in this thesis? In our work, we apply DeepSets in the fol-
lowing way (see Figure 2.2). For NEUR2RO and NEUR2BILO, something similar as the
following set {(

x1,π(1)), . . . ,
(
xn ,π(n))},

is the input of the neural network, with xi the variable and π(i) a vector of instance pa-
rameters (e.g., objective and constraint coefficients) of the i -th decision. Note from (2.3)
that each item of this set is input to the function Φ. We define Φ to be a multilayer per-
ceptron (MLP), i.e., a fully connected feed-forward neural network. To include Φ in the
architecture, one MLP is introduced into the NN per item of the input set that shares its
parameters with the others (i.e., the parameters, weights and biases, of each MLP are the
same). See the MLPs in the green boxes in Figure 2.2. The outputs of each Φ(·) are then
aggregated (

⊕
). As in the DeepSets paper, we use the sum operation, but other aggre-

gation operations can be used instead, depending on what works best for the prediction
target. The same properties of order invariance and set size independence apply. This
aggregated value is transformed via a non-linear function ρ, which is another MLP (that
does not share its parameters with Φ). This is the red box in the figure. Since the param-
eters in the neural network do not change when the instance size varies, this problem
can be trained and applied to problems of different sizes. To then utilize this architec-
ture for value function approximations, the activations of Φ and ρ are set to be ReLU
functions, and the model is embedded into an MIP using the MILP representations of Φ
(with copies for each item) and ρ.

2.1. VALUE FUNCTION APPROXIMATION

2

25

Figure 2.2: Example of DeepSets. The MLP Φ has two hidden layers and uses a parameter-sharing scheme for
all inputs, the MLP ρ has three hidden layers, and

⊕
is the aggregation operation.

3
NEURAL BILEVEL OPTIMIZATION

Bilevel optimization deals with nested problems in which a leader takes the first decision
to minimize their objective function while accounting for a follower’s best-response reac-
tion. Constrained bilevel problems with integer variables are particularly notorious for
their hardness. While exact solvers have been proposed for mixed-integer linear bilevel
optimization, they tend to scale poorly with problem size and are hard to generalize to the
non-linear case. On the other hand, problem-specific algorithms (exact and heuristic) are
limited in scope.

Proposed data-driven algorithm: Under a data-driven setting in which similar instances
of a bilevel problem are solved routinely, our proposed framework, NEUR2BILO, embeds a
neural network approximation of the leader’s or follower’s value function, trained via su-
pervised regression, into an easy-to-solve mixed-integer program. This method uses value
function approximation, which was explained in Chapter 2.

Data generation scheme: For obtaining training data for the supervised regression model,
for both approximation tasks, we first solve the follower’s problem with a sampled leader’s
decision. This way, the model only requires solving many single-level problems to obtain
data.

Experimental results: NEUR2BILO serves as a heuristic that produces high-quality solu-
tions extremely fast. The experiments are performed for four applications with linear and
non-linear objectives and pure and mixed-integer variables.

This chapter is based on Dumouchelle et al. [65] published in Advances in Neural Information Processing
Systems 38 (NeurIPS, 2024). In collaboration with Justin Dumouchelle, Jannis Kurtz, and Elias B. Khalil.

27

3

28 3. NEURAL BILEVEL OPTIMIZATION

3.1. INTRODUCTION
A motivating application. Consider the following discrete network design problem
(DNDP) [171, 172]. A transportation planning authority seeks to minimize the average
travel time on a road network represented by a directed graph of nodes N and links A1

by investing in constructing a set of roads (i.e., links) from a set of options A2, subject to
a budget B . The planner knows the number of vehicles that travel between any origin-
destination (O-D) pair of nodes. A good selection of links should take into account the
drivers’ reactions to this decision. One common assumption is that drivers will optimize
their O-D paths such that a user equilibrium is reached. This is known as Wardrop’s sec-
ond principle in the traffic assignment literature, an equilibrium in which “no driver can
unilaterally reduce their travel costs by shifting to another route” [146]. This is in contrast
to the system optimum, an equilibrium in which a central planner dictates each driver’s
route, an unrealistic assumption that would not require bilevel modeling. A link cost
function is used to model the travel time on an edge as a function of traffic. Let ci j ∈ R+
be the capacity (vehicles per hour (vph)) of a link and Ti j ∈ R+ the free-flow travel time
(i.e., travel time on the link without congestion). The US Bureau of Public Roads uses the
following widely accepted formula to model the travel time t (yi j) on a link used by yi j

vehicles per hour: t (yi j) = Ti j (1+0.15(yi j /ci j)4). As the traffic yi j grows to exceed the
capacity ci j , a large quartic increase in travel time is incurred [146].

Bilevel optimization (BiLO) [14] models the DNDP and many problems in which an
agent (the leader) makes decisions that minimize their cost function subject to another
agent’s (the follower’s) best response. In the DNDP, the leader is the transportation plan-
ner and the follower is the population of drivers, giving rise to the following optimization
problem

min
x∈{0,1}|A2 |,y

∑
(i , j)∈A

yi j t (yi j)

s.t.
∑

(i , j)∈A2

gi j xi j ≤ B ,

y ∈ argmin
y′∈R|A|+

∑
(i , j)∈A

∫ y ′
i j

0
ti j (v)d v

s.t. y′ is a valid network flow,

xi j = 0 =⇒ y ′
i j = 0,

where A2 ∩ A1 = ;, A = A1 ∪ A2. The leader minimizes the total travel time across all
links subject to a budget constraint and the followers’ equilibrium which is expressed as
a network flow on the graph augmented by the leader’s selected edges that satisfies O-
D demands; the integral in the follower’s objective models the desired equilibrium and

evaluates to Ti j y ′
i j +

0.15Ti j

5c4
i j

(
y ′

i j

)5.

Going beyond the DNDP, Dempe [59] lists more than 70 applications of BiLO ranging
from pricing in electricity markets (leader is an electricity-supplying retailer that sets the
price to maximize profit, followers are consumers who react accordingly to satisfy their
demands [235]) to interdiction problems in security settings (leader inspects a budgeted
subset of nodes on a road network, follower selects a path such that they evade inspec-
tion [211]).

3.1. INTRODUCTION

3

29

Scope of this work. We are interested in mixed-integer non-linear bilevel optimization
problems, simply referred to hereafter as bilevel optimization or BiLO, a very general
class of bilevel problems where all constraints and objectives may involve non-linear
terms and integer variables. At a high level, we have identified three limitations of exist-
ing computational methods for BiLO:

1. The state-of-the-art exact solvers of Fischetti et al. [76] and Tahernejad et al. [193]
are limited to mixed-integer bilevel linear problems and do not scale well. When
high-quality solutions to large-scale problems are sought after, such exact solvers
may be prohibitively slow.

2. Specialized algorithms, heuristic or exact, do not generalize beyond the single prob-
lem they were designed for. For instance, the state-of-the-art exact Knapsack Inter-
diction solver [214] only works for a single knapsack constraint and fails with two
or more, a significant limitation even if one is strictly interested in knapsack-type
problems.

3. Existing methods, exact or heuristic, generic or specialized, are not designed for
the “data-driven algorithm design” setting [12] in which similar instances are rou-
tinely solved and the goal is to construct generalizable high-efficiency algorithms
that leverage historical data.

NEUR2BILO (for Neural Bilevel Optimization) is a learning-based framework for bilevel
optimization that deals with these issues simultaneously. The following observations
make NEUR2BILO possible:

1. Data collection is “easy”: For a fixed decision of the leader’s, the optimal value
of the follower can be computed by an appropriate (single-level) solver (e.g., for
mixed-integer programming (MIP) or convex programming), enabling the collec-
tion of samples of the form: (leader’s decision, follower’s value, leader’s value).

2. Offline learning in the data-driven setting: While obtaining data online may be
prohibitive, access to historical training instances affords us the ability to construct,
offline, a large dataset of samples that can then serve as the basis for learning an
approximate value function using supervised regression. The output of this training
is a regressor mapping a pair consisting of an instance and a leader’s decision to an
estimated follower or leader value.

3. MIP embeddings of neural networks: If the regressor is MIP-representable, e.g., a
feedforward ReLU neural network or a decision tree, it is possible to use an MIP
solver to find the leader’s decision that minimizes the regressor’s output. This MIP,
which includes any leader constraints, thus serves as an approximate single-level
surrogate of the original bilevel problem instance.

4. Follower constraints via the value function reformulation: The final ingredient of
the NEUR2BILO recipe is to include any of the follower’s constraints, some of which
may involve leader variables. This makes the surrogate problem a heuristic version
of the well-known value function reformulation (VFR) in BiLO. The VFR transforms
a bilevel problem into a single-level one, assuming that one can represent the fol-
lower’s value (as a function of the leader’s decision) compactly. This is typically im-

3

30 3. NEURAL BILEVEL OPTIMIZATION

possible as the value function may require an exponential number of constraints, a
bottleneck that is circumvented by our small (approximate) regression models.

5. Theoretical guarantees: For interdiction problems, a class of BiLO problems that
attracts much attention, NEUR2BILO solutions have a constant, additive absolute
optimality gap which mainly depends on the prediction accuracy of the regression
model.

Through a series of experiments on (i) the bilevel knapsack interdiction problem,
(ii) the “critical node problem” from network security, (iii) a donor-recipient healthcare
problem, and (iv) the DNDP, we will show that NEUR2BILO is easy to train and produces,
very quickly, heuristic solutions that are competitive with state-of-the-art methods.

3.2. BACKGROUND
Bilevel optimization (BiLO) deals with hierarchical problems where the leader (or upper-
level) problem decides on x ∈X and parameterizes the follower (or lower-level) problem
that decides on y ∈ Y ; the sets X and Y represent the domains of the variables (con-
tinuous, mixed-integer, or pure integer). Both problems have their own objectives and
constraints, resulting in the following model:

min
x∈X ,y

F (x,y) (3.1a)

s.t. G(x,y) ≥ 0, (3.1b)

y ∈ argmax
y′∈Y

{ f (x,y′) : g (x,y′) ≥ 0}, (3.1c)

where we consider the general mixed-integer non-linear case with F, f : X ×Y → R,
G : X ×Y → Rm1 , and g : X ×Y → Rm2 non-linear functions of the upper-level x and
lower-level variables y.

The applicability of exact (i.e., global) approaches critically depends on the nature
of the lower-level problem. A continuous lower-level problem admits a single-level
reformulation that leverages the Karush-Kuhn-Tucker (KKT) conditions as constraints
on y. For linear programs in the lower level, strong duality conditions can be used
in the same way. Solving a BiLO problem with integers in the lower level necessitates
more sophisticated methods such as branch and cut [61, 76] along with some assump-
tions: DeNegre and Ralphs [61] do not allow for coupling constraints (i.e., G(x,y) =G(x))
and both methods do not allow continuous upper-level variables to appear in the link-
ing constraints (g (x,y)). Other approaches, such as Benders decomposition, are also
applicable [79]. Gümüş and Floudas [91] propose single-level reformulations of mixed-
integer non-linear BiLO problems using polyhedral theory, an approach that only works
for small problems. Later, “branch-and-sandwich” methods were proposed [119, 165]
where bounds on both levels’ value functions are used to compute an optimal solution.
Algorithms for non-linear BiLO generally do not scale well. Kleinert et al. [118] survey
more exact methods.

3.3. RELATED WORK

3

31

Assumptions. In what follows, we make the following standard assumptions:

1. Either (i) the follower’s problem has a feasible solution for each x ∈ X , or (ii) there
are no coupling constraints in the leader’s problem, i.e., G(x,y) =G(x);

2. The optimal follower value is always attained by a feasible solution [see 19, Section
7.2].

Value function reformulation. We consider the so-called optimistic setting: if the fol-
lower has multiple optima for a given decision of the leader’s, the one that optimizes the
leader’s objective is implemented. We can then rewrite problem (3.1) using the value
function reformulation (VFR):

min
x∈X ,y∈Y

F (x,y) (3.2a)

s.t. G(x,y) ≥ 0, (3.2b)

g (x,y) ≥ 0, (3.2c)

f (x,y) ≥Φ(x), (3.2d)

with the optimal lower-level value function defined as

Φ(x) = max
y∈Y

{ f (x,y) : g (x,y) ≥ 0}. (3.3)

Lozano and Smith [142] used this formulation to construct an exact algorithm (with-
out any public code) for solving mixed-integer non-linear BiLO problems with purely
integer upper-level variables. Sinha et al. [181, 182, 184] propose a family of evolution-
ary heuristics for continuous non-linear BiLO problems that approximate the optimal
value function by using quadratic and Kriging (i.e., a function interpolation method) ap-
proximations. Taking it one step further, Beykal et al. [35] extend the framework of the
previous authors to handle mixed-integer variables in the lower level.

3.3. RELATED WORK
Learning for bilevel optimization. Besides the approaches of Sinha et al. [181, 182,
184] and Beykal et al. [35] discussed in Section 3.2, other learning-based methods have
been introduced to solve BiLO problems. Bagloee et al. [11] present a heuristic for DNDP
which uses a linear prediction of the leader’s objective function. An iterative algorithm
refines the prediction with new solutions, terminating after a pre-determined number
of iterations. Chan et al. [52] propose to simultaneously optimize the parameters of a
learning model for a subset of followers in a large-scale cycling network design prob-
lem. Here, only non-parametric or linear models are utilized as optimizing more sophis-
ticated learning models is generally challenging with MILP-based optimization. Molan
and Schmidt [150] make use of a neural network to predict the follower variables. The au-
thors assume a setting with a black-box follower’s problem, no coupling constraints, and
continuous leader variables. Another learning-based heuristic is proposed by Kwon et al.
[129] for a bilevel knapsack problem. This approach is knapsack-specific and requires a
sophisticated, GPU-based, problem-specific graph neural network for which no code is

3

32 3. NEURAL BILEVEL OPTIMIZATION

publicly available. Zhou et al. [233] propose a learning-based algorithm for binary bilevel
problems which, similar to our approach, predicts the optimal value function and de-
velops a single-level reformulation based on the trained model. They propose using a
graph neural network and an input-supermodular neural network, both of which can
only be trained on a single instance rather than learning across classes of instances as
NEUR2BILO does. NEUR2BILO significantly outperforms this method as shown in Ap-
pendix 3.E. For continuous unconstrained bilevel optimization, a substantially different
setting, many methods have been proposed recently due to interest in solving nested
problems in machine learning (e.g., hyperparameter tuning and meta-learning) [139].

Data-driven optimization. The integration of a trained machine learning model into
an MIP is a vital element of NEUR2BILO. This is possible due to MILP formulations of
neural networks [54, 75, 177], and of other predictors like decision trees [29, 140]. These
methods have become easily applicable due to open software implementations [24, 51,
145, 199] and the gurobi-machinelearning library 1. One such application is con-
straint learning [71]. More similar to our setting are the approaches in [66, 67, 124] for
predicting value functions of other nested problems such as two-stage stochastic and
robust optimization. Our method caters to the specificities of BiLO, particularly in the
lower-level approximation which performs well in highly-constrained BiLO settings such
as the DNDP, has approximation guarantees based on the error of the predictive model,
and computational results on problems with non-linear interactions between the vari-
ables in each stage of the optimization problem; these aspects distinguish NEUR2BILO
from prior work.

3.4. METHODOLOGY
NEUR2BILO refers to two learning-based single-level reformulations for general BiLO
problems. The reformulations rely on representing the thorny nested structure of a BiLO
problem with a trained regression model that predicts either the upper-level or lower-
level value functions. Section 3.A includes pseudocode for data collection, training, and
model deployment.

3.4.1. NEUR2BILO
Upper-level approximation. The obvious bottleneck in solving BiLO problems is their
nested structure. One rather straightforward way of circumventing this difficulty is to get
rid of the lower level altogether in the formulation, but predict its optimal value. Namely,
we predict the optimal upper-level objective value function as

NNu(x;Θ) ≈ F (x,y⋆), (3.4)

whereΘ are the weights of a neural network, F the objective function of the leader (3.2b),
and y⋆ an optimal solution to the lower level problem (3.3). To train such a model, one
can sample x from X , solve (3.3) to obtain an optimal lower-level solution y⋆, and sub-

1https://github.com/Gurobi/gurobi-machinelearning

https://github.com/Gurobi/gurobi-machinelearning

3.4. METHODOLOGY

3

33

sequently compute a label F (x,y⋆). We can then model the single-level problem as

min
x∈X

NNu(x;Θ) s.t. G(x) ≥ 0, (3.5)

where we only optimize for x and thus dismiss the lower-level constraints and objec-
tive function. A trained feedforward neural network NNu(·;Θ) with ReLU activations can
be represented as a mixed-integer linear program (MILP) [75], where now the input (and
output) of the network are decision variables. With this representation, Problem (3.5) be-
comes a single-level problem and can be solved using an off-the-shelf MIP solver. Note
that linear and decision tree-based models also admit MILP representations [140].

This reformulation is similar to the approach by Bagloee et al. [11], wherein the
upper-level value function is predicted using linear regression. Our method differs in
that it is not iterative and does not require the use of “no-good cuts” (which avoid reap-
pearing solutions x). As such, our method is extremely efficient as will be shown experi-
mentally.

The formulation of (3.5) only allows for problem classes that do not have coupling
constraints, i.e., G(x,y) = G(x). Moreover, the feasibility of a solution x in the original
BiLO problem is not guaranteed, an issue that will be addressed later in this section
(see Bilevel feasibility).

Lower-level approximation. This method makes use of the VFR (3.2). The VFR moves
the nested complexity of a BiLO to constraint (3.2d), where the right-hand side is the
optimal value of the lower-level problem, parameterized by x. We introduce a learning-
based VFR in which Φ(x) is approximated by a regression model with parameters Θ:

NNl (x;Θ) ≈Φ(x). (3.6)

Both NNl and NNu take in a leader’s decision as input and require solving the follower
(3.3) for data generation. By replacing Φ(x) with NNl (x;Θ) in (3.2d) and introducing a
slack variable s ∈R+, the surrogate VFR reads as:

min
x∈X ,y∈Y

s≥0

F (x,y)+λs (3.7a)

s.t. G(x,y) ≥ 0, (3.7b)

g (x,y) ≥ 0, (3.7c)

f (x,y) ≥ NNl (x;Θ)− s. (3.7d)

All follower and leader constraints of the original BiLO problem are part of Problem (3.7).
However, without the slack variable s, the problem could become infeasible due to inac-
curate predictions by the neural network. This happens when NNl (x;Θ) strictly overesti-
mates the follower’s optimal value for each x. In this case, there does not exist a follower
decision for which Constraint (3.7d) is satisfied. A value of s > 0 can be used to make
Constraint (3.7d) satisfiable at a cost of λs in the objective, guaranteeing feasibility.

3

34 3. NEURAL BILEVEL OPTIMIZATION

Bilevel feasibility. Given a solution x⋆ or a solution pair (x⋆, ỹ) returned by our upper-
or lower-level approximations, respectively, we would like to produce a lower-level solu-
tion y⋆ such that (x⋆,y⋆) is bilevel-feasible, i.e., it satisfies the original BiLO in (3.1). The
following procedure achieves this goal:

1. Compute the follower’s optimal value under x⋆, Φ(x⋆), by solving (3.3).

2. Compute a bilevel-feasible follower solution y⋆ by solving problem (3.2) with fixed
x⋆ and the right-hand side of (3.2d) set to Φ(x⋆), a constant. Return (x⋆,y⋆).

If only Assumption 1(i) is satisfied, then only the lower-level approximation is applica-
ble and this procedure guarantees an optimistic bilevel-feasible solution for it. If only
Assumption 1(ii) is satisfied, then this procedure can detect in Step 1 that an upper-level
approximation’s solution x⋆ does not admit a follower solution, i.e., that it is infeasible,
or calculates a feasible y⋆ if one exists in Step 2. If both Assumptions 1(i) and 1(ii) are
satisfied simultaneously, then this procedure guarantees an optimistic bilevel-feasible
solution for either approximation.

Upper- v.s. lower-level approximation. Here, we note two important trade-offs be-
tween the upper- and lower-level approximations.

– Generality: Example 3.1 in Appendix 3.B shows that under Assumption 1(ii), it may
happen that solving the upper-level approximation problem variant (3.5) returns an
infeasible solution while the lower-level variant (3.7) does not.

– Scalability: The upper-level approximation has fewer variables and constraints
than its lower-level counterpart as it does not represent the follower’s problem di-
rectly. For problems in which the lower-level problem is large, e.g., necessitating
constraints for each node and link to enforce a network flow in the follower solution
as in the DNDP from the introduction, this property makes the upper-level approx-
imation easier to solve, possibly at a sacrifice in final solution quality. This tradeoff
will be assessed experimentally.

Limitations. Since NEUR2BILO is in essence a learning-based heuristic, it does not
guarantee an optimal solution to the bilevel problem. However, it guarantees a feasi-
ble solution with the lower-level approximation and can only give an infeasible solu-
tion while using the upper-level approximation when only Assumption 1(ii) is satisfied.
Moreover, as will be shown in Section 3.4.3, the performance of NEUR2BILO depends
on the regression error, which is generally the case when integrating machine learning
in optimization algorithms. Empirically, we note that the prediction error achieved on
every problem is very low (see Appendix 3.J.3).

3.4.2. MODEL ARCHITECTURE
For ease of notation in previous sections, all regression models take as input the upper-
level decision variables. However, in our experiments, we leverage instance information
as well to train a single model that can be deployed on a family of instances. This is done
by leveraging information such as coefficients in the objective and constraints for each

3.4. METHODOLOGY

3

35

problem. For the model’s architecture, the general principle deployed is to first explicitly
represent or learn instance-based features. The second is to combine instance-based
features with (leader) decision variable information to make predictions.

The overall architecture can be summarized as the following set of operations. Fix a
particular instance of a BiLO problem and let n be the number of leader variables, fi a
vector of features for each leader variable xi (independently of the variable’s value), and
h(xi) a feature map that describes the i th leader variable for a specific value of that vari-
able. The functions Ψs ,Ψd , and Ψv are neural networks with appropriate input-output
dimensions. The vectorΘ includes all learnable parameters of networksΨs ,Ψd , andΨv .
The functions SUM, CONCAT, and AGGREGATE sum up a set of vectors, concatenate two
vectors into a single column vector, and aggregate a set of scalar values (e.g., by another
neural network or simply summing them up), respectively. Our final objective value pre-
dictions are then given by the following sequence of steps:

1. Embedding the set of variable features {fi } using a set-based architecture, e.g., the
same network Ψd , summing up the resulting n variable embeddings, then passing
the resulting vector to networkΨs , yielding a vector we refer to as the INSTANCEEM-
BEDDING:

INSTANCEEMBEDDING =Ψs (SUM({Ψd (fi)}n
i=1)).

This is akin to the DeepSets approach of Zaheer et al. [226]. However, note that this
step can alternatively be done via a feedforward or graph neural network depending
on the problem structure.

2. Conditional on a specific assignment of values to the leader’s decision vector x, a
per-variable embedding is computed by network Ψv to allow for interactions be-
tween the INSTANCEEMBEDDING and the specific assignment of variable i as repre-
sented by h(xi):

VARIABLEEMBEDDING(i) =Ψv (CONCAT(h(xi), INSTANCEEMBEDDING)).

3. The final value prediction for either of our approximations aggregates the variable
embeddings possibly after passing them through a function gi :

NN(x;Θ) = AGGREGATE({gi (VARIABLEEMBEDDING(i))}n
i=1).

For example, if the follower’s objective is a linear function and
VARIABLEEMBEDDING(i) is a scalar, then it is useful to use the variable’s
known objective function coefficient di here, i.e.: gi (VARIABLEEMBEDDING(i)) =
di · VARIABLEEMBEDDING(i). The final step is to aggregate the per-variable gi (·)
outputs, e.g., by a summation for linear or separable objective functions.

NEUR2BILO is largely agnostic to the learning model utilized as long as it is MILP-
representable. In our experiments, we primarily focus on neural networks, but for some
problems also explore the use of gradient-boosted trees. More details on the specific
architectures for each problem can be found in Appendix 3.J.1.

3

36 3. NEURAL BILEVEL OPTIMIZATION

3.4.3. APPROXIMATION GUARANTEES
Lower-level approximation. Next, we present an approximation guarantee for the
lower-level approximation with NNl (x;Θ). Appendix 3.C includes the complete proofs.

Since the prediction of the neural network is only an approximation of the true opti-
mal value of the follower’s problemΦ(x), NEUR2BILO may return sub-optimal solutions
for the original problem (3.1). We derive approximation guarantees for a specific setup
that appears in interdiction problems: the leader and the follower have the same objec-
tive function (i.e., f (x,y) = F (x,y) for all x ∈ X ,y ∈ Y), and Assumption 1(i) holds. Con-
sider a neural network that approximates the optimal value of the follower’s problem up
to an absolute error of α> 0, i.e.,

|NNl (x;Θ)−Φ(x)| ≤α for all x ∈X . (3.8)

Furthermore, we define the parameter ∆ as the maximum difference f (x,y)− f (x,y′) ≥ 0
over all x ∈ X ,y,y′ ∈ Y such that no ỹ ∈ Y exists which has function value f (x,y) >
f (x, ỹ) > f (x,y′). We can bound the approximation guarantee of the lower-level
NEUR2BILO as follows:

Theorem 3.1. If the leader and the follower have the same objective function and λ > 1,
NEUR2BILO returns a feasible solution (x⋆,y⋆) for Problem (3.1) with objective value

f (x⋆,y⋆) ≤ opt+3α+ 2

λ
∆,

where opt is the optimal value of (3.1) and λ the penalty term in (3.7a) .

Upper-level approximation. As Example 3.1 shows, it may happen that the upper-
level surrogate problem (3.5) returns an infeasible solution and hence no approximation
guarantee can be derived in this case. However, in the case where all leader solutions are
feasible and the neural network predicts for every x ∈ X an upper-level objective value
that deviates at mostα> 0 from the true one, then the returned solution trivially approx-
imates the true optimal value with an absolute error of at most 2α. This follows since the
worst that can happen is that the objective value of the optimal solution is overestimated
byαwhile a solution with objective value opt+2α is underestimated byα and hence has
the same predicted value as the optimal solution. Problem (3.5) then may return the
latter sub-optimal solution.

3.5. EXPERIMENTAL SETUP
Benchmark problems and their characteristics are summarized in Table 3.1; their MIP
formulations are deferred to Appendix 3.D and brief descriptions follow:

– Knapsack interdiction (KIP) [48]: The leader interdicts a subset of at most k items
and the follower solves a knapsack problem over the remaining (non-interdicted)
items. The leader aims to minimize the follower’s (maximization) objective.

– Critical node problem (CNP) [50, 63]: This problem regards the protection (by the
leader) of resources in a network against malicious follower attacks. It has applica-
tions in the protection of computer networks against cyberattacks as demonstrated
by Dragotto et al. [63].

3.5. EXPERIMENTAL SETUP

3

37

Leader Follower
Problem x Obj. Cons. y Obj. Cons.

KIP (↓↑) Binary Linear Linear Binary Linear Linear
CNP (↑↑) Binary Bilinear Linear Binary Bilinear Linear
DRP (↑↑) Continuous Linear Linear Mixed-Integer Linear Bilinear
DNDP (↓↑) Binary Non-Linear Linear Continuous Non-Linear Linear

Table 3.1: Problem class characteristics. All problems have a single budget constraint in the leader; for the
follower, the DNDP has network flow constraints whereas other problems have a knapsack constraint. The
arrows refer to minimization (↓) or maximization (↑) in leader and follower, respectively.

– Donor-recipient problem (DRP) [84]: This problem relates to the donations given
by certain agencies to countries in need of, e.g., healthcare projects. The leader (the
donor agency) decides on which proportion of the cost, per project, to subsidize,
whereas the follower (a country) decides which projects it implements.

– Discrete network design problem (DNDP) [171]: This is the problem described
in Section 3.1. We build on the work of Rey [171] who provided benchmark in-
stances for the transportation network of Sioux Falls, South Dakota, and an imple-
mentation of the state-of-the-art method of Fontaine and Minner [79]. This net-
work and corresponding instances are representative of the state of the DNDP in
the literature.

Baselines. As mentioned previously, the branch-and-cut (B&C) algorithm by Fischetti
et al. [76] is considered to be state-of-the-art for solving mixed-integer linear BiLO. The
method is applicable if the continuous variables of the leader do not appear in the fol-
lower’s constraints. Both KIP and CNP meet these assumptions. This algorithm will act
as the baseline for these problems. For DRP, we compare against the results produced
by an algorithm in the branch-and-cut paradigm (B&C+) from Ghatkar et al. [84]. For
DNDP, the follower’s problem only has continuous variables, so the baseline is a method
based on KKT conditions (MKKT) [79]. Of the learning-based approaches for BiLO, we
compare against Zhou et al. [233], given the generality of their approach and the avail-
ability of source code. NEUR2BILO decisively outperforms this method on KIP, finding
solutions with 10-100× smaller mean relative error roughly 1000× faster; full results are
deferred to Appendix 3.E.

Data collection & training. For each problem class, data is collected by sampling feasi-
ble leader decisions x and then solving Φ(x) to compute either the upper- or lower-level
objectives as labels. We then train regression models to minimize the least-squares error
on the training samples. Typically, data collection and training take less than one hour,
a negligible cost given that for larger instances baseline methods require more time per
instance. Additionally, the same trained model can be used on multiple unseen test in-
stances. We report times for data collection and training in Appendix 3.J.2.

3

38 3. NEURAL BILEVEL OPTIMIZATION

Evaluation & setup. For evaluation in KIP, CNP, and DRP, all solving was limited to
1 hour. For DNDP, we consider a more limited-time regime, wherein we compare
NEUR2BILO at 5 seconds against the baseline at 5, 10, and 30 seconds. For all prob-
lems, we evaluate both the lower- and upper-level approximations with neural networks,
namely NNl and NNu , respectively. For NNl we set λ= 1 for all results presented in this
chapter. Details of the computing setup are provided in Appendix 3.I. Our code and data
are available at https://github.com/khalil-research/Neur2BiLO.

3.6. EXPERIMENTAL RESULTS
We summarize the results as measured by average solution times and mean relative er-

rors (MREs). The relative error on a given instance is computed as 100 · |ob j A−ob j best |
|ob j best | ,

where ob j A is the value of the solution found by method A and ob j best is the best-known
objective value for that instance. These results are reported in Table 3.2. More detailed
results and box-plots of the distributions of relative errors are in Appendices 3.F and 3.G.
Our experimental design answers the following questions:

Q1: Can NEUR2BILO find high-quality solutions quickly on classical interdiction
problems? Table 3.2 compares NEUR2BILO to the B&C algorithm of Fischetti et al.
[76]. NEUR2BILO terminates in 1-2% of the time required by B&C on the smaller (n ≤ 30)
well-studied KIP instances of Tang et al. [195]. However, when the instance size increases
to n = 100, both NNl and NNu find much better solutions than NEUR2BILO in roughly 30
seconds, even when B&C runs for the full hour. Furthermore, Table 3.4 in Appendix 3.F
shows that B&C requires 10 to 1,000× more time than NNl or NNu to find equally good
solutions. In addition, the best solutions found by B&C at the termination times of NNl

or NNu are generally worse, even for small instances.

Q2: Do these computational results extend to non-linear and more challenging BiLO
problems? Interdiction problems such as the KIP are well-studied but are only a small
subset of BiLO. We will shift attention to the more practical problems, starting with the
CNP (Table 3.2). CNP includes terms that are bilinear (i.e., z = x y) in the upper- and
lower-level variables, resulting in a much more challenging problem for general-purpose
B&C. In this case, both NNl and NNu tend to outperform B&C as the problem size in-
creases. In addition, the results on incumbents reported in Table 3.5 in Appendix 3.F are
as good, if not even stronger than those of KIP.

Secondly, we discuss DRP (Table 3.6 in Appendix 3.F). For DRP, we evaluate on the
most challenging instances from Ghahtarani et al. [83], all of which have gaps of ∼ 50% at
a 1-hour time limit with B&C+, a specialized B&C-based algorithm. Here NNu performs
remarkably well: it finds the best-known solutions on every single instance in roughly
∼ 0.1 seconds at an average improvement in solution quality of 26% over B&C+.

Q3: How does NEUR2BILO perform on BiLO problems with complex constraints?
Given that NEUR2BILO has strong performance on benchmarks with budget con-
straints, the next obvious question is whether it can be applied to BiLO problems that
have complex constraints. To answer this, we will refer to the results in Table 3.2 for

https://github.com/khalil-research/Neur2BiLO

3.6. EXPERIMENTAL RESULTS

3

39

Table 3.2: Mean relative error (MRE) and solving times for KIP, CNP, and DNDP. For KIP with n ≤ 30, we directly
evaluate on the 180 instances (10 per size) of Tang et al. [195]; each value is the average over 10 instances. For
n = 100, our evaluation instances (100 per size) are generated using the same procedure of Tang et al. [195].
The no-learning baseline G-VFA is a VFR using the follower’s greedy solution as lower-level value function ap-
proximation. For CNP, each row is averaged over 300 instances that are randomly sampled using the procedure
described in Dragotto et al. [63]. For DNDP, each row is averaged over 10 instances from Rey [171]. The budget
is a fraction of the total cost of all 30 possible candidate links; see Appendix 3.J.2 for more details.

Knapsack Interdiction Problem

Items Interdiction NNl NNu G-VFA B&C
(n) Budget (k) MRE Time MRE Time MRE Time MRE Time

18 5 1.48 0.59 1.48 0.34 1.82 0.14 0.00 9.55
18 9 1.51 0.59 1.51 0.43 3.97 0.22 0.00 5.81
18 14 0.00 0.22 0.00 0.17 64.22 0.03 0.00 0.39
20 5 0.41 0.62 0.41 0.45 2.19 0.25 0.00 23.18
20 10 0.99 0.66 0.99 0.58 0.99 0.36 0.00 10.27
20 15 3.57 0.32 3.57 0.19 23.39 0.02 0.00 0.94
22 6 0.71 0.19 0.71 0.18 0.42 0.18 0.00 42.30
22 11 1.01 0.28 1.01 0.28 1.08 0.33 0.00 16.26
22 17 14.43 0.24 14.43 0.15 14.43 0.13 0.00 0.68
25 7 0.44 2.66 0.44 2.42 0.44 0.64 0.00 137.96
25 13 1.42 2.75 1.42 2.79 3.85 1.24 0.00 48.43
25 19 2.49 0.48 2.49 0.38 2.49 0.13 0.00 1.77
28 7 0.39 0.67 0.39 0.74 0.26 0.62 0.00 309.18
28 14 0.75 2.10 0.75 1.45 1.37 1.29 0.00 120.74
28 21 1.14 0.45 1.14 0.49 3.16 0.31 0.00 4.92
30 8 0.00 1.54 0.00 1.54 0.43 0.97 0.00 792.44
30 15 0.49 3.64 0.49 3.06 0.75 1.35 0.00 187.23
30 23 2.29 1.08 2.29 0.73 4.48 0.25 0.00 5.65

100 25 0.93 10.02 0.93 8.40 0.00 4.19 8.09 3,600.40
100 50 0.96 51.68 0.96 49.28 0.04 53.74 8.96 3,600.44
100 75 0.08 24.69 0.08 23.78 0.12 35.27 5.87 3,600.52

Avg. n ≤ 30 1.86 1.06 1.86 0.91 7.21 0.47 0.00 95.43
Avg. n = 100 0.66 28.80 0.66 27.15 0.05 31.07 7.64 3,600.45

Critical Node Problem

Nodes NNl NNu B&C
(|V |) MRE Time MRE Time MRE Time

10 3.20 0.04 2.75 0.02 1.01 4.24
25 2.60 0.23 1.77 0.05 0.73 3,244.20
50 1.42 0.38 0.98 0.10 0.67 3,600.30

100 1.12 0.48 0.56 0.42 1.79 3,600.65
300 2.01 1.12 0.33 0.83 2.32 3,600.54
500 1.33 1.69 0.45 1.19 2.47 3,600.80

Average 1.95 0.66 1.14 0.43 1.50 2,941.79

Discrete Network Design Problem

NNl NNu MKKT
Edges Budget MRE Time MRE Time MRE-5 MRE-10 MRE-30

10 0.25 1.21 2.95 0.36 0.01 5.78 0.51 0.10
10 0.5 0.73 3.35 1.22 0.01 6.47 2.17 0.00
10 0.75 0.47 2.80 1.32 0.00 5.80 0.02 0.06
20 0.25 6.05 5.02 2.64 0.02 7.78 5.12 0.85
20 0.5 1.01 4.91 4.36 0.03 6.00 2.52 0.64
20 0.75 0.85 4.47 0.91 0.01 7.87 0.22 0.11

Average 1.72 3.92 1.80 0.01 6.62 1.76 0.29

3

40 3. NEURAL BILEVEL OPTIMIZATION

the DNDP. In this setting, we focus on a limited-time regime wherein we compare
NEUR2BILO with a 5-second time limit to MKKT at time limits 5, 10, and 30 seconds.
NNu can achieve high-quality solutions much faster than any other method with only
a minor sacrifice in solution quality, making it a great candidate for domains where in-
teractive decision-making is needed (e.g., what-if analysis of various candidate roads,
budgets, etc.).

NNl , on the other hand, takes longer than NNu but computes solutions that are more
competitive with the baseline, the latter requiring 5× more time. We suspect that the
better solution quality from NNl is due to its explicit modeling of feasible lower-level
decisions that “align” with the predictions, whereas NNu may simply extrapolate poorly.
In terms of computing time, one computational burden for NNl is the requirement to
model the non-linear upper- and lower-level objectives, which requires a piece-wise
linear approximation based on Fontaine and Minner [79], a step that introduces addi-
tional variables and constraints. Appendix 3.F includes results for DNDP with gradient-
boosted trees (GBT), demonstrating that other learning models are directly applicable
and, in some cases, may even lead to better solution quality, faster optimization, and
simpler implementation.

Q4: Can approximations derived from heuristics be useful? We now refer back to KIP
and focus on the greedy value function approximation (G-VFA), a KIP-specific approxi-
mation that relies on the fact that greedy algorithms are typically good for 1-dimensional
knapsack problems. Namely, the heuristic is based on ordering the items with their
value-to-weight ratio [57] and is used as the knapsack solution in the follower problem,
while still being parameterized by x. This heuristic is embedded in a single-level prob-
lem as this heuristic is MILP-representable [see 8]; we note that we are not aware of uses
in the literature of this approximation and it may be of independent interest. Generally,
G-VFA performs quite well, and in some cases outperforms NNl and NNu , but there are
clear cases where NNl and NNu outperform G-VFA demonstrating that learning is ben-
eficial. In addition, heuristics like G-VFA can be utilized to compute features for NNl

and NNu . For KIP, the inclusion of these features derived from G-VFA strongly improves
the results (see Table 3.10 in Appendix 3.H.3). This demonstrates that there is value in
leveraging any problem-specific MILP-representable heuristics as features for learning.

Q5: How does λ affect NNl ? Table 3.9 in Appendix 3.H.2 shows that a slack penalty
of λ= 0.1 improves the performance of NNl on some instances for DNDP, compared to
the λ = 1 reported in Table 3.2, indicating that tuning over λ might be beneficial. As an
alternative to adding slack, one can even dampen predictions of the value function to
allow more flexibility using the empirical error observed during training; see Table 3.8 in
Appendix 3.H.1.

3.7. CONCLUSION

3

41

3.7. CONCLUSION
In both its upper- and lower-level instantiations, NEUR2BILO finds high-quality solu-
tions in a few milliseconds or seconds across four benchmarks that span applications
in interdiction, network security, healthcare, and transportation planning. In fact, we
are not aware of any bilevel optimization method which has been evaluated across such
a diverse range of problems as existing methods make stricter assumptions that limit
their applicability. NEUR2BILO models are generic, easy to train, and accommodating
of problem-specific heuristics as features. One limitation of our experiments is that
they lack a problem that involves coupling constraints in (3.1b). We could not iden-
tify benchmark problems with this property in the literature, but exploring this setting
would be valuable. Of future interest are potential extensions to bilevel stochastic opti-
mization [18], robust optimization with decision-dependent uncertainty [87] (a special
case of BiLO), and multi-level problems beyond two levels, e.g. [131].

APPENDIX OF CHAPTER 3

3.A. NEUR2BILO PSEUDOCODE

Here, we outline pseudocode for NEUR2BILO. Algorithm 3.1 presents the pseudocode
for data collection and training. Algorithm 3.2 presents the pseudocode for optimiza-
tion. Following Algorithm 3.2, the objective is computed via the bilevel feasibility pro-
cedure detailed in Section 3.4.1. Note that data collection can be done once to collect
labels for both the upper- and lower-level approximations. Additionally, a single trained
model may be (and is in our experiments) evaluated across multiple test instances.

Algorithm 3.1: NEUR2BILO Data Collection and Training

// Data Collection
1 D ← {}
2 for i = 1 to number of instances to sample do
3 P ← sampled instance. Note that P is defined by F (·),G(·), f (·), g (·),Y , and

X . For most BiLO problems, these functions are defined by the constraint
and objective coefficients

4 for j = 1 to number of decisions per-instance do
5 x ← sampled upper-level decision
6 y⋆← argmaxy∈Y { f (x,y) : g (x,y) ≥ 0}
7 Add (P ,x,F (x,y⋆), f (x,y⋆)) to D

8 end
9 end

10 return D

// Training
11 if approximating upper-level then
12 Train regressor (NNu) with features (P ,x) and label (F (·)) from dataset D

13 else if approximating lower-level then
14 Train regressor (NNl) with the features (P ,x) and label (f (·)) from dataset D

15 end

16 return NNu or NNl

43

3

44 3. NEURAL BILEVEL OPTIMIZATION

Algorithm 3.2: NEUR2BILO Optimization

Input : Evaluation instance P ′, trained model NNl /NNu . Note that the
trained model (NNl /NNu) is used on multiple evaluation
instances.

1 if approximating upper-level then
2 x⋆← upper-level solution from the upper-level approximation (Eq. (3.5))
3 else if approximating lower-level then
4 x⋆← upper-level solution from the lower-level approximation (Eq. (3.7))
5 end
6 return x⋆

3.B. UPPER- V.S. LOWER-LEVEL APPROXIMATIONS
Example 3.1. Consider the problem

min
x∈{0,1}

y

s.t . y ∈ argmax
y∈{0,1}

{
y : 2x + y ≤ 1

}
.

Solution x = 1 makes the follower’s problem infeasible. For solution x = 0, the optimal
follower solution is y = 1 leading to the optimal value 1. Assume that the same trained
neural network is used in both approaches; this is possible since leader and follower have
the same objective functions. If it predicts NN(0) = 2 and NN(1) = 0, then the upper-level
approximation problem (3.5) will return x = 1 which is infeasible whereas the lower-level
approximation (3.7) correctly returns x = 0.

3.C. PROOFS FOR APPROXIMATION GUARANTEES
This section includes the full analysis of the derived approximation guarantee in Sec-
tion 3.4.3 for the lower-level approximation with NNl (x;Θ).

Recall that we look at a specific setup for which we derive approximation guarantees:
the leader and the follower have the same objective function (i.e., f (x,y) = F (x,y) for
all x ∈ X ,y ∈ Y), we assume that Assumption 1(i) holds and that the neural network
approximates the optimal value of the follower’s problem up to an absolute error ofα> 0,
i.e.,

|NNl (x;Θ)−Φ(x)| ≤α for all x ∈X . (3.9)

We furthermore define the parameter ∆ as the maximum difference of functions values
f (x,y)− f (x,y′) ≥ 0 over all x ∈X ,y,y′ ∈Y such that no ỹ ∈Y exists which has function
value f (x,y) > f (x, ỹ) > f (x,y′). Note that ∆ can be strictly larger than zero if the follower
decisions are integer.

For a fixed x ∈ X , y⋆NN(x) denotes an optimal solution of (3.7). Furthermore, for any
given y ∈ Y we denote by s⋆(x,y) an optimal slack-value in Problem (3.7) if the upper-
and lower-level variables are fixed to x and y, respectively.

3.C. PROOFS FOR APPROXIMATION GUARANTEES

3

45

Observation 3.1. For any x ∈X and y ∈Y we have

s⋆(x,y) = max{0,NNl (x;Θ)− f (x,y)}.

Lemma 3.1. Assume the leader and the follower have the same objective function and
λ > 1. Then, for any given x ∈ X the following conditions hold for the optimal follower
solution y⋆NN(x) of Problem (3.7):

– If NNl (x;Θ) ≥Φ(x), then f (x,y⋆NN(x)) =Φ(x), i.e., (x,y⋆NN(x)) is feasible for the origi-
nal bilevel problem.

– If NNl (x;Θ) <Φ(x), then NNl (x;Θ)− 1
λ∆≤ f (x,y⋆NN(x)) ≤Φ(x).

Proof. Case 1: Let x ∈ X for which it holds NNl (x;Θ) ≥ Φ(x) and assume the opposite
of the statement is true, i.e., for the optimal reaction y⋆NN(x) in (3.7) it holds that Φ(x) >
f (x,y⋆NN(x)). Since λ> 0 and due to Constraint (3.7d) the optimal slack value for solution

x in Problem (3.7) is s⋆(x,y) = NNl (x;Θ)− f (x,y). Assume y⋆(x) is the optimal follower
reaction in (3.2) for x, then it holds that:

f (x,y⋆NN(x))+λs⋆(x,y⋆NN(x))

= f (x,y⋆NN(x))+λ
(
NNl (x;Θ)− f (x,y⋆NN(x))

)
> f (x,y⋆NN(x))+λ

(
NNl (x;Θ)− f (x,y⋆NN(x))

)
+ (λ−1)

(
f (x,y⋆NN(x))− f (x,y⋆(x))

)
= f (x,y⋆(x))+λ

(
NNl (x;Θ)− f (x,y⋆(x))

)
= f (x,y⋆(x))+λs⋆(x,y⋆(x))

where the first inequality follows since λ> 1 and f (x,y⋆(x)) =Φ(x) > f (x,y⋆NN(x)) and the

latter equality follows from NNl (x;Θ) ≥ Φ(x) = f (x,y⋆(x)). The latter result shows that
the solution (x,y⋆(x)) has a strictly better objective value in the surrogate problem (3.7)
than (x,y⋆NN(x)) which contradicts the optimality of (x,y⋆NN(x)).

Case 2: Let x ∈ X be a leader’s decision for which NNl (x;Θ) < Φ(x) and assume
the opposite of the statement, i.e., for the optimal reaction y⋆NN(x) in (3.7) it holds that

NNl (x;Θ)− 1
λ∆> f (x,y⋆NN(x)). Hence the optimal slack value in (3.7) is

s⋆(x,y⋆NN(x)) = NNl (x;Θ)− f (x,y⋆NN(x)) > 1

λ
∆. (3.10)

First, assume there exists another feasible solution ȳ(x) for Problem (3.7) with

f (x,y⋆NN(x)) < f (x, ȳ(x)) < NNl (x;Θ)

then solution (x, ȳ(x)) has a strictly better objective value than (x,y⋆NN(x)) in (3.7) since
increasing the value of f by δ decreases the value of the slack variable by δ which results
in a better objective value since λ> 1, which contradicts the optimality of (x,y⋆NN(x)).

Second, assume there exists no other feasible solution ȳ(x) for Problem (3.7) with

f (x,y⋆NN(x)) < f (x, ȳ(x)) < NNl (x;Θ).

3

46 3. NEURAL BILEVEL OPTIMIZATION

Then there must exists a feasible solution ȳ(x) with f (x, ȳ(x)) ≥ NNl (x;Θ) and

f (x, ȳ(x))− f (x,y⋆NN(x)) ≤∆, (3.11)

by definition of ∆. In this case, we have

f (x,y⋆NN(x))+λs⋆(x,y⋆NN(x))− f (x, ȳ(x))−λs⋆(x, ȳ(x))

= f (x,y⋆NN(x))+λs⋆(x,y⋆NN(x))− f (x, ȳ(x))

> f (x,y⋆NN(x))+∆− f (x, ȳ(x)) ≥−∆+∆= 0,

where the first equality follows since s⋆(x, ȳ(x)) = 0, the first inequality follows from (3.10)
and the last inequality follows from (3.11). In summary, the latter results show that there
exists a solution (x, ȳ(x)) for (3.7) which has strictly better objective value than (x,y⋆NN(x))
which is a contradiction.

Note that the inequality f (x,y⋆NN(x)) ≤ Φ(x) follows directly from the definition of
Φ(x).

The latter lemma states, that if the neural network is overestimating the follower
value for a solution x ∈ X , then the surrogate problem (3.7) still selects an optimal fol-
lower response. However, if the neural network underestimates the value, it may happen
that the surrogate problem chooses a follower response for which the objective value is
either smaller than the true value or differs by at most 1

λ∆ from the estimation. Note that
the latter term can be controlled by increasing the penalty λ.

By applying Lemma 3.1 we can bound the approximation guarantee of the lower-
level NEUR2BILO.

▷ Theorem 3.1. If the leader and the follower have the same objective function and
λ > 1, NEUR2BILO returns a feasible solution (x⋆,y⋆) for Problem (3.1) with objective
value

f (x⋆,y⋆) ≤ opt+3α+ 2

λ
∆,

where opt is the optimal value of (3.1) and λ the penalty term in (3.7a).

Proof. Let (x⋆NN,y⋆NN) be an optimal solution of the surrogate problem (3.7). By Lemma
3.1 and by definition (3.8) it follows that

Φ(x⋆NN) ≥ f (x⋆NN,y⋆NN) ≥ NNl (x⋆NN;Θ)− 1

λ
∆

≥Φ(x⋆NN)−α− 1

λ
∆.

(3.12)

Following the three steps presented in Section 3.4.1 - Bilevel feasibility, NEUR2BILO
returns a feasible solution (x⋆,y⋆) for Problem (3.2) where x⋆ = x⋆NN and f (x⋆,y⋆) =
Φ(x⋆). Hence, the following holds:

f (x⋆,y⋆) =Φ(x⋆) ≤ f (x⋆,y⋆NN)+α+ 1

λ
∆. (3.13)

3.D. PROBLEM FORMULATIONS

3

47

Assume (x⋆⋆,y⋆⋆) is an optimal bilevel solution of Problem (3.1) and y⋆⋆NN the optimal
follower response in the surrogate problem (3.7). Then we have

f (x⋆,y⋆NN)+ s⋆(x⋆,y⋆NN) ≤ f (x⋆⋆,y⋆⋆NN)+ s⋆(x⋆⋆,y⋆⋆NN)

since (x⋆NN,y⋆NN) is an optimal solution of (3.7) with objective value given by (3.7a). From
the latter inequality we obtain

f (x⋆,y⋆NN) ≤ f (x⋆⋆,y⋆⋆NN)+ s⋆(x⋆⋆,y⋆⋆NN)− s⋆(x⋆,y⋆NN)

≤ f (x⋆⋆,y⋆⋆)+ s⋆(x⋆⋆,y⋆⋆NN)

≤ f (x⋆⋆,y⋆⋆)+NNl (x⋆⋆;Θ)− f (x⋆⋆,y⋆⋆NN)

≤ f (x⋆⋆,y⋆⋆)+Φ(x⋆⋆)+α− (Φ(x⋆⋆)−α− 1

λ
∆)

= opt+2α+ 1

λ
∆

where the second inequality follows from s⋆(x⋆,y⋆NN) ≥ 0 and y⋆⋆ being an optimal fol-
lower solution for x⋆⋆. The third inequality follows from Observation 3.1 and the fourth
inequality follows from (3.8) and from (3.12) applied to x⋆⋆.

Together with (3.13), this completes the proof.

3.D. PROBLEM FORMULATIONS

3.D.1. KNAPSACK INTERDICTION

The bilevel knapsack problem with interdiction constraints as described in Tang et al.
[195] is given by

min
x∈{0,1}n ,y

n∑
i=1

pi yi

s.t.
n∑

i=1
xi ≤ k,

y ∈ argmax
y′∈{0,1}n

n∑
i=1

pi y ′
i

s.t.
n∑

i=1
ai y ′

i ≤ b,

y ′
i +xi ≤ 1, i ∈ [n],

where x are the leader’s variables and y are that of the follower. The leader decides to
interdict (a maximum of k) items of the knapsack solved in the follower’s problem with
n the number of items, pi the profits, ai the weight of item i , respectively, and the budget
of the knapsack is denoted by b.

3

48 3. NEURAL BILEVEL OPTIMIZATION

3.D.2. CRITICAL NODE PROBLEM
The critical node problem is described in Carvalho et al. [50] as follows

max
x∈{0,1}n ,y

n∑
i=1

(
pd

i

(
(1−xi)(1− yi)+ηxi yi +ϵxi (1− yi)+δ(1−xi)yi

))
s.t.

n∑
i=1

di xi ≤ D,

y ∈ argmax
y′∈{0,1}n

n∑
i=1

(
pa

i

(−γ(1−xi)(1− y ′
i)+ (1−xi)y ′

i + (1−η)xi y ′
i

))
s.t.

n∑
i=1

ai y ′
i ≤ A,

where x and y are the leader’s and follower’s variables, respectively. Here, x denotes the
decisions of the leader (defender) who selects which nodes to deploy resources to de-
fend a set of nodes, while y are the decisions for the follower (attacker) for which nodes
to attack. di and ai are the costs for the xi and yi , respectively. D and A are the budgets
for the defender and attacker, respectively. In this problem, the bilinearity arises in the
objectives of both the leader and follower, which results in four outcomes for each pos-
sible combination of defending and attacking a node i . The first outcome arises when
both the leader and follower do not select the node. In this case, the leader receives the
full profit, pd

i , and the follower pays an opportunity cost of −γpa
i for not attacking an

undefended node. Second is a successful attack, wherein the leader receives a reduced
profit of δpd

i and the follower receives the full profit pa
i . Third is a mitigated attack,

wherein the leader receives a profit of ηpd
i for a degradation in operations, while the fol-

lower receives a profit of (1−η)pa
i for a mitigated attack. Fourth is a mitigation without

an attack, wherein the leader receives a profit ϵpd
i for a degradation in operations, while

the follower receives a profit of 0 for a mitigated attack.

3.D.3. DONOR-RECIPIENT PROBLEM
The donor-recipient problem as described in Ghatkar et al. [84], and introduced in Mor-
ton et al. [152], is formulated as

max
x∈[0,1]n ,y,y0

n∑
i=1

wi yi

s.t.
n∑

i=1
ci xi ≤ Bd ,

(y, y0) ∈ argmax
y′∈{0,1}n ,y ′

0∈[0,1]

n∑
i=1

vi y ′
i + v0 y ′

0

s.t.
n∑

i=1
(ci − ci xi)y ′

i + c0 y ′
0 ≤ Br ,

where the leader’s decisions x represent those of the donor and the follower’s decisions
(y, y0) the ones of the recipient. The profit of project i is given as wi for the leader and vi

3.E. LEARNING-BASED APPROACH OF ZHOU ET AL. [233]

3

49

for the follower, the cost as ci , and the budget of the leader, resp. follower, as Bd and Br .
Next to the projects, the recipient can allocate its budget to external projects, for which
the profit is given as v0 and the cost c0.

3.D.4. DISCRETE NETWORK DESIGN PROBLEM

We use the standard formulation from Section 3.1 following the computational bench-
marking study of Rey [171] and the code provided by the author 2.

3.E. LEARNING-BASED APPROACH OF ZHOU ET AL. [233]
This section compares our approach to a recent learning-based approach from Zhou
et al. [233] based on code provided by the author3. We specifically compare the input-
supermodular neural network (ISNN), i.e., the best-performing model from Zhou et al.
[233]. Their approach requires sampling and training for each instance, which is re-
flected in the time, whereas the model for NNl and NNu can be trained once and evalu-
ated across multiple instances, so the data collection and training time are excluded. We
also restrict ISNN to run for one iteration given Zhou et al. [233] report very minimal im-
provements when increasing the number of iterations. Moreover, one iteration requires
the least amount of time. Table 3.3 reports the MRE and time for each method for the
knapsack instances from Tang et al. [195]. Generally, we can see a significant improve-
ment over ISNN in both computing time and MRE.

Table 3.3: Comparison to ISNN from Zhou et al. [233] on the knapsack interdiction problem. n and k denote
the number of items and the interdiction budget, respectively. We directly evaluate on the 180 instances (10
per size) of Tang et al. [195]; each value is the average over 10 instances. We compare the upper- and lower-level
approximations, as well as the no-learning baseline (G-VFA) and the exact algorithm (B&C).

n k ISNN NNl NNu G-VFA B&C
MRE Time MRE Time MRE Time MRE Time MRE Time

18 5 10.50 254.35 1.48 0.59 1.48 0.34 1.82 0.14 0.00 9.55
18 9 46.50 227.49 1.51 0.59 1.51 0.43 3.97 0.22 0.00 5.81
18 14 302.10 217.62 0.00 0.22 0.00 0.17 64.22 0.03 0.00 0.39
20 5 8.56 262.01 0.41 0.62 0.41 0.45 2.19 0.25 0.00 23.18
20 10 54.07 236.74 0.99 0.66 0.99 0.58 0.99 0.36 0.00 10.27
20 15 447.29 229.41 3.57 0.32 3.57 0.19 23.39 0.02 0.00 0.94
22 6 17.32 266.55 0.71 0.19 0.71 0.18 0.42 0.18 0.00 42.30
22 11 66.24 247.97 1.01 0.28 1.01 0.28 1.08 0.33 0.00 16.26
22 17 485.75 241.61 14.43 0.24 14.43 0.15 14.43 0.13 0.00 0.68
25 7 14.75 280.71 0.44 2.66 0.44 2.42 0.44 0.64 0.00 137.96
25 13 61.57 264.09 1.42 2.75 1.42 2.79 3.85 1.24 0.00 48.43
25 19 424.92 262.04 2.49 0.48 2.49 0.38 2.49 0.13 0.00 1.77
28 7 19.17 297.44 0.39 0.67 0.39 0.74 0.26 0.62 0.00 309.18
28 14 73.61 286.02 0.75 2.10 0.75 1.45 1.37 1.29 0.00 120.74
28 21 423.15 279.51 1.14 0.45 1.14 0.49 3.16 0.31 0.00 4.92
30 8 21.01 305.67 0.00 1.54 0.00 1.54 0.43 0.97 0.00 792.44
30 15 68.19 295.92 0.49 3.64 0.49 3.06 0.75 1.35 0.00 187.23
30 23 416.03 290.94 2.29 1.08 2.29 0.73 4.48 0.25 0.00 5.65
Average [195] 164.49 263.67 1.86 1.06 1.86 0.91 7.21 0.47 0.00 95.43

2https://github.com/davidrey123/DNDP/
3https://github.com/bozlamberth/LearnBilevel/

https://github.com/davidrey123/DNDP/
https://github.com/bozlamberth/LearnBilevel/

3

50 3. NEURAL BILEVEL OPTIMIZATION

18 20 22 25 28 30 100
Items

0

2

4

6

8

10

12

14

R
el

at
iv

e
E

rr
or

NNl

NNu

G-VFA
B&C

Figure 3.1: Box plot of relative errors for KIP with interdiction budget of k = n/4.

18 20 22 25 28 30 100
Items

0

5

10

15

20

25

R
el

at
iv

e
E

rr
or

NNl

NNu

G-VFA
B&C

Figure 3.2: Box plot of relative errors for KIP with interdiction budget of k = n/2.

3.F. OBJECTIVE & INCUMBENT RESULTS
This section reports the more detailed information related to the objective values for
each problem. Objective results for each problem are given in Tables 3.4-3.7. In addi-
tion, for KIP and CNP, as the solver from Fischetti et al. [77] provides easily accessible
incumbent solutions, we include two additional metrics.

– The first metric “Solver Time Ratio" measures the time it takes the solver to ob-
tain an equally good (or better) incumbent solution, divided by the solving time of
the respective approximation. The number in brackets to the right indicates the
number of instances for which the solver finds an equivalent solution.

– The second metric “Solver Relative Error at Time" measures the relative error of
the best solution found by the solver compared to the respective approximation.
The value in brackets to the right indicates the number of instances for which the
solver finds an incumbent before the approximation is done solving.

3.G. DISTRIBUTIONAL RESULTS FOR RELATIVE ERROR
This section provides the box plots of the experimental results. For the KIP instances,
the results are given in Figures 3.1 to 3.3 for different budget values. Figure 3.4 gives
the results for CNG and Figures 3.5 and 3.6 for the DNDP experiments for different edge
numbers.

3.G. DISTRIBUTIONAL RESULTS FOR RELATIVE ERROR

3

51

Table 3.4: KIP objective and incumbent results split across two sub-tables for better readability. Each row is
averaged over 10 instances, except for n = 100, which averages over 100 instances. NNl and NNu specify lower-
and upper-level approximations. All times in seconds.

n k Objective Mean Relative Error (%)
NNl NNu G-VFA B&C NNl NNu G-VFA B&C

18 5 308.30 308.30 309.20 303.50 1.48 1.48 1.82 0.00
18 9 145.60 145.60 149.10 143.40 1.51 1.51 3.97 0.00
18 14 31.00 31.00 51.40 31.00 0.00 0.00 64.22 0.00
20 5 390.30 390.30 397.60 388.50 0.41 0.41 2.19 0.00
20 10 165.40 165.40 165.40 163.70 0.99 0.99 0.99 0.00
20 15 33.40 33.40 41.90 31.40 3.57 3.57 23.39 0.00
22 6 385.50 385.50 384.30 382.70 0.71 0.71 0.42 0.00
22 11 163.20 163.20 163.30 161.00 1.01 1.01 1.08 0.00
22 17 35.20 35.20 35.20 29.20 14.43 14.43 14.43 0.00
25 7 438.20 438.20 438.20 436.20 0.44 0.44 0.44 0.00
25 13 194.90 194.90 199.90 191.50 1.42 1.42 3.85 0.00
25 19 43.30 43.30 43.30 41.80 2.49 2.49 2.49 0.00
28 7 518.30 518.30 517.60 516.10 0.39 0.39 0.26 0.00
28 14 224.90 224.90 226.80 223.40 0.75 0.75 1.37 0.00
28 21 46.70 46.70 48.20 46.20 1.14 1.14 3.16 0.00
30 8 536.30 536.30 538.70 536.30 0.00 0.00 0.43 0.00
30 15 231.20 231.20 231.90 230.00 0.49 0.49 0.75 0.00
30 23 49.00 49.00 50.40 47.50 2.29 2.29 4.48 0.00

100 25 2,164.71 2,164.69 2,145.07 2,318.99 0.93 0.93 0.00 8.09
100 50 965.37 965.37 956.76 1,043.71 0.96 0.96 0.04 8.96
100 75 245.01 245.01 245.08 259.95 0.08 0.08 0.12 5.87

n k Solving Time Solver Time Ratio Solver Relative Error at Time
NNl NNu G-VFA B&C NNl NNu G-VFA NNl NNu G-VFA

18 5 0.59 0.34 0.14 9.55 24.48 (10) 35.86 (10) 177.39 (10) - (0) - (0) - (0)
18 9 0.59 0.43 0.22 5.81 12.31 (10) 18.52 (10) 73.49 (10) - (0) - (0) - (0)
18 14 0.22 0.17 0.03 0.39 1.87 (10) 2.86 (10) 31.9 (10) 44.0 (2) 41.5 (2) - (0)
20 5 0.62 0.45 0.25 23.18 50.68 (10) 65.56 (10) 420.04 (10) - (0) - (0) - (0)
20 10 0.66 0.58 0.36 10.27 18.39 (10) 22.03 (10) 80.0 (10) - (0) - (0) - (0)
20 15 0.32 0.19 0.02 0.94 2.82 (10) 4.75 (10) 54.29 (10) - (0) - (0) - (0)
22 6 0.19 0.18 0.18 42.30 228.97 (10) 249.8 (10) 714.31 (10) - (0) - (0) - (0)
22 11 0.28 0.28 0.33 16.26 69.05 (10) 74.99 (10) 129.04 (10) - (0) - (0) - (0)
22 17 0.24 0.15 0.13 0.68 3.09 (10) 5.48 (10) 29.34 (10) 18.0 (1) - (0) - (0)
25 7 2.66 2.42 0.64 137.96 58.27 (10) 61.24 (10) 1102.38 (10) 28.69 (2) 28.69 (2) 28.69 (2)
25 13 2.75 2.79 1.24 48.43 21.14 (10) 25.13 (10) 67.86 (10) - (0) - (0) - (0)
25 19 0.48 0.38 0.13 1.77 3.98 (10) 4.81 (10) 38.29 (10) - (0) - (0) - (0)
28 7 0.67 0.74 0.62 309.18 671.57 (10) 518.35 (10) 1033.45 (10) 29.28 (8) 29.28 (8) 29.48 (8)
28 14 2.10 1.45 1.29 120.74 59.99 (10) 84.36 (10) 120.05 (10) 19.84 (2) 19.84 (2) 16.14 (2)
28 21 0.45 0.49 0.31 4.92 12.95 (10) 11.66 (10) 38.98 (10) - (0) - (0) - (0)
30 8 1.54 1.54 0.97 792.44 497.06 (10) 455.29 (10) 1924.47 (10) 27.07 (10) 27.07 (10) 26.58 (10)
30 15 3.64 3.06 1.35 187.23 56.14 (10) 66.07 (10) 254.88 (10) 86.11 (6) 86.11 (6) 85.19 (6)
30 23 1.08 0.73 0.25 5.65 7.5 (10) 8.79 (10) 48.27 (10) - (0) - (0) - (0)

100 25 10.02 8.40 4.19 3,600.40 - (0) - (0) - (0) 34.36 (100) 34.99 (100) 37.93 (100)
100 50 51.68 49.28 53.74 3,600.44 23.56 (5) 26.24 (5) - (0) 59.36 (100) 60.81 (100) 60.48 (100)
100 75 24.69 23.78 35.27 3,600.52 133.35 (4) 152.72 (4) 138.07 (5) 177.01 (100) 196.86 (100) 193.94 (100)

Table 3.5: CNP objective and incumbent results. Each row averaged over 300 instances. All times in seconds.

|V | Objective Mean Relative Error (%) Times Solver Time Ratio Solver Relative Error at Time
NNl NNu B&C NNl NNu B&C NNl NNu B&C NNl NNu NNl NNu

10 224.47 225.10 228.63 3.20 2.75 1.01 1.69 1.19 3,600.80 136.66 (288) 191.34 (289) 269.0 (1) - (0)
25 562.72 566.23 572.51 2.60 1.77 0.73 1.69 1.19 3,600.80 736.84 (275) 3934.02 (271) 2.22 (248) 2.57 (124)
50 1,139.27 1,143.95 1,148.17 1.42 0.98 0.67 1.69 1.19 3,600.80 718.74 (225) 3840.41 (183) 1.94 (295) 3.17 (190)
100 2,285.15 2,297.47 2,272.30 1.12 0.56 1.79 1.69 1.19 3,600.80 645.37 (131) 926.6 (90) 2.4 (283) 2.96 (278)
300 6,781.91 6,882.42 6,755.07 2.01 0.33 2.32 1.69 1.19 3,600.80 41.65 (166) 167.38 (47) 1.49 (245) 2.65 (243)
500 11,348.60 11,439.25 11,208.43 1.33 0.45 2.47 1.69 1.19 3,600.80 106.9 (83) 99.48 (15) 1.51 (206) 2.45 (205)

3

52 3. NEURAL BILEVEL OPTIMIZATION

Table 3.6: DRP objective results. Each row corresponds to a single instance from dataset 15, i.e., the most
challenging instances from Ghatkar et al. [84]. All times in seconds.

Instance # Objective Relative Error (%) Times
NNl NNu B&C+ NNl NNu B&C+ NNl NNu B&C+

1 34,356.00 59,524.00 47,206.00 42.28 0.00 20.69 0.09 1.44 3,600.09
2 33,713.00 54,764.00 39,526.00 38.44 0.00 27.82 0.12 1.52 3,600.08
3 36,717.00 66,967.00 46,792.00 45.17 0.00 30.13 0.14 2.85 3,600.07
4 36,414.00 54,908.00 44,486.00 33.68 0.00 18.98 0.07 1.68 3,637.23
5 33,090.00 59,627.00 43,355.00 44.51 0.00 27.29 0.10 1.96 3,600.07
6 36,691.00 56,603.00 39,006.00 35.18 0.00 31.09 0.08 2.93 3,600.10
7 31,354.00 55,569.00 43,443.00 43.58 0.00 21.82 0.09 1.58 3,600.14
8 35,710.00 54,414.00 39,839.00 34.37 0.00 26.79 0.09 0.87 3,600.10
9 38,961.00 61,869.00 45,288.00 37.03 0.00 26.80 0.16 4.55 3,600.16
10 36,965.00 60,488.00 43,194.00 38.89 0.00 28.59 0.12 3.57 3,600.10

Averaged 35,397.10 58,473.30 43,213.50 39.31 0.00 26.00 0.11 2.30 3,603.82

Table 3.7: DNDP objective results. Each is averaged across 10 instances. All times in seconds.

of edges budget Objective
NNl NNu GBTl GBTu MKKT-5 MKKT-10 MKKT-30

10 0.25 6,201.25 6,145.27 6,214.37 6,147.02 6,484.98 6,155.69 6,129.65
10 0.5 5,532.92 5,557.28 5,531.27 5,640.77 5,849.03 5,618.41 5,492.23
10 0.75 5,202.82 5,246.29 5,211.07 5,225.02 5,477.72 5,179.39 5,181.30
20 0.25 5,478.52 5,272.98 5,272.07 5,210.07 5,535.14 5,423.02 5,180.67
20 0.5 4,347.58 4,490.04 4,356.47 4,390.52 4,563.35 4,416.83 4,330.21
20 0.75 4,084.19 4,085.09 4,061.68 4,135.70 4,363.00 4,057.72 4,053.02

of edges budget Relative Error (%) Times
NNl NNu GBTl GBTu MKKT-5 MKKT-10 MKKT-30 NNl NNu GBTl GBTu

10 0.25 1.21 0.36 1.43 0.38 5.78 0.51 0.10 2.95 0.01 3.19 0.09
10 0.5 0.73 1.22 0.72 2.74 6.47 2.17 0.00 3.35 0.01 3.66 0.07
10 0.75 0.47 1.32 0.63 0.91 5.80 0.02 0.06 2.80 0.00 3.02 0.06
20 0.25 6.05 2.64 2.38 1.41 7.78 5.12 0.85 5.02 0.02 5.02 0.23
20 0.5 1.01 4.36 1.22 2.02 6.00 2.52 0.64 4.91 0.03 5.02 0.21
20 0.75 0.85 0.91 0.32 2.14 7.87 0.22 0.11 4.47 0.01 4.69 0.13

18 20 22 25 28 30 100
Items

0

25

50

75

100

125

150

175

R
el

at
iv

e
E

rr
or

NNl

NNu

G-VFA
B&C

Figure 3.3: Box plot of relative errors for KIP with interdiction budget of k = 3n/4.

3.G. DISTRIBUTIONAL RESULTS FOR RELATIVE ERROR

3

53

10 25 50 100 300 500
Number of Nodes

0

10

20

30

40

50

60
R

el
at

iv
e

E
rr

or
NNl

NNu

B&C

Figure 3.4: Box plot of relative errors for CNP. B&C does not find any upper-level solutions for 2 of the 300
instances of size |V | = 500, so these are excluded from the plot.

0.25 0.5 0.75
Budget

0

2

4

6

8

10

12

14

16

R
el

at
iv

e
E

rr
or

NNl

NNu

GBTl

GBTu

MKKT-5
MKKT-10
MKKT-30

Figure 3.5: Box plot of relative errors for DNDP with 10 edges. MKKT-{5,10,30} corresponds to MKKT run with
each respective time limit.

0.25 0.5 0.75
Budget

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
el

at
iv

e
E

rr
or

NNl

NNu

GBTl

GBTu

MKKT-5
MKKT-10
MKKT-30

Figure 3.6: Box plot of relative errors for DNDP with 20 edges. MKKT-{5,10,30} corresponds to MKKT run with
each respective time limit.

3

54 3. NEURAL BILEVEL OPTIMIZATION

Table 3.8: KIP results comparing NNl , NNd , and NNn . Each row is an average over 10 instances, except for
n = 100, which is an average over 100 instances. All times in seconds.

n k Objective Mean Relative Error (%) Times
NNl NNd NNn NNl NNd NNn NNl NNd NNn

18 5 308.30 308.40 318.40 0.00 0.03 3.28 0.59 0.83 1.06
18 9 145.60 145.60 152.90 0.00 0.00 6.70 0.59 1.21 0.81
18 14 31.00 37.50 40.00 0.00 16.91 48.23 0.22 0.32 0.35
20 5 390.30 390.30 413.90 0.00 0.00 6.48 0.62 0.79 1.38
20 10 165.40 165.40 175.90 0.00 0.00 6.60 0.66 1.47 1.76
20 15 33.40 32.50 55.70 3.33 14.29 100.91 0.32 0.38 0.96
22 6 385.50 386.80 403.00 0.00 0.27 4.56 0.19 0.37 0.80
22 11 163.20 162.10 179.20 0.55 0.07 11.83 0.28 0.85 1.23
22 17 35.20 35.20 49.00 5.15 4.63 69.91 0.24 0.19 0.41
25 7 438.20 438.20 446.50 0.00 0.00 1.98 2.66 2.40 3.85
25 13 194.90 195.50 206.50 0.00 0.26 6.67 2.75 3.25 4.83
25 19 43.30 43.30 64.40 1.69 1.69 92.49 0.48 0.74 1.84
28 7 518.30 518.30 532.20 0.00 0.00 2.80 0.67 0.83 2.37
28 14 224.90 224.90 234.70 0.00 0.00 4.60 2.10 2.69 3.72
28 21 46.70 49.90 60.70 0.00 7.48 37.45 0.45 0.83 1.67
30 8 536.30 537.10 537.70 0.00 0.18 0.25 1.54 1.86 3.07
30 15 231.20 231.20 232.80 0.16 0.16 0.82 3.64 4.18 5.03
30 23 49.00 50.70 51.90 0.00 2.79 4.48 1.08 1.50 1.76

100 25 2,164.71 2,164.13 2,168.52 0.04 0.01 0.22 10.02 12.28 19.81
100 50 965.37 965.26 974.28 0.03 0.02 1.01 51.68 61.09 72.86
100 75 245.01 245.10 262.66 0.04 0.08 8.18 24.69 30.48 81.30

3.H. ABLATION

3.H.1. LOWER-LEVEL VALUE FUNCTION CONSTRAINTS

In this section, we present an ablation study comparing alternative types of value func-
tion approximation (VFA) for the lower-level approximation on the KIP. Namely, we com-
pare the approach used in the main body of the chapter, NNl , which utilizes a slack vari-
able to ensure feasibility. In addition, we include NNn which does not use a slack at
all, and NNd , which uses the largest error in the validation set to scale the prediction
down. Table 3.8 reports objectives, relative errors, and solving times of each method. In
general, the solution quality of NNl slightly exceeds that of NNd , while NNn does signifi-
cantly worse. The latter results is unsurprising given that any underestimation will cause
a loss of feasibility for potentially high quality upper-level decisions. NNl is additionally
generally the fastest to optimize as well.

3.H.2. THE EFFECT OF λ
In this section, we present results with λ= 0.1 for DNDP. Table 3.9 presents relative error
and solving times for this setting. Notably, this choice ofλ tends to provide higher quality
solutions thanλ= 1, as reported in the main body of the chapter in Table 3.2. Tuning this
hyperparameter further can thus improve the already strong numerical results reported
for DNDP, and possibly other problems.

3.H.3. GREEDY FEATURES FOR KNAPSACK

This section examines the impact of using greedy features on the KIP problem. We
specifically compare a model trained purely on the coefficients to a model trained on the
coefficients with additional features derived from KIP-specific greedy heuristics. From
Table 3.10, there is a clear advantage with the greedy features in terms of solution quality
at the cost of increased solving time.

3.H. ABLATION

3

55

Table 3.9: DNDP results forλ= 0.1. Each is averaged across 10 instances. NNl and GBTl are the learning-based
formulations with slack for the lower-level approximation. NNu and GBTu are the learning-based formula-
tions for the upper-level approximation.

of edges budget NNl NNu GBTl GBTu MKKT
MRE Time MRE Time MRE Time MRE Time MRE-5 MRE-10 MRE-30

10 0.25 2.44 2.63 0.36 0.01 1.43 3.26 0.38 0.09 5.78 0.51 0.10
10 0.5 0.39 2.90 1.22 0.01 1.33 3.54 2.74 0.07 6.47 2.17 0.00
10 0.75 0.48 2.23 1.32 0.00 0.47 2.19 0.91 0.06 5.80 0.02 0.06
20 0.25 3.62 5.02 2.46 0.02 1.36 5.02 1.23 0.23 7.59 4.96 0.67
20 0.5 1.56 4.91 4.41 0.03 0.98 5.02 2.06 0.21 6.05 2.57 0.69
20 0.75 0.17 3.44 1.03 0.01 0.43 4.75 2.27 0.13 8.00 0.35 0.23

Average 1.44 3.52 1.80 0.01 1.00 3.96 1.60 0.13 6.61 1.76 0.29

Table 3.10: KIP results comparing NNl with and without greedy-based features NNd . Each row averaged over
10 instances, except for n = 100, which is an average over 100 instances. All times in seconds.

n k Objective Mean Relative Error (%) Times
NNl greedy NNl no greedy NNl greedy NNl no greedy NNl greedy NNl no greedy

18 5 308.30 314.90 0.85 2.93 0.59 0.06
18 9 145.60 150.50 1.17 4.28 0.59 0.07
18 14 31.00 41.60 0.00 55.04 0.22 0.05
20 5 390.30 404.40 0.00 3.71 0.62 0.06
20 10 165.40 172.00 0.55 4.06 0.66 0.05
20 15 33.40 36.50 0.00 7.31 0.32 0.06
22 6 385.50 390.60 0.59 1.88 0.19 0.07
22 11 163.20 170.80 0.00 4.31 0.28 0.07
22 17 35.20 39.10 7.91 31.93 0.24 0.06
25 7 438.20 446.30 0.11 1.67 2.66 0.08
25 13 194.90 197.20 0.89 2.58 2.75 0.07
25 19 43.30 49.10 0.00 13.53 0.48 0.07
28 7 518.30 537.70 0.15 3.63 0.67 0.07
28 14 224.90 225.90 0.21 0.61 2.10 0.08
28 21 46.70 52.10 0.00 11.85 0.45 0.08
30 8 536.30 556.50 0.00 3.61 1.54 0.08
30 15 231.20 233.70 0.21 1.20 3.64 0.09
30 23 49.00 51.30 0.00 4.97 1.08 0.08

100 25 2,164.71 2,473.08 0.00 14.22 10.02 0.54
100 50 965.37 1,062.92 0.04 10.23 51.68 0.52
100 75 245.01 313.44 0.00 27.62 24.69 0.53

3

56 3. NEURAL BILEVEL OPTIMIZATION

3.I. COMPUTING SETUP
The experiments for the benchmarks were run on a computing cluster with an Intel Xeon
CPU E5-2683 and Nvidia Tesla P100 GPU with 64GB of RAM (for training). Pytorch 2.0.1
[164] was used for all neural network models and scikit-learn 1.4.0 was used for gradient-
boosted trees in the DNDP [166]. Gurobi 11.0.1 [92] was used as the MILP solver and
gurobi-machinelearning 1.4.0 was used to embed the learning models into MILPs.

3.J. MACHINE LEARNING DETAILS

3.J.1. MODELS, FEATURES, & HYPERPARAMETERS
For all problems, we derive features that correspond to each upper-level decision vari-
able, as well as general instance features.

KIP, CNP, DRP
For KIP, CNP, DRP, we have n decisions in both the upper- and lower-level of the prob-
lems. For the learning model, we utilize a set-based architecture [226], wherein we first
represent the objective and constraint coefficients for each upper-level and lower-level
decision, independent of the decision (fi). Each of these are passed through a feed-
forward network with shared parameters (Ψd) to compute an m-dimension embedding.
The embeddings are then summed and passed through another feed-forward network
(Ψs) to compute the instance’s k-dimensional embedding. This instance embedding is
then concatenated with features related to the upper- and lower-level that are depen-
dent on the decision (h(xi)). The concatenated vector is passed through a feed-forward
network with shared parameters (Ψv) to predict n scalar values (i.e., one for each deci-
sion). The final prediction is equal to the dot product of the n predictions with the objec-
tive function coefficients of the upper- or lower-level problem, depending on the type of
value function approximation. This final step exploits the separable nature of the objec-
tive functions in question as they can all be expressed as

∑n
i=1 ci zi , where ci is a known

coefficient and zi is a decision variable or a function of a set of decision variables with
index i . The objectives for KIP, CNP, and DRP all satisfy this property. We leverage this
knowledge of the coefficients of separable objective functions as an inductive bias in
the design of the learning architecture to facilitate convergence to accurate models. The
decision-dependent and decision-independent features are summarized in Table 3.11.
One minor remark for KIP is that since it is an interdiction problem, we multiply the
concatenated vector, i.e., the input to Ψv , by (1− xi) as a mask given that the follower
cannot select the same items as the leader. For all instances, we do not perform system-
atic hyperparameter tuning. The sub-networks Ψd , Ψs , Ψv are feed-forward networks
with one hidden layer of dimension 128. The decision-independent feature embedding
dimension (m) is 64, and the instance embedding dimension (k) is 32. We use a batch
size of 32, a learning rate of 0.01, and Adam [117] as an optimizer.

DNDP
We train neural network models (one hidden layer, 16 neurons, a learning rate of 0.01
with the Adam optimizer) and gradient-boosted trees (default scikit-learn hyperparam-
eters, except for n_estimators = 50). The inputs to these models are 30-dimensional
binary vectors representing the subset of links selected by the leader.

3.J. MACHINE LEARNING DETAILS

3

57

Table 3.11: Features for KIP, CNP, and DRP. Most features are derived directly from the objective and constraint
coefficients, so refer to Appendix 3.D for the definitions. For KIP, additional features are computed using simple

greedy heuristics. We compute x
d g
i , y

d g
i , ob j d g , which correspond to a purely greedy strategy, i.e., the upper-

level interdicts the k items with the largest profit to cost ratio (pi /ai) and the lower-level decisions are the
largest remaining highest profit to cost ratio items. For h(xi) in KIP, we also include lower-level decisions
based on G-VFA (y

g
i).

Problem Type Features

KIP fi
pi /ai

maxi {pi /ai } , pi , ai , k/n, xd g
i , yd g

i , ob j d g /n

h(xi) fi , xi , y g
i

CNP fi
pd

i /di

maxi {pd
i /di }

,
pa

i /ai

maxi {pa
i /ai } , di , ai , pa

i , pd
i , γ, η, ϵ, δ, A, D

h(xi) fi , xi , −γ(1−xi), (1−xi), (1−η)xi

DRP fi
wi /ci

maxi {wi /ci } , vi /ci
maxi {ci /vi } , wi , vi , ci , Bd , Br

h(xi) fi , xi

3.J.2. DATA COLLECTION & TRAINING TIMES
For KIP, CNP, DRP, we sample 1,000 instances according to the procedures specified in
Tang et al. [195], Dragotto et al. [63], and Ghatkar et al. [84], respectively. For each in-
stance, we sample 100 upper-level decisions, i.e., 100,000 samples in total. Additionally,
for KIP, CNP, DRP, the lower-level problems are solved with 30 CPUs in parallel. For train-
ing, we train for 1,000 epochs. However, if the validation mean absolute error does not
improve in 200 iterations, we terminate early. Data collection and training times are re-
ported in Table 3.12.

For DNDP, we use the Sioux Falls transportation network provided by [171] along with
the author’s 60 test instances. All instances use the same base network with different sets
of candidate links to add and different budgets. There are 30 candidate links in total,
and each test instance involves a subset of 10 or 20 of these links. To construct a training
set, we sample 1000 leader decisions by first uniformly sampling an integer between 1
and 20, then uniformly sampling that many candidate links out of the set of 30 options;
samples with total cost exceeding 50% of the total cost of all 30 edges are rejected as they
are likely to exceed realistic budgets.

3.J.3. PREDICTION ERROR
For KIP, CNP, and DRP, we provide the Mean Absolute Error (MAE), as well as the Mean
Absolute Label (MAL) as a reference to access the prediction quality for the validation
data in Table 3.13. The table shows that models achieve a MAE of at most ∼ 1e−6 with
a MAL ranging from 0.006 to 200 for all KIP, CNP, and DRP instances. For DNDP, both
neural network and gradient-boosted tree models achieve Mean Absolute Percentage
Error (MAPE) ∼ 5%.

3

58 3. NEURAL BILEVEL OPTIMIZATION

Table 3.12: Data collection and training times for all problems. Note that as KIP is an interdiction problem, the
same trained model can be used for the upper- and lower-level approximation, so we simply leave the upper-
level as - for this problem. All times in seconds.

Problem Data Collection Training Time
Lower Upper

KIP (n = 18) 142.08 2576.43 -
KIP (n = 20) 172.65 4714.88 -
KIP (n = 22) 141.61 2346.20 -
KIP (n = 25) 170.30 4007.75 -
KIP (n = 28) 142.34 2684.80 -
KIP (n = 30) 168.91 1835.27 -
KIP (n = 100) 164.16 3467.26 -

CNP (|V | = 10) 1,397.58 1839.60 4670.87
CNP (|V | = 25) 1,522.32 2072.60 4841.31
CNP (|V | = 50) 1,823.16 2103.50 2963.64
CNP (|V | = 100) 1,872.07 1944.08 2931.43
CNP (|V | = 300) 3,662.89 3800.02 3598.04
CNP (|V | = 500) 4,742.06 2263.68 6214.35

DRP 1939.24 1768.82 1784.15

DNDP 1033.15 1.96 3.19

Table 3.13: Prediction errors for all problems. Note that as KIP is an interdiction problem, the same trained
model can be used for the upper- and lower-level approximation, so we simply leave the lower-level as - for
this problem.

Problem Upper-Level Approximation Lower-Level Approximation
MAE MAL MAE MAL

KIP (n = 18) 5.05e−09 2.0992 - -
KIP (n = 20) 5.98e−09 2.5369 - -
KIP (n = 22) 4.00e−06 2.6933 - -
KIP (n = 25) 3.46e−10 3.0036 - -
KIP (n = 28) 1.48e−08 3.7327 - -
KIP (n = 30) 2.85e−08 3.7445 - -
KIP (n = 100) 1.21e−08 13.104 - -

CNP (|V | = 10) 1.35e−08 5.4606 6.74e−06 1.5272
CNP (|V | = 25) 1.22e−06 12.3452 1.09e−08 3.7224
CNP (|V | = 50) 1.23e−07 23.9687 4.77e−09 7.7536
CNP (|V | = 100) 4.33e−08 46.5468 3.97e−06 14.7491
CNP (|V | = 300) 1.83e−08 135.8972 2.54e−07 44.577
CNP (|V | = 500) 8.54e−08 222.3805 9.51e−08 76.212

DRP 2.51e−07 0.0062 7.82e−08 0.0703

DNDP 0.0292 0.4297 0.02504 0.4990

4
NEURAL TWO-STAGE ROBUST

INTEGER OPTIMIZATION

Robust optimization provides a mathematical framework for modeling and solving
decision-making problems under worst-case uncertainty. This work addresses two-stage
robust optimization (2RO) problems (also called adjustable robust optimization), wherein
first-stage and second-stage decisions are made before and after uncertainty is realized, re-
spectively. This results in a nested min-max-min optimization problem which is extremely
challenging computationally, especially when the decisions are discrete.

Proposed data-driven algorithm: We propose NEUR2RO, an efficient machine-learning-
driven instantiation of column-and-constraint generation (CCG), a classical iterative al-
gorithm for 2RO. Specifically, we learn to estimate the value function of the second-stage
problem via a novel neural-network architecture that is easy to optimize over by design.
We use the value function approximations, explained in Chapter 2 to embed our neural
network into the problem formulations of CCG.

Data generation scheme: For obtaining data, we solve many instances of the most inner
problem (the second-stage problem), by first sampling decisions of the first stage and un-
certain scenarios, which are the inputs of this problem. This way, we only have to solve
single-level problems to gather training data.

Experimental results: NEUR2RO produces high-quality solutions quickly, outperforming
state-of-the-art methods on two-stage knapsack and capital budgeting problems. Com-
pared to existing methods, which often run for hours, NEUR2RO finds similar quality so-
lutions in a few seconds or minutes.

This chapter is based on Dumouchelle et al. [66] published in The Twelfth International Conference on
Learning Representations (ICLR, 2024) and the journal extension Dumouchelle et al. [64] available as a
preprint. In collaboration with Justin Dumouchelle, Jannis Kurtz, and Elias B. Khalil. The code is available
at https://github.com/khalil-research/Neur2RO.

59

https://github.com/khalil-research/Neur2RO

4

60 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

4.1. INTRODUCTION
A wide range of real-world optimization problems in logistics, finance, and healthcare,
among others, can be modeled by discrete optimization models [167]. While such
mixed-integer (linear) programs (MILPs) can still be challenging to solve, the problem
size that can be tackled with modern solvers has increased significantly thanks to algo-
rithmic developments [2, 219]. In recent years, the incorporation of machine learning
(ML) models into established algorithmic frameworks has received increasing attention
[23, 229].

While most of ML for discrete optimization has focused on deterministic problems,
in many cases, decision-makers face uncertainty in the problem parameters, e.g., due to
forecasting or measurement errors in quantities of interest such as customer demand
in inventory management. Besides the stochastic optimization approach, for which
learning-based heuristics have been proposed recently [67], another popular approach
to incorporate uncertainty into optimization models is robust optimization, where the
goal is to find solutions that are optimal considering the worst realization of the uncer-
tain parameters in a pre-defined uncertainty set [21]. This more conservative approach
has been extended to two-stage robust optimization (2RO) where some of the decisions
can be made on the fly after the uncertain parameters are realized [22]; see Yanıkoğlu
et al. [222] for a survey.

Example (Capital budgeting). As a classical example of a two-stage robust problem,
consider the capital budgeting problem as defined in Subramanyam et al. [189] where
a company decides to invest in a subset of n projects. Each project i has an uncertain
cost ci (ξ) and an uncertain profit ri (ξ) that both depend on the nominal cost and profit,
respectively, and some risk factor ξ that dictates the difference from the nominal values
to the actual ones. This risk factor, which we call an uncertain scenario, is contained
in a given uncertainty set Ξ. The company can invest in a project either before or after
observing the risk factor ξ, up to a budget B . In the latter case, the company generates
only a fraction η of the profit, which reflects a penalty of postponement. The objective
of the capital budgeting problem is to maximize the total revenue subject to the budget
constraint. This problem can be formulated as:

max
x∈X

min
ξ∈Ξ

max
y∈Y

r(ξ)⊺(x+ηy) (4.1a)

s.t. x+y ≤ 1 (4.1b)

c(ξ)⊺(x+y) ≤ B. (4.1c)

Here, X = Y = {0,1}n and xi and yi are the binary variables that indicate whether the
company invests in the i -th project in the first- or second-stage, respectively. Constraint
(4.1b) ensures that the company can invest in each project only once and constraint
(4.1c) ensures that the total cost does not exceed the budget.

2RO with integer decisions is much harder to solve than deterministic MILPs, espe-
cially when the uncertain parameters appear in the constraints and the second-stage
decisions are discrete. Even evaluating the objective value of a solution in this case is
algorithmically challenging [232]. In Subramanyam et al. [189], none of the generated

4.2. BACKGROUND

4

61

capital budgeting instances could be solved even approximately in a two-hour time limit
for n = 25, terminating with an optimality gap of around 6%. In contrast to deterministic
optimization problems, there is only limited literature on using ML methods to improve
robust optimization [85, 111].

CONTRIBUTIONS

We propose Neural Two-stage Robust Optimization (NEUR2RO), an ML framework that
can quickly compute high-quality solutions for 2RO. Our contributions are as follows:

– ML in a novel optimization setting: 2RO (also known as adjustable RO) has been
receiving increased interest from the operations research community [222] and
our work is one of the first to leverage ML in this setting.

– ML at the service of a classical optimization algorithm: to deal with the highly
constrained nature of real-world optimization problems and rather than attempt-
ing to predict solutions directly, we “neuralize” a well-established 2RO algorithm,
a strategy that combines the best of both worlds: correctness of an established
algorithm with the predictive capabilities of an accurate neural network.

– A compact, generalizable neural architecture that is MILP-representable and es-
timates the thorny component of a 2RO problem, namely the value of the second-
stage problem. The network is invariant to problem size and parameters, allowing,
for example, the use of the same architecture for capital budgeting instances with
a different number of projects and budget parameters.

– Competitive experimental results on capital budgeting and a two-stage robust
knapsack problem, both benchmarks in the 2RO literature. NEUR2RO finds solu-
tions that are of similar quality to or better than the state of the art. Large instances
benefit the most from our method, with 100× reduction and 10 to 100× reductions
in running time for knapsack and capital budgeting, respectively.

4.2. BACKGROUND

4.2.1. TWO-STAGE ROBUST OPTIMIZATION
2RO problems involve two types of decisions. The first set of decisions, x, are referred to
as here-and-now decisions and are made before the uncertainty is realized. The second
set of decisions, y, are referred to as the wait-and-see decisions and can be made on
the fly after the uncertainty is realized. The uncertain parameters ξ are assumed to be
contained in a convex and bounded uncertainty set Ξ ⊂ Rq . The 2RO problem aims at
finding a first-stage solution x which minimizes the worst-case objective value over all
scenarios ξ ∈Ξ, where for each scenario the best possible second-stage decision y(ξ) is
implemented. Mathematically, a 2RO problem is given by

min
x∈X

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x+d(ξ)⊺y (4.2a)

s.t. T (ξ)x+W (ξ)y ≤ h(ξ), (4.2b)

4

62 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

where X ⊆ Rn and Y ⊆ Rm are feasible sets for the first and second stage decisions, re-
spectively. In this work, we consider the challenging case of integer sets X and Y . All
parameters of the problem, namely c(ξ) ∈ Rn ,d(ξ) ∈ Rm ,W (ξ) ∈ Rr×m ,T (ξ) ∈ Rr×n , and
h(ξ) ∈ Rr depend on the scenario ξ. We make the following assumption which is satis-
fied for the capital budgeting problem (and implicitly knapsack, which does not involve
constraint uncertainty).

Assumption. For every x ∈ X , we have a method that calculates a scenario ξ ∈ Ξ for
which the second-stage constraints T (ξ)x+W (ξ)y ≤ h(ξ) over y ∈ Y are infeasible or
verifies that no such scenario exists.

In the extended version of this work [64], this assumption is dismissed. Additional
formulations are required to handle the extra complexity of the problem.

Both single- and multi-stage robust mixed integer problems are NP-hard even for
deterministic problems that can be solved in polynomial time [46]. Compared to single-
stage problems, which are often computationally tractable as they can be solved using
reformulations [21] or constraint generation [154], two-stage problems are much harder
to solve. When dealing with integer first-stage and continuous recourse, CCG is one of
the key approaches [197, 227]. However, many problems, such as the ones we study here,
deal with (mixed-)integer second-stage decisions. While an extension of CCG has been
proposed that is able to handle mixed-integer recourse [232], this method is not well-
established and often intractable and the results do not apply for pure integer second-
stage problems.

In the case that the uncertainty only appears in the objective function, the 2RO can
be solved by oracle-based branch-and-bound methods [112], branch-and-price [6], or it-
erative cut generation using Fenchel cuts [62]. For special problem structures and binary
uncertainty sets, a Lagrangian relaxation can be used to transform 2RO problems with
constraint uncertainty into 2RO with objective uncertainty which can then be solved by
the aforementioned methods [130, 188].

4.2.2. COLUMN-AND-CONSTRAINT GENERATION
The main idea of CCG is to iterate between a main problem (MP) and an adversarial
problem (AP). The MP is a relaxation of the original problem that only considers a finite
subset of the uncertainty set Ξ′ ⊂ Ξ. The latter problem can be modeled as an MILP
by introducing copies of the second-stage decision variables y for each of the scenarios
in Ξ′. After calculating an optimal solution of the MP, the AP finds new scenarios in
the uncertainty set that cut off the current solution in the MP. When no such scenario
can be found, the optimality of the current MP solution is guaranteed. For mathematical
formulations of the two problems and a more detailed description of the CCG procedure,
see Figure 4.1 and Appendix 4.B.1.

CCG often fails to calculate an optimal solution in reasonable time since both the MP
and the AP are very hard to solve. In each iteration, the size of the MP increases leading
to it being difficult to solve to optimality even with commercial MILP solvers such as
Gurobi [92]. Furthermore, solving the AP is extremely challenging for integer second-
stage variables. In Zhao and Zeng [232], the authors present a column-and-constraint

4.3. RELATED WORK

4

63

algorithm that solves the AP if the second stage is a mixed-integer problem; this leads to
a CCG for the AP inside the main CCG, a most intractable combination. Additionally, the
method of Zhao and Zeng [232] does not apply to purely integer second-stage decisions
such as the problems we consider here.

4.3. RELATED WORK

Robust optimization. Besides the exact solution methods mentioned in Section 4.2.1,
several heuristic methods have been developed to derive near-optimal solutions for
mixed-integer 2RO problems. Methods that solve 2RO heuristically are K -adaptability
[28, 95, 189], decision rules [31, 32], and iteratively splitting the uncertainty set [170].
Machine-learning techniques have been developed to speed up solution algorithms for
the K -adaptability problem in Julien et al. [111]. In Goerigk and Kurtz [85] a decision
tree classifier is trained to predict good start scenarios for the CCG. While being heuris-
tic solvers, all of the above methods are still computationally highly demanding. In this
work, the K -adaptability branch-and-bound algorithm by Subramanyam et al. [189] is
used as a baseline since it is one of the only methods that can calculate high-quality so-
lutions for reasonable problem sizes. For an elaborate overview of the latter algorithm,
see Appendix 4.B.2 or Chapter 5 in which K -adaptability is extensively discussed.

Besides improving algorithmic performance, ML methods have been used to con-
struct uncertainty sets based on historical data. In Goerigk and Kurtz [86] one-class neu-
ral networks are used to construct highly complex and non-convex uncertainty sets. Re-
sults from statistical learning theory are used to derive guarantees for ML-designed un-
certainty sets in Tulabandhula and Rudin [198]. Other approaches use principal compo-
nent analysis and kernel smoothing [160], support vector clustering [178, 179, 180], sta-
tistical hypothesis testing [33], or Dirichlet process mixture models [47, 159]. In Wang et
al. [209] uncertainty sets providing a certain probabilistic guarantee are derived by solv-
ing a CVaR-constrained bilevel problem by an augmented Lagrangian method. While
interesting and related, we here assume the uncertainty set is known.

MILP representations of neural networks. One key aspect of NEUR2RO is represent-
ing neural networks as constraints and variables in MILPs, which was first explored in
[54, 75, 177, 196]. These representations have motivated active research to improve the
MILP solving efficiency of optimizing over-trained models [5, 90, 210], as well as sev-
eral software contributions [24, 51], in addition to Gurobi, a commercial MILP solver,
providing an open-source library. The use of embedding trained predictive models to
derive approximate MILPs has been explored for non-linear constraints or intractable
constraints [90, 113, 121, 153, 174], stochastic programming [67, 124], and bilevel opti-
mization [65]. As NEUR2RO is based on an approximation for intractable 2RO problems
with embedded neural networks, the latter area of research is the most closely related.
However, the min-max-min optimization in 2RO renders previous learning-based MILP
approximations unsuitable.

4

64 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

Neur2RO

CHECK OPTIMALITYAdd to

Terminate

Optimal

 MAIN PROBLEM

CCG

 ADVERSARIAL PROBLEM Neur2RO

CCG

Not Optimal

b

a c

d

Figure 4.1: Column-and-constraint generation: in each iteration, a main problem (box (a)) is solved to find a
good first-stage solution x⋆ for the set of scenarios that have been identified thus far (initially, none). Then,
an adversarial problem (box (c)) is solved to obtain a new scenario for which the solution x⋆ is not feasible
anymore in MP. If no such scenario exists, then x⋆ is optimal and CCG terminates. Otherwise, the adversarial
scenario is added to the set of worst-case scenarios and we iterate to MP. For each of the MP and AP, we show
two versions: classical (CCG, boxes (a) and (c)) and learning-augmented (NEUR2RO, dashed boxes (b) and
(d)).

4.4. METHODOLOGY
At a high level, our approach aims to train a neural network that predicts the opti-
mal second-stage objective value function and then integrates this model within a CCG
framework to obtain first-stage decisions. We rely on a training dataset of historical in-
stances that can be used or generated, as is typically assumed in ML-for-optimization
work.

4.4.1. LEARNING MODEL
As mentioned before, CCG is computationally very expensive. Both the MP and AP con-
tribute to its intractability (see Figure 4.1 boxes (a) and (c) for descriptions). In the MP,
for each added scenario, a new second-stage decision y is introduced. When a large
number of scenarios are required to obtain a robust solution, the number of variables
grows rapidly. Moreover, the AP is especially hard when the second-stage decisions are
integer, which is the case we consider. In our learning-augmented approach, we replace
the intractable elements of the CCG with MILP representations of a trained NN which is
computationally much easier to handle (Figure 4.1).

We train a neural network that can accurately predict the optimal value of the
second-stage problem for a given input of a first-stage decision, an uncertainty realiza-
tion, and the problem’s specification, P . The problem specification refers to the coef-
ficients and size of the optimization problem, e.g., the nominal values of the profit and
costs in the capital budgeting problem. More formally we train a neural network NNΘ(·),
to approximate the optimal value of the integer problem

NNΘ(x,ξ,P) ≈ min
y∈Y

{cP (ξ)⊺x+dP (ξ)⊺y : WP (ξ)y ≤ hP (ξ)−TP (ξ)x}, (4.3)

where Θ are the weights of the neural network. For ease of notation, we hereafter omit
P in the formulation. For more details on the architecture of NNΘ(·), see Section 4.4.3.
Alternatively, as cP (ξ)⊺x is a scalar product of the input vectors, we instead could only
predict the second-stage objective, i.e., dP (ξ)⊺y, subject to the same constraints. How-

4.4. METHODOLOGY

4

65

ever, as demonstrated in Appendix 4.H.3, predicting the sum of first- and second-stage
objectives achieves higher-quality solutions.

4.4.2. ML-BASED COLUMN-AND-CONSTRAINT GENERATION
Having defined the learning task, we now describe the ML-based approximate CCG al-
gorithm. For an overview of this method, see Figure 4.1.

Main problem. Given a finite subset of scenarios Ξ′ ⊂Ξ, we reformulate the MP using
an argmax operator which selects a scenario that achieves the worst objective function
value when replacing the second-stage objective value by the neural network formula-
tion.

min
x∈X ,y∈Y ,ξa∈Ξ

c(ξa)⊺x+d(ξa)⊺y (4.4a)

s.t. W (ξa)y+T (ξa)x ≤ h(ξa), (4.4b)

ξa ∈ argmaxξ∈Ξ′
{
NNΘ(x,ξ)

}
. (4.4c)

Modeling the argmax can be done by adding additional linear constraints and binary
variables, which we explicitly show in Appendix 4.C. The MP results in an MILP formu-
lation.

This formulation is indeed not the only option; for example, one could instead
consider another formulation, called max, which provides a more intuitive formula-
tion and does not require modeling second-stage variables; details are provided in Ap-
pendix 4.H.1. However, (4.4) has one key property that motivates its efficacy. From the
machine learning perspective, rather than requiring a neural network to be an accurate
estimator of the objective for each scenario, we only require that the neural network be
able to identify the maximal scenario. Prediction inaccuracy is then compensated for in
(4.4a) by exactly modeling the second-stage cost. As a result, when solving the MP, the
true optimal first-stage decision for the selected scenario will be the minimizer, rather
than a potentially suboptimal first-stage decision based on any inaccuracy of the learn-
ing model. Appendix 4.H.1 presents an ablation comparing both the solution quality
of the argmax and max formulations on the knapsack problem, and establishes that the
argmax formulation indeed computes higher quality solutions across every instance.

Adversarial problem. In the AP of NEUR2RO, we replace the inner optimization prob-
lem over y by its prediction NNΘ(x⋆,ξ), where x⋆ is given (see Figure 4.1 box (d)). When
we deal with constraint uncertainty, we first check if there exists a scenario ξ ∈ Ξ, such
that no feasible y ∈Y exists for the constraints

W (ξ)y+T (ξ)x⋆ ≤ h(ξ),

which we can do by the assumption from Section 4.2.1. If such a scenario exists, we
add it to Ξ′ and continue with solving the MP again. Note that in this case x⋆ is not
feasible for MP in the next iteration. If no such scenario could be found, we calculate
an optimal solution ξ⋆ of the AP in box (d) of Figure 4.1 which can be done by using
the MILP representation for NN. Note that if Ξ is a polyhedron or an ellipsoid, then this

4

66 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

problem results in a mixed-integer linear or quadratic problem, respectively, which can
be solved by state-of-the-art solvers such as Gurobi. We compare the optimal value of
the latter problem with the objective values of all scenarios that were considered in the
MP before. If the following holds

max
ξ∈Ξ

NNΘ(x⋆,ξ) ≥ max
ξ∈Ξ′ NNΘ(x⋆,ξ)+ε (4.5)

for a pre-defined accuracy parameter ε> 0, then we add ξ⋆ to Ξ′ and continue with the
MP. Otherwise, we stop the algorithm. Finally, note that we can calculate both types
of scenarios in each iteration and add them both to Ξ′ before we iterate to the MP. As
the adversarial problem requires finding the worst-case uncertainty over a neural net-
work’s input, heuristic approaches may significantly improve solving time with minimal
degradation in solution quality. Appendix 4.H.2 presents an ablation demonstrating sig-
nificantly lower solution time at a minimal cost of solution quality for sampling- and
relaxation-based heuristics.

Convergence. Since our algorithm does not apply the standard CCG steps, the con-
vergence guarantee from the classical algorithm does not hold. However, we prove in
Appendix 4.F that it holds if only finitely many first-stage solutions exist, which is the
case if all first-stage variables are integer and X is bounded; this indeed holds for the
knapsack and capital budgeting problems.

Theorem 4.1. If X is finite, the ML-based CCG terminates after a finite number of itera-
tions.

4.4.3. ARCHITECTURE

 First-stage
 Embedding
 Network

 Scenario
 Embedding
 Network

 Value
 Network

as estimate for

Figure 4.2: neural-network architecture for ML-based CCG. The current first-stage solution, x⋆, is embedded
once using the networkΦx(·). A scenario ξk is embedded using the networkΦξ(·). To estimate the value of the

second-stage optimization problem corresponding to a particular pair (x⋆,ξk), the two embedding vectors are
concatenated into one (dashed arrows) and then passed into the final Value Network.

For the ML-based CCG, one requirement is the optimization, in each iteration, over
several trained neural networks in the MP (one for each scenario in (4.4c)) and a single
trained neural network in the AP. Generally, increasing the size of the networks will lead
to more challenging and potentially intractable optimization problems. For that reason,

4.5. EXPERIMENTAL SETUP

4

67

developing an architecture that can be efficiently optimized over is a crucial aspect of an
efficient ML-based CCG algorithm.

To achieve efficient optimization, we embed the first-stage decisions, x, and a sce-
nario, ξ, into low-dimensional embeddings using networks Φx and Φξ, respectively.
These embeddings are concatenated and passed through a final small neural network
(the Value Network) Φ that predicts the objective of the optimal second-stage response;
see Figure 4.2 for a pictorial representation.

Main problem optimization. When representing the trained models in the MILP, we
only have to represent the embedding networkΦx and the small value networkΦ, which
can be done by classical MILP representations of ReLU NNs [75]. Since the scenario
parameters are not variables here, the scenario embeddingsΦξ(ξk) can be precomputed
via a forward pass for each scenario, i.e., no MILP representation is needed forΦξ. IfΦ is
a small neural network, then representing a large number of copies of the network (one
per scenario) remains amenable to efficient optimization.

Adversarial problem optimization. For the AP, we only require representingΦξ andΦ
as the embedding of x can be precomputed with a forward pass.

Generalizing across instances. For simplicity of notation and presentation, the pre-
vious sections have omitted the generalization across instances, which is a key aspect
of the generality of our methodology. To generalize across instances, invariance to the
number, ordering, constraint coefficients, and objective coefficients of decision vari-
ables is required. To handle this, NEUR2RO leverages set-based neural networks [226]
forΦx andΦξ. Specifically, embeddings are computed for each single first-stage and sce-
nario variable (xi and ξi) using their values, constraints, and objective coefficients, via
a network with shared parameters. These embeddings are then aggregated and passed
through an additional feed-forward neural network to derive the first-stage and scenario
embeddings. For a detailed diagram of this architecture, see Appendix 4.D.

4.5. EXPERIMENTAL SETUP
Computational setup. All experiments were run on a computing cluster with an Intel
Xeon CPU E5-2683 and Nvidia Tesla P100 GPU with 64GB of RAM (for training). Pytorch
1.12.1 [164] was used for all learning models. Gurobi 10.0.2 [92] was used as the MILP
solver and gurobi-machinelearning 1.3.0 was used to embed the neural networks into
MILPs. For evaluation, all solving was limited to 3 hours. For NEUR2RO, we terminate a
solve of the MP or AP early if no improvement in solution is observed in 180 seconds. Our
code and data are available at https://github.com/khalil-research/Neur2RO.

2RO problems. We benchmark NEUR2RO on two 2RO problems from the literature,
namely a two-stage knapsack problem and the capital budgeting problem. In both cases,
our instances are as large or larger than considered in the literature. The two-stage knap-
sack problem is in the first stage a classical knapsack problem. The second stage has de-
cisions for responding to an uncertain profit degradation. The capital budgeting prob-

https://github.com/khalil-research/Neur2RO

4

68 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

lem is described in the introduction. For a detailed description of these problems, see
Appendix 4.A. Below we briefly detail each problem.

– Knapsack. For the knapsack problem, we use the same instances as in Arslan and
Detienne [6], which have been inspired by Ben-Tal et al. [21]. They have categorized
their instances into four groups: uncorrelated (UN), weakly correlated (WC), almost
strongly correlated (ASC), and strongly correlated (SC), which affects the correlation
of the nominal profits of items with their cost and, in turn, the difficulty of the prob-
lem. More correlated instances are much harder to solve. We consider instances of
sizes n ∈ {20,30,40,50,60,70,80}.

– Capital budgeting. These problem instances are generated similar to Subramanyam
et al. [189].While uncertain parameters appear in the constraints (see (4.1c)), we can
easily verify the assumption given in Section 4.2.1 as follows: for every x we check
if maxξ∈Ξ c(ξ) ≤ B , where the maximum can be easily calculated since it is a linear
problem over Ξ. If the latter inequality is true, the second-stage problem is feasible
since we can choose y = 0. On the other hand, if the inequality is violated, then no
feasible second-stage solution exists since y ≥ 0, and hence the maximizing scenario
will be added to MP. We consider instances of sizes n ∈ {10,20,30,40,50}.

Baselines. For knapsack, we compare to the branch-and-price (BP) algorithm from Ar-
slan and Detienne [6], the state-of-the-art for 2RO problems with objective uncertainty.
We use the instances and the objective values and solution times reported in their pa-
per1. For capital budgeting, we use the K -adaptability approach of Subramanyam et al.
[189] (more details in Appendix 4.B.2) with k = 2,5,10 as a baseline; CCG is not tractable
for this problem due to its integer recourse.

Evaluation. After NEUR2RO finds the first-stage decision x⋆, we obtain the corre-
sponding objective value by solving 4.2 for a fixed x. For knapsack, this can be efficiently
solved by constraint generation of y. For capital budgeting on the other hand, due to
constraint uncertainty, we cannot use the constraint generation approach. Instead we
sample scenarios from Ξ, and solve 4.2 with fixed x and ξ. See Appendix 4.E for a more
detailed explanation of these methods.

As previously mentioned, we use K -adaptability as the baseline for the capital bud-
geting problem. This method solves 4.2 only approximately with the approximation
quality getting better with larger K at an increase in solution times. We take the first-
stage solution found by K -adaptability and compare it with the one of NEUR2RO using
the scenario sampling approach just described.

For the evaluation of the objective values, two metrics are considered. We use rel-
ative error (RE), i.e., the gap to the best-known solution, to compare solution quality.
Specifically, if ob j⋆ is the value of the best solution found by NEUR2RO or a baseline
for a particular instance, then for algorithm A with objective ob j A , the RE is given by

100 · |ob j⋆−ob j A |
|ob j⋆| . To compare efficiency, we compare the average solution time.

1Available at https://github.com/borisdetienne/RobustDecomposition.

https://github.com/borisdetienne/RobustDecomposition

4.6. EXPERIMENTAL RESULTS

4

69

Data collection & training. For data collection, we sample sets of instances, first-stage
decisions, and scenarios to obtain features. The features are provided in Appendix 4.I.
Labels are then computed by solving the corresponding innermost optimization prob-
lem, i.e., a tractable deterministic MILP as both x and ξ are fixed. Additionally, this pro-
cess is highly parallelizable since each optimization problem is independent. For knap-
sack and capital budgeting, we randomly sample 500 instances, 10 first-stage decisions
per instance, and 50 scenarios per first-stage decision, resulting in 250,000 data points.
The dataset is split into 200,000 and 50,000 samples for training and validation, respec-
tively.

We train one size-independent model for each problem for 500 epochs. The data col-
lection times, training times, and total times (in seconds) are 2,162, 3,789, and 5,951 for
knapsack and 3,212, 2,195, and 5,407 for capital budgeting. We note that both times are
relatively insignificant given that we provide approximately twice the time (3 hours) to
solve a single instance during evaluation. Furthermore, the model for NEUR2RO gener-
alizes across instance parameters and sizes. Appendix 4.I provides full detail on model
hyperparameters and training.

4.6. EXPERIMENTAL RESULTS

For knapsack, we test our method and the baseline on 18 instances per correlation type
and instance size (504 instances). For capital budgeting, we test on 50 instances per in-
stance size (250 instances). We note that training and validation data are generated using
the procedures specified in the corresponding papers, and different instances are used
for testing. For optimization of NEUR2RO, this section presents results for solving the
MIP and MILP formulations for the MP and AP, with the argmax formulation outlined in
Section 4.4 for the MP. Tables 4.1-4.2 report the median RE and solving times. In addi-
tion, for more detailed distributional information, boxplots and more detailed metrics,
are provided in Appendix 4.G.

Table 4.1: Median RE and solving times for knapsack instances. For each row, the median RE and average solv-
ing time are computed over 18 instances. All times in seconds. The smallest (best) values in each row/metric
are in bold.

Correlation # items Median RE Times Correlation # items Median RE Times
Type NEUR2RO BP NEUR2RO BP Type NEUR2RO BP NEUR2RO BP

Uncorrelated

20 1.417 0.000 4 0

Almost
Strongly
Correlated

20 1.439 0.000 5 9
30 1.188 0.000 6 1 30 0.782 0.000 6 2708
40 1.614 0.000 9 3 40 0.497 0.000 10 4744
50 1.814 0.000 9 12 50 0.019 0.000 7 8852
60 1.146 0.000 14 18 60 0.000 0.016 14 10261
70 1.408 0.000 16 46 70 0.017 0.031 13 10800
80 0.968 0.000 11 388 80 0.000 0.265 12 10800

Weakly
Correlated

20 1.582 0.000 5 29

Strongly
Correlated

20 1.604 0.000 5 9
30 2.236 0.000 11 454 30 0.610 0.000 7 2473
40 1.595 0.000 20 6179 40 0.443 0.000 11 5665
50 1.757 0.000 19 8465 50 0.073 0.000 9 8240
60 0.695 0.000 77 9242 60 0.042 0.010 11 10800
70 0.165 0.000 15 10800 70 0.020 0.027 16 10800
80 0.000 0.341 21 10800 80 0.000 0.179 13 10800

4

70 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

Table 4.2: Combined results for capital budgeting instances. For each row, the median RE and average solving
time are computed over 50 instances. All times in seconds. The smallest (best) values in each row/metric are
in bold.

items Median RE Times
NEUR2RO K = 2 K = 5 K = 10 NEUR2RO K = 2 K = 5 K = 10

10 1.105 1.140 0.000 0.000 59 20 9561 10800
20 0.000 0.196 0.112 0.064 324 8702 10800 10800
30 0.109 0.020 0.073 0.032 602 10801 10800 10800
40 0.009 0.074 0.011 0.019 739 10806 10801 10801
50 0.001 0.033 0.039 0.020 1032 10807 10804 10801

Knapsack. Table 4.1 demonstrates a clear improvement in scalability, with the solving
time of NEUR2RO ranging between 4 and 77 seconds, while the solving time for BP scales
directly with difficulty induced by the size and correlation type. For the more difficult
instances, i.e., instances with a large number of items and (almost) strong correlation,
NEUR2RO generally finds better quality solutions over 100 times faster than BP, which
is a very strong result considering BP is the state-of-the-art for problems with objective
uncertainty. Figures 4.6-4.7 of Appendix 4.G further demonstrate that the distribution of
RE achieved by NEUR2RO, not just the median, is far more favorable than BP’s on the
most challenging instances. For easier instances, NEUR2RO is less competitive in terms
of solution quality as BP converges to optimal solutions within the time limit. However,
even for these instances, NEUR2RO achieves a median RE of 2.235% in the worst-case,
often still 1-2 orders of magnitude faster than BP, with the exception of a few very easy
instances.

Capital budgeting. NEUR2RO achieves the lowest median RE for 20, 40, and 50-item
instances, i.e., the two largest and most challenging instance sets. The distribution of
RE for 40 and 50-item instances provided in Figure 4.8 of Appendix 4.G is indeed consis-
tent with the median result, as it illustrates that NEUR2RO finds quality solutions on the
majority of the instances. In terms of solving time, NEUR2RO generally converges much
faster than K -adaptability, resulting in a very favorable trade-off: we can find better or
equally good solutions 10 to 100 times faster. Note that the relative errors are quite small
in an absolute sense. For example, for 30-item instances, NEUR2RO has a median RE of
0.109 compared to the best baseline’s 0.020; solutions that are within 0.109% of the best
achievable may be acceptable in practice. Note that we have also measured the median
RE for K -adaptability assuming a shorter time limit, namely the same amount of time as
NEUR2RO on each instance. Taking the incumbent solution found by K -adaptability at
that time point typically yields worse solutions than those reported in Table 4.2, see Ap-
pendix 4.H.4 for details. Compared to the knapsack, the solving time is generally much
larger as the instance size increases. We speculate that this may relate to the uncertainty
in the objective of the first-stage decision or the budget constraints that are not present
in the knapsack problem.

In summary, for both benchmark problems, NEUR2RO achieves high-quality solu-
tions. For relatively easy or small instances, state-of-the-art methods sometimes find
slightly better solutions, often at a much higher computational cost. However, as the in-
stances become more difficult, NEUR2RO demonstrates a clear improvement in overall
solution quality and computing time.

4.7. CONCLUSION

4

71

4.7. CONCLUSION
With the uncertainty in real-world noisy data, the economy, the climate, and other av-
enues, there is an increasing need for efficient robust decision-making. We have shown
how NEUR2RO uses MILP-representable feedforward neural networks to estimate the
thorny component of a family of two-stage robust optimization instances, namely the
value of the second-stage problem. The neural-network architecture delicately com-
bines low-dimensional embeddings of a first-stage decision and a scenario to produce
the second-stage value estimate. Using an off-the-shelf MILP solver, we then use the
neural network in a classical iterative algorithm for 2RO. NEUR2RO to find competitive
solutions compared to state-of-the-art methods on two challenging benchmark prob-
lems, knapsack and capital budgeting, at a substantial reduction in solution time. In an
extension of this work [64], we do not impose any conditions on the constraints, and
introduce additional formulations to deal with this.

APPENDIX OF CHAPTER 4

4.A. 2RO PROBLEMS

4.A.1. ROBUST TWO-STAGE KNAPSACK
We consider the two-stage knapsack problem as defined in Arslan and Detienne [6] with
a set of n items. Each item i has a weight ci and an uncertain profit pi (ξ) = p̄i − ξi p̂i ,
where p̄i is the expected profit, p̂i its maximum deviation and ξi the uncertain profit
degradation factor, where the degradation happens after the first stage. In this problem
we have a budgeted uncertainty set Ξ= {ξ ∈ [0,1]n :

∑n
i=1 ξi ≤ Γ}. The first stage decision

is to choose a subset of items to produce. Then in the second stage, there are three
different responses to the profit degradation: (i) accept the degraded profit, (ii) repair
the item by using an additional ti units from the budget to recover the original profit p̄i ,
or (iii) outsource the item for a cost of fi units, such that the item’s profit results in p̄i − fi .
This gives the following problem formulation:

min
x∈{0,1}n

max
ξ∈Ξ

min
y∈{0,1}n ,r∈{0,1}n

n∑
i=1

(fi − p̄i)xi + (p̂iξi − fi)yi − p̂iξi ri

s.t.
n∑

i=1
ci yi + ti ri ≤C

ri ≤ yi ≤ xi ∀i ∈ {1, . . . ,n},

where xi is the first-stage decision to produce item i . For the second-stage decisions, we
have yi and ri : (i) yi = 1 if item i is produced without repairing and yi = 0 if the item is
outsourced, and (ii) ri is the decision for repairing item i .

4.A.2. CAPITAL BUDGETING
Consider the capital budgeting problem in Subramanyam et al. [189], where a company
aims to invest in a subset of n projects. For each project, i , the uncertain cost, and profit
are respectively defined as

ci (ξ) = (
1+Φ⊺

i ξ/2
)
c̄i and ri (ξ) = (

1+Ψ⊺
i ξ/2

)
r̄i , ∀i ∈ {1, . . . ,n},

where c̄i and r̄i are the nominal cost and nominal profit of project i . Φ⊺
i andΨ⊺

i are the
i -th row vectors of the sensitivity matricesΦ,Ψ ∈ Rn×4, with ξ ∈Ξ= [−1,1]4. We use the
problem formulation described in 4.1.

4.B. 2RO ALGORITHMS
In this section, we describe the column-and-constraint generation algorithm in more
detail and the K -adaptability problem, briefly describing one of its solution methods.

73

4

74 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

4.B.1. COLUMN-AND-CONSTRAINT GENERATION
The CCG iterates between the main problem and the adversarial problem (AP).

The MP is given as

min
x∈X

max
ξ∈Ξ′ min

y∈Y
c(ξ)⊺x+d(ξ)⊺y (4.6a)

s.t. T (ξ)x+W (ξ)y ≤ h(ξ), (4.6b)

whereΞ′ ⊂Ξ is a finite subset of scenarios. Clearly, the MP provides a lower bound on the
optimal value of (4.2). To solve the MP, for each scenario inΞ′ a copy of the second-stage
variables is generated. Using a level-set transformation, the problem can be formulated
as

min
x∈X

µ (4.7a)

s.t. c(ξ)⊺x+d(ξ)⊺yξ ≤µ ∀ξ ∈Ξ′ (4.7b)

T (ξ)x+W (ξ)yξ ≤ h(ξ) ∀ξ ∈Ξ′ (4.7c)

µ ∈R,yξ ∈Y ∀ξ ∈Ξ′, (4.7d)

which is a linear integer problem that state-of-the-art solvers, such as Gurobi, can solve.
In each iteration of the CCG an optimal solution (x⋆,µ⋆) of (4.7) is calculated. After-
wards, the AP is solved, which is defined as

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x⋆+d(ξ)⊺y (4.8a)

s.t. W (ξ)y ≤ h(ξ)−T (ξ)x⋆. (4.8b)

Since the optimal value of the AP is the objective value of the current solution x⋆, it
provides an upper bound on the optimal value of (4.2). We define the optimal value
to be equal to infinity if there exists a scenario ξ ∈ Ξ for which no feasible second-
stage solution y exists. If the optimal value of the AP is larger than µ⋆ then we add
the optimal scenario ξ⋆ to Ξ′ and start again from solving MP. Otherwise, we stop
the algorithm since the upper bound is smaller or equal to the lower bound, and
hence x⋆ is an optimal solution. The whole procedure is presented in Algorithm 4.1.

Algorithm 4.1: Column-and-Constraint Generation

Input : A problem instance; Ξ, the uncertainty set.
Output : Optimal first-stage decisions

1 Set ub =∞, l b =−∞
2 Ξ′ = {ξ0} for any ξ0 ∈Ξ
3 while ub − l b > 0 do
4 Calculate an optimal solution x⋆,µ⋆ of the main problem (4.7) and set

lb =µ⋆.
5 Calculate an optimal solution ξ⋆ (with optimal value opt⋆) of the adversarial

problem (4.8) where x = x⋆.
6 Set Ξ′ =Ξ′∪ {ξ⋆} and ub = min{ub,opt⋆}.
7 end
8 return x⋆

4.B. 2RO ALGORITHMS

4

75

CCG often fails to calculate an optimal solution in a reasonable time since both the
MP and the AP are very hard to solve in the case of integer second-stage variables. In
each iteration, the size of MP increases since we have to add new constraints and a copy
of all integer second-stage decisions y. This often leads to the situation that after even a
small number of iterations, the MP cannot be solved to optimality anymore by classical
integer optimization solvers as Gurobi.

Furthermore, solving the AP is extremely challenging for integer second-stage vari-
ables. Indeed, the problem can be formulated as a bilevel problem where the fol-
lower problem contains integer variables. In Zhao and Zeng [232] the authors present
a column-and-constraint algorithm that solves the AP if the second-stage is a mixed-
integer problem. One drawback is that this method is not applicable if the second-stage
does not contain continuous variables, as is the case for many problems, e.g., the cap-
ital budgeting problem. Furthermore, the method involves solving a very large mixed-
integer bilinear problem, which is computationally enormously challenging. The whole
procedure must be executed in each iteration of the main CCG algorithm.

4.B.2. K -ADAPTABILITY

The K -adaptability approach was introduced in Bertsimas and Caramanis [28] and later
studied for objective uncertainty and constraint uncertainty in [83, 95, 111, 128, 189].
The main idea of the approach is to calculate a set of K second-stage solutions already
in the first-stage. Instead of choosing the best feasible second-stage solution for each
scenario ξ, we choose the best of the K calculated second-stage solutions. Since we re-
strict the number of second-stage reactions, this approach leads to feasible solutions of
(4.2), which are not necessarily optimal. While for larger K the approximation guarantee
gets provably better, the problem gets harder to solve at the same time. Furthermore,
it was shown in Subramanyam et al. [189] that it may happen that K has to be chosen
exponentially large to guarantee optimality for (4.2). The K -adaptability problem can be
formulated as

min
x∈X ,y1,...,yk∈Y

max
ξ∈Ξ

min
y∈{y1,...,yk }

c(ξ)⊺x+d(ξ)⊺y (4.9a)

s.t. W (ξ)y+T (ξ)x ≤ h(ξ). (4.9b)

The K -adaptability problem is very challenging to solve, especially in the constraint
uncertainty case. The best-known method for this case was introduced in Subramanyam
et al. [189]. The authors perform a branch-and-bound algorithm over partitions of the
uncertainty set. They consider K -partitions of finite scenarios sets, which are iteratively
generated, and assign each of the second-stage solutions to one of the partitions. This
approach was later improved by applying machine-learning methods to improve the
branching decisions [111]. As an alternative approach in [170], an iterative uncertainty
set splitting method is presented, which converges to the exact optimal value of the two-
stage robust problem.

In case of objective uncertainty, the K -adaptablity problem is easier (but still hard)
to solve [7, 83] and can be approximated if K is not too small; see Kurtz [128].

4

76 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

4.C. DETAILED FORMULATION
This section presents the detailed argmax formulation for (4.4). We assume that at this
iteration in the MP, we have scenarios ξ1, . . . ,ξk and that M and L are upper and lower
bounds on the prediction of the network. The complete formulation is then given by

min
x∈X ,y∈Y ,ξa∈Ξ,p,u,z∈{0,1}k

c(ξa)⊺x+d(ξa)⊺y (4.10a)

s.t. W (ξa)y+T (ξa)x ≤ h(ξa), (4.10b)

pi = NNΘ(x,ξi) ∀i ∈ {1, . . . ,k} (4.10c)

u ≥ pi ∀i ∈ {1, . . . ,k} (4.10d)

u ≤ pi + (M −L)(1− zi) ∀i ∈ {1, . . . ,k} (4.10e)

k∑
i=1

zi = 1 ∀i ∈ {1, . . . ,k} (4.10f)

ξa =
k∑

i=1
zi ·ξi (4.10g)

To model the argmax, we introduce k binary variables z and k+1 continuous variables p
and u, which are used to model big-M that ensure z is 1 at the index of the maximizer and
0 everywhere else. ξa is then given by a linear combination of the scenarios multiplied
with z.

4.D. EXTENDED NN ARCHITECTURE
We show the extended neural-network architecture used in the experiments in Figure
4.3.

 First-stage
 Embedding
 Network

 Scenario
 Embedding
 Network

 Value
 Network

as estimate for

Per First-Stage / Scenario Variable
Embedding Network

Figure 4.3: The extended neural-network architecture for ML-based CCG. Compared to the NN architecture
shown in the main text (Figure 4.2), this model uses the set-based method to be able to generalize across
instance sizes. Let x⋆ ∈ Rn and ξ ∈ Rq . Then, Φ̂x and Φ̂ξ are the embedding networks for xi , i ∈ [n] and
ξ j , j ∈ [q], respectively. The features are comprised of the single variable and single-variable specific problem

specifications P i
x , i ∈ [n] and P

j
ξ

, j ∈ [q] for first-stage decisions and scenarios, respectively. The outputs of

the Φ̂ networks are aggregated for x∗ and ξ separately. These embeddings are the input of the original NN
given in the main part.

4.E. 2RO WITH FIXED FIRST-STAGE DECISIONS

4

77

4.E. 2RO WITH FIXED FIRST-STAGE DECISIONS
When we compare the calculated solutions of NEUR2RO and the baseline in our ex-
periments, we need to calculate the objective value of a solution x⋆ ∈ X exactly or ap-
proximately. The former involves solving the AP (4.8) for a given solution. Solving this
problem is intractable when we have uncertain parameters in the constraints. We first
expand on how the adversarial would be solved in a tractable way if the uncertain pa-
rameters only appear in the objective function. Subsequently, we describe an approach
to approximately solve the AP, which is based on sampling scenarios from Ξ.

4.E.1. OBJECTIVE UNCERTAINTY
For the special case of objective uncertainty, the AP can be solved much more efficiently.
In this case, the adversarial problem is given as

max
ξ∈Ξ

min
y∈Y

c(ξ)⊺x⋆+d(ξ)⊺y (4.11a)

s.t. W y ≤ h−T x⋆, (4.11b)

which can be reformulated as

max
ξ∈Ξ

α (4.12a)

s.t. α≤ c(ξ)⊺x⋆+d(ξ)⊺y ∀y ∈ Ȳ , (4.12b)

where Ȳ = {
y ∈Y : W y ≤ h−T x⋆

}
. While the set Ȳ can contain an exponential num-

ber of solutions, the latter problem can be solved by iteratively generating the constraints
for y ∈ Ȳ .

4.E.2. CONSTRAINT UNCERTAINTY
We collect all scenarios ξ ∈ Ξ which were generated during training and during the so-
lution procedures of the baseline algorithm and our algorithm (including the scenarios
calculated by the AP) in the set Ξsamples . Then for the two returned solutions x∗ and
xbasel i ne we compare

max
ξ∈Ξsamples

min
y∈Y

c(ξ)⊺x⋆+d(ξ)⊺y (4.13a)

s.t. W (ξ)y ≤ h(ξ)−T (ξ)x⋆, (4.13b)

where we replace x by the corresponding solution x∗ or xbasel i ne . The latter problem can
be solved by calculating the optimal value of the second-stage problem for each scenario
independently and choosing the worst-case overall optimal values.

4.F. CONVERGENCE
▷ Theorem 4.1. If X is finite, the ML-based CCG terminates after a finite number of
iterations.

Proof. The main idea is to show that the condition (4.5) cannot hold in infinitely many
iterations. Since we stop the algorithm if 4.5 is not true anymore, then finite termination
of the algorithm follows.

4

78 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

Assume the algorithm does not terminate in a finite number of iterations. Let lt and
rt be the values of the left-hand side and right-hand side of inequality 4.5 in iteration t
of the algorithm, i.e.,

lt := max
ξ∈Ξ

NNΘ(xt ,ξ)

and
rt := max

ξ∈Ξt
NNΘ(xt ,ξ).

where xt is the optimal solution of MP in the t-th iteration and Ξt the finite set of sce-
narios used in the MP in iteration t . Let x ∈ X be a feasible first-stage solution and let
lt (x) and rt (x) be the sub-sequences which contain the values of lt and rt only for the
iterations where x is an optimal solution of the MP. Then either this sequence is finite
or, if it is infinite, the sequence {rt (x)}t is monotonous and bounded where monotony
follows since Ξt ⊂ Ξt+1 and since the same x is used. The sequence is bounded since
Ξ is a bounded set and NNΘ a piecewise-linear function (as is known for feedforward
ReLU networks [151]) and the maximum of a piecewise linear function over a bounded
set is bounded. Hence, {rt (x)}t converges to a finite value r⋆(x). Furthermore, it holds
lt (x) ≤ rt+1(x) since the optimal scenario of the left-hand-side is added to Ξt which is a
subset of the set later used to evaluate rt+1(x). It follows that

rt (x) ≤ lt (x)−ε≤ rt+1(x)−ε

for all t which contradicts the convergence of rt (x). Hence the sequence rt (x) must be
finite. Since only finitely many first-stage solutions x exist, and the latter result holds for
all of them, the number of iterations of the algorithm must be finite.

4.G. DISTRIBUTIONAL RESULTS FOR RELATIVE PERFORMANCE
In this section, we provide distributional information for the RE for knapsack in Ta-
bles 4.3-4.4 and Figures 4.4-4.8.

20 30 40 50 60 70 80
Items

0

2

4

6

8

R
E

Neur2RO

BP

Figure 4.4: Boxplot of RE for baseline and NEUR2RO on UN knapsack instances.

4.G. DISTRIBUTIONAL RESULTS FOR RELATIVE PERFORMANCE

4

79

Table 4.3: Table of distributional information for knapsack. For each row, all RE statistics are computed over
18 instances.

Correlation # items Mean RE Median RE RE 1st Quartile RE 3rd Quartile
Type NEUR2RO BP NEUR2RO BP NEUR2RO BP NEUR2RO BP

Uncorrelated

20 2.005 0.000 1.417 0.000 0.541 0.000 2.379 0.000
30 1.189 0.000 1.188 0.000 0.712 0.000 1.399 0.000
40 2.895 0.000 1.614 0.000 1.221 0.000 4.042 0.000
50 3.032 0.000 1.814 0.000 0.946 0.000 3.801 0.000
60 2.099 0.000 1.146 0.000 0.577 0.000 2.872 0.000
70 2.214 0.000 1.408 0.000 0.761 0.000 2.506 0.000
80 1.591 0.000 0.968 0.000 0.758 0.000 2.063 0.000

Weakly
Correlated

20 2.569 0.000 1.582 0.000 1.229 0.000 4.010 0.000
30 2.664 0.000 2.236 0.000 0.616 0.000 4.293 0.000
40 2.320 0.000 1.595 0.000 1.164 0.000 2.292 0.000
50 2.183 0.145 1.757 0.000 0.793 0.000 2.674 0.000
60 2.165 0.390 0.695 0.000 0.000 0.000 3.445 0.458
70 0.884 0.338 0.165 0.000 0.000 0.000 0.623 0.175
80 0.392 0.691 0.000 0.341 0.000 0.000 0.165 0.831

Almost
Strongly
Correlated

20 2.355 0.000 1.439 0.000 0.000 0.000 2.757 0.000
30 1.166 0.113 0.782 0.000 0.075 0.000 1.911 0.000
40 0.825 0.335 0.497 0.000 0.019 0.000 1.606 0.000
50 0.314 0.884 0.019 0.000 0.000 0.000 0.229 1.251
60 0.197 0.523 0.000 0.016 0.000 0.000 0.268 1.129
70 0.551 0.615 0.017 0.031 0.000 0.000 1.058 1.227
80 0.388 0.694 0.000 0.265 0.000 0.000 0.554 0.770

Strongly
Correlated

20 2.387 0.000 1.604 0.000 0.905 0.000 3.018 0.000
30 1.068 0.121 0.610 0.000 0.054 0.000 1.939 0.000
40 0.658 0.191 0.443 0.000 0.002 0.000 0.888 0.000
50 0.411 0.648 0.073 0.000 0.000 0.000 0.780 0.963
60 0.322 0.367 0.042 0.010 0.000 0.000 0.173 0.693
70 0.389 0.738 0.020 0.027 0.000 0.000 0.535 0.793
80 0.318 0.668 0.000 0.179 0.000 0.000 0.245 0.906

Table 4.4: Table of distributional information for capital budgeting. For each row, all RE statistics are computed
over 50 instances.

items Mean RE Median RE RE 1st Quartile RE 3rd Quartile
NEUR2RO K = 2 K = 5 K = 10 NEUR2RO K = 2 K = 5 K = 10 NEUR2RO K = 2 K = 5 K = 10 NEUR2RO K = 2 K = 5 K = 10

10 2.558 2.849 1.029 1.165 1.105 1.140 0.000 0.000 0.000 0.000 0.000 0.000 3.534 4.349 0.547 1.557
20 0.423 0.304 0.232 0.266 0.000 0.196 0.112 0.064 0.000 0.094 0.013 0.000 0.410 0.453 0.320 0.362
30 0.408 0.149 0.131 0.084 0.109 0.020 0.073 0.032 0.002 0.000 0.003 0.000 0.337 0.182 0.212 0.110
40 0.234 0.114 0.098 0.073 0.009 0.074 0.011 0.019 0.000 0.001 0.000 0.002 0.121 0.180 0.137 0.137
50 0.090 0.107 0.090 0.056 0.001 0.033 0.039 0.020 0.000 0.000 0.000 0.002 0.050 0.193 0.139 0.084

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

R
E

Neur2RO

BP

Figure 4.5: Boxplot of RE for baseline and NEUR2RO on WC knapsack instances.

4

80 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

12
R

E

Neur2RO

BP

Figure 4.6: Boxplot of RE for baseline and NEUR2RO on ASC knapsack instances.

20 30 40 50 60 70 80
Items

0

2

4

6

8

10

R
E

Neur2RO

BP

Figure 4.7: Boxplot of RE for baseline and NEUR2RO on SC knapsack instances.

4.H. ABLATION
This section presents an ablation across two aspects of NEUR2RO, namely, the formula-
tion of the MP and the method to obtain worst-case scenarios. Both results are presented
on the knapsack instances.

4.H.1. MAIN PROBLEM FORMULATION

As an alternative to the formulation using argmax over a set of scenarios. One more
straightforward formulation is to consider instead the max over all of the scenarios,
which is given by

min
x∈X ,α

α (4.14a)

s.t. α≥ NNΘ(x,ξi) ∀k ∈ {1, . . . ,K }. (4.14b)

Table 4.5 reports the MRE of the argmax and max formulations and the solving time.
Table 4.5 demonstrates an improvement in solution quality, with argmax obtaining a
lower MRE in every case and a lower computing time in most cases.

4.H. ABLATION

4

81

10 20 30
Items

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
E

Neur2RO

k = 2

k = 5

k = 10

40 50
Items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
E

Neur2RO

k = 2

k = 5

k = 10

Figure 4.8: Box plot of RE for K -adaptability baselines (where lower-case k is used in legend) and NEUR2RO
on capital budgeting instances.

4.H.2. WORST-CASE SCENARIO ACQUISITION

This section compares the adversarial approach for determining scenarios to a sampling
and a linear programming (LP) relaxation-based approach.

SAMPLING-BASED SCENARIO ACQUISITION

For sampling, as a baseline, we sample 100,000 scenarios, and then to approximate the
AP, we take the maximizer over a forward pass. Table 4.6 demonstrates a clear trade-
off between solution quality and efficiency. Generally, sampling improves average solv-
ing time across all instances but leads to worse solution quality as the instance size in-
creases.

LP RELAXATION-BASED SCENARIO ACQUISITION

For 2RO, the uncertainty set is often polyhedral, which scenarios can be heuristically ob-
tained via a LP relaxation. For the LP relaxation, we compare the performance of the
standard MILP-based scenario acquisition (standard), i.e., solving the AP to optimality,
to the relaxation (LP relaxation). For both problems, we report the RE to the baselines.
Tables 4.7 and 4.8 present the knapsack and capital budgeting results, respectively. In
general, we can observe that the LP relaxation leads to significantly faster solving time,
with an overall decreased solution quality. That being said, for capital budgeting in par-
ticular, NEUR2RO with the LP relaxation still achieves a lower median RE than the base-
lines on larger instances, while being roughly five times faster than results without the
relaxation.

4.H.3. PREDICTION TARGET

This section compares the prediction target. For capital budgeting, the coefficients of
the first-stage decisions in the objective contain uncertainty. As such, this presents
a choice of either predicting the sum of the first- and second-stage objectives, i.e.,
c(ξ)⊺x+miny∈Y

{
d(ξ)⊺y : W (ξ)y ≤ h(ξ)−T (ξ)x

}
, or only the second-stage objective, i.e.,

miny∈Y

{
d(ξ)⊺y : W (ξ)y ≤ h(ξ)−T (ξ)x

}
. Specifically, we compare the downstream opti-

mization performance with respect to the resulting formulations. The formulation for
predicting the sum of the first- and second-stage objectives is presented in Section 4.4.

4

82 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

Table 4.5: argmax and max formulations on knapsack instances. For each row, the median RE and solving time
are computed over 18 instances. All times in seconds.

Correlation # items Median RE Times
Type argmax max argmax max

Uncorrelated

20 0.000 1.167 5 11
30 0.000 0.945 7 14
40 0.000 1.931 9 24
50 0.000 1.634 10 33
60 0.000 0.452 17 29
70 0.000 0.801 19 28
80 0.000 2.227 13 35

Weakly
Correlated

20 0.000 3.515 6 13
30 0.000 2.405 11 22
40 0.000 0.502 26 42
50 0.000 0.254 24 39
60 0.000 1.528 77 58
70 0.000 1.769 18 35
80 0.000 3.492 27 75

Almost
Strongly
Correlated

20 0.000 2.042 5 12
30 0.000 1.433 6 14
40 0.000 1.739 11 33
50 0.000 3.161 8 20
60 0.000 2.449 15 30
70 0.000 2.497 18 35
80 0.000 1.824 17 30

Strongly
Correlated

20 0.000 1.154 5 11
30 0.000 0.967 7 15
40 0.000 1.928 16 28
50 0.000 3.613 10 21
60 0.000 2.005 20 26
70 0.000 2.657 16 33
80 0.000 2.051 16 28

For predicting the second-stage objective only, the MP is given by

min
x∈X ,y∈Y ,ξa∈Ξ

c(ξa)⊺x+d(ξa)⊺y (4.15a)

s.t. W (ξa)y+T (ξa)x ≤ h(ξa), (4.15b)

ξa ∈ argmaxξ∈Ξ′
{

c(ξ)⊺x+NNΘ(x,ξ)
}
, (4.15c)

and the AP is given by
max
ξ∈Ξ

c(ξ)⊺x⋆+NNΘ(x⋆,ξ). (4.16)

The main difference with this formulation is that the objective coefficients c(ξ) can be
utilized directly rather than requiring the ML model to predict them. Table 4.9 compares
the two approaches on the capital budgeting instances wherein the RE is computed with
respect to the baselines. Empirically, we can see that predicting the sum of the first-
and second-stage objectives yields significantly better solutions. On the methodologi-
cal side, when only the second stage is predicted each node in the branch-and-bound
tree being explored by a MIP solver will contain the exact first-stage and the predicted
second-stage objectives. As such, we speculate that the LP relaxation at each node will
consist of two components that are on entirely different scales. Specifically, the first-
stage objective will be tight as it is being represented exactly while the second-stage

4.H. ABLATION

4

83

Table 4.6: Adversarial and sampling-based approaches for worst-case scenario acquisition on knapsack in-
stances. For each row, the median RE and solving time are computed over 50 instances. All times in seconds.

Correlation # items Median RE Times
Type adversarial sampling adversarial sampling

Uncorrelated

20 0.000 0.000 5 2
30 0.000 0.000 7 4
40 0.560 0.000 9 4
50 0.723 0.000 10 5
60 0.066 0.000 17 6
70 0.150 0.000 19 8
80 0.395 0.000 13 9

Weakly
Correlated

20 0.000 0.074 6 3
30 0.000 0.444 11 4
40 0.000 0.093 26 5
50 0.441 0.000 24 7
60 0.119 0.065 77 9
70 0.000 0.185 18 8
80 0.000 0.536 27 9

Almost
Strongly
Correlated

20 0.000 0.000 5 5
30 0.000 0.000 6 6
40 0.000 0.000 11 10
50 0.000 0.000 8 7
60 0.000 0.000 15 14
70 0.000 0.000 18 13
80 0.000 0.000 17 12

Strongly
Correlated

20 0.000 0.000 5 5
30 0.000 0.000 7 7
40 0.000 0.000 16 11
50 0.000 0.000 10 8
60 0.000 0.000 20 13
70 0.000 0.000 16 14
80 0.000 0.000 16 13

Table 4.7: Median RE and solving times for knapsack instances with LP relaxation. For each row, the median
RE and average solving time are computed over 18 instances. All times in seconds. The smallest (best) values
in each row/metric are in bold.

Correlation # items Median RE Times Correlation # items Median RE Times
Type standard LP relaxation standard LP relaxation Type standard LP relaxation standard LP relaxation

Uncorrelated

20 1.417 1.673 4 1

Almost
Strongly
Correlated

20 1.439 1.211 5 1
30 1.188 1.167 6 1 30 0.782 0.665 6 1
40 1.614 1.387 9 2 40 0.497 0.927 10 2
50 1.814 1.660 9 2 50 0.019 1.884 7 2
60 1.146 1.146 14 1 60 0.000 1.079 14 2
70 1.408 1.166 16 2 70 0.017 0.025 13 4
80 0.986 0.970 11 2 80 0.000 1.775 12 4

Weakly
Correlated

20 1.582 1.454 5 1

Strongly
Correlated

20 1.604 1.368 5 1
30 2.236 2.034 11 1 30 0.610 0.796 7 2
40 1.595 2.733 20 2 40 0.443 1.375 11 3
50 1.757 1.126 19 2 50 0.073 2.333 9 2
60 0.695 0.729 77 3 60 0.042 0.510 11 4
70 0.165 0.243 15 3 70 0.020 0.623 16 3
80 0.000 0.316 21 9 80 0.000 1.097 13 3

objective requires the relaxation of the prediction model which will not be tight due to
the big-M constraints. This means that the maximization problem in the AP favors the
second stage. This mismatch could lead to inaccurate scenarios and undesirable down-
stream effects within branch-and-bound.

4

84 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

Table 4.8: Median RE and solving times for capital budgeting instances with LP relaxation. For each row, the
median RE and average solving time are computed over 50 instances. All times in seconds. The smallest (best)
values in each row/metric are in bold.

items Median RE Times
standard LP relaxation standard LP relaxation

10 1.105 2.663 59 4
20 0.000 0.060 324 142
30 0.109 0.071 602 141
40 0.009 0.007 739 226
50 0.001 0.001 1,032 231

Table 4.9: Sum and second-stage only predictions for capital budgeting instances. For each row, the median RE
and solving time are computed over 50 instances. Note that in these results, the RE is calculated with respect
to the K -adaptability and each respective ML-approach. All times in seconds.

items Median RE Times
sum second only sum second-only

10 1.105 2.424 20 233
20 0.000 0.192 324 1,823
30 0.109 0.151 602 3,823
40 0.009 0.010 739 4,062
50 0.001 0.005 1,032 7,424

4.H.4. BASELINE SOLUTION QUALITY AT NEUR2RO TERMINATION TIME

In this section, we report the objective quality, i.e., the median relative error, for K -
adaptability baseline at the termination time of NEUR2RO in Table 4.10. From the table,
we can see that the performance is median RE of NEUR2RO is marginally better than
when K -adaptability is given 3 hours, except n = 20,40. Note that these tables are only
be reproduced for capital budgeting as we do not have the knapsack results through-
out the solving process, given only the final objective values are reported in Arslan and
Detienne [6].

Table 4.10: Median RE for capital budgeting at 3 hour time limit and NEUR2RO termination time. For each row,
the median RE and average solving time are computed over 50 instances. All times in seconds. The smallest
(best) values in each row/metric are in bold.

items Median RE at 3 hours Median RE at NEUR2RO termination
NEUR2RO K = 2 K = 5 K = 10 NEUR2RO K = 2 K = 5 K = 10

10 1.105 1.140 0.000 0.000 0.809 1.559 0.267 0.359
20 0.000 0.196 0.112 0.064 0.011 0.240 0.098 0.084
30 0.109 0.020 0.073 0.032 0.102 0.067 0.093 0.029
40 0.009 0.074 0.011 0.019 0.013 0.079 0.058 0.019
50 0.001 0.033 0.039 0.020 0.002 0.035 0.006 0.008

4.I. MACHINE-LEARNING MODEL DETAILS

4

85

4.I. MACHINE-LEARNING MODEL DETAILS

4.I.1. FEATURES
Here we provide the features for each of the problems. In both cases, set-based archi-
tectures [226] with parameter sharing utilized, so we report the features for a single di-
mension of the first-stage decision and scenario accordingly. Table 4.11 reports all of the
features for each instance.

Table 4.11: Features for first-stage decision and scenario embedding networks.

Problem First-Stage Features Scenario Features

Knapsack xi , fi , p̄i , p̂i ,ri ,ci , ti ,C ξi , fi , p̄i , p̂i ,ri ,ci , ti ,C
Capital budgeting xi ,ri ,ci

(
1+Φ⊺

i ξ/2
)

i ,
(
1+Ψ⊺

i ξ/2
)

i ,ri ,ci

4.I.2. MODEL HYPERPARAMETERS
This section reports the hyperparameters for the neural networks for each problem. For
both problems, we have the same architecture with slightly different hyperparameters.
As the objective of NEUR2RO is to enable efficient optimization, we train small networks
that can achieve a low mean absolute error value to ensure that the main and adversarial
problems are tractable. For this reason, no systematic hyperparameter tuning was done.
Hyperparameter optimization would likely only further improve the already strong nu-
merical results. For both problems, we train a model for 500 epochs and compute the
mean absolute error on a validation set every 10 epochs. We then use the model with the
lowest reported mean absolute validation error during training for evaluation.

Table 4.12 reports the hyperparameters for each model. As our model generalizes
across instances, which requires invariance to the order and number of decision vari-
ables, both the first-stage and scenario embedding networks are set-based architectures
[226]. We refer to Figure 4.3 for a refresher on the overall architecture which has the fol-
lowing hyperparameters. The hyperparameters “Φ̂x dimensions” and “Φx dimensions”
correspond to the hidden and embedding dimensions of the first-stage embedding net-
work. Specifically, “Φ̂x dimensions” corresponds to the network with shared parameters
that embed the representation for each first-stage decision. The last dimension of “Φ̂x

dimensions” is that of the aggregated vector. The hyperparameter “Φx dimensions” cor-
responds to the network that takes the aggregated first-stage embedding vector as input.
The last dimension of “Φx dimensions” specifies the embedding dimension of the first-
stage embedding network. “Φ̂ξ dimensions” and “Φξ dimensions” are analogous for the
scenario embedding network. “Φ dimensions” correspond to the hidden dimensions
of the value network. Finally, “aggregation type” specifies the type of aggregation that
combines the first-stage/scenario embeddings.

4.I.3. TRAINING CURVES
Figures 4.9-4.10 plot the mean absolute error at every 10 epochs during training for the
training and validation data. Generally, the training and validation mean absolute error
is very close, and in both problems, a relatively low mean absolute error is achieved.

4

86 4. NEURAL TWO-STAGE ROBUST INTEGER OPTIMIZATION

Table 4.12: Hyperparameters for neural networks.

Hyperparameter Knapsack Capital budgeting

Feature scaling min-max min-max
Label scaling min-max min-max
epochs 500 500
Batch size 256 256
Learning rate 0.001 0.001
Dropout 0 0
Loss function MSELoss MSELoss
Optimizer Adam Adam
Φ̂x dimensions [32, 16] [16, 4]
Φx dimensions [64, 8] [32, 8]
Φ̂ξ dimensions [32, 16] [16, 4]
Φξ dimensions [64, 8] [32, 8]
Φ dimensions [8] [8]
Aggregation type sum sum

0 100 200 300 400 500
Epoch

0.004

0.006

0.008

0.010

0.012

M
ea

n
ab

so
lu

te
er

ro
r

Train
Validation

Figure 4.9: Training curve for knapsack.

0 100 200 300 400 500
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n
ab

so
lu

te
er

ro
r

Train
Validation

Figure 4.10: Training curve for capital budgeting.

5
MACHINE LEARNING FOR

K -ADAPTABILITY

Two-stage robust optimization problems constitute one of the hardest optimization prob-
lem classes. One of the solution approaches to this class of problems is K -adaptability.
This approach simultaneously seeks the best partitioning of the uncertainty set of sce-
narios into K subsets, and optimizes decisions corresponding to each of these subsets. In
general case, it is solved using the K -adaptability branch-and-bound algorithm, which
requires exploration of exponentially-growing solution trees.

Proposed data-driven algorithm: To accelerate finding high-quality solutions in such
trees, we propose a machine learning-based node selection strategy. In particular, we con-
struct a feature engineering scheme based on general two-stage robust optimization in-
sights such that a model can be applied as-is to problems of different sizes and/or types.

Data generation scheme: To sample accurate data points seen during the algorithm ex-
ecution, the top part of B&B trees of multiple instances are resolved, and labeled using
Monte-Carlo Tree Search-like approaches. To construct the partial exhaustive tree, single-
level problems are solved, with each of them giving rise to one data point.

Experimental results: We experimentally show that using our learned node selection
strategy outperforms a vanilla, random node selection strategy when tested on problems
of the same type as the training problems, also in case the K -value or the problem size
differs from the training ones.

This chapter is based on Julien et al. [111] published in INFORMS Journal on Computing. In collaboration
with Krzysztof Postek and Ş. İlker Birbil. The code is available at https://github.com/estherjulien/
KAdaptNS.

89

https://github.com/estherjulien/KAdaptNS
https://github.com/estherjulien/KAdaptNS

5

90 5. MACHINE LEARNING FOR K -ADAPTABILITY

5.1. INTRODUCTION
Many optimization problems are affected by data uncertainty caused by errors in the
forecast, implementation, or measurement. Robust optimization (RO) is one of the key
paradigms to solve such problems, where the goal is to find an optimal solution among
the ones that remain feasible for all data realizations within an uncertainty set [21]. This
set includes all reasonable data outcomes.

A specific class of RO problems comprises two-stage robust optimization (2RO) prob-
lems in which some decisions are implemented before the uncertain data is known (here-
and-now decisions), and other decisions are implemented after the data is revealed
(wait-and-see decisions). Such a problem can be formulated as

min
x∈X

max
ξ∈Ξ

min
y∈Y

{
c(ξ)⊺x+d(ξ)⊺y : T (ξ)x+W (ξ)y ≤ h(ξ), ∀ξ ∈Ξ}

, (5.1)

where x ∈ X ⊆ RNx and y ∈ Y ⊆ RNy are the here-and-now and wait-and-see decisions,
respectively, and ξ is the vector of initially unknown data belonging to the uncertainty
setΞ⊆RNz . Solving problem (5.1) is difficult in general, sinceΞmight include an infinite
number of scenarios, and hence different values of y might be optimal for different real-
izations of ξ. In fact, finding optimal x is an NP-hard problem [22]. Several approaches
have been proposed to address this difficulty. The first one is to use so-called decision
rules which explicitly formulate the second-stage decision y as a function of ξ, and hence
the function parameters become first-stage decisions next to x; see [22]. Another ap-
proach is to partition Ξ into subsets and to assign a separate copy of y to each of the
subsets. The partitioning is then iteratively refined, and the decisions become increas-
ingly customized to the outcomes of ξ.

In this chapter, we consider a third approach to (5.1) known as K -adaptability. There,
at most K possible wait-and-see decisions y1, . . . ,yK are allowed to be constructed, and
the decision maker must select one of those. The values of the possible yk ’s become the
first-stage variables, and the problem boils down to

min
x∈X ,y∈Y K

max
ξ∈Ξ

min
k∈K

{
c(ξ)⊺x+d(ξ)⊺yk : T (ξ)x+W (ξ)yk ≤ h(ξ)

}
, (5.2)

where K = {1, . . . ,K } and Y K =×K
k=1 Y . Although the solution space of (5.2) is finite-

dimensional, it remains an NP-hard problem [28]. For certain cases, (5.2) can be equiv-
alently rewritten as a mixed integer linear programming (MILP) model [95].

The above formulation requires that for given x ∈ X and ξ ∈ Ξ, there is at least one
decision yk , k ∈ K satisfying T (ξ)x+W (ξ)yk ≤ h(ξ), and among those one (or more)
minimizing the objective. Looking at (5.2) from the point of view yk , we can say that
for each yk , we can identify a subset Ξk of Ξ for which a given yk is optimal among K
selected recourses. The union of sets Ξk , k ∈ K is equal to Ξ although they need not
be mutually disjoint (but a mutually disjoint partition of Ξ can be constructed). Con-
sequently, solving (5.2) involves implicitly (i) clustering Ξ, and (ii) optimizing the per-
cluster decision so that the objective function corresponding to the most difficult cluster
is minimized. Such simultaneous clustering and per-cluster optimization also occur, for
example in retail. A line of K products is to be designed to attract the largest possible
group of customers. The customers are clustered into K groups, and the nature of the
products is guided by the cluster characteristics.

5.1. INTRODUCTION

5

91

In this chapter, we focus on the general MILP K -adaptability case for which the
only existing solution approach is the K -adaptability branch-and-bound (K -B&B) algo-
rithm of Subramanyam et al. [189]. Other methods to solve the K -adaptability problem
have been proposed by Hanasusanto et al. [95] that deals with binary decisions, and
Ghahtarani et al. [83] that assumes integer first-stage decisions. The K -B&B algorithm,
as opposed to the top-down partitioning of Ξ of Bertsimas and Dunning [30] or Postek
and den Hertog [170], proceeds by gradually building up discrete subsets Ξ′

k of scenar-
ios. In most practical cases, a solution to (5.2), where y1, . . . ,yK are feasible for large
Ξ′

1, . . . ,Ξ′
K , is also feasible to the original problem. The problem, however, lies in know-

ing which scenarios should be grouped together. In other words, a decision needs to
be made on which scenarios of Ξ should be responded to with the same decision. How
well this question is answered, determines the (sub)optimality of y1, . . . ,yK . In Subra-
manyam et al. [189], a search tree is used to determine the best collection (see Section
5.2 for details). However, this approach suffers from exponential growth.

We introduce a method for learning the best strategy to explore this tree. In partic-
ular, we learn which nodes to evaluate next in depth-first search dives to obtain good
solutions faster. These predictions are made using a supervised machine learning (ML)
model. As the input does not range for different instance sizes, or values of K , as will
be explained in future sections, the ML model does not require difficult architectures.
Standard ML models, such as feed-forward neural networks, random forests, or support
vector machines can be used for this work.

Due to the supervised nature, some oracle is required to be imitated. In the design
of this oracle, we are partly inspired by Monte Carlo tree search (MCTS) [44], which is
often used for exploring large trees. Namely, the training data is obtained by explor-
ing K -B&B trees via an adaptation of MCTS (see Section 5.3.4). The scores given to the
nodes in the MCTS-like exploration are stored and used as labels in our training data. In
the field of solving MILPs, learning node selection to speed up exploring the B&B tree
has been done, e.g., by [98]. Here, a node selection policy is designed by imitating an
oracle. This oracle is constructed using the optimal solutions of various MILP data sets.
More recently, Khalil et al. [115] used a graph neural network to learn node selection.
Our method distinguishes itself from these approaches as we specifically use the na-
ture of our problem. Namely, in the design of the node selection strategy, we use the
actual meaning of selecting a node; adding a scenario to a subset. Therefore, we try to
learn what characteristics (or features) scenarios that should belong to the same subset
have. For an overview of ML for learning branching policies in B&B, see Bengio et al.
[23]. There has also been a vast amount of research on applying MCTS directly to solving
combinatorial problems. In Sabharwal et al. [173] a special case of MCTS called Upper
Confidence bounds for Trees (UCT), is used for designing a node selection strategy to
explore B&B trees (for MIPs). In Khalil et al. [116] MCTS is used to find the best backdoor
(i.e., a subset of variables used for branching) for solving MIPs. Loth et al. [141] have
used MCTS for enhancing constraint programming solvers, which naturally use a search
tree for solving combinatorial problems. For an elaborate overview on modifications
and applications of MCTS, we refer to Świechowski et al. [191].

The remainder of the chapter is structured as follows. In Section 5.2 we describe the
inner workings of the K -adaptability branch-and-bound to set the stage for our contri-

5

92 5. MACHINE LEARNING FOR K -ADAPTABILITY

bution. In Section 5.3 we outline our ML methodology along with the data generation
procedure. Section 5.4 discusses the results of a numerical study, and Section 5.5 con-
cludes with some remarks on future works.

5.2. PRELIMINARIES
It is instructive to conceptualize a solution to (5.2) as a solution to a nested clustering and
optimization-for-clusters methodology. As already mentioned in Section 5.1, a feasible
solution to (5.2) can be used to construct a partition of the uncertainty set into subsets
Ξ1, . . . ,ΞK such that

⋃K
k=1Ξk = Ξ. Here, decision yk is applied in the second stage if ξ ∈

Ξk . The decision framework associated with a given solution is illustrated in Figure 5.1.

Figure 5.1: A framework of the K -adaptability problem, where we split the uncertainty set (red box) in K = 2
parts. Here, x represents the first-stage decisions, and y1 with y2 those of the second-stage.

For such a fixed partition the corresponding optimization problem becomes

min
x∈X ,y∈Y K

max
k∈K

max
ξ∈Ξk

{
c(ξ)⊺x+d(ξ)⊺yk

}
(5.3a)

s.t. T (ξ)x+W (ξ)yk ≤ h(ξ). (5.3b)

The optimal solution to (5.2) also corresponds to an optimal partitioning of Ξ, and the
optimal decisions of (5.3) with that partitioning. Finding an optimal partition and the
corresponding decisions has been shown to be NP-hard by Bertsimas and Caramanis
[28]. For that reason, Subramanyam et al. [189] have proposed the K -B&B algorithm.
There, the idea is to gradually build up a collection of finite subsets Ξ′

1, . . . ,Ξ′
K , such that

for each k ∈ K an optimal solution to (5.3) with Ξk = Ξ′
k is also an optimal solution to

(5.2).
The algorithm follows a main-subproblem approach. The main problem solves (5.2)

with K finite subsets of scenarios. The subproblem finds the scenario for which the cur-
rent main solution is not robust. The number K of possible assignments of this new
scenario to one of the existing subsets gives rise to using a search tree. Each tree node
corresponds to a partition of all scenarios found so far into K subsets. The goal is to
find the node with the best partition. An illustration of the search tree is given in Fig-
ure 5.2. The tree grows exponentially and thus only (very) small-scale problems can be
solved in reasonable time. The method we propose in the next section learns a good
node selection strategy with the goal of converging to the optimal solution much faster
than K -B&B.

5.2. PRELIMINARIES

5

93

Figure 5.2: Search tree for K -adaptability branch-and-bound (K = 2).

Main problem. This problem solves the K -adaptability problem (5.2) with respect to
the currently found scenarios grouped into Ξ′

k ⊂ Ξ for all k ∈ K . For a collection
Ξ′

1, . . . ,Ξ′
K , the problem formulation is defined as follows:

min
θ∈R,x∈X ,y∈Y K

θ (5.4a)

s.t. c(ξ)⊺x+d(ξ)⊺yk ≤ θ, ∀ξ ∈Ξ′
k ,∀k ∈K , (5.4b)

T (ξ)x+W (ξ)yk ≤ h(ξ), ∀ξ ∈Ξ′
k ,∀k ∈K , (5.4c)

where θ is the current estimate of the objective function value. We denote the optimal
solution of (5.4) by the triplet (θ⋆,x⋆,y⋆).

Subproblem. The subproblem aims to find a scenario ξ for which the current main
solution is infeasible. That is, a scenario is found such that for each k, at least one of the
following is true:

– the current estimate of θ⋆ is too low, i.e., c(ξ)⊺x⋆+d(ξ)⊺y⋆k > θ⋆;

– at least one of the original constraints is violated, i.e., T (ξ)x⋆+W (ξ)y⋆k > h(ξ).

If no such scenario exists, we define the solution (θ⋆,x⋆,y⋆) as a robust solution. When
such a scenario ξ⋆ does exist, the solution is not robust and the newly-found scenario is
assigned to one of the sets Ξ′

1, . . . ,Ξ′
K .

Definition 5.1. A solution (θ⋆,x⋆,y⋆1 , . . . ,y⋆K) to (5.4) is robust if

∀ξ ∈Ξ,∃k ∈K : T (ξ)x⋆+W (ξ)y⋆k ≤ h(ξ), c(ξ)⊺x⋆+d(ξ)⊺y⋆k ≤ θ⋆.

5

94 5. MACHINE LEARNING FOR K -ADAPTABILITY

Example 5.1. Consider the following main problem

min
θ,x,y

θ

s.t. θ ∈R,x ∈ {0,1}2,y ∈ {0,1}2,

ξ⊺x+2ξ⊺yk ≤ θ, ∀ξ ∈Ξ′
k ,∀k ∈K ,

yk ≥ 1−ξ, ∀ξ ∈Ξ′
k ,∀k ∈K ,

x+yk ≥ 1, ∀k ∈K ,

where ξ ∈ {−1,0,1}2 and K = {1,2}. We look at three solutions for different groupings of
ξ1 = [1,1]⊺, ξ2 = [0,1]⊺, and ξ3 = [0,0]⊺. One of them is not robust, and the other ones are
but have a different objective value due to the partition. The first partition we consider is
Ξ′

1 = {ξ1}, Ξ′
2 = {ξ2}. The corresponding solution is θ⋆ = 2, x⋆ = [1,1]⊺, y⋆1 = [0,0]⊺, and

y⋆2 = [1,0]⊺. This solution is not robust, since for ξ3 = [0,0]⊺ the following constraint is
violated for all k ∈K :

y1 ≱ 1−ξ3 ⇐⇒
[

0
0

]
≱

[
1
1

]
−

[
0
0

]
, y2 ≱ 1−ξ3 ⇐⇒

[
1
0

]
≱

[
1
1

]
−

[
0
0

]
.

Next, consider Ξ′
1 = {ξ1,ξ2}, Ξ′

2 = {ξ3}, with solution θ⋆ = 3, x⋆ = [0,1]⊺, y⋆1 = [1,0]⊺, y⋆2 =
[1,1]⊺. There is no ξ that violates this solution, which makes it robust. The third partition
is Ξ′

1 = {ξ1,ξ3}, Ξ′
2 = {ξ2}, with solution θ⋆ = 4, x⋆ = [0,0]⊺, y⋆1 = [1,1]⊺, and y⋆2 = [1,1]⊺.

This solution is also robust. Their objective values are 3 and 4, which shows that different
partitions can significantly influence solution quality.

Mathematically, we formulate the subproblem using the big-M reformulation:

max
ζ,ξ,γ

ζ (5.5a)

s.t. ζ ∈R, ξ ∈Ξ, γkl ∈ {0,1}, (k, l) ∈K ×L , (5.5b)∑
l∈L

γkl = 1, ∀k ∈K , (5.5c)

ζ+M(γk0 −1) ≤ c(ξ)⊺x⋆+d(ξ)⊺y⋆k −θ⋆, ∀k ∈K , (5.5d)

ζ+M(γkl −1) ≤ tl (ξ)⊺x⋆+wl (ξ)⊺y⋆k −hl (ξ), ∀l ∈L ,∀k ∈K , (5.5e)

where M is some big scalar and L is the index set of constraints. When ζ ≤ 0, we have
not found any violating scenario, and the main solution is robust. Otherwise, the found
ξ⋆ is added to one of Ξ′

1, . . . ,Ξ′
K . Then, the main problem is re-solved, so that a new

solution (θ⋆, x⋆, y⋆), which is guaranteed to be feasible for ξ⋆ as well, is found.
Throughout the process, the key issue is to which of Ξ′

1, . . . ,Ξ′
K to assign ξ⋆. As this

cannot be determined in advance, all options have to be considered. Figure 5.2 illus-
trates that from each tree node we create K child nodes, each corresponding to adding
ξ⋆ to the k-th subset:

τk = {Ξ′
1, . . . ,Ξ′

k ∪ {ξ⋆}, . . . ,Ξ′
K }, ∀k ∈K ,

where τk is the partition corresponding to the k-th child node of node τ. If a node is
found such that θ⋆ is greater than or equal to the value of another robust solution, then

5.2. PRELIMINARIES

5

95

this branch can be pruned as the objective value of the main problem cannot improve if
more scenarios are added.

The pseudocode of K -B&B is given in Algorithm 5.1. The search tree becomes very
deep for 2RO problems where many scenarios are needed for a robust solution. More-
over, the tree becomes wider when K increases. Due to these issues, solving the problem
to optimality becomes computationally intractable in general. Our goal is to investigate
if ML can be used to make informed decisions regarding the assignment of newly found
ξ⋆ to the discrete subsets, so that a smaller search tree has to be explored in a shorter
time before a high-quality robust solution is found.

In our implementation of this algorithm, we apply a depth-first search strategy and
select a random node of N instead of the first one. The reasons for these choices are
given in the experiments section (Section 5.4.1)

Algorithm 5.1: K -B&B
Input : Problem instance P (N) with size N ,

number of partitions K
Output : Objective value θ, first-stage decisions x, second-stage decisions y = {y1, . . . ,yK },

subsets with scenarios Ξ′
k for all k ∈ {1, . . . ,K }

Initialization : Incumbent partition: τi := {Ξ′
1, . . . ,Ξ′

K }, where Ξ′
k =; for all k ∈K ,

set containing all node partitions yet to explore: N := {τi },
incumbent solutions: (θi ,xi ,yi) := (∞,;,;)

1 while N not empty do
2 Select the first node with partition τ= {Ξ′

1, . . . ,Ξ′
K } from N , then N ←N \ {τ}

3 (θ⋆,x⋆,y⋆) ← main problem(τ)

4 if θ⋆ > θi then
5 Prune tree since current objective is worse than best solution found.
6 Continue to line 2.

7 end
8 (ξ⋆,ζ⋆) ← subproblem(θ⋆,x⋆,y⋆)
9 if ζ⋆ > 0 then

10 Solution not robust, create K new branches.
11 for k ∈ {1, . . . ,K } do
12 τk := {Ξ′

1, . . . ,Ξ′
k ∪ {ξ⋆}, . . . ,Ξ′

K }

13 N ←N ∪ {τk }

14 end
15 else
16 Current solution robust, prune tree.

17 (θi ,xi ,yi ,τi) ← (θ⋆,x⋆,y⋆,τ)

18 end
19 end

20 return (θi ,xi ,yi ,τi)

5

96 5. MACHINE LEARNING FOR K -ADAPTABILITY

5.3. ML METHODOLOGY
We propose a method that enhances the node selection strategy of the K -B&B algorithm.
It relies on four steps:

1. Decision on what and how we want to predict: Section 5.3.1.

2. Feature engineering: Section 5.3.2.

3. Label construction: Section 5.3.3.

4. Using partial K -B&B trees for training data generation: Section 5.3.4.

All these steps are combined into the K -B&B-NODESELECTION algorithm (Section
5.3.5).

5.3.1. LEARNING SETUP
As there is no clearly well-performing node selection strategy for K -B&B, we cannot sim-
ply try to imitate one. Instead, we investigate what choices a good strategy would make.
We will focus on learning how to make informed decisions about the order of inspecting
the children of a given node. The scope of our approach is illustrated with rounded-
square boxes in Figure 5.3.

Figure 5.3: The scope of node selection

To rank the child nodes in the order they ideally be explored, one of the ways is to
have a certain form of child node information whether selecting this node is good or bad.
In other words, how likely is a node to guide us towards a high-quality robust solution
fast. Indeed, this shall be exactly the quantity that we predict with our model. To train
such a model, we will construct a dataset consisting of the following input-output pairs:

– Input. feature vector F of the decision to insert a scenario to a subset (Section
5.3.2)

5.3. ML METHODOLOGY

5

97

– Output. [0,1] label that informs how good a given insertion was, based on an ex-
post constructed strategy; ‘what would have been the best node selection strategy,
had we known the entire tree?’ (Section 5.3.3).

We gather this data by creating a proxy for an oracle (see Section 5.3.4). Once the
predictive model is trained, we can apply it to the search tree where in each iteration
we predict for all K child nodes a score µ, in the interval [0,1]. The child node with the
highest score is explored first (see Figure 5.4). Formally, the working order of the trained

Figure 5.4: Node selection with ML predictions. Node selections are decided by the prediction of the function
µ with input features F k

n , where n is the node from which a selection is made and k relates to its k-th child
node.

method shall be as follows:

1. Process node. Solve main and subproblem in current node n. If prune conditions
hold, then select a new node. Otherwise, continue to Step 2.

2. Compute features. For each one of the K child nodes, generate a vector of fea-
tures F 1

n , . . . ,F K
n (see Section 5.3.2 for details).

3. Predict. For each child node k, predict the goodness score µ(F k
n).

4. Node selection. Select the child node with the highest score.

It is desirable for an ML tool to be applicable to data that is different from the one which
it is trained on. In the context of an ML model constructed to solve optimization prob-
lems, this means the potential to use a given trained method on various optimization
problems of various sizes, with different values of K . Indeed, we shall demonstrate the
generality of our method. First, we note that each parent-child node pair corresponds to
one data point, and hence, training on a problem with a certain K does not prevent us
from using it for different K . Next, we construct our training dataset so that the model
becomes independent of (i) the instance size, and (ii) the type of objective function and
constraints. This will be explained in Section 5.3.2.

5

98 5. MACHINE LEARNING FOR K -ADAPTABILITY

5.3.2. FEATURE ENGINEERING
If we take a look at a single rounded box in Figure 5.3, the ML model we are about to train
is going to give a goodness score which will depend on the parent node and the scenario.
Therefore, we need to design features which we group into (i) state features that describe
the main problem and the subproblem solved in the parent node, (ii) scenario features
that describe the assignment of a newly-found scenarios to one of the subsets Ξ′

k . In
what follows, we present the feature list:

1. State features. This input describes the parent node n, i.e., the current state of the
algorithm. Different states might benefit from different strategies. Hence, infor-
mation on the current node might increase the prediction performance. This also
means that all the child nodes have the same state features: sk

n = sn for all k ∈ K .
To scale the features, we always initialize a tree search with a so-called initial run.
This is a dive with random child-node selections, where we stop until robustness
is reached. The following values are taken from this initial run:

• θ0: the objective function value of the robust solution found in the initial run.

• ζ0: the violation of the root node.

• κ0: depth reached in the initial run.

In the experiments, multiple initial runs are done. The averages of θ0, ζ0, and
κ0 over the dives are then used for scaling. Additional meta-features for K and
the dimensions of Ξ, X , and Y could be added. We omitted these as in our ex-
perimental setup we do not mix training data for different combinations of these
values.

2. Scenario features. Intuitively, scenarios contained in the same group should have
similar characteristics. Therefore, the features for each node are constructed in the
following way: each newly found scenario ξ⋆ is assigned a set of characteristics,
or attributes. Based on the attributes of the new scenario, and the attributes of
the scenarios already grouped into the K subsets, we formulate the input of one
data point. Some of the scenario attributes can be directly determined from the
main problem. Others are extracted from easily solvable optimization problems:
the deterministic problem and the static problem. The deterministic problem is a
version of the problem where ξ⋆ is the only scenario. The solution to this problem
gives information on the optimal objective and decisions found, in the most naive
sense. One would expect that for good-performing subset formations, the optimal
decisions of its scenarios would have similarities. For the static problem, we first
solve for a single y (no adaptability) for all ξ ∈Ξ. Then, for the obtained x⋆ and for
a given ξ⋆, we solve for the best y. The solution to this problem gives additional
information as it has a sense of embedded robustness.

As our goal is to use the model also on different problems, we engineer the features
to keep them independent from the problem size or type. In Tables 5.1-5.2, we give an
outline of the two feature types that we construct. For a detailed description of how they
are computed, we refer the reader to Appendix 5.A.

5.3. ML METHODOLOGY

5

99

Table 5.1: State features. θ0, ζ0, and κ0 are as defined above. θp is the objective value of the parent node, ζp is
the violation of the parent node, and κ is the depth of the current node.

Num. State feature name Description Calculation

1 Objective Relative objective value of this node to the first ro-
bust solution

θ/θ0

2 Objective difference Ratio of objective to that of the parent node θ/θp

3 Violation Relative violation with respect to the first violation
found

ζ/ζ0

4 Violation difference Ratio of violation to that of the parent node ζ/ζp

5 Depth Relative depth of this node to the depth of the fist
robust solution

κ/κ0

Table 5.2: Attributes assigned to scenario ξ⋆.

Num. Attribute name Description

1 Scenario values Vector of scenario values ξ⋆

Main
problem

2 Constraint distance A measure for the change of the feasibility region
when z⋆ is added to a subset. We look at the dis-
tance between the constraints already in the main
problem, and the one to be added.

3 Scenario distance With this attribute we measure how far away ξ⋆ is
from not being a violating scenario, for each of the
k subsets. This is done by looking at the constraints
in the space of Ξ, given the current solutions x and
yk .

4 Constraint slacks The slack values of the uncertain constraint per sub-
set decisions.

Deterministic
problem

5 Objective value The objective value of the deterministic problem
6 First-stage decisions First-stage decisions of deterministic problem
7 Second-stage decisions Second-stage decisions of deterministic problem

Static
problem

8 Objective value The objective value of the static problem
9 second-stage decisions Second-stage decisions of static problem

5

100 5. MACHINE LEARNING FOR K -ADAPTABILITY

The state features in Table 5.1 are readily problem-independent. However, this is not
the case for the scenario attributes in Table 5.2. They are, for example, dependent on
the instance size. To deal with the size dependency, and to adopt the actual meaning of
node selection (i.e., placing a scenario to a group of other scenarios), we introduce the
attribute distance as a feature to our model. This is the distance between scenario-subset
pairs in terms of the attributes attached to the scenarios, as a proxy to the unknown
implications the addition of the scenario would have on the solution of the problem. For
each attribute, the scenario-subset distance is taken by the Euclidean distance from the
attribute of the new scenario to the average of the attribute of the scenarios already in
the subset. This feature is described as:

δk
f =

∥ak,ξ⋆

f − 1
|Ξ′

k |
∑
ξ∈Ξ′

k
ak,ξ

f ∥2

length(ak,ξ⋆

f)
, ∀k ∈K ,∀ f ∈ {1, . . . ,9}, (5.6)

where δk
f is the attribute distance of the new scenario ξ⋆ to subset Ξ′

k and ak,ξ
f is the

data vector related to the f -th attribute (of Table 5.2) for the k-th child node. The at-
tribute distance is scaled by the length of the attribute vector, denoted by ‘length’ in the
denominator of (5.6), to control for varying attribute vectors in the feature value. Larger
attribute vectors would otherwise result in higher feature values. Then, the scenario fea-
ture vector of the k-th child node is defined as dk

n = [δk
1 , . . . ,δk

9]⊺. Then, the input of the

ML model for the k-th child of node n is given by F k
n = [sn d k

n]⊺.
In Figure 5.5 we outline the feature generation procedure. Steps 2 and 5 indicate how

new attributes need to be generated for every child node. In practice many attributes
are the same for all subsets, and the attributes that do differ are the main problem-based
ones, which are easily computed.

5. Make attributes for for the second child node:

6. Get attribute distance from to :

2. Make attributes for for the first child node:

3. Get attribute distance from to :

1. Make state features for node

7. Make features 4. Make features

Figure 5.5: Example of a feature generation procedure for node n and its two child nodes.

5.3.3. LABEL CONSTRUCTION
To learn how to assign a new scenario to one of the subsets Ξ′

k , we need another piece
of the input-output pairs in our database – labels that would indicate how good, ex post,
it was to perform a given assignment, i.e., how likely a given assignment is to lead the
search strategy towards a good solution. We shall assume that given a K -B&B tree, a
good solution is a robust solution with an objective that belongs to the best α% of the

5.3. ML METHODOLOGY

5

101

found robust solutions. We will now introduce a notion of scenario-to-set assignments
and illustrate a method of constructing labels q .

We define pν – the probability of node ν leading to a good robust solution. If this
node is selected, one of a finite, possibly large, number of leaves (i.e., terminal nodes)
is reached with depth-first search. Then, taking gν to be the number of good solutions
and Mν as the number of leaves under node ν, we define pν = gν/Mν as the fraction of
leaves with a good robust solution. We define a node ν as good if the probability pν of it
leading to a good robust solution is higher than some threshold ϵ. This is computed by
the quality value qν = 1{pν≥ϵ}.

Example 5.2. Consider the tree in Figure 5.6. For three nodes in the search tree, its subtree
(consisting of all its successors) and leaves (coloured nodes) are shown. Red coloured nodes
represent bad and green nodes represent good robust solutions. Then, if we pick ϵ = 1

5 as
threshold, the corresponding success probabilities pν and the quality values of the three
nodes are:

p1 = 1

4
, p2 = 0, p3 = 2

5
, q1 = 1{p1≥ 1

5 } = 1, q2 = 1{p2≥ 1
5 } = 0, q3 = 1{p3≥ 1

5 } = 1.

The first and third nodes would have been good node selections, whereas the second selec-
tion would have been a bad one.

Figure 5.6: Example of a tree where three nodes are considered. The coloured nodes are leaves; green and red
nodes are good and bad robust solutions, respectively.

In practice, we do not know for a node ν how many underlying leaves are good and
bad. This is the reason that in this method we will predict qν with a model µ. We will
also call this model the strategy model (or function) since it guides us in making node
selections.

5.3.4. TRAINING DATA GENERATION
Our goal is to learn a supervised ML model µ(Fν) = q̂ν, where µ is the strategy function,
Fν the input features, and q̂ν the prediction of the quality of moving to node ν. To train
this model, we first need to generate training data. Given a single tree, the difficulty of

5

102 5. MACHINE LEARNING FOR K -ADAPTABILITY

generating data does not lie in the input, but in the output: an expert is needed to deter-
mine the correct values of q̂ν for its nodes. Consider the following; if nodes of the entire
tree are processed (i.e., solving the main problem and the subproblem), we could easily
find the paths from the root to good solutions. Then, all the nodes in these paths would
get the values q̂ν = 1, and all others q̂ν = 0. Or equivalently, the success probabilities
would be set to pν > ϵ. Since the trees grow exponentially, this approach is not practical.

As already mentioned in the introduction, a popular method for exploring in-
tractable decision trees is Monte Carlo tree search (MCTS) [44]. By randomly running
deep in the tree, we can gather information on the search space. In our method, we use
the idea of random runs to mimic an expert, and hence, label the data points. Generating
training data is done as follows (see Figure 5.7):

1. Get instance. Generate an instance of a 2RO problem.

2. Initial run. One (or multiple) dives are executed to gather feature information.

3. Initialize search tree. Process all nodes up to a predetermined level L of the tree.
Generate features for each of the explored nodes.

4. Downward pass. Per node ν ∈ {1, . . . , NL} of the L-th layer (Nl is the number of
nodes of the l -th layer), perform dives for a total of R times.

5. Probability of bottom nodes. Set probability pL,ν of each node ν ∈ {1, . . . , NL} in
layer L as pL,ν = gν

R where gν ∈ {0, . . . ,R} is the number of good solutions from the
samples of the ν-th node in layer L.

6. Upward pass. Propagate the probabilities pl ,ν upwards through the tree, for all
nodes ν ∈ {1, . . . , Nl }, for all levels l ∈ {L−1, . . . ,2}, as follows:

pl ,ν =P(at least one child node is successful)

= 1−P(no successful child nodes)

= 1− ∏
k∈K

(1−pk
l ,ν),

where pk
l ,ν is the k-th child of node ν of layer l (while this child node is in the

(l +1)-th level). Note that pk
l ,ν = pl+1,ν′ for some ν ∈ {1, . . . , Nl } and ν′ ∈ {1, . . . , Nl+1}.

7. Label nodes. Determine the label q̂l ,ν for nodes ν ∈ {1, . . . , Nl } for levels l ∈
{2, . . . ,L}.

The advantage of this structure is that both bad and good decisions are well repre-
sented in the dataset. However, it only consists of input-output pairs of the top L levels.
This is not necessarily a disadvantage as good decisions at start can be expected to be
more important. The above generation method is applied per instance, thus it can be
parallelized, like Step 4.

5.4. EXPERIMENTS

5

103

Initialize
search tree

(Step 3)

Downward
pass

(Step 4)

Upward
pass

(Step 6)

Probability
of bottom

nodes

(Step 5)

Figure 5.7: Downward and upward pass for generating training data. The blue layer represents the L-th layer
in the tree from which random runs are made.

5.3.5. COMPLETE NODE SELECTION ALGORITHM
We now combine all the steps above into one algorithm which is, essentially, a variant
of K -B&B enhanced with: (i) node selection, (ii) feature engineering, and (iii) training
data generation (see Algorithm 5.2). Our K -B&B-NODESELECTION algorithm has two
preprocessing steps:

1. STRATEGYMODEL (Procedure 5.3 in Appendix 5.B): Generate the data applying 1-4,
and train the ML model.

2. INITIALRUN (Procedure 5.4 in Appendix 5.B): Start with a random dive through the
tree to obtain θ0,ζ0, and κ0 used to scale the features (see Table 5.1).

5.4. EXPERIMENTS
We now investigate if it is possible to learn a node selection strategy that generalizes (i) to
other problem sizes, (ii) to different values of K , and (iii) to various problems. We answer
this question by a detailed study of two problems: capital budgeting (with loans) and
shortest path [189], whose formulations are given in Appendix 5.C. This section is set
up as follows: First, the effectiveness of the original K -B&B is tested on the problems.
Then, we compare K -B&B to K -B&B-NODESELECTION. We shall observe that the results
obtained with our approach are very promising.

For solving the MILPs, Gurobi 9.1.1 [92] is used. All computations of generating train-
ing data, K -B&B, and K -B&B-NODESELECTION are performed on an Intel Xeon Gold
6130 CPU @ 2.1 GHz with 96 GB RAM. Training of the ML model is executed on an Intel
Core i7-10610U CPU @ 1.8 GHz with 16 GB RAM. Our implementation along with the
scripts to reproduce our results are available online1.

1https://github.com/estherjulien/KAdaptNS

https://github.com/estherjulien/KAdaptNS

5

104 5. MACHINE LEARNING FOR K -ADAPTABILITY

Algorithm 5.2: K -B&B-NODESELECTION

Input : Test instance P test (N test), train instances P tr ai n
1 (N tr ai n), . . . ,P tr ai n

I (N tr ai n)

number of partitions for training K tr ai n testing K test ,
level for training Ltr ai n and testing Ltest ,
quality threshold ϵ, number of random dives per node R

Output : Objective value θ, first-stage decisions x, second-stage decisions y = {y1, . . . ,yK },
subsets with scenarios Ξ′

k for all k ∈ {1, . . . ,K }

Initialization : Incumbent partition: τi := {Ξ′
1, . . . ,Ξ′

K }, where Ξ′
k =; for all k ∈K ,

set containing all node partitions yet to explore: N := {τi },
initial incumbent solution: (θi ,xi ,yi) := (∞,;,;)

// Preprocessing
1 model ← STRATEGYMODEL(P tr ai n

1 (N tr ai n), . . . ,P tr ai n
I (N tr ai n),K tr ai n ,Ltr ai n ,ϵ,R)

2 scaling info ← INITIALRUN(P test (N test),K test)
// Tree search

3 while N not empty do
4 if no solution yet or previous node pruned then
5 Select a random node with partition τ= {Ξ′

1, . . . ,Ξ′
K } from N , then N ←N \ {τ}

6 else
7 τ := {Ξ′

1, . . . ,Ξ′
k⋆

∪ {ξ⋆}, . . . ,Ξ′
K }

8 end
9 (θ⋆,x⋆,y⋆) ← main problem(τ)

10 if θ⋆ > θi then
11 Prune tree since current objective is worse than best solution found, continue to line 4.
12 end
13 (ξ⋆,ζ⋆) ← subproblem(θ⋆,x⋆,y⋆)
14 if ζ⋆ > 0 then
15 Solution not robust. Create K new branches.

16 if current level is more than Ltest then
17 k⋆← random uniform sample([1,K])
18 else
19 Create feature vectors for K child nodes.
20 (D1, . . . ,DK) ← generate features(scaling info,θ,ζ) // steps of Section 5.3.2
21 k⋆← predict node qualities(D1, . . . ,DK ,model)

22 end
23 Make K new branches, of which the k⋆-th is selected.
24 for k ∈ {1, . . . ,K } \ {k⋆} do
25 τk := {Ξ′

1, . . . ,Ξ′
k ∪ {ξ⋆}, . . . ,Ξ′

K }

26 N ←N ∪ {τk }

27 end
28 else
29 Current solution robust, prune tree.

30 (θi ,xi ,yi ,τi) ← (θ⋆,x⋆,y⋆,τ)

31 end
32 end

33 return (θi ,xi ,yi ,τi)

5.4. EXPERIMENTS

5

105

5.4.1. PERFORMANCE OF K -B&B
In our experiments, we investigate the potential of improving the node selection strategy
with ML. For that reason, it is important to identify problems on which such an improve-
ment matters, i.e., where different partitions give varying outcomes and are nontrivial.
To identify such problems, we run K -B&B on several problems. Compared to the algo-
rithm of Subramanyam et al. [189], we made some minor changes in K -B&B:

– Instead of a breadth-first search, depth-first dives are performed with random
node selection. Depth-first search returns an incumbent solution early on, which
is used for pruning nodes. This is increasingly vital when K grows, as each node
branches on K other nodes. Likely a combination of breadth- and depth-first
search would be preferred. This would require additional bookkeeping of the fea-
tures for K -B&B-NODESELECTION.

– In the starting node selection step (Step 2, Algorithm 5.1), a random node is taken
from N instead of the first one. This step is in line with random node selection.

The quantity we are interested in is the relative change in the objective function value
(OFV) – the OFV of the first robust solution divided by the best one after 30 minutes. The
higher the value, the more potential for a smart node selection strategy.

First, we consider the capital budgeting and the shortest path problems, only men-
tioned now and formally described later, for which the results are in Figure 5.8. We ob-
served that the objective function values of the capital budgeting instances are changing
more than those of shortest path (in which nodes of a graph are located on a 2D plane).
This is why we implemented another instance type for shortest path: graph with nodes
located on a 3D sphere (see the Appendix). The OFV differences for these instances are
still smaller than those of capital budgeting, but more than for the ‘normal’ type. There-
fore, further experiments on shortest path were conducted with the sphere instances
alone.

2 3 4 5 6
K

20
22
24
26
28
30
32
34
36

O
FV

 d
iff

er
en

ce
 (%

) Inst. size (Ncb)
10
20
30

(a) Capital budgeting

2 3 4 5 6
K

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

O
FV

 d
iff

er
en

ce
 (%

) Inst. size (Nsp)
20
40
60

(b) Shortest path (normal)

2 3 4 5 6
K

1.0

1.5

2.0

2.5

3.0

3.5

O
FV

 d
iff

er
en

ce
 (%

) Inst. size (Nsp)
20
40
60

(c) Shortest path (sphere)

Figure 5.8: Objective function value (OFV) difference (in %) for capital budgeting and shortest path with ‘nor-
mal’ and ‘sphere’ instances, within 30 minutes using K -B&B. For each problem type, experiments were done
for 100 instances per K ∈ {2, . . . ,6} and instance size. The 75% confidence interval (CI) is also given as shaded
strips along the curves.

Another problem on which we ran K -B&B was the knapsack problem parameterized
by the combination of the capacity (c), the number of items (Nks), and the maximum
deviation of the profit of items (i.e., the uncertainty parameter γ). For this problem, we
considered instances of a similar size as the earlier problems, fixing K = 4 and Nks =
100, and tested K -B&B on 16 instances for all combinations of c ∈ {0.05,0.15,0.35,0.5}

5

106 5. MACHINE LEARNING FOR K -ADAPTABILITY

and γ ∈ {0.05,0.15,0.35,0.5}. The OFV differences (in percentages) are given in Table 5.3,
where it is visible that different partitions barely play a role. Any random robust solution
seems to be performing well. Thus, node selection will most likely not enhance K -B&B
for knapsack and will therefore not be tested.

Table 5.3: The OFV difference (in %) of the knapsack problem, within 30 minutes, for different values of the
capacity (c) and uncertainty (γ) parameters. K = 4 and N = 100 are fixed.

c
γ

0.05 0.15 0.35 0.5

0.05 0.002 0.086 0.000 0.000
0.15 0.002 0.011 0.040 0.000
0.35 0.001 0.001 0.019 0.038
0.5 0.001 0.003 0.012 0.027

Solving problem instances with K -B&B takes a long time, where we have to think
in the range of multiple hours until optimality is proven. This also holds for small-size
instances. After having studied the convergence over runtime, we have fixed the time
limit to 30 minutes for all the problem instances. For capital budgeting with (N ,K) =
(10,2) all instances could be solved within 30 minutes. For the same instance size and
K = 3, 25 out of 100 are solved, only one for K = 4, and none for larger K . For the 3D
shortest path problem with the smallest instance size and K = 2, only six instances are
solved.

5.4.2. EXPERIMENTAL SETUP K -B&B-NODESELECTION

In our experiments, we also investigate what would be a good node selection strategy in
K -B&B that would perform well after it is trained on a selection of problems and then
applied to other problems. Naturally, we are interested in generalization of trained tools
to different instance sizes, K , and problem types. To this end, we have performed an
ablation-study described in Table 5.4, where each row informs about the similarity of
the testing problem instances, compared to the training ones.

Table 5.4: Different types of experiments (EXP), where the instance size N , K , and the problem itself can be
different for training and testing.

Type Instance size N K Problem

EXP1 Same Same Same
EXP2 Same Different Same
EXP3 Different Same Same
EXP4 Different Different Same
EXP5 Different Same Different
EXP6 Different Different Different

The problems we study are the capital budgeting problem with loans and the shortest
path problem on a sphere (see the Appendix). We now describe the design choices we
made regarding the ML model and data generation. As our focus lies in how ML is used
for optimization and not in differences between ML models, we select a frequently-used

5.4. EXPERIMENTS

5

107

model: random forest of scikit-learn [166] with default settings. We note that the
training times do not exceed a couple of minutes for different data sets.

As for the data generation process, it is governed by STRATEGYMODEL (Proce-
dure 5.3), driven by the following parameters: I (number of training instances), Ltr ai n

(depth level used in training data), and R (number of dives per node). In these experi-
ments, we instead made them depend on T – the total duration in hours, and ι – the time
per training instance in minutes. First, we set I = 60T /ι. Selection of the right Ltr ai n

value is more challenging since for some problem instances the main problem takes a
lot more time or deep trees are needed. Therefore, to get sufficiently many random dives
for each node in Ltr ai n within the time limit ι, we make Ltr ai n depend negatively on the
total duration of the initial run (INITIALRUN, Procedure 5.4). This means that if a random
dive takes a long time, the number of starting nodes should be lower, and therefore, the
value of Ltr ai n should also decrease. Finally, the number of dives per node (R) depends
on how many nodes we have in level Ltr ai n and the time we have for the instance (ι).

First, the experiments of EXP1-EXP4 are run on the capital budgeting and short-
est path problem. Then, the experiments where the training and testing problems are
mixed, are conducted (EXP5 and EXP6). We only discuss a representative selection of the
results in the main body, referring the reader to Appendix 5.E for a complete overview.
Finally, we discuss the feature importance scores we obtained with our random forests.

5.4.3. CAPITAL BUDGETING
The capital budgeting problem is a 2RO problem where investments in a total of Ncb

projects can be made in two time periods. In the first period, the cost and revenue of
these projects are uncertain. In the second period, these values are known but an extra
penalty needs to be paid for postponement. The MILP formulation of capital budgeting
has uncertain objective function, fixed number of uncertain constraints, and the dimen-
sion of Z is fixed to 4 for all instance sizes. For the full description, see Appendix 5.C.1.
Recall that K -B&B-NODESELECTION takes more parameters than the ones being tested
in the ablation study: Ltest (level up to where node selection is performed), ϵ (node qual-
ity threshold), and T and ι for generating training data. These parameters will be tuned
in the first part of the experiments.

PARAMETER TUNING (WITH EXP1)
For this type of experiment, we use the same K and N for testing and training, applied
to the smallest instance size: Ncb = 10, but for all K ∈ {2,3,4,5,6}. For different values of
K , we noticed that different hyperparameters for generating training data were perform-
ing well. In Appendix 5.D.1, the tuning is performed of parameter ι (minutes spent per
training instance) based on the number of data points obtained in total, together with
some other information. The testing accuracy scores for different data sets we trained
on, range between 0.92-0.99.

We next tune the values of Ltest (level up to which node selection is performed) and ϵ
(quality threshold) using the sets Ltest ∈ {5,10,20,30,40,50} and ϵ ∈ {0.05,0.1,0.2,0.3,0.4}.
Since there are 30 combinations per K value, we only considered K = 6. The results are
shown in Figure 5.9, where using a low value for ϵ and high Ltest gives the best results
for both values of K . When a node n has success probability pn larger than zero, this is

5

108 5. MACHINE LEARNING FOR K -ADAPTABILITY

already considered a good quality node. For further experiments of capital budgeting,
we fix ϵ = 0.05. Since high values of Ltest outperform lower ones, we also consider the
possibility of applying the strategy always (Ltest =∞), with fixed ϵ= 0.05. This option is
analyzed in the Appendix. We noticed that choosing Ltest =∞ performs well for K = 6
but for lower values of K , choosing Ltest = 40 gives even better solutions. Therefore, we
continue with Ltest = 40.

0.94

0.96

0.98

1.00

1.02

R
el

. O
FV

K = 4

= 0.05 = 0.2 = 0.4

0 500 1000 1500
Runtime (sec)

0.94

0.96

0.98

1.00

1.02

R
el

. O
FV

K = 6

0 500 1000 1500
Runtime (sec)

0 500 1000 1500
Runtime (sec)

K-B&B
Ltest = 5
Ltest = 10
Ltest = 20
Ltest = 30
Ltest = 40
Ltest = 50

Figure 5.9: Results of K -B&B with random dives and K -B&B-NODESELECTION with combinations of K , Ltest

and ϵ. The plots show the average relative objective value over the runtime of 100 instances for the capital
budgeting problem, for N = 10.

Another important parameter is the number of hours spent on generating train-
ing data (T). In Figure 5.10, results are shown for T ∈ {1,2,5,10} and K ∈ {3,4,5,6}.
Note that only for K = 3 higher values of T result in a better performance of K -B&B-
NODESELECTION. For the other values of K the performance is similar, or even worse,
for higher values of T compared to lower ones. For further experiments, we shall use
T = 2.

0 500 1000 1500
Runtime (sec)

0.94

0.96

0.98

1.00

1.02

R
el

. O
FV

K = 3

0 500 1000 1500
Runtime (sec)

K = 4

0 500 1000 1500
Runtime (sec)

K = 5

0 500 1000 1500
Runtime (sec)

K = 6
K-B&B
T = 1
T = 2
T = 5
T = 10

Figure 5.10: Results of K -B&B with random dives and K -B&B-NODESELECTION with combinations of K and
T . The plots show the average objective over THE runtime of 100 instances for the capital budgeting problem,
for N = 10.

ALTERNATIVE SCALING

The step taken to obtain scales for the objective (θ0), violation (ζ0), and depth (κ0) in INI-
TIALRUN seems to be avoidable if we decide to take other values for these parameters.
In this section, we will describe a small experimental study of different scaling methods:

5.4. EXPERIMENTS

5

109

(i) INITIALRUN, (ii) Alternative, and (iii) No scaling, where the latter corresponds to set-
ting θ0 = ζ0 = κ0 = 1. The Alternative setting takes as scale for θ0 the objective of the
root node, and κ0 = K log(dim(Z)). Next to these ‘internal’ scaling approaches, one can
also use min/max scaling of all feature values. The scales are taken from the training
data set and then used in the testing phase. These two scaling approaches can be used
in combination. The results obtained for the capital budgeting problem, with N = 10
and K test = K tr ai n = 6, are given in Table 5.5. Here, for the first time, we use perfor-
mance statistics to measure the effectiveness of the method. From the results presented
in the table, we can conclude that, on average, solutions found after 30 minutes are best
when INITIALRUN is used. Additional min/max scaling on top of the different scaling
approaches gives mixed results.

Table 5.5: The results for a variety of scaling methods tested on capital budgeting problem, with N = 10, K test =
K tr ai n = 6, on 16 instances. Different ‘internal’ scaling methods: ‘INITIALRUN’, ‘Alternative’, and ‘No scaling’.
These internal scaling methods can be combined with min/max scaling. The results for all combinations is
given. Four performance statistics are given: (i) ‘OFV 30m’: Difference (in %) in relative OFV found after 30
minutes from K -B&B to K -B&B-NODESELECTION (higher is better). (ii) ‘OFV 1m’: is the relative OFV from
the two methods after one minute. (iii): ‘to OFV=1’: Runtime speedup (in %) to reach a relative OFV of 1 for
K -B&B-NODESELECTION compared to K -B&B (higher is better). (iv) ‘NS to OFV=1’: Number of instances of
K -B&B-NODESELECTION that reached a relative OFV of 1 (higher is better).

Statistic
Initial dive Alternative No scaling

min/max NO YES NO YES NO YES

OFV 30m 2.10 1.98 1.28 1.11 1.33 1.50
OFV 1m 2.14 2.39 1.49 1.93 2.03 1.39
to OFV=1 44.10 42.53 52.58 38.08 51.72 44.29
NS to OFV=1 16 16 13 14 13 14

RESULTS

We compare K -B&B to K -B&B-NODESELECTION for all combinations of K test ,K tr ai n ∈
{2,3,4,5,6}, and Ntest ∈ {10,20,30}. The results of the full set of combinations are dis-
played in Appendix 5.E.1. Table 5.6 lists the results using four performance statis-
tics of EXP1 and EXP2 (described in the caption). The table shows that K -B&B-
NODESELECTION outperforms K -B&B, with speedups ranging from on average 2 to 50%,
except for K tr ai n = 2 and the instances of K test = 2. Higher values of K tr ai n generally
perform better both in terms of relative OFV and speedup.
In the next sections, we look at specific problem instances in more detail, where we also
focus on the stability of the algorithm. Due to the many combinations for EXP3-EXP4, a
table would be too convoluted.

EXP1 and EXP2 results. For EXP1, the results for K tr ai n = K test ∈ {3,4,5} are shown in
Figure 5.11. As in Figure 5.8, the shaded strips around the solid curves show the confi-
dence interval. We can see that K -B&B-NODESELECTION outperforms K -B&B for all K .
Moreover, the convergence is steeper: good solutions are found earlier. For K ∈ {4,5} the
final solution is also better when node selection is guided by ML predictions. Then for
EXP2, where we also apply ML models that are trained with K tr ai n ̸= K test , we see the

5

110 5. MACHINE LEARNING FOR K -ADAPTABILITY

Table 5.6: Combined results of EXP1 (along diagonal) and EXP2 for the capital budgeting problem. The four
statistics described in the caption of Table 5.5 are given: (i) ‘OFV 30m’ (higher is better), (ii) ‘OFV 1m’, (iii) ‘to
OFV=1’ (higher is better), and (iv) ‘NS to OFV=1’ (higher is better).

K test Statistic
K tr ai n

2 3 4 5 6

2

OFV 30m -0.00 -0.00 -0.00 -0.00 -0.00
OFV 1m -0.13 -0.12 -0.09 0.02 -0.09
to OFV=1 -101.47 -78.31 -60.72 -54.80 -33.46
NS to OFV=1 47 46 56 50 55

3

OFV 30m -0.08 -0.13 0.05 -0.06 0.12
OFV 1m 0.56 2.07 2.38 2.31 2.74
to OFV=1 3.13 18.67 26.95 12.00 24.38
NS to OFV=1 47 44 49 56 64

4

OFV 30m -0.47 -0.02 0.34 0.66 0.95
OFV 1m -0.19 1.58 1.98 2.22 2.33
to OFV=1 21.19 35.19 43.33 45.80 49.88
NS to OFV=1 33 45 62 74 78

5

OFV 30m -0.08 0.43 0.66 1.15 1.55
OFV 1m -0.70 1.36 1.34 1.38 1.79
to OFV=1 -0.57 35.43 40.61 48.15 52.80
NS to OFV=1 53 66 69 79 88

6

OFV 30m -0.02 0.74 0.88 1.18 1.74
OFV 1m 0.07 1.49 1.68 1.68 2.33
to OFV=1 13.50 30.99 24.11 27.75 31.75
NS to OFV=1 49 69 76 78 89

5.4. EXPERIMENTS

5

111

performance of K -B&B-NODESELECTION improving when K tr ai n increases. This indi-
cates that data obtained with higher values of K tr ai n are more informative than those
with lower values. See Figure 5.12 for an illustration with K test = 5 and K tr ai n ∈ {4,5,6}.

0 500 1000 1500
Runtime (sec)

0.90

0.95

1.00

1.05

R
el

. O
FV

Ktest = Ktrain = 3

K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 4

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 5

Figure 5.11: EXP1 results for K tr ai n = K test ∈ {3,4,5} on 100 instances. The black line gives the average relative
objective function value (Rel. OFV) over the runtime (in seconds) of K -B&B, with a 30 minute time limit.
The red line is the Rel. OFV trajectory of K -B&B-NODESELECTION. The shaded area around the lines is their
respective 75% confidence interval.

0 500 1000 1500
Runtime (sec)

0.90

0.95

1.00

1.05

R
el

. O
FV

Ktrain = 4

K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktrain = 5

0 500 1000 1500
Runtime (sec)

Ktrain = 6

Figure 5.12: EXP2 results for K test = 5 and K tr ai n ∈ {4,5,6} on 100 instances. The black line gives the average
Rel. OFV of K -B&B and the red line that of K -B&B-NODESELECTION.

EXP3 and EXP4 results. In Figure 5.13, we depict the results for experiments with same
K but different instance sizes. On average, K -B&B-NODESELECTION performs better
both in terms of speedup and final relative OFV found: for N test = 20, the speedups are
between 20-50% and relative OFV increase around 1.5%. For N test = 30, we see speedups
ranging from 11-47% and relative OFV increases of 1.6-2.1%. However, the confidence
interval of N test = 30 is larger than that of N test = 10. This suggests that testing on higher
values of N gives rise to a higher risk. Testing on higher instance sizes for different val-
ues of K (Figure 5.14) has a similar effect as before: higher values of K tr ai n result in
better performance (Rel. OFV ranging from 1.4-1.9%, and speedup 5-27%), although
marginally for some parameter combinations.

5.4.4. SHORTEST PATH ON A SPHERE
The shortest path problem can be described as a 2RO problem where we make the plan-
ning of a route from source to target, for which the lengths of the Nsp arcs are uncer-
tain. This problem only has second-stage decisions and an uncertain objective. The
dimension of the uncertainty set grows with the number of arcs in the graph. For the
full description, see Appendix 5.C.2. Since there is only a second stage, some attributes

5

112 5. MACHINE LEARNING FOR K -ADAPTABILITY

0.9

1.0

1.1
R

el
. O

FV

Ntest = 20

Ktest = Ktrain = 3

K-B&B
K-B&B-NodeSelection

Ktest = Ktrain = 4 Ktest = Ktrain = 5

0 500 1000 1500
Runtime (sec)

0.9

1.0

1.1

R
el

. O
FV

Ntest = 30

0 500 1000 1500
Runtime (sec)

0 500 1000 1500
Runtime (sec)

Figure 5.13: EXP3 results for K tr ai n = K test ∈ {3,4,5} and N test ∈ {20,30} on 100 instances. The black line gives
the average Rel. OFV of K -B&B and the red line that of K -B&B-NODESELECTION.

0.9

1.0

1.1

R
el

. O
FV

Ntest = 20

Ktrain = 4

K-B&B
K-B&B-NodeSelection

Ktrain = 5 Ktrain = 6

0 500 1000 1500
Runtime (sec)

0.9

1.0

1.1

R
el

. O
FV

Ntest = 30

0 500 1000 1500
Runtime (sec)

0 500 1000 1500
Runtime (sec)

Figure 5.14: EXP4 results for K test = 5, K tr ai n ∈ {4,5,6}, and N test ∈ {20,30} on 100 instances. The black line
gives the average Rel. OFV of K -B&B and the red line that of K -B&B-NODESELECTION.

5.4. EXPERIMENTS

5

113

disappear for this problem: ‘Deterministic first-stage’ (attribute 6), and the static objec-
tive problem-related attributes (8 and 9). Hence, we are left with six attributes for this
problem.

PARAMETER TUNING (WITH EXP1)
As we did for the capital budgeting problem, we first tune the parameter ι. The details
of this parameter tuning are given in Appendix 5.D.2. The testing accuracy scores for
different data sets we trained on is lower than for capital budgeting; between 0.88-0.97.
Since the distribution of the probability success values pn is very similar to the capital
budgeting problem, the quality threshold is set to ϵ = 0.05. In Figure 5.15, the level is
tested again with Ltest ∈ {5,10,20,40,∞}. Here we see that especially for smaller values
of K , a higher level of Ltest outperforms others. Therefore, we select Ltest = ∞ for the
remainder of the experiments.

0 500 1000 1500
Runtime (sec)

1.00

1.01

1.02

R
el

. O
FV

K = 3

0 500 1000 1500
Runtime (sec)

K = 4

0 500 1000 1500
Runtime (sec)

K = 5

0 500 1000 1500
Runtime (sec)

K = 6
K-B&B
Ltest = 5
Ltest = 10
Ltest = 20
Ltest = 40
Ltest =

Figure 5.15: Results of K -B&B with random dives and K -B&B-NODESELECTION with combinations of K and
Ltest . The plots show the average objective over runtime of 100 instances for the shortest path problem, for
N = 20.

Also note that when K grows, the performances of K -B&B and K -B&B-
NODESELECTION are very similar. For the shortest path problem, we noticed that more
training data points led to a substantial performance gain. See Figure 5.16 for these re-
sults. Therefore, for EXP1-EXP4, we select T for each K separately. For an overview of
which parameters are chosen per K ; see Appendix 5.D.2.

0 500 1000 1500
Runtime (sec)

1.00

1.01

1.02

R
el

. O
FV

K = 3

0 500 1000 1500
Runtime (sec)

K = 4

0 500 1000 1500
Runtime (sec)

K = 5

0 500 1000 1500
Runtime (sec)

K = 6
K-B&B
T = 1
T = 2
T = 5
T = 10

Figure 5.16: Results of K -B&B with random dives and K -B&B-NODESELECTION with combinations of K and T .
The plots show the average objective over a runtime of 100 instances for the shortest path problem, for N = 20.

RESULTS

The entirety of the results for all combinations of K test , K tr ai n , and N test for K -B&B
versus K -B&B-NODESELECTION can be found in Appendix 5.E.2. Again, some perfor-
mance statistics for EXP1-EXP2 are given, see Table 5.7. This table shows that the rela-
tive OFV found by K -B&B-NODESELECTION is marginally better than those of K -B&B

5

114 5. MACHINE LEARNING FOR K -ADAPTABILITY

(0.01-0.12% when excluding K tr ai n = 2), but that the speedups can be very significant:
for K = 6, the average speedups range from 53-94%. For this problem class, the instances
of K = 2 seem to benefit from ML enhancements.

Table 5.7: Combined results of EXP1 (along diagonal) and EXP2 for the shortest path problem. The four statis-
tics described in the caption of Table 5.5 are given: (i) ‘OFV 30m’ (higher is better), (ii) ‘OFV 1m’, (iii) ‘to OFV=1’
(higher is better), and (iv) ‘NS to OFV=1’ (higher is better).

K test Statistic
K tr ai n

2 3 4 5 6

2

OFV 30m 0.05 0.07 0.03 0.03 0.08
OFV 1m 0.08 1.10 1.08 1.04 0.10
to OFV=1 36.63 15.83 24.77 22.31 12.31
NS to OFV=1 98 100 99 100 97

3

OFV 30m 0.01 0.14 0.13 0.11 0.12
OFV 1m 0.17 0.45 0.51 0.19 0.52
to OFV=1 60.44 46.93 34.30 49.02 29.06
NS to OFV=1 99 100 99 100 100

4

OFV 30m -0.12 0.10 0.12 0.11 0.12
OFV 1m 0.89 0.41 0.41 0.47 0.65
to OFV=1 55.90 63.34 75.11 45.12 45.79
NS to OFV=1 99 100 100 100 100

5

OFV 30m -0.07 0.12 0.09 0.15 0.10
OFV 1m -0.33 0.21 0.16 0.23 0.37
to OFV=1 62.87 81.84 77.14 64.61 52.25
NS to OFV=1 100 100 100.00 100 100

6

OFV 30m -0.07 0.04 0.01 0.10 0.07
OFV 1m -0.07 0.11 0.17 0.20 0.23
to OFV=1 52.26 67.37 67.55 88.17 93.68
NS to OFV=1 100 100 100 100 100

EXP1 and EXP2 results. As is visible from Figure 5.17, even though no better solutions
are found (probably because the optimal solution is found early on), it is still noticeable
that K -B&B-NODESELECTION converges faster than K -B&B. This phenomenon is thus
consistent over the two problems. The convergence of K -B&B over different values of
K test differs significantly (e.g., compare K test equal to 3 and 5). The convergence of K -
B&B-NODESELECTION is however quite stable across different values of K test . Then, for
EXP2, in Figure 5.18, we see that for K test = 4, K tr ai n = 6 performs best. For other values
of K test , K tr ai n = 6 behaves well too, just as it did for the capital budgeting problem.

EXP3 and EXP4 results. We see in Figure 5.19 that the two algorithms behave very sim-
ilarly. The average relative OFV ranges from 0.14-0.55%. Interestingly, as not easily vis-
ible from the figure, the average speedup values are quite high: ranging from 21-98%.
The speedup of 98% is achieved for K = 6 and N = 40, where the line of K -B&B consis-
tently lies slightly above the one of K -B&B-NODESELECTION. In terms of stability, the
confidence interval of K -B&B-NODESELECTION grows with N test . However, this does
not necessarily mean that testing and training on different sizes is not stable: the CI of

5.4. EXPERIMENTS

5

115

0 500 1000 1500
Runtime (sec)

0.99

1.00

1.01

1.02

1.03

R
el

. O
FV

Ktest = Ktrain = 3
K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 4

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 5

Figure 5.17: EXP1 results for K tr ai n = K test ∈ {3,4,5} on 100 instances. The black line gives the average relative
objective function value (Rel. OFV) over the runtime (in seconds) of K -B&B, with a 30 minute time limit.
The red line is the Rel. OFV trajectory of K -B&B-NODESELECTION. The shaded area around the lines is their
respective 80% confidence interval.

0 500 1000 1500
Runtime (sec)

0.99

1.00

1.01

1.02

1.03

R
el

. O
FV

Ktrain = 3
K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktrain = 4

0 500 1000 1500
Runtime (sec)

Ktrain = 6

Figure 5.18: EXP2 results for K test = 4 and K tr ai n ∈ {3,4,6} on 100 instances. The black line gives the average
Rel. OFV of K -B&B and the red line that of K -B&B-NODESELECTION.

K -B&B is also bigger. Moreover, the CI is mostly in the region below one, which in-
dicates that we mainly have well-performing outliers. In Figure 5.20, the results of EXP4
are shown, where the average relative OFV improvement ranges from 0.29-0.51% and the
speedups (K = 4 excluded) are between 32-77%. We see that for N test = 40, K tr ai n = 6
performs best, but not necessarily for the biggest instance size.

0.98

1.00

1.02

1.04

R
el

. O
FV

Ntest = 40

Ktest = Ktrain = 3
K-B&B
K-B&B-NodeSelection

Ktest = Ktrain = 4 Ktest = Ktrain = 5

0 500 1000 1500
Runtime (sec)

0.98

1.00

1.02

1.04

R
el

. O
FV

Ntest = 60

0 500 1000 1500
Runtime (sec)

0 500 1000 1500
Runtime (sec)

Figure 5.19: EXP3 results for K tr ai n = K test ∈ {3,4,5} and N test ∈ {40,60} on 100 instances. The black line gives
the average Rel. OFV of K -B&B and the red line that of K -B&B-NODESELECTION.

5

116 5. MACHINE LEARNING FOR K -ADAPTABILITY

0.98

1.00

1.02

1.04

R
el

. O
FV

Ntest = 40

Ktrain = 3
K-B&B
K-B&B-NodeSelection

Ktrain = 4 Ktrain = 6

0 500 1000 1500
Runtime (sec)

0.98

1.00

1.02

1.04

R
el

. O
FV

Ntest = 60

0 500 1000 1500
Runtime (sec)

0 500 1000 1500
Runtime (sec)

Figure 5.20: EXP4 results for K test = 4, K tr ai n ∈ {3,4,6}, and N test ∈ {40,60} on 100 instances. The black line
gives the average Rel. OFV of K -B&B and the red line that of K -B&B-NODESELECTION.

5.4.5. TRAINING AND TESTING ON DIFFERENT PROBLEMS
In this section, we show the results of EXP5 and EXP6, where we apply the node selection
strategy to a different problem than it has been trained on. Note that the shortest path
problem does not have first-stage decisions. This results in the features being slightly dif-
ferent than for the capital budgeting problem. Therefore, to create a model that can be
trained by shortest path data, and used for the capital budgeting problem, the first-stage-
related attributes are not constructed while running K -B&B-NODESELECTION. Full re-
sults of these experiments are given in Appendix 5.E.3.

Figure 5.21a shows the results of EXP5 for the capital budgeting problem. We can
see that the performances of the two algorithms are very close. Recall that K tr ai n = 6
previously resulted in (one of) the best solutions. Then, when we look at some of the
solutions of EXP6 with K tr ai n = 6 (see Figure 5.21b), we see this is not the case here.

Now we show the results of the shortest path problem that uses a ML model trained
on capital budgeting data. Due to the mismatch of features, we delete the three first-
stage-related features not used by shortest path from the capital budgeting data. We
can still use the generated capital budgeting data. For an illustration of EXP5, see
Figure 5.22a. These plots illustrate that for two out of three values of K test , K -B&B-
NODESELECTION outperforms K -B&B, even though it is trained on data of another prob-
lem. More interesting is the following: the performance of different values of K test with
K tr ai n = 6 gives very good results. They are as good as the ones trained on shortest path
data. For an illustration of this, see Figure 5.22b.

5.4.6. FEATURE IMPORTANCE
A trained random forest model allows us to compute feature importance scores. For
both problems tested on, these scores are given in Table 5.8 for K tr ai n ∈ {2,3,4,5,6}. We
observe that the relatively highest importance corresponds to the ’Objective’ feature (a
state feature), with the importance of the other features (both state and scenario ones),
being of similar magnitude. Because of that, we cannot draw significant conclusions
about the relative importance of the remaining features.

5.4. EXPERIMENTS

5

117

0 500 1000 1500
Runtime (sec)

0.90

0.95

1.00

1.05
R

el
. O

FV

Ktest = Ktrain = 3

K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 4

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 5

(a) EXP5

0 500 1000 1500
Runtime (sec)

0.90

0.95

1.00

1.05

R
el

. O
FV

Ktest = 3

K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktest = 4

0 500 1000 1500
Runtime (sec)

Ktest = 5

(b) EXP6

Figure 5.21: EXP5 results of capital budgeting for K test = K tr ai n ∈ {3,4,5} and EXP6 results for K tr ai n = 6 and
K test ∈ {3,4,5} on 100 instances. The black line gives the average Rel. OFV of K -B&B and the red line that of
K -B&B-NODESELECTION.

0 500 1000 1500
Runtime (sec)

0.99

1.00

1.01

1.02

1.03

R
el

. O
FV

Ktest = Ktrain = 3
K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 4

0 500 1000 1500
Runtime (sec)

Ktest = Ktrain = 5

(a) EXP5

0 500 1000 1500
Runtime (sec)

0.99

1.00

1.01

1.02

1.03

R
el

. O
FV

Ktest = 3
K-B&B
K-B&B-NodeSelection

0 500 1000 1500
Runtime (sec)

Ktest = 4

0 500 1000 1500
Runtime (sec)

Ktest = 5

(b) EXP6

Figure 5.22: EXP5 results of shortest path for K test = K tr ai n ∈ {3,4,5} and EXP6 results for K tr ai n = 6 and
K test ∈ {3,4,5} on 100 instances. The black line gives the average Rel. OFV of K -B&B and the red line that of
K -B&B-NODESELECTION.

5

118 5. MACHINE LEARNING FOR K -ADAPTABILITY

Table 5.8: Feature importance scores of the selected random forest models for the two problems capital bud-
geting and shortest path, for each K tr ai n . The bold scores are given to the scores that belong to the two highest
ones of that model. The dashes correspond to the omitted features for the shortest path problem.

Feature name
Capital budgeting Shortest path

K tr ai n 2 3 4 5 6 2 3 4 5 6

Objective 0.25 0.25 0.24 0.28 0.25 0.10 0.11 0.24 0.13 0.15
Objective difference 0.05 0.04 0.04 0.03 0.04 0.06 0.05 0.04 0.05 0.05
Violation 0.12 0.10 0.07 0.07 0.06 0.09 0.09 0.10 0.10 0.10
Violation difference 0.05 0.06 0.05 0.05 0.05 0.09 0.09 0.08 0.10 0.09
Depth 0.05 0.08 0.07 0.04 0.03 0.12 0.13 0.12 0.11 0.10
Scenario values 0.06 0.06 0.05 0.05 0.06 0.09 0.11 0.08 0.10 0.09
Constraint distance 0.08 0.06 0.05 0.05 0.05 0.10 0.10 0.08 0.10 0.10
Scenario distance 0.06 0.06 0.07 0.07 0.05 0.09 0.10 0.07 0.09 0.09
Constraint slacks 0.07 0.06 0.05 0.04 0.04 0.09 0.06 0.05 0.07 0.07
Det. Objective value 0.05 0.06 0.11 0.12 0.12 0.09 0.09 0.08 0.09 0.09
Det. First-stage decisions 0.05 0.06 0.05 0.06 0.07 - - - - -
Det. Second-stage decisions 0.00 0.00 0.00 0.00 0.00 0.08 0.07 0.06 0.06 0.06
Stat. Objective value 0.06 0.06 0.08 0.10 0.12 - - - - -
Stat. Second-stage decisions 0.06 0.05 0.05 0.05 0.05 - - - - -

5.5. CONCLUSION AND FUTURE WORK
We introduce an ML-based method to improve the K -B&B algorithm [189] for solving
2RO problems. K -B&B uses a search tree to optimally partition the uncertainty set into
K parts and we propose to use a supervised ML model that learns the best node selection
strategy to explore such trees faster.

For this, we designed a procedure for generating training data and formulated the
ML features based on our knowledge of 2RO so that they are independent of the size, the
value of K , and the type of problems on which the ML tool is trained. We experimentally
show that our method outperforms K -B&B on the problems we test on. We see that when
a problem is trained on a smaller instance size, and then applied to the same problem
type with bigger instances, our method still outperforms K -B&B, although being less
stable. Training and testing on entirely different problem types resulted in mixed results.

As K -B&B has a tree search structure, we believe that our work can be used to tackle
other problems solved by a similar tree search structure, wherever expert knowledge can
be used to construct meaningful problem size-independent features.

APPENDIX OF CHAPTER 5

5.A. ATTRIBUTE DESCRIPTIONS
Each scenario gets its own set of attributes. In total there are nine types: one is the sce-

nario vector ξ itself (aξ1 = ξ), three are determined by the solutions of the main problem,
three are extracted from solving the deterministic problem, and two are taken from solv-
ing the static problem.

Main problem-based attributes. For these attributes, only little additional computa-
tion is needed. This is due to the fact that the values we use can be taken from the current
solution of the main problem. Attributes 2-4 in Table 5.2 share this property:

2. Constraint distance: For the first attribute of the ‘main-problem’ type, we look
at the constraints generated by the new scenario ξ⋆. We call these constraints the
‘ξ⋆-constraints’. When a constraint is added to a problem, the resulting feasible
region will always be as large as, or smaller than, the feasible region we had before.
When the feasible region is large, the objective value we find is often better than
for smaller feasible regions (the optimal value found in the large region may be cut
off in the small region). Each subset Ξ′

1, . . . ,Ξ′
K consists of its own set of scenar-

ios, which translates to its own set of constraints in the main problem. These are
the ‘Ξ′

k -constraints’, for all k ∈ K . These Ξ′
k -constraints form a feasibility region

for the decision pair (x,yk). Ideally, we would calculate the volume of the feasi-
ble region whenever the ξ⋆-constraints are added to the existing feasible regions.
However, obtaining this result is computationally intractable. Therefore we only
look at the distance between the constraints. We generate the cosine similarity be-
tween the ξ⋆-constraints and theΞ′

k -constraints, for each subset separately. When
the cosine similarity is high, the distance between the constraints is low. Then, the

attribute of the k-th child node ak,ξ⋆

2 is the cosine similarity of the ξ⋆-constraints
and the Ξ′

k -constraints:

ak,ξ⋆

2,c = max
ξ∈Ξ′

k

γc (ξ⋆) ·γc (ξ)

∥γc (ξ⋆)∥∥γc (ξ)∥ , ∀c ∈ {1, . . . ,C }, ∀k ∈K ,

where ak,ξ⋆

2,c ∈ [−1,1] and γc : Ξ → X ×Y is a function of the left-hand-side of
constraint c ∈ {1, . . . ,C } with input scenario ξ. The first- and second-stage deci-
sions are variable. Finally, the attribute of the k-th child node is formulated as

ak,ξ⋆

2 = [ak,ξ⋆

2,1 , . . . , ak,ξ⋆

2,C]. Thus, the length of ak,ξ⋆

2 is equal to the number of uncer-
tain constraints of the MILP formulation of the problem.

3. Scenario distance: Per subset, we wish to know how far away the new scenario ξ⋆

is from not being a violating scenario. We suspect that if the distance is small rather

119

5

120 5. MACHINE LEARNING FOR K -ADAPTABILITY

than large, the current solution will not change much. Thus, will not become much
worse. This attribute first takes the current solutions of the main problem. Then,
for the k-th subset it determines the distance between each of the following planes
(boundaries of constraints of) and the new scenario ξ⋆ ∈Ξ:

c(ξ)⊺x⋆+d(ξ)⊺y⋆k −θ⋆ = 0, (5.7a)

Tc (ξ)x⋆+Wc (ξ)y⋆k −hc (ξ) = 0, ∀c ∈ {2, . . . ,C }. (5.7b)

Hence, we need to determine the distance between a plane and a point, for each
constraint c ∈ {1, . . . ,C }, where c = 1 corresponds to the objective function. The
point-to-plane distance of the c-th plane for subset k is calculated by projecting
ξ⋆ on the normal vector of the plane as follows:

χk
c = |ρc (x⋆,yk)⊺ξ⋆|

∥ρc (x⋆,yk)∥ ,

whereρc : X ×Y →Ξ is a vector of coefficients of constraint c of (5.7). To compare
the point-to-plane distance of the K subsets, we scale over the sum of the distance
of the subsets. Then, the attribute is given as:

ak,ξ⋆

3,c = χk
c∑

k ′∈K
χk ′

c

, ∀c ∈ {1, . . . ,C }, ∀k ∈K .

4. Constraint slacks: This attribute takes the slack values of the uncertain con-
straints of the main problem for the new scenario ξ⋆ with fixed first- and second-
stage decisions x⋆ and y⋆. For the k-th subset and the constraints c ∈ {1, . . . ,C },
with c = 1 the objective constraint, we get:

sk
1 = |c(ξ⋆)⊺x⋆+d(ξ⋆)⊺y⋆k −θ⋆|,

sk
c = |Tc (ξ⋆)x⋆+Wc (ξ⋆)y⋆k −hc (ξ⋆)|, ∀c ∈ {2, . . . ,C }.

Similarly as with the previous attribute, we compare the slack values of the subsets
by scaling over the sum of the slacks of all subsets:

ak,ξ⋆

4,c = sk
c∑

k ′∈K
sk ′

c

, ∀c ∈ {1, . . . ,C }, ∀k ∈K .

Deterministic problem-based attributes. This problem solves the 2RO problem for
where the newly found scenario ξ⋆ is the only scenario considered. We call this a deter-
ministic problem, since we no longer deal with uncertainty. The problem is formulated
as follows:

min
θn ,xn ,yn

θn (5.8a)

s.t. θn ∈R,xn ∈X ,yn ∈Y , (5.8b)

c(ξ⋆)⊺xn +d(ξ⋆)⊺yn ≤ θn , (5.8c)

T (ξ⋆)xn +W (ξ⋆)yn ≤ h(ξ⋆). (5.8d)

By solving this problem we obtain Attributes 5-7:

5.A. ATTRIBUTE DESCRIPTIONS

5

121

5. Deterministic objective function value θn ,

6. Deterministic first-stage decisions xn ,

7. Deterministic second-stage decisions yn .

Static problem-based attributes. A straightforward method for approximately solving
the 2RO problem is first to solve the first-stage decision for all scenarios in the uncer-
tainty set. Then, after a realization of uncertainty, we combine this first-stage decision
with the scenario to determine the second-stage decision. This is a naive way of solving
2RO, thus not optimal for all scenarios. But, it could give us some information on the
approximate solutions to scenarios in the problem. Solving the static problem consists
of two steps: First, we obtain the static robust first-stage decisions x̄ by solving

min
θ,x,y

θ (5.9a)

s.t. θ ∈R,x ∈X ,y ∈Y , (5.9b)

c(ξ)⊺x+d(ξ)⊺y ≤ θ, ∀ξ ∈Ξ, (5.9c)

T (ξ)x+W (ξ)y ≤ h(ξ), ∀ξ ∈Ξ. (5.9d)

This problem can be reformulated via the mathematically tractable formulation [21].
Secondly, by fixing x to x̄, we obtain the objective value θs and second-stage decisions ys

by solving

min
θs ,ys

θs (5.10a)

s.t. θs ∈R,ys ∈Y , (5.10b)

c(ξ⋆)⊺x̄+d(ξ⋆)⊺ys ≤ θs , (5.10c)

T (ξ⋆)x̄+W (ξ⋆)ys ≤ h(ξ⋆). (5.10d)

Note that problem (5.9) is solved only once in the algorithm, while problem (5.10) needs
to be solved for each scenario. By solving this problem we obtain Attributes 8 and 9:

8. Static objective function value θs ,

9. Static second-stage decisions ys

5

122 5. MACHINE LEARNING FOR K -ADAPTABILITY

5.B. OMITTED PSEUDOCODES
The steps for obtaining the ML model used for node selection consists of two parts: (i)
making training data and (ii) training the ML model. More details on these steps are
given in Procedure 5.3.

Procedure 5.3: STRATEGYMODEL

Input : Train instances P tr ai n
1 (N tr ai n), . . . ,P tr ai n

I (N tr ai n)

number of partitions for training K tr ai n ,
level for training Ltr ai n ,
quality threshold ϵ,
R for random dives per node

Output : Trained node selection strategy model.

// Get training data for I instances
1 for i ∈ {1, . . . , I } do
2 (D,p)i ← generate train data(P tr ai n

i (N tr ai n),K tr ai n ,Ltr ai n ,R) qi ← quality(pi ,ϵ)

3 end

// Train node selection strategy model
4 Set model ← train ML model({(D,q)1, . . . , (D,q)I })

5 return model

For scaling some of the features (see Section 5.3.2), information needs to be gath-
ered by performing several initial dives in the tree. The steps of these dives are given in
Procedure 5.4.

Procedure 5.4: INITIALRUN

Input : Test instance P test (N test),
number of partitions for testing K test

Output : Objective value θ, first-stage decisions x, second-stage decisions y = {y1, . . . ,yK },
Subsets with scenarios Ξ′

k for all k ∈ {1, . . . ,K }

Initialization : Incumbent partition: τi := {Ξ′
1, . . . ,Ξ′

K }, where Ξ′
k =; for all k ∈K ,

1 Set τ= τi

2 while solution not robust do
3 (θ⋆,x⋆,y⋆) ← main problem(τ)
4 (ξ⋆,ζ⋆) ← subproblem(θ⋆,x⋆,y⋆)
5 if ζ⋆ > 0 then
6 Solution not robust, random node selection.

7 k
′ ← random uniform sample([1,K])

8 τ := {Ξ′
1, . . . ,Ξ′

k
′ ∪ {ξ⋆}, . . . ,Ξ′

K }

9 else
10 Robust solution found

11 scaling info ← (θ0,ζ0,κ0)

12 end
13 end
14 return scaling info

5.C. PROBLEM FORMULATIONS

5

123

5.C. PROBLEM FORMULATIONS
In the experiments, our method has been tested for several problems. The descriptions
of these problems and their MILP formulations are given in this section.

5.C.1. CAPITAL BUDGETING WITH LOANS
We consider the capital budgeting with loans problem as defined in Subramanyam et al.
[189], where a company wishes to invest in a subset of N projects. Each project i has an
uncertain cost ci (ξ) and an uncertain profit ri (ξ), defined as

ci (ξ) = (
1+Φ⊺

i ξ/2
)
c0

i and ri (ξ) = (
1+Ψ⊺

i ξ/2
)
r 0

i , ∀i ∈ {1, . . . , N },

where c0
i and r 0

i represent the nominal cost and the nominal profit of project i , respec-

tively. Φ⊺
i andΨ⊺

i represent the i -th row vectors of the sensitivity matricesΦ,Ψ ∈RN×Nz .

The realizations of the uncertain vector ξ belong to the uncertainty set Ξ = [−1,1]Nz ,
where Nz is the dimension of the uncertainty set.

The company can invest in a project either before or after observing the risk factor ξ.
In the latter case, the company generates only a fraction η of the profit, which reflects a
penalty of postponement. However, the cost remains the same as in the case of an early
investment. The company has a given budget B , which the company can increase by
loaning from the bank at a unit cost of λ > 0, before the risk factors ξ are observed. A
loan after the observation occurs, has a unit cost of µλ, with µ> 1. The objective of the
capital budgeting problem is to maximize the total revenue subject to the budget. This
problem can be formulated as an instance of the K -adaptability problem as follows:

max
(x0,x)∈X ,(y0,y)∈Y K

min
ξ∈Ξ

max
k∈K

θ

s.t. r (ξ)⊺(x+ηyk)−λ(x0 +µyk
0) ≥ θ,

x+yk ≤ e,

c(ξ)⊺x ≤ B +x0,

c(ξ)⊺(x+yk) ≤ B +x0 + yk
0 ,

where X =Y =R+×{0,1}N , y0 = {y1
0 , . . . , yK

0 }, y = {y1, . . . ,yK }, x0 and y0 are the amounts of
taken loan in the first and second stage, respectively. Moreover, xi and yi are the binary
variables that indicate whether we invest in the i -th project in the first- and second-
stage, respectively. The constraints c(ξ)⊺x ≤ B + x0 ensure that for the first stage, the
expenditures are not more than the budget plus the loan taken before the realization of
uncertainty.

Test case. Similarly as in Subramanyam et al. [189], the uncertainty set dimension Nz

is set to Nz = 4. The nominal cost vector c 0 is chosen uniformly at random from the set
[0,10]N . Let r 0 = c 0/5, B = e⊺c 0/2, and η = 0.8. The rows of the sensitivity matrices Φ
and Ψ are sampled uniformly from the i -th row vector, which is sampled from [0,1]Nz ,
such that Φ⊺

i e =Ψ⊺
i e = 1 for all i ∈ {1, . . . , N }. This is also known as the unit simplex in

RNp . For determining the cost of the loans, we set λ= 0.12 and µ= 1.2.

5

124 5. MACHINE LEARNING FOR K -ADAPTABILITY

5.C.2. SHORTEST PATH
We consider the shortest path problem with uncertain arc weights as defined in Subra-
manyam et al. [189]. Let G = (V , A) be a directed graph with nodes V = {1, ..., N }, arcs
A ⊆ V ×V , and arc weights di j (ξ) = (1+ξi j /2)d 0

i j , (i , j) ∈ A. Where d 0
i j ∈ R+ represents

the nominal weight of the arc (i , j) ∈ A and ξi j denotes the uncertain deviation from the
nominal weight. The uncertainty set is defined as

Ξ=
{
ξ ∈ [0,1]|A| :

∑
(i , j)∈A

ξi j ≤ Γ
}

.

This uncertainty set imposes that at most Γ arc weights may maximally deviate from
their nominal values. We need to find the shortest path from the source node s, to the
sink node t before observing the realized arc weights. This shortest problem can be for-
mulated as an instance of the K -adaptability problem

min
y∈Y K

max
ξ∈Ξ

min
k∈K

θ

s.t. d(ξ)⊺yk ≤ θ,∑
(j ,l)∈A

yk
j l −

∑
(i , j)∈A

yk
i j ≥ 1{ j=s} −1{ j=t }, ∀ j ∈V ,

Y ⊆ {0,1}|A|.

Note that this problem contains only binary second-stage decisions and uncertainty in
the objective function. The K -B&B algorithm, will find K shortest paths from s to t . After
ξ is observed, the path yk will be chosen if ξ ∈Ξk .

Normal test case. The coordinates in R2 for each vertex i ∈ V are uniformly chosen at
random from the region [0,10]2. The nominal weight of the arc (i , j) ∈ A is the Euclidean
distance between node i and j . The source node s and the sink node t are defined to be
the nodes with the maximum nominal distance between them. The ⌊0.9(N 2 −N)⌋ arcs
with the highest nominal weight will be deleted to define the arc set A. The budget of the
uncertainty set Γ is set to seven.

Sphere test case. The instances of this type have nodes that are spread over a sphere.
This is done as follows. First, each node in the three-dimensional graph is sampled from
the standard normal distribution and then normalized. The distance between node i
and j is then derived by its spherical distance. To obtain this, first the Euclidean distance
di j between node i and j is computed. Then, the arc sine of di j /2 is computed to get
the spherical distance. The ⌊0.7(N 2 −N)⌋ arcs with the highest nominal weight will be
deleted to define the arc set A. The budget of the uncertainty Γ is set to seven.

5.C.3. KNAPSACK
We consider the two-stage version of the knapsack problem where the profit per item is
uncertain. This formulation is based on that of Buchheim and Kurtz [45]. Let N be the
number of items, pi (ξ) = (1−ξi /2)p0

i the profit for item i ∈ {1, . . . , N }, where p0
i ∈R is the

5.D. PARAMETER TUNING

5

125

nominal profit value, ξi is the deviation, w ∈RN is the weight vector, and C = c
∑N

i=1 wi is
the total capacity of the knapsack with c ∈ (0,1). The uncertainty set is defined as

Ξ=
{
ξ ∈ [0,1]N :

N∑
i=1

ξi ≤ Γ
}

,

where Γ = γN and γ ∈ (0,1). This problem can be formulated as an instance of the K -
adaptability problem

max
y∈Y K

min
ξ∈Ξ

max
k∈K

θ

s.t. p(ξ)⊺yk ≥ θ,

w⊺yk ≤C ,

Y ⊆ {0,1}N ,

where yi is the decision of putting item i in the knapsack.

Test case. The weight wi of each item i ∈ {1, . . . , N } is uniformly chosen at random from
[1,15] and the cost ci from [100,150]. The values of c and γ are selected in Section 5.4.

5.D. PARAMETER TUNING
For both training the ML model (a random forest) and applying it to a problem, we have
defined multiple parameters in STRATEGYMODEL and K -B&B-NODESELECTION. The
tuning of these parameters is explained in this section.

5.D.1. CAPITAL BUDGETING WITH LOANS

For each K ∈ {2, . . . ,6} we have trained five random forests: each for ϵ ∈
{0.05,0.1,0.2,0.3,0.4}. We have first decided on the values of ι for generating train-
ing data. Problems become more complex when K grows, which results in more time
needed per dive. For tuning these parameters, we have generated training data by run-
ning the algorithm for two hours. Thus, we have fixed the parameter T to two. In
Table 5.9, for each combination of K and ι ∈ {2,5,10,15} the following information is
shown: number of data points, number of searched instances I , and the average of Ltr ai n

reached per instance.

Table 5.9: Generated training data info for combinations of K and ι. (num. data points, I , average Ltr ai n).

K
ι (in minutes)

2 5 10 15

2 (17284, 60, 9) (7192, 24, 10) - -
3 (37227, 60, 7) (36510, 24, 8) (34536, 12, 9) (30510, 8, 9)
4 (21572, 60, 5) (21860, 24, 6) (24312, 12, 7) (17008, 8, 7)
5 (22425, 60, 5) (23830, 24, 5) (22510, 12, 6) (20040, 8, 6)
6 (17820, 60, 4) (17544, 24, 5) (18834, 12, 5) (17382, 8, 5)

5

126 5. MACHINE LEARNING FOR K -ADAPTABILITY

We have then selected per K a value of ι that has high values of the number of data
points, I and Ltr ai n . Then, for each ϵ and K , the dataset related to this value of ι has been
trained. The accuracy of these models are given in Table 5.10.

Table 5.10: Test accuracy of random forest for combinations of K (with best ι) and the threshold ϵ.

K (ι)
ϵ

0.05 0.1 0.2 0.3 0.4

2 (2) 0.971 0.988 0.971 0.988 0.983
3 (5) 0.929 0.959 0.959 0.967 0.981
4 (5) 0.922 0.950 0.977 0.982 0.995
5 (5) 0.958 0.937 0.967 0.975 0.992
6 (10) 0.937 0.952 0.968 0.974 0.984

The table above shows that ϵ does not influence the accuracy of the model. However,
Figure 5.24 shows that the algorithm performs better when ϵ is very small. If we look at
the density of success probabilities p in Figure 5.23, we notice that the vast majority of
data points have pn ≈ 0. These two observations indicate that any value of pn slightly
higher than zero is special, and the corresponding node is considered as a good node to
visit.

0.0 0.2 0.4 0.6 0.8 1.0
Success probability pn

0

20

40

60

80

100

120

D
en

si
ty

Ktrain

2
3
4
5
6

Figure 5.23: Density of the success probability pn for each value of K tr ai n .

In Section 5.4, we noticed that high values of Ltest outperformed lower ones in the K -
B&B-NODESELECTION algorithm. In Figure 5.24, we show the results for higher values
of Ltr ai n than the ones shown in Figure 5.24 for fixed ϵ= 0.05.

0 500 1000 1500
Runtime (sec)

0.925

0.950

0.975

1.000

1.025

R
el

. O
FV

K = 3

0 500 1000 1500
Runtime (sec)

K = 4

0 500 1000 1500
Runtime (sec)

K = 6
K-B&B
Ltest = 30
Ltest = 40
Ltest = 50
Ltest =

Figure 5.24: Results of K -B&B with random dives and K -B&B-NODESELECTION with combinations of K and
bigger values of Ltest .

5.D. PARAMETER TUNING

5

127

5.D.2. SHORTEST PATH ON A SPHERE
For the shortest path problem we also want to decide on the parameter ι per K ∈
{2,3,4,5,6}. We noticed that the total number of scenarios needed until a robust so-
lution is found, is larger for shortest path than for capital budgeting. Therefore, the
duration per training instance should increase. The range of the number of minutes
is ι ∈ {5,10,15,20}. In Table 5.11, for each combination of K and ι the number of data
points, instances, and training level Ltr ai n is given. For now, T = 2 is fixed.

Table 5.11: Generated training data info for combinations of K and ι. (num. data points, I , average Ltr ai n).

K
ι (in minutes)

5 10 15 20

2 (10802, 24, 8) (8290, 12, 9) (9160, 8, 10) (8494, 6, 10)
3 (8370, 24, 6) (6726, 12, 6) (9858, 8, 6) (7506, 6, 7)
4 (9884, 24, 5) (8496, 12, 6) (7916, 8, 6) (15872, 6, 6)
5 (13795, 24, 4) (7415, 12, 5) (12490, 8, 5) (21110, 6, 6)
6 (26346, 24, 5) (10794, 12, 5) (18948, 8, 5) (25788, 6, 5)

We have then selected per K a value of ι that has high values of the number of data
points, I and Ltr ai n . Then, for each ϵ and K , the dataset related to this value of ι has been
trained. See Table 5.12 for the accuracy of these models.

Table 5.12: Number of data points used for training and test accuracy of random forest for combinations of K
(with best ι) and hours spent for generating training data T , given the threshold ϵ = 0.05. (num. data points,
test accuracy).

K (ι)
T

1 2 5 10

2 (15) (6586, 0.955) (9160, 0.946) (16852, 0.923) (35674, 0.947)
3 (15) (4170, 0.952) (9858, 0.939) (28347, 0.919) (47346, 0.937)
4 (20) (2828, 0.931) (15872, 0.969) (37652, 0.966) (69244, 0.932)
5 (20) (4790, 0.875) (21110, 0.972) (47000, 0.93) (77735, 0.91)
6 (15) (13500, 0.948) (18948, 0.916) (54564, 0.945) (91254, 0.955)

We noticed for the shortest path problem that more data points significantly in-
creased the performance of the ML model on the algorithm. An overview of the chosen
values of ι and T (hours spent for getting training data) per K are given in Table 5.13.

Table 5.13: Chosen parameter combination for each K . The values of ϵ and Ltest are fixed to 0.05 and ∞,
respectively.

K ι T

2 15 10
3 15 5
4 20 5
5 20 10
6 15 10

The density of the success probabilities for the data points of the shortest path prob-

5

128 5. MACHINE LEARNING FOR K -ADAPTABILITY

lem is given in Figure 5.25. This is very similar to the density of capital budgeting (see
Figure 5.23).

0.0 0.2 0.4 0.6 0.8 1.0
Success probability pn

0

20

40

60

80

100

120

140

D
en

si
ty

Ktrain

2
3
4
5
6

Figure 5.25: Density of the success probability pn for each value of K tr ai n .

5.E. FULL RESULTS
We have applied K -B&B-NODESELECTION to multiple problems, where the training and
testing instance specifications also varied. In the main body, only a subset of the experi-
ments are shown. In this section, all of them are given.

5.E.1. CAPITAL BUDGETING WITH LOANS

Incumbent objective results over runtime of N test = 10 instances are shown in Fig-
ure 5.26, of N test = 20 instances in Figure 5.27, and of N test = 30 instances in Figure 5.28.

5.E.2. SHORTEST PATH ON A SPHERE

Incumbent objective results over runtime of N test = 20 instances are shown in Fig-
ure 5.29, of N test = 40 instances in Figure 5.30, and of N test = 60 instances in Figure 5.31.

5.E.3. MIXED PROBLEMS
The incumbent objective results over runtime of the capital budgeting instances with
N test = 10, trained on shortest path data, is given in Figure 5.32. The results of the
shortest path instances with N test = 20, trained on capital budgeting data, is given in
Figure 5.33.

5.E. FULL RESULTS

5

129

0.
9

1.
0

Rel. OFV
K

tr
ai

n
=

2

K
te

st
 =

 2

K
tr

ai
n

=
3

K
tr

ai
n

=
4

K
tr

ai
n

=
5

K
tr

ai
n

=
6

0.
9

1.
0

Rel. OFV

K
te

st
 =

 3

0.
9

1.
0

Rel. OFV

K
te

st
 =

 4

0.
9

1.
0

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0.
9

1.
0

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

N
te

st
=

10
 a

nd
 N

tr
ai

n
=

10
K-

B&
B

K-
B&

B-
N

od
eS

el
ec

tio
n

Figure 5.26: Comparison of results between K -B&B and K -B&B-NODESELECTION for 100 instances of the cap-
ital budgeting problem. The results of EXP1 and EXP2 are shown, where N test = N tr ai n = 10. The regions with
shaded color around the curves denote its 75% CI.

5

130 5. MACHINE LEARNING FOR K -ADAPTABILITY

0.
9

1.
0

1.
1

Rel. OFV
K

tr
ai

n
=

2

K
te

st
 =

 2

K
tr

ai
n

=
3

K
tr

ai
n

=
4

K
tr

ai
n

=
5

K
tr

ai
n

=
6

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 3

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 4

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

N
te

st
=

20
 a

nd
 N

tr
ai

n
=

10

Figure 5.27: Comparison of results between K -B&B and K -B&B-NODESELECTION for 100 instances of the cap-
ital budgeting problem. The results of EXP3 and EXP4 are shown, where N tr ai n = 10, N test = 20. The regions
with shaded color around the curves denote its 75% CI.

5.E. FULL RESULTS

5

131

0.
9

1.
0

1.
1

Rel. OFV

K
tr

ai
n

=
2

K
te

st
 =

 2

K
tr

ai
n

=
3

K
tr

ai
n

=
4

K
tr

ai
n

=
5

K
tr

ai
n

=
6

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 3

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 4

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0.
9

1.
0

1.
1

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

N
te

st
=

30
 a

nd
 N

tr
ai

n
=

10

Figure 5.28: Comparison of results between K -B&B and K -B&B-NODESELECTION for 100 instances of the cap-
ital budgeting problem. The results of EXP3 and EXP4 are shown, where N tr ai n = 10, N test = 30. The regions
with shaded color around the curves denote its 75% CI.

5

132 5. MACHINE LEARNING FOR K -ADAPTABILITY

1.
00

0

1.
02

5

Rel. OFV

K
tr

ai
n

=
2

K
te

st
 =

 2

K
tr

ai
n

=
3

K
tr

ai
n

=
4

K
tr

ai
n

=
5

K
tr

ai
n

=
6

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 3

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 4

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

N
te

st
=

20
 a

nd
 N

tr
ai

n
=

20
K-

B&
B

K-
B&

B-
N

od
eS

el
ec

tio
n

Figure 5.29: Comparison of results between K -B&B and K -B&B-NODESELECTION for 100 instances of the
shortest path problem. The results of EXP1 and EXP2 are shown, where N test = N tr ai n = 20. The regions
with shaded color around the curves denote its 75% CI.

5.E. FULL RESULTS

5

133

1.
00

0

1.
02

5
Rel. OFV

K
tr

ai
n

=
2

K
te

st
 =

 2

K
tr

ai
n

=
3

K
tr

ai
n

=
4

K
tr

ai
n

=
5

K
tr

ai
n

=
6

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 3

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 4

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

1.
00

0

1.
02

5

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

N
te

st
=

40
 a

nd
 N

tr
ai

n
=

20

Figure 5.30: Comparison of results between K -B&B and K -B&B-NODESELECTION for 100 instances of the
shortest path problem. The results of EXP3 and EXP4 are shown, where N tr ai n = 20, N test = 40. The regions
with shaded color around the curves denote its 75% CI.

5

134 5. MACHINE LEARNING FOR K -ADAPTABILITY

1.
00

1.
05

Rel. OFV
K

tr
ai

n
=

2

K
te

st
 =

 2

K
tr

ai
n

=
3

K
tr

ai
n

=
4

K
tr

ai
n

=
5

K
tr

ai
n

=
6

1.
00

1.
05

Rel. OFV

K
te

st
 =

 3

1.
00

1.
05

Rel. OFV

K
te

st
 =

 4

1.
00

1.
05

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

1.
00

1.
05

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

N
te

st
=

60
 a

nd
 N

tr
ai

n
=

20

Figure 5.31: Comparison of results between K -B&B and K -B&B-NODESELECTION for 100 instances of the
shortest path problem. The results of EXP3 and EXP4 are shown, where N tr ai n = 20, N test = 60. The regions
with shaded color around the curves denote its 75% CI.

5.E. FULL RESULTS

5

135

0
50

0
10

00
15

00
0.

9

1.
0

Rel. OFV

K
tr

ai
n

=
2

K
te

st
 =

 2

0
50

0
10

00
15

00

K
tr

ai
n

=
3

0
50

0
10

00
15

00

K
tr

ai
n

=
4

0
50

0
10

00
15

00

K
tr

ai
n

=
5

0
50

0
10

00
15

00

K
tr

ai
n

=
6

0
50

0
10

00
15

00
0.

9

1.
0

Rel. OFV

K
te

st
 =

 3

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0.

9

1.
0

Rel. OFV

K
te

st
 =

 4

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0.

9

1.
0

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0.
9

1.
0

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

K-
B&

B
K-

B&
B-

N
od

eS
el

ec
tio

n

Figure 5.32: Results of the capital budgeting problem. The ML model that is used is trained on shortest path
data.

5

136 5. MACHINE LEARNING FOR K -ADAPTABILITY

0
50

0
10

00
15

00

1.
00

1.
02

Rel. OFV
K

tr
ai

n
=

2

K
te

st
 =

 2

0
50

0
10

00
15

00

K
tr

ai
n

=
3

0
50

0
10

00
15

00

K
tr

ai
n

=
4

0
50

0
10

00
15

00

K
tr

ai
n

=
5

0
50

0
10

00
15

00

K
tr

ai
n

=
6

0
50

0
10

00
15

00

1.
00

1.
02

Rel. OFV

K
te

st
 =

 3

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00

1.
00

1.
02

Rel. OFV

K
te

st
 =

 4

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00

1.
00

1.
02

Rel. OFV

K
te

st
 =

 5

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
0

50
0

10
00

15
00

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

1.
00

1.
02

Rel. OFV

K
te

st
 =

 6

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

0
50

0
10

00
15

00
R

un
tim

e
(s

ec
)

K-
B&

B
K-

B&
B-

N
od

eS
el

ec
tio

n

Figure 5.33: Results of the shortest path problem. The ML model that is used is trained on capital budgeting
data.

II
PHYLOGENETICS

139

6
CHERRY-PICKING HEURISTIC FOR

BINARY TREES

Combining a set of phylogenetic trees into a single phylogenetic network that explains all
of them is a fundamental challenge in evolutionary studies. Existing methods are com-
putationally expensive and can either handle only small numbers of phylogenetic trees or
are limited to severely restricted classes of networks.

Proposed data-driven algorithm: In this chapter, we apply the recently introduced the-
oretical framework of cherry picking to design a class of efficient heuristics that are guar-
anteed to produce a network containing each of the input trees, for practical-size datasets
consisting of binary trees. Some of the heuristics in this framework are based on the de-
sign and training of a machine-learning model that captures essential information on the
structure of the input trees and guides the algorithms towards better solutions. We also
propose simple and fast randomized heuristics that prove to be very effective when run
multiple times. Moreover, our machine-learned heuristics are one of the first applications
of machine learning to phylogenetics and show its promise.

Data generation scheme: The machine-learning model is a supervised classification
model where the data is obtained by sampling many phylogenetic networks (a solution)
and then drawing a set of displayed trees (a problem instance). In this way, many data
points can be labeled without needing to solve explicit problems.

Experimental results: Unlike the existing exact methods, our heuristics are applicable to
datasets of practical size, and the experimental study we conducted on both simulated
and real data shows that these solutions are qualitatively good, always within some small
constant factor from the optimum.

This chapter is based on Bernardini et al. [27] published in International Workshop on Algorithms in Bioin-
formatics (WABI 2022) and Bernardini et al. [25] published in Algorithms for Molecular Biology. In collab-
oration with Giulia Bernardini, Leo van Iersel, and Leen Stougie. The code is available at https://github.
com/estherjulien/learn2cherrypick.

141

https://github.com/estherjulien/learn2cherrypick
https://github.com/estherjulien/learn2cherrypick

6

142 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

6.1. INTRODUCTION

Phylogenetic networks describe the evolutionary relationships between different ob-
jects: for example, genes, genomes, or species. One of the first and most natural ap-
proaches to constructing phylogenetic networks is to build a network from a set of gene
trees. In the absence of incomplete lineage sorting, the constructed network is natu-
rally required to “display”, or embed, each of the gene trees. In addition, following the
parsimony principle, a network assuming a minimum number of reticulate evolutionary
events (like hybridization or lateral gene transfer) is often sought. Unfortunately, the as-
sociated computational problem, called HYBRIDIZATION, is NP-hard even for two binary
input trees [39], and indeed existing solution methods do not scale well with problem
size. For a long time, research on this topic was mostly restricted to inputs consisting of
two trees. Proposed algorithms for multiple trees were either completely impractical or
ran in reasonable time only for very small numbers of input trees. This situation changed
drastically with the introduction of so-called cherry-picking sequences [134]. This the-
oretical setup opened the door to solving instances consisting of many input trees like
most practical datasets have. Indeed, a recent paper showed that this technique can be
used to solve instances with up to 100 input trees to optimality [201], although it was
restricted to binary trees all having the same leaf set and to so-called “tree-child” net-
works. Moreover, its running time has a (strong) exponential dependence on the number
of reticulate events.

In this chapter, we show significant progress toward a fully practical method by devel-
oping a heuristic framework based on cherry picking comprising very fast randomized
heuristics and other slower but more accurate heuristics guided by machine learning.
Admittedly, our methods are not yet widely applicable since they are still restricted to
binary trees. However, our set-up is made in such a way that it may be extendable to
general trees. Despite their limitations, we see our current methods already as an im-
portant contribution to the field as they are not restricted to tree-child networks and
scale well with the number of trees, the number of taxa and the number of reticulations.
In fact, we experimentally show that our heuristics can easily handle sets of 100 trees in
a reasonable time: the slowest machine-learned method takes 4 minutes on average for
sets consisting of 100 trees with 100 leaves each, while the faster, randomized heuris-
tics already find feasible solutions in 2 seconds for the same instances. As the running
time of the fastest heuristic depends at most quadratically on the number of input trees,
linearly on the number of taxa, and linearly on the output number of reticulations, we
expect it to be able to solve much larger instances still in a reasonable amount of time.
In addition, in contrast with the existing algorithms, our methods can be applied to trees
with different leaf sets, although they have not been specifically optimized for this kind
of input. Indeed, we experimentally assessed that our methods give qualitatively good
results only when the leaf sets of the input trees have small differences in percentage
(up to 5-15%); when the differences are larger, they return feasible solutions that are far
from the optimum. Some of the heuristics we present are among the first applications
of machine learning in phylogenetics and show its promise. In particular, we show that
crucial features of the networks generated in our simulation study can be identified with
very high test accuracy (99.8%) purely based on the trees displayed by the networks. It is
important to note at this point that no method is able to reconstruct any specific network

6.1. INTRODUCTION

6

143

from displayed trees as networks are, in general, not uniquely determined by the trees
they display [161]. In addition, in some applications, a phenomenon called “incomplete
lineage sorting” can cause gene trees that are not displayed by the species network [225],
and hence our methods, and other methods based on the HYBRIDIZATION problem, are
not (directly) applicable to such data. We focus on orchard networks (also called cherry-
picking networks), which are precisely those networks that can be drawn as a tree with
additional horizontal arcs [200]. Such horizontal arcs can for example correspond to
lateral gene transfer (LGT). Orchard networks are broadly applicable: in particular, the
orchard network class is much bigger than the class of tree-child networks, to which the
most efficient existing methods are limited [3].

Related work. Previous practical algorithms for HYBRIDIZATION include PIRN [220],
PIRNs [149] and Hybroscale [3], exact methods that are only applicable to (very) small
numbers of trees and/or to trees that can be combined into a network with a (very)
small reticulation number. Other methods such as PHYLONET [213] and PHYLONET-
WORKS [186] also construct networks from trees but have different premises and use
completely different models. The theoretical framework of cherry picking was intro-
duced in Humphries et al. [101] (for the restricted class of temporal networks) and Linz
and Semple [134] (for the class of tree-child networks) and was later turned into algo-
rithms for reconstructing tree-child [201] and temporal [40] networks. These methods
can handle instances containing many trees but do not scale well with the number of
reticulations, due to an exponential dependence. The class of orchard networks, which
is based on cherry picking, was introduced in Semple and Toft [176] and independently
(as cherry-picking networks) in Janssen and Murakami [109], although their practical
relevance as trees with added horizontal edges was only discovered later [200]. The ap-
plicability of machine-learning techniques to phylogenetic problems has not yet been
fully explored, and to the best of our knowledge existing work is mainly limited to phylo-
genetic tree inference [9, 234] and to testing evolutionary hypotheses [126].

Our contributions. We introduce CHERRY-PICKING HEURISTICS (CPH), a class of
heuristics to combine a set of binary phylogenetic trees into a single binary phyloge-
netic network based on cherry picking. We define and analyze several heuristics in the
CPH class, all of which are guaranteed to produce feasible solutions to HYBRIDIZATION

and all of which can handle instances of practical size (we run experiments on tree sets
of up to 100 trees with up to 100 leaves which were processed in on average 4 minutes by
our slowest heuristic). Two of the methods we propose are simple but effective random-
ized heuristics that proved to be extremely fast and to produce good solutions when run
multiple times. The main contribution of this chapter consists in a machine-learning
model that potentially captures essential information about the structure of the input
set of trees. We trained the model on different extensive sets of synthetically generated
data and applied it to guide our algorithms towards better solutions. Experimentally, we
show that the two machine-learned heuristics we design yield good results when applied
to both synthetically generated and real data. We also analyze our machine-learning
model to identify the most relevant features and design a non-learned heuristic that is
guided by those features only. Our experiments show that this heuristic leads to reason-

6

144 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

ably good results without the need to train a model. This result is interesting per se as
it is an example of how machine learning can be used to guide the design of classical
algorithms, which are not biased towards certain training data.

A preliminary version of this work appeared in Bernardini et al. [27]. Compared to
the preliminary version, we have added the following material: (i), we defined a new
non-learned heuristic based on important features and experimentally tested it (Sec-
tion 6.5.3); (ii), we extended the experimental study to data generated from non-orchard
networks (Section 6.5.2), data generated from a class of networks for which the optimum
number of reticulations is known (Section 6.5.2) and to input trees with different leaf sets
(Section 6.5.2); and (iii), we provided a formal analysis of the time complexity of all our
methods (Section 6.4.1) and conducted experiments on their scalability (Section 6.5.2).

6.2. PRELIMINARIES
A phylogenetic network N = (V ,E , X) on a set of taxa X is a directed acyclic graph (V ,E)
with a single root with in-degree 0 and out-degree 1, and the other nodes with either
(i) in-degree 1 and out-degree k > 1 (tree nodes); (ii) in-degree k > 1 and out-degree 1
(reticulations); or (iii) in-degree 1 and out-degree 0 (leaves). The leaves of N are biunivo-
cally labeled by X . A surjective map ℓ : E →R≥0 may assign a nonnegative branch length
to each edge of N . We will denote by [1,n] the set of integers {1,2, ...,n}. Throughout
this chapter, we will only consider binary networks (with k = 2), and we will identify the
leaves with their labels. We will also often drop the term “phylogenetic”, as all the net-
works considered in this chapter are phylogenetic networks. The reticulation number
r (N) of a network N is

∑
v∈V max

(
0,d−(v)−1

)
, where d−(v) is the in-degree of v . A net-

work T with r (T) = 0 is a phylogenetic tree. It is easy to verify that binary networks with
r (N) reticulations have |X |+ r (N)−1 tree nodes.

CHERRY PICKING

We denote by N a set of networks and by T a set of trees. An ordered pair of leaves
(x, y), x ̸= y , is a cherry in a network if x and y have the same parent; (x, y) is a reticulated
cherry if the parent p(x) of x is a reticulation, and p(y) is a tree node and a parent of p(x)
(see Figure 6.1). A pair is reducible if it is either a cherry or a reticulated cherry. Notice
that trees have cherries but no reticulated cherries.

Reducing (or picking) a cherry (x, y) in a network N (or in a tree) is the action of
deleting x and replacing the two edges (p(p(x)), p(x)) and (p(x), y) with a single edge
(p(p(x)), y) (see Figure 6.1a). If N has branch lengths, the length of the new edge is
ℓ(p(p(x)), y) = ℓ(p(p(x)), p(x)) + ℓ(p(x), y). A reticulated cherry (x, y) is reduced (or
picked) by first deleting the edge (p(y), p(x)). Then, the edge (z, p(x)), incoming to p(x),
and the consecutive edge (p(x), x) are replaced with a single edge (z, x). The length of
the new edge is ℓ(z, x) = ℓ(z, p(x))+ℓ(p(x), x) (if N has branch lengths). Another edge
(z ′, p(y)), incoming to p(y), and the edge (p(y), y) are replaced by (z ′, y), with length
ℓ(z ′, y) = ℓ(z ′, p(y))+ℓ(p(y), y). Reducing a non-reducible pair has no effect on N . In all
cases, the resulting network is denoted by N(x,y): we say that (x, y) affects N if N ̸= N(x,y).

Any sequence S = (x1, y1), . . . , (xn , yn) of ordered leaf pairs, with xi ̸= yi for all i , is a
partial cherry-picking sequence; S is a cherry-picking sequence (CPS) if, for each i < n,
yi ∈ {xi+1, . . . , xn , yn}. Given a network N and a (partial) CPS S, we denote by NS the

6.2. PRELIMINARIES

6

145

(a) (b)

Figure 6.1: (x, y) is picked in two different networks. In (a) (x, y) is a cherry, and in (b) (x, y) is a reticulated
cherry. After picking, degree-two nodes are replaced by a single edge.

(a) Network N (b) Input tree set T

Figure 6.2: The two trees in (b) are displayed in the network (a).

network obtained by reducing in N each element of S, in order. We denote S ◦ (x, y) the
sequence obtained by appending pair (x, y) at the end of S. We say that S fully reduces N
if NS consists of the root with a single leaf. N is an orchard network if there exists a CPS
that fully reduces it, and it is tree-child if every non-leaf node has at least one child that
is a tree node or a leaf. A normal network is a tree-child network such that, in addition,
the two parents of a reticulation are always incomparable, i.e., one is not a descendant
of the other. If S fully reduces all N ∈N , we say that S fully reduces N . In particular, in
this chapter we will be interested in a CPS which fully reduces a set of trees T consisting
of |T | trees of total size ||T ||.

Adding a cherry (x, y) to a network N when x is not present in N is the action of
adding the node z and edge (z, x) and replacing the incoming edge (w, y) of y with the
edges (w, z) and (z, y). When x is already present in N , the nodes a and b are added
together with the edge (a,b). The incoming edge (w, y) of y is replaced with (w, a) and
(a, y). the incoming edge (z, x) of x is replaced with (z,b) and (b, x).

HYBRIDIZATION

The Hybridization problem can be thought of as the computational problem of com-
bining a set of phylogenetic trees into a network with the smallest possible reticulation
number, that is, to find a network that displays each of the input trees in the sense speci-
fied by Definition 6.1, below. See Figure 6.2 for an example. The definition describes not
only what it means to display a tree but also to display another network, which will be
useful later.

Definition 6.1. Let N = (V ,E , X) and N ′ = (V ′,E ′, X ′) be networks on the sets of taxa X
and X ′ ⊆ X , respectively. The network N ′ is displayed in N if there is an embedding of

6

146 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

N ′ in N : an injective map of the nodes of N ′ to the nodes of N , and of the edges of N ′ to
edge-disjoint paths of N , such that the mapping of the edges respects the mapping of the
nodes, and the mapping of the nodes respects the labeling of the leaves.

We call exhaustive a tree displayed in N = (V ,E , X) with the whole X as a leaf set. Note
that Definition 6.1 only involves the topologies of the networks, disregarding possible
branch lengths. In the following problem definition, the input trees may or may not have
branch lengths, and the output is a network without branch lengths. We allow branch
lengths for the input because they will be useful for the machine-learned heuristics of
Section 6.4.

HYBRIDIZATION

Input: A set of phylogenetic trees T on a set of taxa X .
Output: A network displaying T with minimum possible reticulation number.

In this chapter, we focus on a tree set where each taxon set is X , i.e., on exhaustive
trees. Only in Section 6.5.2 do we consider an input of non-exhaustive trees, where X is
the union of the trees’ taxon sets. In Chapter 7, the heuristic is adapted to better handle
instances where not all trees share the same taxon set.

6.3. SOLVING THE HYBRIDIZATION PROBLEM VIA CHERRY-
PICKING SEQUENCES

We will develop heuristics for the Hybridization problem using cherry-picking se-
quences that fully reduce the input trees, leveraging the following result by Janssen and
Murakami.

Theorem 6.1 (Janssen and Murakami [109], Theorem 3). Let N be a binary orchard net-
work, and N ′ a (not necessarily binary) orchard network on sets of taxa X and X ′ ⊆ X ,
respectively. If a minimum-length CPS S that fully reduces N also fully reduces N ′, then
N ′ is displayed in N .

Notice that HYBRIDIZATION remains NP-hard for binary orchard networks. For bi-
nary networks we have the following lemma, a special case of Janssen and Murakami
[109, Lemma 1].

Lemma 6.1. Let N be a binary network, and let (x, y) be a reducible pair of N . Then
reducing (x, y) and then adding it back to N(x,y) results in N .

Note that Lemma 6.1 only holds for binary networks: in fact, there are different ways
to add a pair to a non-binary network, thus the lemma does not hold unless a specific
rule for adding pairs is specified (inspect Janssen and Murakami [109] for details). The-
orem 6.1 and Lemma 6.1 provide the following approach for finding a feasible solution
to HYBRIDIZATION: find a CPS S that fully reduces all the input trees, and then uniquely
reconstruct the binary orchard network N for which S is a minimum-length CPS, by pro-
cessing S in the reverse order. N can be reconstructed from S using one of the methods
underlying Lemma 6.1 proposed in the literature, e.g., in Janssen and Murakami [109]
(illustrated in Figure 6.3) or in van Iersel et al. [201]. The following lemma relates the
length of a CPS S and the number of reticulations of the network constructed from S.

6.3. SOLVING THE HYBRIDIZATION PROBLEM VIA CHERRY-PICKING SEQUENCES

6

147

Figure 6.3: The network reconstructed from the sequence S = (x, y), (x, w), (w, y). The pairs are added to the
network in reverse order: if the first element of a pair is not yet in the network, it is added as a cherry with
the second element (see the pair (x, w)). Otherwise, a reticulation is added above the first element with an
incoming edge from a new parent of the second element (see the pair (x, y)).

Lemma 6.2 (van Iersel et al. [202]). Let S be a CPS on a set of taxa X . The number of
reticulations of the network N reconstructed from S is r (N) = |S|− |X |+1.

In the next section we focus on the first part of the heuristic: producing a CPS that
fully reduces a given set of phylogenetic trees.

6.3.1. RANDOMIZED HEURISTICS
We define a class of randomized heuristics that construct a CPS by picking one reducible
pair of the input set T at a time and by appending this pair to a growing partial sequence,
as described in Algorithm 6.1 (the two subroutines PickNext and CompleteSeq will be
later described in detail). We call this class CPH (for Cherry-Picking Heuristics). Recall
that TS denotes the set of trees T after reducing all trees with a (partial) CPS S.

Algorithm 6.1: CPH

Input : A set T of phylogenetic trees
Output : A CPS reducing T .

1 S ←;
2 while there is a reducible pair in TS do
3 (x, y) ←PickNext(TS)
4 S ← S ◦ (x, y)
5 Reduce (x, y) in all trees of TS

6 end
7 S ←CompleteSeq(S)
8 return S

The while loop at lines 2-5 produces, in general, a partial CPS S, as shown in Exam-
ple 6.1. To make it into a CPS, the subroutine CompleteSeq at line 7 appends at the end
of S a sequence S′ of pairs such that each second element in a pair of S ◦S′ is a first ele-
ment in a later pair (except for the last one), as required by the definition of CPS. These
additional pairs do not affect the trees in T , which are already fully reduced by S. Al-
gorithm 6.2 describes a procedure CompleteSeq that runs in time linear in the length of
S.

Example 6.1. Let T consist of the 2-leaf trees (x, y) and (w, z). A partial CPS at the end of
the while loop in Algorithm 6.1 could be, e.g., S = (x, y), (w, z). The trees are both reduced

6

148 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

to one leaf, so there are no more reducible pairs, but S is not a CPS. To make it into a CPS
either pair (y, z) or pair (z, y) can be appended: e.g., S ◦ (y, z) = (x, y), (w, z), (y, z) is a CPS,
and it still fully reduces the two input trees.

Algorithm 6.2: CompleteSeq
Input : A partial CPS S = (x1, y1), . . . , (xn , yn) that reduces T

Output : A CPS S′ for T .
1 C ←;; P ←;
2 for i = n, . . . ,1 do
3 if yi ̸∈C then
4 P ← P ∪ {yi }
5 end
6 C ←C ∪ {xi , yi }

7 end
8 S′ ← S
9 while |P | > 1 do

10 Let r1 and r2 be two arbitrary elements of P
11 S′ ← S′ ◦ (r1,r2)
12 P ← P \ {r1}

13 end
14 return S′

The class of heuristics given by Algorithm 6.1 is concretized in different heuristics
depending on the function PickNext at line 3 used to choose a reducible pair at each
iteration. To formulate them we need to introduce the following notions of height pair
and trivial pair. Let N be a network with branch lengths and let (x, y) be a reducible pair
in N . The height pair of (x, y) in N is a pair (hN

x ,hN
y) ∈ R2

≥0, where hN
x = ℓ(p(x), x) and

hN
y = ℓ(p(y), y) if (x, y) is a cherry (indeed, in this case, p(x) = p(y)); hN

x = ℓ(p(y), p(x))+
ℓ(p(x), x) and hN

y = ℓ(p(y), y) if (x, y) is a reticulated cherry. The height hN
(x,y) of (x, y) is

the average (hN
x +hN

y)/2 of hN
x and hN

y . Let T be a set of trees whose leaf sets are subsets
of a set of taxa X . An ordered leaf pair (x, y) is a trivial pair of T if it is reducible in all
T ∈T that contain both x and y , and there is at least one tree in which it is reducible.

We define the following three heuristics in the CPH class, resulting from as many
possible implementations of PickNext.

Rand. Function PickNext picks uniformly at random a reducible pair of TS .

LowPair. Function PickNext picks a reducible pair (x, y) with the lowest average of val-
ues hT

(x,y) over all T ∈TS in which (x, y) is reducible (ties are broken randomly).

TrivialRand. Function PickNext picks a trivial pair if there exists one and otherwise picks
a reducible pair of TS uniformly at random.

Theorem 6.2. Algorithm 6.1 computes a CPS that fully reduces T , for any function
PickNext that picks, in each iteration, a reducible pair of TS .

6.3. SOLVING THE HYBRIDIZATION PROBLEM VIA CHERRY-PICKING SEQUENCES

6

149

(a) Input tree T (b) T (1) = T(y,z) (c) Expand T (1) with (x, y) (d) Network NT

Figure 6.4: Tree expansion of T (a) with the trivial cherry (x, y) of T(y,z). (b) After picking cherry (y, z), leaf

y is missing in T (1). (c) Leaf x is replaced by the cherry (x, y). After completion of the heuristic, we have
ST = (y, z), (x, y), (y, w), (w, z). (d) The network NT reconstructed from S1 · (x, y). Note that the input tree T is
displayed in NT (solid edges).

Proof. The sequence S is initiated as an empty sequence. Then, each iteration of the
while loop (lines 2-5) of Algorithm 6.1 appends one pair to S that is reducible in at least
one of the trees in T , and reduces it in all trees. Hence, in each iteration, the total size of
TS is reduced, so the algorithm finishes in finite time. Moreover, at the end of the while
loop, each tree in TS is reduced, thus the partial CPS S reduces TS . As CompleteSeq only
appends pairs at the end of S, the result of this subroutine still reduces all trees in TS .

In Section 6.5 we experimentally show that TrivialRand produces the best results
among the proposed randomized heuristics. In the next section, we introduce a further
heuristic step for TrivialRand which improves the output quality.

6.3.2. IMPROVING HEURISTIC TrivialRand VIA TREE EXPANSION

Let T be a set of trees whose leaf sets are subsets of a set of taxa X , let S be a partial CPS
for T and let TS be the tree set obtained by reducing in order the pairs of S in T . With
respect to a trivial pair (x, y), each tree T ∈TS is of one of the following types: (i) (x, y) is
reducible in T ; or (ii) neither x nor y are leaves of T ; or (iii) y is a leaf of T but x is not; or
(iv) x is a leaf of T but y is not.

Suppose that at some iteration of TrivialRand, the subroutine PickNext returns the
trivial pair (x, y). Then, before reducing (x, y) in all trees, we do the following extra step:
for each tree of type (iv), replace leaf x with cherry (x, y). We call this operation the tree
expansion: see Figure 6.4(c). The effect of this step is that, after reducing (x, y), leaf x
disappears from the set of trees, which would have not necessarily been the case before,
because of trees of type (iv). Tree expansion followed by the reduction of (x, y) can, alter-
natively, be seen as relabeling leaf x in any tree of type (iv) by y . The choice of describing
this relabeling as tree expansion is just for the purpose of proving Lemma 6.3.

To guarantee that a CPS S produced with tree expansion implies a feasible solution
for HYBRIDIZATION, we must show that the network N reconstructed from S displays all
the trees in the input set T . We prove that indeed this is the case with the following steps:
(1), we consider the networks NT obtained by “reverting” a partial CPS S obtained right
after applying tree expansion to a tree TS : in other words, to obtain NT we add to the
partially reduced tree TS the trivial pair (x, y) and then all the pairs previously reduced
by S in the sense of Lemma 6.1. We show that NT always displays T , the original tree; (2),

6

150 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

we prove that this holds for an arbitrary sequence of tree expansion operations; and (3),
since the CPS obtained using tree expansions fully reduces the networks of point (2), and
since these networks display the trees in the original set T , we have the desired property
by Theorem 6.1. We prove this more formally with the following lemma.

Lemma 6.3. Let S be the CPS produced by TrivialRand using tree expansion with input
T . Then the network reconstructed from S displays all the trees in T .

Proof. Let us start with the case where only 1 tree expansion occurs. Let S(i−1) be the
partial CPS constructed in the first i−1 steps of TrivialRand, and let i be the step in which
we pick a trivial pair (x, y). For each T ∈TS(i−1) that is reduced by S(i−1) to a tree T (i−1) of

type (iv) for (x, y), let S(i−1)
T be the subsequence of S(i−1) consisting only of the pairs that

subsequently affect T . We use the partial CPS Si
T = S(i−1)

T ◦(x, y) to reconstruct a network

NT with a method underlying Lemma 6.1, starting from T (i−1): see Figure 6.4(d).
For trees of type (i)-(iii), NT = T . We call the set NT , consisting of the networks

NT for all T ∈ T , the expanded reconstruction of T . Note that, by construction and
Lemma 6.1, all the elements of NT after reducing, in order, the pairs of S(i−1) ◦ (x, y), are
trees: in particular, they are equal to the trees of TS(i−1)◦(x,y) in which all the labels y have
been replaced by x. We denote this set of trees (NT)S(i−1)◦(x,y).

We can generalize this notion to multiple trivial pairs: we denote by N
(j)

T
the ex-

panded reconstruction of T with the first j trivial pairs, and suppose we added the j -th

pair (w, z) to the partial CPS S at the k-th step. Consider a tree T ′ ∈ (N (j−1)
T

)S(k−1) of type

(iv) for (w, z), and let N (j−1)
T ∈ N

(j−1)
T

be the network it originated from. Let S(k−1)
T be

the subsequence of S(k−1) consisting only of the pairs that subsequently affected N (j−1)
T .

Then N (j)
T is the network reconstructed from S(k−1)

T ◦ (w, z), starting from T ′. For trees of

(N (j−1)
T

)S(k−1) that are of type (i)-(iii) for (w, z), we have N (j)
T = N (j−1)

T . The elements of

N
(j)

T
are all networks N (j)

T . For completeness, we define N (0)
T

=T and N (1)
T

=NT .

By construction, S fully reduces all the networks in N
(j)

T
, thus the network N recon-

structed from S displays all of them by Theorem 6.1. We prove that N (j)
T displays T for all

T ∈T , and thus N displays the original tree set T too, by induction on j .
In the base case, we pick j = 0 trivial pairs, so the statement is true by Theorem 6.1.

Now let j > 0. The induction hypothesis is that each network N (j−1)
T ∈ N

(j−1)
T

displays
the tree T ∈T it originated from. Let (w, z) be the j -th trivial pair, added to the sequence

at position k. Let T ′ ∈ (N (j−1)
T

)S(k−1) be a tree of type (iv) for (w, z), and let N (j−1)
T be the

network it originates from. Then there are two possibilities: either z is a leaf of N (j−1)
T or

it is not. In case it is not, then adding (w, z) to N (j−1)
T does not create any new reticula-

tion, and clearly N (j)
T keeps displaying T . If z does appear in N (j−1)

T , then it must have

been reduced by a pair (z, v) of S(k−1) (otherwise T ′ would not be of type (iv)). Then the

network N (j)
T has an extra reticulation, created with the insertion of (z, v) at some point

after (w, z) during the backward reconstruction. In both cases, by Janssen and Murakami

[109, Lemma 10] N (j−1)
T is displayed in N (j)

T , and thus by the induction hypothesis T is
displayed too.

6.3. SOLVING THE HYBRIDIZATION PROBLEM VIA CHERRY-PICKING SEQUENCES

6

151

Figure 6.5: Network N ′ of Example 6.2.

6.3.3. GOOD CHERRIES IN THEORY
By Lemma 6.1 the binary network N reconstructed from a CPS S is such that S is of min-
imum length for N , that is, there exists no shorter CPS that fully reduces N . By Theo-
rem 6.1 if S, in turn, fully reduces T , then N displays all the trees in T . Depending on S,
though, N is not necessarily a network with minimum reticulation number among the
ones displaying T as we aim to find the shortest CPS (see Lemma 6.2). For an illustra-
tion, see the following example.

Example 6.2. Consider the set T of Figure 6.2b: S = (y, x), (y, z), (w, x), (x, z) is a CPS
that fully reduces T and consists only of pairs successively reducible in the network N of
Fig. 6.2a, thus it reconstructs it by Lemma 6.1. Now consider (w, x), which is reducible in
T but not in N , and pick it as first pair, to obtain e.g. S′ = (w, x), (y, z), (y, x), (w, x), (x, z).
The network N ′ reconstructed from S′, depicted in Figure 6.5, has r (N ′) = 2, whereas
r (N) = 1.

For the class of tree-child networks, we have as characterization that a minimum-
sized tree-child sequence (TCS) (see Definition 6.2) gives an optimal solution to the
TREE-CHILD HYBRIDIZATION problem [134, Theorem 2.1]. This problem takes the de-
scription of HYBRIDIZATION (in Section 6.2), but is restricted to generate tree-child net-
works. From Janssen and Murakami [109, Theorem 5], we have for two tree-child net-
works N and N ′, that N ′ is contained in N if and only if any TCS of N also reduces N ′.

Definition 6.2. A tree-child sequence (TCS) is a CPS in which every leaf appearing as the
first coordinate of a pair does not appear as a second coordinate of a pair in any of the
subsequent cherries in the sequence.

In our case, we focus on reconstructing an orchard phylogenetic network N (which
is not necessarily tree-child) on T . Each tree is tree child, and by construction displayed
in N . By the former given theorem of [109, Theorem 5], a TCS exists that reduces the
network and all trees in T . In our heuristic setting, we derive a CPS to construct orchard
networks. We lose the tree-child condition as orchard networks are more general than
tree-child networks. Moreover, the CPH of Algorithm 6.1 cannot be easily extended to
TCSs; the restrictions can cause complications after some iterations, as it might be the
case that none of the reducible pairs left in T can be picked (see Example 6.3). However,
we still use the idea that the trees in T can be reduced by a (regular) CPS of a network N
that displays T , for determining which cherries would be good to pick.

6

152 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

Example 6.3. Consider the set T of Figure 6.2b. Suppose that we first pick (y, z), then
(x, w), and then (w, z), comprising the partial CPS S = (y, z)(x, w)(w, z). Note that thus
far we have complied with the property of a TCS. The only remaining reducible pairs in
TS are (x, y) or (y, x). Picking either of them violates the TCS property.

Let OPT(T) denote the set of networks that display T with the minimum pos-
sible number of reticulations (in general, this set contains more than one network).
Ideally, we would like to produce a CPS fully reducing T that is also a minimum-
length CPS fully reducing some network of OPT(T). In other words, we aim to find
a CPS S̃ = (x1, y1), . . . , (xn , yn) such that, for any i ∈ [1,n], (xi , yi) is a reducible pair of
ÑS̃(i−1) , where S̃(0) = ;, S̃(k) = (x1, y1), . . . , (xk , yk) for all k ∈ [1,n], and Ñ ∈ OPT(T). Let
S = (x1, y1), . . . , (xn , yn) be a CPS fully reducing T and let OPT(k)(T) consist of all net-
works N ∈OPT(T) such that each pair (xi , yi), i ∈ [1,k], is reducible in NS(i−1) .

Suppose we are incrementally constructing a CPS S = (x1, y1), . . . , (xn , yn) for T with
some heuristic in the CPH class. If we had an oracle that at each iteration i told us if
a reducible pair (x, y) of T (i−1) were a reducible pair in some N ∈ OPT(i−1)(T), then
picking such a cherry would likely lead to a short CPS, which consequently leads to a
network with few reticulations.

6.4. PREDICTING GOOD CHERRIES VIA MACHINE LEARNING
In this section, we present a supervised machine-learning classifier that (imperfectly)
simulates the ideal oracle described at the end of Section 6.3.3. The goal is to predict,
based on T , whether a given cherry of T is a cherry or a reticulated cherry in a net-
work N displaying T with a close-to-optimal number of reticulations, without know-
ing N . We then exploit the output of the classifier to define new functions PickNext, that
in turn define new machine-learned heuristics in the class of CPH (Algorithm 6.1).

Specifically, we train a random forest classifier on data that encapsulates informa-
tion on the cherries in the tree set. Given a partial CPS, each reducible pair in TS is
represented by one data point. Each data point is a pair (F,c), where F is an array con-
taining the features of a cherry (x, y) and c is an array containing the probability that the
cherry belongs to each of the possible classes described below. Recall that cherries are
ordered pairs, so (x, y) and (y, x) give rise to two distinct data points. The classification
model learns the association between F and c.

The true class of a cherry (x, y) of T depends on whether, for the (unknown) network
N that we aim to reconstruct: (class 1) (x, y) is a cherry of N ; (class 2) (x, y) is a reticulated
cherry of N ; (class 3) (x, y) is not reducible in N , but (y, x) is a reticulated cherry; or (class
4) neither (x, y) nor (y, x) are reducible in N . Thus, for the data point of a cherry (x, y),
c[i] contains the probability that (x, y) is in class i , and c[1]+ c[2] gives the predicted
probability that (x, y) is reducible in N . We define the following two heuristics in the
CPH framework.

ML. Given a threshold τ ∈ [0,1), function PickNext picks the cherry with the highest
predicted probability of being reducible in N if this probability is at least τ; or a
random cherry if none has a probability of being reducible above τ.

TrivialML. Function PickNext picks a random trivial pair, if there exists one; otherwise
it uses the same rules as ML.

6.4. PREDICTING GOOD CHERRIES VIA MACHINE LEARNING

6

153

In both cases, whenever a trivial pair is picked, we do tree expansion, as described in
Section 6.3.2. Note that if τ= 0, since the predicted probabilities are never exactly 0, ML
is fully deterministic. In Section 6.5.2 we show how the performance of ML is impacted
by the choice of different thresholds.

Table 6.1: Features of a cherry (x, y). Features 6-12 can be computed for both branch lengths and unweighted
branches. We refer to these two options as distance and topological distance, respectively.

Num Feature name Description

1 Cherry in tree Ratio of trees that contain cherry (x, y)
2 New cherries Number of new cherries of T after picking cherry (x, y)
3 Before/after Ratio of the number of cherries of T before/after picking cherry (x, y)
4 Trivial Ratio of trees with both leaves x and y that contain cherry (x, y)
5 Leaves in tree Ratio of trees that contain both leaves x and y

Features measured by distance (d) and topology (t)

6d ,t Tree depth Avg over trees with (x, y) of ratios “depth of the tree/max depth over all trees”
7d ,t Cherry depth Avg over trees with (x, y) of ratios “depth of (x, y) in the tree/depth of the tree”
8d ,t Leaf distance Avg over trees with x and y of ratios “x-y leaf distance/depth of the tree”
9d ,t Leaf depth x Avg over trees with x and y of ratios “root-x distance/depth of the tree”
10d ,t Leaf depth y Avg over trees with x and y of ratios “root-y distance/depth of the tree”
11d ,t LCA distance Avg over trees with x and y of ratios “x-LCA(x, y) distance/y-LCA(x, y) distance”
12d ,t Depth x/y Avg over trees with x and y of ratios “root-x distance/root-y distance”

To assign a class to each cherry, we define 19 features, summarized in Table 6.1, that
may capture essential information about the structure of the set of trees, and that can be
efficiently computed and updated at every iteration of the heuristics.

The depth (resp. topological depth) of a node u in a tree T is the total branch length
(resp. the total number of edges) on the root-to-u path; the depth of a cherry (x, y) is the
depth of the common parent of x and y ; the depth of T is the maximum depth of any
cherry of T .The (topological) leaf distance between x and y is the total branch length
of the path from the parent of x to the lowest common ancestor of x and y , denoted by
LCA(x, y), plus the total length of the path from the parent of y to LCA(x, y) (resp. the
total number of edges on both paths). In particular, the leaf distance between the leaves
of a cherry is zero.

6.4.1. TIME COMPLEXITY
Designing algorithms with the best possible time complexity was not the main objective
of this work. However, for completeness, we provide worst-case upper bounds on the
running time of our heuristics. We start by stating a general upper bound for the whole
CPH framework in the function of the time required by the PickNext routine.

Lemma 6.4. The running time of the heuristics in the CPH framework is O (|T |2|X | +
cost (PickNext)), where cost (PickNext) is the total time required to choose reducible pairs
over all iterations. In particular, Rand takes O (|T |2|X |) time.

Proof. An upper bound for the sequence length is (|X |−1)|T | as each tree can individ-
ually be fully reduced using at most |X |−1 pairs. Hence, the while loop of Algorithm 6.1
is executed at most (|X |−1)|T | times. Moreover, reducing the pair and updating the set

6

154 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

of reducible pairs after one iteration takes O(1) time per tree. Combining this with the
fact that CompleteSeq takes O (|S|) =O (|X ||T |) time, we obtain the stated time complex-
ity. Since choosing a random reducible pair takes O (1) time at each iteration, Rand takes
trivially O (|T |2|X |) time.

Note that by Lemma 6.2 the number of reticulations r (N) of the network recon-
structed from the output CPS is bounded by (|X | − 1)|T | − |X | + 1 = O (|T | · |X |), and
thus the time complexity of Rand is also O (r (N)|T |).

Let us now focus on the time complexity of the machine-learned heuristics ML and
TrivialML. At any moment during the execution of the heuristics, we maintain a data
structure that stores all the current cherries in T and allows constant-time insertions,
deletions, and access to the cherries and their features. A possible implementation of
this data structure consists of a hashtable cherryfeatures paired with a list cherrylist of the
pairs currently stored in cherryfeatures. We will use cherrylist to iterate over the current
cherries of T , and cherryfeatures to check whether a certain pair is currently a cherry of
T and to access its features.

The total number of cherries inserted in cherryfeatures over all the iterations is
bounded by the total size of the trees ||T || because up to two cherries can be created
for each internal node over the whole execution. We will assume that we have constant-
time access to the leaves of each tree: specifically, given T ∈T and x ∈ X , we can check
in constant time whether x is currently a leaf of T 1.

INITIALISATION

The cherries of T can be identified and features 1-3 can be initially computed in O (||T ||)
time by traversing all trees bottom-up. Features 4-5 can be computed in O (min{|T | ·
||T ||, |T | · |X |2}) time by checking, for each T ∈ T and each cherry (x, y) of T , whether
both x and y appear in T . Features 6d ,t to 12d ,t can also be initially computed with a
traversal of T made efficient by preprocessing each tree in linear time to allow constant-
time LCA queries [96] and by storing the depth (both topological and with the branch
lengths) of each node. We also store the topological and branch length depth of each
tree and their maximum value over T . Altogether this gives the following lemma.

Lemma 6.5. Initialising all features for a tree set T of total size ||T || over a set of taxa X
requires O (min{|T | · ||T ||, |T | · |X |2}) time and O (||T ||) space.

The next lemma provides an upper bound on the time complexity of updating the
distance-independent features. The proof is given in Appendix 6.A.

Lemma 6.6. Updating features 1-5 for a set T of |T | trees of total size ||T || over a set of
taxa X requires O (|T |(||T ||+ |X |2)) total time and O (||T ||) space.

Since searching for trivial cherries at each iteration of the randomized heuristic Triv-
ialRand can be done with the same procedure we use for updating feature 4 in the
machine-learned heuristics, which in particular requires O (|T | · ||T ||) time, we have the
following corollary.

1This can be obtained maintaining a list of leaves of each tree and a hashtable with the leaves as keys: the value
of a key x is a pointer to the position of x in the list.

6.5. EXPERIMENTS

6

155

Corollary 6.1. The time complexity of TrivialRand is O (|T | · ||T ||) =O (|T |2 · |X |).

The total time required for updating the distance-dependent features raises the time
complexity of ML and TrivialML to quadratic in the input size. However, the extensive
analysis reported in Appendix 6.A shows that this is only due to the single feature 6d , and
without such a feature, the machine-learned heuristics would be asymptotically as fast
as the randomized ones. Since Table 6.4 in Appendix 6.C shows that this feature is not
particularly important, in future work it could be worth investigating whether disregard-
ing it leads to equally good results in shorter time.

Lemma 6.7. The time complexity of ML and TrivialML is O (||T ||2).

6.4.2. OBTAINING TRAINING DATA

The high-level idea to obtain training data is to first generate a phylogenetic network N ;
then to extract the set T of all the exhaustive trees displayed in N ; and finally, to itera-
tively choose a random reducible pair (x, y) of N , to reduce it in T as well as in N , and
to label the remaining cherries of T with one of the four classes defined in Section 6.4
until the network is fully reduced. Here, we assume that each reducible pair (x, y) of
N can also be reduced in T , as is the case for tree-child networks and restricted CPSs.
As Janssen and Murakami [109, Figure 13] noticed, this is not necessarily the case for
orchard networks and a regular CPS. Whenever we reach an iteration in which the re-
ducible pairs of N are not reducible in T , we terminate, but keep all previously obtained
data.

We generate two different kinds of binary orchard networks, normal and not normal,
with branch lengths and up to 9 reticulations using the LGT (lateral gene transfer) net-
work generator of Pons et al. [169], imposing normality constraints when generating the
normal networks. For each such network N , we then generate the set T consisting of all
the exhaustive trees displayed in N . If N is normal, N is an optimal network for T Will-
son [218, Theorem 3.1]. This is not necessarily true for any LGT-generated network, but
even in this case, we expect N to be reasonably close to optimal, because we remove
redundant reticulations (i.e., reticulations that do not create any new displayed trees)
when we generate it and because the trees in T cover all the edges of N . In particu-
lar, for LGT networks r (N) provides an upper bound estimate on the minimum possible
number of reticulations of any network displaying T , and we will use it as a reference
value for assessing the quality of our results on synthetic LGT-generated data.

6.5. EXPERIMENTS
The code of all our heuristics and for generating data is written in Python and is available
at https://github.com/estherjulien/learn2cherrypick. All experiments ran on
an Intel Xeon Gold 6130 CPU @ 2.1 GHz with 96 GB RAM. We conducted experiments on
both synthetic and real data, comparing the performance of Rand, TrivialRand, ML and
TrivialML, using threshold τ= 0. Similar to the training data, we generated two synthetic
datasets by first growing a binary orchard network N using Pons et al. [169], and then
extracting T as a subset of the exhaustive trees displayed in N . We provide details on
each dataset in Section 6.5.2.

https://github.com/estherjulien/learn2cherrypick

6

156 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

5 10 20 50 100
Tree Set Size

0

20

40

60

80

100

R
et

ic
ul

at
io

n

TrivialRand without Tree Expansion
TrivialRand with Tree Expansion

Figure 6.6: Number of reticulations output by TrivialRand with and without using tree expansion. The height
of the bars is the average reticulation number over each group, obtained by selecting the best of 200 runs for
each instance.

We start by analysing the usefulness of tree expansion, the heuristic rule described
in Section 6.3.2. We synthetically generated 112 instances for each tree set size |T | ∈
{5,10,20,50,100} (560 in total), all consisting of trees with 20 leaves each, and grouped
them by |T |; we then ran TrivialRand 200 times (both with and without tree expansion)
on each instance, selected the best output for each of them, and finally took the average
of these results over each group of instances. The results are in Figure 6.6, showing that
the use of tree expansion brought the output reticulation number down by at least 16%
(for small instances) and up to 40% for the larger instances. We consistently chose to use
this rule in all the heuristics that detect trivial cherries, namely, TrivialRand, TrivialML,
ML (although ML does not explicitly favour trivial cherries, it does check whether a se-
lected cherry is trivial using feature number 2), and the non-learned heuristic that will
be introduced in Section 6.5.3.

6.5.1. PREDICTION MODEL

The random forest is implemented with Python’s scikit-learn [166] package using de-
fault settings. We evaluated the performance of our trained random forest models on dif-
ferent datasets in a holdout procedure: namely, we removed 10% of the data from each
training dataset, trained the models on the remaining 90% and used the holdout 10% for
testing. The accuracy was assessed by assigning to each test data point the class with the
highest predicted probability and comparing it with the true class. Before training the
models, we balanced each dataset so that each class had the same number of represen-
tatives. Each training dataset differed in terms of the number M of networks used for
generating it and the number of leaves of the networks. For each dataset, the number L
of leaves of each generated network was uniformly sampled from [2,maxL], where maxL
is the maximum number of leaves per network. We constructed LGT networks using the
LGT generator of Pons et al. [169]. This generator has three parameters: n for the num-
ber of steps, α for the probability of lateral gene transfer events, and β for regulating the
size of the biconnected components of the network (called blobs). The combination of
these parameters determines the level (maximum number of reticulations per blob), the

6.5. EXPERIMENTS

6

157

number of reticulations, and the number of leaves of the output network. In our experi-
ments, α was uniformly sampled from [0.1,0.5] and β= 1 (see Pons et al. [169] for more
details).

To generate normal networks we used the same generator with the same parame-
ters, but before adding a reticulation we check if it respects the normality constraints
and only add it if it does. Each generated network gave rise to a number of data points:
the total number of data points per dataset is shown in Table 6.3 in Appendix 6.B. Each
row of Table 6.3 corresponds to a dataset on which the random forest can be trained, ob-
taining as many ML models. We tested all the models on all the synthetically generated
instances: we show these results in Figures 6.18, 6.19 and 6.20 in Appendix 6.C. In Sec-
tion 6.5.2 we will report the results obtained for the best-performing model for each type
of instance. Among the advantages of using a random forest as a prediction model, there
is the ability of computing feature importance, shown in Table 6.4 in Appendix 6.B. Some
of the most useful features for a cherry (x, y) appear to be ‘Trivial’ (the ratio of the trees
containing both leaves x and y in which (x, y) is a cherry) and ‘Cherry in tree’ (the ratio
of trees that contain (x, y)). This was not unexpected, as these features are well-suited to
identify trivial cherries.

‘Leaf distance’ (t,d), ‘LCA distance’ (t) and ‘Depth x/y ’ (t) are also important features.
The rationale behind these features was to try to identify reticulated cherries. This was
also the idea for the feature ‘Before/after’, but this has, surprisingly, a very low impor-
tance score. In future work, we plan to conduct a thorough analysis of whether some of
the seemingly least important features can be removed without affecting the quality of
the results.

6.5.2. EXPERIMENTAL RESULTS

We assessed the performance of our heuristics on instances of four types: normal, LGT,
ZODS (binary non-orchard networks), and real data. Normal, LGT and ZODS data are
synthetically generated. We generated the normal instances as we did for the training
data: we first grew a normal network using the LGT generator and then extracted all
the exhaustive trees displayed in the network. We generated normal data for different
combinations of the following parameters: L ∈ {20,50,100} (number of leaves per tree)
and R ∈ {5,6,7} (reticulation number of the original network). Note that, for normal in-
stances, |T | = 2R . For every combination of the parameters L and R we generated 48
instances: by instance group we indicate the set of instances generated for one specific
parameter pair.

For the LGT instances, we grew the networks using the LGT generator, but unlike for
the normal instances we then extracted only a subset of the exhaustive trees from each of
them, up to a certain amount |T | ∈ {20,50,100}. The other parameters for LGT instances
are the number of leaves L ∈ {20,50,100} and the number of reticulations R ∈ {10,20,30}.
For a fixed pair (L, |T |), we generated 16 instances for each possible value of R, and
analogously, for a fixed pair (L,R) we generated 16 instances for each value of |T |. The
48 instances generated for a fixed pair of values constitute a LGT instance group.

We generated non-orchard binary networks using the ZODS generator [228]. This
generator has two user-defined parameters: λ, which regulates the speciation rate, and
ν, which regulates the hybridization rate. Following Janssen and Liu [108] we set λ = 1

6

158 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

Table 6.2: Number of real data instances for each group (combination of parameters L and |T |).

L |T | Tot. Trees
10 20 50 100

20 50 50 50 50 1684
50 20 20 20 20 290
100 5 5 1 0 53

and we sampled ν ∈ [0.0001,0.4] uniformly at random. Like for the LGT instances, we
generated an instance group of size 48 for each pair of values (L, |T |) and (L,R), with
L ∈ {20,50,100}, |T | ∈ {20,50,100}, R ∈ {10,20,30}.

Finally, the real-world dataset consists of gene trees on homologous gene sets found
in bacterial and archaeal genomes, was originally constructed in Beiko [20] and made
binary in van Iersel et al. [201]. We extracted a subset of instances (Table 6.2) from
the binary dataset, for every combination of parameters L ∈ {20,50,100} and |T | ∈
{10,20,50,100}.

For the synthetically generated datasets, we evaluated the performance of each
heuristic in terms of the output number of reticulations, comparing it with the number
of reticulations of the network N from which we extracted T . For the normal instances,
N is the optimal network [218, Theorem 3.1]; this is not true, in general, for the LGT and
ZODS datasets, but even in these cases, r (N) clearly provides an estimate (from above)
of the optimal value, and thus we used it as a reference value for our experimental eval-
uation.

For real data, in the absence of the natural estimate on the optimal number of reticu-
lations provided by the starting network, we evaluated the performance of the heuristics
comparing our results with the ones given by the exact algorithms from van Iersel et al.
[201] (TreeChild) and from Albrecht [3] (Hybroscale), using the same datasets that were
used to test the two methods in van Iersel et al. [201]. These datasets consist of rather
small instances (|T | ≤ 8); for larger instances, we run TrivialRand 1000 times for each
instance group, selected the best result for each group, and used it as a reference value
(Figure 6.10).

We now describe in detail the results we obtained for each type of data and each of
the algorithms we tested.

EXPERIMENTS ON NORMAL DATA

For the experiments in this section we used he ML model trained on 1000 normal net-
works with at most 100 leaves per network (see Figure 6.18 in Appendix 6.C). We ran the
machine-learned heuristics once for each instance and then averaged the results within
each instance group (recall that one instance group consists of the sets of all the exhaus-
tive trees of 48 normal networks having the same fixed number of leaves and reticula-
tions). The randomized heuristics Rand and TrivialRand were run min{x(I),1000} times
for each instance I , where x(I) is the number of runs that can be executed in the same
time as one run of ML on the same instance. We omitted the results for LowPair because
they were at least 44% worse on average than the worst-performing heuristic we report.

In Figure 6.7 we summarize the results. Solid bars represent the ratio between the

6.5. EXPERIMENTS

6

159

(20, 5) (20, 6) (20, 7) (50, 5) (50, 6) (50, 7) (100, 5) (100, 6) (100, 7)
(L, R)

0

2

4

6

8

10

12
R

et
ic

ul
at

io
n

/ R
ef

er
en

ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,5) (20,6) (20,7) (50,5) (50,6) (50,7) (100,5) (100,6) (100,7)
(L, R)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Figure 6.7: Experimental results for normal data. Each point on the horizontal axis corresponds to one instance
group. In the left graph, the height of each bar gives the average of the results over all instances of the group,
scaled by the optimum value for the group. The right graph compares the average output of ML within each
instance group and the average of the best output given by TrivialRand for each instance of a group. The
shaded areas represent 95% confidence intervals.

average reported reticulation number and the optimal value, for each instance group
and for each of the four heuristics. Dashed bars represent the ratio between the aver-
age (over the instances within each group) of the best result among the min{x(I),1000}
runs for each instance I and the optimum. The machine-learned heuristics ML and Triv-
ialML seem to perform very similarly, both leading to solutions close to optimum. The
average performance of TrivialRand is around 4 times worse than the machine-learned
heuristics; in contrast, if we only consider the best solution among the multiple runs for
each instance, they are quite good, having only up to 49% more reticulations than the
optimal solution, but they are still at least 4% worse (29% worse on average) than the
machine-learned heuristics’ solutions: see the right graph of Figure 6.7. The left graph
of Figure 6.7 shows that the performance of the randomized heuristics seems to be neg-
atively impacted by the number of reticulations of the optimal solution, while we do
not observe a clear trend for the machine-learned heuristics, whose performance is very
close to optimum for all the considered instance groups. Indeed, the number of exist-
ing phylogenetic networks with a certain number of leaves grows exponentially in the
number of reticulations, thus making it less probable to reconstruct a “good" network
with random choices. This is consistent with the existing exact methods being FPT in
the number of reticulations [201, 216]. The fully randomized heuristic Rand always per-
formed much worse than all the others, indicating that identifying the trivial cherries has
a great impact on the effectiveness of the algorithms (recall that ML implicitly identifies
trivial cherries).

EXPERIMENTS ON LGT DATA

For the experiments on LGT data we used the ML model trained on 1000 LGT networks
with at most 100 leaves per network (see Figure 6.19 in Appendix 6.C). The setting of the
experiments is the same as for the normal data (we run the randomized heuristics mul-
tiple times and the machine-learned heuristics only once for each instance), with two
important differences. First, for LGT data we only take proper subsets of the exhaus-
tive trees displayed by the generating networks, and thus we have two kinds of instance
groups: one where in each group the number of trees extracted from a network and the
number of leaves of the networks are fixed, but the trees come from networks with dif-
ferent numbers of reticulations; and one where the number of reticulations of the gen-

6

160 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

(20, 20) (20, 50) (20, 100) (50, 20) (50, 50) (50, 100) (100, 20) (100, 50) (100, 100)
(L, | |)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,20) (20,50) (20,100) (50,20) (50,50) (50,100) (100,20) (100,50) (100,100)
(L, | |)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Tree size

(20, 10) (20, 20) (20, 30) (50, 10) (50, 20) (50, 30) (100, 10) (100, 20) (100, 30)
(L, R)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,10) (20,20) (20,30) (50,10) (50,20) (50,30) (100,10) (100,20) (100,30)
(L, R)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Reticulation number

Figure 6.8: Experimental results for LGT data. Each point on the horizontal axis corresponds to one instance
group. For the graphs on the left, there is one group for each fixed pair (L, |T |) consisting of 16 instances
coming from LGT networks for each value of R ∈ {10,20,30}. For the graphs on the right, there is one group for
each fixed pair (L,R) consisting of 16 instances coming from LGT networks for each value of |T | ∈ {20,50,100}.
In the top graphs, the height of each bar gives the average of the results over all instances of the group, each
scaled by the number of reticulations of the generating network. The bottom graphs compare the average
output of ML within each instance group and the average of the best output given by TrivialRand for each
instance group. The shaded areas represent 95% confidence intervals.

erating networks and their number of leaves are fixed, but the number of trees extracted
from a network varies. The second important difference is that the reference value we
use for LGT networks is not necessarily the optimum, but it is just an upper bound given
by the number of reticulations of the generating networks which we expect to be rea-
sonably close to the optimum (see Section 6.4.2). The results for the LGT datasets are
shown in Figure 6.8. Comparing these results with those of Figure 6.7, it is evident that
the LGT instances were more difficult than the normal ones for all the tested heuristics:
this could be because the normal instances consisted of all the exhaustive trees of the
generating networks, while the LGT instances only have a subset of them and thus carry
less information.

The machine-learned heuristics performed substantially better (up to 80% on aver-
age) than the best randomized heuristic TrivialRand in all instance groups but the ones
with the smallest values for parameters R, |T | and L, for which the performances are es-
sentially overlapping. On the contrary, the advantage of the machine-learned methods
is more pronounced when the parameters are set to the highest values. This is because
the larger the parameters, the more the possible different networks that embed T , thus
the less likely for the randomized methods to find a good solution. From the graphs on
the right of Figure 6.8, it seems that the number of reticulations has a negative impact
on both machine-learned and randomized heuristics, the effect being more pronounced
for the randomized ones. The effect of the number of trees |T | on the quality of the so-
lutions is not as clear (Figure 6.8, left). However, we can still see that the trend of ML and
TrivialRand is the same: the “difficult" instance groups are so for both heuristics, even

6.5. EXPERIMENTS

6

161

(20, 20) (20, 50) (20, 100) (50, 20) (50, 50) (50, 100) (100, 20) (100, 50) (100, 100)
(L, | |)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
R

et
ic

ul
at

io
n

/ R
ef

er
en

ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,20) (20,50) (20,100) (50,20) (50,50) (50,100) (100,20) (100,50) (100,100)
(L, | |)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Tree size

(20, 10) (20, 20) (20, 30) (50, 10) (50, 20) (50, 30) (100, 10) (100, 20) (100, 30)
(L, R)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialML
Rand Avg.
Rand Best
TrivialRand Avg.
TrivialRand Best

(20,10) (20,20) (20,30) (50,10) (50,20) (50,30) (100,10) (100,20) (100,30)
(L, R)

1

2

3

4

5

6

7

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Best

Reticulation number

Figure 6.9: Experimental results for ZODS data. Each point on the horizontal axis corresponds to one in-
stance group. For the graphs on the left, there is one group for each fixed pair (L, |T |) consisting of 16 in-
stances coming from ZODS networks for each value of R ∈ {10,20,30}. For the graphs on the right, there is
one group for each fixed pair (L,R) consisting of 16 instances coming from ZODS networks for each value of
|T | ∈ {20,50,100}. In the top graphs, the height of each bar gives the average of the results it represents over all
instances of the group, each scaled by the number of reticulations of the network the instance originated from.
The bottom graphs compare the average output of ML within each instance group and the average of the best
output given by TrivialRand for each group instance. The shaded areas represent 95% confidence intervals.

if the degradation in the quality of the solutions for such instance groups is less marked
for ML than for TrivialRand.

EXPERIMENTS ON ZODS DATA

For the experiments on ZODS data we used the ML model trained on 1000 LGT networks
with at most 100 leaves per network (see Figure 6.20 in Appendix 6.C). The setting of the
experiments is the same as for the LGT data, and the results are shown in Figure 6.9. At
first glance, the performance of the randomized heuristics seems to be better for ZODS
data than for LGT data (compare figures 6.8 and 6.9), which sounds counterintuitive.
Recall, however, that all the graphs show the ratio between the number of reticulations
returned by our methods and a reference value, i.e., the number of reticulations of the
generating network: while we expect this reference to be reasonably close to the opti-
mum for LGT networks, this is not the case for ZODS networks. In fact, a closer look to
ZODS networks shows that they have a large number of redundant reticulations which
could be removed without changing the set of trees they display, and thus their retic-
ulation number is in general quite larger than the optimum. This is an inherent effect
of the ZODS generator not having any constraints on the reticulations that can be in-
troduced, and it is more marked on networks with a small number of leaves. Having
a reference value significantly larger than the optimum makes the ratios shown in Fig-
ure 6.9 small (close to 1, especially for TrivialRand on small instances) without implying
that the results for the ZODS data are better than the ones for the LGT data. The graphs
of Figures 6.8 and 6.9 are thus not directly comparable. The reference value for the ex-

6

162 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

0

5

10

15

20

25

30

Av
er

ag
e

R
et

ic
ul

at
io

n
N

um
be

r

ML
TrivialRand Avg.
TrivialRand Best
Hybroscale
TreeChild

(10, 2) (10, 3) (10, 4) (10, 5) (10, 6) (10, 7) (10, 8) (20, 2) (20, 3) (20, 4) (20, 5) (30, 2) (30, 3) (40, 2) (50, 2) (60, 2) (80, 2)
(L, | |)

0

1

2

3

4

5

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce ML

TrivialRand Best

Figure 6.10: Comparison of ML, TrivialRand, Hybroscale, and TreeChild on real data. Each point on the
horizontal axis corresponds to one instance group, consisting of 10 instances for a fixed pair (L, |T |). In the top
graph, the height of each bar gives the average, over all instances of the group, of the number of reticulations
returned by the method. The bottom graphs compare the average output of ML within each instance group
and the average of the best output given by TrivialRand within the group. The shaded areas represent 95%
confidence intervals.

periments on ZODS data not being realistically close to the optimum, however, does not
invalidate their significance. Indeed, the scope of such experiments was just to compare
the performance of the machine-learned heuristics on data entirely different from those
they were trained on with the performance of the randomized heuristics, which should
not depend on the type of network that was used to generate the input. As expected
and in contrast with normal and LGT data, the results show that the machine-learned
heuristics perform worse than the randomized ones on ZODS data, consistent with the
ML methods being trained on a completely different class of networks.

EXPERIMENTS ON REAL DATA

We conducted two sets of experiments on real data, using the ML model trained on the
dataset trained on 1000 LGT networks with at most 100 leaves each. For sufficiently small
instances, we compared the results of our heuristics with the results of two existing tools
for reconstructing networks from binary trees: TreeChild [201] and Hybroscale [3]. Hy-
broscale is an exact method performing an exhaustive search on the networks displaying
the input trees, therefore it can only handle reasonably small instances in terms of the
number of input trees. TreeChild is a fixed-parameter (in the number of reticulations
of the output) exact algorithm that reconstructs the best tree-child network, a restricted
class of phylogenetic networks, and due to its fast-growing computation time cannot
handle large instances either.

We tested ML and TrivialRand against Hybroscale and TreeChild using the same
dataset used in van Iersel et al. [201], in turn taken from Beiko [20]. The dataset con-
sists of ten instances for each possible combination of the parameters |T | ∈ [2,8] and
L ∈ {10,20,30,40,50,60,80,100,150}. In Figure 6.10 we show results only for the instance
groups for which Hybroscale or TreeChild could output a solution within 1 hour, con-

6.5. EXPERIMENTS

6

163

(20, 10) (50, 10) (100, 10) (20, 20) (50, 20) (100, 20) (20, 50) (50, 50) (100, 50) (20, 100) (50, 100)

(L, | |)

0.8

0.9

1.0

1.1

1.2

1.3

R
et

ic
ul

at
io

n/
Tr

iv
ia

lR
an

d
Be

st
ML (M = 10, maxL = 100)
Best ML
ML (M = 1000, maxL = 100)
WABI ML

Figure 6.11: Ratio between the performance of ML and the best value output by TrivialRand for different
instance groups and different training sets. TrivialRand is executed min{x(I),1000} times for each instance I ,
x(I) being the number of runs that could be completed in the same time as one run of ML on I . The results
are then averaged within each group. Each blue line represents the results obtained training the model with a
different set of 10 randomly generated LGT networks with at most 100 leaves each. The green line corresponds
to the training set used in Bernardini et al. [27]; the orange line represents one of the best-performing sets; the
red line corresponds to the training set we used for the experiments on LGT and ZODS data in this chapter,
consisting of 1000 randomly generated LGT networks.

sistent with the experiments in van Iersel et al. [201]. As a consequence of Hybroscale
and TreeChild being exact methods (TreeChild only for a restricted class of networks),
they performed better than both ML and TrivialRand on all instances they could solve,
although the best results of TrivialRand are often close (no worse than 15%) and some-
times match the optimal value. The main advantage of our heuristics is that they can
handle much larger instances than the exact methods. In the conference version of
this work [27] we showed the results of our heuristics on large real instances, using a
ML model trained on 10 networks with at most 100 leaves each. These results demon-
strated that consistently with the simulated data, the machine-learned heuristics gave
significantly better results than the randomized ones for the largest instances. When
we first repeated the experiments with the new models trained on 1000 networks with
maxL = 100, however, we did not obtain similar results: instead, the results of the ran-
domized heuristics were better or only marginally worse than the machine-learned ones
on almost all the instance groups, including the largest. Puzzled by these results, we
conducted an experiment on the impact of the training set on real data. The results are
reported in Figure 6.11, and show that the choice of the networks on which we train our
model has a big impact on the quality of the results for the real datasets. This is in con-
trast with what we observed for the synthetic datasets, for which only the class of the
training networks was important, not the specific instances of the networks themselves.
According to what was noted in van Iersel et al. [201], this is most likely due to the fact
that the real phylogenetic data have substantially more structure than random synthetic
datasets, and the randomly generated training networks do not always reflect this struc-
ture. By chance, the networks we used for training the model we used in Bernardini et al.
[27] were similar to real phylogenetic networks, unlike the 1000 networks in the training
set of this chapter.

6

164 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

5 6 7
R

50

100

150

200

250

R
un

tim
e

(s
ec

)

Leaves per tree
20
50
100

(a) Normal

10 20 30
R

25

50

75

100

125

150

175

200

(b) LGT

10 20 30
R

50

100

150

200

250

(c) ZODS

10 20 50 100
| |

0

100

200

300

400

500

600

(d) Real

Figure 6.12: The running time (in seconds) of ML for the instance groups described in Section 6.5.2. The solid
lines represent the average of the running times for the instances within each instance group. The shaded
areas represent 95% confidence intervals.

0

1000

2000

3000

CPH
Hybroscale
TreeChild

(10
, 2

)

(10
, 3

)

(10
, 4

)

(10
, 5

)

(10
, 6

)

(10
, 7

)

(10
, 8

)

(20
, 2

)

(20
, 3

)

(20
, 4

)

(20
, 5

)

(20
, 6

)

(20
, 7

)

(20
, 8

)

(30
, 2

)

(30
, 3

)

(30
, 4

)

(30
, 5

)

(30
, 6

)

(30
, 7

)

(30
, 8

)

(40
, 2

)

(40
, 3

)

(40
, 4

)

(40
, 5

)

(40
, 6

)

(40
, 7

)

(40
, 8

)

(50
, 2

)

(50
, 3

)

(50
, 4

)

(50
, 5

)

(50
, 6

)

(50
, 7

)

(50
, 8

)

(60
, 2

)

(60
, 3

)

(60
, 4

)

(60
, 5

)

(60
, 6

)

(60
, 7

)

(60
, 8

)

(80
, 2

)

(80
, 3

)

(80
, 4

)

(80
, 5

)

(80
, 6

)

(80
, 7

)

(80
, 8

)

(10
0,

2)

(10
0,

3)

(10
0,

4)

(10
0,

5)

(10
0,

6)

(10
0,

7)

(10
0,

8)

(15
0,

2)

(15
0,

3)

(15
0,

4)

(15
0,

5)

(15
0,

6)

(15
0,

7)

(15
0,

8)

(L, | |)

0

50

100

150

R
un

tim
e

(s
ec

)

Figure 6.13: The running time of ML on the real dataset described in Section 6.5.2 compared with the running
time of the exact methods Hybroscale and TreeChild on the same dataset. The solid lines represent the average
running times within each instance group. The shaded areas represent 95% confidence intervals.

EXPERIMENTS ON SCALABILITY

We conducted experiments to study how the running time of our heuristics scales with
increasing instance size for all datasets. In Figure 6.12 we report the average of the run-
ning times of ML for the instances within each instance group with a 95% confidence in-
terval, for an increasing number of reticulations (synthetic datasets) or number of trees
(real dataset). The datasets and the instance groups are those described in the previous
sections. Note that we did not report the running times of the randomized heuristics
because they are meant to be executed multiple times on each instance, and in all the
experiments we bounded the number of executions precisely using the time required for
one run of ML.

We also compared the running time of our heuristics with the running times of the
exact methods TreeChild and Hybroscale. The results are shown in Figure 6.13 and are
consistent with the execution times of the exact methods growing exponentially, while
the running time of our heuristics grows polynomially. Note that networks with more
reticulations are reduced by longer CPS and thus the running time increases with the
number of reticulations.

6.5. EXPERIMENTS

6

165

0 5 10 15 20 25 50
Missing leaves (%)

0

5

10

15

20

25

30

35

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

 Method (L, R)
ML (100,10)
ML (100,20)
ML (100,30)
TrivialRand Best (100,10)
TrivialRand Best (100,20)
TrivialRand Best (100,30)

Figure 6.14: Ratio between the number of reticulations outputted by ML and TrivialRand Best and the ref-
erence value for an increasing percentage of removed leaves on LGT data. Each point on the horizontal axis
corresponds to a certain percentage of leaves removed from each tree; each line represents the average, within
the instances of a group (L,R) with a certain percentage of removed leaves, of the output reticulation number
divided by the reference value. The shaded areas represent 95% confidence intervals.

EXPERIMENTS ON NON-EXHAUSTIVE INPUT TREES

The instances on which we tested our methods so far all consisted of a set of exhaustive
trees, that is, each input tree had the same set of leaves which coincided with the set of
leaves of the network. However, this is not a requirement of our heuristics, which are
able to produce feasible solutions also when the leaf sets of the input trees are different,
that is when their leaves are proper subsets of the leaves of the optimal networks that dis-
play them. To test their performance on this kind of data, we generated 18 LGT instance
groups starting from the instances we used in Section 6.5.2 and removing a certain per-
centage p of leaves from each tree in each instance uniformly at random. Specifically,
we generated an instance group for each value of p ∈ {5,10,15,20,25,50} starting from
the LGT instance groups with L = 100 leaves and R ∈ {10,20,30} reticulations. Since the
performances of the two machine-learned heuristics were essentially overlapping for all
of the other experiments, and since TrivialRand performed consistently better than the
other randomized heuristics, we limited this test to ML and TrivialRand. The results are
shown in Figure 6.14. In accordance with intuition, the performance of both methods
decreases with an increasing percentage of removed leaves, as the trees become progres-
sively less informative. However, the degradation in the quality of the solutions is faster
for ML than for TrivialRand, consistent with the fact that ML was trained on exhaustive
trees only: when the difference between the training data and the input data becomes
too large, the behavior of the machine-learned heuristic becomes unpredictable. We de-
mand the design of algorithms better suited for trees with missing leaves for future work.

EFFECT OF THE THRESHOLD ON ML
We tested the effectiveness of adding a threshold τ > 0 to ML on the same datasets of
Sections 6.5.2, 6.5.2 and 6.5.2 (normal, LGT and ZODS). Recall that each instance group
consists of 48 instances. We ran ML ten times for each threshold τ ∈ {0,0.1,0.3,0.5,0.7}
on each instance, took the lowest output reticulation number and averaged these results
within each instance group.

6

166 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

0 10 30 50 70
Threshold (%)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

(a) Normal

0 10 30 50 70
Threshold (%)

1.5

2.0

2.5

3.0

3.5

4.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

Leaves per tree
20
50
100

(b) LGT

0 10 30 50 70
Threshold (%)

2.0

2.5

3.0

3.5

4.0

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

(c) ZODS

Figure 6.15: The reticulation number when running ML with different thresholds on the instance groups of
Sections 6.5.2, 6.5.2 and 6.5.2. Each instance was run 10 times, and the lowest reticulation value of these runs
was selected. The shaded areas represent 95% confidence intervals.

The results are shown in Figure 6.15. For all types of data, a threshold τ≤ 0.3 is ben-
eficial, intuitively indicating that when the probability of a pair being reducible is small
it gives no meaningful indication, and thus random choices among these pairs are more
suited. The seemingly best value for the threshold, though, is different for different types
of instances. The normal instances seem to benefit from quite high values of τ, the best
among the tested values being τ = 0.7. While the optimal τ value for normal instances
could be even higher, we know from Figure 6.7 that it must be τ< 1, as the random strate-
gies are less effective than the one based on machine learning for normal data. For the
LGT and the ZODS instances, the best threshold seems to be around τ = 0.3, while very
high values (τ= 0.7) are counterproductive. This is especially true for the LGT instances,
consistent with the randomized heuristics being less effective for them than for the other
types of data (see Figure 6.8).

These experiments should be seen as an indication that introducing some random-
ness may improve the performance of the ML heuristics, at the price of running them
multiple times. We defer a more thorough analysis to future work.

6.5.3. A NON-LEARNED HEURISTIC BASED ON IMPORTANT FEATURES

In this section we propose FeatImp, yet another heuristic in the CPH framework. Al-
though FeatImp does not rely on a machine-learning model, we defined the rules to
choose a cherry on the basis of the features that were found to be the most relevant
according to the model we used for ML and TrivialML.

To identify the most suitable rules, we trained a classification tree using the same
features and training data as the ones used for the ML heuristic (see figure 6.17 in Ap-
pendix 6.B). We then selected the most relevant features used in such tree and used them
to define the function PickNext listed by Algorithm 6.3: namely, the features 4, 8t , 11d

and 12t of Table 6.1 (the ratio of trees having both leaves x and y in which (x, y) is re-
ducible, the average of the topological leaf distance between x and y scaled by the depth
of the trees, the average of the ratios d(x,LCA(x, y))/d(y,LCA(x, y)) and the average of
the topological distance from x to the root over the topological distance from y to the
root, respectively).

6.6. CONCLUSIONS

6

167

To compute and update these quantities we proceed as described in Section 6.4.1.
The general idea of the function PickNext used in FeatImp is to mimic the first splits
of the classification tree by progressively discarding the candidate reducible pairs that
are not among the top α% scoring for each of the considered features, for some input
parameter α.

Algorithm 6.3: Function PickNext used in FeatImp
Input : A set T of phylogenetic trees and a parameter α ∈ (0,100)
Output : Next cherry to pick (x, y).

1 if there exists a trivial cherry then
2 Select a trivial cherry (x, y) uniformly at random
3 else
4 C ← all reducible pairs of T

5 C ← the α% cherries of C with the highest value for feature 4
6 C ← the α% cherries of C with the highest value for feature 8t
7 C ← the α% cherries of C with the highest value for feature 11d
8 (x, y) ← the pair of C with the highest value for feature 12t

9 end
10 return (x, y)

We implemented FeatImp and test it on the same instances as sections 6.5.2, 6.5.2
and 6.5.2 with α= 20. The results are shown in Figure 6.16. As expected, FeatImp works
consistently worse than ML on all the tested datasets, and it also performs worse than
TrivialRand on most instance groups. However, it is on average 12% better than Triv-
ialRand on the LGT instance group having 50 leaves and 30 reticulations and on all the
LGT instance groups with 100 leaves, which are the most difficult for the randomized
heuristics, as already noticed in Section 6.5.2. The results it provides for such difficult
instances are only on average 20% worse than those of ML, with the advantage of not
having to train a model to apply the heuristic.

These experiments are not intended to be exhaustive, but should rather be seen as an
indication that machine learning can be used as a guide to design smarter non-learned
heuristics. Possible improvements of FeatImp include using different values of α for dif-
ferent features, introducing some randomness in Line 8, that is, instead of choosing the
single top scoring pair to choose one among the topα% at random, or to use fewer/more
features.

6.6. CONCLUSIONS
Our contributions are twofold: first, we presented the first methods that allow recon-
structing a phylogenetic network from a large set of large binary phylogenetic trees. Sec-
ond, we show the promise and the limitation of the use of machine learning in this con-
text. Our experimental studies indicate that machine-learned strategies, consistent with
intuition, are very effective when the training data have a structure similar enough to
the test data. In this case, the results we obtained with machine learning were the best
among all the tested methods, and the advantage is particularly evident in the most dif-
ficult instances. Furthermore, preliminary experiments indicate that the performance of
the machine-learned methods can even be improved by introducing appropriate thresh-

6

168 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

(20
,5)

(20
,6)

(20
,7)

(50
,5)

(50
,6)

(50
,7)

(10
0,5

)

(10
0,6

)

(10
0,7

)

(L, R)

1

2

3

4

5
R

et
ic

ul
at

io
n

/ R
ef

er
en

ce

(a) Normal

(20
,10

)

(20
,20

)

(20
,30

)

(50
,10

)

(50
,20

)

(50
,30

)

(10
0,1

0)

(10
0,2

0)

(10
0,3

0)

(L, R)

2

3

4

5

6

7

8

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

ML
TrivialRand Avg.
TrivialRand Best
FeatImp

(b) LGT

(20
,10

)

(20
,20

)

(20
,30

)

(50
,10

)

(50
,20

)

(50
,30

)

(10
0,1

0)

(10
0,2

0)

(10
0,3

0)

(L, R)

2

4

6

8

10

12

14

R
et

ic
ul

at
io

n
/ R

ef
er

en
ce

(c) ZODS

Figure 6.16: Comparison of the results of FeatImp, ML and TrivialRand on the instance groups described in
Sections 6.5.2, 6.5.2 and 6.5.2. Each point on the horizontal axis corresponds to an instance group; each line
represents the average, within the instance group, of the output reticulation number divided by the reference
value. The shaded areas represent 95% confidence intervals.

olds, in fact mediating between random choices and predictions. However, when the
training data do not sufficiently reflect the structure of the test data, repeated runs of
the fast randomized heuristics lead to better results. The non-learned cherry-picking
heuristic we designed based on the most relevant features of the input (identified using
machine learning) shows yet another interesting direction.

Our results suggest many interesting directions for future work. First of all, we have
seen that machine learning is an extremely promising tool for this problem since it can
identify cherries and reticulated cherries of a network, from displayed trees, with very
high accuracy. It would be interesting to prove a relationship between the machine-
learned models’ accuracy and the produced networks’ quality. In addition, do there ex-
ist algorithms that exploit the high accuracy of the machine-learned models even bet-
ter? Could other machine-learning methods than random forests, or more training data,
lead to even better results? Our methods are applicable to trees with missing leaves but
perform well only if the percentage of missing leaves is small. Can modified sets of fea-
tures be defined that are more suitable for input trees with many missing leaves? More-
over, we have seen that combining randomness with machine learning can lead to bet-
ter results than either individual approach. However, we considered only one strategy
to achieve this. What are the best strategies for combining randomness with machine
learning for this, and other, problems? From a practical point of view, it is important
to investigate whether our methods can be extended to deal with nonbinary input trees
and to develop efficient implementations: in fact, we point out that our current imple-
mentations are in Python and not optimized for speed. Faster implementations could
make machine-learned heuristics with nonzero thresholds even more effective. Finally,
can the machine-learning-based approach be adapted to other problems in the phylo-
genetic networks research field?

APPENDIX OF CHAPTER 6

6.A. TIME COMPLEXITY
▷ Lemma 6.6. Updating features 1-5 for a set T of |T | trees of total size ||T || over a
set of taxa X requires O (|T |(||T ||+ |X |2)) total time and O (||T ||) space.

Proof. Let F i
(x,y) denote the current value of the i -th feature for a cherry (x, y). When

reducing a cherry (x, y) in a tree T (thus deleting x and p(x) = p(y) and then adding a
direct edge from p(p(y)) to y), we check whether the other child of p(p(y)) is a leaf z
or not. If not, no new cherry is created in T , thus the features 1-4 remain unaffected
for all the cherries of T . Otherwise, (z, y) and (y, z) are new cherries of T and we can
distinguish two cases.

1. (z, y) and (y, z) are already cherries of T . Then, F 1
(y,z) and F 1

(z,y) are increased by
1

|T | ; F 4
(y,z) and F 4

(z,y) are increased by 1
|T y,z | , where |T y,z | is the number of trees

that contain both y and z and is equal to |T |F 5
(y,z). To update features 2 and 3

we use two auxiliary data structures new_cherries(y,z) and new_cherries(z,y) to col-
lect the distinct cherries that would originate after picking (y, z) and (z, y) in each
tree, respectively. These structures must allow efficient insertions, membership
queries, and iteration over the elements2, and can be deleted before picking the
next cherry in T . If the other child of p(p(z)) is a leaf w , we add (z, w) and (w, z)
to new_cherries(y,z) and (y, w) and (w, y) to new_cherries(z,y) (unless they are al-
ready present).

2. (z, y) and (y, z) are new cherries of T . Then we insert them into cherryfeatures.
We initially set F 1

(y,z) = F 1
(z,y) = 1

|T | , and for features 2-3 we create the same data

structures as the previous case. To compute F 5
(y,z) = F 5

(z,y) we first compute |T y,z |
by checking whether y and z are both leaves of T for each T ∈ T . Then we set

F 5
(y,z) = F 5

(z,y) = |T y,z |
|T | and F 4

(y,z) = F 4
(z,y) = 1

|T y,z | .

Once we have reduced (x, y) in all trees, we count the elements of each of the auxiliary
data structures new_cherries and update features 2-3 of the corresponding cherries ac-
cordingly. Since picking a cherry can create up to two new cherries in each tree, and
for each new cherry we add up to two elements to an auxiliary data structure, this step
requires O (|T |) time for each iteration.

Feature 5 must be updated for all the cherries corresponding to the unordered pairs
{x, w} with w ̸= y . To do so, when we reduce (x, y) in a tree T we go over its leaves: for
each leaf w ̸= y we decrease F 5

(x,w) and F 5
(w,x) by 1

|T | (if (x, w) and (w, x) are currently

cherries of T). This requires O (|X |2) total time per tree over all the iterations, because

2For example, hashtables paired with lists.

169

6

170 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

we scan the leaves of a tree only when we reduce a cherry in that tree. Computing feature
5 when new cherries of T are created (case 2) requires constant time per tree per cherry.
The total number of cherries created in T over all the iterations cannot exceed 2||T ||,
thus the total time required to update feature 5 is O (|T |(||T ||+ |X |2)). We arrived at the
following result.

▷ Lemma 6.7. The time complexity of ML and TrivialML is O (||T ||2).

Proof. Recall that during the initialization phase, we store the depth of each node, both
topological and with respect to the branch lengths, and we preprocess each tree to allow
constant-time LCA queries. Note that reducing cherries in the trees does not affect the
height of the nodes nor their ancestry relations, thus it suffices to preprocess the tree set
only once at the beginning of the algorithm.

When we reduce a cherry (x, y) in a tree T , this may affect the depth of T as a conse-
quence of the internal node p(x) being deleted. We thus visit T to update its depth (both
topological and with the branch lengths), and after updating the depth of all trees, we
update the maximum value over the whole set T accordingly. In order to describe how
to update the features 6d ,t −12d ,t we denote by old_deptht (T) the topological depth of T
before reducing (x, y), new_deptht (T) its depth after reducing (x, y), and use analogous
notation for the distances old_distt and new_distt between two nodes of a tree and for
the depth, the max depth, and distances with the branch lengths.

Whenever the value of the maximum topological depth changes, we update the value

of feature 6t for all the current cherries (z, w) as F 6t
(z,w) =

F
6t
(z,w)·old_max_deptht

new_max_deptht . Since the

maximum topological depth can change O (|X |) times over all the iterations, and the total
number of cherries at any moment is O (|T ||X |), these updates require O (|T ||X |2) total
time. We do the same for feature 6d , but since the maximum branch-length depth can
change once per iteration in the worst case, this requires O (||T ||2) time overall.

Features 8d ,t − 12d ,t must be then updated to remove the contribution of T for the
cherries (x, w) and (w, x) for each leaf w ̸= x ̸= y of T , because x and w will no longer ap-
pear together in T . These updates require O (1) time per leaf and can be done as follows.
We set

F 8t
(x,w) =

F 8t
(x,w) · |T x,w |− old_distt (x,w)

old_deptht (T)

|T x,w |−1
(6.1)

and use analogous formulas to update F 8d
(x,w) and features 9d ,t−12d ,t for (x, w) and (w, x).

We finally need to further update all the features 6d ,t − 12d ,t for all the cherries of
a tree T in which (x, y) has been reduced and whose depth has changed, including the
newly created ones. This can be done in O (1) time per cherry per tree with opportune
formulas of the form of (6.1). We have obtained the stated bound.

6.B. RANDOM FOREST MODELS

6

171

6.B. RANDOM FOREST MODELS

Table 6.3: Trained random forest models on different datasets for different combinations of maxL (maximum
number of leaves per network) and M (number of networks). Each row in the table represents one model.
For each model, the testing accuracy is given under “Accuracy”, and the total number of data points retrieved
from all M networks is given under “Num. data”. Each dataset is split for training and testing (90%− 10%).
The training duration for the random forest is given in column “Training” and the time needed to generate the
training data is given in column “Data gen.”, in hours per core (we used 16 cores in total).

(a) Normal

maxL M Accuracy Num. data Training (min) Data gen. (hour/core)

20 5 1.0 840 00:00 00:00:12
10 0.994 1,804 00:00 00:00:22

100 0.998 17,388 00:03 00:04:19
500 0.994 73,168 00:16 00:15:18

1000 0.993 151,308 00:42 00:29:49
50 5 0.994 3,580 00:00 00:01:21

10 0.997 7,860 00:01 00:02:22
100 0.996 53,988 00:11 00:18:07
500 0.997 268,552 01:04 01:31:18

1000 0.998 535,624 04:01 02:56:21
100 5 1.0 4,944 00:00 00:01:13

10 0.999 12,444 00:01 00:04:05
100 0.999 128,824 00:25 00:41:54
500 0.999 676,768 04:21 04:15:49

1000 0.999 1,362,220 12:10 08:08:58

(b) LGT

maxL M Accuracy Num. data Training (min) Data gen. (hour/core)

20 5 0.974 768 00:01 00:00:19
10 0.994 1,548 00:02 00:00:41

100 0.976 12,244 00:09 00:04:20
500 0.975 58,900 00:24 00:19:13

1000 0.975 118,104 00:27 00:35:38
50 5 0.997 2,952 00:01 00:00:43

10 0.995 3,796 00:03 00:01:01
100 0.995 44,116 00:23 00:14:01
500 0.994 219,472 01:39 01:06:45

1000 0.994 421,204 02:45 02:10:45
100 5 0.996 5,080 00:06 00:01:23

10 0.996 7,540 00:05 00:01:58
100 0.998 114,900 00:31 00:34:25
500 0.998 605,652 04:44 02:54:15

1000 0.998 1,175,628 10:23 05:31:13

6

172 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

15
.7

%
[0

.0
, 0

.0
2,

 0
.0

3,
 0

.9
5]

No
t a

 c
he

rry

0.
1%

[0
.0

, 0
.9

2,
 0

.0
, 0

.0
8]

Re
t.

ch
er

ry

2.
0%

[0
.0

, 0
.0

, 0
.0

, 1
.0

]
No

t a
 c

he
rry

2.
3%

[0
.0

, 0
.3

4,
 0

.3
4,

 0
.3

1]
(y

, x
) r

et
. c

he
rry

23
.3

%
[0

.0
, 0

.3
3,

 0
.6

7,
 0

.0
1]

(y
, x

) r
et

. c
he

rry

24
.5

%
[0

.0
, 0

.6
6,

 0
.3

3,
 0

.0
1]

Re
t.

ch
er

ry

De
pt

h
x/

y
(t)

 <
=

1.
33

15
.8

%
[0

.0
, 0

.0
3,

 0
.0

3,
 0

.9
5]

No
t a

 c
he

rry

Ch
er

ry
 in

 tr
ee

 <
=

0.
38

4.
3%

[0
.0

, 0
.1

9,
 0

.1
9,

 0
.6

3]
No

t a
 c

he
rry

7.
1%

[0
.0

, 0
.0

, 0
.0

, 1
.0

]
No

t a
 c

he
rry

De
pt

h
x/

y
(d

) <
=

1.
0

47
.8

%
[0

.0
, 0

.5
, 0

.5
, 0

.0
1]

(y
, x

) r
et

. c
he

rry

Le
af

 d
ist

an
ce

 (t
) <

=
0.

08
20

.1
%

[0
.0

, 0
.0

6,
 0

.0
6,

 0
.8

8]
No

t a
 c

he
rry

Ch
er

ry
 in

 tr
ee

 <
=

0.
38

54
.9

%
[0

.0
, 0

.4
3,

 0
.4

3,
 0

.1
3]

(y
, x

) r
et

. c
he

rry

Le
af

 d
ist

an
ce

 (t
) <

=
0.

13
75

.0
%

[0
.0

, 0
.3

3,
 0

.3
3,

 0
.3

3]
Re

t.
ch

er
ry

25
.0

%
[1

.0
, 0

.0
, 0

.0
, 0

.0
]

Ch
er

ry

Tr
iv

ia
l <

=
0.

75
sa

m
pl

es
 =

 1
00

.0
%

va
lu

e
=

[0
.2

5,
 0

.2
5,

 0
.2

5,
 0

.2
5]

cla
ss

 =
 R

et
. c

he
rry

(a) Normal ML. Test accuracy = 0.815

0.
5%

[0
.0

, 0
.1

3,
 0

.1
2,

 0
.7

5]
No

t a
 c

he
rry

15
.0

%
[0

.0
, 0

.0
3,

 0
.0

3,
 0

.9
3]

No
t a

 c
he

rry

1.
1%

[0
.0

, 0
.0

, 0
.0

, 1
.0

]
No

t a
 c

he
rry

1.
3%

[0
.0

, 0
.3

1,
 0

.3
2,

 0
.3

7]
No

t a
 c

he
rry

8.
0%

[0
.0

, 0
.0

, 0
.0

, 1
.0

]
No

t a
 c

he
rry

0.
4%

[0
.0

, 0
.0

6,
 0

.0
6,

 0
.8

7]
No

t a
 c

he
rry

23
.8

%
[0

.0
, 0

.3
5,

 0
.6

4,
 0

.0
1]

(y
, x

) r
et

. c
he

rry

24
.9

%
[0

.0
, 0

.6
3,

 0
.3

5,
 0

.0
2]

Re
t.

ch
er

ry

0.
0%

[0
.3

7,
 0

.3
1,

 0
.3

1,
 0

.0
1]

Ch
er

ry

0.
0%

[0
.9

5,
 0

.0
2,

 0
.0

2,
 0

.0
]

Ch
er

ry

0.
0%

[0
.4

2,
 0

.3
2,

 0
.2

4,
 0

.0
2]

Ch
er

ry

0.
0%

[0
.9

, 0
.0

5,
 0

.0
5,

 0
.0

]
Ch

er
ry

0.
0%

[0
.6

1,
 0

.0
, 0

.0
, 0

.3
9]

Ch
er

ry

24
.9

%
[1

.0
, 0

.0
, 0

.0
, 0

.0
]

Ch
er

ry

0.
0%

[0
.4

1,
 0

.0
, 0

.0
, 0

.5
9]

No
t a

 c
he

rry

0.
0%

[0
.9

8,
 0

.0
, 0

.0
, 0

.0
2]

Ch
er

ry

Be
fo

re
/a

fte
r <

=
0.

89
15

.5
%

[0
.0

, 0
.0

4,
 0

.0
4,

 0
.9

3]
No

t a
 c

he
rry

Ch
er

ry
 in

 tr
ee

 <
=

0.
48

2.
4%

[0
.0

, 0
.1

7,
 0

.1
7,

 0
.6

6]
No

t a
 c

he
rry

Tr
iv

ia
l <

=
0.

28
8.

4%
[0

.0
, 0

.0
, 0

.0
, 0

.9
9]

No
t a

 c
he

rry

LC
A

di
st

an
ce

 (d
) <

=
0.

5
48

.7
%

[0
.0

, 0
.4

9,
 0

.4
9,

 0
.0

1]
(y

, x
) r

et
. c

he
rry

Le
af

 d
ist

an
ce

 (t
) <

=
2.

31
0.

0%
[0

.5
3,

 0
.2

3,
 0

.2
3,

 0
.0

]
Ch

er
ry

Tr
ee

 d
ep

th
 (d

) <
=

0.
42

0.
0%

[0
.8

6,
 0

.0
7,

 0
.0

7,
 0

.0
]

Ch
er

ry

Le
af

 d
ist

an
ce

 (t
) <

=
-0

.0
24

.9
%

[1
.0

, 0
.0

, 0
.0

, 0
.0

]
Ch

er
ry

Ne
w

ch
er

rie
s <

=
0.

84
0.

0%
[0

.7
2,

 0
.0

, 0
.0

, 0
.2

8]
Ch

er
ry

Le
af

 d
ist

an
ce

 (t
) <

=
0.

08
18

.0
%

[0
.0

, 0
.0

5,
 0

.0
5,

 0
.8

9]
No

t a
 c

he
rry

Tr
iv

ia
l <

=
0.

44
57

.0
%

[0
.0

, 0
.4

2,
 0

.4
2,

 0
.1

6]
(y

, x
) r

et
. c

he
rry

Ch
er

ry
 d

ep
th

 (t
) <

=
0.

95
0.

1%
[0

.7
1,

 0
.1

5,
 0

.1
4,

 0
.0

]
Ch

er
ry

Le
af

 d
ist

an
ce

 (d
) <

=
2.

39
24

.9
%

[1
.0

, 0
.0

, 0
.0

, 0
.0

]
Ch

er
ry

Le
af

 d
ist

an
ce

 (t
) <

=
0.

11
75

.0
%

[0
.0

, 0
.3

3,
 0

.3
3,

 0
.3

3]
No

t a
 c

he
rry

Le
av

es
 in

 tr
ee

 <
=

0.
3

25
.0

%
[1

.0
, 0

.0
, 0

.0
, 0

.0
]

Ch
er

ry

Tr
iv

ia
l <

=
0.

98
sa

m
pl

es
 =

 1
00

.0
%

va
lu

e
=

[0
.2

5,
 0

.2
5,

 0
.2

5,
 0

.2
5]

cla
ss

 =
 C

he
rry

(b) LGT ML. Test accuracy = 0.802

Figure 6.17: Classification tree with depth 4 of (a) the normal data set and (b) the LGT data set. For each node
in the trees, except for the terminal ones, the first line is the feature condition. If this condition is met by a
data point, it traverses to the left child node, otherwise to the right one. In the terminal nodes this line is
omitted as there is no condition given. In each node, as also indicated with labels in the root node, the second
line ‘samples’ is the proportional number of samples that follow the YES/NO conditions from the root to the
parent of that node during the training process. The ‘value’ list gives the proportion of data points in each
class, compared to the sample of that node. The last line indicates the most dominant class of that node. If a
data point reaches a terminal node, the observation will be classified as the indicated class.

6.B. RANDOM FOREST MODELS

6

173

Table 6.4: Feature importances of random forest trained on the biggest dataset (M = 1000 and maxL = 100)
based on normal (a) and LGT (b) network data. Higher importance indicates that a feature has more effect on
the trained model. The values sum up to one. The descriptions of the features are given in Table 6.1.

(a) Normal

Features Importance

Leaf distance (t) 0.190
Trivial 0.155
Cherry in tree 0.143
Leaf distance (d) 0.122
LCA distance (t) 0.068
Depth x/y (t) 0.050
Cherry depth (t) 0.047
Depth x/y (d) 0.043
LCA distance (d) 0.028
Leaf depth x (t) 0.023
Leaf depth y (t) 0.023
Cherry depth (d) 0.020
Leaf depth x (d) 0.020
Leaf depth y (d) 0.020
Before/after 0.015
Tree depth (d) 0.012
Tree depth (t) 0.011
New cherries 0.006
Leaves in tree 0.004

(b) LGT

Features Importance

Trivial 0.184
Leaf distance (t) 0.162
Cherry in tree 0.146
Leaf distance (d) 0.114
Depth x/y (t) 0.058
LCA distance (t) 0.056
Cherry depth (t) 0.045
Depth x/y (d) 0.038
LCA distance (d) 0.032
Leaf depth y (t) 0.024
Leaf depth x (t) 0.023
Cherry depth (d) 0.023
Leaf depth y (d) 0.022
Leaf depth x (d) 0.022
Before/after 0.016
Tree depth (d) 0.013
Tree depth (t) 0.011
New cherries 0.006
Leaves in tree 0.003

6

174 6. CHERRY-PICKING HEURISTIC FOR BINARY TREES

6.C. HEURISTIC PERFORMANCE OF ML MODELS

(20
, 5

)
(20

, 6
)

(20
, 7

)
(50

, 5
)

(50
, 6

)
(50

, 7
)

(10
0,

5)

(10
0,

6)

(10
0,

7)

Normal instances (L, R)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

1.6 1.6 1.62 2.02 1.58 1.8 1.66 1.69 1.87
1.6 1.32 1.18 1.66 1.38 1.59 1.84 1.48 1.51
1.02 1.45 1.04 1.31 1.14 1.11 1.21 1.19 1.14
1.02 1.01 1.03 1.07 1.05 1.06 1.17 1.08 1.09

1 1.04 1.02 1.05 1.04 1.04 1.09 1.15 1.06
1.47 1.52 1.2 1.22 1.32 1.43 1.36 1.2 1.19
1.49 1.81 1.54 1.29 1.32 1.47 1.36 1.39 1.38
1.05 1.45 1.12 1.11 1.16 1.09 1.11 1.12 1.19
1.01 1.14 1.12 1.07 1.06 1.1 1.04 1.06 1.19

1 1.12 1.08 1.01 1.19 1.05 1.07 1.21 1.14
1.41 1.42 1.45 1.32 1.71 1.36 1.3 1.52 1.3
1.2 1.15 1.33 1.14 1.39 1.35 1.34 1.23 1.29
1.14 1.17 1.13 1.1 1.16 1.23 1.14 1.3 1.33
1.01 1.17 1.21 1.29 1.09 1.09 1.1 1.1 1.17

1 1.11 1.09 1.21 1.05 1.08 1.1 1.06 1.16
1.0

1.2

1.4

1.6

1.8

2.0

(a) Normal ML

(20
, 5

)
(20

, 6
)

(20
, 7

)
(50

, 5
)

(50
, 6

)
(50

, 7
)

(10
0,

5)

(10
0,

6)

(10
0,

7)

Normal instances (L, R)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.35 2.19 3.27 2.7 2.55 2.46 2.7 1.99 3.04
1.76 1.55 1.61 1.39 1.76 1.52 1.35 1.51 1.56
1.3 1.2 1.32 1.21 1.39 1.28 1.21 1.34 1.35
1.17 1.18 1.24 1.27 1.11 1.21 1.19 1.24 1.21
1.11 1.1 1.23 1.15 1.12 1.25 1.18 1.25 1.2
1.41 1.32 1.44 1.45 1.48 1.37 1.49 1.47 1.38
1.56 1.48 1.47 1.27 1.46 1.49 1.45 1.54 1.57
1.21 1.24 1.25 1.11 1.18 1.2 1.07 1.2 1.16
1.16 1.19 1.2 1.21 1.09 1.12 1.17 1.06 1.26
1.07 1.24 1.32 1.15 1.09 1.14 1.12 1.07 1.21
1.88 1.76 2.27 2.06 2.11 2.28 2.6 2.25 2.25
1.34 1.61 1.56 1.64 1.57 1.51 1.47 1.54 1.46
1.14 1.23 1.33 1.14 1.16 1.19 1.12 1.19 1.12
1.05 1.17 1.37 1.15 1.14 1.21 1.06 1.18 1.15
1.07 1.24 1.21 1.12 1.1 1.18 1.11 1.08 1.14

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

(b) LGT ML

Figure 6.18: Results for ML on normal instances with the random forest model trained on each of the datasets
given in Table 6.3, where (a) gives the results when the ML model is trained on normal data, and (b) gives the
results when the model is trained on LGT data. For each training dataset, identified by the parameter pair
(maxL, M), the value shown in the heatmap is the average, within each instance group, of the reticulation
number found by ML divided by the reference value. We used a group of 16 instances for each combination of
parameters L ∈ {20,50,100} and R ∈ {5,6,7}.

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

LGT instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

3.26 3.04 3.22 3.22 4.37 5.44 2.65 4.08 4.96 3.32 3.06 2.76 4.39 5.56 6.88 4.47 6.31 8.71 3.43 2.6 1.92 4.3 4.39 4.72 4.91 7.03 6.35
2.57 3.07 3.32 2.66 4.07 4.49 2.51 3.59 4.38 3.12 2.61 2.74 3.73 4.74 5.54 4.02 5.72 7.09 3.11 2.54 1.81 3.53 3.27 3.72 4.12 4.96 5.02
2.41 2.86 2.96 2.49 3.91 4.79 2.44 3.76 4.44 2.29 2.28 2.19 3.23 4.53 4.55 3.69 5.05 6.64 2.37 2.21 1.58 3 2.93 2.87 3.66 3.93 4.23
2.46 2.66 2.86 2.63 3.79 4.68 2.6 3.94 4.48 2.28 2.1 2.27 3.33 4.81 4.56 3.82 5.22 6.86 2.43 2.14 1.46 2.96 3.01 2.58 4.11 4.17 3.75
2.53 2.71 2.76 2.73 3.87 5.33 2.73 4.07 4.8 2.34 2.16 2.14 3.48 4.49 5.03 3.96 5.78 7.7 2.71 1.98 1.48 3.02 3.35 2.74 3.86 3.97 3.88
2.41 2.97 2.9 2.59 3.73 4.43 2.52 3.73 4.37 2.16 2.12 2.24 3.71 4.35 5 3.84 5.56 7.37 2.42 1.89 1.53 2.92 3.05 2.9 3.78 4.3 4.61
2.19 2.38 2.85 2.71 3.87 4.48 2.53 3.81 4.17 2.04 2.54 2.06 3.2 3.78 4.23 3.8 5.03 6.07 2.02 1.93 1.5 2.78 2.92 2.62 3.44 4.15 4.44
2.41 2.8 2.41 2.63 3.66 4.45 2.52 3.67 4.26 2.36 1.89 2.15 3.24 4.35 4.54 3.61 5.36 6.87 2.38 1.71 1.41 2.84 2.59 2.82 3.55 3.87 3.99
2.34 2.74 2.84 2.78 4.03 5.34 2.6 3.98 4.81 2.22 2.08 2.34 3.32 4.11 3.97 3.5 5.5 6.17 2.27 1.79 1.44 2.78 2.92 2.88 3.63 3.74 4.15
2.3 2.68 2.73 2.62 4.01 5.06 2.59 3.62 4.83 1.95 1.85 2.18 3.34 4.11 4.27 3.84 5.14 6.09 2.21 1.71 1.31 2.72 2.28 2.68 3.58 4.07 4
2.39 2.78 2.8 2.38 4.01 4.33 2.63 4.06 4.44 2.19 2.53 2.08 3.62 4.22 4.73 3.88 5.52 6.2 2.67 2.01 1.56 3.13 3.09 2.81 3.57 4.17 3.95
2.36 2.77 2.75 2.49 3.58 4.4 2.62 3.83 4.05 1.96 2.21 2.01 3.32 4.25 4.25 3.73 5.3 6.64 2.38 2.14 1.33 2.97 3.05 3.31 3.45 4.72 3.78
2.43 2.75 2.69 2.77 3.84 4.94 2.56 3.91 4.87 2.18 2.09 2.08 3.05 4.1 4.32 3.79 5.56 6.7 2.19 1.94 1.43 2.73 3.01 2.64 3.63 3.8 4.12
2.54 2.69 2.57 2.84 4.11 4.92 2.72 3.75 4.05 2.12 1.9 2.26 3.27 4.02 4.78 3.73 5.3 6.42 2.31 1.7 1.36 2.69 2.74 2.73 3.45 4.12 4.15
2.48 2.71 2.69 2.62 3.93 4.63 2.72 3.92 4.76 2 1.91 2.11 3.46 4.21 4.59 3.65 5.41 7.11 2.16 1.63 1.36 2.88 2.48 2.56 3.61 4.3 3.86

2

3

4

5

6

7

8

(a) Normal ML

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

LGT instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.35 2.71 2.8 2.42 3.75 4.61 2.4 3.5 3.79 2.91 2.89 3.31 3.49 4.02 4.25 3.6 4.77 5.55 2.91 3.51 2.86 3.07 3.23 3.97 3.5 3.88 3.94
1.9 2.36 2.01 2.13 2.95 3.4 2.06 3.25 3.26 1.88 2.11 1.6 2.62 2.57 2.54 2.71 3.5 4.13 1.79 1.81 1.57 2.14 2.01 2.22 2.47 2.27 2.51
1.94 2.23 2.23 2.07 3.26 3.77 2.27 3.45 3.56 2.1 2.06 1.67 2.74 3.17 3.02 3.24 4.61 5.24 2.08 1.74 1.52 2.51 2.31 2.16 3.35 3.32 3.33
1.9 1.99 1.91 1.92 3.03 3.39 2.09 3.42 3.19 1.75 1.58 1.66 2.64 3.27 3.46 3.23 4.35 5.03 1.76 1.7 1.38 2.08 2.14 2.24 3.07 3.04 2.59
1.71 1.64 2.11 1.92 3.08 3.41 2.15 3.22 3.49 1.87 1.52 1.54 2.53 2.91 2.91 2.89 4.14 4.56 1.68 1.42 1.44 1.96 2.01 2.03 2.87 3.04 2.2
1.82 2.07 2.17 2.15 3.13 3.41 2.25 3.23 3.26 2.04 2.03 1.74 2.58 3.05 3.05 3.12 3.66 4.72 1.99 1.83 1.46 2.16 2.34 1.95 2.75 2.8 2.51
1.93 2.14 2.27 2.05 3.02 3.42 2.07 3.11 3.28 1.92 1.98 1.68 2.62 3.06 3.08 2.77 3.67 4.69 2 2.03 1.62 2.16 2.19 1.97 2.67 3.01 2.28
1.77 1.83 1.94 1.99 3.14 3.15 2.19 3.15 3.08 1.77 1.86 1.78 2.58 3.05 2.88 2.91 3.56 4.17 1.89 1.82 1.44 2.11 1.99 1.99 2.81 2.99 2.54
1.83 2.08 2.17 1.97 3.09 3.51 2.36 3.41 3.5 1.79 1.89 1.55 2.76 3.07 3.12 3.06 4.24 4.53 1.6 1.46 1.41 1.93 2.17 1.97 2.8 3.47 3.04
1.93 1.66 1.97 2.1 3.12 3.13 2.18 3.43 3.35 1.66 1.69 1.59 2.7 2.93 2.65 2.96 3.83 4.61 1.67 1.52 1.34 1.85 1.72 1.98 2.69 2.89 2.49
2.07 2.62 3.07 2.16 3.71 3.97 2.31 3.6 3.83 2.44 2.64 2.7 3.78 4.12 4.45 3.65 4.55 6.27 3.28 2.84 2.22 3.45 3.17 4.08 4.16 4.91 4.61
2.36 2.29 2.38 2.24 3.12 3.87 2.3 3.59 3.88 2.02 1.92 1.85 2.92 3.69 3.69 3.51 4.4 5.75 2.44 2.07 1.76 2.42 2.52 2.55 3.29 3.85 3.44
1.85 1.79 2.09 2.03 3.36 3.36 2.23 3.34 3.38 1.84 1.76 1.37 2.59 3.54 2.65 3.11 4 4.71 1.58 1.49 1.44 2.12 2 1.98 2.88 2.94 2.37
1.72 1.77 1.89 1.89 3.02 2.91 2.08 3.01 3.15 1.63 1.7 1.42 2.49 2.65 2.98 2.72 3.89 4.04 1.37 1.56 1.18 1.88 1.71 1.76 2.52 2.41 2.01
1.76 1.82 1.96 1.93 3.19 2.86 2.31 3.37 3.23 1.53 1.89 1.37 2.18 3.04 2.38 3.15 4.11 4.15 1.46 1.45 1.24 1.77 1.77 1.64 2.34 2.87 2.2

2

3

4

5

6

(b) LGT ML

Figure 6.19: Results for ML on LGT instances for different training datasets, similar to Fig. 6.18, with L ∈
{20,50,100}, R ∈ {10,20,30} and |T | ∈ {20,50,100}.

6.C. HEURISTIC PERFORMANCE OF ML MODELS

6

175

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

ZODS instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.57 2.79 3.93 2.01 2.76 3.3 1.5 2.14 2.68 3.1 4.09 3.82 4.78 5.89 6.12 4.41 7.01 8.7 3.29 3.02 3.03 4.68 4.1 4.34 5.47 7.24 7.23
2.29 2.61 3.09 1.77 2.18 2.88 1.35 1.88 2.45 2.96 2.59 3.25 4.11 5.12 5.17 3.71 5.49 6.57 2.96 2.51 2.21 4.04 3.67 3.55 4.49 5.18 5.72
2.2 2.69 3.41 1.77 2.31 3.13 1.37 1.98 2.56 2.79 2.31 2.7 3.9 5.01 4.28 3.64 5.55 6.62 2.37 2.53 2.08 3.94 3.23 3.63 4.22 5.31 5.27
2.16 2.71 3.07 1.89 2.42 3.14 1.43 1.95 2.53 2.67 2.51 2.8 3.92 4.77 4.43 3.76 5.71 6.92 3.18 2.53 1.98 4.04 3.49 3.39 4.65 4.94 5.58
2.21 2.51 3.37 1.78 2.31 3.13 1.44 2.16 2.73 2.92 2.53 2.79 4.33 5.04 5.04 4.02 6.31 8.16 3.04 2.5 2.24 4.38 3.73 3.63 4.49 5.75 7.06
2.08 2.42 3 1.78 2.29 3.18 1.53 1.8 2.48 2.62 2.34 2.67 4.03 4.85 4.84 3.67 5.39 6.26 2.22 2.47 1.78 4.07 2.97 3.35 4.11 5.41 5.98
2.34 2.77 3.66 1.89 2.58 3.29 1.44 2.03 2.61 2.61 2.4 2.84 4.29 5.77 4.99 3.91 6.18 7.07 2.82 2.52 2.02 3.97 3.59 3.98 5.05 5.99 7.06
2.31 2.59 3.51 1.9 2.29 3.25 1.58 2.16 2.51 3.01 2.54 2.91 4.34 6.07 5.36 4.16 6.7 7.47 2.74 2.76 2.01 4.58 4 4.15 4.88 6.69 7.01
2.52 2.86 3.56 1.99 2.47 3.45 1.58 2.13 2.82 3.16 2.75 3.06 4.38 5.93 5.35 4.11 6.3 8.15 2.99 2.44 1.99 4.3 3.32 3.73 4.8 6.23 7.61
2.23 2.31 3.26 1.94 2.49 3.38 1.47 2.04 2.75 2.61 2.8 3.1 4.33 5.44 4.7 4.19 6.33 8.03 2.55 2.56 1.94 4.18 3.6 3.51 4.58 5.8 6.4
2.56 2.78 3.58 1.82 2.54 3.19 1.63 2.23 2.74 3.21 3.12 3.54 4.57 5.63 5.87 4.25 6.41 8 3.41 3.4 2.87 5.12 4.85 4.64 5.77 7.09 8.38
2.73 2.94 4.08 1.85 2.59 3.16 1.55 2.26 2.77 3.33 3.94 3.34 4.85 6.08 6.43 4.18 7.06 9.04 3.83 4.12 2.84 5.33 5.18 6 6.15 7.25 8.3
2.34 2.79 3.63 1.82 2.36 3.13 1.4 2.14 2.48 2.87 2.71 3.26 4.47 5.83 6.05 4.1 6.52 7.79 2.88 2.4 1.9 4.41 3.83 4.04 5.29 6.42 6.91
2.2 2.74 3.66 2.07 2.44 3.39 1.57 1.97 2.61 2.79 2.54 2.78 4.1 5.52 4.64 4.18 6.23 7.78 2.74 2.49 1.83 3.98 3.24 3.62 5.03 6.21 7.04
2.51 2.73 3.43 1.93 2.36 3.14 1.6 2.15 2.68 3.13 2.23 2.81 4.29 5.78 5.67 4.35 7.14 8.16 2.67 2.48 2 4.29 3.7 4.12 5.28 6.8 7.45

2

3

4

5

6

7

8

9

(a) Normal ML

(20
, 1

0,
20

)

(20
, 1

0,
50

)

(20
, 1

0,
10

0)

(20
, 2

0,
20

)

(20
, 2

0,
50

)

(20
, 2

0,
10

0)

(20
, 3

0,
20

)

(20
, 3

0,
50

)

(20
, 3

0,
10

0)

(50
, 1

0,
20

)

(50
, 1

0,
50

)

(50
, 1

0,
10

0)

(50
, 2

0,
20

)

(50
, 2

0,
50

)

(50
, 2

0,
10

0)

(50
, 3

0,
20

)

(50
, 3

0,
50

)

(50
, 3

0,
10

0)

(10
0,

10
, 2

0)

(10
0,

10
, 5

0)

(10
0,

10
, 1

00
)

(10
0,

20
, 2

0)

(10
0,

20
, 5

0)

(10
0,

20
, 1

00
)

(10
0,

30
, 2

0)

(10
0,

30
, 5

0)

(10
0,

30
, 1

00
)

ZODS instances (L, R, T)

(20, 5)
(20, 10)

(20, 100)
(20, 500)

(20, 1000)
(50, 5)

(50, 10)
(50, 100)
(50, 500)

(50, 1000)
(100, 5)

(100, 10)
(100, 100)
(100, 500)

(100, 1000)

M
L

m
od

el
 tr

ai
ne

d
on

 (m
ax

L,
 M

) d
at

as
et

2.31 2.39 2.48 1.78 2.4 2.92 1.36 2.11 2.51 2.15 2.22 2.34 3.22 4.87 3.72 3.27 4.86 5.69 1.88 2.58 1.82 3.28 2.84 2.57 3.6 3.83 4.46
2.31 2.66 3.58 1.92 2.52 3.28 1.5 2.01 2.69 2.74 2.52 3.02 3.73 5.22 5.41 3.72 5.95 7.14 2.88 2.73 2.43 3.64 3.83 3.78 4.76 5.14 5.1
2.01 2.02 2.71 1.82 2.34 2.95 1.41 1.95 2.32 2.49 2.75 3.09 4.6 5.01 5.09 3.86 5.39 7.49 2.98 2.46 2.53 4.29 3.28 3.39 4.96 6.54 5.98
1.94 2.03 2.69 1.86 2.13 2.81 1.37 2.02 2.69 2.23 2.38 2.13 4.18 4.43 4.68 3.69 5.85 7.76 2.26 2.12 1.78 3.68 3.56 2.99 4.73 5.87 5.3
1.82 1.98 2.63 1.65 2.14 2.72 1.31 1.81 2.4 2.22 2.07 2.22 4.08 4.79 4.38 3.74 5.64 6.6 2.13 2.22 1.69 3.22 3.14 3.01 4 5.29 4.59
2.59 2.67 3.41 1.82 2.64 3.18 1.35 2.2 2.71 3.65 4.34 4.32 4.54 5.95 6 3.84 5.92 7.06 3.98 4.27 3.86 4.66 5.33 4.4 5.42 6.72 6.4
2.1 2.28 3.11 1.75 2.2 3.2 1.36 1.83 2.39 2.88 3.75 3.57 4.43 4.41 5.41 3.69 5.59 6.91 3.33 3.62 3.69 3.86 4.77 3.83 4.91 5.93 6.32
2.02 1.98 2.7 1.67 2.13 2.8 1.32 1.82 2.19 1.91 2.12 2.22 3.57 3.75 3.89 3.4 4.8 6.1 2.17 2.36 2.2 3.04 2.85 2.71 3.87 4.14 4.4
1.86 1.79 2.93 1.77 2.03 2.82 1.3 1.91 2.3 2.13 1.71 2.04 3.57 3.8 3.65 3.34 5.11 6.7 2.12 2.31 1.9 3.06 2.92 2.7 3.77 4.42 4.7
2.05 1.92 2.79 1.72 2.13 2.88 1.34 1.82 2.2 1.91 2.14 2.56 3.53 4.79 4.69 3.53 4.75 6.88 2.31 2.15 2.04 3.23 2.88 3.07 4 5.03 4.92
2.02 2.18 2.33 1.78 2.11 2.9 1.37 1.99 2.65 1.81 2.11 2.23 3.09 4.37 4.14 3.26 4.71 5.45 2 2.12 1.7 2.79 2.61 2.44 3.11 3.82 4.25
1.99 1.94 2.67 1.73 2.32 2.8 1.34 1.97 2.42 2.05 2.11 2.02 3.4 4.18 4.1 3.11 4.8 5.52 1.84 1.89 1.79 2.78 2.73 2.43 3.29 3.68 3.73
1.99 2.42 2.79 1.76 2.29 2.95 1.3 1.97 2.35 2.23 2.78 2.5 3.51 4.85 4.43 3.46 5.32 6.04 1.91 2.34 1.81 3.39 3.26 3 3.8 4.97 5.33
2.19 2.16 3.12 1.69 2.23 2.96 1.27 1.95 2.28 2.05 2.13 2.3 3.7 4.34 3.7 3.45 5.38 6.46 2.12 2.26 1.92 3 2.98 2.77 3.69 4.79 4.87
2.01 2.32 3.11 1.67 2.29 2.9 1.41 2.01 2.29 1.92 2.06 2.39 3.71 4.21 4.11 3.74 5.66 6.81 1.84 1.95 1.5 3.19 3.14 2.75 3.9 5.45 5

2

3

4

5

6

7

(b) LGT ML

Figure 6.20: Results for ML on ZODS instances for different training datasets, similar to Fig. 6.18, with L ∈
{20,50,100}, R ∈ {10,20,30} and |T | ∈ {20,50,100}.

7
CHERRY-PICKING HEURISTIC FOR

NON-BINARY TREES

The Hybridization problem asks to combine a set of conflicting phylogenetic trees into a
single phylogenetic network with the smallest possible number of reticulation nodes. This
problem is computationally hard and previous solutions are restricted to small and/or
severely restricted data sets, for example, a set of binary trees with the same taxon set or
only two non-binary trees with non-equal taxon sets.

Proposed data-driven algorithm: Building on our previous work on binary trees pre-
sented in Chapter 6, we present FHyNCH, the first algorithmic framework to heuristi-
cally solve the Hybridization problem for large sets of non-binary (or multifurcating) trees
whose sets of taxa may differ. Our heuristics combine the cherry-picking technique, re-
cently proposed to solve the same problem for binary trees, with two carefully designed
machine-learning models. To better deal with the possible non-binarity of trees, we intro-
duce another machine-learning model that drastically reduces the solution space in each
iteration.

Data generation scheme: The data generation scheme is very similar to the one proposed
in Chapter 6, with the necessary alterations to also handle multifurcating tree sets with
mostly overlapping, but not necessarily equal, leaf sets.

Experimental results: We demonstrate that our methods are practical and produce qual-
itatively good solutions through experiments on both synthetic and real data sets.

This chapter is based on Bernardini et al. [26] published in Molecular Phylogenetics and Evolution. In
collaboration with Giulia Bernardini, Leo van Iersel, and Leen Stougie. The code is available at https:
//github.com/estherjulien/FHyNCH.

177

https://github.com/estherjulien/FHyNCH
https://github.com/estherjulien/FHyNCH

7

178 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

7.1. INTRODUCTION
Until recently, the evolutionary history of a set of species was normally modeled as a
rooted phylogenetic tree. However, the greater availability of molecular data is encour-
aging a paradigm shift to multilocus approaches for phylogenetic inference, which often
leads to discovering relationships among the species that deviate from the simple model
of a tree [13, 104, 155]. Indeed, the phylogenetic trees inferred from different loci of the
genomes often have conflicting branching patterns, due to evolutionary events like re-
combination, hybrid speciation, introgression or lateral gene transfer [41, 133, 143, 144].
In the presence of such events, evolution is more accurately represented by a rooted phy-
logenetic network, which extends the tree model and allows representing multi-parental
inheritance of genetic material as reticulation nodes [132, 144].

A crucial problem is then to infer a single phylogenetic network from a set of con-
flicting trees built from different loci of the genomes in a data set. A commonly used
criterion to estimate such a network, which is reasonable when discordance between
trees is believed to be caused by multi-parent inheritance, is parsimony [104]: the goal is
then to construct a network that simultaneously explains all ancestral relationships en-
coded by the trees with the fewest number of reticulation nodes. This problem is known
in the literature by the name of HYBRIDIZATION and has been extensively studied.

HYBRIDIZATION has been shown to be NP-hard even for two binary input trees [39].
Most of the solutions proposed in the literature are limited to inputs consisting of only
two binary trees with identical leaf sets. A few methods exist that waive some of these
assumptions: some admit inputs consisting of several binary trees with identical [201]
or largely overlapping [25, 27] leaf sets; others are able to process a pair of multifurcat-
ing (i.e., nonbinary) trees with overlapping, but not identical, leaf sets [102] or several
multifurcating trees with identical leaf sets [149, 220].

However, to the best of our knowledge, there currently exist no solutions to HY-
BRIDIZATION for several multifurcating trees with different leaf sets, although realistic
phylogenetic trees in biological studies are usually multifurcating and hardly contain
exactly the same taxa. This work aims to fill this gap: we propose FHyNCH1 (Finding Hy-
bridization Networks via Cherry-picking Heuristics), a heuristic framework to find fea-
sible (and qualitatively good) solutions to HYBRIDIZATION for a large number of multi-
furcating phylogenetic trees with overlapping, but not identical, leaf sets. Our methods
combine the technique of cherry picking, first introduced in Linz and Semple [134], with
machine learning to guide the search in the solution space.

The high-level scheme and the theoretical foundations of the methods we propose
are the same as in Bernardini et al. [27]: however, the approach of Bernardini et al. [27]
is restricted to binary trees, while most practical data sets consist of multifurcating trees.
A straightforward adaptation to multifurcating trees would lead to a time-consuming
algorithm that would be impractical for large instances (see Section 7.2.3). In contrast
with previous methods, our new heuristics employ two machine-learning classifiers that
are used sequentially at every iteration. The main novelty resides in the design and use
of the first classifier, whose crucial role is to reduce the solution space at every iteration.
Furthermore, making the new machine-learned heuristics applicable to multifurcating

1Pronounced as ‘finch’. Finches are birds that love cherries and are notoriously known for picking cherries
from trees in orchards.

7.1. INTRODUCTION

7

179

trees with missing leaves required new, nontrivial techniques to generate training data:
see Section 7.2.3.

Two things are important to notice at this point. First, since networks are not
uniquely determined by the trees they contain [161], there may exist a large number of
different good solutions, and our algorithm does not attempt to enumerate them all: in
fact, how to summarize all equally good networks is still an open practical problem [99,
105]. In particular, no method to solve HYBRIDIZATION (whose goal is to minimize the
number of reticulations only) can guarantee to reconstruct a specific network: all net-
works that display the input trees with the minimum possible number of reticulation
nodes are optimal solutions. The network outputted by any algorithm that solves HY-
BRIDIZATION, including ours, should thus be interpreted as a possible (parsimonious)
evolutionary history that is consistent with all the input trees.

Second, our heuristics output networks from the broad orchard class, which con-
tains all and only the networks that can be obtained from a tree by adding horizontal
arcs [200]. Such horizontal arcs can model lateral gene transfer (LGT) events, but also
many networks with reticulation nodes modeling (for example) hybridization events are
in the class of orchard networks. On the other hand, our methods are not suitable to be
applied in the presence of incomplete lineage sorting.

The rest of the chapter is organized as follows. In Section 7.1.1 we discuss related
work; in Section 7.2.1 we introduce notation and basic notions; in Section 7.2.2 we sum-
marize the cherry-picking framework for HYBRIDIZATION, which lies at the heart of our
solutions; in Section 7.2.3 we describe FHyNCH-MultiML, our main algorithmic scheme
based on machine learning; in Section 7.3 we present our experimental results; finally,
in Section 7.4 we give conclusions and future directions.

7.1.1. RELATED WORK

Several methods have been proposed in the literature to solve HYBRIDIZATION for two
binary trees with equal leaf sets, both exactly [4, 38] and heuristically [162, 163]. The first
practical methods to solve HYBRIDIZATION to optimality for more than two binary trees
with equal leaf sets were PIRNC [220] and Hybroscale [3], which were able to process
a small number of input trees (up to 5) that could be combined into a network with a
relatively small number of reticulations. More recently, heuristic methods have been
proposed to process larger sets of binary trees with identical taxa [149, 231].

The introduction of the so-called cherry-picking sequences [101, 134] was a game
changer in the area: this theoretical framework allowed the design of the first methods
capable of processing instances of up to 100 binary trees with identical leaf sets to opti-
mality [40, 201], albeit with restrictions on the class of the output network and its number
of reticulations.

To the best of our knowledge, only two methods have been proposed to solve HY-
BRIDIZATION for multifurcating trees, both limited to inputs consisting of only two trees:
a simple FPT algorithm for trees with identical leaf set [168] and the Autumn algorithm,
which allows differences between the leaf sets [102].

The potential of machine learning in phylogenetic studies has not been extensively
explored yet. A few methods have been proposed for phylogenetic tree inference [1, 9,
10, 125, 185, 234], testing evolutionary hypotheses [126], and distance imputation [36];

7

180 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

finally, in previous work by the authors of this work, machine-learning techniques have
been combined with cherry picking to solve HYBRIDIZATION for multiple binary trees
with largely overlapping leaf sets [25, 27] or see Chapter 6.

7.2. METHODS

7.2.1. DEFINITIONS AND NOTATION

A rooted phylogenetic network N on a set of taxa X is a rooted directed acyclic graph
such that the nodes other than the root are either (i) tree nodes, with in-degree 1 and out-
degree greater than 1, or (ii) reticulations, with in-degree greater than 1 and out-degree
1, or (iii) leaves, with in-degree 1 and out-degree 0. The leaves of N are bi-univocally
labeled by X , and we identify the leaves with their labels. The edges of N may be as-
signed a nonnegative branch length. We denote by [1,n] the set of integers {1,2, ...,n}.
Throughout this chapter, we will often drop the terms “rooted” and “phylogenetic”, as all
the networks we consider are rooted phylogenetic networks.

We denote the reticulation number of a network N by r (N), which can be obtained
using the following formula: r (N) =∑

v∈V max
(
0,d−(v)−1

)
, where V is the set of nodes

of N and d−(v) is the in-degree of a node v . A network T with r (T) = 0 is a phylogenetic
tree.

We denote by N a set of networks and by T a set of trees. An ordered pair of leaves
(x, y), x ̸= y , is a cherry in a network if x and y share the same parent. Note that cherries
(x, y) and (y, x) correspond to the same nodes and edges of the tree; the reason why
they are considered two distinct cherries is motivated by the definition of the cherry-
picking operation given below. An ordered pair (x, y) is a reticulated cherry if the parent
of x, denoted by p(x), is a reticulation, and the parent of y is a tree node that is one
of the parents of p(x) (see Figure 7.1b). Note that, in contrast with cherries, if (x, y) is
a reticulated cherry then (y, x) is not, because the reticulation is constrained to be the
parent of the first element of the pair. A pair of leaves is reducible if it is either a cherry or
a reticulated cherry. Note that trees may have cherries but no reticulated cherries.

Suppressing a node v with a single parent p(v) and a single child c(v) is defined as
replacing the arcs (p(v), v) and (v,c(v)) by a single arc (p(v),c(v)) and deleting v . If the
network has branch lengths, the length of the new edge is ℓ(p(v),c(v)) = ℓ(p(v), v)+
ℓ(v,c(v)). Reducing (or picking) a cherry (x, y) in a network N (or in a tree) is the action
of deleting x and suppressing any resulting indegree-1 outdegree-1 nodes. A reticulated
cherry (x, y) is reduced (picked) by deleting the edge (p(y), p(x)) and suppressing any
indegree-1 outdegree-1 nodes. See Figure 7.1. Reducing a non-reducible pair does not
affect N . In all cases, the resulting network is denoted by N(x,y): we say that (x, y) affects
N if (x, y) is reducible in N , i.e., N ̸= N(x,y).

Any sequence S = (x1, y1), . . . , (xn , yn) of ordered leaf pairs, with xi ̸= yi for all i , is a
partial cherry-picking sequence; S is a cherry-picking sequence (CPS) if in addition, for
each i < n, yi ∈ {xi+1, . . . , xn , yn}. Given a network N and a (partial) CPS S, we denote
by NS the network obtained by reducing in N each element of S, in order. We let S ◦(x, y)
denote the sequence obtained by appending pair (x, y) at the end of S. We say that a CPS
S fully reduces a network N if NS is just a root with a single leaf; S is of minimum length
for N if all pairs of S affect the network.

7.2. METHODS

7

181

xw y z w y z

(x, y)

(a)

xw y w y

(x, y)

x
(b)

Figure 7.1: The leaf pair (x, y) is picked in two different networks. In (a) (x, y) is a cherry, and in (b) (x, y) is a
reticulated cherry, as well as (x, w). Note that in (b) the parent of x and the parent of y are suppressed after
picking (x, y).

xw y zxw y z

e1 e2

e3

e4

N T

Figure 7.2: Example of a multifurcating tree T that is displayed in the binary network N via the following
operations: edge e1 is deleted, then the parents of x and w are suppressed, and finally edge e4 is contracted.

N is an orchard network if there exists a CPS that fully reduces it. If a CPS fully reduces
all networks in a set N , we say that it fully reduces N . In this chapter, we will consider
CPSs which fully reduce a set of trees T ; |T | denotes the number of trees in T .

THE HYBRIDIZATION PROBLEM

The main problem considered in this chapter is the following: given a set of phylogenetic
trees on overlapping (but not necessarily equal) sets of taxa, infer a single network with
the fewest number of reticulations that summarizes all the input trees. Definition 7.1
formalizes the concept of summarizing a set of trees: we seek a network where each of
the input trees is displayed (see Figure 7.2 for an example).

Definition 7.1. Let N be a network on a set of taxa X and let T be a tree on a set of taxa
X ′ ⊆ X . Then, T is displayed in N if T can be obtained from N by applying a sequence of
the following operations in any order:

(a) Contract an edge (u, v) to a single node w: all parents of u and v except u become
parents of w and all children of u and v except v become children of w.

(b) Delete an edge: if the head of the edge is a leaf, delete the leaf node as well.

(c) Suppress a node with in- and out-degree 1.

7

182 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

We now formally define the key problem of this work, called HYBRIDIZATION [16].

Input: A set T = {T1,T2, . . . ,Tt } of phylogenetic trees on sets of taxa X1, X2, . . . , X t , re-
spectively.

Output: A binary phylogenetic network N on the set of taxa X =⋃t
i=1 Xi which displays

all the trees in T with the smallest possible number of reticulations.

Note that the input trees are not required to be binary nor to have identical leaf sets: a
tree Ti ∈T on a set of taxa Xi is said to have missing leaves if Xi ⊊ X . The input trees may
or may not have branch lengths. Branch lengths do not play any role in HYBRIDIZATION,
as the requirements to be satisfied by a solution only affect its topological structure (and
for this reason, output networks do not have branch lengths); however when branch
lengths are part of the input, our methods use them as features to train and guide the
decisions of the underlying machine-learning model.

7.2.2. SOLVING HYBRIDIZATION VIA CHERRY PICKING

Our methods fall in the Cherry-Picking Heuristic (CPH) framework, first introduced
in Bernardini et al. [27] to find feasible solutions to HYBRIDIZATION for binary input
trees. In this section, we recall the main characteristics of the CPH framework; we refer
the reader to Bernardini et al. [27, Section 3] or Section 6.3 of this thesis for a complete
discussion.

The CPH framework relies on the following results given in Janssen and Murakami
[109]: (i) if a minimum-length CPS that fully reduces a binary orchard network N on a
set of taxa X also fully reduces a tree T (or another network, not necessarily binary) on
a set of taxa X ′ ⊆ X , then T is displayed in N ; and (ii), any CPS S can be processed in
reverse order to reconstruct a unique binary orchard network for which S is a minimum-
length CPS.

The main idea underlying CPH is thus to construct a CPS that fully reduces the input
set of trees T and then to process this sequence in reverse order to obtain a network N
which is guaranteed to be a feasible solution to HYBRIDIZATION by means of result (i).
Any algorithm in the CPH framework constructs a CPS S in an incremental way (starting
from an empty sequence) by repeating the following steps until all the input trees are
fully reduced:

1. Choose a pair of leaves (x, y) that is reducible in at least one tree (i.e., a cherry of
the tree set).

2. Reduce (x, y) in all trees.

3. Append (x, y) to S.

Once the input trees are fully reduced, the obtained sequence S is processed in reverse
order to construct the output network N (after a last technical step to make sure S is a
CPS and not just a partial sequence, see Bernardini et al. [27, Section 3.1] or Algorithm 6.2
of this thesis for details) using the dedicated method from Janssen and Murakami [109].

7.2. METHODS

7

183

xw y z

T1

xw y z

T2

v vw y z

T3

Figure 7.3: Example of a tree set with a trivial cherry (x, y): in trees T1 and T2, x and y form a cherry, and x is
not in T3. In contrast, (x, z) is not a trivial cherry: it is a cherry in T1, but both x and z are in T2 without forming
a cherry.

Since the latter method outputs binary networks, so do all algorithms in the CPH frame-
work. Note that this is not a significant restriction because whenever there exists a mul-
tifurcating network displaying T , there also exists a binary network displaying T with
the same reticulation number. The following lemma links the number of reticulations of
N with the length of the CPS it is reconstructed from.

Lemma 7.1 (van Iersel et al. [202]). Let S be a CPS on a set of taxa X . The number of
reticulations of the network N reconstructed from S is r (N) = |S|− |X |+1.

The formula of Lemma 7.1 implies that the shorter the cherry-picking sequence con-
structed by the algorithm, the fewer the reticulations of the output network. The algo-
rithms in the CPH framework differ from one to another for the criterion with which
a reducible pair is chosen at each iteration: the goal of this study is to find a criterion
that produces as short as possible sequences for input multifurcating trees with missing
leaves.

Before discussing our new methods, we recall a simple, but rather effective algorithm
in the CPH framework that can be easily modified to be applied to multifurcating input
trees with missing leaves. In the rest of this chapter, we will call FHyNCH-TrivialRand
the adaptation of this strategy to multifurcating trees with missing leaves. We need the
following definition (see Figure 7.3 for an example).

Definition 7.2. An ordered leaf pair (x, y) is a trivial cherry (or trivial pair) of T if it is
reducible in all T ∈T that contain both x and y, and there is at least one tree in which it
is reducible.

It has been empirically shown in the previous chapter that picking trivial cherries
(when they exist) produces good results in terms of the number of reticulations of the
output network. The criterion used by FHyNCH-TrivialRand to pick a pair at each iter-
ation is thus to choose a trivial cherry if there is any; and to choose a pair uniformly at
random among the cherries of the current tree set if no trivial cherry exists. This random-
ized algorithm is so simple and fast that several runs on the same input can be computed
in a reasonable time so as to select the best output as a final result: in our experiments,
we will compare our new methods against this strategy.

7.2.3. A MACHINE-LEARNED ALGORITHM FOR HYBRIDIZATION
A machine-learning model in the CPH framework for solving HYBRIDIZATION on binary
input trees was first proposed in Bernardini et al. [27]: although in theory this method

7

184 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

is applicable in the presence of missing leaves (i.e., to input trees with different sets of
taxa), the authors experimentally showed that the quality of the results rapidly degrades
for increasing percentage of missing leaves. In principle, the machine-learning model
of CPH could be straightforwardly adapted to work on multifurcating trees; however,
its time complexity would get much worse, resulting in a slow algorithm that does not
handle well differences among the sets of taxa.

In this section, we propose a new, different machine-learning model specifically de-
signed for multifurcating input trees with missing leaves.

THEORETICAL BACKGROUND

The foundations on which our new methods rely are the same as for the model on binary
trees. We report here a high-level description of this background and refer the reader
to Section 6.3.3 for details.

The main idea is the following. Let OPT(T) denote the set of networks that dis-
play the input trees T with the minimum possible reticulation number (note that, in
general, OPT(T) contains more than one network [161]). Ideally, we aim at finding a
CPS fully reducing T that is also a minimum-length CPS that fully reduces some net-
work of OPT(T). This is because any method in the CPH framework outputs a network
for which the produced CPS is a minimum-length sequence. Our goal is to design a
machine-learned oracle to predict, at each iteration of the method, which pairs of T are
reducible in some optimal network. Using this prediction, at every iteration the algo-
rithm chooses a pair that most probably leads to an optimal solution.

MACHINE-LEARNING MODELS

To predict whether a given cherry of the tree set is a reducible pair in some optimal net-
work N for T , we train two random-forest classifiers: one using features that carry infor-
mation on the leaves of the trees, another using features about their cherries. The main
novelty of this approach compared to those proposed in the previous chapter is in the
design and use of the first classifier, whose crucial role is to reduce the solution space at
every iteration: without its introduction, the method would be infeasible for non-binary
input data sets of practical size. This is because it may require computing features for
a quadratic number of cherries at every iteration, in contrast with the binary case, in
which the number of cherries is always linear in the number of taxa. The accuracy of
the simple random forest models for our problem was so good that we did not find any
advantage in applying deep learning instead.

In the first classifier, a data point is a pair (F1,c1), where F1 is an array containing 8
features, listed in Table 7.1, of a leaf x, and c1 is a binary label modeling whether or not x
belongs to a reducible pair (either a cherry or a reticulated cherry) of the unknown target
optimal network N . The second classifier is similar to the one proposed in Bernardini
et al. [27]: here, a data point is a pair (F2,c2), where F2 is an array containing 21 features,
listed in Table 7.2, of a cherry (y, z), and c2 is a binary label modeling whether or not (y, z)
is a reducible pair of N . The two classifiers receive in input the arrays of features, learn
the association between F1 and c1 and between F2 and c2, respectively, and output a
label for each data point together with a confidence score modeling the probability that
the predicted label is correct.

7.2. METHODS

7

185

The general scheme of our strategy is as follows. First, the algorithm computes the
array F1 of features for each x ∈ X , thus creating a data point for the first classifier for
each leaf of the initial tree set, and initializes an empty cherry-picking sequence S. It
then repeats the following steps until all the trees are fully reduced.

1. Select a subset C of k leaves from the current tree set, based on the predictions of
the first classifier.

2. Compute F2 for each cherry in the current tree set that contains one leaf from C ,
thus creating data points for the second classifier only for this subset of cherries.

3. Choose a cherry (x, y) based on the predictions of the second classifier, append it
to S, and reduce (x, y) in all trees.

4. Update F1 for all the data points for the first classifier.

We name this algorithmic scheme FHyNCH-MultiML. The constant k ≥ 1 determin-
ing the size of the subset of leaves selected in Step 1 at each iteration is a parameter of
the algorithm: in Section 7.3.1 we report experiments about the impact of k on the run-
ning time and the quality of the results of our algorithm. The simplest way to implement
Step 1 is to select the k leaves that are predicted by the first classifier to be part of a re-
ducible pair of an optimal network with the highest probability; other possible strategies
are supported by our method, e.g., to fix a threshold λ ∈ (0,1) and to select the k leaves
uniformly at random among the ones whose probability to be part of a reducible pair of
an optimal network is at least λ. A similar argument can be made for the choice of the
cherry in Step 3. The number of data points for the first classifier is always bounded by
|X |, the number of taxa. The array F1 of features is efficiently updated in Step 4 at each it-
eration for each data point, that is, for each leaf of the current tree set. In contrast, arrays
F2 are computed from scratch in Step 2 at every iteration because the subset of cherries
for which a data point is created changes across different iterations (it depends on the
leaves chosen at Step 1).

The main role of the first classifier is in fact to reduce the number of cherries for
which F2 must be computed: this is needed because the total number of cherries in the
tree set could be superlinear (up to quadratic in the number |X | of taxa), which could
make it impractical to compute F2 for every cherry at every iteration. Using the first clas-
sifier beforehand guarantees that F2 must be computed only for a linear number O (k|X |)
of cherries at each iteration, resulting in a much faster and more practical algorithm.

Features 5-6 for the first classifier and 6-13 for the second classifier can be computed
for both branch lengths and unweighted branches. We refer to these two options as
branch distance and topological distance, respectively. The branch depth (resp. topo-
logical depth) of a node u in a tree T is the total branch length (resp. the total number
of edges) on the path from the root to u; the leaf-depth of T is the maximum depth of
any leaf of T ; the depth of a cherry (x, y) is the depth of the common parent of x and y ;
and the cherry-depth of T is the maximum depth of any cherry of T . The leaf distance
between x and y is the total length of the path from the parent of x to the lowest com-
mon ancestor of x and y , denoted by LCA(x, y), plus the total length of the path from the
parent of y to LCA(x, y). In particular, the leaf distance between the leaves of a cherry

7

186 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

Table 7.1: Features of a leaf x for the first classifier.

Num. Feature name Description

1 Leaf pickable Ratio of trees in which x is part of a cherry
2 Leaf in tree Ratio of trees that contain leaf x
3 Siblings avg. Avg over trees with x of ratios “num. of siblings of x/number of leaves in tree”
4 Siblings std. Standard deviation of “num. of siblings of x/number of leaves in tree”

Features measured by distance (d) and topology (t)

5b,t Leaf depth x avg. Avg over the trees that contain x of ratios “depth of x/leaf-depth of the tree”
6b,t Leaf depth x std. Standard deviation of “depth of x/leaf-depth of the tree”

Table 7.2: Features of a cherry (x, y) for the second classifier. These features are the same as those for the
classifier used in Bernardini et al. [27]; however, the latter classified cherries into four classes instead of only
two.

Num Feature name Description

1 Cherry in tree Ratio of trees that contain cherry (x, y)
2 New cherries Number of new cherries of T after picking cherry (x, y)
3 Before/after Ratio of the number of cherries of T before/after picking cherry (x, y)
4 Trivial Ratio of trees with both leaves x and y that contain cherry (x, y)
5 Leaves in tree Ratio of trees that contain both leaves x and y

Features measured by distance (d) and topology (t)

6b,t Tree depth Avg over trees with (x, y) of ratios “cherry-depth of the tree/max cherry-depth over all trees”
7b,t Cherry depth Avg over trees with (x, y) of ratios “depth of (x, y) /cherry-depth of the tree”
8b,t Leaf distance Avg over trees with x and y of ratios “x-y leaf distance/cherry-depth of the tree”
9b,t Leaf depth x Avg over trees with x and y of ratios “depth of x/cherry-depth of the tree”
10b,t Leaf depth y Avg over trees with x and y of ratios “depth of y/cherry-depth of the tree”
11b,t LCA distance Avg over trees with x and y of ratios “x-LCA(x, y) distance/y-LCA(x, y) distance”
12b,t Depth x/y Avg over trees with x and y of ratios “depth of x/depth of y”
13b,t LCA depth Avg over trees with (x, y) of ratios “depth of LCA(x, y)/cherry-depth of the tree”

is zero as their LCA is their common parent. All of the above quantities can be defined
both using branch distance and topological distance.

TREE EXPANSION

We now briefly describe a heuristic improvement to our methods, called tree expansion,
that was already introduced for binary trees in Chapter 6, and can be applied as-is to
multifurcating trees. Tree expansion is applied whenever a trivial cherry (x, y) is chosen
to be reduced at some iteration. By Definition 7.2, each tree T in the current tree set
belongs to one of the following classes with respect to the trivial cherry (x, y): (i), (x, y) is
a cherry of T ; (ii), neither x nor y are leaves of T ; (iii), T has leaf y but not x; and (iv), T
has leaf x but not y .

Without tree expansion, after reducing (x, y) in the tree set, leaf x is removed from
the trees in class (i), but not from the trees in class (i v), thus it still may be present in
the tree set. The goal of tree expansion is to make x disappear from the whole tree set,
as this empirically reduces the length of the produced sequence and thus the number of
reticulations in the output network. Tree expansion consists of the following operation:

Rule 1 (Tree expansion). Before reducing a trivial cherry (x, y) in the tree set, add leaf y
to form a cherry with x in all the trees in class (i v).

7.2. METHODS

7

187

Variabilichromis_moorii
Telmatochromis_vittatus
Julidochromis_ornatus
Lamprologus_omatipinnis
Lamprologus_kungweensis
Lamprolongus_laparogramma
Lamprolongus_signatus
Neolamprologus_similis
Neolamprologus_multifasciatus
Neolamprologus_calliurus
Hybrid1.2
Lamprologus_speciosus
Neolamprologus_brevis
Hybrid_1.1_Hybrid_2.1_Hybrid_2.2
Neolamprologus_leloupi
Lamprologus_meleagris
Lamprologus_lemairii
Neolamprologus_caudopunctatus
Lepidiolamprologus_elongatus
Lepidiolamprologus_profundicola
Lepidiolamprologus_sp_meeli-boule
Lepidiolamprologus_attenuatus
Lepidiolamprologus_boulengeri
Lepidiolamprologus_hecqui
Lepidiolamprologus_meeli
Lamprologus_ocellatus
Altolamprologus_calvus
Altolamprologus_compressiceps
Altolamprologus_sp_shell
Lamprologus_callipterus

(a) Mitochondrial tree

Variabilichromis_moorii
Telmatochromis_vittatus
Julidochromis_ornatus
Neolamprologus_brevis
Neolamprologus_calliurus
Lamprologus_callipterus
Lamprologus_omatipinnis
Lamprolongus_signatus
Neolamprologus_caudopunctatus
Neolamprologus_leloupi
Altolamprologus_calvus
Altolamprologus_sp_shell
Altolamprologus_compressiceps
Lamprologus_ocellatus
Lamprologus_meleagris
Lamprologus_speciosus
Neolamprologus_wauthioni
Neolamprologus_fasciatus
Neolamprologus_multifasciatus
Neolamprologus_similis
Lepidiolamprologus_hecqui
Lepidiolamprologus_elongatus
Lepidiolamprologus_attenuatus
Lepidiolamprologus_sp_nov.
Lepidiolamprologus_profundicola
Lepidiolamprologus_sp_meeli-boule
Lepidiolamprologus_meeli

(b) Nuclear tree

Neolamprologus_similis
Neolamprologus_fasciatus
Lamprologus_omatipinnis
Lamprologus_kungweensis
Lamprolongus_laparogramma
Lamprolongus_signatus
Neolamprologus_caudopunctatus
Lamprologus_lemairii
Neolamprologus_leloupi
Lamprologus_meleagris

Lepidiolamprologus_elongatus
Lepidiolamprologus_sp_nov.
Lepidiolamprologus_profundicola
Lepidiolamprologus_attenuatus
Lepidiolamprologus_sp_meeli-boulengeri
Lepidiolamprologus_meeli
Lepidiolamprologus_hecqui
Lepidiolamprologus_boulengeri
Lamprologus_callipterus
Altolamprologus_calvus
Altolamprologus_compressiceps
Altolamprologus_sp_shell

Lamprologus_ocellatus

Lamprologus_speciosus
Neolamprologus_wauthioni
Hybrid_1.1_Hybrid_2.1_Hybrid_2.2
Neolamprologus_brevis
Neolamprologus_calliurus
Hybrid1.2

Neolamprologus_multifasciatus

Telmatochromis_vittatus
Julidochromis_ornatus
Variabilichromis_moorii

(c) Output network

Figure 7.4: Mitochondrial (a) and nuclear (b) phylogenies for the Lamprologini tribe, preprocessed as in Huson
and Linz [102]. The network outputted by FHyNCH-MultiML (c) has the optimal number of 4 reticulations.

After tree expansion, picking (x, y) will make x disappear from the set. Another way
of viewing this operation is as a relabeling of x by y in all the trees in class (i v). It was
proved in Bernardini et al. [27, Lemma 6] that this move does not affect the feasibility of
the output: in other words, the network produced using tree expansion still displays the
input set of trees. The same proof applies to the case of multifurcating trees.

Neolamprologus_multifasciatus

Lamprologus_speciosus

Neolamprologus_brevis

Neolamprologus_calliurus

Neolamprologus_leloupi

Lamprologus_meleagris

Lepidiolamprologus_elongatus

Lepidiolamprologus_profundicola

Lepidiolamprologus_sp_meeli-boulengeri

Lepidiolamprologus_attenuatus

Lepidiolamprologus_boulengeri

Lepidiolamprologus_hecqui

Lepidiolamprologus_meeli

Lamprologus_ocellatus

Lamprologus_callipterus

Lamprolongus_signatus

Julidochromis_ornatus

(a) Mitochondrial tree

Julidochromis_ornatus

Neolamprologus_brevis

Neolamprologus_calliurus

Lamprologus_callipterus

Lamprologus_ocellatus

Lamprologus_meleagris

Lamprologus_speciosus

Neolamprologus_multifasciatus

Lepidiolamprologus_hecqui

Lepidiolamprologus_elongatus

Lepidiolamprologus_attenuatus

Lepidiolamprologus_sp_meeli-boulengeri

Lepidiolamprologus_meeli

Lepidiolamprologus_profundicola

Neolamprologus_leloupi

Lamprolongus_signatus

(b) Nuclear tree

Figure 7.5: The trees of Figure 7.4 after reducing all their trivial cherries.

Example 7.1. To illustrate the workings of FHyNCH-MultiML, we applied it to two phy-
logenetic trees for the Lamprologini tribe (one representing the mitochondrial phylogeny,
the other the nuclear phylogeny), studied in Koblmüller et al. [120]. The same data were
later used to test the Autumn algorithm [102]. In Huson and Linz [102], the phylogenetic
trees were preprocessed to contract edges that had a bootstrap support of 50% or less. We
applied FHyNCH-MultiML to these preprocessed trees, after deleting a few species that
were misspelt in one of the two trees of Huson and Linz [102] and were mistakenly consid-
ered two different species in the two phylogenies2. Note that removing these species does
not affect the number of reticulations needed because each of the variants was in only one

2E.g., Neolamprologus wauthioni is mistakenly spelt as Naolamprologus wauthioni in the mitochondrial tree

7

188 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

of the trees in Huson and Linz [102]. The trees are multifurcating and have different taxa
sets.

The input trees and the network outputted by FHyNCH-MultiML are shown in Fig-
ure 7.4. Notably, although FHyNCH-MultiML is a heuristic specifically designed for mul-
tiple trees, in this case, it returns a network with the same number of reticulations as in
the output of the exact Autumn algorithm Huson and Linz [102], thus an optimal result.
We also observe that the Autumn algorithm has several practical advantages: it returns
multiple optimal networks and it returns nonbinary networks. In comparison, the net-
works produced by FHyNCH-MultiML could be more resolved than necessary to display
the input trees.

Let us now have a closer look at the first iterations of FHyNCH-MultiML. The two in-
put trees contain several trivial cherries: e.g., (Hybrid1.2,Neolamprologus_calliurus) is a
cherry in the mitochondrial tree, and the label ‘Hybrid1.2’ does not appear in the nu-
clear tree, thus the cherry is trivial as per Definition 7.2; another trivial pair is (Telma-
tochromis_vittatus,Julidochromis_ornatus), which is a cherry both in the mitochondrial
and in the nuclear tree; and many more (16 in total). The first iterations are devoted to
picking all such trivial cherries, which are also cherries of the output network of Figure 7.4
(c). After picking all the initial trivial cherries, the two input trees were reduced to the two
trees shown in Figure 7.5.

At this point, the first classifier computed the features of Table 7.1 for all the 15
leaves remained in the trees of Figure 7.5 and returned ‘Lepidiolamprologus_sp_meeli-
boulengeri’ (abbreviated as ‘Lep_sp_meeli-boule’ in the rest of the example) as the top-
scoring leaf, with a score of 0.98. This leaf formed a cherry with ‘Lepidiolampro-
logus_attenuatus’ in the Mitochondrial tree (abbreviated as ‘Lep_att’) and with ‘Lep-
idiolamprologus_meeli’ (‘Lep_meeli’) in the nuclear tree. The second classifier thus
computed the features of Table 7.2 for the four cherries (Lep_sp_meeli-boule,Lep_att),
(Lep_att,Lep_sp_meeli-boule), (Lep_sp_meeli-boule,Lep_meeli),
(Lep_meeli,Lep_sp_meeli-boule), and returned (Lep_sp_meeli-boule,Lep_att) as the top-
scoring. This cherry was thus picked from the mitochondrial tree. After this iteration,
the cherry (Lep_sp_meeli-boule,Lep_meeli) became trivial (as ‘Lep_sp_meeli-boule’ was
no longer present in the mitochondrial tree) and was thus picked from the nuclear tree.
In the end, FHyNCH-MultiML produced a cherry-picking sequence of length 36; since the
total number of taxa labeling the input trees was 33, the output reticulation number was
4.

OBTAINING TRAINING DATA

Generating data to train our classifiers is nontrivial because of the lack, in general, of
ground truth: no existing algorithm is able to find an optimal solution – let alone all
optimal solutions – for sufficiently large instances. We thus rely on the following pro-
cedure. We first generate a binary network N on a set of taxa X using the LGT (lateral
gene transfer) network generator of Pons et al. [169] and extract the set T̃ of all trees that
are displayed in N and have the whole X as leaf set. We then contract and delete some
edges (see Definition 7.1) from each of these trees using the following criteria. We set up

used in Huson and Linz [102]; the two names (correct and misspelt) labeled two different leaves of the output
networks. Similar typos occurred for another two species.

7.3. RESULTS

7

189

two thresholds Ml,Me ∈ (0,1); for each tree T ∈ T̃ , we choose a value pT
l ∈ (0,Ml) and

a value pT
e ∈ (0,Me) uniformly at random, contract each edge of T with probability pT

e
and delete each leaf (by deleting the edge that connects it to its parent) with probability
pT

l . The thresholds Ml and Me thus model the maximum probability with which a leaf

is deleted and an edge is contracted, respectively, in any of the trees of T̃ ; and we ap-
ply these operations with a different probability for each tree. The resulting tree set T

consists of multifurcating trees (as a result of edge contractions) with missing leaves (as
a result of leaf deletions).

Once we have generated the set T , we create a data point for the first classifier for
each leaf of T , labeling it according to whether it is in a reducible pair of N or not; and
similarly, we create a data point for the second classifier for each cherry of T , labeling it
according to whether it is reducible in N or not. We then iteratively choose a reducible
pair from N , reduce it both in N and in T , and update the data points and labels of each
classifier.

As noted in Section 6.4.2, it could be the case that at some point, TS is no longer dis-
played by NS for a partial sequence S. We terminate when N is fully reduced or when the
reducible pairs of NS are not present in TS , and store all the obtained data. We remark
that N is not necessarily an optimal network for the generated trees [161]. However,
its number r (N) of reticulations provides an upper-bound estimate of the number of
reticulations of an unknown optimal network, and in Section 7.3.1 we will use r (N) as a
reference value to evaluate the quality of our results for the synthetically generated data
sets.

7.3. RESULTS
The code of all our heuristics and for generating data is written in Python and is available
at https://github.com/estherjulien/FHyNCH. All experiments ran on a computing
cluster with an AMD Genoa 9654 CPU, of which 16 cores were used. We conducted ex-
periments on both synthetic and real data. scikit-learn [166] with default settings
was used for the random forest model.

7.3.1. SYNTHETIC DATA

Similar to the training data, we generated each of the synthetic datasets by first growing a
binary network N on a set of taxa X using the LGT network generator of Pons et al. [169],
extracting some of the trees that are displayed in N and have the whole X as leaf set,
and finally deleting some leaves and contracting some edges from each of the extracted
trees as described in Section 7.2.3. We generated several instances for different combi-
nations of the following parameters: the number R ∈ {10,20,30} of reticulations of the
generating network N ; the number L ∈ {20,50,100} of leaves of the generating network N
(i.e., the size of the set of taxa X); the number |T | ∈ {20,50,100} of trees extracted from
N ; and the thresholds Ml,Me ∈ {0,0.1,0.2} for leaf and edge deletion, respectively (see
Section 7.2.3). For each combination of the parameters R,L,Ml and Me we generated
20 networks for each value of |T | ∈ {20,50,100} and as many instances for HYBRIDIZA-
TION. The 60 instances generated for a specific combination of values for L,R,Ml,Me
constitute an instance group.

https://github.com/estherjulien/FHyNCH

7

190 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

2 4 6 8 10

k

1.5

2.0

2.5

3.0

3.5

4.0

R
et

ic
u

la
ti

on
/

R
ef

er
en

ce
Ml

0.0

0.2

2 4 6 8 10

k

50

100

150

200

250

300

350

400

T
im

e
(i

n
se

co
n

d
s)

Figure 7.6: Results (left) and running time in seconds (right) for synthetic instances with L = 100,R = 30, |T | ∈
{20,50,100}, Me = 0 and Ml ∈ {0,0.2} for varying k ∈ {1,2,5,10} (k is the number of leaves chosen in Step 1 of
FHyNCH-MultiML: see Section 7.2.3).

We run all our experiments setting the parameter k = 1, as the experiment summa-
rized in Figure 7.6 indicates that larger values of k increase the running time of the algo-
rithm without improving the quality of the results. Since no exact method can be applied
to these instances, we compared FHyNCH-MultiML with FHyNCH-TrivialRand, a ran-
domized heuristic proposed in Bernardini et al. [27] and here briefly summarized in Sec-
tion 7.2.2 that can be straightforwardly modified to be applied to nonbinary trees with
missing leaves. For each instance I , we ran FHyNCH-MultiML once, while FHyNCH-
TrivialRand was run min{x(I),1000} times, where x(I) is the number of runs that can be
executed in the same time as one run of FHyNCH-MultiML on the same instance; we
then selected the best output over all such runs, and considered this value the result of
FHyNCH-TrivialRand for instance I . To evaluate the quality of the methods, within each
instance group we used the number R of reticulations of the generating networks as a
reference value and divided the number of reticulations output by each method by this
value. The results are summarized in Figure 7.7.

It is immediately apparent that the results of FHyNCH-TrivialRand rapidly degrade
for increasing instance size and increasing percentages of missing leaves and multifur-
cating nodes in the input trees, while the performance of FHyNCH-MultiML is much
more stable. Moreover, for the same number of leaves in the generating network N (pa-
rameter L) the results of both methods become worse for increasing number of reticu-
lations of N (parameter R), the deterioration being much more marked for FHyNCH-
TrivialRand than for FHyNCH-MultiML. With few exceptions (including, e.g., the in-
stance group with L = 20,R = 10,Ml = 0,Me = 0.2), the performance of FHyNCH-
MultiML and FHyNCH-TrivialRand on the smaller instances (L = 20) do not seem to
be significantly different, although both the median and the variance of the results
of FHyNCH-MultiML are consistently smaller than those of FHyNCH-TrivialRand. In
all the other instance groups, FHyNCH-MultiML substantially outperforms FHyNCH-
TrivialRand, the difference being more pronounced in groups with higher percentages
of missing leaves and contracted edges. Unlike what happens for FHyNCH-TrivialRand,
the quality of the results of FHyNCH-MultiML is only marginally affected by increasing
percentages of contracted edges. For example, the median for the results of FHyNCH-

7.3. RESULTS

7

191

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)
0

2

4

6

8

10

12

14

16

R
et

ic
ul

at
io

n
/

R
ef

er
en

ce
Ml =0, Me =0

MultiML

TrivialRand

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)

Ml =0, Me =0.1

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)

Ml =0, Me =0.2

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)
0

2

4

6

8

10

12

14

16

R
et

ic
ul

at
io

n
/

R
ef

er
en

ce

Ml =0.1, Me =0

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)

Ml =0.1, Me =0.1

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)

Ml =0.1, Me =0.2

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)

(L,R)

0

2

4

6

8

10

12

14

16

R
et

ic
ul

at
io

n
/

R
ef

er
en

ce

Ml =0.2, Me =0

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)

(L,R)

Ml =0.2, Me =0.1

(2
0,1

0)

(2
0,2

0)

(2
0,3

0)

(5
0,1

0)

(5
0,2

0)

(5
0,3

0)

(1
00,1

0)

(1
00,2

0)

(1
00,3

0)

(L,R)

Ml =0.2, Me =0.2

Figure 7.7: Synthetic instance results for different values of Ml, Me, L, and R. The reference reticulation number
value per instance is the network the trees were extracted from.

MultiML in the instance group with L = 100,R = 30 and no contracted edges nor missing
leaves is 1.47, the results for 75% of the instances being within a factor 1.7 from the ref-
erence value; these values become 1.85 and 2.14, respectively, in the instance group with
L = 100,R = 30, no missing leaves and Me = 0.2. Then, when increasing the percentage
of missing leaves, the median of the results of FHyNCH-MultiML within the group with
L = 100,R = 30,Ml = Me = 0.2 increases to 4.07, with the results for 75% of the instances
being within a factor of 5.28 from the reference.

In comparison, for the same instance groups the results of FHyNCH-TrivialRand are
as follows: in the group with L = 100,R = 30, no missing leaves nor contracted edges, the
median is 3.97, the results for 50% of the instances being within a factor in the range of
3.2 to 5.01 from the reference value; in the group with L = 100,R = 30, no missing leaves

7

192 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

and Me = 0.2, the median is 7.12, the results for 50% of the instances being within a
factor in the range of 5.52 to 9.43 from the reference value; and finally, in the group with
L = 100,R = 30 and Me = Ml = 0.2 the median is 9.2, the results for 50% of the instances
being within a factor in the range of 6.92 to 12.35 from the reference value.

The poor performance of FHyNCH-TrivialRand on instances consisting of trees with
many leaves, especially when they are nonbinary, is due to its randomized nature: the
more leaves, the more cherries in the tree set, thus the smaller the probability of picking
a good pair at every iteration. When the trees are nonbinary, the number of cherries
increases even more, making the issue more serious; and the same holds for missing
leaves - when a leaf is missing from a tree, this may originate a cherry that would not
have been there in the complete tree. In contrast, the more leaves in the trees the more
data are available for the machine-learned models to make good decisions.

In the next section, we show that this trend is conserved when the two methods are
applied to real datasets: when the instances are small enough, FHyNCH-TrivialRand of-
ten outperforms FHyNCH-MultiML, while on larger instances the results of FHyNCH-
MultiML are significantly better.

7.3.2. REAL DATA
Evaluating the performance of FHyNCH-MultiML on real data is a nontrivial task be-
cause, since no exact method exists for solving HYBRIDIZATION for more than two mul-
tifurcating trees with missing leaves, we do not have a baseline to compare against. We
thus adopted two different strategies depending on the instance size. For small enough
instances, consisting of up to 6 trees, we apply a procedure - described in the paragraph
devoted to small instances - to make the trees binary and with equal leaf sets, to be able
to apply the exact TreeChild method from van Iersel et al. [201] and use its result as a ref-
erence value. Although this is not necessarily the true optimum, both because by making
the trees binary and adding missing leaves we could introduce spurious constraints that
might originate unnecessary reticulations and because TreeChild is exact only for a spe-
cial class of networks, this value is expected to be reasonably close to the real optimum.
Larger instances cannot be processed by TreeChild nor other exact methods, thus we
simply compared the performance of FHyNCH-MultiML and FHyNCH-TrivialRand and
reported the relative error of one compared to the other, i.e., the difference between the
two results divided by the best (thus the smallest) one. More details will be provided in
the paragraph devoted to large instances.

Data sets. We extracted several instances of HYBRIDIZATION from the publicly avail-
able data set used in Beiko [20], consisting of phylogenetic trees for 159,905 distinct
homologous gene sets from 1173 sequenced bacterial and archaeal genomes. The
trees are multifurcating and have missing leaves. For different sizes of the tree set
|T | ∈ {2,4,6,10,20,30,40,50,60}, we extracted instances. For each instance, we also fixed
an approximate number of leaves L ∈ {10,20,50,100,150} and the maximum fraction of
missing leaves (from the union of leaves from all trees in the set) Ml ∈ {0.1,0.2,0.3}.

To generate an instance, we sampled one tree at a time from the full data set uni-
formly at random, and depending on whether it was consistent with the fixed values for
parameters L and Ml we added it to the instance or discarded it and sampled another

7.3. RESULTS

7

193

Table 7.3: Number of instances extracted from the Bacterial and Archaeal Genomes data set, for different com-
binations of parameters |T |, L, and Ml.

L = 10 L = 20 L = 50 L = 100 L = 150
Ml 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

|T |
2 10 10 10 10 10 10 6 10 10 10 10 10 9 10 10
4 10 10 10 10 10 10 0 7 10 10 10 10 0 7 10
6 10 10 10 10 10 10 0 3 10 10 10 10 0 0 9

10 10 10 10 10 10 10 0 0 6 10 9 10 0 0 3
20 5 10 10 7 7 10 0 0 0 4 9 10 0 0 0
30 6 10 10 7 6 10 0 0 0 1 6 8 0 0 0
40 2 10 9 6 7 5 0 0 0 1 3 8 0 0 0
50 3 9 8 6 5 8 0 0 0 0 3 8 0 0 0
60 1 6 8 5 6 6 0 0 0 0 1 7 0 0 0

Table 7.4: Number of (modified) small instances extracted from the Bacterial and Archaeal Genomes data set
TreeChild was able to solve within a time limit of 2 hours using 16 cores.

L = 10 L = 20 L = 50 L = 100 L = 150
Ml 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

|T |
2 10 9 10 10 10 10 6 7 1 1 0 0 0 0 0
4 10 10 10 8 5 4 0 0 0 0 0 0 0 0 0
6 10 9 10 0 1 0 0 0 0 0 0 0 0 0 0

tree until we reached the predetermined number |T | of trees. In more detail, for every
sampled tree T we checked whether the number of its leaves was between (1−Ml)L and
L, whether the union of its leaves and the leaves of the trees already selected for that in-
stance was of size at most L and the difference between the leaf set of T and such union
was at most 100∗Ml%. If an instance could not be completed within a timeframe of
10 minutes, we aborted the search and started generating a new instance with the same
parameters from scratch. We aimed at generating 10 instances for each combination of
parameters |T |,L and Ml, however, for some combinations we did not find enough trees
with the desired properties to generate as many instances. Table 7.3 reports the number
of distinct instances that we were able to extract from the data set for each parameter
combination. We consider small the instances with |T | ∈ {2,4,6} and large the rest.

EXPERIMENTS ON SMALL INSTANCES

We assess the performance of FHyNCH-MultiML against FHyNCH-TrivialRand on small
instances using a baseline obtained by applying TreeChild 3 to a modified version of the
same instance. The modification is needed because TreeChild can only be applied to a
tree set of binary trees with the same leaf sets. To generate these modified instances, the
first step is to add as many missing leaves as possible as follows.

Let T = {T1,T2, . . . ,Tn} be the set of input trees and let R be the set of cherries of T .
For each Ti and each leaf ℓ missing from Ti , we compute the set Rℓ

i = {(ℓ, y) ∈ R | y ∈ Ti }
of cherries of T such that one element is ℓ and the other is a label present in Ti . We
then find the cherry (ℓ, z) ∈ Rℓ

i that occurs the most in T (ties are broken randomly),

3available at https://github.com/nzeh/tree_child_code

https://github.com/nzeh/tree_child_code

7

194 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

(1
0,2

,1
0)

(1
0,4

,1
0)

(1
0,6

,1
0)

(2
0,2

,1
0)

(2
0,4

,8
)

(5
0,2

,6
)

(1
00,2

,1
)

(L, |T |, I)

0.0

0.5

1.0

1.5

2.0
R

et
ic

ul
at

io
n

/
R

ef
er

en
ce

Ml =0.1

MultiML

TrivialRand

(1
0,2

,1
0)

(1
0,4

,1
0)

(1
0,6

,9
)

(2
0,2

,1
0)

(2
0,4

,9
)

(2
0,6

,3
)

(5
0,2

,7
)

(L, |T |, I)

Ml =0.2

(1
0,2

,1
0)

(1
0,4

,1
0)

(1
0,6

,1
0)

(2
0,2

,1
0)

(2
0,4

,7
)

(5
0,2

,2
)

(L, |T |, I)

Ml =0.3

Figure 7.8: Results for the small instances extracted from the Bacterial and Archaeal Genomes data set for
different values of Ml. The reference value for each instance is the best output of TreeChild among the cor-
responding 10 modified instances described in Section 7.3.2. We do not show results for instances for which
TreeChild could not provide a solution within 2 hours, using 16 cores, for any of the modified instances, which
was the case for at least one instance within 31 out of 40 small instance groups (see Table 7.4 and compare it
with Table 7.3). Parameters L and |T | are as described in Section 7.3.2; I denotes the number of instances that
TreeChild was able to solve for each instance group. Values of the ratio results/reference smaller than 1 indi-
cate that TreeChild did not return the true optimum for some instances because of the (unavoidable) artificial
constraint introduced in the modified instances.

add ℓ as another child of the parent of z in Ti and remove ℓ from Mi . If after applying
this procedure for all missing leaves of Ti some leaves are still missing, we add them
randomly.

In an effort to minimize the bias introduced in the results because of this randomized
step, we generated 10 different modified instances for each of the original instances, ran
TreeChild on each of them and used the result for the best of these modified instances
as a reference value for the original instance. Before doing so, however, we make all the
trees of all the modified instances binary by using the dedicated method that can be
found in the TreeChild repository 4. We remark that the trees of the modified instances
display those of the original instances by construction (they can be obtained reverting
the procedure, i.e, contracting edges and deleting leaves) thus the solutions obtained by
applying TreeChild to the modified instances are always feasible for the original ones,
although we cannot guarantee their optimality.

For each of the original instances I , we ran FHyNCH-MultiML once, selected the best
of the min{100, x(I)} runs of FHyNCH-TrivialRand (recall that x(I) denotes the number
of runs of FHyNCH-TrivialRand that can be completed in the time required for a sin-
gle run of FHyNCH-MultiML) and divided these results by the best value returned by
TreeChild among the 10 modified instances obtained from I . We summarize the results
in Figure 7.8. From the experiments on synthetic data, it was already clear that the per-
formance of FHyNCH-TrivialRand is close to that of FHyNCH-MultiML on small enough
instances. The smallest instances of the synthetic data set, which consist of 20, 50, or
100 trees with 20 leaves each, are much larger than the small instances of the real data
set, which consist of only 2, 4, or 6 trees each: for the latter, the good performance of
FHyNCH-TrivialRand becomes more pronounced, its results being always comparable
or better than those of FHyNCH-MultiML. This is because when the size of the leaf sets

4https://github.com/nzeh/tree_child_code

https://github.com/nzeh/tree_child_code

7.3. RESULTS

7

195

Table 7.5: Running times of FHyNCH-MultiML (MML) and TreeChild (TC) for the small instance groups.
The first value in each pair is the average time in seconds within the group, the second value is the standard
deviation. For each instance group, the average time required by the fastest method is highlighted in bold. A
dash indicates an empty instance group; “> t.l.” means that the time limit of 2 hours was exceeded. Only 1 core
was used to run FHyNCH-MultiML on each instance; 16 cores were used to run TreeChild on each instance.

L Ml 2 trees 4 trees 6 trees
MML TC MML TC MML TC

10 0.1 (5.6, 0.2) (0.1, 0.1) (1.6, 0.3) (0.5, 1.0) (2.4, 0.9) (325.0, 731.9)
0.2 (1.0, 0.1) (0.2, 0.2) (1.6, 0.3) (0.2, 0.2) (2.4, 0.9) (720.5, 2159.8)
0.3 (1.0, 0.1) (0.2, 0.2) (2.7, 1.9) (0.2, 0.3) (2.2, 0.6) (15.7, 27.6)

20 0.1 (4.7, 2.0) (0.1, 0.1) (3.1, 0.9) (1835.9, 2828.8) (6.1, 0.9) > t.l.
0.2 (4.5, 1.1) (0.1, 0.1) (3.1, 0.6) (1449.3, 2174.8) (5.8, 1.6) (5408.3, 2891.1)
0.3 (1.4, 0.1) (0.5, 0.7) (7.2, 0.9) (3533.1, 3310.1) (4.8, 1.6) > t.l.

50 0.1 (3.5, 0.2) (82.1, 176.5) - - - -
0.2 (5.4, 1.4) (3321.8, 3021.2) (7.6, 0.9) > t.l. (13.7, 0.5) > t.l.
0.3 (3.2, 0.6) (5846.6, 2712.4) (8.6, 2.4) > t.l. (11.8, 3.9) > t.l.

100 0.1 (8.6, 0.8) (6480.3, 2159.1) (20.4, 1.5) > t.l. (39.6, 3.4) > t.l.
0.2 (8.8, 1.1) > t.l. (21.0, 1.6) > t.l. (40.4, 3.9) > t.l.
0.3 (7.5, 1.0) > t.l. (20.8, 4.0) > t.l. (36.2, 3.9) > t.l.

150 0.1 (13.7, 0.3) > t.l. - - - -
0.2 (13.1, 1.5) > t.l. (30.2, 3.1) > t.l. - -
0.3 (11.5, 0.8) > t.l. (26.9, 2.4) > t.l. (47.2, 6.5) > t.l.

and the number of trees are not too large, multiple runs of FHyNCH-TrivialRand can
explore a significant part of the solution space and thus return a good enough solution.

Running time. Table 7.5 reports the average and standard deviation of the running
times of FHyNCH-MultiML and TreeChild for each of the small instance groups of Ta-
ble 7.3. Following van Iersel et al. [201], we imposed a time limit of 2 hours for the exe-
cution of TreeChild. We used 16 cores to run TreeChild and only 1 core to run FHyNCH-
MultiML, which is single-threaded. Note that for the smallest instances consisting of 2
trees with L ≤ 20 or 4 trees with L = 10 TreeChild is on average faster than FHyNCH-
MultiML. However, the opposite becomes true as soon as the number of trees and leaves
are increased: already for instances of 6 trees with L = 10, TreeChild is slower than
FHyNCH-MultiML on average by one or two orders of magnitude; and it is slower by
three orders of magnitude or exceeds the time limit for instances with at least 4 trees
with L ≥ 20 or just 2 trees with L ≥ 50. FHyNCH-MultiML requires, on average less than
a minute for all these instance groups.

EXPERIMENTS ON LARGE INSTANCES

In contrast with the small instances, no exact methods could solve any of the larger in-
stances, not even when made binary and with equal leaf sets. It is thus not possible
to compute any reference value for these instances. We simply compare the perfor-
mance of FHyNCH-MultiML against FHyNCH-TrivialRand computing their relative er-
rors, defined as follows. Let rML(I) and rT R (I) be the number of reticulations output by
FHyNCH-MultiML and FHyNCH-TrivialRand, respectively, for the same instance I , and
let m = min{rML(I),rT R (I)}. The relative error of FHyNCH-MultiML against FHyNCH-
TrivialRand for instance I is given by rML (I)−m

m ; likewise, the relative error of FHyNCH-

TrivialRand against FHyNCH-MultiML is rT R (I)−m
m . The relative error of one method

7

196 7. CHERRY-PICKING HEURISTIC FOR NON-BINARY TREES

Table 7.6: Results for the experiments on the large instances extracted from the Bacterial and Archaeal
Genomes data set. FHyNCH-MultiML and FHyNCH-TrivialRand are denoted by MML and TR, respectively;
the results in columns labeled MML report the mean relative error (in %) of the results of FHyNCH-MultiML
against FHyNCH-TrivialRand; and symmetrically for the columns labeled TR. We highlight in bold the small-
est of the two errors for each instance group, identifying the best-performing method for each group. Dashes
denote empty instance groups (see also Table 7.3).

L Ml 10 trees 20 trees 30 trees 40 trees 50 trees 60 trees
MML TR MML TR MML TR MML TR MML TR MML TR

10 0.1 7.8 8.0 9.0 2.9 1.7 10.4 28.6 0.0 7.8 0.0 0.0 6.7
0.2 7.0 1.4 11.5 12.2 17.5 2.3 8.0 9.9 9.1 7.3 9.5 7.2
0.3 13.1 0.8 7.5 4.7 12.0 9.1 9.1 2.2 1.6 9.1 8.7 8.2

20 0.1 7.9 3.6 2.7 7.5 2.6 6.0 0.1 11.2 2.3 9.2 0.1 11.3
0.2 4.6 1.8 4.5 3.8 2.0 5.8 0.0 9.4 0.2 8.4 0.0 9.2
0.3 8.4 0.6 2.1 9.2 6.7 9.8 3.8 3.5 2.4 19.9 2.7 7.8

50 0.3 5.1 1.0 - - - - - - - - - -
100 0.1 0.0 15.9 0.0 19.1 0.0 20.4 0.0 16.9 - - - -

0.2 0.0 19.4 0.0 19.5 0.0 18.4 0.0 17.1 0.0 17.6 0.0 33.5
0.3 0.0 20.3 0.0 18.7 0.0 19.7 0.0 24.3 0.0 22.0 0.0 24.0

150 0.3 0.0 12.2 - - - - - - - - - -

against the other is 0 whenever the method is the best-performing one. We computed
these values for each instance, averaged them over all instances within each instance
group, and rescaled them to express them as a percentage. The results are shown in Ta-
ble 7.6. Note that when the mean relative error is 0.0 for some method in some instance
group, by definition, that method is the best-performing one for all the instances within
the group. It is thus immediately evident that FHyNCH-MultiML is systematically the
best method for any instance with L ≥ 100 and any number of trees and missing leaves.
For these instance groups, the mean relative error for FHyNCH-TrivialRand ranged be-
tween 12.2% and 33.5%. Once again confirming the behavior observed for synthetic
data, FHyNCH-TrivialRand performs the best on small instances, its results getting worse
with increasing values of parameters L and |T |. In particular, FHyNCH-TrivialRand
is the best-performing method, on average, for all instance groups with |T | = 10 and
L ≤ 50. Increasing L and |T |, FHyNCH-MultiML outperforms FHyNCH-TrivialRand in
more and more instance groups: in particular, it is the best-performing method for all
groups with L ≥ 20 and |T | ≥ 50, and it is the best one for 7 out of 9 instance groups with
L = 20 and |T | ∈ {20,30,40}.

Running time. In Table 7.7 we report the average running time of FHyNCH-MultiML
within each of the large instance groups of Table 7.3. Noticeably, the average running
time for the group with the largest instances (60 trees with up to 100 leaves and 30%
missing leaves) is under 15 minutes.

7.4. CONCLUSIONS

7

197

Table 7.7: Running times for the large instances extracted from the Bacterial and Archaeal Genomes data set.
For each instance group, we give the average running time in seconds. Dashes indicate empty instance groups.

L Ml 10 trees 20 trees 30 trees 40 trees 50 trees 60 trees

10 0.1 7.5 9.6 9.6 12.4 18.0 17.0
0.2 3.2 5.9 7.7 12.7 21.2 16.6
0.3 3.5 5.0 9.3 12.6 18.6 16.1

20 0.1 11.2 24.3 39.8 64.5 79.8 124.4
0.2 9.7 19.1 32.2 57.8 69.0 106.9
0.3 9.4 21.1 27.1 49.2 57.5 75.6

50 0.3 23.0 - - - - -
100 0.1 75.6 200.4 348.2 458.6 - -

0.2 79.5 195.4 346.5 511.4 683.8 856.7
0.3 76.6 185.4 329.7 481.6 661.8 833.3

150 0.3 106.9 - - - - -

7.4. CONCLUSIONS
We presented FHyNCH-MultiML, the first heuristic scheme specifically designed to solve
the hybridization problem for large sets of multifurcating phylogenetic trees with miss-
ing leaves. FHyNCH-MultiML combines the use of two suitably designed machine-
learning models with the technique of cherry picking. Experiments on synthetically
generated data sets suggest that the results obtained with our method are qualitatively
good, given the hardness of the problem: the number of reticulations in the generated
networks is always within a small constant factor from the number of reticulations of
the network the trees were sampled from. These results are particularly impressive in
the case of large inputs consisting of 100 multifurcating trees on a set of 100 taxa with
missing leaves. Although it is hard to evaluate the performance of the method on real
data because of the lack of reference values (since, before this work, no method existed
for this problem) we show that on large enough instances FHyNCH-MultiML is system-
atically better than repeating a randomized heuristic many times and choosing the best
solution.

This work shows the potential for combining machine learning with cherry picking
for phylogenetic reconstruction. The major advantage of this approach is its versatility.
Indeed, the method presented here can be applied to an arbitrary phylogenetic tree data
set. This is an important step forward in the field of phylogenetic networks since all
previous methods were limited to restricted types of data. Hence, an important next step
is to train the model on very large amounts of data to further improve its performance.
Also, the use of more complex machine-learning models, such as graph neural networks,
could be investigated. In addition, although our method uses branch lengths of input
trees within the algorithm to predict which cherries to pick, it does not yet use them
to predict the branch lengths of the output network. Finally, in this chapter, we have
only evaluated the method in terms of the number of reticulations of the constructed
network. In future work, it is important to analyze how close the constructed networks
are to the original simulated network, topologically, for example using tail-moves [107]
with edge-insertions/deletions.

8
PROXIMITY MEASURE FOR

ORCHARD NETWORKS

Phylogenetic networks are used to represent the evolutionary history of species. Recently,
the new class of orchard networks was introduced, which were later shown to be inter-
pretable as trees with additional horizontal arcs. This makes the network class ideal for
capturing evolutionary histories that involve horizontal gene transfers.

Studied problem: We study the minimum number of additional leaves needed to make
a network orchard. We demonstrate that computing this proximity measure for a given
network is NP-hard and describe a tight upper bound. We also give an equivalent measure
based on vertex labelings to construct a mixed integer linear programming formulation.
Our experimental results, which include both real-world and synthetic data, illustrate the
efficiency of our implementation.

Relevance to this thesis: Unlike the other chapters, no data-driven algorithm is proposed
to solve a problem more efficiently. In this chapter, we study the complexity of the pre-
viously mentioned problem for its theoretical merit, which is also biologically motivated.
Next to that, this chapter gives way for future research, in which the cherry-picking heuris-
tics of the previous chapters and methods in this chapter can be combined. More informa-
tion on this research direction is described in Chapter 9, Open Problem 5.

This chapter is based on van Iersel et al. [203] published in the International Workshop on Algorithms in
Bioinformatics (WABI 2023). In collaboration with Leo van Iersel, Mark Jones, and Yukihiro Murakami. The
code is available at https://github.com/estherjulien/OrchardProximity.

199

https://github.com/estherjulien/OrchardProximity

8

200 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

8.1. INTRODUCTION
Phylogenetic trees are used to represent the evolutionary history of species. While they
are effective for illustrating speciation events through vertical descent, they are insuffi-
cient in representing more intricate evolutionary processes. Reticulate (net-like) events
such as hybridization and horizontal gene transfer (HGT) can give rise to signals that
cannot be represented on a single tree [89, 217]. In light of this, phylogenetic networks
have gained increasing attention due to their capability in elucidating reticulate evolu-
tionary processes.

Phylogenetic networks are often categorized into different classes based on their
topological features. These are often motivated computationally, but some classes are
also defined based on their biological relevance [161]. Classical examples of network
classes involve the tree-child networks [49] and the tree-based networks [81]. Roughly
speaking, tree-child networks are those where every vertex has passed on a gene via ver-
tical descent to an extant species, and tree-based networks are those obtainable from a
tree by adding so-called linking arcs between tree arcs. Recent developments have cul-
minated in the introduction of orchard networks, which lie – inclusion-wise – between
the two aforementioned network classes [70, 109]. The class has shown to be both algo-
rithmically attractive and biologically relevant; they are defined as networks that can be
reduced to a single leaf by a series of so-called cherry-picking operations, and they were
shown to be networks that can be obtained by adding horizontal arcs to trees (where the
tree is drawn with the root at the top and arcs pointing downwards) [200]. Such hori-
zontal arcs can be used to model HGT events, making orchard networks especially apt
in representing evolutionary scenarios where every reticulate event is a horizontal trans-
fer. Orchard networks have also been characterized statically based on so-called cherry
covers [202].

When considering a non-orchard network, a natural question arises: how many ad-
ditional leaves are required to transform the network into one that is orchard? From
a biological standpoint, this question can be interpreted as asking how many extinct
species or unsampled taxa need to be introduced into the network to yield a scenario
where every reticulation represents an HGT event. Given that HGT is the primary driver
of reticulate evolution in bacteria [94], this is an essential inquiry. We provide a network
of a few fungi species in Figure 8.1, which requires one additional leaf to make it orchard.
Formally speaking, the problem of computing this leaf addition measure is as follows.

LOR -DISTANCE (DECISION)
Input: A network N on a set of taxa X and a natural number k.
Decide: Can N be made orchard with at most k leaf additions?

In related research, the leaf addition measure has been investigated for other net-
work classes. It has been shown that tracking down the minimum leaf additions to make
a network tree-based can be done in polynomial time [80]. In the same paper, it was
shown that the leaf addition measure was equivalent to two other proximity measures,
namely those based on spanning trees and disjoint path partitions. Linz et al. [136] stud-
ied this problem for networks with labeled linking arcs. The authors prove that the deci-
sion problem of leaf additions to turn “HGT networks”, which resemble tree-based net-

8.1. INTRODUCTION

8

201

AspTerreus

AspOryzae

AspFlavus

AspNiger

AspNigerCbs

AspNidulans

PenChrysogenumWisconsin

NeoFischeri

AspFumigatusA1163

AspFumigatusAf293

AspClavatus

unsampled taxon

Figure 8.1: A network on 11 different taxa (excluding unsampled taxon) of fungi including 5 reticulations, which
is part of a larger network from Szöllősi et al. [192]. The directed arcs in the figure are linking arcs, which
represent gene transfer highways. In order to make all linking arcs horizontal, we require an additional leaf
(unsampled taxon) to represent the evolutionary history. To see that the network needs the leaf unsampled
taxon in order to have only horizontal linking arcs, we refer the interested reader to Section 8.A.

works with a fixed base tree and fixed linking arcs, into “temporal HGT” networks, is
NP-complete [136, Theorem 3.5]. A base tree of a network is a subtree that covers all
nodes and has the same leaf set as the network (see Section 8.2.3). Temporal HGT net-
works closely resemble orchard networks, except that orchard networks permit multiple
choices for the base tree and linking arcs.

The same question was posed for the unrooted variant (where the arcs of the network
are undirected), for which the problem turned out to be NP-complete [73]. A total of
eight proximity measures were introduced in this latter paper, including those based on
edge additions and rearrangement moves. Instead of considering leaf additions, some
manuscripts have even considered leaf deletions (in general, vertex deletions) as prox-
imity measures for the class of so-called edge-based networks [74]. Finally, for orchard
networks, a recent bachelor’s thesis compared how the leaf addition proximity measure
differs in general from another proximity measure based on arc deletions [190].

In this chapter, we show that the leaf addition proximity measure can be computed
in polynomial time for the class of tree-child networks, and we give a more efficient algo-
rithm for computing the measure for tree-based networks. We show that LOR -DISTANCE

is NP-complete by a polynomial-time reduction from DEGREE-3 VERTEX COVER. To
model the problem as a mixed integer linear program (MILP), we consider a reformu-
lation of the leaf addition measure in terms of vertex labelings. Orchard networks are
known to be trees with added horizontal arcs; roughly speaking, this means we can label
the vertices of an orchard network so that every vertex of indegree-2 has exactly one in-
coming arc whose end-vertices have the same labels. The reformulated measure, called
the vertical arcs proximity measure, counts – over all possible vertex labelings (defined
formally in Section 8.6.1) – the minimum number of indegree-2 vertices with only non-
horizontal incoming arcs. Our experimental results are promising, as the real-world
cases are solved in a fraction of a second. Furthermore, the model also scales well to
larger synthetic data.

8

202 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

The structure of the chapter is as follows. In Section 8.2, we provide all necessary
definitions and characterizations of orchard networks and tree-based networks. In Sec-
tion 8.3, we formally introduce the leaf addition measure for the classes of tree-child,
orchard, and tree-based networks. In Section 8.4 we show that LOR -DISTANCE is NP-
complete (Theorem 8.6). In Section 8.5, we give a sharp upper bound for the leaf ad-
dition proximity measure. In Section 8.6 we give a reformulation of the leaf addition
measure to describe the MILP to solve LOR -DISTANCE, and in Section 8.6.3, experimen-
tal results are shown for the MILP, applied to real and simulated networks. In Section 8.7,
we give a brief discussion of our results and discuss potential future research directions.
We include proofs for select results in Section 8.A.

8.2. PRELIMINARIES
A binary directed phylogenetic network on a non-empty set X is a directed acyclic graph
with

– a single root of indegree-0 and outdegree-1;

– tree vertices of indegree-1 and outdegree-2;

– reticulations of indegree-2 and outdegree-1;

– leaves of indegree-1 and outdegree-0, that are labeled bijectively by elements of X .

For the sake of brevity, we shall refer to binary directed phylogenetic networks simply
as networks. Throughout the chapter, assume that N is a network on some non-empty
set X where |X | = n, unless stated otherwise. Networks without reticulations are called
trees. Tree vertices and reticulations may sometimes collectively be referred to as inter-
nal vertices.

The arc uv of a network is a root arc if u is the root of the network. An arc uv of
a network is a reticulation arc if v is a reticulation, and a tree arc otherwise. We say
that a vertex u is a parent of another vertex v if uv is an arc of the network; in such
instances we call v a child of u. Also, we say that u and v are the tail and the head of the
arc uv , respectively. In other words, we may rewrite arcs as uv = tail(uv)head(uv). The
neighbours of v refer to the set of vertices that are parents or children of v . We also say
that vertices u and v are siblings if they share a parent.

In what follows, we shall define graph operations based on vertex and arc deletions.
To make sure resulting graphs remain networks, we follow-up every graph operation
with a cleaning up process. Formally, we clean up a network by applying the following
until none is applicable.

– Suppress an indegree-1 outdegree-1 vertex (e.g., if uv and v w are arcs where v
is an indegree-1 outdegree-1 vertex, we suppress v by deleting the vertex v and
adding an arc uw).

– Replace parallel arcs by a single arc (e.g., if uv is an arc twice in a network, delete
one of the arcs uv).

8.2. PRELIMINARIES

8

203

a b c d a c d a c d a d d

(b, a) (c, a) (c, d) (a, d)N

Figure 8.2: An example of an orchard network N that is reduced by a sequence (b, a)(c, a)(c,d)(a,d). The
network N contains a cherry (b, a) and a reticulated cherry (c,d). Subsequent networks are those obtained
by a single cherry-picking reduction from the previous network. For example, the second network N (b, a) is
obtained from N by removing the leaf b and cleaning up. Note that the network is also tree-child.

We observe that deleting a tree arc and cleaning up results in a graph containing two
indegree-0 vertices. On the other hand, deleting a reticulation arc and cleaning up re-
sults in a network. Therefore, we shall use arc deletions to mean reticulation arc dele-
tions.

8.2.1. TREE-CHILD NETWORKS
A network is tree-child if every non-leaf vertex has a child that is a tree vertex or a leaf. We
call an internal vertex of a network an omnian if all of its children are reticulations [110].
It follows from definition that a network is tree-child if and only if it contains no omnians.

8.2.2. ORCHARD NETWORKS
To define orchard networks, we must first define cherries and reticulated cherries, as
well as operations to reduce them. See Figure 8.2 for the illustration of the following
definitions. Let N be a network. Two leaves x and y of N form a cherry if they are siblings.
In such a case, we say that N contains a cherry (x, y) or a cherry (y, x). Two leaves x and y
of N form a reticulated cherry if the parent px of x is a reticulation and the parent of y
is also a parent of px . In such a case, we say that N contains a reticulated cherry (x, y).
Reducing the cherry (x, y) from N is the process of deleting the leaf x and cleaning up.
Reducing the reticulated cherry (x, y) from N is the process of deleting the arc from the
parent of y to the parent of x and cleaning up. In both cases, we use N (x, y) to denote
the resulting network.

A network N is orchard if there is a sequence S = (x1, y1)(x2, y2) . . . (xk , yk) such
that N S is a network on a single leaf yk . It has been shown that the order in which
(reticulated) cherries are reduced from an orchard network does not matter, as repeat-
edly picking any reducible pair will create a shortest cherry-picking sequence [70, 109].
Apart from this recursive definition, orchard networks have been characterized based
on cherry covers (arc decompositions) [202] and vertex labelings [200]. We include both
characterizations here.

Cherry covers (see van Iersel et al. [202] for more details): A cherry shape is a subgraph
on three distinct vertices x, y, p with arcs px and py . The internal vertex of a cherry shape
is p, and the endpoints are x and y . A reticulated cherry shape is a subgraph on four dis-
tinct vertices x, y, px , py with arcs px x, py px , py y , such that px is a reticulation in the net-

8

204 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

R1

R2

C

ba

(a) Network N1

C

R1

R2

(b) Cherry cover aux.
graph of N1

R1

C1

C2

R3

ba

c

(c) Network N2

C1

R1

C2

R3

(d) Cherry cover aux. graph of
N2

Figure 8.3: A cherry cover example. (a) A network N1 on {a,b} with a cherry cover {C ,R1,R2}. (b) The (cyclic)
auxiliary graph of N1 based on the cherry cover of (a). (c) The network N2 obtained from N1 by adding a leaf
c, with a cherry cover {C1,C2,R1,R3} (d) The (acyclic) auxiliary graph of N2 based on the cherry cover of (d).

work. The internal vertices of a reticulated cherry shape are px and py , and the endpoints
are x and y . The middle arc of a reticulated cherry shape is py px . We will often refer to
cherry shapes and the reticulated cherry shapes by their arcs (e.g., we would denote the
above cherry shape {px x, py y} and the reticulated cherry shape {px x, py px , py y}). We
say that an arc uv is covered by a cherry or reticulated cherry shape B if uv ∈ B . A cherry
cover of a binary network is a set P of cherry shapes and reticulated cherry shapes, such
that each arc except for the root arc is covered exactly once by P . In general, a network
can have more than one cherry cover.

We define the cherry cover auxiliary graph G = (V , A) of a cherry cover as follows. For
all shapes B ∈ P , we have vB ∈ V . A shape B ∈ P is directly above another shape C ∈ P
if B and C contain a same vertex v , such that v is an endpoint of B and an internal vertex
of C . Then, vB vC ∈ A (adapted from van Iersel et al. [202, Definition 2.13]). We say that
a cherry cover is cyclic if its auxiliary graph has a cycle. We call it acyclic otherwise. See
fig. 8.3 for an illustration of a cyclic and acyclic cherry cover.

Theorem 8.1 (Theorem 4.3 of van Iersel et al. [202]). A network N is orchard if and only
it has an acyclic cherry cover.

Non-Temporal labelings: Let N be a network with vertex set V (N). A non-temporal
labeling1 of N is a labeling t : V (N) →R such that

– for all arcs uv , t (u) ≤ t (v) and equality is allowed only if v is a reticulation;

– for each internal vertex u, there is a child v of u such that t (u) < t (v);

– for each reticulation r with parents u and v , at most one of t (u) = t (r) or t (v) = t (r)
holds.

1This is named in contrast to temporal representations of Baroni et al. [17]. There, it was required for the
endpoints of every reticulation arc to have the same label.

8.2. PRELIMINARIES

8

205

Observe that every network (orchard or not) admits a non-temporal labeling by labeling
each vertex by its longest distance from the root (assuming each arc is of weight 1).

Under non-temporal labelings, we call an arc horizontal if its endpoints have the
same label; we call an arc vertical otherwise. By definition, only reticulation arcs can be
horizontal. We say that a non-temporal labeling is an HGT-consistent labeling if every
reticulation is incident to exactly one incoming horizontal arc. We recall the following
key result.

Theorem 8.2 (Theorem 1 of van Iersel et al. [200]). A network is orchard if and only if it
admits an HGT-consistent labeling.

8.2.3. TREE-BASED NETWORKS
A network N is tree-based with base tree T if it can be obtained from T in the following
steps.

1. Replace some arcs of T by paths, whose internal vertices we call attachment points;
each attachment point is of indegree-1 and outdegree-1.

2. Place arcs between attachment points, called linking arcs, so that the graph con-
tains no vertices of total degree greater than 3, and so that it remains acyclic.

3. Clean up.

The relation between the classes of tree-child, orchard, and tree-based networks can
be stated as follows.

Lemma 8.1 (Janssen and Murakami [109] and Corollary 1 of van Iersel et al. [200]). If a
network is tree-child, then it is orchard. If a network is orchard, then it is tree-based.

We include here a static characterization of tree-based networks based on an arc par-
tition, called maximum zig-zag trails [97, 230]. Let N be a network. A zig-zag trail of
length k is a sequence (a1, a2, . . . , ak) of arcs where k ≥ 1, where either tail(ai) = tail(ai+1)
or head(ai) = head(ai+1) holds for i ∈ [k − 1] = {1,2, . . . ,k − 1}. We call a zig-zag trail Z
maximal if there is no zig-zag trail that contains Z as a subsequence. Depending on the
nature of tail(a1) and tail(ak), we have four possible maximal zig-zag trails.

– Crowns: k ≥ 4 is even and tail(a1) = tail(ak) or head(a1) = head(ak).

– M-fences: k ≥ 2 is even, it is not a crown, and tail(ai) is a tree vertex for every i ∈ [k].

– N -fences: k ≥ 1 is odd and tail(a1) or tail(ak), but not both, is a reticulation. By
reordering the arcs, assume henceforth that tail(a1) is a reticulation and tail(ak) a
tree vertex.

– W -fences: k ≥ 2 is even and both tail(a1) and tail(ak) are reticulations.

We call a set S of maximal zig-zag trails a zig-zag decomposition of N if the elements of S
partition all arcs, except for the root arc, of N .

Lemma 8.2 (adapted from Corollary 4.6 of Hayamizu [97]). Let N be a network. Then N
is tree-based if and only if it has no W -fences.

8

206 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

Theorem 8.3 (adapted from Theorem 4.2 of Hayamizu [97]). Any network N has a unique
zig-zag decomposition.

Theorem 8.4 (adapted from Theorem 3.3 of van Iersel et al. [202]). Let N be a network.
Then N is tree-based if and only if it has a cherry cover.

8.3. LEAF ADDITION PROXIMITY MEASURE
Let N be a network on X . Adding a leaf x ∉ X to an arc e of N is the process of adding a
labeled vertex x, subdividing the arc e by a vertex w (if e = uv then we delete the arc uv ,
add the vertex w , and add arcs uw and w v), and adding an arc w x. We denote the
resulting network by N + (e, x). When the arc e in the above is irrelevant or clear, we
simply call this process adding a leaf x to N , and denote the resulting network by N +x.

In this section, C will be used to denote a network class. In particular, we shall
use T C ,OR, and T B to denote the classes of tree-child networks, orchard networks,
and tree-based networks, respectively. Let LC (N) denote the minimum number of leaf
additions required to make the network N a member of C . We first show that comput-
ing LT C (N) and LT B(N) can be done in polynomial time.

Lemma 8.3. Let N be a network. Then LT C (N) is equal to the number of omnians. More-
over, N can be made tree-child by adding a leaf to exactly one outgoing arc of each omnian.

Lemma 8.4. Let N be a network. Then LT C (N) can be computed in O(|N |) time.

It has been shown already that LT B(N) can be computed in O(|N |3/2) time where |N |
is the number of vertices in N [80]. This was shown to be solvable in O(|N |) time by
adding a leaf to every W-fence [97, Corollary 5.4]. We include the result here for com-
pleteness.

Lemma 8.5. Let N be a network. Then LT B(N) is equal to the number of W -fences.
Moreover, N can be made tree-based by adding a leaf to any arc in each W -fence in N .

Lemma 8.6. Let N be a network. Then LT B(N) can be computed in O(|N |) time.

Interestingly, computing LOR(N) proves to be a difficult problem, although the leaf
addition proximity measure is easy to compute for its neighbouring network classes. We
prove the following in Section 8.4.

▷ Theorem 8.6. Let N be a network. Computing LOR(N) is NP-hard.

We also include the following theorem which states that when considering leaf ad-
dition proximity measures for orchard networks, it suffices to consider leaf additions to
reticulation arcs. We shall henceforth assume that all leaf additions are on reticulation
arcs.

Theorem 8.5 (Theorem 4.1 of Susanna [190]). A network N is orchard if and only if the
network obtained by adding a leaf to a tree arc of N is orchard.

The rest of the chapter will now focus on the problem of computing LOR(N).

8.4. HARDNESS PROOF

8

207

rv1 rv2 rv3 rv4 rv5 rv7

`v1

wv
1

rv6

rv0

ρv

mv
1

mv
2

mv
3

ρu

ρ

ρs
mv

4

ru1 ru2 ru3 ru4 ru5 ru7ru6

ru0`v2 `v3 `v4

`v5

wv
2 wv

3 wv
4 wv

5 wv
6 wv

7

`u5

`u1 `u2 `u3 `u4

wu
1 wu

2 wu
3 wu

4 wu
5 wu

6 wu
7

Figure 8.4: Sketch of the network NG for the case when G contains an edge uv .

8.4. HARDNESS PROOF
In this section, we show that computing LOR(N) is NP-hard by reducing from degree-3
vertex cover.

DEGREE-3 VERTEX COVER (DECISION)
Input: A 3-regular graph G = (V ,E) and a natural number k.
Decide: Does G have a vertex cover with at most k vertices?

LOR -DISTANCE (DECISION)
Input: A network N on a set of taxa X and a natural number k.
Decide: Can N be made orchard with at most k leaf additions?

We now describe the reduction from DEGREE-3 VERTEX COVER to LOR -DISTANCE.
For a graph G , let V (G) and E(G) be its vertex and edge sets, respectively. Given
an instance (G ,k) of DEGREE-3 VERTEX COVER, construct an instance (NG ,k) of LOR -
DISTANCE as follows (see Figure 8.4):

1. For each vertex v in V (G), construct a gadget Gad(v) as described below. In what
follows, vertices of the form ℓv

i are leaves, vertices r v
i are reticulations, and vertices

w v
i , mv

i and ρv are tree vertices.

The key structure in Gad(v) is an N -fence with 15 arcs, starting with the arc r v
0 r v

1 ,
then followed by arcs of the form w v

i r v
i , w v

i r v
i+1 for each i ∈ [6], and finally the arcs

8

208 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

w v
7 r v

7 , w v
7ℓ

v
5 . This set of arcs, in bold type, is called the principal part of Gad(v). In

addition,the reticulations r v
1 ,r v

2 ,r v
3 ,r v

4 have leaf children ℓv
1 ,ℓv

2 ,ℓv
3 ,ℓv

4 respectively.

Above the principal part of Gad(v), add a set of tree vertices mv
1 ,mv

2 ,mv
3 ,mv

4 ,ρv

with the following children: mv
1 has children r v

0 and w v
4 , mv

2 has children mv
1 and

w v
5 , mv

3 has children mv
2 and w v

6 , mv
4 has children mv

3 and r v
0 , and ρv has children

mv
4 and w v

7 (see Figure 8.4).

This completes the construction of Gad(v). Note that so far, the vertices
w v

1 , w v
2 , w v

3 have no incoming arcs, and r v
5 ,r v

6 ,r v
7 have no outgoing arcs. Such arcs

will be added later to connect different gadgets together.

2. Connect the vertices ρv from each Gad(v) as follows: take some ordering of the
vertices {v1, . . . , vg } of G . Add a vertex ρ and vertices si for i ∈ [g −1]. Add arcs ρs1

and also arcs from the set {si si+1 : i ∈ [g −2]}, as well as arcs from the set {siρ
vi : i ∈

[g −1]}, and finally an arc sg−1ρ
vg .

3. Next add arcs between the gadgets corresponding to adjacent vertices in G , in the
following way: for every pair of adjacent vertices u, v in G , add an arc connecting
one of the vertices r u

5 ,r u
6 ,r u

7 in Gad(u) to one of the vertices w v
1 , w v

2 , w v
3 in Gad(v)

(and, symmetrically, an arc connecting one of r v
5 ,r v

6 ,r v
7 to one of wu

1 , wu
2 , wu

3). The
exact choice of vertices connected by an arc does not matter, except that we should
ensure each vertex is used by such an arc exactly once. Formally: for each vertex v
in G with neighbours a,b,c, fix two (arbitrary) mappings πv : {a,b,c} → {1,2,3} and
τv : {a,b,c} → {5,6,7}. Then for each pair of adjacent vertices u, v in G , add an arc
from r u

τu (v) to w v
πv (u) (and, symmetrically, add an arc from r v

τv (u) to wu
πu (v)).

4. Finally, for each vertex v in G , label the vertices {ℓv
i : i ∈ [5]} in Gad(v) by ℓv

i .

Call the resulting graph NG ; it is easy to see that NG is directed and acyclic with a
single root ρ. Therefore it is a network on the leaf-set {ℓv

i : i ∈ [5], v ∈V (G)}. As the arcs
of NG are decomposed into M-fences and N -fences, we have the following observation.

Observation 8.1. Let G be a 3-regular graph and let NG be the network obtained by the
reduction. Then NG is tree-based.

By Observation 8.1 and Theorem 8.4, we use freely from now on that NG has a
cherry cover. Before proving the main result, we require some notation and helper
lemmas. Let N be a network and let N̂i be an N -fence of N . In what follows, we
shall write N̂i := (ai

1, ai
2, . . . , ai

ki
), and we will let c i

2 j−1 denote the child of head(ai
2 j−1)

for j ∈
[

ki−1
2

]
. The first lemma states that although a tree-based network may have non-

unique cherry covers, the reticulated cherry shapes that cover arcs of N -fences are fixed.

Lemma 8.7. Let N be a tree-based network, and let N̂1, N̂2, . . . , N̂n denote the N -fences
of N of length at least 3. Then every cherry cover of N contains the reticulated cherry

shapes {(head(ai
2 j−1)c i

2 j−1), ai
2 j , ai

2 j+1} for i ∈ [n] and j ∈
[

ki−1
2

]
.

8.4. HARDNESS PROOF

8

209

ℓv1

Rv
1 Rv

2 Rv
3 Rv

4 Rv
5

Rv
6

Rv
7

Ru
1 Ru

2 Ru
3 Ru

4 Ru
5 Ru

7

Ru
6

ℓv2 ℓv3 ℓv4

ℓv5

ℓu1 ℓu2 ℓu3 ℓu4

ℓu5

(a)

Rv
1

Rv
2

Rv
3

Ru
6

Rv
4

Rv
5 Rv

6

Rv
7

Ru
2

Ru
1

Ru
3

Ru
4

Ru
5

Ru
7

(b)

ℓv1

Rv
1 Rv

2 Rv
3 Cv Rv

5

Rv
6

Rv
7

Ru
1 Ru

2 Ru
3 Ru

4 Ru
5 Ru

7

Ru
6

zRv
4

ℓv2 ℓv3 ℓv4

ℓv5

ℓu1 ℓu2 ℓu3 ℓu4

ℓu5

(c)

Rv
1

Rv
2

Rv
3

Ru
6

Rv
4

Rv
5 Rv

6

Rv
7

Ru
2

Ru
1

Ru
3

Ru
4

Ru
5

Ru
7

Cv

(d)

Figure 8.5: Cherry cover of Gad(v) and Gad(u). In (a), the unique cherry cover of the principal part of Gad(v)
and Gad(u) is displayed, in (b), the cherry cover auxiliary graph of (a) is given. In (c), the leaf z ∉ X is added to
the principal part of Gad(v), and one possible cherry cover of the same part of the network is given. And in (d),
the cherry cover auxiliary graph of (c) is given.

Note that the principal part of a gadget Gad(v) for every v ∈ V (G) is an N -fence. Let
us denote the principal part of a gadget Gad(v) by (av

1 , av
2 , . . . , av

15) for all v ∈ V (G). By
Lemma 8.7, av

i for i = 2, . . . ,15 and v ∈ E(G) are covered in the same manner across all
possible cherry covers of NG . Let us denote the reticulated cherry shape that contains av

i
and av

i+1 by Rv
i /2 for even i ∈ [15]. Figures 8.5a and 8.5b show an example of the part of

cherry cover auxiliary graph containing Rv
i and Ru

i for i ∈ [7], for some edge uv in G .
Note that the cherry shapes form a cycle. The next lemma implies that in fact, such a
cycle exists for any edge uv in G .

Lemma 8.8. Let N be a tree-based network and suppose that for two N -fences N̂u :=
(au

1 , au
2 , . . . , au

ku
) and N̂v := (av

1 , av
2 , . . . , av

kv
) of length at least 3, there exist directed paths

in N from head(au
h) to tail(av

i) and from head(av
j) to tail(au

k), for even h, i , j ,k with k < h

and i < j . Then every cherry cover auxiliary graph of N contains a cycle.

8

210 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

In order to remove all possible cycles from a possible cherry cover, it is therefore
necessary to disrupt the principal part of either Gad(u) or Gad(v), for any edge uv in G .

Lemma 8.9. Let G be a 3-regular graph and let NG be the network obtained by the reduc-
tion above. Suppose that A is a set of arcs of NG , for which adding leaves to every arc in A
results in an orchard network. For every edge uv ∈ E(G), there exists an arc a ∈ A that is
an arc of the principal part of Gad(u) or Gad(v).

To complete the proof of the validity of the reduction, we show that in order to make
NG orchard by leaf additions, it is sufficient (and necessary) to add a leaf zv to an ap-
propriate arc of Gad(v) for every v in a vertex cover Vsol of G (see Figure 8.5c). The key
idea is that this splits the principal part of Gad(v) from an N -fence into an N -fence and
an M-fence, and this allows us to avoid the cycle in the cherry cover auxiliary graph (see
Figure 8.5d).

Lemma 8.10. Let G be a 3-regular graph and let NG be the network obtained by the
reduction described above. Then G has a minimum vertex cover of size k if and only
if LOR(NG) = k.

Theorem 8.6. Let N be a network. The decision problem LOR -DISTANCE is NP-complete.
Computing LOR(N) is NP-hard.

Proof. Suppose we are given a set of arcs Asol of NG of size at most k. Upon adding
leaves to every arc in Asol , we may check that the resulting network is orchard in poly-
nomial time (see Section 6 of Janssen and Murakami [109]). This implies that LOR -
DISTANCE is in NP. The reduction from DEGREE-3 VERTEX COVER to LOR -DISTANCE out-
lined at the start of the section takes polynomial time, since we add a constant num-
ber of vertices and arcs for every vertex in the DEGREE-3 VERTEX COVER instance. The
NP-completeness of LOR -DISTANCE follows from the equivalence of the two problems
shown by Lemma 8.10. The optimization problem of LOR -DISTANCE, i.e., the one of
computing LOR(N) is therefore NP-hard.

8.5. UPPER BOUND
In the previous section we showed that computing LOR(N) is NP-hard. Here, we pro-
vide a sharp upper bound for LOR(N). We call a reticulation lowest if it has the largest
topological distance from the root and highest if it has no reticulation ancestors.

Lemma 8.11. Let N be a network. Suppose there is a highest reticulation r such that all
other reticulations have a leaf sibling. Then N is orchard.

Proof. We prove the lemma by induction on the number of reticulations k. For the base
case, observe that a network with one reticulation is tree-child since it has no omnians.
A tree-child network is orchard [109], and so this network must be orchard.

Suppose now that we have proven the lemma for all networks with fewer than k retic-
ulations, where k > 1. Let N be a network with reticulation set R where |R| = k, and
suppose there exists a highest reticulation r in N such that all other reticulations have
a leaf sibling. Let r denote the highest reticulation as specified in the statement of the
lemma. Choose a lowest reticulation r ′ ∈ R \ {r }. By assumption, r ′ has a leaf sibling c.

8.6. MILP FORMULATION

8

211

a b

r1
r2

r3

rk−1

rk

Figure 8.6: A network N on two leaves {a,b} with k reticulations (r1, . . . ,rk). Observe that LOR (N) = k−1, since
the highest reticulation cannot be reduced by cherry picking unless the reticulations below it are first reduced.
For each non-highest reticulation, we must add a leaf to one of its incoming arcs to reduce it, which leads to
LOR (N) = k −1.

Every vertex below r ′ must be tree vertices and leaves. Reduce cherries until the child x
of r ′ is a leaf. Then (x,c) is a reticulated cherry; the network N ′ obtained by reducing
this reticulated cherry has k −1 reticulations and has a highest reticulation r such that
all other reticulations have a leaf sibling. By induction hypothesis, N ′ must be orchard.
Since a sequence of cherry reductions can be applied to N to obtain N ′, the network N
must also be orchard.

Theorem 8.7. Let N be a network, and let r (N) denote the number of reticulations. Then
LOR(N) = 0 if N is a tree, and otherwise, LOR(N) ≤ r (N)−1, where the bound is sharp.

Proof. If N is a tree, then it is orchard, and so LOR(N) = 0. So suppose r (N) > 0. Let
r be a highest reticulation of N , and for every other reticulation, arbitrarily choose one
incoming reticulation arc. Add a leaf to each of these reticulation arcs. By Lemma 8.11,
the resulting network must be orchard. We have added a leaf for all but one reticulation
in N . It follows that LOR(N) ≤ r (N)−1. The network in Figure 8.6 shows that this upper
bound is sharp.

8.6. MILP FORMULATION
To model the problem of computing the leaf addition proximity measure as an MILP, we
reformulate the measure in terms of non-temporal labelings.

8.6.1. VERTICAL ARCS INTO RETICULATIONS
By Theorem 8.2, every orchard network can be viewed as a network with a base tree
where each of the linking arcs are horizontal. Recall that in terms of non-temporal la-
belings, this means that there exists a labeling wherein every reticulation has exactly one
incoming reticulation arc that is horizontal. Following this definition, we introduce a
second orchard proximity measure. Given a non-temporal labeling for a network N , let
us use inrets to refer to reticulations of N with only vertical incoming arcs. Let VOR(N)
denote the minimum number of inrets over all possible non-temporal labelings.

8

212 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

Observation 8.2. Let N be a network. A network admits an HGT-consistent labeling if
and only if VOR(N) = 0. In other words, a network is orchard if and only if VOR(N) = 0.

In particular, we show a stronger result that equates the two proximity measures.

Lemma 8.12. Let N be a network. Then LOR(N) =VOR(N).

Proof. Suppose first that we have a network N with some non-temporal labeling t :
V (N) → R which gives rise to h inrets. For every inret r with parents u and v , we add a
leaf x to the arc ur (this addition is done without loss of generality; the argument also fol-
lows by adding the leaf to vr). Since r is an inret, we must have t (u) < t (r) and t (v) < t (r).
Letting px denote the parent of x, we label t (px) := t (r) and t (x) := t (px) + 1. This
ensures that the extension of the map t that includes x and px is a non-temporal la-
beling for N + x. Observe that r is no longer an inret in N + x, since the arc px r is
horizontal. Therefore, a leaf addition to an incoming arc of an inret can reduce the
number of inrets by exactly one. By repeating this procedure for every inret, it follows
that LOR(N) ≤VOR(N).

To show the other direction, suppose we can add ℓ leaves to N to make it orchard.
By Theorem 8.5, we may assume all such leaves are added to reticulation arcs in the
set {e1, . . . ,eℓ}. The resulting network N ′ has an HGT-consistent labeling t : V (N ′) →R by
Theorem 8.2. We claim that the labeling t |V (N) restricted to N is a non-temporal labeling,
and that under t |V (N), the number of inrets is at most ℓ. Suppose that a leaf xi was
added to the reticulation arc ei = ui ri . Let pi denote the parent of xi in the network N ′.
By definition of HGT-consistent labelings, we must have that t (ui) < t (ri), since ui pi ri

is a path in N ′. Therefore, restricting the labeling to the network obtained from N ′ by
removing the leaf xi is non-temporal. Furthermore, if vi is the parent of ri that is not ui ,
we have that one of vi ri or pi ri must be horizontal in N ′. If vi ri was horizontal, then ri

still has a horizontal incoming arc upon removing xi , and the number of inrets does not
change. On the other hand, if pi ri was horizontal, then vi ri must have been a vertical
arc. Upon deleting xi , the reticulation ri becomes an inret as its other incoming arc ui ri

is also vertical. Since leaf deletions are local operations, deleting a leaf increases the
number of inrets by at most one. By repeating this for each reticulation arc ei for i ∈ [ℓ],
it follows that N contains at most ℓ inrets, and therefore VOR(N) ≤ LOR(N).

8.6.2. MILP FORMULATION

By Lemma 8.12 we have that LOR(N) = VOR(N). In this section, we introduce an MILP
formulation to obtain VOR(N), and therefore also LOR(N). This is done by searching for
a non-temporal labeling of networks in which the number of vertical arcs is minimized.

Let N be a given network with vertex set V and arc set A. Let R denote the set of
reticulations of N . We define the decision variable lv to be the non-temporal label of the
vertex v ∈ V . A tree arc and a vertical linking arc uv have the property that lu < lv . We
define xa to be one if arc a ∈ A is vertical and zero otherwise. We define hv to be one if
v ∈ R is a reticulation with only incoming vertical arcs and zero otherwise. Let v ∈V be a
vertex of N . In what follows, let Pv ⊂V be the set of parent nodes of v , Cv ⊂V the set of
children nodes of v , and X the set of leaves. Let ρ be the root of N .

8.6. MILP FORMULATION

8

213

Then, the MILP formulation is as follows:

min
x,h,l

∑
v∈R

hv

s.t.
∑

u∈Pv

xuv −1 ≤ hv ∀v ∈ R (8.1)∑
v∈Cu

xuv ≥ 1 ∀u ∈V \ X (8.2)∑
u∈Pv

xuv ≥ 1 ∀v ∈V \ {ρ} (8.3)

lu ≤ lv ∀uv ∈ A (8.4)

lu ≤ lv −1 ∀v ∈V \ R,∀u ∈ Pv (8.5)

lu ≤ lv −1+|V |(1−xuv) ∀v ∈ R,∀u ∈ Pv (8.6)

lu ≥ lv −|V |xuv ∀v ∈ R,∀u ∈ Pv (8.7)

xa ∈ {0,1} ∀a ∈ A

hv ∈ {0,1} ∀v ∈ R

lv ∈R+ ∀v ∈V

With constraint (8.1), hv becomes one if all incoming arcs of reticulation v are verti-
cal. With (8.2) we have that all vertices must have at least one outgoing vertical arc. Then,
(8.3) guarantees that each reticulation has at least one incoming vertical arc. Constraint
(8.4) creates the non-temporal labeling in the network, where with (8.5) the label of u is
strictly smaller than that of v if v is not a reticulation. Then, (8.6) sets xuv to one if uv
is vertical, for all reticulation vertices v . Finally, with (8.7) the labels of u and v become
equal if xuv is zero.

8.6.3. EXPERIMENTAL RESULTS

In this section, we apply the MILP described in the previous section to a set of real binary
networks and to simulated networks, in order to assess the practical running time. The
code for these experiments is written in Python and is available at https://github.
com/estherjulien/OrchardProximity. All experiments ran on an Intel Core i7 CPU
@ 1.8 GHz with 16 GB RAM. For solving the MILP problems, we use the open-source
solver SCIP [34].

The real data set consists of different binary networks found in a number of papers,
collected on http://phylnet.univ-mlv.fr/recophync/networkDraw.php. These
networks have a leaf set of size up to 39 and a number of reticulations up to 9, with one
outlier that has 32 reticulations. All the binary instances completed within one second
(at most 0.072 seconds). Based on the results, we observe that only two out of the 22
binary networks have a value of LOR(N) > 0, thus, that only two are non-orchard. The
most interesting of these is the network from Szöllősi et al. [192] since its reticulations
represent HGT highways. Even though each highway represents many gene transfers, it
is still natural to expect these highways to be horizontal. However, our experimental re-
sults show that this network is not orchard (see section 8.A for mathematical arguments)
and that its LOR distance is 1. The most interesting part of this network is redrawn in

https://github.com/estherjulien/OrchardProximity
https://github.com/estherjulien/OrchardProximity
http://phylnet.univ-mlv.fr/recophync/networkDraw.php

8

214 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

5 10 20 30 40 50 100 200
Number of reticulations in N

0

500

1000

1500

2000

2500

3000

3500

R
un

tim
e

(s
)

5 10 20 30 40 50 100 200
Number of reticulations in N

0

10

20

30

40

50

60

L O
R
(N

)
(a)

R Compl. (%)

5 100.0
10 99.2
20 98.8
30 98.0
40 97.2
50 97.6
100 75.6
200 61.6

(b)

Figure 8.7: Results of simulated networks. (a) Box plots for the runtime results (blue plot) and the LOR (N)
solutions (red plot) per number of reticulations of simulated networks N . The box plots are drawn with respect
to the median of the runtime and the leaf addition score. (b) A table with the percentage of instances that were
solved within the one-hour time limit. In the plots of (a), we also included instances that did not complete
within the one-hour time limit. For these instances, we set their runtime to one hour.

Figure 8.1, where we also indicate a way to draw it as a tree with horizontal linking arcs,
after adding a single leaf. This added leaf represents a hypothesized missing taxon. In
general, the LOR(N) value gives a lower bound on the number of missing taxa that needs
to be added to a network to make it HGT-consistent.

The simulated data is generated using the birth-hybridization network generator
of Zhang et al. [228], which can generate all binary network topologies [108]. Hence,
even though it uses a model with hybridization to construct networks, it can also gen-
erate, for example, networks where reticulations represent HGT. This generator has two
user-defined parameters: λ, which regulates the speciation rate, and ν, which regulates
the hybridization rate. Following Janssen and Liu [108] we set λ = 1 and we sampled
ν ∈ [0.0001,0.4] uniformly at random. We generated an instance group of size 50 for each
pair of values (L,R), with the number of leaves L ∈ {20,50,100,150,200} and the number
of reticulations R ∈ {5,10,20,30,40,50,100,200}. In our implementation, we only defined
variables xa for incoming reticulation arcs. Therefore, the number of binary variables
only depends on the number of reticulations in the network. In Figure 8.7a, the runtime
and LOR(N) value results for the simulated instances are shown against the reticulation
number of the networks. The time limit was set to one hour. We can observe from these
results that for networks with up to 50 reticulations, almost all instances are solved to
optimality within a second. Then for R = 100,200 the runtime increases, mainly because
only 75.6% and 61.6% of the instances could be solved within the time limit, respectively
(see Table 8.7b). The completed instances are often still solved within reasonable time.

8.7. DISCUSSION

8

215

8.7. DISCUSSION
In this chapter we investigated the minimum number of leaf additions needed to make
a network orchard, as a way to measure the extent to which a network deviates from be-
ing orchard. We showed that computing this measure is NP-hard (Theorem 8.6), and
give a sharp upper bound by the number of reticulations minus one (Theorem 8.7). The
measure was reformulated to one in terms of minimizing the number of inrets over all
possible non-temporal labelings. In Section 8.6 we use this reformulation to model the
problem of computing the leaf addition measure as an MILP. Experimental results show
that real-world data instances were solved within a second and the formulation worked
well also over synthetic instances, being able to solve almost all instances up to 50 retic-
ulations and 200 leaves within one second. For bigger instances the runtime however
increased.

In this chapter we have simulated networks using the network generator of Zhang et
al. [228] in order to analyse the running time of our MILP. Alternatively, one could simu-
late networks by generating orchard networks and deleting leaves from them. Since the
leaf addition score is finite for any network by Theorem 8.7, it is possible to obtain any
network by using this method. The leaf addition score gives a lower bound on the num-
ber of leaves that must be added to make the network orchard. The actual number of
missing leaves could be larger, but this value cannot be estimated from the leaf-deleted
network.

Of interest is how these results can potentially be used in practice. As mentioned
in Section 8.1, one can consider a scenario in which it is suspected a priori that species
under consideration evolve under a network in which all reticulate events are horizontal.
An example of such scenarios can be seen for horizontal gene transfers, for instance
when one considers the evolutionary history of species in bacteria [94] and fungi [192].
If a produced network does not admit an HGT-consistent labeling, there can in general
be many reasons. For one, the output network may not be accurate. It is also possible
that certain species have gone extinct, or that undersampling is present in the taxon set.
In these latter two potential causes, our method gives a way of quantifying the minimum
number of taxa that may have gone extinct / been undersampled. Moreover, it can be
used to find all optimal corresponding orchard networks with added leaves. This could,
for example, be used to try to identify the missing taxa.

Our NP-hardness result is interesting when comparing it to the computational com-
plexity of the corresponding problem for different network classes. The problem of find-
ing the minimum number of leaves to add to make a network tree-based can be solved
in polynomial time [80] (Lemma 8.6) and we showed that the same is true for the class of
tree-child networks (Lemma 8.4). Interestingly, the class of tree-child networks is con-
tained in the class of orchard networks [109] which is in turn contained in the class of
tree-based networks [100]. The reason for such an NP-hardness sandwich can perhaps
be attributed to the lack of forbidden shapes. Leaf additions to obtain tree-child or tree-
based networks target certain forbidden shapes in the network. In the case of tree-child
networks, we add a leaf to exactly one outgoing arc of each omnian; for tree-based net-
works, we add a leaf to exactly one arc of each W -fence. The problem of finding a char-
acterization of orchard networks in terms of (local) forbidden shapes has been elusive
thus far [109] - perhaps the NP-hardness result for the orchard variant of the problem

8

216 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

indicates that finding such a characterization for orchard networks may not be possible.
One can also consider the leaf addition problem for non-binary networks. Non-

binary networks generalize the networks considered in this chapter by allowing ver-
tices to have varying indegrees and outdegrees. This generalized problem remains NP-
complete since the binary version is a specific case. It could be interesting to try to find
an MILP formulation for the nonbinary version.

Another natural research direction is to consider different proximity measures. One
that may be of particular interest is a proximity measure based on arc deletions. That is,
what is the minimum number of reticulate arc deletions needed to make a network or-
chard? Susanna showed that this measure is incomparable to the leaf addition proximity
measure [190], yet it is not known if it is also NP-hard to compute.

APPENDIX OF CHAPTER 8

8.A. REMARK AND OMITTED PROOFS
Remark 8.1. We first elaborate on why we need an added leaf (unsampled taxon) in the
network of Figure 8.1 to ensure that the network admits an HGT-consistent labeling. We
know that a network has an HGT-consistent labeling if and only if it is orchard (Theo-
rem 8.2). Let N be the network without unsampled taxon (see Figure 8.8). We will show
that N is not orchard. To see this, note that the order in which cherries and reticulated
cherries are reduced does not matter [109]. This means that if N were orchard, then there
would exist a cherry-picking sequence starting with

(AN ,PCW)(PCW, AN),

for AN = AspNi dul ans and PCW = PenC hr y sog enumW i sconsi n. After reducing
these cherries, the distance between the leaf AspNi dul ans and any other leaf remains
of distance at least 4, regardless of other reductions that take place in the network. This
shows that the network cannot be orchard, and therefore the network cannot have an HGT-
consistent labeling.

▷ Lemma 8.3. Let N be a network. Then LT C (N) is equal to the number of omnians.
Moreover, N can be made tree-child by adding a leaf to exactly one outgoing arc of each
omnian.

Proof. By definition, a network is tree-child if and only if it contains no omnians. We
show that every leaf addition can result in a network with one omnian fewer than that of
the original network. Let uv be an arc where u is an omnian. Add a leaf x to uv . In the

AspTerreus

AspOryzae

AspFlavus

AspNiger

AspNigerCbs

AspNidulans

PenChrysogenumWisconsin

NeoFischeri

AspFumigatusA1163

AspFumigatusAf293

AspClavatus

Figure 8.8: The network of Figure 8.1 without the added leaf. Observe that there exists no HGT-consistent
labeling for the network, by the arguments provided in Remark 8.1.

217

8

218 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

resulting network, u has a child (the parent of x) that is a tree vertex, and it is no longer an
omnian. The newly added tree vertex has a leaf child x; the parent-child combinations
remain unchanged for the rest of the network, so at most one omnian (in this case u) can
be removed per leaf addition. It follows that LT C (N) is at least the number of omnians
in N . By targeting arcs with omnian tails, we can remove at least one omnian per every
leaf addition, so that LT C (N) is at most the number of omnians in N . Therefore, LT C (N)
is exactly the number of omnians in N .

▷ Lemma 8.4. Let N be a network. Then LT C (N) can be computed in O(|N |) time.

Proof. We first show that the number of omnians of N can be computed in O(|N |) time,
by checking, for each vertex, the indegrees of its children. A vertex is an omnian if and
only if all of its children are of indegree-2. Since the degree of every vertex is at most 3,
each search within the for loop takes constant time. The for loop iterates over the vertex
set which is of size O(N). By Lemma 8.3, since LT C (N) is the number of omnians in N ,
we can compute LT C (N) in O(|N |) time.

It has been shown already that LT B(N) can be computed in O(|N |3/2) time where |N |
is the number of vertices in N [80]. We show that this can in fact be computed in O(|N |)
time.

▷ Lemma 8.5. Let N be a network. Then LT B(N) is equal to the number of W -fences.
Moreover, N can be made tree-based by adding a leaf to any arc in each W -fence in N .

Proof. By Lemma 8.2, a network is tree-based if and only if it contains no W -fences. We
show that every leaf addition can result in a network with one W -fence fewer than that of
the original network. Suppose that N contains at least one W -fence. Otherwise we may
conclude that the network is tree-based by Lemma 8.2. Let (a1, a2, . . . , ak) be a W -fence
in N where ai = ui vi for i ∈ [k], and add a leaf x to a1; let px be the tree vertex parent
of x. In the resulting network, the arcs in {u1px , px v1, px x, a2, a3, a4, . . . , ak } are decom-
posed into their unique maximal zig-zag trails (Theorem 8.3) as two N -fences (u1px)
and (ak , ak−1, . . . , a3, a2, px v1, px x). All other arcs remain in the same maximal zig-zag
trails as that of N . Therefore the number of W -fences has gone down by exactly one.
This can be repeated for all W -fences in the network; it follows that LT B(N) is the num-
ber of W -fences in N .

A quick check shows that adding a leaf to any arc in the W -fence decomposes the
W -fence into two N -fences.

▷ Lemma 8.6. Let N be a network. Then LT B(N) can be computed in O(|N |) time.

Proof. Finding the maximal zig-zag decomposition takes O(|N |) time (Proposition 5.1 of
Hayamizu [97]). Counting the number of W -fences in the decomposition gives LT B(N)
by Lemma 8.5.

▷ Observation 8.1. Let G be a 3-regular graph and let NG be the network obtained by
the reduction. Then NG is tree-based.

8.A. REMARK AND OMITTED PROOFS

8

219

Proof. It is easy to check that the arcs of NG are decomposed into M-fences and N -
fences (the principal part of each gadget Gad(v) is an N -fence; each arc leaving the prin-
cipal part of a gadget Gad(v) is an N -fence of length 1; the remaining arcs decompose
into M-fences of length 2). By Lemma 8.2, NG must be tree-based.

▷ Lemma 8.7. Let N be a tree-based network, and let N̂1, N̂2, . . . , N̂n denote the N -
fences of N of length at least 3. Then every cherry cover of N contains the reticulated cherry

shapes {(head(ai
2 j−1)c i

2 j−1), ai
2 j , ai

2 j+1} for i ∈ [n] and j ∈
[

ki−1
2

]
.

Proof. Let N̂i = (ai
1, ai

2, . . . , ai
ki

) be an N -fence of length ki ≥ 3. Observe that in every
cherry cover, exactly one incoming arc of every reticulation is covered by a reticulated
cherry shape as a middle arc (since the network is binary; for non-binary networks, this
is not true in general [202]). Since head(ai

1) is a reticulation, one of ai
1 or ai

2 must be in a
reticulated cherry shape as a middle arc. But tail(ai

1) is a reticulation; therefore, ai
2 must

be in a middle arc of a reticulated cherry shape. The other two arcs of the same reticu-
lated cherry shapes are then fixed to be head(ai

1)c i
1 and ai

3. Repeating this argument for

the reticulations head(ai
2 j+1) for j ∈

[
ki−1

2

]
gives the required claim for the N -fence N̂i ;

further repeating this argument for every N -fence gives the required claim.

▷ Lemma 8.8. Let N be a tree-based network and suppose that for two N -fences N̂u :=
(au

1 , au
2 , . . . , au

ku
) and N̂v := (av

1 , av
2 , . . . , av

kv
) of length at least 3, there exist directed paths in

N from head(au
h) to tail(av

i) and from head(av
j) to tail(au

k), for even h, i , j ,k with k < h

and i < j . Then every cherry cover auxiliary graph of N contains a cycle.

Proof. Let us again denote the reticulated cherry shape that contains au
h and au

h+1
by Ru

h/2, and similarly for Rv
i /2, Rv

j /2,and Ru
k/2. By Lemma 8.7, all of Ru

h/2, Rv
i /2, Rv

j /2, Ru
k/2

appear in the cherry cover auxiliary graph. Moreover Ru
k/2 is above Ru

h/2, and Rv
i /2 is

above Rv
j /2. Now observe that for any consecutive arcs on the path from head(au

h) to

tail(av
i), either they are part of the same reticulated cherry shape in the cherry cover, or

they are part of different cherry shapes with one cherry shape directly above the other.
This implies that there is a path from Ru

h/2 to Rv
i /2 in the cherry cover auxiliary graph. A

similar argument shows that there is a path from Rv
j /2 to Ru

k/2. But then we have that Ru
h/2

is above Rv
i /2, which is above Rv

j /2, which is above Ru
k/2, which is above Ru

h/2 and we have

a cycle.

▷ Lemma 8.9. Let G be a 3-regular graph and let NG be the network obtained by the
reduction above. Suppose that A is a set of arcs of NG , for which adding leaves to every arc
in A results in an orchard network. For every edge uv ∈ E(G), there exists an arc a ∈ A that
is an arc of the principal part of Gad(u) or Gad(v).

Proof. We prove this lemma by contraposition. Let us assume that there is an edge uv ∈
E(G), such that no arcs of the principal part of Gad(u) or Gad(v) are in A. We shall show
that the network obtained by adding leaves to all a ∈ A in NG – which we denote NG +
A – is not orchard. From Theorem 8.1 we know that NG is orchard if and only if NG

has an acyclic cherry cover. We show here that NG + A will not have an acyclic cherry
cover, thereby showing that NG +A is not orchard. As no arcs were added to the principal

8

220 8. PROXIMITY MEASURE FOR ORCHARD NETWORKS

part of Gad(u) or Gad(v), these principal parts remain N -fences in NG + A. Furthermore
by construction N has an arc from some head(av

h) to tail(au
i) for even h ≥ 10 and even

i ≤ 6, and so NG + A has a path from head(av
h) to tail(au

i). Similarly NG + A has a path
from head(au

j) to tail(av
k) for some even j ≥ 10 and h ≤ 6. Then Lemma 8.8 implies that

the auxiliary graph of any cherry cover of NG + A contains a cycle. By Theorem 8.1, we
have that NG + A is not orchard.

▷ Lemma 8.10. Let G be a 3-regular graph and let NG be the network obtained by
the reduction described above. Then G has a minimum vertex cover of size k if and only
if LOR(NG) = k.

Proof. Suppose first that Vsol is a vertex cover of G with at most k vertices. We shall show
that adding a leaf to an arc of the principal part of each Gad(v) for v ∈ Vsol makes NG

orchard. This will show that the minimum vertex cover of G is at least LOR(NG). In the
remainder of this proof, we will refer to vertices and arcs of NG as introduced above in
the reduction.

For every v ∈Vsol , we add a leaf zv to the arc w v
4 r v

4 of Gad(v) (see Figure 8.5c). Let q v

be the parent of zv . The key idea is that this splits the principal part of Gad(v) from an N -
fence into an N -fence and an M-fence, and this allows us to avoid the cycle in the cherry
cover auxiliary graph (see Figure 8.5d). Let us call the new network M . To formally show
that M is orchard, we give an HGT-consistent labeling t : V (M) → R. Begin by setting
t (ρ) = 0, and for any vertex in s1, . . . , sg−1 or ρv ,mv

4 , . . . ,mv
2 for any v in V (G), let this

vertex have label equal to the label of its parent plus 1. Let h be the maximum value
assigned to a vertex so far, and now adjust t by subtracting (h+1) from each label. Thus,
we may now assume that all vertices in ρ, s1, . . . , sg−1 or mv

4 , . . . ,mv
2 for any v in V (G)

have label ≤ −1. Now set t (mv
1) = 0 and t (r v

0) = 0, for each v in V (G). It is easy to see
that so far t satisfies the properties of an HGT-consistent labeling. It remains to label
the vertices in the principal part of each gadget Gad(v), and the leaves of each gadget,
and the new vertices q v and zv for v ∈ Vsol . We do this as follows. For v ∈ Vsol , set
t (r v

1) = t (w v
1) = 12, t (r v

2) = t (w v
2) = 13, t (r v

3) = t (w v
3) = 14, and t (r v

4) = t (q v) = 15. Set
t (w v

4) = 1, t (r v
5) = t (w v

5) = 2, t (r v
6) = t (w v

6) = 3, and t (r v
7) = t (w v

7) = 4. For v ∉ Vsol , set
t (r v

1) = t (w v
1) = 5, and t (r v

i) = t (w v
i) = i +4 for every i up to t (r v

7) = t (w i
7) = 11.

Finally, for each leaf ℓ with parent p set t (ℓ) = t (p)+1. It remains to observe that t is
a non-temporal labeling of M and for every reticulation r in M , r has exactly one parent
p with t (p) = t (r). Thus t is an HGT-consistent labeling of M , and it follows from theo-
rem 8.2 that M is orchard.

Suppose now that we have a set of arcs Asol of NG of size at most k, such
that adding leaves to the arcs in Asol makes NG orchard. By Lemma 8.9, for ev-
ery edge uv ∈ E(G), there exists an arc a ∈ Asol that is an arc of the princi-
pal part of Gad(u) or Gad(v). It follows immediately that the set {v ∈ V (G) :
Asol contains an arc of the principal part of Gad(v)} is a vertex cover of G . Since this is
true for any such set of arcs Asol , it follows that if there is such an Asol of size at most k,
then there must exist a vertex cover of G of size at most k.

9
CONCLUSION & DISCUSSION

With the rise of machine learning (ML) in recent years, many new types of algorithmic
operations have become available. This thesis explores the applicability of ML in op-
timization by designing data-driven algorithms to improve the overall performance of
finding solutions. While the problems studied – bilevel optimization, two-stage robust
optimization, and the reconstruction of phylogenetic networks – may seem diverse at
first glance, they share a common trait: existing algorithms for solving these problems
require overly excessive time. Finding an optimal solution for these problems can eas-
ily take a couple of hours for small instances. Moreover, while applying ML to single-
level problems and inferring phylogenetic trees have already been studied, the problems
explored in this thesis were mostly untouched. The proposed data-driven algorithms
leverage neural network (NN) embedding and integrate other ML models to guide algo-
rithmic steps. At the same time, we aim to mitigate the effects of the added complexity
caused by ML. One approach to achieve this is by ensuring that the training data gener-
ation process avoids relying on finding optimal solutions for many problem instances,
and instead requires simpler methods.

FUTURE DIRECTIONS: IN HIERARCHICAL OPTIMIZATION

In Chapter 3, the method NEUR2BILO for solving bilevel optimization problems was in-
troduced, and in Chapter 4 the method NEUR2RO for solving mixed-integer two-stage
robust optimization was proposed. The latter algorithm does not make any assumptions
on the linearity of the problem, and can therefore easily be extended to non-linear prob-
lems as well. However, this was not experimentally studied. Another way both methods
could be generalized is by extending the methodology, such that it is independent of
the number of levels or stages. Hence, interesting further work could be to design data-
driven algorithms for multi-level optimization and multi-stage robust optimization. The
first main open question is:

Open Problem 1
Can NEUR2BILO and NEUR2RO respectively be generalized to multi-level problems
and to multi-stage robust problems with more than two levels or stages?

223

9

224 9. CONCLUSION & DISCUSSION

The next direction pertains to mathematical programming more generally. In our
research, we aimed at solving huge problems. Especially for bilevel optimization this
should be achievable, albeit with some alterations, as the algorithm we propose requires
solving a single-level problem. We mostly refrained from experimenting on very large
instances as we needed to test our method against baseline methods, and these could
not solve such problems within reasonable time. Moreover, the NN embedding requires
that each variable of the problem is contained in the NN’s input. For huge problems with
1,000s of variables, this would easily create all sorts of problems, related to both training
the NN, embedding the NN, and solving the resulting MIP. During this research phase,
ideas came to mind of what are suitable embeddings for the task of solving huge prob-
lems. It might be possible to design an encoding within the NN architecture that elimi-
nates the need to include all variables as inputs, allowing a fixed-dimensional vector to
suffice. Additional preprocessing steps may be necessary, as long as the entire proce-
dure ensures the original problem remains well-represented. This leads to the next open
problem:

Open Problem 2
Is there an encoding method for huge optimization problems, via NN embeddings,
that shrinks the size of the MIP formulation by eliminating some variables?

FUTURE DIRECTIONS: IN PHYLOGENETICS

In this thesis, a class of heuristics for reconstructing phylogenetic networks from a set
of multifurcating trees on overlapping taxa is introduced. It uses a combination of ML
and cherry picking to first reduce all trees in the tree set and subsequently construct a
network via the resulting CPS. The ML method decides on which cherry to pick in each
iteration. We have not developed a robust algorithm that controls for wrong moves. In
fact, we do not know what wrong moves would entail in the solving procedure. A wrong
move in this setting is whenever a wrong cherry is picked. A cherry is wrong if picking
it prevents the heuristic from obtaining an optimal network. It is important to be aware
of the possible implications of picking a wrong cherry, for both determining approxima-
tion results and making the heuristic more robust. We feel that picking ‘wrong’ cherries
in earlier stages of the algorithm can create more complications later in the procedure.
Selecting the wrong cherries could trigger a chain reaction, affecting the remaining cher-
ries in the trees and making it more probable that additional wrong ones will be picked.
This results in the following possible future direction:

Open Problem 3
Theoretically analyze the accuracy and robustness of the cherry-picking heuristic.

Resolving the next open problem would be a great contribution to the field and
would improve the cherry-picking heuristics (CPHs) presented in Chapter 6 and Chap-
ter 7. There is a clear characterization for optimal tree-child networks on a given tree
set, based on cherry-picking sequences (CPSs) [134]. Namely, a minimum-length tree-
child CPS (i.e., a CPS with extra restrictions) that reduces a tree set T can reconstruct an
optimal tree-child network. Such a characterization does not yet exist for orchard net-
works, which are evidently defined as networks that can be reduced by a (regular) CPS.

9

225

We have that a CPS that reduces T reconstructs a feasible network, but we do not know
whether a minimum-sized sequence necessarily reconstructs an optimal orchard net-
work. Since cherry picking is by definition such a big component of orchard networks,
as future work, it would be interesting to identify a possibly similar characterization as
we have for tree-child networks. This idea results in the following open problem:

Open Problem 4
Is there a characterization of optimal orchard networks for a set of trees based on
cherry-picking sequences, similar to the characterization for tree-child?

If such a characterization exists, we can possibly improve the CPHs in various ways. The
heuristic itself is quite flexible; extra procedures can be incorporated, as was also done
for the tree expansion step. Thus, if next to cherry picking, additional steps are required
to find an optimal orchard network, these can possibly be included in the CPH. The data
generation procedure for CPH consists of creating a synthetic orchard network to be
used as an output of the HYBRIDIZATION problem, and taking all (or a sample of) dis-
played trees as input of the problem. In this way, labeling which cherries are (probably)
good to pick can be done quickly. For tree-child CPSs and networks, one can always
fully reduce both the network and sampled display trees. As is noticed by Janssen and
Murakami [109, Figure 13] for orchard networks, after simultaneous cherry-picking re-
ductions in the network and the tree set of correct cherries, it could be the case that the
partly reduced network no longer represents all the partly reduced trees of the set. If a
solid characterization for orchard networks based on CPSs exists, we could change the
data generation scheme with possibly additional steps such that we can always reduce
N and T fully, and consequently gather better data.

Another interesting direction, that would benefit from some of the techniques pro-
posed in this thesis, is solving the following important problem. Linz and Semple [134]
introduce cherry picking for the reconstruction of tree-child networks. Another char-
acterization is also introduced. Cherry picking can in theory be used to construct an
overall optimal network, instead of an optimal network within a restrictive class, by at-
taching auxiliary leaves to the trees. The rough idea is as follows, let T be the initial
tree set on X , and let T ′ be a tree set on X ∪ Z , where Z are the auxiliary leaves; and all
leaves of Z are attached to each tree. Based on this new tree set T ′, a tree-child network
N ′

tc is generated via cherry picking, and the auxiliary leaves are deleted from N ′
tc to cre-

ate N , which is the network that displays the initial tree set T . The authors prove there
exists a set Z , and a way to attach the leaves from Z to T , such that the previously ex-
plained procedure results in obtaining N from T and that this is an optimal network for
T . An algorithm for assembling Z and T ′ is not provided. However, if N is known, the
procedure is quite straightforward. It uses simple operations to eliminate the forbidden
substructures of tree-child networks: stacks (i.e., the tail and head of an edge are both
reticulations) and tree nodes with only reticulations as its children. Namely,

1. Eliminate the forbidden structures of tree-child networks by contracting edges (for
stacks) and adding leaves (for reticulate offspring). These leaves are attached to N
such that no new reticulations are created, giving a tree-child network N ′

tc .

9

226 9. CONCLUSION & DISCUSSION

2. Create T ′ by attaching the leaves of Z to each tree T ∈T such that T ′ is displayed
by N ′

tc .

Perhaps ML could be useful here, with the “expert” data being similarly generated
as in Chapter 6. First, a synthetic non-tree-child network is generated and its displayed
trees are sampled. Subsequently, new leaves are added to the network (to eliminate for-
bidden substructures) and additionally to feasible positions in the trees. In this way, the
leaves and their locations in T ′ are known. The learning task is non-obvious, and leads
to the following open problem:

Open Problem 5
Given a tree set T on X , can ML be used to find a set Z of auxiliary leaves and si-
multaneously add these leaves to the right positions in T to reconstruct an optimal
network N using cherry picking?

As a final note on this research direction, this methodology can be extended to orchard
networks. In that case, we do not assume that a tree-child network is generated via
cherry picking (which uses more restrictions), but an orchard network. Even though
there does not yet exist a characterization of optimal orchard networks based on CPSs
(Open Problem 4), we have shown with the introduced CPH that obtaining good net-
works can be done within reasonable time. Perhaps we can then apply attaching aux-
iliary leaves to these obtained orchard networks. However, as we both want to find an
auxiliary leaf set, and aim to attach them to the tree set in the best possible way, find-
ing a smallest possible leaf set Z could be favorable. At the training data generation
stage where we find “expert” labels, for tree-child networks, finding a smallest leaf set
can be done in polynomial time. For orchard networks, as is shown in Chapter 8, finding
a smallest set is N P-hard. The upper bound, of r (N)−1, can be derived in polynomial
time, with r (N) the reticulation number of N . This is possibly a much higher value than
the one found for tree-child networks.

In recent years, graph neural networks (GNNs) [221] have been utilized in optimiza-
tion in various ways [114]. Its graph-like architecture can be especially useful for combi-
natorial optimization as many problems share this structure by construction. Applying
GNNs to phylogenetics is a natural extension, where it can aid in constructing phyloge-
netic networks. Recently, in a Master’s thesis, Broeders [43] has developed a learning-
based heuristic to construct ‘temporal’ networks, using cherry picking [101] and a GNN.
Next to that, in Dushatskiy et al. [68] a learning-based operation is proposed in which
tree containment in a network is guided by a GNN. The results are promising, and bring
forth other ideas of utilizing GNNs. For example, perhaps a GNN can be used for direct
phylogenetic network construction from a set of gene trees or directly from sequence
data. The GNN can take the shape of a network with an overestimation of possible retic-
ulations and arcs. The GNN can then predict which reticulation nodes and arcs should
be present in the phylogenetic network representing the data. This results in the last
open problem:

Open Problem 6
Can graph neural networks be utilized to learn the whole phylogenetic network at
once?

9

227

VISION FOR ML FOR OPTIMIZATION

In this thesis, the focus is on data-driven algorithms to solve optimization problems
more effectively and efficiently. In Section 1.1 we also discussed other ways in which
ML can play a role in optimization. Namely, by predicting unknown parts of the prob-
lem description or its parameters. In this section, we discuss another form that is even
more general than the ones discussed: predict the formulation of the entire optimization
model. Even though many would argue this is very naive, research in this field would not
only be important for people who are already experts, but more importantly, for peo-
ple who are not. We view this research as being critical for bringing the techniques of
mathematical optimization to the public and thus making this field accessible.

Many decision problems that people (in companies) have to deal with in a day-to-
day setting, can be solved with operations research (OR) methods; e.g., to solve logis-
tics or other planning problems. Modeling a given problem as a mathematical program
is a very hard task for non-experts and therefore less attainable and often overseen by
smaller companies or organizations that do not have the capacity to hire an expensive
consultancy team. On the contrary, data science and ML are much easier for non-experts
to apply, in part because of the many open-source packages that have come out. But also
importantly, because it is not hard to program a (very) simple machine-learning model;
one only needs an input and a label. Whether this is sufficient is part of another de-
bate, but we could agree that due to its accessibility, we observe a growing trend where
these methods are being used much more frequently than mathematical programming
techniques over all domains.

To make OR as easily accessible as ML, providing open-source software has not been
enough, as the difficulty in modeling itself already requires experts. A translation is re-
quired: from the decision problem to the mathematical program, without the use of
expert minds. In recent years, large language models (LLMs) have been increasingly
present at, and almost overtaking, ML conferences. And ChatGPT has been dominat-
ing dinner conversations in many households. In large part because it is extremely easy
to use for the public. An automatic translation from text to model would be ideal, where
LLMs perform this step. Recently, papers have been presented that move towards design
automation of heuristics [137, 223]. Anyone who has ever worked with OR for real-world
applications, or with data science, knows that the initial model rarely works adequately.
Here data science experts and OR specialists can be extremely useful. But small compa-
nies most likely deal with smaller problems, for which less complicated models suffice.
Even though the model might not be perfect, it will become easier for the users to get a
grasp of the existence of mathematical programming and the benefits one can obtain by
using it.

ACKNOWLEDGEMENTS

These past four years have known many different phases. From starting my PhD position
in the middle of the pandemic where I mainly connected to new faces online, to events
that made me familiarize myself with the ins and outs of hospitals a lot more than I
thought I would ever be. But apart from these events, the previous years have taught me
so much and brought me a lot of joy. I have fallen in love with research, became obsessed
with it at times, became obsessed with other things, was able to visit many new places
during conferences and a research visit, and most importantly, met a lot of wonderful
people.

First of all, I would like to thank my supervisors Leo and Leen for their incredible sup-
port throughout these years. For both personal and work-related issues you were always
there for me. I vividly recall when Leo reminded me in my last year, during a particularly
overwhelming period, that stress is not caused by working too much, but by thinking too
much. Your empathy and understanding perfectly describe you as a supervisor and per-
son, for which I want to thank you. Both of you have always been very considerate during
the personal hardships of these past years, but also able to (very moderately) push me
when you knew I was mainly lying to myself. Due to the freedom you have given me in
initiating my own projects and working with others, I have been able to meet and closely
work with many amazing people. Giulia, thank you for your incredible kindness when we
worked together on the cherry-picking papers and for being a mentor to me. Krzysztof
and Ilker, thank you for inspiring me to continue my work in K -adaptability after my
master’s by making it fun to work with you and always helping me swiftly and enthusi-
astically whenever I had a question. Also thanks to Yuki and Mark, from whom I learned
so much about phylogenetics during these past years. I fondly look back at the spirited
whiteboard sessions we had with Leo. These meetings showed me a different way of col-
laboration and research, one I thoroughly enjoyed. During my last years, I have mainly
worked on the “Neur2” series. Elias and Jannis, thank you for putting faith in me to col-
laborate with you on multiple subsequent papers, after only meeting me once during a
nice conference in Nice. Together with Justin, you have taught me a tremendous amount
about ML for optimization, two-stage robust optimization, bilevel optimization, coffee,
and fun spots in Toronto, Montreal, and Vancouver. Thank you for your kindness, enthu-
siasm, the immense determination you all showed during the around-the-clock working
sessions to meet conference deadlines, and for facilitating my visit to Toronto.

I also want to thank all of my colleagues in the Optimization group for the welcoming
atmosphere you all created, the fun outings, and lively lunch conversations. In particu-
lar, Lara, thank you for being there throughout these four years, as a lovely office mate,
conference buddy, and ML for optimization oracle. Ananth, even though you only joined
last year, you have become very important to me during my PhD journey and beyond.
Thank you for the many inspiring conversations we shared and will continue to share. To

229

9

230 9. CONCLUSION & DISCUSSION

my office mates, Maaike, Lara, Merel, Willem, Bram, Tom, and Cindy: thank you for the
fun moments and for helping me whenever I was in need. Perhaps more importantly,
sorry for not letting you continue with your work with all my yapping. And to all the
many new friends I made at TU Delft while raising our voices in unison: you are some of
my biggest inspirations. Thank you for your determination, incredible kindness, empa-
thy, and hope. And perhaps most admirably, for showing me how to laugh while dealing
with unimaginable personal circumstances.

Outside of my work/campus life, I was immensely supported by my dear friends in
and outside of Delft. Claire and Tim, thank you for being kind, moving back, appreci-
ating my quirks, and being so present and important in my daily life. Guido and Shen,
thank you for supporting me throughout the last couple of years and for all the fun mo-
ments we share. To Maud, Rens, Gianmarco, and Olivia, even though we do not live that
close anymore, seeing each other again always feels like never having been apart. To my
dear family, especially my parents, Rick, and Núria, thank you for your love and support
throughout these years. I appreciate your willingness to understand what I am actually
doing, your presence during special moments, and for being proud of me. Finally, to
Ben, thank you for everything. Thank you for being my biggest support, encouraging
me in whatever decision I make, and being incredibly loving and kind. You make me so
happy, and I am looking forward to the next phase of our life.

CURRICULUM VITÆ

Esther Anna Theresia JULIEN

28-09-1996 Born in Geldrop, The Netherlands.

EDUCATION
2015–2019 BSc. Econometrics & Operations Research

Tilburg University, The Netherlands

2019–2021 MSc. Econometrics & Management Science
Erasmus University Rotterdam, The Netherlands

2021–2025 PhD. Applied Mathematics
Delft University of Technology, The Netherlands
Thesis: Leveraging Data in Algorithm Design: for Problems

in Bilevel Optimization, Adaptable Robust Optimiza-
tion, and Phylogenetics

Promotor: Dr.ir. L.J.J. van Iersel
Promotor: Prof.dr. L. Stougie

231

LIST OF PUBLICATIONS

JOURNAL PAPERS

1. Esther Julien, Krzysztof Postek, and Ş İlker Birbil. “Machine learning for K -adaptability in
two-stage robust optimization”. In: INFORMS Journal on Computing. 2024.

2. Giulia Bernardini, Leo van Iersel, Esther Julien, and Leen Stougie. “Inferring phylogenetic
networks from multifurcating trees via cherry picking and machine learning”. In: Molecular
Phylogenetics and Evolution 199, 2024.

3. Arkadiy Dushatskiy, Esther Julien, Leen Stougie, and Leo van Iersel. “Solving the tree con-
tainment problem using graph neural networks”. In: Transactions on Machine Learning
Research. 2024.

4. Giulia Bernardini, Leo van Iersel, Esther Julien, and Leen Stougie. “Constructing phylo-

genetic networks via cherry picking and machine learning”. In: Algorithms for Molecular

Biology 18.1. 2023.

CONFERENCE PAPERS

5. Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. “Neur2BiLO: Neural
bilevel optimization”. In: The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS). 2024.

6. Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. “Neur2RO: Neural two-
stage robust optimization”. In: The Twelfth International Conference on Learning Represen-
tations (ICLR). 2024.

7. Leo van Iersel, Mark Jones, Esther Julien, and Yukihiro Murakami. “Making a network or-
chard by adding leaves”. In: 23rd International Workshop on Algorithms in Bioinformatics
(WABI). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2023.

8. Giulia Bernardini, Leo van Iersel, Esther Julien, and Leen Stougie. “Reconstructing phyloge-

netic networks via cherry picking and machine learning”. In: 22nd International Workshop

on Algorithms in Bioinformatics (WABI). Vol. 242. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik. 2022.

PREPRINTS

9. Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. “Deep learning for two-

stage robust integer optimization” In: arXiv preprint arXiv:2310.04345 (2024)

233

BIBLIOGRAPHY

[1] Shiran Abadi, Oren Avram, Saharon Rosset, Tal Pupko, and Itay Mayrose. “Mod-
elTeller: model selection for optimal phylogenetic reconstruction using machine
learning”. In: Molecular Biology and Evolution 37.11 (2020), pp. 3338–3352.

[2] Tobias Achterberg and Roland Wunderling. “Mixed integer programming: Ana-
lyzing 12 years of progress”. In: Facets of combinatorial optimization: Festschrift
for martin grötschel. Springer, 2013, pp. 449–481.

[3] Benjamin Albrecht. “Computing all hybridization networks for multiple binary
phylogenetic input trees”. In: BMC Bioinformatics 16.1 (2015), pp. 1–15.

[4] Benjamin Albrecht, Céline Scornavacca, Alberto Cenci, and Daniel H. Huson.
“Fast computation of minimum hybridization networks”. In: Bioinformatics 28.2
(2012), pp. 191–197. DOI: 10.1093/bioinformatics/btr618.

[5] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan
Pablo Vielma. “Strong mixed-integer programming formulations for trained neu-
ral networks”. In: Mathematical Programming (2020), pp. 1–37.

[6] Ayşe N Arslan and Boris Detienne. “Decomposition-based approaches for a class
of two-stage robust binary optimization problems”. In: INFORMS Journal on
Computing 34.2 (2022), pp. 857–871.

[7] Ayşe N Arslan, Michael Poss, and Marco Silva. “Min-sup-min robust combinato-
rial optimization with few recourse solutions”. In: INFORMS Journal on Comput-
ing 34.4 (2022), pp. 2212–2228.

[8] David Avis, David Bremner, Hans Raj Tiwary, and Osamu Watanabe. “Polynomial
size linear programs for problems in P”. In: Discrete Applied Mathematics 265
(2019), pp. 22–39.

[9] Dana Azouri, Shiran Abadi, Yishay Mansour, Itay Mayrose, and Tal Pupko. “Har-
nessing machine learning to guide phylogenetic-tree search algorithms”. In: Na-
ture Communications 12.1 (2021), pp. 1–9.

[10] Dana Azouri, Oz Granit, Michael Alburquerque, Yishay Mansour, Tal Pupko, and
Itay Mayrose. “The tree reconstruction game: phylogenetic reconstruction using
reinforcement learning”. In: Molecular Biology and Evolution 41.6 (2024).

[11] Saeed Asadi Bagloee, Mohsen Asadi, Majid Sarvi, and Michael Patriksson. “A hy-
brid machine-learning and optimization method to solve bi-level problems”. In:
Expert Systems with Applications 95 (2018), pp. 142–152.

[12] Maria-Florina Balcan. “Data-driven algorithm design”. In: arXiv preprint
arXiv:2011.07177 (2020).

235

https://doi.org/10.1093/bioinformatics/btr618

236 BIBLIOGRAPHY

[13] Eric Bapteste, Leo van Iersel, Axel Janke, Scot Kelchner, Steven Kelk, James O
McInerney, David A Morrison, Luay Nakhleh, Mike Steel, Leen Stougie, and James
Whitfield. “Networks: expanding evolutionary thinking”. In: Trends in Genetics
29.8 (2013), pp. 439–441.

[14] Jonathan F Bard. Practical bilevel optimization: algorithms and applications.
Vol. 30. Springer Science & Business Media, 2013.

[15] Mihaela Baroni, Stefan Grünewald, Vincent Moulton, and Charles Semple.
“Bounding the number of hybridisation events for a consistent evolutionary his-
tory”. In: Journal of Mathematical Biology 51.2 (2005), pp. 171–182.

[16] Mihaela Baroni, Charles Semple, and Mike Steel. “A framework for representing
reticulate evolution”. In: Annals of Combinatorics 8 (2005), pp. 391–408.

[17] Mihaela Baroni, Charles Semple, and Mike Steel. “Hybrids in real time”. In: Sys-
tematic Biology 55.1 (2006), pp. 46–56.

[18] Yasmine Beck, Ivana Ljubić, and Martin Schmidt. “A survey on bilevel optimiza-
tion under uncertainty”. In: European Journal of Operational Research (2023).

[19] Yasmine Beck and Martin Schmidt. “A gentle and incomplete introduction to
bilevel optimization”. In: Lecture notes (2021).

[20] Robert G Beiko. “Telling the whole story in a 10,000-genome world”. In: Biology
Direct 6.1 (2011), pp. 1–36.

[21] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimiza-
tion. Vol. 28. Princeton University Press, 2009.

[22] Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski.
“Adjustable robust solutions of uncertain linear programs”. In: Mathematical
Programming 99.2 (2004), pp. 351–376.

[23] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine learning for com-
binatorial optimization: a methodological tour d’horizon”. In: European Journal
of Operational Research 290.2 (2021), pp. 405–421.

[24] David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghu-
nathan. “JANOS: an integrated predictive and prescriptive modeling framework”.
In: INFORMS Journal on Computing 34.2 (2022), pp. 807–816.

[25] Giulia Bernardini, Leo van Iersel, Esther Julien, and Leen Stougie. “Constructing
phylogenetic networks via cherry picking and machine learning”. In: Algorithms
for Molecular Biology 18.1 (2023), p. 13.

[26] Giulia Bernardini, Leo van Iersel, Esther Julien, and Leen Stougie. “Inferring phy-
logenetic networks from multifurcating trees via cherry picking and machine
learning”. In: Molecular Phylogenetics and Evolution 199 (2024), p. 108137.

[27] Giulia Bernardini, Leo van Iersel, Esther Julien, and Leen Stougie. “Reconstruct-
ing phylogenetic networks via cherry picking and machine learning”. In: 22nd
International Workshop on Algorithms in Bioinformatics (WABI 2022). Vol. 242.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. 2022, p. 16.

BIBLIOGRAPHY 237

[28] Dimitris Bertsimas and Constantine Caramanis. “Finite adaptability in multi-
stage linear optimization”. In: IEEE Transactions on Automatic Control 55.12
(2010), pp. 2751–2766.

[29] Dimitris Bertsimas, Jack Dunn, and Yuchen Wang. “Near-optimal nonlinear re-
gression trees”. In: Operations Research Letters 49.2 (2021), pp. 201–206.

[30] Dimitris Bertsimas and Iain Dunning. “Multistage robust mixed-integer opti-
mization with adaptive partitions”. In: Operations Research 64.4 (2016), pp. 980–
998.

[31] Dimitris Bertsimas and Angelos Georghiou. “Binary decision rules for multi-
stage adaptive mixed-integer optimization”. In: Mathematical Programming 167
(2018), pp. 395–433.

[32] Dimitris Bertsimas and Angelos Georghiou. “Design of near optimal decision
rules in multistage adaptive mixed-integer optimization”. In: Operations Re-
search 63.3 (2015), pp. 610–627.

[33] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. “Data-driven robust opti-
mization”. In: Mathematical Programming 167 (2018), pp. 235–292.

[34] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath,
Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander
Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke,
Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E.
Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegschei-
der, Philipp Wellner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization
Suite 8.0. Technical Report. Optimization Online, Dec. 2021. URL: http://www.
optimization-online.org/DB_HTML/2021/12/8728.html.

[35] Burcu Beykal, Styliani Avraamidou, Ioannis PE Pistikopoulos, Melis Onel, and Ef-
stratios N Pistikopoulos. “Domino: Data-driven optimization of bi-level mixed-
integer nonlinear problems”. In: Journal of Global Optimization 78 (2020), pp. 1–
36.

[36] Ananya Bhattacharjee and Md Shamsuzzoha Bayzid. “Machine learning based
imputation techniques for estimating phylogenetic trees from incomplete dis-
tance matrices”. In: BMC Genomics 21 (2020), pp. 1–14.

[37] Magnus Bordewich, Simone Linz, Katherine St John, and Charles Semple. “A re-
duction algorithm for computing the hybridization number of two trees”. In: Evo-
lutionary Bioinformatics 3 (2007), p. 117693430700300017.

[38] Magnus Bordewich and Charles Semple. “Computing the hybridization number
of two phylogenetic trees is fixed-parameter tractable”. In: IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 4.3 (2007), pp. 458–466.

[39] Magnus Bordewich and Charles Semple. “Computing the minimum number of
hybridization events for a consistent evolutionary history”. In: Discrete Applied
Mathematics 155.8 (2007), pp. 914–928.

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html

238 BIBLIOGRAPHY

[40] Sander Borst, Leo van Iersel, Mark Jones, and Steven Kelk. “New FPT algorithms
for finding the temporal hybridization number for sets of phylogenetic trees”. In:
Algorithmica (2022).

[41] Luis Boto. “Horizontal gene transfer in evolution: facts and challenges”. In: Pro-
ceedings of the Royal Society B: Biological Sciences 277.1683 (2010), pp. 819–827.

[42] Jerome Bracken and James T McGill. “Mathematical programs with optimization
problems in the constraints”. In: Operations Research 21.1 (1973), pp. 37–44.

[43] Theo Broeders. “A graph-neural-network approach for reconstructing temporal
networks”. Master’s Thesis. Delft University of Technology, 2024. URL: https://
resolver.tudelft.nl/uuid:35a897a9-b80a-471e-aaf5-5f9294212955.

[44] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. “A survey of monte carlo tree search methods”. In: IEEE
Transactions on Computational Intelligence and AI in games 4.1 (2012), pp. 1–43.

[45] Christoph Buchheim and Jannis Kurtz. “Min–max–min robust combinatorial op-
timization”. In: Mathematical Programming 163.1 (2017), pp. 1–23.

[46] Christoph Buchheim and Jannis Kurtz. “Robust combinatorial optimization un-
der convex and discrete cost uncertainty”. In: EURO Journal on Computational
Optimization 6.3 (2018), pp. 211–238.

[47] Trevor Campbell and Jonathan P How. “Bayesian nonparametric set construc-
tion for robust optimization”. In: 2015 American Control Conference (ACC). IEEE.
2015, pp. 4216–4221.

[48] Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J Woeginger.
“Bilevel knapsack with interdiction constraints”. In: INFORMS Journal on Com-
puting 28.2 (2016), pp. 319–333.

[49] Gabriel Cardona, Francesc Rosselló, and Gabriel Valiente. “Comparison of tree-
child phylogenetic networks”. In: IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics 6.4 (2008), pp. 552–569.

[50] Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, and Sriram Sankara-
narayanan. “Integer programming games: a gentle computational overview”.
In: Tutorials in Operations Research: Advancing the Frontiers of OR/MS: From
Methodologies to Applications. INFORMS, 2023, pp. 31–51.

[51] Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin
Tsay, Carl D Laird, and Ruth Misener. “OMLT: Optimization & machine learning
toolkit”. In: arXiv preprint arXiv:2202.02414 (2022).

[52] Timothy CY Chan, Bo Lin, and Shoshanna Saxe. “A machine learning approach
to solving large bilevel and stochastic programs: Application to cycling network
design”. In: arXiv preprint arXiv:2209.09404 (2022).

[53] Wenbo Chen, Seonho Park, Mathieu Tanneau, and Pascal Van Hentenryck.
“Learning optimization proxies for large-scale security-constrained economic
dispatch”. In: Electric Power Systems Research 213 (2022), p. 108566.

https://resolver.tudelft.nl/uuid:35a897a9-b80a-471e-aaf5-5f9294212955
https://resolver.tudelft.nl/uuid:35a897a9-b80a-471e-aaf5-5f9294212955

BIBLIOGRAPHY 239

[54] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. “Maximum resilience
of artificial neural networks”. In: International Symposium on Automated Tech-
nology for Verification and Analysis. Springer. 2017, pp. 251–268.

[55] Benny Chor and Tamir Tuller. “Maximum likelihood of evolutionary trees is
hard”. In: Annual International Conference on Research in Computational Molec-
ular Biology. Springer. 2005, pp. 296–310.

[56] Joshua Collins, Simone Linz, and Charles Semple. “Quantifying hybridization in
realistic time”. In: Journal of Computational Biology 18.10 (2011), pp. 1305–1318.

[57] George B Dantzig. “Discrete-variable extremum problems”. In: Operations Re-
search 5.2 (1957), pp. 266–288.

[58] James H Degnan and Noah A Rosenberg. “Gene tree discordance, phylogenetic
inference and the multispecies coalescent”. In: Trends in Ecology and Evolution
24.6 (2009), pp. 332–340.

[59] Stephan Dempe. “Bilevel optimization: theory, algorithms, applications and a
bibliography”. In: Bilevel Optimization: Advances and Next Challenges (2020),
pp. 581–672.

[60] Scott DeNegre. Interdiction and discrete bilevel linear programming. Lehigh Uni-
versity, 2011.

[61] Scott T DeNegre and Ted K Ralphs. “A branch-and-cut algorithm for inte-
ger bilevel linear programs”. In: Operations Research and Cyber-Infrastructure.
Springer. 2009, pp. 65–78.

[62] Boris Detienne, Henri Lefebvre, Enrico Malaguti, and Michele Monaci. “Ad-
justable robust optimization with objective uncertainty”. In: European Journal
of Operational Research 312.1 (2024), pp. 373–384.

[63] Gabriele Dragotto, Amine Boukhtouta, Andrea Lodi, and Mehdi Taobane. “The
critical node game”. In: Journal of Combinatorial Optimization 47.5 (2024), p. 74.

[64] Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. “Deep
learning for two-stage robust integer optimization”. In: arXiv preprint
arXiv:2310.04345 (2024).

[65] Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. “Neur2BiLO:
Neural bilevel optimization”. In: The Thirty-eighth Annual Conference on Neural
Information Processing Systems. 2024. URL: https://openreview.net/forum?
id=esVleaqkRc.

[66] Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. “Neur2RO:
Neural two-stage robust optimization”. In: The Twelfth International Conference
on Learning Representations. 2024. URL: https://openreview.net/forum?
id=T5Xb0iGCCv.

[67] Justin Dumouchelle, Rahul Patel, Elias B Khalil, and Merve Bodur. “Neur2SP:
Neural Two-Stage Stochastic Programming”. In: Advances in Neural Information
Processing Systems 35 (2022).

https://openreview.net/forum?id=esVleaqkRc
https://openreview.net/forum?id=esVleaqkRc
https://openreview.net/forum?id=T5Xb0iGCCv
https://openreview.net/forum?id=T5Xb0iGCCv

240 BIBLIOGRAPHY

[68] Arkadiy Dushatskiy, Esther Julien, Leen Stougie, and Leo van Iersel. “Solving the
tree containment problem using graph neural networks”. In: Transactions on Ma-
chine Learning Research (2024). ISSN: 2835-8856. URL: https://openreview.
net/forum?id=nK5MazeIpn.

[69] Adam Elmachtoub and Paul Grigas. “Smart "predict, then optimize"”. In: Man-
agement Science 68.1 (2022), pp. 9–26.

[70] Péter L Erdős, Charles Semple, and Mike Steel. “A class of phylogenetic networks
reconstructable from ancestral profiles”. In: Mathematical Biosciences 313 (2019),
pp. 33–40.

[71] Adejuyigbe O Fajemisin, Donato Maragno, and Dick den Hertog. “Optimization
with constraint learning: a framework and survey”. In: European Journal of Oper-
ational Research (2023).

[72] Joseph Felsenstein. Inferring phylogenies. Vol. 2. Sinauer Associates Sunderland,
MA, 2004.

[73] Mareike Fischer and Andrew Francis. “How tree-based is my network? Proximity
measures for unrooted phylogenetic networks”. In: Discrete Applied Mathematics
283 (2020), pp. 98–114.

[74] Mareike Fischer, Tom Niklas Hamann, and Kristina Wicke. “How far is my net-
work from being edge-based? Proximity measures for edge-basedness of un-
rooted phylogenetic networks”. In: arXiv preprint arXiv:2207.01370 (2022).

[75] Matteo Fischetti and Jason Jo. “Deep neural networks and mixed integer linear
optimization”. In: Constraints 23.3 (2018), pp. 296–309.

[76] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. “A new
general-purpose algorithm for mixed-integer bilevel linear programs”. In: Oper-
ations Research 65.6 (2017), pp. 1615–1637.

[77] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. “Intersection
cuts for bilevel optimization”. In: Integer Programming and Combinatorial Op-
timization: 18th International Conference, IPCO 2016, Liège, Belgium, June 1-3,
2016, Proceedings 18. Springer. 2016, pp. 77–88.

[78] Christodoulos A Floudas. Nonlinear and mixed-integer optimization: fundamen-
tals and applications. Oxford University Press, 1995.

[79] Pirmin Fontaine and Stefan Minner. “Benders decomposition for discrete–
continuous linear bilevel problems with application to traffic network design”.
In: Transportation Research Part B: Methodological 70 (2014), pp. 163–172.

[80] Andrew Francis, Charles Semple, and Mike Steel. “New characterisations of tree-
based networks and proximity measures”. In: Advances in Applied Mathematics
93 (2018), pp. 93–107.

[81] Andrew R Francis and Mike Steel. “Which phylogenetic networks are merely trees
with additional arcs?” In: Systematic Biology 64.5 (2015), pp. 768–777.

[82] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea
Lodi. “Exact combinatorial optimization with graph convolutional neural net-
works”. In: Advances in Neural Information Processing Systems 32 (2019).

https://openreview.net/forum?id=nK5MazeIpn
https://openreview.net/forum?id=nK5MazeIpn

BIBLIOGRAPHY 241

[83] Alireza Ghahtarani, Ahmed Saif, Alireza Ghasemi, and Erick Delage. “A double-
oracle, logic-based Benders decomposition approach to solve the K -adaptability
problem”. In: Computers & Operations Research 155 (2023), p. 106243.

[84] Shraddha Ghatkar, Ashwin Arulselvan, and Alec Morton. “Solution techniques
for bi-level knapsack problems”. In: Computers & Operations Research 159 (2023),
p. 106343.

[85] Marc Goerigk and Jannis Kurtz. “Data-driven Prediction of Relevant Scenarios for
Robust Optimization”. In: arXiv e-prints (2022), arXiv–2203.

[86] Marc Goerigk and Jannis Kurtz. “Data-driven robust optimization using deep
neural networks”. In: Computers & Operations Research 151 (2023), p. 106087.

[87] Marc Goerigk, Jannis Kurtz, Martin Schmidt, and Johannes Thürauf. “Connec-
tions between robust and bilevel optimization”. In: Open Journal of Mathemati-
cal Optimization 6 (2025), pp. 1–17.

[88] Marc Goerigk, Stefan Lendl, and Lasse Wulf. “On the complexity of robust multi-
stage problems with discrete recourse”. In: Discrete Applied Mathematics 343
(2024), pp. 355–370.

[89] Benjamin E Goulet, Federico Roda, and Robin Hopkins. “Hybridization in plants:
old ideas, new techniques”. In: Plant Physiology 173.1 (2017), pp. 65–78.

[90] Bjarne Grimstad and Henrik Andersson. “ReLU networks as surrogate models
in mixed-integer linear programs”. In: Computers & Chemical Engineering 131
(2019), p. 106580.

[91] Zeynep H Gümüş and Christodoulos A Floudas. “Global optimization of mixed-
integer bilevel programming problems”. In: Computational Management Science
2 (2005), pp. 181–212.

[92] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020. URL: http:
//www.gurobi.com.

[93] Gurobi Optimization, LLC. Gurobi Machine Learning. 2024. URL: https : / /
gurobi-machinelearning.readthedocs.io/en/stable/.

[94] Carlton Gyles and Patrick Boerlin. “Horizontally transferred genetic elements
and their role in pathogenesis of bacterial disease”. In: Veterinary Pathology 51.2
(2014), pp. 328–340.

[95] Grani A Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann. “K -adaptability
in two-stage robust binary programming”. In: Operations Research 63.4 (2015),
pp. 877–891.

[96] Dov Harel and Robert Endre Tarjan. “Fast algorithms for finding nearest common
ancestors”. In: SIAM Journal on Computing 13.2 (1984), pp. 338–355. DOI: 10.
1137/0213024.

[97] Momoko Hayamizu. “A structure theorem for rooted binary phylogenetic net-
works and its implications for tree-based networks”. In: SIAM Journal on Discrete
Mathematics 35.4 (2021), pp. 2490–2516.

http://www.gurobi.com
http://www.gurobi.com
https://gurobi-machinelearning.readthedocs.io/en/stable/
https://gurobi-machinelearning.readthedocs.io/en/stable/
https://doi.org/10.1137/0213024
https://doi.org/10.1137/0213024

242 BIBLIOGRAPHY

[98] He He, Hal Daume III, and Jason M Eisner. “Learning to search in branch and
bound algorithms”. In: Advances in Neural Information Processing Systems 27
(2014), pp. 3293–3301.

[99] Katharina T Huber, Vincent Moulton, and Andreas Spillner. “Phylogenetic con-
sensus networks: Computing a consensus of 1-nested phylogenetic networks”.
In: arXiv preprint arXiv:2107.09696 (2021).

[100] Katharina T Huber, Leo van Iersel, Remie Janssen, Mark Jones, Vincent Moulton,
Yukihiro Murakami, and Charles Semple. “Orienting undirected phylogenetic
networks”. In: Journal of Computer and System Sciences 140 (2024), p. 103480.

[101] Peter J Humphries, Simone Linz, and Charles Semple. “Cherry picking: a char-
acterization of the temporal hybridization number for a set of phylogenies”. In:
Bulletin of Mathematical Biology 75.10 (2013), pp. 1879–1890.

[102] Daniel H Huson and Simone Linz. “Autumn algorithm—computation of hy-
bridization networks for realistic phylogenetic trees”. In: IEEE/ACM Transactions
on Computational Biology and Bioinformatics 15.2 (2016), pp. 398–410.

[103] Daniel H Huson, Regula Rupp, Vincent Berry, Philippe Gambette, and
Christophe Paul. “Computing galled networks from real data”. In: Bioinformat-
ics 25.12 (2009), pp. i85–i93.

[104] Daniel H Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks:
concepts, algorithms and applications. Cambridge University Press, 2010.

[105] Daniel H Huson and Celine Scornavacca. “Dendroscope 3: an interactive tool
for rooted phylogenetic trees and networks”. In: Systematic Biology 61.6 (2012),
pp. 1061–1067.

[106] Frank Hutter, Jörg Lücke, and Lars Schmidt-Thieme. “Beyond manual tuning of
hyperparameters”. In: KI-Künstliche Intelligenz 29 (2015), pp. 329–337.

[107] Remie Janssen, Mark Jones, Péter L Erdős, Leo van Iersel, and Celine Scor-
navacca. “Exploring the tiers of rooted phylogenetic network space using tail
moves”. In: Bulletin of Mathematical Biology 80.8 (2018), pp. 2177–2208.

[108] Remie Janssen and Pengyu Liu. “Comparing the topology of phylogenetic net-
work generators”. In: Journal of Bioinformatics and Computational Biology 19.06
(2021), p. 2140012.

[109] Remie Janssen and Yukihiro Murakami. “On cherry-picking and network con-
tainment”. In: Theoretical Computer Science 856 (2021), pp. 121–150.

[110] Laura Jetten and Leo van Iersel. “Nonbinary tree-based phylogenetic networks”.
In: IEEE/ACM transactions on computational biology and bioinformatics 15.1
(2016), pp. 205–217.

[111] Esther Julien, Krzysztof Postek, and Ş İlker Birbil. “Machine learning for K -
adaptability in two-stage robust optimization”. In: INFORMS Journal on Com-
puting (2024).

[112] Nicolas Kämmerling and Jannis Kurtz. “Oracle-based algorithms for binary two-
stage robust optimization”. In: Computational Optimization and Applications 77
(2020), pp. 539–569.

BIBLIOGRAPHY 243

[113] Justin Katz, Iosif Pappas, Styliani Avraamidou, and Efstratios N. Pistikopoulos.
“The integration of explicit MPC and ReLU based neural networks”. In: IFAC-
PapersOnLine 53.2 (2020), pp. 11350–11355.

[114] Elias B Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. “Learning
combinatorial optimization algorithms over graphs”. In: Advances in Neural In-
formation Processing Systems 30 (2017).

[115] Elias B Khalil, Christopher Morris, and Andrea Lodi. “MIP-GNN: A data-driven
framework for guiding combinatorial solvers”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. Vol. 36. 9. 2022, pp. 10219–10227.

[116] Elias B Khalil, Pashootan Vaezipoor, and Bistra Dilkina. “Finding backdoors to
integer programs: A Monte Carlo Tree Search framework”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 36. 4. 2022, pp. 3786–3795.

[117] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[118] Thomas Kleinert, Martine Labbé, Ivana Ljubić, and Martin Schmidt. “A survey
on mixed-integer programming techniques in bilevel optimization”. In: EURO
Journal on Computational Optimization 9 (2021), p. 100007.

[119] Polyxeni-M Kleniati and Claire S Adjiman. “A generalization of the branch-and-
sandwich algorithm: from continuous to mixed-integer nonlinear bilevel prob-
lems”. In: Computers & Chemical Engineering 72 (2015), pp. 373–386.

[120] Stephan Koblmüller, Nina Duftner, Kristina M Sefc, Mitsuto Aibara, Mar-
tina Stipacek, MicLamprologinihel Blanc, Bernd Egger, and Christian Sturm-
bauer. “Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake
Tanganyika–the result of repeated introgressive hybridization”. In: BMC Evolu-
tionary Biology 7.1 (2007), pp. 1–13.

[121] Alyssa Kody, Samuel Chevalier, Spyros Chatzivasileiadis, and Daniel Molzahn.
“Modeling the AC power flow equations with optimally compact neural net-
works: Application to unit commitment”. In: Electric Power Systems Research 213
(2022), p. 108282. ISSN: 0378-7796. DOI: https://doi.org/10.1016/j.epsr.
2022.108282. URL: https://www.sciencedirect.com/science/article/
pii/S0378779622004771.

[122] Sungsik Kong, Joan Carles Pons, Laura Kubatko, and Kristina Wicke. “Classes
of explicit phylogenetic networks and their biological and mathematical signif-
icance”. In: Journal of Mathematical Biology 84.6 (2022), p. 47.

[123] James Kotary, Ferdinando Fioretto, and Pascal Van Hentenryck. “Learning hard
optimization problems: A data generation perspective”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 24981–24992.

[124] Jan Kronqvist, Boda Li, Jan Rolfes, and Shudian Zhao. “Alternating mixed-integer
programming and neural network training for approximating stochastic two-
stage problems”. In: International Conference on Machine Learning, Optimiza-
tion, and Data Science. Springer. 2023, pp. 124–139.

https://doi.org/https://doi.org/10.1016/j.epsr.2022.108282
https://doi.org/https://doi.org/10.1016/j.epsr.2022.108282
https://www.sciencedirect.com/science/article/pii/S0378779622004771
https://www.sciencedirect.com/science/article/pii/S0378779622004771

244 BIBLIOGRAPHY

[125] Nikita Kulikov, Fatemeh Derakhshandeh, and Christoph Mayer. “Machine learn-
ing can be as good as maximum likelihood when reconstructing phylogenetic
trees and determining the best evolutionary model on four taxon alignments”.
In: Molecular Phylogenetics and Evolution 200 (2024), p. 108181.

[126] Sudhir Kumar and Sudip Sharma. “Evolutionary sparse learning for phyloge-
nomics”. In: Molecular Biology and Evolution 38.11 (2021), pp. 4674–4682.

[127] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Machine Learn-
ing at Scale”. In: International Conference on Learning Representations. 2017.
URL: https://openreview.net/forum?id=BJm4T4Kgx.

[128] Jannis Kurtz. “Approximation algorithms for min-max-min robust optimiza-
tion and K -adaptability under objective uncertainty”. In: arXiv preprint
arXiv:2106.03107 (2023).

[129] Sunhyeon Kwon, Hwayong Choi, and Sungsoo Park. “Solving bilevel knap-
sack problem using graph neural networks”. In: arXiv preprint arXiv:2211.13436
(2022).

[130] Henri Lefebvre, Enrico Malaguti, and Michele Monaci. “Adjustable robust opti-
mization with discrete uncertainty”. In: INFORMS Journal on Computing (2023).

[131] Markus Leitner, Ivana Ljubić, Michele Monaci, Markus Sinnl, and Kübra Tanın-
mış. “An exact method for binary fortification games”. In: European Journal of
Operational Research 307.3 (2023), pp. 1026–1039.

[132] C Randal Linder, Bernard ME Moret, Luay Nakhleh, and Tandy Warnow. “Net-
work (reticulate) evolution: biology, models, and algorithms”. In: The Ninth Pa-
cific Symposium on Biocomputing (PSB). 2004.

[133] C Randal Linder and Loren H Rieseberg. “Reconstructing patterns of reticulate
evolution in plants”. In: American journal of botany 91.10 (2004), pp. 1700–1708.

[134] Simone Linz and Charles Semple. “Attaching leaves and picking cherries to char-
acterise the hybridisation number for a set of phylogenies”. In: Advances in Ap-
plied Mathematics 105 (2019), pp. 102–129.

[135] Simone Linz and Charles Semple. “Caterpillars on three and four leaves are suffi-
cient to reconstruct binary normal networks”. In: Journal of Mathematical Biol-
ogy 81.4 (2020), pp. 961–980.

[136] Simone Linz, Charles Semple, and Tanja Stadler. “Analyzing and reconstructing
reticulation networks under timing constraints”. In: Journal of Mathematical Bi-
ology 61 (2010), pp. 715–737.

[137] Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao
Lu, and Qingfu Zhang. “Evolution of heuristics: towards efficient automatic algo-
rithm design using large language model”. In: Forty-first International Conference
on Machine Learning. 2024.

[138] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: differentiable archi-
tecture search”. In: International Conference on Learning Representations. 2019.
URL: https://openreview.net/forum?id=S1eYHoC5FX.

https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=S1eYHoC5FX

BIBLIOGRAPHY 245

[139] Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. “Investigating
bi-level optimization for learning and vision from a unified perspective: A survey
and beyond”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
44.12 (2021), pp. 10045–10067.

[140] Michele Lombardi, Michela Milano, and Andrea Bartolini. “Empirical decision
model learning”. In: Artificial Intelligence 244 (2017), pp. 343–367.

[141] Manuel Loth, Michele Sebag, Youssef Hamadi, and Marc Schoenauer. “Bandit-
based search for constraint programming”. In: Principles and Practice of Con-
straint Programming: 19th International Conference, CP 2013, Uppsala, Sweden,
September 16-20, 2013. Proceedings 19. Springer. 2013, pp. 464–480.

[142] Leonardo Lozano and J Cole Smith. “A value-function-based exact approach for
the bilevel mixed-integer programming problem”. In: Operations Research 65.3
(2017), pp. 768–786.

[143] James Mallet. “Hybridization as an invasion of the genome”. In: Trends in Ecology
and Evolution 20.5 (2005), pp. 229–237.

[144] James Mallet, Nora Besansky, and Matthew W Hahn. “How reticulated are
species?” In: BioEssays 38.2 (2016), pp. 140–149.

[145] Donato Maragno, Holly Wiberg, Dimitris Bertsimas, Ş İlker Birbil, Dick den Her-
tog, and Adejuyigbe O Fajemisin. “Mixed-integer optimization with constraint
learning”. In: Operations Research (2023).

[146] Tom V Mathew and KV Krishna Rao. “Introduction to Transportation Engineer-
ing, Traffic Assignment”. In: Lecture notes (2006).

[147] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. “Rein-
forcement learning for combinatorial optimization: a survey”. In: Computers &
Operations Research 134 (2021), p. 105400.

[148] Chen Meng and Laura Salter Kubatko. “Detecting hybrid speciation in the pres-
ence of incomplete lineage sorting using gene tree incongruence: a model”. In:
Theoretical Population Biology 75.1 (2009), pp. 35–45.

[149] Sajad Mirzaei and Yufeng Wu. “Fast construction of near parsimonious hy-
bridization networks for multiple phylogenetic trees”. In: IEEE/ACM Transactions
on Computational Biology and Bioinformatics 13.3 (2015), pp. 565–570.

[150] Ioana Molan and Martin Schmidt. “Using neural networks to solve linear bilevel
problems with unknown lower level”. In: Optimization Letters (2023), pp. 1–21.

[151] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. “On
the number of linear regions of deep neural networks”. In: Advances in Neural
Information Processing Systems 27 (2014).

[152] Alec Morton, Ashwin Arulselvan, and Ranjeeta Thomas. “Allocation rules for
global donors”. In: Journal of Health Economics 58 (2018), pp. 67–75.

[153] Ilgiz Murzakhanov, Andreas Venzke, George S Misyris, and Spyros Chatzi-
vasileiadis. “Neural networks for encoding dynamic security-constrained opti-
mal power flow”. In: arXiv preprint arXiv:2003.07939 (2020).

246 BIBLIOGRAPHY

[154] Almir Mutapcic and Stephen Boyd. “Cutting-set methods for robust convex op-
timization with pessimizing oracles”. In: Optimization Methods & Software 24.3
(2009), pp. 381–406.

[155] Luay Nakhleh. “Evolutionary phylogenetic networks: models and issues”. In:
Problem Solving Handbook in Computational Biology and Bioinformatics.
Springer, 2010, pp. 125–158.

[156] Luay Nakhleh, Guohua Jin, Fengmei Zhao, and John Mellor-Crummey. “Re-
constructing phylogenetic networks using maximum parsimony”. In: 2005 IEEE
Computational Systems Bioinformatics Conference (CSB’05). IEEE. 2005, pp. 93–
102.

[157] Masatoshi Nei and Sudhir Kumar. Molecular evolution and phylogenetics. Oxford
university press, 2000.

[158] George L Nemhauser and Laurence A Wolsey. Integer and combinatorial opti-
mization. New York: Wiley-Interscience, 1988. ISBN: 978-0471359432.

[159] Chao Ning and Fengqi You. “Data-driven adaptive nested robust optimization:
general modeling framework and efficient computational algorithm for decision
making under uncertainty”. In: AIChE Journal 63.9 (2017), pp. 3790–3817.

[160] Chao Ning and Fengqi You. “Data-driven decision making under uncertainty
integrating robust optimization with principal component analysis and kernel
smoothing methods”. In: Computers & Chemical Engineering 112 (2018), pp. 190–
210.

[161] Fabio Pardi and Celine Scornavacca. “Reconstructible phylogenetic networks:
do not distinguish the indistinguishable”. In: PLoS Computational Biology 11.4
(2015), e1004135.

[162] H Park, G Jin, and L Nakhleh. “Algorithmic strategies for estimating the amount
of reticulation from a collection of gene trees”. In: Proceedings of the 9th An-
nual International Conference on Computational Systems Biology. Citeseer. 2010,
pp. 114–123.

[163] Hyun Jung Park and Luay Nakhleh. “Inference of reticulate evolutionary histo-
ries by maximum likelihood: the performance of information criteria”. In: BMC
Bioinformatics. Vol. 13. 19. BioMed Central. 2012, S12.

[164] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. “PyTorch: An imperative style, high-performance deep learn-
ing library”. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., 2019, pp. 8024–8035.

[165] Remigijus Paulavičius and Claire S Adjiman. “New bounding schemes and algo-
rithmic options for the Branch-and-Sandwich algorithm”. In: Journal of Global
Optimization 77.2 (2020), pp. 197–225.

BIBLIOGRAPHY 247

[166] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning
in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[167] Fotios Petropoulos, Gilbert Laporte, Emel Aktas, Sibel A Alumur, Claudia Archetti,
Hayriye Ayhan, Maria Battarra, Julia A Bennell, Jean-Marie Bourjolly, John E Boy-
lan, et al. “Operational research: Methods and applications”. In: arXiv preprint
arXiv:2303.14217 (2023).

[168] Teresa Piovesan and Steven M Kelk. “A simple fixed parameter tractable algo-
rithm for computing the hybridization number of two (not necessarily binary)
trees”. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics
10.1 (2012), pp. 18–25.

[169] Joan Carles Pons, Celine Scornavacca, and Gabriel Cardona. “Generation of
Level-k LGT networks”. In: IEEE/ACM Transactions on Computational Biology
and Bioinformatics 17.1 (2019), pp. 158–164.

[170] Krzysztof Postek and Dick den Hertog. “Multistage adjustable robust mixed-
integer optimization via iterative splitting of the uncertainty set”. In: INFORMS
Journal on Computing 28.3 (2016), pp. 553–574.

[171] David Rey. “Computational benchmarking of exact methods for the bilevel dis-
crete network design problem”. In: Transportation Research Procedia 47 (2020),
pp. 11–18.

[172] David Rey. “Optimization and game-theoretical methods for transportation sys-
tems”. PhD thesis. Toulouse 3 Paul Sabatier, 2023.

[173] Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. “Guiding combina-
torial optimization with UCT”. In: Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems: 9th Interna-
tional Conference, CPAIOR 2012, Nantes, France, May 28–June1, 2012. Proceedings
9. Springer. 2012, pp. 356–361.

[174] Buser Say, Ga Wu, Yu Qing Zhou, and Scott Sanner. “Nonlinear hybrid plan-
ning with deep net learned transition models and mixed-integer linear program-
ming”. In: IJCAI. 2017, pp. 750–756.

[175] Lara Scavuzzo, Karen Aardal, Andrea Lodi, and Neil Yorke-Smith. “Machine
learning augmented branch and bound for mixed integer linear programming”.
In: Mathematical Programming (2024), pp. 1–44.

[176] Charles Semple and Gerry Toft. “Trinets encode orchard phylogenetic networks”.
In: Journal of Mathematical Biology 83.3 (2021), pp. 1–20.

[177] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. “Bounding
and counting linear regions of deep neural networks”. In: International Confer-
ence on Machine Learning. PMLR. 2018, pp. 4558–4566.

[178] Chao Shang, Xiaolin Huang, and Fengqi You. “Data-driven robust optimization
based on kernel learning”. In: Computers & Chemical Engineering 106 (2017),
pp. 464–479.

248 BIBLIOGRAPHY

[179] Chao Shang and Fengqi You. “A data-driven robust optimization approach to
scenario-based stochastic model predictive control”. In: Journal of Process Con-
trol 75 (2019), pp. 24–39.

[180] Feifei Shen, Liang Zhao, Wenli Du, Weimin Zhong, and Feng Qian. “Large-scale
industrial energy systems optimization under uncertainty: A data-driven robust
optimization approach”. In: Applied Energy 259 (2020), p. 114199.

[181] Ankur Sinha, Samish Bedi, and Kalyanmoy Deb. “Bilevel optimization based on
kriging approximations of lower level optimal value function”. In: 2018 IEEE
Congress on Evolutionary Computation (CEC). IEEE. 2018, pp. 1–8.

[182] Ankur Sinha, Zhichao Lu, Kalyanmoy Deb, and Pekka Malo. “Bilevel optimization
based on iterative approximation of multiple mappings”. In: Journal of Heuristics
26 (2020), pp. 151–185.

[183] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. “A review on bilevel optimization:
from classical to evolutionary approaches and applications”. In: IEEE Transac-
tions on Evolutionary Computation 22.2 (2017), pp. 276–295.

[184] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. “Solving optimistic bilevel pro-
grams by iteratively approximating lower level optimal value function”. In: 2016
IEEE Congress on Evolutionary Computation (CEC). IEEE. 2016, pp. 1877–1884.

[185] Megan L Smith and Matthew W Hahn. “Phylogenetic inference using generative
adversarial networks”. In: Bioinformatics 39.9 (2023), btad543.

[186] Claudia Solís-Lemus, Paul Bastide, and Cécile Ané. “PhyloNetworks: a package
for phylogenetic networks”. In: Molecular Biology and Evolution 34.12 (2017),
pp. 3292–3298.

[187] Shannon M Soucy, Jinling Huang, and Johann Peter Gogarten. “Horizontal gene
transfer: building the web of life”. In: Nature Reviews Genetics 16.8 (2015),
pp. 472–482.

[188] Anirudh Subramanyam. “A Lagrangian dual method for two-stage robust op-
timization with binary uncertainties”. In: Optimization and Engineering 23.4
(2022), pp. 1831–1871.

[189] Anirudh Subramanyam, Chrysanthos E Gounaris, and Wolfram Wiesemann. “K -
adaptability in two-stage mixed-integer robust optimization”. In: Mathematical
Programming Computation 12.2 (2020), pp. 193–224.

[190] Merel Susanna. “Making phylogenetic networks orchard: Algorithms to deter-
mine if a phylogenetic network is orchard and to transform non-orchard to or-
chard networks”. Bachelor’s Thesis. Delft University of Technology, 2022. URL:
http : / / resolver . tudelft . nl / uuid : 724ac2af - e569 - 4586 - b367 -
288fef890252.

[191] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk.
“Monte Carlo tree search: A review of recent modifications and applications”. In:
Artificial Intelligence Review (2022), pp. 1–66.

http://resolver.tudelft.nl/uuid:724ac2af-e569-4586-b367-288fef890252
http://resolver.tudelft.nl/uuid:724ac2af-e569-4586-b367-288fef890252

BIBLIOGRAPHY 249

[192] Gergely J Szöllősi, Adrián Arellano Davín, Eric Tannier, Vincent Daubin, and
Bastien Boussau. “Genome-scale phylogenetic analysis finds extensive gene
transfer among fungi”. In: Philosophical Transactions of the Royal Society B: Bi-
ological Sciences 370.1678 (2015), p. 20140335.

[193] Sahar Tahernejad, Ted K Ralphs, and Scott T DeNegre. “A branch-and-cut algo-
rithm for mixed integer bilevel linear optimization problems and its implemen-
tation”. In: Mathematical Programming Computation 12 (2020), pp. 529–568.

[194] Bo Tang and Elias B Khalil. “Pyepo: A pytorch-based end-to-end predict-then-
optimize library for linear and integer programming”. In: Mathematical Pro-
gramming Computation 16.3 (2024), pp. 297–335.

[195] Yen Tang, Jean-Philippe P Richard, and J Cole Smith. “A class of algorithms for
mixed-integer bilevel min–max optimization”. In: Journal of Global Optimization
66 (2016), pp. 225–262.

[196] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. “Evaluating robustness of neu-
ral networks with mixed integer programming”. In: International Conference on
Learning Representations. 2019. URL: https://openreview.net/forum?id=
HyGIdiRqtm.

[197] Man Yiu Tsang, Karmel S Shehadeh, and Frank E Curtis. “An inexact column-and-
constraint generation method to solve two-stage robust optimization problems”.
In: Operations Research Letters 51.1 (2023), pp. 92–98.

[198] Theja Tulabandhula and Cynthia Rudin. “Robust optimization using machine
learning for uncertainty sets”. In: arXiv preprint arXiv:1407.1097 (2014).

[199] Mark Turner, Antonia Chmiela, Thorsten Koch, and Michael Winkler.
“PySCIPOpt-ML: Embedding trained machine learning models into mixed-
integer programs”. In: arXiv preprint arXiv:2312.08074 (2023).

[200] Leo van Iersel, Remie Janssen, Mark Jones, and Yukihiro Murakami. “Orchard net-
works are trees with additional horizontal arcs”. In: Bulletin of Mathematical Bi-
ology 84.8 (2022), pp. 1–21.

[201] Leo van Iersel, Remie Janssen, Mark Jones, Yukihiro Murakami, and Norbert Zeh.
“A practical fixed-parameter algorithm for constructing tree-child networks from
multiple binary trees”. In: Algorithmica 84 (2022), pp. 917–960.

[202] Leo van Iersel, Remie Janssen, Mark Jones, Yukihiro Murakami, and Norbert Zeh.
“A unifying characterization of tree-based networks and orchard networks using
cherry covers”. In: Advances in Applied Mathematics 129 (2021), p. 102222. DOI:
10.1016/j.aam.2021.102222.

[203] Leo van Iersel, Mark Jones, Esther Julien, and Yukihiro Murakami. “Making a
network orchard by adding leaves”. In: 23rd International Workshop on Algo-
rithms in Bioinformatics (WABI 2023). Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik. 2023.

[204] Leo van Iersel and Steven Kelk. “Constructing the simplest possible phylogenetic
network from triplets”. In: Algorithmica 60.2 (2011), pp. 207–235.

https://openreview.net/forum?id=HyGIdiRqtm
https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/10.1016/j.aam.2021.102222

250 BIBLIOGRAPHY

[205] Leo van Iersel, Steven Kelk, Regula Rupp, and Daniel Huson. “Phylogenetic net-
works do not need to be complex: using fewer reticulations to represent conflict-
ing clusters”. In: Bioinformatics 26.12 (2010), pp. i124–i131.

[206] Leo van Iersel and Simone Linz. “A quadratic kernel for computing the hybridiza-
tion number of multiple trees”. In: Information Processing Letters 113.9 (2013),
pp. 318–323.

[207] Heinrich von Stackelberg. Market structure and equilibrium. Springer Science &
Business Media, 2010.

[208] Heinrich von Stackelberg. Marktform und Gleichgewicht. German. Doctoral dis-
sertation, University of Cologne. Vienna: Springer, 1934.

[209] Irina Wang, Cole Becker, Bart Van Parys, and Bartolomeo Stellato. “Learning
Decision-Focused Uncertainty Sets in Robust Optimization”. In: arXiv preprint
arXiv:2305.19225 (2023).

[210] Keliang Wang, Leonardo Lozano, Carlos Cardonha, and David Bergman. “Opti-
mizing over an ensemble of trained neural networks”. In: INFORMS Journal on
Computing 35.3 (2023), pp. 652–674.

[211] Alan Washburn and Kevin Wood. “Two-person zero-sum games for network in-
terdiction”. In: Operations Research 43.2 (1995), pp. 243–251.

[212] Dingqiao Wen, Yun Yu, and Luay Nakhleh. “Bayesian inference of reticulate
phylogenies under the multispecies network coalescent”. In: PLoS Genetics 12.5
(2016), e1006006.

[213] Dingqiao Wen, Yun Yu, Jiafan Zhu, and Luay Nakhleh. “Inferring phylogenetic
networks using PhyloNet”. In: Systematic Biology 67.4 (2018), pp. 735–740.

[214] Noah Weninger and Ricardo Fukasawa. “A fast combinatorial algorithm for
the bilevel knapsack problem with interdiction constraints”. In: International
Conference on Integer Programming and Combinatorial Optimization. Springer.
2023, pp. 438–452.

[215] Chris Whidden, Robert G Beiko, and Norbert Zeh. “Fast FPT algorithms for com-
puting rooted agreement forests: theory and experiments”. In: Experimental Al-
gorithms: 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy,
May 20-22, 2010. Proceedings 9. Springer. 2010, pp. 141–153.

[216] Chris Whidden, Robert G. Beiko, and Norbert Zeh. “Fixed-parameter algorithms
for maximum agreement forests”. In: SIAM Journal on Computing 42.4 (2013),
pp. 1431–1466.

[217] David A Wickell and Fay-Wei Li. “On the evolutionary significance of horizontal
gene transfers in plants”. In: New Phytologist 225.1 (2020), pp. 113–117.

[218] Stephen Willson. “Regular networks can be uniquely constructed from their
trees”. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics
8.3 (2010), pp. 785–796.

[219] Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

BIBLIOGRAPHY 251

[220] Yufeng Wu. “Close lower and upper bounds for the minimum reticulate network
of multiple phylogenetic trees”. In: Bioinformatics 26.12 (2010), pp. i140–i148.

[221] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S
Yu Philip. “A comprehensive survey on graph neural networks”. In: IEEE Trans-
actions on Neural Networks and Learning Systems 32.1 (2020), pp. 4–24.

[222] İhsan Yanıkoğlu, Bram L Gorissen, and Dick den Hertog. “A survey of adjustable
robust optimization”. In: European Journal of Operational Research 277.3 (2019),
pp. 799–813.

[223] Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon
Kim, Jinkyoo Park, and Guojie Song. “ReEvo: large language models as hyper-
heuristics with reflective evolution”. In: The Thirty-eighth Annual Conference on
Neural Information Processing Systems. 2024. URL: https://openreview.net/
forum?id=483IPG0HWL.

[224] Yun Yu, Jianrong Dong, Kevin J Liu, and Luay Nakhleh. “Maximum likelihood
inference of reticulate evolutionary histories”. In: Proceedings of the National
Academy of Sciences 111.46 (2014), pp. 16448–16453.

[225] Yun Yu, Cuong Than, James H Degnan, and Luay Nakhleh. “Coalescent histories
on phylogenetic networks and detection of hybridization despite incomplete lin-
eage sorting”. In: Systematic Biology 60.2 (2011), pp. 138–149.

[226] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. “Deep sets”. In: Advances in Neural In-
formation Processing Systems 30 (2017).

[227] Bo Zeng and Long Zhao. “Solving two-stage robust optimization problems us-
ing a column-and-constraint generation method”. In: Operations Research Let-
ters 41.5 (2013), pp. 457–461.

[228] Chi Zhang, Huw A Ogilvie, Alexei J Drummond, and Tanja Stadler. “Bayesian in-
ference of species networks from multilocus sequence data”. In: Molecular Biol-
ogy and Evolution 35.2 (2018), pp. 504–517.

[229] Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and
Junchi Yan. “A survey for solving mixed integer programming via machine learn-
ing”. In: Neurocomputing 519 (2023), pp. 205–217.

[230] Louxin Zhang. “On tree-based phylogenetic networks”. In: Journal of Computa-
tional Biology 23.7 (2016), pp. 553–565.

[231] Louxin Zhang, Niloufar Abhari, Caroline Colijn, and Yufeng Wu. “A fast and scal-
able method for inferring phylogenetic networks from trees by aligning lineage
taxon strings”. In: Genome Research 33.7 (2023), pp. 1053–1060.

[232] Long Zhao and Bo Zeng. “An exact algorithm for two-stage robust optimization
with mixed integer recourse problems”. In: Optimization-Online. org (2012).

[233] Bo Zhou, Ruiwei Jiang, and Siqian Shen. “Learning to solve bilevel programs with
binary tender”. In: The Twelfth International Conference on Learning Representa-
tions. 2024. URL: https://openreview.net/forum?id=PsDFgTosqb.

https://openreview.net/forum?id=483IPG0HWL
https://openreview.net/forum?id=483IPG0HWL
https://openreview.net/forum?id=PsDFgTosqb

252 BIBLIOGRAPHY

[234] Tujin Zhu and Yunpeng Cai. “Applying neural network to reconstruction of phy-
logenetic tree”. In: 2021 13th International Conference on Machine Learning and
Computing. ICMLC 2021. Shenzhen, China: Association for Computing Machin-
ery, 2021, pp. 146–152. ISBN: 9781450389310. DOI: 10.1145/3457682.3457704.

[235] Marco Zugno, Juan Miguel Morales, Pierre Pinson, and Henrik Madsen. “A bilevel
model for electricity retailers’ participation in a demand response market envi-
ronment”. In: Energy Economics 36 (2013), pp. 182–197.

https://doi.org/10.1145/3457682.3457704

Leveraging Data
in Algorithm
Design
for Problems in Bilevel
Optimization, Adaptable
Robust Optimization,
and Phylogenetics

Esther Julien

Leverag
in

g
 D

ata in
 A

lg
orith

m
 D

esig
n

E
sth

er Ju
lien

	Summary
	Samenvatting
	Introduction
	Machine Learning for Optimization
	Thesis Outline
	Part I: Hierarchical Optimization
	Part II: Phylogenetics

	I Hierarchical Optimization
	Preliminaries
	Value Function Approximation

	Neural Bilevel Optimization
	Introduction
	Background
	Related Work
	Methodology
	Experimental Setup
	Experimental Results
	Conclusion

	Appendices of Chapter 3
	Neur2BiLO Pseudocode
	Upper- v.s. Lower-level Approximations
	Proofs for Approximation Guarantees
	Problem Formulations
	Learning-Based Approach of zhou2024learning
	Objective & Incumbent Results
	Distributional Results for Relative Error
	Ablation
	Computing Setup
	Machine Learning Details

	Neural Two-Stage Robust Integer Optimization
	Introduction
	Background
	Related Work
	Methodology
	Experimental Setup
	Experimental Results
	Conclusion

	Appendices of Chapter 4
	2RO Problems
	2RO Algorithms
	Detailed Formulation
	Extended NN Architecture
	2RO with Fixed First-Stage Decisions
	Convergence
	Distributional Results for Relative Performance
	Ablation
	Machine-Learning Model Details

	Machine Learning for K-adaptability
	Introduction
	Preliminaries
	ML Methodology
	Experiments
	Conclusion and Future Work

	Appendices of Chapter 5
	Attribute Descriptions
	Omitted Pseudocodes
	Problem Formulations
	Parameter Tuning
	Full Results

	II Phylogenetics
	Cherry-Picking Heuristic for Binary Trees
	Introduction
	Preliminaries
	Solving the Hybridization Problem via Cherry-Picking Sequences
	Predicting Good Cherries via Machine Learning
	Experiments
	Conclusions

	Appendices of Chapter 6
	Time Complexity
	Random Forest Models
	Heuristic Performance of ML Models

	Cherry-Picking Heuristic for Non-Binary Trees
	Introduction
	Methods
	Results
	Conclusions

	Proximity Measure for Orchard Networks
	Introduction
	Preliminaries
	Leaf Addition Proximity Measure
	Hardness Proof
	Upper Bound
	MILP Formulation
	Discussion

	Appendices of Chapter 8
	Remark and Omitted Proofs

	Conclusion & Discussion
	Acknowledgements
	Curriculum Vitæ
	List of Publications
	Bibliography

