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Summary 
In general, costs are an important aspect long before the construction of a civil project starts. Since many 
projects depend on a budget, it is desirable to obtain an accurate estimate of the costs at an early stage in 
the development process of the project.  
Estimates for civil projects are made by cost estimators who can work on both the client and contractor side 
of the civil project. Witteveen+Bos is a consultancy company that, among other things, provides advice on 
costs for its customers. This research project is executed within the Witteveen+Bos company.  
 
The accuracy of a cost estimate depends to a large extent on the amount of available project information on 
which the cost estimate can be based. Besides, the knowledge and experience of the cost estimator play a 
role. In the conceptual phase, which is the first phase, of a civil construction project, little cost information is 
available, and the cost estimate is at that stage of project development less accurate than when the project 
is almost completed.  
 
In the conceptual phase, the available project cost information is at a maximum 15% of the total information 
which is available when the project is realized. In the case a cost estimate is made with a conventional 
method in the conceptual phase of a civil construction project, the Association for the Advancement of Cost 
Engineering, AACE, argues that the error of a cost estimate compared to the real price can be 15-50% 
(Bates et al., 2005). The conventional method in the Netherlands, and used by Witteveen+Bos, is the SSK 
method. This is a format in which project components have been listed according to a fixed pattern after 
which the total price of the cost estimate is calculated.  
 
The lower accuracy of estimates in the conceptual phase is explainable, diverse obstacles are present in 
that phase. Serpell (2005) argues that lower accuracy in the conceptual phase is caused by lack of 
estimating experience, lack of information, and a method that cannot calculate an accurate cost estimate. 
Besides, the conventional approach for cost estimates is time-consuming (Leśniak & Zima, 2018).  
 
Since all project parties in a construction project commonly rely on conventional methods, the obstacles as 
presented are still causes of an reduced accuracy of cost estimates (Badra, Badawy, & Attabi). However, 
Koch (2019) mentioned that machine learning models can improve the performance of cost estimates. 
Machine learning models calculate cost estimates fast, automated, and accurate (Shin, 2015). 
 
This research was initiated by a practical problem within the company Witteveen+Bos. Witteveen+Bos 
wants to improve the performance of cost estimates of road bridges in the conceptual phase of a project. 
This is called an optimization problem (Nehi & Maleki, 2005). In the current situation, the performance is in 
line with the values of the AACE. This means that the error of cost estimates is between 15-50% and the 
calculation time takes a couple of hours till days per project. 
 
This problem can be solved by means of a machine learning model. However, if the suitability and benefits 
of using a specific machine learning model has not been investigated for a specific application, it will not be 
used for that application (Hong, Wang, Luo, & Zhang, 2020). Although, An, Park, Kang, Cho, and Cho 
(2007); Elmousalami (2019); Zhou (2018) showed that machine learning models are suitable for solving 
problems like the presented problem. FALCON is a machine learning model (Abraham, 2004). The 
FALCON model is already successful applied in the field of cost estimates for construction projects. 
However, the benefits of this model related to cost estimates for bridge projects are disregarded in 
literature.  
 
Based on this, the research question follows: 
How can FALCON improve the accuracy of cost estimates for road bridge projects in the conceptual 
phase?  
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This research aims to improve the cost estimates of bridges in the early phase of bridge projects by use of 
the FALCON model. Improvement that should be realized in the reduction of the calculation time from hours 
to minutes. Besides the research aims to reduce the maximum deviation of estimates for road bridge 
projects to 30%. That is the error of cost estimates compared to the real value 1 step further in the project 
development process, the budget authorization or control phase, according to the AACE values. 
 
The model FALCON model consists of several steps and is programmed in Python. The predictions of the 
FALCON model are made based on reference projects, the input data of the FALCON model. The input 
data of the FALCON model is structured according to the literature. The data is obtained from 
Witteveen+Bos. Based on the literature, which also includes the Dutch standard for work descriptions RAW, 
a work break down structure is defined and the cost data per project is divided into nine categories: 
preparatory work, soil work, foundation structure, substructure, superstructure, pavements, railings, external 
finishes, and general cost.  
 
Based on the available data set of 39 projects, four categories (foundation structure, substructure, 
superstructure, and railing) are, on average responsible for 77% of the total construction costs of a road 
bridge project. The foundation, substructure, superstructure, and railing cost data of 39 reference projects 
are used as input for the FALCON model. A prediction of the total price is based on the predicted values for 
each of these four categories. This is equal to the approach of Wang, Bilozerov, Dzeng, Hsiao, and Wang 
(2017). Since the price levels, years of realization, of the different reference projects differ, they have been 
adjusted to the same reference year (2020) using the CBS index for bridge construction projects.   
 
The database of the FALCON model consists, besides the cost of the reference projects, of the main cost 
drivers and properties of each reference project. The FALCON model basically compares the presence of 
the elements that are the cost drivers and general characteristics of the new project with all projects in the 
database. Then the best matching project is selected by the FALCON model and the price is predicted for 
each of the 4 main categories (foundation structure, substructure, superstructure, and railing). A kind of 
Google form that asks for information about the cost drivers and general characteristics is used to insert the 
data into the FALCON model on which the FALCON model makes the cost prediction. Cost drivers are the 
components, e.g. pile type, that contribute significantly to the price of one of the categories.  
 
In the next step, the FALCON model is programmed, and results are generated. Since the four categories 
are responsible for 77% of the total price. The total predicted construction costs are defined to divide the 
sum of the four predictions, one per category, by 0.77. The performance of the FALCON model has been 
tested through n-fold, 10-fold, and 5-fold cross-validation.  
 
In cross-validation, the total used dataset of a model is split into a number of samples, one sample is the 
test sample, the other samples are used as training set for a model. Then are the results for the test sample 
calculated by the model. Then the next sample is the test sample and the other samples are the training 
samples and results are calculated. This process is repeated until each sample has been tested.  
 
The FALCON model is not the only model to solve an estimation problem. Standard, often used, generic 
models are available to solve estimation problems. Such models, suitable for estimation problems, are 
multiple linear regression, K nearest neighbors, and decision trees (James, Witten, Hastie, & Tibshirani, 
2013; Rockafellar, Uryasev, & Zabarankin, 2008; Strobl, Malley, & Tutz, 2009). These three models have 
been compared with the FALCON model. Results calculated with these models are based on the same 
dataset and are also calculated for the same types of cross-validation. The results of all models are shown 
in table 1.  
 
Table 1: Average error pert type of cross-validation 

 KNN Decision tree Multiple linear regression FALCON 

N-fold 34% 36% 57% 24% 

10-fold 29% 35% 67% 29% 

5-fold 41% 36% 68% 30% 
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Regarding the calculation-time, all models calculate results in minutes. Table 1 showed that the FALCON 
model calculates the most accurate estimates. The estimation accuracy of the FALCON model does not 
depend that much on the dataset size, and is, thus, more robust than the KNN model. The models training 
set size varies for different cross-validation types. Besides, the calculation process of the FALCON model is 
easy to interpret. This comparison verifies that FALCON generates the best solution to the problem. 
 
The validation of the FALCON model is realized through interviews with cost estimators of Witteveen+Bos. 
It is checked if the solution to the problem, the FALCON model, meets the requirements of the interviewees. 
In addition, these interviews check if the research objectives as formulated at the beginning of this study are 
the same as the requirements of the interviewees. The objective regarding the calculation time of the 
estimate, determined at the start of this project, has been met during this research and this is in accordance 
with the interviewees' requirement. In addition, the objective regarding the accuracy of the estimate, 
determined at the start of this project, has not been met during this research, although the accuracy of the 
predictions is in accordance with the interviewees' requirement. The average error of all predictions of the 
models are presented in Table 1. The error of the individual predictions of the FALCON model roughly 
corresponds to the bandwidth of the AACE (15-50%) for the conceptual phase of a project. Besides, the 
interviewees are willing to implement the model in practice. This shows that the realized model meets the 
expectations of the interviewees. In sum, all requirements of the interviewees are met.  
 
Thereafter, the conclusion of this research project follows. FALCON is presented as a model that has the 
potential to be suitable for cost estimates in the conceptual phase of road bridge projects. FALCON is a 
model in the field of artificial intelligence. Therefore, a model as FALCON is needs to be programmed to 
use the model in order to solve the problem as in this research project. The first step to check if FALCON 
can improve the accuracy of cost estimates for bridge projects is a programmed version of FALCON.  
 
Subsequently the results of this research project are presented. This research shows that FALCON can 
provide more accurate cost estimates for this problem compared to the generic models. In addition, the 
FALCON model can make a fast calculation of the total price of a bridge project in the conceptual phase. 
The improvement is enormous because the time needed for a cost estimate for bridges in the conceptual 
phase has been reduced from hours to minutes. The accuracy of the estimates is also in accordance with 
the requirements set by cost estimators in practice, as shown by the interviews with cost estimators from 
Witteveen+Bos. As mentioned, the FALCON model is not suitable to realize the expected accuracy of cost 
estimates in the budget authorization or control phase. The accuracy is sufficient for the conceptual phase 
of a project. Another major advantage is easiness of explaining the FALCON model. That is why the 
employees of Witteveen+Bos see possibilities and are willing to apply the FALCON model in practice. This 
contributes to a successful implementation of the FALCON model in practice.  
 
In sum, the FALCON model can calculate a cost estimate, of bridge projects in the conceptual phase, more 
quickly, and with a comparable accuracy level as with conventional methods that are used today.  
 
Apart from the conclusion, some dependencies and limitations of the model exist. Related to the data, it is 
important to map if the available data is suitable for the intended research strategy. Besides, data pre-
preprocessing can be a time-consuming process. This must be considered. It is unknown whether this 
model provides the best solution to the problem, therefore, more research on the subject is necessary.  
 
Besides the accuracy and processing of the data, the comparability of projects is an issue. For the size of 
the dataset, it may be that the variation is too large. In case the dataset is larger or has less variation, the 
accuracy of the predictions could increase. A larger dataset is recommended in future research. The data of 
the model is structured using the Dutch standard, adjusting the FALCON model to an international context 
requires some effort. In future research, it is therefore recommended to use international standards for the 
implementation of models such as FALCON in an international context.  
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1 Introduction 
This chapter introduces the project, which is executed within the Witteveen+Bos company, and the 
research problem. Paragraph 1.1 provides the research context. This section is followed by the problem 
statement in paragraph 1.2. The main question of this study follows from the problem statement, which is 
described in section 1.3. Subsequently, in section 1.4 the problem type is described with the corresponding 
approach to such problems. The final paragraph, 1.5, presents a reading guide for this report. 
 

1.1 Research context 
This research takes place in the field of cost engineering and this paragraph introduces that field of interest.   
 
In general, costs are an important aspect long before the construction of a civil project starts. Cost is one of 
the main measures of the success of a civil project. Therefore, related to this main measure of success, 
cost estimates are important for several reasons. These reasons are budget definition, loan application in 
the case a project needs funding, and estimating the likely cost of a loan (Ahiaga-Dagbui & Smith, 2014). 
Besides, the accuracy of cost estimates is crucial in the determination process whether or not a project is 
undertaken or infeasible (Lim, Nepal, Skitmore, & Xiong, 2016).    
 
However, a cost estimate must be accurate to use the estimate for the above-mentioned arguments. The 
experience of cost estimators, the availability of reference projects, the completeness of the new project’s 
information, and the estimating method are factors that are related to the accuracy of a cost estimate 
(Hatamleh, Hiyassat, Sweis, & Sweis, 2018). The completeness of the new information is a factor that 
differs per project life cycle phase. Therefore, the accuracy of an estimate differs per project life cycle 
phase. The project life cycle phases are the conceptual, design, realization, and operation phase. Figure 1 
shows each phase and accuracy of cost estimates in that phase (Burke, 1999).  

 
Figure 1 Accuracy of the cost estimate and progress of the project over time. 

 
Besides, AACE International (Association for the Advancement of Cost Engineering)  defines an accuracy 
range for a specific purpose. According to AACE International, the expected accuracy is 15-50% in case the 
purpose of the estimate is a standard study or feasibility study. This largely corresponds to the conceptual 
phase as described above in figure 1 (Bates et al., 2005).  
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From the numbers of the AACE and Burke, it is clear that the estimates are less accurate in the conceptual 
phase than in the operation phase. The reduced accuracy is explainable. In the conceptual phase in the 
development of civil construction projects, diverse obstacles are present that result in a reduced accuracy of 
cost estimates. Serpell (2005) argues that a reduced accuracy in the conceptual phase is caused by lack of 
estimating experience, information, and an method that is able to calculate an accurate cost estimates in 
the conceptual phase. Besides, the conventional approach of cost estimating is a time-consuming process. 
In the conventional approach estimates are made separately for direct cost (equipment, labour and 
materials), indirect cost, and profit (Leśniak & Zima, 2018).  
 
Since all project parties in a construction project commonly rely on conventional methods, the obstacles as 
presented are still causes of an reduced accuracy of cost estimates (Badra et al.). However, Koch (2019) 
mentioned that machine learning can improve the performance of cost estimates. Machine learning models 
calculate cost estimates fast, automated, and accurate (Shin, 2015). 
 

1.2 Problem statement 
This research was initiated by a practical problem within the company Witteveen+Bos. This practical 
problem relates to the obstacles as presented in paragraph 1.1. Witteveen+Bos wants to improve the 
performance of cost estimates of road bridges in the conceptual phase of a project. The objective is to 
come up with a more accurate and fast calculated cost estimate in the conceptual phase of road bridge 
projects.  
 
In the current situation, a conventional approach of cost estimating is used. This conventional approach in 
the Netherlands, and used by Witteveen+Bos, is the SSK method. This is a format in which project 
components have been listed according to a fixed pattern, then the cost estimate of the total project is the 
sum of the estimates of all components. 
 
The performance of that approach is in line with the values of the AACE as mentioned in paragraph 1.1 
which means that the accuracy is between 15-50% and the calculation time takes a couple of hours till days 
per project. This problem ties in well with the motive in construction management. The motive in 
construction management is to strive for optimal project performance related to time, cost and quality (Koch, 
2019).  
 
The former section 1.1 already described the importance of cost estimates, and it describes that machine 
learning models can improve the performance of cost estimates. FALCON is a machine learning model 
which is already applied in the field of cost estimates for construction projects (Abraham, 2004). However, 
this model is not applied for cost estimates of road bridges in the conceptual phase.  
 

1.3 Research question 
Based on the context described earlier in this chapter, the research question for this project is formulated.  
 
How can FALCON improve the accuracy of cost estimates for road bridge projects in the conceptual 
phase?  
 

1.4 Problem type 
This project starts with the strategy to find an answer to the main question of this master thesis. This 
research is identified as a problem in the optimization of cost estimates for road bridges, therefore a new 
system needs to be developed. This problem is therefore a development problem.  
 
This research project is executed according to the scheme for development problems which is developed 
by Roozenburg and Eekels (1995), and presented in figure 2. As can be seen in figure 2, there are six steps 
that need to be taken after determining the problem in order to arrive at the solution, a new engineering 
system.  
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Figure 2: Flow chart development new engineering system (Roozenburg & Eekels, 1995) 

 
As seen from top to bottom in figure 2: 
The first step is the Exploration. This step represents the problem for which a new engineering system is 
necessary.  
Second, to solve the problem, the new engineering system must meet several requirements. These 
requirements are the ‘needs’.  
Third, the construct requirements are deduced from the needs. The 'construct requirements' are the 
requirements that are set for a model that may provide a solution that may meet the 'needs'. The construct 
requirements are not the same as the 'needs'. 
Fourth, based on the construct requirements, it is an option that more than one method can be used to find 
a solution for the problem. Thus, a choice for one or more development methods is made.  
Fifth, the method is used to come up with solutions for the problem.  
The sixth step is the verification of the solutions with the ‘construct requirements’. If the requirements are 
not met, another method must be used to find a solution that meets the ‘construct requirements’.  
The seventh and final step is the validation. In this step of the scheme, it is checked if the solution fulfils the 
needs.  
  
Paragraph 1.1 presented that the performance of cost estimates in the conceptual phase of construction 
projects is influenced negatively by some obstacles. Witteveen+Bos deals with a problem that relates to the 
obstacles. The problem describes that it is not possible to calculate an accurate cost estimate for road 
bridges in the conceptual phase, this is the ‘Exploration’ as described in figure 2.  
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1.5 Reading guide  
Paragraph 1.4 presented the research strategy. Based on this strategy, the research of this project is 
structured.  
 
This chapter, the introduction, presented already the Exploration. Chapter 2 presents a context analysis of 
the problem, the ‘needs’ are presented in this chapter. Besides, Chapter 2 presents that FALCON is not the 
only model that may be suitable to solve this research problem. Chapter 3 describes the models that are 
suitable to solve this research problem.  
 
Thereafter, chapter 4 shows the method which is used to calculate the results. Besides the results are 
verified with the construct requirements. Thereafter the validation phase is described in chapter 5. The 
validation step is followed by the concluding chapter, chapter 6, of this research project, not shown in figure 
2. In this chapter, the conclusion, discussion and recommendations are presented.  
 
This research report is structured according to the strategy of figure 2. Figure 3 shows a visualization of the 
research strategy steps per chapter.   
 

 
Figure 3: Structure of the research, an overview 
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2 Context analysis of the problem   
 

In the first chapter, an introduction of the research project is given. This chapter elaborates on the context of 
the research project. The first paragraph elaborates on the content related context of the research problem. 
The second paragraph describes the research related context. One of the aspects of the second paragraph 
is the description of the ‘needs’, the second step of the research strategy as presented in chapter 1.  
 

2.1 Content related context 
The first chapter presented machine learning models as solution for the obstacles in practice. Machine 
learning models are diverse and are applied in different fields of interest. Section 2.1.1 shows that machine 
learning models are a logical choice to solve this type of problem, making an accurate cost estimate.  
 
The literature shows that there are possibilities for various machine learning models in the field of cost 
estimates. The literature also shows through recommendations that the neuro-fuzzy machine learning 
models can be further investigated. Section 2.1.2 describes this in more detail. 
 
Section 2.1.3 elaborates on the performance of FALCON in civil engineering projects. Promising results are 
presented.  
 
The context shows that it is likely that the FALCON model could be a suitable solution to the problem 
outlined in chapter 1. Despite the recommendations, and previous results of the FALCON model in other 
areas, this model may not provide the best results. will provide. Section 2.1.4 shows other models that can 
be suitable to solve this research problem.  
 

2.1.1 Introduction different types of machine learning 

Machine learning is one of the fastest-growing computer science areas, with far-reaching applications 
(Shalev-Shwartz & Ben-David, 2014). There are different types of machine learning systems. Most of them 
are learning proactively, the model actions as determined on beforehand. However, instance-based 
learning systems, also called case-based reasoning systems are reactive learners (Reich, 1997). Instance-
based learning systems will do predictions based on reference data.   
 
Machine learning is divided into two main categories, supervised learning and unsupervised learning. Both 
categories have two subcategories presented in figure 4. In the case of supervised learning, prior 
knowledge is available what the output should be. The goal of supervised learning is to come with the best 
approximation between input and desired output. This goal ties in well with this research problem in which 
the goal is to make an accurate cost estimate based on reference data. A cost estimate is a continuous 
number, not a classification. The machine learning model type is, therefore, a regression model.  
In the case of unsupervised learning, no labelled output is available. The main goal for this type of learning 
is finding a natural structure within the data (Brownlee, 2016).  
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Figure 4 Machine learning algorithms (Brownlee, 2016) 

 

2.1.2 Appropriateness of diverse machine learning models for cost estimates 

Referring to literature, it is evident that several machine learning models are able to improve cost estimates. 
Zhou (2018), presents the improvement of cost estimates in the early phase of a project using the machine 
learning model ANFIS. An et al. (2007) showed the applicability of the machine learning model SVM 
(Support Vector Machine) for the improvement of conceptual cost estimates of construction projects. 
Elmousalami (2019) investigated the traditional fuzzy machine learning model, and the modified variant of 
this model with a genetic algorithm, for cost estimates in canal improvement projects in Egypt.  
 
Additionally, the application of other machine learning models for increasing performance could show 
promising results and they should be further investigated according to Elmousalami (2019); Koch (2019).   
In that perspective, Elmousalami (2019) recommended to investigate neuro-fuzzy models in which MF 
Membership Functions are included. A membership function represents with a gradual transition function if 
a certain parameter ‘x’ is part of a set or not, and represented by a value between 0 and 1 (Idrus, Nuruddin, 
& Rohman, 2011; Koch, 2019). For example, a triangular membership function can represent the degree of 
truth to which a point with colour ‘x’ is equal to apple green.  
 
Neuro-fuzzy models are hybrid models that can be evolved from fuzzy logic models (Elmousalami, 2020). 
Neuro-fuzzy models are already used for cost estimates of construction projects (Cheng, Tsai, & Hsieh, 
2009), and able to solve regression problems (Shihabudheen & Pillai, 2017). Fuzzy logic is an extension of 
Boolean logic. Boolean logic uses the operators AND, OR, and NOT. Fuzzy logic uses all values from 0 to 
1. Besides false and true, a value in between is thus possible (Zadeh, Yager, Ovchinnikov, Tong, & 
Nguyen, 1987). FALCON is a neuro-fuzzy model (Abraham, 2004), and this model is not applied for cost 
estimates of road bridges in the conceptual phase.  
 

2.1.3 Applications FALCON 

Various research projects have been carried out on the benefits of FALCON in construction projects. 
However, the benefits related to cost estimates for bridge projects are disregarded in literature. A hybrid 
model was applied for piping systems by Hsiao, Wang, Wang, Wen, and Yu (2012). Hsiao et al. (2012) 
used FALCON (Fuzzy Adaptive Learning Control Network) standalone, and FALCON together with fmGA 
(fast messy Genetic Algorithm) to enhance cost estimate accuracy. A genetic algorithm applies the process 
of natural section to other field in order to produce a better result based on references. The research of 
Hsiao et al. (2012) showed that the FALCON model has an accuracy of 84% and is more accurate than the 
conventional cost estimation method for construction projects. For concrete building projects, an accuracy 
of 91% is reached, using a small dataset of 46 projects (Wang et al., 2017).  
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2.1.4 Standard models for estimation problems 

As mentioned in section 2.1.3, the results of the FALCON model are very promising in various fields of civil 
engineering. It is therefore also plausible that the results for cost estimates of bridges using the FALCON 
model are better than standard, often used, generic models that can solve estimation problems. Such 
models, suitable for estimation problems, are multiple linear regression, K nearest neighbors, and decision 
trees (James et al., 2013; Rockafellar et al., 2008; Strobl et al., 2009). 
 

2.2 Research related context 
The second part of this chapter is the context related to the research process itself. First, section 2.2.1 
describes the need to solve the research problem as presented. Thereafter, in section 2.2.2, the ‘needs’ are 
defined. The research is executed within a certain scope, this scope is described in section 2.2.3. During 
the research, two types of knowledge are used. These types of knowledge are described in section 2.2.4.  
 

2.2.1 Need for solving this research problem 

Chapter 1 and paragraph 2.1 showed that there is a practical problem that may be solved using the 
FALCON model. As mentioned, Witteveen+Bos wants to increase the accuracy of cost estimates in the 
conceptual phase of bridge projects. One of the reasons for this is that the budgets of Witteveen+Bos 
customers are based on Witteveen+Bos’ cost estimates.  
 
However, before the FALCON model can be applied in practice, it must be proven that the FALCON model 
can solve the research problem. If the suitability and benefits of using a specific machine learning model 
has not been investigated for a specific application, it will not be used for that application (Hong et al., 
2020). 
 

2.2.2 Definition of the ‘needs’  

As mentioned earlier in this chapter, this research further explores the applications of neuro-fuzzy models in 
the field of cost estimates for construction projects. More specific, this research has a twofold purpose, on 
the one hand, this research solves an optimization problem in the field of cost estimates, on the other hand, 
this research examines a model application whose need for this research is apparent from a 
recommendation in previous research.  
 
The main research objectives are: 

- To increase the performance of cost estimates for road bridges in the conceptual phase based 
on the major targets: 

o Accuracy 
o Calculation time 

  
This research objective shows two ‘needs’ according to the research strategy for a new engineering system 
as presented in paragraph 1.4. The two ‘needs’, one regarding accuracy and one regarding the calculation 
time are the requirements for the new engineering system. When the system is realized, it must be 
validated if the system meets the ‘needs’ regarding the accuracy and the calculation time.  
 
The ‘needs’ of the new engineering system are to realize significant improvements in the performance of 
cost estimates in order to achieve a successful outcome that leads to adaptation of current working 
methods.  
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The ‘needs’ are formulated below: 
 
Calculation time: 

The required calculation time must be reduced from hours to minutes. This enables Witteveen+Bos 
to respond quickly to customer questions. This contributes to customer satisfaction. 
 

Accuracy: 
For Witteveen+Bos, a major step has been taken if the accuracy is improved one level based on the 
AACE values. This means that the expected deviation on the predicted price with the model may be 
a maximum of 30%. A value that normally is set for budget authorization or control (Bates et al., 
2005).  
 

2.2.3 Scope of the research  

The scope of this project is already largely disclosed in the main question.  
 
The project focuses on the conceptual phase of road bridge projects as already became clear in the former 
sections. More specifically, road bridge projects which are not part of the main road structure. The choice of 
these bridge types was made because the data, which will be described in more detail later, consists of 
such projects.  
 
The scope of this project is aimed at cost estimators who are active in the field of road bridge construction 
projects. Since this research is executed within the Witteveen+Bos company, these cost engineers 
participate in this research project they give their experts’ opinions in the model evaluation phase.  
 

2.2.4 Knowledge 

The knowledge used in this project is gathered using two methods: literature studies and expert interviews 
are executed.  
 

2.2.4.1 Literature studies 

Previous research on a topic is presented in an extensive summary. The literature studies explain the used 
models in more detail. The literature study aims to understand the theory of the models, and based on this 
theory, the models are used to calculate cost estimates for road bridge projects. The literature study is part 
of the first phase of the research project.   
 

2.2.4.2 Expert interviews 

The main reason for doing expert interviews is to validate if the solution, a new engineering system, meets 
the ‘needs’. Besides, the interviews aim to gather feedback regarding the applicability of the model. 
Therefore, seven interviews with cost engineers of the Witteveen+Bos will be performed.  
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3 Selection of development model 
 
In chapter 2, the context analysis showed that FALCON is not the only model which can be used to solve 
the research problem. There are therefore several options within all solutions to meet the 'needs'. The 
construct requirement is: finding the best performing cost estimation model related to accuracy and 
calculation time. The ‘choice of development method’ step, as presented in paragraph 1.4, consists of the 
choice for the investigation of four models in order to find the best performing cost estimation model.  
 
These four models, FALCON, multiple linear regression, decision trees, and K nearest neighbors, are 
programmed in Python. Using the programmed versions, cost estimates for road bridges are made. To be 
able to program the models and to be able to assess the results, detailed literature of these models is 
required. The detailed literature is outlined in this chapter. That means that almost all the necessary 
literature for this research project is brought together in this chapter.  
 
First all 4 models are presented. Paragraph 3.1 presents the FALCON model, paragraph 3.2 presents the 
multiple linear regression method, followed by the decision trees in paragraph 3.3. The last model, the K 
nearest neighbors model, is presented in paragraph 3.4. Paragraph 3.5 presents, based on the described 
theory of the four models, the pros and cons of each of the four models. A first insight into the expected 
performance of the models is provided in this section.  
 
Second, the models need structured cost data as input. The second part describes, in paragraph 3.6, how 
cost data of reference projects can be structured to make this data suitable for making cost estimates of 
new road bridge projects. The final paragraph, paragraph 3.7, describes the theory about the calculation of 
results with computer models.  
 

3.1 FALCON model 
This section describes the FALCON model in more detail, based on various sources. FALCON as a model 
is represented by a five-layered structure as represented in figure 5 (Abraham, 2004). The FALCON model 
does not have the ability to change this structure of the network dynamically (C.-T. Lin, Lin, & Lee, 1995). 
 

 
Figure 5 Architecture of FALCON 

  
In the first layer, as seen from bottom to top, the input's fuzzification takes place. Fuzzification means the 
decomposing process from a normal input set with values to one or more fuzzy sets. Layer 1 just transmits 
the input values directly to the next layer (C.-J. Lin & Lin, 1997). Each node in this layer in the system 
represents a simple membership function (MF). A membership function represents, with a gradual transition 
function, if a certain parameter ‘x’ is part of a set or not, and represented by a value between 0 and 1 (Idrus 
et al., 2011; Koch, 2019). For example, a triangular membership function can represent the degree of truth 
to which a point with colour ‘x’ is equal to apple green. However, not all nodes do necessarily have the 
same membership function.   
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A membership function processes all input into membership values, the output of a membership function. 
As mentioned earlier, these values are between 0 and 1, and the membership function represents a graph. 
One of the suitable membership functions for the FALCON model is the Gaussian function (Nikam, 
Nikumbh, & Kulkarni, 2012). Other options are the triangular and trapezoidal function (Rodríguez, Falcón, 
Varela, & García, 2008). It is not established which function is the most suitable. For example, it is possible 
to visualize the distribution of the data. This can be used to define the most suitable function. Trial and error 
is another option (Brownlee, 2016).   
 
A node in the network can be represented by a scheme, which is presented in figure 6. It is possible to 
simplify a neuron as a point with different inputs. The sum of the inputs is always one and means that the 
input must be weighted if a node has more than one input value.  
 

 
Figure 6 Schematized node of a network (Brownlee, 2016)  

 
The second layer, as seen from bottom to top is one of the hidden layers in the network. A hidden layer has 
input that is formed inside the network. In the second layer, preconditions are defined for the fuzzy rules in 
layer 3. A fuzzy rule looks like this: 'If x is A, then y is B.' A and B are linguistic values. It assumes that these 
values are derived from statistical research. If the rule consists of two parts, then the first part,' x is A,' 
should be called the antecedent or premise, and the second part, ' y is B,' should be called the consequent 
or conclusion. In layer 2, the antecedent or premise is defined. The nodes in this layer are called input-term 
nodes (C.-J. Lin & Lin, 1997).  
  
If the number of preconditions based on the input variables increases, the number of the fuzzy rules grows 
combinatorically. Then, the fuzzy rules create a finer space partitioning, and may need more training 
samples (C.-T. Lin et al., 1995).  
 
The third layer consists of rule nodes. Each of the nodes in this third layer is representing a fuzzy logic rule. 
These rules are not predefined. There are 'n' input terms that fed the node of layer three. The number of 
rules is equal to the number of terms of the input variable (C.-J. Lin & Lin, 1997).  
 
In layer 4, the nodes are called output-term nodes, the output of the fuzzy rules. Each node has two 
functions, a down-up, and an up-down mode. Figure 5 is also showing this. In the down-up direction, the 
layer performs as an OR operation on the fired (activated) rule nodes that have the same consequent. The 
OR operation means that the nodes process a max function. E.g., f(x) = max(x1, x2, x3). There are several 
possible solutions available in the database. This layer, therefore, examines which solution from the 
database of references best suits to all answers of the fuzzy rules.  In the opposite direction, the nodes 
function precisely as the nodes in layer 2 (C.-J. Lin & Lin, 1997). Layer 4 helps in deriving the consequents 
of the fuzzy rules.  
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In the final layer, layer 5, is also performing a down-up and up-down function. The up-down function 
transmits training data into the network. This information flows from the output to the input of the network. 
The concept is called 'backpropagation.' This process is useful because it improves the network's accuracy 
(Brownlee, 2016). For this function, layer five is working as layer 1 (C.-J. Lin & Lin, 1997). In the down-up 
function, defuzzification takes place. Defuzzification takes place using the 'centroid method.' This method is 
searching for the best outcome by clustering the outcomes that are the most similar to the desired goal 
(Brownlee, 2016).   
 

3.2 Multiple linear regression 
A simple method to find an answer to this problem would be the multiple regression model. This model is 
one of the standard solutions for estimation problems (Rockafellar et al., 2008). In such a model, more than 
one regressor variable is available.   
 
For example: Y= B0 +B1*X1 +B2*X2 + E.  
 
In this function, X1 could be the bridge deck in square meters, and X2 could be the number of supports. 
This example is a multiple linear regression model with two regressor variables. The function calls multiple 
linear regression because it is a linear function of the unknown parameters B0, B1, and B2. E is the error 
term.  
To define our total price (Y), more than two regressor variables are used: Y= B0 +B1*X1 +B2*X2 + … + 
Bk*Xk + E. The 'B' parameters are called the regression coefficients. These parameters represent the 
expected change in Y (total price) per unit change when all other parameters are still the same.  
The method of least squares is used to define the regression coefficients. This simple estimation method 
requires an extensive historical data base to accurately determine the regression coefficients (Mahamid, 
2011).   
 

3.3 Decision tree regression 
This section describes the decision tree regression model in more detail, based on various sources. 
Classification trees and regression trees are a simple regression approach. The approximation of bridge 
prices can be classified as a regression problem according to figure 4 in chapter 2. In this method, the 
feature space is the space spanned by all predictor variables. This feature space is recursively partitioned 
into a set of rectangular areas. Figure 7 shows an example of predicting the intention of smoking by 
adolescents depending on a couple of factors.  
 

 
Figure 7: Example Decision tree regression (Strobl et al., 2009) 
 
Each partition grouped observations with similar response values (Strobl et al., 2009). After these partitions, 
the decision tree regressor predicts a value. 
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The representation can be as a rectangular partition of the feature space or as a tree. These rectangular 
partitions are one of the features that are different from normal regression. Normal linear regression 
combines the information linearly. In this case, all possible combinations are generated by recursive 
splitting. In recursive splitting, the data is split into sub-populations based on dichotomous independent 
variables. Multiple splits in the same variable can be derived. In short, this means that the model generates 
nonlinear and non-monotone rules. Remarkable for these rules is that the conclusion does not necessarily 
follow from the premises. Necessary inference is not possible because the available knowledge may be 
incomplete. In non-monotone-logics, a conclusion is valid as no new knowledge becomes known that 
invalidates the conclusion. These rules are not specified in advance. They are determined in a data-driven 
way. 
 
To do these splits, the model uses impurity reduction. Impurity is a factor that made clear how often a 
randomly chosen element from a dataset is labelled incorrectly in case it is labelled randomly according to 
the distribution of the dataset. The impurity of a node should thus be defined. A node that has no impurity 
has no variability in the dependent variable. For example, all values are equal to zero or one. In case the 
values in a node are equal to zero or one, then the highest value of impurity is equal to 0.5. The splitting 
criterion selects the split that has the largest difference between the parent node's impurity and a weighted 
average of the impurity of the two child nodes (Lemon, Roy, Clark, Friedmann, & Rakowski, 2003). In figure 
7, ‘friends smoke’ is the parent node, ‘one’ and ‘one or more’ represent the child nodes.   
 
This splitting process stops at some point. The model reaches a stop condition in that case. There are some 
different stop conditions: all nodes are pure (for example; only zeros or ones are present), the model 
reaches a given threshold for the minimum number of observations left in a node, or a given threshold for 
the minimum change in the impurity measure is not succeeded any more by any variable (Strobl et al., 
2009). Due to these rules, the model misses probably some information. 
 
In the end, the model predicts a response value in each terminal node of the tree. From all observations in 
this node, the model derives the average response value. A classification tree derives the most frequent 
response class from all observations  (Strobl et al., 2009). The response value becomes more accurate as 
the dataset grows (Oates & Jensen, 1997).  
 

3.4 K nearest neighbors 
This section describes the K nearest neighbors model in more detail, based on various sources. K nearest 
neighbors is a simple classification method. This classification method can be applied when little information 
is available about the distribution of the data. This theory is developed as a solution for the case in which it 
is difficult to determine the probability densities (Peterson, 2009).  
In this project's case, the number of parameters makes it difficult to plot a distribution function in which they 
are all included and give a true reflection of the dataset. 
 
The k nearest neighbors' classifier (KNN classifier) defines ‘K’ points in the data set that were the closest to 
test point x0, the test project, represented by N0. The conditional probability is calculated for class j as the 
fraction of point in N0 whose response value or values are equal to j (James et al., 2013). This results in 
equation 3.  
 
Equation 1: KNN conditional probability 

 
 
The conditional probability equation is visualized in figure 8. In case k = 3, the red star is classified to be of 
class B, in case k = 6, the majority changed to class A and the red star is classified to be of class A. The 
sensitivity to the value of k in case of small training samples with existing outliers can cause less accurate 
results (Gou et al., 2019). 
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Figure 8: KNN conditional probability (Lamein, 2016) 

 
A classification method is not very useful in case prices should be estimated. In case the cost of all bridge 
projects is divided into certain classes, only the 'cost class' can be established in that case. 
 
Using a variant of KNN classification is an option in case a continuous variable should be estimated. This 
variant is KNN regression. KNN first identifies the K training observations that are closest to x0. N0 
represents them. Taking the average of all training responses gives the final result f(x0). (James et al., 
2013).  
 
Equation 4 shows the KNN formula. 
 
Equation 2: KNN regression 
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3.5 Evaluation theory cost models 
Paragraph 3.1, 3.2, 3.3 and 3.4 described the four different models that are used in this research project.  
Table 2 listed the characteristics of each model.  
 
Table 2: Characteristics cost estimation models 

KNN Decision tree Multiple linear 
regression 

FALCON 

Works well when less 
information is known 
about the data.  

Creates partitions with 
similar values 

Assumes a linear 
relationship in the 
data.  

Best suitable membership 
function is not defined 

Result is average of 
‘k’ nearest neighbors.  

Response does not 
necessarily follow 
from the premises.  

Extensive historical 
dataset is necessary 
for an accurate 
determination of the 
regression 
coefficients.  

Outcome based on the most 
similar references 

Outliers in data can 
cause less accurate 
predictions.   

Response is average 
of datapoints in the 
leaf of a tree.  

Simple method, less 
complex 

More complex system with 5 
layers.  

 Rules are not 
specified in advance; 
they are based on the 
available data.  

 Fuzzy rules do not need to be 
predefined.  

 Predictions more 
accurate as the 
dataset grows.  

 The structure of the model 
does not change dynamically 

   The more detailed the result 
must be determined; the 
more reference data is 
required. 

   Reference concrete buildings 
shows that the model is 
accurate for a small dataset. 
(paragraph 2.1) 

 
From table 2, several advantages and disadvantages are derived regarding this research 
 
A main advantage for KNN is the fact that this model works well in case less information is known from the 
data. However, this also has a disadvantage, the dataset that is used is not very large, so possible outliers 
in the data can influence the results generated with the model. 
 
A main advantage for the decision tree is that this method is less sensitive to outliers since this method 
calculates the result as average of the projects in a leaf of a tree. A disadvantage is that the outcome of the 
model does not necessarily follow from the data. The decision tree does not split the data on the basis of 
the same condition every time. This means that the data can be split, for example, first based on the 
number of supports of a bridge, and then based on the surface of the bridge deck, and then on material. 
This order can also be completely different. There are therefore several outcomes possible for a test case. 
Another disadvantage is that the results with this method can be better if a larger dataset is available. 
 
The biggest advantage for the multiple linear regression is the simplicity of the model. The model 
represents one quite simple formula. The disadvantage for this model is the need for a large dataset to 
determine the coefficients accurately. Besides, this model assumes a linear relationship between the 
datapoints, if this is not the case, the predictions may be less accurate.  
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An advantage for FALCON is the reference that the model is suitable for small datasets. Another advantage 
is that the fuzzy rules that the FALCON model uses do not need to be predefined. Extensive knowledge 
about the data is thus not necessary. Another advantage is that the model does not change dynamically. 
This keeps the model clearer and makes it easier to understand in different situations. I addition, 
disadvantages for this model exist. The model needs more reference data in for detailed predictions. The 
model is more complex, complexity can be a disadvantage if the model is used for a new application.   
 
In sum, each model has advantages and disadvantages, so that it is not yet possible to determine in 
advance which model will have the best results independent on the used data. Although it seems likely that 
the predictions of the multiple linear regression model will be worse because this model requires a large 
dataset.  
 

3.6 Input data  
The models described in paragraph 3.1, paragraph 3.2, paragraph 3.3, and paragraph 3.4, use structured 
cost data from different projects. Various sources are available in the literature to structure the currently 
relatively unstructured cost data of projects. This section will gather the data applicable to this research 
project. Thus, a way will be presented how the cost data of the bridge projects can be structured. 
 
The projects are compared to each other on a certain level of detail by the models. That level of detail is 
related to the amount of information available in the conceptual phase of a bridge project. 
 
The first general step to make the data of different projects from the past comparable is that the data must 
have the same price level. This is described in section 3.6.1.  
 
To reduce the variation between the cost data of the projects, it is possible to divide bridges by type, which 
is described in section 3.6.2. 
 
As mentioned earlier, the bridge projects are compared to each other by the models at a certain level of 
detail. First, the level of detail is described in section 3.6.3. A bridge can be divided into parts based on the 
level of detail. This is described in section 3.6.4. 
 
The conventional method for making cost estimates is the SSK method. This method is used by both clients 
and contractors. The available data from reference projects is also structured in this way. Therefore, the 
SSK method is described in section 3.6.5. 
 

3.6.1 Index 

For the cost, data swaps are necessary regarding the index of prices. Swapping the data is one of the steps 
to make data comparable. For example, if the model takes a project that is executed several years ago and 
this price in the database is not corrected with indices, it is not possible to buy at this moment the same 
product for that price because the prices have increased since the execution of the reference project.  
In the case of road bridge projects, an index table regarding road bridges is the most optimal. The index 
numbers have the best fit in that case. Especially considering this is the type of project used in this study. In 
the Netherlands, an index for bridges is available. This index is created by Calcsoft BV and available by use 
of a license of Witteveen+Bos. Calcsoft BV presents index numbers from 2008 until now.  
 
Calcsoft does not present one single index number. They present an index number for the construction cost 
index and the tender index, (in Dutch: 'bouwkostenindex' and the 'aanbestedingsindex'). The construction 
cost index visualizes the development of the actual construction costs over time. The tender index 
visualizes the development of the bids made by contractors on projects. The difference between these 
indexes does suggest the profits within the companies. 
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More than one index is available for bridges. The governmental organization CBS (Centraal Bureau voor de 
Statistiek) presents index numbers for bridges for decades. This creates an opportunity to implement more 
project data. This research project also uses cost data of projects that were carried out in the period before 
the year 2008. Only the annual indexes of CBS are therefore suitable for this research project. 
 
Appendix I presents the accompanying index tables and graphs of both indexes.  
 

3.6.2 Categorization on bridge type 

To reduce the variation between the cost data of the projects, it is possible to divide bridges by type. The 
used bridge projects in the database of Witteveen+Bos are all bridge projects in municipalities in the 
Netherlands, which have not been realized as part of a provincial road or road from highways' main 
structure. These bridges are part of the secondary road network.  
 
The municipality Wormerland has made a general division of all their bridges, as shown below (Van der 
Linde, Modders, & Van Dissel, 2017).  
 
1. Movable road bridges 
2. Concrete road bridges 
3. Concrete bicycle/pedestrian bridges 
4. Wooden road bridges 
5. Wooden bicycle/pedestrian bridges 
6. Steel road bridges 
7. Steel bicycle/pedestrian bridges 
8. Plastic bridges 
The division of the municipality Wormerland is a general division. 
 

3.6.3 Level of detail 

On a project level, a division in different elements must be made. Much detailed information makes it 
simpler to make an accurate cost estimate of a bridge. A break down structure on four levels is formulated 
by Du Bois, Fletcher, and Danks (2017), and the text below shows this structure. 
 
Level 1: Elemental level 
Level 2: Heading level 
Level 3: Item level 
Level 4: Rate Build up level 
 
Level 4 contains the least detail within this structure. Level 3 already describes a bit more about the details. 
For example, the bridge deck consists of a deck and a railing. Even more detail compared to level 3 is given 
by level 2. In the case of the bridge deck, prefab beams are one of the headings. The lowest level in this 
structure is level 1. That case concerns a prefabricated beam including mounting material.  
 
This break down structure above shows that the difference per level is detail based. When making a cost 
estimate, it is important to know the level of detail of the available information. This also determines the 
level of detail at which a cost estimate can be made.  
 
Regarding level 2, heading level, all cost drivers must be clear after writing down all headings. Cost drivers 
are parameters that have a direct impact on cost. These cost drivers can be related to scope, complexity, 
performance. They can be identified through regression analysis to define the impact trend with the cost. 
Sometimes a proxy variable is available and used for a set of known variables. It is also possible to define 
cost drivers using the available data (Dechoretz, 2011). The latter option is used in this project, and in this 
research means available data obtained from historical projects. 
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Wang et al. (2017) had used the component ratios method to focus on the major costs of a project before 
the FALCON model was applied. The component ratio method is a type of work break down structure. This 
approach resulted in ten cost divisions: foundation, structure, external finishes, internal finishes, windows, 
MEP (Mechanical / Electrical / Plumbing), elevator, temporary facilities, landscaping, and markup, and 
finally, four divisions, cost drivers, were responsible for 71,02% of the cost of a project and used as input for 
the model. 
 
In this project, the component ratio method proposed in the paragraph above is used as well. Since a bridge 
is another project type, the components are different from those chosen by Wang et al. (2017).  
 

3.6.4 Work break down structure 

If a level or detail has been determined, a project can be divided into different components using a work 
breakdown structure. This structure can be different for each type of construction, dependent on the level of 
detail.  
In the previous section different levels of detail have been described. For bridging projects, applications can 
also be found in the literature in which a detail level has been chosen for the work break down structure of a 
project. This section describes several studies.  
 
Concerning steel bridge projects, Nugroho and Latief (2018) suggested a work breakdown with eight 
divisions: 
1. Preparatory work 
2. Drainage work 
3. Land works 
4. Pavement widening and shoulder widening works 
5. Asphalt pavement 
6. Structural work 
7. Toll service facility 
8. Return of minor conditions 
 
It is also possible to define a project in ten divisions. Latief, Nurdiani, and Supriadi (2019) suggest this 
division for steel bridge projects. The ten divisions are: 
1. General 
2. Drainage 
3. Earth Works 
4. Pavement widening and shoulders 
5. Concrete powder and concrete cement 
6. Asphalt pavement 
7. Structure 
8. Restoration condition 
9. Daily work 
10. Daily maintenance 
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The provided divisions above are only for steel bridges. Kurnia, Latief, and Riantini (2018) provide a division 
for precast concrete bridges. Besides, that research showed that most packages as listed below were the 
same for different types of bridges: steel bridges, cable-stayed bridges, flyovers, precast bridges, and 
roads. Only the structure work is different for all types. 
 
1. Preliminary work 
2. Drainage work 
3. Soil work 
4. The spread of pavement and shoulders 
5. Coated hardening and concrete pavement 
6. Asphalt pavement 
7. Structure work 
8. Toll service facility 
9. Recondition of minor work 
 
However, the lists described above are not fixed divisions. A project manager is responsible for the creation 
of a work breakdown structure according to Burghate (2018). These work packages defined by the project 
manager should be: definable, manageable, estimable, independent, integrative, measurable, and 
adaptable (Rev, 2003).  
 
In order to be able to define the cost drivers of road bridges more easily. The structure works should be 
defined in more defined tasks according to Lee, Lee, Park, Choi, and Kwon (2016). Lee et al. (2016) divided 
the structure into a substructure and a superstructure. 

3.6.5 Introduction to SSK 

As mentioned in the introduction of paragraph 3.5, the available cost data that is used in this project is 
structured according the SSK method. These data are from cost estimates from former projects executed 
by Witteveen+Bos. SSK is only a format without real details of a project. This section further elaborates on 
SSK.  
 
For the real detailed elements, the RAW standard, which is a large set of work descriptions, is applied in the 
SSK template. The installation of a wall of sheet piles according to a specific method can be such a RAW 
work description.  
 
SSK uses a division of an asset into parts for clear communication and manageability. These parts are 
called objects. In principle, here an ''object'' is defined to be assembled into a whole from materials and 
parts. In the case of this project, the object is a road bridge.  
Therefore, the object is real and has three dimensions. It is visible, touchable, and recognizable separately.  
The object layout is of great importance for recording and drawing up the estimate. It is a way to 
communicate effectively with the stakeholders during the specification and design process about the 
estimate's content (CROW, 2018). 
 
The selection of objects and the object classification of an asset is possible in one or more of the following 
ways: 

• Geographical: the objects are distinguished or bundled because they are realized in certain places. 
On drawings, the location can be indicated through a line, an area, or a point.  

• Process-based: the objects are bundled or distinguished because they are realized in different 
phases of the project. 

• Work-based: the objects are bundled or distinguished based on the type of work. For example, the 
task ‘pouring concrete’ is clustered for all objects and phases of the project.  

• Function-based: the objects are bundled or distinguished based on the function. For example, all 
different types of retaining walls.  

• Contract type-based: the objects are bundled or distinguished based on the contract type. Selecting 
on contract type is of course usually only possible in the case of large projects for which several 
contracts are drawn up.  

• Finance-based: the objects are bundled or distinguished based on price (CROW, 2018).  
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This bridge project is split into components. The available data consists of projects with components that 
are geographically segregated.  
 
In the SSK, the cost overview and the underlying object estimates are divided into cost categories. The 
investment costs and the maintenance costs are both divided into the same cost categories. Each cost 
category consists of several cost groups. These cost categories are construction costs, engineering costs, 
property costs, additional costs, object transcending risk reservation, and uncertainty reserve (CROW, 
2018). All cost groups together are the foreseen costs. These costs are the sum of appointed direct costs, 
direct costs to be detailed and indirect costs. Additionally, there is a risk reservation and VAT. 
 
Direct costs 
These costs are directly involved in the production or delivery of a product or service. These costs are 
directly attributable to the product or service and always consist of the three-unit: labor, (processing) plant, 
and material. 
 
Allowances 
These costs are a surcharge on the appointed direct costs for planned but not yet explicitly elaborated 
components. Depending on the phase of an asset, part of the design is not yet fully developed. 
 
Indirect costs 
The indirect cost group includes the costs within an object that are not attributed directly to a specific 
activity. For the indirect costs, it is impossible or too laborious to break it down per item. The indirect costs 
are therefore charged indirectly to the individual products or services. It is the sum of -one-off costs, 
execution costs, general costs for an asset, profit, risk, provisional sum, and premiums (CROW, 2018).  
 
Boundaries 
An SSK estimate has one price level, and the percentage price change is determined with index numbers. 
Market developments are not included in an SSK estimate. In principle, an SSK cost estimate therefore 
does not represent all the preconditions associated with a specific project.  
  
Uncertainties 
There are several uncertainties. Decision uncertainties can be solved to estimate each variant separately. 
Standard uncertainties arise from the lack of information. 
 
Risks 
Inventoried risks can be quantified. If the chance is >50%, they are calculated as an ordinary event. In the 
case of a probabilistic simulation, a spread of consequences is taken into account (CROW, 2018).  
 
This paragraph made clear how the cost of a project can be divided using the conventional method. The 
database consists of projects which have already been executed by contractors. This means that not all 
cost categories are applicable.  
In the reference bridge construction projects, no quantified risks are included besides fixed percentages in 
the overhead. The projects have no direct cost that should be further elaborated. 
 
For a detailed description of the materials, equipment, deployment of personnel, and other costs, various 
standards can be used and implemented in the SSK format, including RAW.  
 

3.7 Theory results model  
These models are using datasets. In case the data from those datasets is used to calculate results, the 
results can be calculated by means of cross-fold validation. This is described in section 3.7.1. To check 
whether the model that calculates the results uses the most optimal setting, a hyperparameter analysis can 
be performed as described in section 3.7.2. Then there are also criteria against which the performance of 
models can be measured. This is described in section 3.7.3. 
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3.7.1 Cross-validation 

Cross-validation is a method for datasets to calculate the test results. Leave-one-out cross-validation, is a 
particular case of cross-validation, and often used for small datasets, in which each instance is used once 
as the test case, and all other instances are used as the training set (Syed, 2014). Then are the results for 
the test sample calculated by the model. Then, the next sample is the test sample and the other samples 
are the training samples and results are calculated. This process is repeated until each sample has been 
tested. 
 
When a dataset contains n projects and n-fold cross-validation is used, n-1 projects are in the model's 
database, and the nth project is the test case. This method is also called n-fold cross-validation. In the case 
of 10-fold cross-validation and a dataset with a number of n projects, the dataset is split into 10 samples of 
n/10 projects. Figure 9 shows an example of 10-fold cross-validation. The average value E of the ten-
groups test results is calculated as an estimate of the model accuracy and is used as a performance 
indicator for the current K-fold cross-validation model. Where Ei represents the cross-validation error of the 
ith group (Niu, Li, Wang, & Han, 2018). 
 
 

 
Figure 9: 10-fold cross-validation (Niu et al., 2018) 

 
5-Fold cross-validation and 10-fold cross-validation are often used to determine a prediction error. Then, the 
larger sample size is used because of the computational time which can add up enormously in the case of 
large datasets (Fushiki, 2011).  
 

3.7.2 Hyperparameter analysis  

A machine learning model is normally able to use different parameters in the model itself to solve a 
problem. For example, in case of FALCON, the model can use different membership functions. These 
parameters are called hyperparameters and these parameters affect how the machine learning model 
results fit to the desired result. In order to obtain the best results with a model, the best set of 
hyperparameters should be known. The process of finding the best set is called hyperparameter tuning or 
an hyperparameter analysis. The hyperparameter analysis can be done manually or by using an automatic 
search algorithm as Grid search (Wu et al., 2019).    
 

3.7.3 Performance of machine learning models  

Evaluation of the performance of machine learning models is possible using the performance measures as 
described by Østergård, Jensen, and Maagaard (2018).  
These performance measures are: 

- Accuracy 
- Interpretability 
- Robustness 
- Ease of use 

 
The accuracy describes the deviation from the real values that should be approximated by a model. The 
interpretability refers to the amount of insight that a model gives into the model behaviour. Robustness 
refers to the ability to produce acceptable results independent on diverse problems that can occur. The 
ease of use relates to the process of implementing the model.  
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4 Cost estimation model 
development 
In chapter 3, detailed information about the FALCON model, KNN model, decision tree model, and multiple 
linear regression model is presented. In addition, detailed information about data structuring, and theory 
regarding the results is presented.  
 
This chapter describes the step from theory to an artefact, a cost estimation model for road bridges. In this 
chapter, 4 models are presented that all use the same data. The same data is used because of the 
comparability of the results calculated by the models.  
 
This chapter aims to present the best solution for the ‘construct requirement’: the best performing model 
that is suitable to make quickly the most accurate cost estimates for bridge projects. This requirement is 
already presented in the research strategy in chapter 2.  
 
Paragraph 4.1, and paragraph 4.2 focus on the data that the models use. Thereafter, paragraph 4.3 is 
about the FALCON model. In paragraph 4.4, the multiple linear regression model is elaborated, followed by 
the decision tree regression in paragraph 4.5. The fourth model, K nearest neighbors is elaborated in 
paragraph 4.6. The final paragraph 4.7 presents the verification of the solutions to the requirement, as 
mentioned above. In this paragraph, it is concluded which model gives the best solution.  
 

4.1 Input cost 
Section 3.6 described several aspects related to the structuring process of the input data: the use of an 
index, determining a level of detail and the work breakdown structure. This section brings these aspects 
together in order that the cost data have been structured by category and then a database is created that 
can be used by the FALCON model. 
 
The database contains projects with different reference years. The CBS index has been used to equalize 
the price level to the price level of 2020. This index is described in section 3.6.1. Appendix I shows all index 
numbers of the CBS index.  
 
The reference projects contain a lot of detailed cost information. In the early phase of a completely new 
project, not enough information is available to come up with a prediction with a high level of detail. In this 
research project, the level of detail is somewhere between level 2 and level 3, as those are presented in 
section 3.6.3. Initially, Level 2, the heading level, is assumed since this level fits all projects. 
 
Section 3.6.4 showed some examples on heading level. A work break down structure for concrete bridges 
and a work break down structure for steel bridges is shown in that section. First these divisions are 
combined to a list for steel bridges and concrete bridges. For this research project, the list should also be 
suitable for other bridge types and therefore ends up in: 
 
1. Preparatory work 
2. Drainage work 
3. Soil work 
4. Pavement widening and shoulder widening works.  
5. Pavement and hardening coating. 
6. Structure works 
7. Daily work 
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Lee et al. (2016) divided the structure works as mentioned in section 3.6.4 into a substructure and a 
superstructure. Within the substructure, sub-levels with more detailed information can be defined: the 
substructure and foundation structure. The foundation structure contains the structural parts of the bridge 
underground such as the foundation piles. The substructure contains the structural parts between the 
foundation and the bridge deck as seen from bottom to top. Among others, the abutments and pillars are 
part of the substructure. Also, within the superstructure, sub-levels with more detailed information can be 
defined: the superstructure, the railing and external finishes. The superstructure consists mainly of the 
bridge deck without additions. The railing contains exactly what the name suggests, only the railing. The 
external finishes are mainly matters related to the layout of the site in completed condition, as also 
mentioned by Wang et al. (2017). In addition, there is a category for several aspects that cannot be 
specifically assigned to the aforementioned categories. This category with general work is called general 
cost. The resulting break down structure is listed below.   
 
1. Preparatory work 
2. Soil work 
3. Foundation structure 
4. Substructure 
5. Superstructure 
6. Pavements 
7. Railings 
8. External finishes 
9. General cost 
 
The nine mentioned cost divisions are defined for all projects. All division levels have different factors that 
are affecting them.  
 
These cost division categories are related to the direct building costs, not to the indirect costs as profit and 
insurances. These costs are part of the overhead in the method which Witteveen+Bos uses for all his cost 
estimates. This method is called SSK and is already described in section 3.6.5. Therefore, the category 
overhead (in Dutch: staartkosten) is added to the list above. 
 
10. Overhead 
 
All these categories will be further elaborated and explained. Further elaborated categories create the 
possibility to calculate the costs per category.  
 
As mentioned in the SSK introduction, section 3.6.5, the RAW standard is used for accurate work 
description. RAW is one standard in which describes all activities for bridge construction projects. Besides, 
this standard is widely accepted in the Netherlands. These descriptions are universal, and contractors know 
their meaning. Not all descriptions of activities in the RAW standard are suitable for each project. For each 
project, a selection is made of the activities. 
 
The activities as presented in the RAW standard, version 2020, and applicable to the categories for bridge 
projects are listed per category and presented in Appendix II. The RAW standard is owned by the Dutch 
Organization CROW and is written in Dutch. The list in Appendix II is written in Dutch. 
 
A couple of categories has extra descriptions with parts that are relevant to that category. For the 
foundation the drainage, construction pit, and sheet piles have been included in that part, (in Dutch: kuip, 
and damwanden). In the substructure are the pillars, floor, land abutment, wing wall, girder, supports 
(blocks), capping beam, foundation blocks, and retaining wall have been included, (in Dutch: pijlers, vloer, 
landhoofd, vleugelwand, ligger, opleggingen, deksloof, poeren, and keerwand). In the superstructure the 
bridge deck edge, floor, anchors of the railing, joint construction, curb have been included, (in Dutch: 
randen, vloer, ankers (leuning), voegconstructie, and schampkanten). 
 
In Appendix II, all categories, including the RAW categories, are listed. 
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This classification is used to determine the costs per category per bridge. This classification is, however, not 
the same as the input data of the FALCON model. After classifying the projects from the database 
according to the categories, the following division of percentages based on the total price of projects 
appears. Figure 10 shows the average percentages of all projects per category based on costs. 
 

 
Figure 10: Percentage of category related to the total price 

 
Based on this division, the four most important categories according to the presented percentages, the 
foundation structure, substructure, superstructure, and railing are selected as input for FALCON. The model 
makes an estimate for these four categories. The estimate must be scaled to 100%. This is equal to the 
approach of Wang et al. (2017), who used also FALCON for cost estimates of constructions. The next 
paragraph, 4.2, focuses on the input variables for FALCON. The input variables are used by the FALCON 
model to come up with a cost estimate.      
In the sections before, the classification of the reference projects’ data is described. The four models must 
calculate a price based on properties of a project. More specifically, the properties of the four main 
categories (foundation structure, substructure, superstructure, and railing).    
 
As marked in the sections before, there are four major categories concerning the cost of a bridge. These 
categories (foundation structure, substructure, superstructure, and railing) are directly related to the building 
process. 
 
Another major category according to the percentages in figure 10 is overhead. These costs are more 
general and not specifically related to one building item and are a percentage added to the other costs. 
 
The overhead is implemented in the input. For each project, the overhead is divided pro-rata over the other 
categories. A larger percentage of the total costs of each project can thus be included in the four models. 
Figure 11 shows the new division. For each reference project, the costs of the 4 main categories according 
to the new classification are used as input for the reference database that the models use. All data is 
adjusted to the same index year, which is 2020.  
 
This only concerns the price of euros per m2 per category. Section 4.2 discusses the properties per project 
that will be added to the cost data.  
 



       

28 

  

 
Figure 11: Percentage of category related to the total price after division overhead cost pro-rata 

 

4.2 Input properties 
As mentioned in chapter 1, less information is available in the early phase of a project. The models make a 
prediction based on this information. The information that serves as input to the four models and is used to 
compare projects must therefore be structured. The simplest way is a short ‘Google’ form with 'questions' 
about the 'new' bridge's properties. The short form makes the model easy to use, and it takes little time. The 
form concerns the presence of parts or having a particular characteristic. 
 
Of course, there is a set of properties that generally belong to a bridge. Some of the parameters are only 
related to one of the four main categories. The general parameters are first set and apply to the total set 
parameters of a subset. 
 
The general parameters do not necessarily have much information about the costs but indicate the basis of 
the bridge's 'DNA.'  
The parameters of the four detailed parts of the bridge result from a cost driver analysis of the project data 
and the division of bridges on project type as mentioned in section 3.5.2. Based on this data, it became 
clear, what the cost drivers per category are. Based on these cost drivers, the parameters for these parts 
are selected.    
 
These parameters, as shown in table 3, are defined for each reference bridge and added to the dataset 
(true/false/number). Some of these parameters are general and some of them are related to a category.  
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Table 3: inputparameters FALCON model 

General parameters Foundation 
structure 

Substructure Superstructure Railing 

Movable bridge Steel piles Wing walls Bridge deck steel Wood 

Concrete road bridge Concrete piles Land abutment Bridge deck prefab 
concrete 

Steel 

Concrete 
bicycle/pedestrian bridge 

Steel piles filled 
with concrete 

Temporary floor Preservation steel Wood and 
steel 

Wooden road bridge Remove pile heads Concrete formwork Compile bridge deck 
elements 

Artwork 

Wooden 
bicycle/pedestrian bridge 

Drainage Baffle plates Use temporary 
construction 

Brickwork 

Steel road bridge Sheet piles Bearing blocks Brickwork 
superstructure 

 

Steel bicycle/pedestrian 
bridge 

Use construction 
pit 

Reinforcement 
abutment 

Engineering 
structure 

 

Plastic bridge Armed ground Reinforcement 
retaining walls 

  

Other bridge type  Concrete in 
abutment 

  

Material wood  Concrete in retaining 
wall 

  

Material concrete  Completely prefab   

Material steel     

Material steel – concrete     

Bridge deck area in 
square meters 

    

Amount of intermediate 
supports 

    

Length railing in meters     
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4.3 FALCON 
This paragraph elaborates the FALCON model. First in section 4.3.1, the step form theory to a model is 
made. Next in section 4.3.2, the results generated by the FALCON model are shown. Thereafter, in section 
4.3.3, it is shown if the results are improved after a hyper parameter analysis. In the last section, section 
4.3.4 the total list of findings is presented.  
 

4.3.1 Theory implementation 

Paragraph 4.1 and 4.2 described the construction of the dataset which is used for the FALCON model. In 
this section, the construction of the model, according to the literature, is described. The explanation is done 
per layer, starting at the bottom of the network. The scheme below shows an overview of the FALCON 
model. The FALCON network is programmed in Python; Python is an open-source programming language. 
This chapter describes the FALCON model. Chapter five discusses the results obtained with this model.  
 

 
Figure 12 Schematized representation of FALCON (C.-J. Lin & Lin, 1997) 

 

4.3.1.1 Layer 1 

In the first layer, as seen from bottom to top in figure 12, the fuzzification of the input takes place. Layer 1 
just transmits the input values directly to the next layer (C.-J. Lin & Lin, 1997). In practice, the input sheet 
fills in this stage by ticking the true boxes and adding a couple of numbers. 
 
The output of layer 1 is a couple of arrays with values. These values are the same as entered on the form 
above. For each specific part, category, the script forms a new array. These arrays are the output of layer 1 
and the input of layer 2.   
 

4.3.1.2 Layer 2 

In layer 2 as shown in figure 12, the fuzzification of the data takes place. Fuzzification means that 
categorical data transforms into numerical data and that numerical input is scaled. In the end, all input 
transforms to values from zero to one. 
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As mentioned above, not all data has the same format, which means that more than one membership 
function transforms all data into numerical data. 
 
For numerical data, the FALCON model uses a triangular membership function. The parameters of a 
triangular function are a, b, c, and the variable x. In this function, a, b and c will represent values from small 
to large. 
 
Equation 3: Triangular function 

 
 
 
 
For categorical data, the FALCON model uses a Heaviside membership function. 
 
Equation 4: Heaviside function 

 
 
The output for each category is an array with numbers between zero and one.  
 

4.3.1.3 Layer 3 

The connections between layer 2 and 3 represent the fuzzy If-then rule preconditions. The 'fuzzy AND' 
operation follows thereafter. The last step is the link between layer 3 and layer 4. This link represents the 
'THEN' part. 
 
In practice, this means that if rules are generated, as expected, layer 3 uses the output from layer 2 as input 
for the layer. For the IF-THEN rule precondition, this is illustrated with an example. IF-statements were 
created; if parameter 100 = 0, 101 = 0 and 102 = 0 this gives an array [100, 0, 101, 0, 102, 0]. These IF-
statements vary in length. 
 
The AND operation finds the best match between all projects in the database and the IF-statement.  
'THEN,' the final step for this layer is the final link between the input, the IF-statement, and the best 
matching project. Per length of elements, the python script generates the best match. 
 
Such a score consists of a couple of items. First, the number of elements, secondly the agreement scores 
of the input parameters with the model parameters. Thirdly the best combination and the best matching 
project. For example: for 7 elements, a 100% match is with reference project 3. The 100% match is for 
combination set 83. 
 
This output is not the final output and is the pre-result for one of the four main categories. The next layers 
take a few more steps to arrive at the final output. 
 

4.3.1.4 Layer 4 

In this layer, the OR operation takes place. Based on the output of layer 3, the model selects the best. The 
OR operation is done based on the final score. This final score is calculated by multiplying the amount of 
elements times the score. 
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For example, 9 * 90 = 810, 10 * 88 = 880, 11 * 80 = 880. The total sum of the last two is equal. Suppose the 
total sum does not increase when an extra (scoring) element is added. Therefore, that element does not 
have a (partly) corresponding value or the average agreement per element has decreased. In such a case, 
the model selects the project that belongs to the total score of 880 with 10 elements.  
 
Now, the best matching project is selected. In the case of the main categories; foundation, substructure, or 
superstructure, the model multiplies the price in the euro per m2 of the foundation, substructure, or 
superstructure of the reference project with the number of square meters of the new case gives the final 
partial result. In the case of the main category railing, the multiplication is done per meter length of the 
railing 
 
The output consists now of 4 partial prices, and they are the input of layer 5. 
 

4.3.1.5 Layer 5 

This layer produces the final results. The result is a summation of the four category results, (foundation, 
substructure, superstructure, railing). This amount is divided by 77 and multiplied with 100 and produces a 
total estimate for the project. This short calculation includes the categories that are not in the Python model, 
although they cause a part of a project's total price. 
 

4.3.2 Results  

As mentioned in the former chapters, the FALCON model generates a price for each of the four main 
categories and a total price. This total price is most important because this price is the total estimate of the 
tender. Witteveen+Bos is looked upon as the tender price is not within the set bandwidth. The prediction of 
Witteveen+Bos has a strong influence on the budgeting of a project by the client of Witteveen+Bos. In the 
case of a misfit, the client is willing to hire another company for a new project.  
 
A method for small datasets is used to calculate the test results. This method, Leave-one-out cross 
validation is described in section 3.7.1. A 39 cross-fold validation has taken place. Figure 13 visualizes the 
absolute errors. The numerical values of figure 13 are shown in table 4. The absolute errors are the 
absolute errors between the prediction of the FALCON model and the real value of that project in the 
database. These errors are visualized for each of the categories and the total error. The shown data is 
corrected for outliers. For the visualization of the data are, 33 projects were used. Appendix III shows all 
output per project. 
 
The influence of the size of the dataset on the predictions of a model is stronger when a model uses a small 
dataset than when a model uses a large dataset. The FALCON model must generate results in the most 
optimal conditions. In the case of n-fold cross-validation, the test sample can be compared with the largest 
number of projects. Therefore, the best results are expected for this type of cross-validation. To check if this 
assumption is correct, 5-fold and 10-fold cross-validation are also performed. 5-Fold cross-validation and 
10-fold cross-validation are often used to determine a prediction error. Then, the larger sample size is used 
because of the computational time which can add up enormously in the case of large datasets (Fushiki, 
2011).  
 
Using 3 types of cross-validation, the dependence on the dataset size is shown in case FALCON is used to 
make cost estimates for bridges. This made clear if this variable, the dataset size has some influence on the 
robustness of the FALCON model.    
 
The results of these cross-validations are comparable to n-fold cross-validation. As expected, the 
performance of the FALCON model in the case of n-fold cross-validation is slightly better. All results, 
including the results of 5-fold and 10-fold cross-validation, are presented in Appendix III.   
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Figure 13: Absolute errors FALCON n-fold cross-validation 
 
Table 4: Values Boxplots FALCON n-fold cross-validation  

Foundation Substructure Superstructure Railing Total error 

Values above 
maximum 

250% 416% 
 

234% 
 

Values above 
maximum 

199% 138% 497% 203% 93% 

Maximum error 113% 87% 99% 179% 75% 

Upper Quartile 71% 58% 58% 85% 39% 

Average error 'X' 61% 49% 54% 58% 24% 

Median 52% 30% 40% 34% 20% 

Lower Quartile 34% 21% 24% 20% 4% 

Minimum error 7% 2% 1% 0% 1% 

 

4.3.3 Hyperparameter analysis  

In section 3.7.2, the hyperparameter analysis is explained. This concept is used to find the most optimal 
setting of the FALCON model to find the results. It checks if the parameters used in the former section are 
responsible for the best results with this model. In case of FALCON, only one parameter must be tuned, 
therefore it is possible to do the hyperparameter analysis process manually.  
 
As mentioned, in the case of FALCON, the membership functions can change into other membership 
functions. Commonly used membership functions are the impulsive membership function (Heaviside), 
triangular membership function, right-sided trapezoidal function, left-sided trapezoidal function, and the 
Gaussian membership function (Ling, 2010).  
 
The FALCON model uses two of the above mentioned two functions. The triangular function and the 
Heaviside function. Except for the impulse function, all functions are continuous functions. The Heaviside 
function is discontinuous, and the data is also discontinuous. Therefore, placing a continuous function 
through discontinuous data, true and false, will not be very promising for improving the results. 
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In the FALCON model, the triangular function is used and modelled only for one side of the triangle. This 
function is equal to the left side trapezoidal function, and the reflection will be the right-sided trapezoidal 
function. These functions are therefore not very promising to replace the triangular function.  
 
This function is applied instead of the triangular membership function, and results are generated. As shown 
in figure 14 and table 5, the results with a Gaussian membership function will not improve the results, and 
the average error will increase to 32% instead of 24% in case of n-fold cross-validation. A complete table 
with all results per project is available in Appendix III. 
 

 
Figure 14: Absolute errors FALCON hyperparameter analysis 
 
Table 5: Values Boxplots FALCON hyperparameter analysis  

Foundation Substructure Superstructure Railing Total 
error 

Value above 
maximum 

418% 403% 
   

Value above 
maximum 

250% 362% 497% 
  

Maximum error 107% 138% 99% 130% 109% 

Upper Quartile 74% 79% 58% 62% 57% 

Average error 'X' 68% 75% 53% 43% 32% 

Median 54% 31% 38% 34% 26% 

Lower Quartile 33% 22% 18% 9% 6% 

Minimum error 0% 2% 1% 0% 0% 
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4.3.4 Findings 

Based on the results presented in sections 4.3.2 and 4.3.3, this section elaborates on the findings using 
performance measures as described in section 3.7.3. These performance measures are the accuracy of the 
predicted total price, described in section 4.3.4.1, the accuracy of the predicted price for components, 
described in section 4.3.4.2, the interpretability of the results, described in section 4.3.4.3, the robustness of 
the FALCON model, described in section 4.3.4.4, and the ease of use, described in section 4.3.4.5. Besides 
some boundary conditions have been described in section 4.3.4.6.  
 

4.3.4.1 Accuracy of the total price 

The figures and tables in sections 4.3.2 and 4.3.3 showed the results, including the partial results of each of 
the four categories. As shown in table 4, the absolute average error on the total price is 24% in the case of 
n-fold cross-validation.  
 
The outcome is based on comparable projects, as also stated in section 3.5. The fact that the average 
deviation is 24% indicates that the projects are reasonably comparable. If the projects were not comparable 
at all, the deviation would vary more. 
 
However, if FALCON is combined with fmGA, the error is 16.18% in piping projects, which is mentioned in 
paragraph 1.5 by Hsiao et al. (2012). In paragraph 1.5, it is also mentioned that (Wang et al., 2017) used 
FALCON for building projects. An average error of 9.72% is reached for building projects based on three 
projects (19.98%, 5.84%, 3.33%), the error in road bridge projects is larger.   
 

4.3.4.2 Accuracy components 

In addition to the accuracy of the model on total price, it is also essential to have insight into the parts' 
figures as presented. The total price errors are not as large as the error average error of one of the four 
categories (foundation, substructure, superstructure, railing) would be. There are a couple of reasons for 
these differences: 
 

• First, positive and negative deviations within a project can partially offset each other.  

• Besides, the percentage of one of the four components in the total price is not equal. For example, a 
large deviation in the railing does not count as much as a large deviation in the superstructure in 
most cases. 

• Other options and reasons for large errors are the reference projects. In case this project is not that 
expensive compared to all similar projects in the database, (based on the input of the FALCON 
model), a large deviation on price would probably the result. At this stage, considering the number of 
projects in the database, a division between cheap and expensive projects based on a threshold 
cannot yet provide enough added value.   

 

4.3.4.3 Interpret the results 

Another topic is the interpretability of the results. Without context, it is not easy to put the numbers in 
perspective. According to the results, FALCON should be a powerful tool for the prediction of cost for bridge 
projects.  
 
Besides, the model can provide broad insights into the cost drivers of a project. The operation of the model 
itself can be clearly explained and is explained as such. 
 
In addition to all information in the FALCON model, many factors are responsible for the prediction of price. 
Considering factors such as economic factors, environmental factors like protesting neighbours, NGO’s, 
political decisions, and the presence of special animal species. That many factors influence the price means 
that the FALCON model does reasonably not include all these characteristics to arrive at the prediction. 
Besides, cost experts can understand the FALCON model, and therefore adjustments are possible to 
improve the model continuously. 
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4.3.4.4 Robustness 

Robustness must also be considered. Concerning the FALCON model, robustness is related to errors and 
how to deal with them. Errors can be in the model's input, although they can occur in the execution of the 
model. The results show that the influence of the sample size in the used small dataset is not that much.  
Concerning the input data, the datasheets before the input were defined and are mostly generated by a 
computer program; the number of errors should therefore be negligible. The next step, from sheet to a 
category, is done by hand, the chance of errors increases. Although extensive controls after this phase 
have kept chis chance to a minimum. Related to the model's input, it is impossible due to the drop-down 
menus to add wrong data in the wrong field.  
 

4.3.4.5 Ease of use 

Ease of use is another performance measure. The current FALCON model can of course be used by 
anyone without knowledge of the data or programming. This is a big advantage. In the end, the FALCON 
model results should be evaluated by an analyst with some knowledge of cost engineering.  
In case the model will be used for other project types, the development process will go smoothly in case the 
developer has knowledge of the FALCON model.  
Selecting projects and generating input data for the database is the first step that employees can do without 
knowledge of Python or models like FALCON, therefore a simple manual should be sufficient. 
 

4.3.4.6 Boundary conditions 

This model is based on the cost drivers of 39 reference projects, which means that the model considers the 
items that are responsible for a significant amount of the cost in these projects. Economic factors, 
stakeholder requirements, and resource factors are no parameters in the model. When one of these 
parameters is responsible for a significant part of a bridge project's price, the prediction accuracy is also 
influenced negatively by this significant part. In practice, the cost estimator considers such parameters. 
However, it is almost impossible to take such project-dependent relations into account. These project-
dependent relations can be mapped out using risk analysis, followed by measures. A cost estimator can 
determine the price of these measures. Besides, the database consists mainly of that are fixed concrete or 
steel road bridges. These bridges are part of the secondary road structure. The model will, therefore, when 
the database of Witteveen+Bos is used, only apply to these types of projects.  
 

4.4 Multiple linear regression 
This paragraph describes the multiple linear regression. This paragraph starts with theory implementation in 
section 4.4.1, thereafter the hyperparameter analysis in section 4.4.2. The numeric results of this method 
are presented in section 4.4.3. Section 4.4.4 presents the findings of this method.  
 

4.4.1 Theory implementation 

Excel has a multiple linear regression module based on the least squares method. Solving the problem with 
Excel is very accessible to everyone. However, this module has a limited capacity of 12 parameters. This 
number of parameters is less than the total amount of parameters in the database. Therefore, a calculation 
is made in Python. Python has a multiple linear regression module. This module has a couple of parameters 
that can be tuned by hyperparameter tuning. 
 

4.4.2 Hyperparameter analysis 

Before generating the results, first, a hyperparameter analysis is executed. Besides the data, the Python 
module has some parameters which can be tuned. Using the grid search module in Python is used to make 
an analysis and select the best parameter.  
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Section 3.7.2 explained how hyperparameter tuning works. In that case, results were generated for the 
model to determine which parameter works best. The models that are tested in this chapter are all 
programmed using a Python module. Therefore, these models are suitable for use of the Grid Search 
module. As mentioned in section 3.7.2, Grid Search is a module for quickly determining the optimal set of 
parameters so that a model calculates the best possible results. This ensures that the final results, the 
predicted total price of a bridge project, only need to be calculated once and not for every possible 
combination of hyperparameters.  
 
In total, two tuning parameters are available: fit intercept and normalize. 
 
For the second parameter, it is obvious what the possibilities are. This parameter specifies whether to 
normalize the data before executing the multiple linear regression. The factor fit intercept is related to the 
factor ‘E’ as shown in the multiple linear regression formula. If the factor fit intercept is true, a factor 'E' is 
part of the formula to calculate the results. In case the factor is set to false, no factor 'E' is part of the 
multiple linear regression formula.   
 
According to n-fold cross-validation, the optimum is defined for each parameter in each fold. To determine 
the optimum setting, the test sample is not part of the data. The test sample may not have been used to set 
the model in the most optimal setting. This optimum is defined for each category. Table 6 shows the 
optimum parameters in the case of n-fold cross-validation.  
 
Table 6: Optimum parameters multiple linear regression analysis  

Foundation Substructure Superstructure Railing  
Fit intercept Normalize Fit intercept Normalize Fit intercept Normalize Fit intercept Normalize 

Result FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

 

4.4.3 Results 

The next step is the calculation of results for n-fold cross-validation. As mentioned in section 4.3.2, in the 
case of n-fold cross-validation, the test sample can be compared with the largest number of projects. 
Therefore, the best results are expected for this type of cross-validation. 
 
These results are corrected for outliers of the total price. 
After omitting the outliers, the results in figure 15 and corresponding table 7 visualize a total of 33 projects. 
Some values above or below a boxplot maximum or minimum still occur. Table 7 shows these values. An n-
fold cross-validation setting gives the best results. In case the results are generated with 5- or 10-fold cross-
validation, the results are not that good. These results are documented in Appendix IV. The results per 
project, including reasons for the omission of outliers, for the n-fold cross-validation are also documented in 
Appendix IV. 
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Figure 15: Absolute errors multiple linear regression n-fold cross-validation 
 
Table 7: Values boxplots multiple linear regression n-fold cross-validation  

Foundation Substructure Superstructure Railing Total error 

Value above maximum 
 

1220% 
   

Value above maximum 
 

683% 495% 
  

Value above maximum 
 

629% 470% 
  

Value above maximum 1970% 267% 249% 
  

Value above maximum 218% 254% 224% 359% 176% 

Maximum error 132% 113% 166% 164% 150% 

Upper Quartile 100% 100% 118% 83% 81% 

Average error 'X' 143% 153% 121% 59% 57% 

Median 85% 87% 100% 35% 44% 

Lower Quartile 59% 58% 84% 16% 23% 

Minimum error 10% 4% 35% 0% 2% 

Value below minimum 
  

26% 
  

Value below minimum 
  

9% 
  

 

4.4.4 Findings 

Based on the results presented in sections 4.4.2 and 4.4.3, this section elaborates on the findings using 
performance measures as described in section 3.7.3. These performance measures are the accuracy of the 
predicted total price, described in section 4.4.4.1, the accuracy of the predicted price for components, 
described in section 4.4.4.2, the interpretability of the results, described in section 4.4.4.3, the robustness of 
the FALCON model, described in section 4.4.4.4, and the ease of use, described in section 4.4.4.5. Besides 
some boundary conditions have been described in section 4.4.4.6.  
 

4.4.4.1 Accuracy of the total price 

The figures and tables in sections 4.3.2 and 4.3.3 showed the results, including the partial results of each of 
the four categories. As shown in table 7, the absolute average error on the total price is 57% in the case of 
n-fold cross-validation. The average error is larger than the errors in case an estimate is made by a 
conventional method. The values are in that case between 15-50% as presented in chapter 1.  
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4.4.4.2 Accuracy components 

In addition to the accuracy of the model on total price, it is also essential to have insight into the parts' 
figures as presented. The total price errors are not as large as the error average error of one of the four 
categories (foundation, substructure, superstructure, railing) would be. Given the enormous deviations, it 
can be assumed that the linear relationship in these data is not present enough to be able to plot a linear 
line through the data points of the dataset. 
 

4.4.4.3 Interpret the results 

In the case of multiple linear regression, the interpretation of the results is relatively easy because it is 
possible to get the formula that was used to calculate the result. However, given the deviations from the 
model, it is difficult to give value to the results.  
 

4.4.4.4 Robustness 

Robustness must also be considered. Concerning the multiple linear regression model, robustness is 
related to errors and how to deal with them. Errors can be in the model's input, although they can occur in 
the execution of the model. The results in Appendix IV show that the influence of the sample size in the 
used small dataset is large. The results in Appendix IV show the average errors of the other cross-validation 
types. The average error for 10-fold cross validation is 67%, in case of 5-fold cross validation is the average 
error 68%. From this it is concluded that the size of the dataset has a significant influence on the 
performance of this model. 
 
Concerning the input data, the datasheets before the input were defined and are mostly generated by a 
computer program; the number of errors should therefore be negligible. The next step, from sheet to a 
category, is done by hand, the chance of errors increases. Although extensive controls after this phase 
have kept chis chance to a minimum.  
 

4.4.4.5 Ease of use 

The ease of use of this model can be assumed to be relatively good. There is a module available to 
program the model. Using the Python module results in a programming process in which not every step has 
to be programmed by the programmer of the model. However, the model takes the projects from the 
datasheet, which means that there is no input sheet like a Google form that makes it very easy to use the 
script in a new project. This should be added. The runtime of the script is fast. Within a minute, the results 
are produced. 
 

4.4.4.6 Boundary conditions 

As known from the FALCON model, economic factors, stakeholder requirements, and resource factors are 
also no parameters in this model. That means that this model is not 100% focused on a specific case, 
including all the associated factors.  
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4.5 Decision tree regression 
This paragraph describes the decision tree regression. This paragraph starts with theory implementation in 
section 4.5.1, thereafter the hyperparameter analysis in section 4.5.2. The numeric results of this method 
are presented in section 4.5.3. Section 4.5.4 presents the findings of this method. 
 

4.5.1 Theory implementation 

The output of this model should be a continuous variable, a predicted price, and no class, for example, a 
bridge type. Therefore, a decision tree regressor is programmed in Python, instead of a decision tree 
classifier. This regressor generates a cost estimate for the total project price.  
As input, this model uses the same database as used for FALCON, multiple linear regression, and KNN. In 
the script, the data is split into a test and a training set.  
In this case, results are generated with n-fold, 5-fold, and 10-fold cross-validation used, equal to the result 
generation with FALCON. The estimated price compared with the actual price gives the error of the test 
sample. 
 
Besides, the Python script generates a figure of the decision tree. An important note is that the decision tree 
can vary per sample since the splits are based on the training data. 
 
Figure 16 shows one of the decision trees. The splits are based on impurity as earlier mentioned, the splits 
do not divide the data into equal parts. The mean square error is represented by mse. ‘Samples’ is the 
number of projects, in the case of this example, 7 of the 39 projects are omitted by the first node.  
 

 
Figure 16: Decision tree 
 

4.5.2 Hyperparameter analysis 

Before generating the results, first, a hyperparameter analysis is executed. The model is programmed in 
Python. This Python script has some tuning parameters besides the data. Using the grid search module in 
Python, the best parameters are selected. 
 
Three parameters are tuned: the depth, the minimum number of samples in one leaf, and the minimum 
number of samples for a split. A leaf is a node at which the tree stops splitting.  
 
The depth means how many layers are below the root of the tree. The minimum samples in a leaf mean the 
number of samples (projects) in a leaf where the tree will stop. The minimum number of samples for a split 
means how many samples are necessary to have a split. 
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The optimum is defined for each parameter in each fold of the n-fold, 5-fold, and 10-fold cross-validation. To 
determine the optimum setting, the test sample is not part of the data. The test sample may not have been 
used to set the model in the most optimal setting. On average, it came out that the optimum parameters are 
the max depth = 4, the minimum samples for a split = 2, and the minimum samples per leaf = 1. The table 
with the results of the hyperparameter analysis is available in Appendix V. 
 

4.5.3 Results 

The next step is the calculation of results for n-fold cross-validation, these results are visualized in figure 17. 
As mentioned in section 4.3.2, in the case of n-fold cross-validation, the test sample can be compared with 
the largest number of projects. Therefore, the best results are expected for this type of cross-validation. 
 
These results in figure 17 are corrected for outliers. The boxplot below visualizes thirty-five projects. 
 
As can be seen in figure 17, an estimate has only been made for the total price of the bridge. Results have 
been also generated for the four separate categories, after which the total price was determined based on 
the results for these categories. However, the results of these calculations were worse than if the total price 
is determined in one go, which is after all the goal. Therefore, the results of every separate part are omitted.  
 
Four projects are marked as an outlier. Project 9 is marked as an outlier because it is a unique project since 
it is a wooden bridge. Project 15, 25, and 29 are marked as extreme outliers and therefore removed.  
 
The lowest value is 6%, the lower quartile value is 15%, the median 23%, the average value is 36% (x), the 
upper quartile value is 57%, and the highest value is 103%. 
 
All results for each type of cross-validation are documented in Appendix V. The results per project, including 
reasons for the omission of outliers, for the n-fold cross-validation are also documented in Appendix V. 
 
 

 
Figure 17: Absolute errors decision tree, n-fold cross-validation 

 

4.5.4 Findings 

Based on the results presented in sections 4.5.2 and 4.5.3, elaborates this section on the findings using 
performance measures as described in section 3.7.3. These performance measures are the accuracy of the 
predicted total price, described in section 4.5.4.1, the interpretability of the results, described in section 
4.5.4.2, the robustness of the FALCON model, described in section 4.5.4.3, and the ease of use, described 
in section 4.5.4.4. Besides some boundary conditions have been described in section 4.5.4.5.  
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4.5.4.1 Accuracy  

The figures and tables in sections 4.5.2 and 4.5.3 showed the results, including the partial results of each of 
the four categories. As shown in figure 17, the absolute average error on the total price is 36% in the case 
of n-fold cross-validation. The average error is in the same range as the errors in case the estimate is made 
by a conventional method. The values are in that case between 15-50% as presented in chapter 1.  
 

4.5.4.2 Interpret the results 

In the case of the decision tree, the interpretability is somewhat better. This interpretability advantage is 
because it is possible to visualize the decision tree. The decision tree visualization displays the choices 
made by the model. This visualization makes it possible for the user of the model to search the database 
based on the model's selection process and make it possible to achieve a comparable result. However, the 
process of how the model arrives at the splits is a lot more difficult to understand because this is partly done 
randomly. The splitting process itself is done by impurity reduction as mentioned in paragraph 3.3.  
 

4.5.4.3 Robustness 

Regarding robustness, the decision tree is not very stable. A small change in the data can lead to a large 
difference in the decision tree. For example, due to a missing or incorrectly entered property of the project 
for which the price must be predicted and can cause an unreliable outcome. Using the parameter 
‘random_state’ in the Python script, it is possible that the splits, of the decision tree, are not made randomly 
each time the script runs as mentioned in section 3.5. This parameter was added, and the model comes up 
every run of the Python script with the same results for the same specific case and gives the decision tree 
some stability, instead of an answer that can be continuously different.  
 

4.5.4.4 Ease of use 

The ease of use of this model can be assumed to be relatively good. There is a module available to 
program the model. Using the Python module results in a programming process in which not every step has 
to be programmed by the programmer of the model. However, the model takes the projects from the 
datasheet, which means that there is no input sheet like a Google form that makes it very easy to use the 
script in a new project. This should be added. The runtime of the script is fast. Within a minute, the results 
are produced. 
 

4.5.4.5 Boundary conditions 

As known from the FALCON model, economic factors, stakeholder requirements, and resource factors are 
also no parameters in this model. That means that this model is not 100% focused on a specific case, 
including all the associated factors.  
 

4.6 K nearest neighbors 
The last presented method is K nearest neighbors. This paragraph starts with theory implementation in 
section 4.6.1, thereafter the hyperparameter analysis in section 4.6.2. The numeric results of this method 
are presented in section 4.6.3. Section 4.6.4 presents the findings of this method. 
 

4.6.1 Theory implementation 

A Python script is programmed to execute KNN for cost estimates of bridges. 
 
The KNN model represents a variant of linear regression. To predict the outcome, the model uses the 
information of neighbouring data points. The outcome is the construction cost of a bridge project. 
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In the Python model, the predictor of testing and the dependent variables should be defined. In this case, 
the predictor is the total price of the bridge project, and the dependent variables were equal to the variables 
in the FALCON model. These variables are, therefore, equal to the input values of the Google form as 
presented with the FALCON model. 
The model uses the same data as used for the other three models. The difference, however, is that this 
data is normalized before the model uses the data. Using the same database makes it easier to compare 
the final results of different models. The data is split into a training set and a test set to cover the risk of 
overfitting. 
 
By the definition of the arguments, the KNN regression is executed. First, the function shuffles the data in 
random order. Next, it splits the data into test data and training data. The script includes the dimensions of 
the training data and the test data. 
 
It should be clear that in the case of n-fold cross-validation, the test data consist of 1 project, and the 
training data consist of 38 projects. The model generates a score for each sample.  
The error is calculated by comparing the actual price and the price calculated by the model.    
 

4.6.2 Hyperparameter analysis 

The K nearest neighbors' method does have the option to tune parameters. The parameters are a metric 
parameter, algorithm parameter, leaf size parameter, and the number of neighbors. This section describes 
all these parameters.  
 

4.6.2.1 Hyperparameter analysis: metric  

The metric parameter is related to the distance calculation. Four options are available, Euclidean, 
Manhattan, Chebyshev, and Minkowski.  
The Euclidean distance is the distance between two Cartesian coordinates and is calculated using the 
Pythagoras theorem (James et al., 2013). 
The Manhattan distance is the sum of the absolute differences between corresponding coordinates, as 
shown in equation 5. 
 
Equation 5: Manhattan distance 

 
The Chebyshev distance is the maximum distance between two vector points. These vector points, for 
example, x and y, do have standard coordinates xi and yi. This shows equation 6. 
 
Equation 6: Chebyshev distance 

 
 
The Minkowski distance is the generalization of the former distance formulas. X = (x1, …, xn) Y = (y1, …, yn). 
If p = 1, the formula is equal to the Manhattan distance. If p=2, the formula is equal to the Euclidean 
distance. If p goes to infinity, the formula is equal to the Chebyshev distance (Proietti, Panella, Leccese, & 
Svezia, 2015). Equation 7 shows the Minkowski distance.  
 
Equation 7: Minkowski distance 
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4.6.2.2 Hyperparameter analysis: algorithm 

The algorithm parameter will represent some algorithm options. These options are the ball tree, kd tree, and 
brute force.    
 
A ball tree partitions data points into nested sets of hyperspheres in a multidimensional space. It creates an 
organized way to find the nearest neighbor (Thomas, Vijayaraghavan, & Emmanuel, 2020). A ball tree uses 
the entire dataset as the root node. The root node is the first node of a tree, in this node, the first division in 
subsets takes place. The hyperspheres can be separate from each other or overlap each other. Every 
hypersphere does have a centroid and a radius. The distance from the centre from the ball to a data point 
will help decide which ball a data point will belong to. A data point will always be in that ball with the shortest 
distance to the centroid. 

 
Figure 18: Sample ball tree (Thomas et al., 2020) 

 
To search for the nearest neighbour for a test point t in a ball tree, somewhere in the x-y plane of figure 18; 
assume that the point p is very close to t, then all sub-trees with child nodes that are further from t than from 
p are ignored for the rest of the search (Thomas et al., 2020). In case ‘t’ is assumed within the root note 
circle and close to the smallest circle within the root node, this smallest circle represents a sub-tree and is 
used for further calculation. The two circles within the smallest circle represent thus a new sub-tree.  
 
Another algorithm is brute force. Brute force is a simpler algorithm, which calculates the distance between 
the data point of interest to all other data points in the dataset. The classification process assumes that the 
data point of interest belongs to the class of the majority of its neighbours. 
 
The final algorithm is the KD tree. It will mean K dimensional tree; each node in the tree has K number of 
nodes.  
The construction of a KD tree consists of two essential steps. After traversing the whole tree first step is to 
find the median and split the dataset along the median. In the case of a two-dimensional dataset, the aim is 
to build a data structure by picking any random dimension, then the median must be found, and then the 
dataset splits along this median. The KD tree will search through the data as a binary search tree (Thomas 
et al., 2020).  
 
Figure 19 shows an example of a KD tree. In this sample, 10 points are shown on different levels of the 
tree. It is assumed that every point has its own x and y coordinate.  
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Figure 19: Sample kd tree (Anzola, Pascual, Tarazona, & Gonzalez Crespo, 2018) 

 

4.6.2.3 Hyperparameter analysis: other parameters 

The final two parameters are the leaf size and number of neighbors. The leaf size is the number of available 
projects in the leaf when the tree will switch to another computation method. In the case of a ball tree or a 
KD tree, the algorithm will change to Brute Force to increase the computation time. The number of 
neighbors is the number of projects on which the model bases the final output. 
 

4.6.2.4 Hyperparameter analysis: results 

The parameters above are considered for defining the optimal set of parameters. In the case of the n-fold 
hyperparameter analysis, this results in an optimal result for each category. Table 8 shows these results. 
 
Table 8: Results hyperparameter analysis KNN n-fold cross-validation 

 Algorithm Metric Leaf size Number of neighbors 

Foundation Ball tree Chebyshev 18 4 

Substructure Ball tree Chebyshev 9 1 

Superstructure Ball tree Chebyshev 9 2 

Railing Ball tree Chebyshev 1 2 

 
The results of each fold for the hyperparameter optimization are available in Appendix VI. 
 

4.6.3 Results 

The next step is the calculation of results for n-fold cross-validation. As mentioned in section 4.3.2, in the 
case of n-fold cross-validation, the test sample can be compared with the largest number of projects. 
Therefore, the best results are expected for this type of cross-validation 
 
After the omission of outliers, the boxplots in figure 20 visualize a total of 32 projects. Some values above 
the boxplot maximum or minimum still occur. Table 9 shows these values. An n-fold cross-validation setting 
will give the best results. The results are also generated for 5- or 10-fold cross-validation. These results are 
documented in Appendix VI. The results per project for the n-fold cross-validation and a description of the 
outliers are also documented in Appendix VI. 
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Figure 20: Absolute errors KNN n-fold cross-validation 
 
Table 9: Values boxplots KNN n-fold cross-validation  

Foundation Substructure Superstructure Railing Total error 

Value above maximum 2481% 672% 
   

Value above maximum 363% 395% 10977% 
  

Value above maximum 303% 147% 278% 306% 
 

Maximum error 125% 92% 119% 169% 109% 

Upper Quartile 82% 64% 64% 84% 49% 

Average error 'X' 144% 72% 387% 57% 34% 

Median 55% 34% 29% 39% 27% 

Lower Quartile 23% 21% 15% 14% 8% 

Minimum error 0% 2% 3% 0% 1% 

 

4.6.4 Findings 

Based on the results presented in sections 4.6.2 and 4.6.3, this section elaborates on the findings using 
performance measures as described in section 3.7.3. These performance measures are the accuracy of the 
predicted total price, described in section 4.6.4.1, the accuracy of the predicted price for components, 
described in section 4.6.4.2, the interpretability of the results, described in section 4.6.4.3, the robustness of 
the FALCON model, described in section 4.6.4.4, and the ease of use, described in section 4.6.4.5. Besides 
some boundary conditions have been described in section 4.6.4.6.  
 

4.6.4.1 Accuracy of the total price 

The figures and tables in sections 4.6.2 and 4.6.3 showed the results, including the partial results of each of 
the four categories. As shown in table 9, the absolute average error on the total price is 34% in the case of 
n-fold cross-validation. The average error is in the same range as the errors in case the estimate is made 
by a conventional method. The values are in that case between 15-50% as presented in chapter 1.  
 
The results in Appendix IV showed the average errors of the other cross-validation types. The average error 
for 10-fold cross validation is 29%, in case of 5-fold cross validation is the average error 41%.  
 
A remarkable value in of course that the predictions in the case of n-fold cross-validation with KNN are less 
good than in the case of 10-fold cross-validation. A cause that the KNN predictions are not better in case of 
n-fold cross-validation cannot be immediately indicated.  
The following factors play a role in this: 
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• The results of the partial analyses can balance each other.  

• With the hyperparameter analysis and result determination in case of the 10-fold cross-validation, 
there is a smaller training data set, this can ensure that projects that are together in the test data 
cannot negatively influence each other in the model while this in case of n-fold cross-validation is 
still possible. 

• Due to the difference in data, the algorithms can find other patterns that may be more favourable for 
the 10-fold cross-validation variant.  

• Outliers in the ‘k’ neighbors can influence the results, as mentioned in paragraph 3.5.  
 

4.6.4.2 Accuracy components 

In addition to the accuracy of the model on total price, it is also essential to have insight into the parts' 
figures as presented. The total price errors are not as large as the error average error of one of the four 
categories (foundation, substructure, superstructure, railing) would be. The errors of the estimates for one 
of the categories are for most estimates 10-20% larger than the errors of the estimates for the total price of 
a project. 
 

4.6.4.3 Interpret the results 

The interpretation of the results is in the case of KNN not be that easy since it can switch the calculation 
method during the execution of the model. Besides, KNN does not indicate which reference projects the 
model includes in the calculation. The KNN model result is a number that is not substantiated with data and 
reduces confidence in the data's reliability. It also becomes more challenging to use the model for a project 
without substantiation of results. 
 

4.6.4.4 Robustness 

Robustness must also be considered. Concerning the KNN model, robustness is related to errors and how 
to deal with them. Errors can be in the model's input, although they can occur in the execution of the model.  
Section 4.6.4.1 showed the average errors of the other types of cross-validation. From these values it is 
concluded that the size of the dataset has a significant influence on the performance of this model. 
 
Concerning the input data, the datasheets before the input were defined and are mostly generated by a 
computer program; the number of errors should therefore be negligible. The next step, from sheet to a 
category, is done by hand, the chance of errors increases. Although extensive controls after this phase 
have kept chis chance to a minimum.  
 

4.6.4.5 Ease of use 

The ease of use of this model can be assumed to be relatively good. There is a module available to 
program the model. Using the Python module results in a programming process in which not every step has 
to be programmed by the programmer of the model. However, the model takes the projects from the 
datasheet, which means that there is no input sheet like a Google form that makes it very easy to use the 
script in a new project. This should be added. The runtime of the script is fast. Within a minute, the results 
are produced. 
 

4.6.4.6 Boundary conditions 

As known from the FALCON model, economic factors, stakeholder requirements, and resource factors are 
also no parameters in this model. That means that this model is not 100% focused on a specific case, 
including all the associated factors.  
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4.7 Verification of solutions 
In this chapter, the implementation and results of four models, FALCON, KNN, decision tree, and multiple 
linear regression, are shown. This section verifies the solutions against the requirements. This is part of the 
research strategy as presented in paragraph 1.4.  
 
In paragraph 2.1 was mentioned that in order to achieve a major performance improvement in cost 
estimates of bridges, the best performing model that is suitable to make quickly the most accurate cost 
estimates for bridge projects is needed. 
 
From the statement it follows that two criteria are important regarding the performance. First, relating the 
computation time, there are no significant differences between the models. All four models can calculate 
within a couple of minutes an estimate for a bridge project. 
 
The second measure is the accuracy. Table 10 gives an overview of all models and the average errors on 
the total price of a bridge.  
 
Table 10: Average error predictions total price 

 KNN Decision tree Multiple linear 
regression 

FALCON 

5-Fold 41% 36% 68% 30% 

10-Fold 29% 35% 67% 29% 

N-fold 34% 36% 57% 24% 

 
In the table above, it became clear that FALCON performs better than all other models in case 5-fold or n-
fold cross-validation is applied. Referring back to section 3.5., The results of the multiple linear regression 
model are, as expected, less good than the other models. In the case of 10-fold cross-validation, the 
average errors are equal for FALCON and KNN. It shows that the performance of KNN has almost the 
same accuracy as FALCON. The main difference is that FALCON performs well in all cases. 
 
Regarding interpretability, in the case of FALCON there are no ambiguities as stated in section 4.3.4.3, in 
the case of KNN there are some ambiguities as stated in section 4.6.4.3. In the case of KNN, the algorithm 
can be switched during the calculation of a result.  
 
Besides, the boundary conditions are equal for FALCON and KNN. Regarding the ease of use, FALCON 
has the advantage that new projects are easy calculated by the FALCON model due to the availability of the 
Google form in the model. In addition, related to the robustness, as shown from the results, the sample size 
has some influence on the results of FALCON, however the influence is also present for KNN.  
 
To conclude, from these four models, FALCON is the best performing model that is suitable to make quickly 
accurate cost estimates for bridge projects. This model is validated in the validation phase.  
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5 Validation  
   
In chapter 4, 4 models including FALCON have been presented for making a cost estimate for bridges. In 
paragraph 4.7, it became clear that the FALCON model presented the best solution for the construction 
requirement, as presented in chapter 1.  
 
The aim of this chapter is to check if the FALCON model meets the needs as presented in the research 
strategy of chapter 1. As mentioned in chapter 2, the first need is that the required calculation time must be 
reduced from hours to minutes. The second need regards to the accuracy, for Witteveen+Bos, a major step 
has been taken if the accuracy is improved one level based on the AACE values. This means that the 
expected deviation on the predicted price with the model may be a maximum of 30%. 
 
At the beginning of the research, the 'needs' became the goal of this research. The best possible solution is 
presented in Chapter 4. This chapter explains the relationship between the solution offered in Chapter 4 
and the requirements that cost estimators themselves set for a cost model. 
 
Therefore, it is essential what the experts’ opinion of the model is. Interviews have been organized to 
evaluate whether the model meets the wishes of the customer. The cost estimators from the Witteveen+Bos 
company are the customers for this product, the FALCON model. 
 
In total, seven cost estimators have been interviewed. The interviews consist of open and closed questions. 
The respondents' experience varies from a few years to decades of experience in making cost estimates of 
civil projects, including road bridges. Therefore, the respondents are a representative group of cost 
engineers. 
 
The results of the interviews are aggregated and presented in this chapter. The list of 10 main questions, 
based on the realized model and the obtained results, is available in Appendix VII. The interviews are 
problem-centred interviews that create the possibility to compare the obtained data with reality. The 
interviews highlight the individual perspective and do not use a general set of questions (Döringer, 2020).  
 
The questions of the interviews aim to map whether the performance of the FALCON model meets the 
requirements, the ‘needs’, of the interviewees and whether it is likely to be implemented in practice by the 
respondents. Besides, these interviews identify whether the experts have any suggestions for improvement 
of the realized model.  
 
At the end of this chapter it can then be concluded whether the 'needs' as formulated at the beginning of 
this study are the same as the 'needs' of the interviewees. In addition, it can be concluded whether the 
results obtained with the FALCON model meet the 'needs' of the interviewees. 
 
Paragraph 5.1 shows the results of the interviews. In paragraph 5.2, the realized improvements in the 
FALCON model based on suggestions of the interviewees are described. Subsequently, paragraph 5.3 
presents all findings that are based on the interviews.  

5.1 Results interviews 
This paragraph presents the results of the interviews. In section 5.1.1, the use of reference projects is 
discussed. Thereafter in section 5.1.2, the collection process of reference projects is discussed. Section 
5.1.3 presents if cost estimators have the opinion that models like FALCON can be applied in cost 
engineering. Subsequently, the expected accuracy for such models is presented in section 5.1.4. Section 
5.1.5 presents if the model is suitable for practice according to the interviewees. Improvements are 
suggested in section 5.1.6 and section 5.1.7. Strengths and weaknesses have been appointed in section 
5.1.8 and section 5.1.9. Finally, a couple of other remarks have been listed in section 5.1.10.  
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5.1.1 Use of reference projects 

The results of the FALCON model are based on references. It is interesting to determine whether 
references are included in the current methods to make a cost estimate of a bridge project. 
 
Three cost estimators have indicated that they are using reference projects already at the start of a project. 
One of these three cost estimators do not select reference projects at a high level of detail. Another three 
cost estimators are using reference projects for specific parts of a project to control themselves. One cost 
estimator remarks that he uses a full reference project if the client requires a copy of that project. One cost 
estimator mentioned that he does not use reference projects very often. This implicates that in the current 
work of cost estimators there is not a guideline for using reference projects. Figure 21 shows an overview of 
these results.  
 

 
Figure 21: Use of reference projects  

 

5.1.2 Collection of reference projects  

The FALCON model uses a database of bridges to estimate the costs of new bridges. Within 
Witteveen+Bos such a database also exists. Four interviewees make use of this database, but they mention 
that it does not always work very well. In case it does not work very well, they call a colleague to discuss 
and/or ask for reference projects. Other interviewees indicate that calling a colleague is their first step in 
collecting reference projects. This shows that time is one of the important factors in making a cost estimate. 
Calling colleagues is a solution to speed up the process. It does mean that another colleague loses time 
making cost estimates for which he or she is responsible. Figure 22 shows an overview of these results.  
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Figure 22: Collection of reference projects 
 

5.1.3 Opportunities for FALCON and Artificial Intelligence 

Successful implementation of a FALCON model is only possible if the organization also realizes that such 
models can also contribute positively to the activities carried out. 
 
All cost estimators are convinced that AI models, like FALCON, can help in cost estimates. Especially in the 
first stage, with little information available, the interviewees are enthusiastic about the applicability of a 
FALCON model. Some cost estimators do see opportunities for application in every stage of a project and 
in case cost estimates for a couple of projects should be made to compare them with each other in the first 
phase. An overview of these results is shown in figure 23.  

 
Figure 23: Application phase FALCON 
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5.1.4 Accuracy 

It is crucial which accuracy level is expected. The expected accuracy level can partly determine whether the 
model FALCON is likely to be used in practice. 
 
Not all cost estimators expect the same accuracy for the total price of a (bridge) project. The estimation 
deviation from the FALCON model that is accepted differs per cost estimator. One mentioned 40%, another 
one 30-50%. There is also a cost estimator who is satisfied with an estimation deviation of 15-30%. Another 
cost estimator expects an estimation deviation of 50% at the first rough estimate, 40% after the first 
initiative, and it would be nice if 30% estimation deviation is possible. There is also someone who expects 
an estimation deviation of 40% after the first phase and 25% accuracy after the second phase. The seventh 
cost estimator expects an estimation deviation of the model of 30%. In sum, the respondents, cost 
estimators, expect an estimation deviation between 25-40%. 
 

5.1.5 Use in practice 

When all conditions are met for a successful implementation of the FALCON model, then the 
implementation only needs to take place.   
All cost estimators were enthusiastic about the model and are expecting to use the model in practice.  
 

5.1.6 Suggested improvements for the FALCON model 

In response to the presented model, the respondents suggest some improvements. These improvements 
are listed and presented in this section. 
 
They advise to add some parameters: 

• Span 

• Width 

• Abutment height 

• Architecture superstructure 

• Length / width ratio 

• Traffic class 

• Hydraulic profile 
 
Besides the advice to add parameters, other points of improvement are: 
1. Generate a compact input sheet 
2. Link quotations to the model.  
3. Add more parameters to generate cost estimates for small parts of a bridge project.  
4. Create the difference between expensive and cheap projects. A definition will then have to be determined 
for cheap and expensive.  
5. Analyse the other bids of other companies for the same project. As a result of this analysis, more 
information about a company's bid price can be generated. Is the price for the project fair? 
6. Add mandatory fields, for example, the bridge type, amount of supports, and the bridge deck in square 
meters.  
7. Add information about the project. Is the project a new bridge or the replacement of a bridge? 
 

5.1.7 Suggested improvements output FALCON model 

The FALCON model can estimate the total price and the estimated price for each of the four parts. 
However, the cost estimators like to have more output to for example compare projects on their own as an 
extra check. This is much easier when references are part of the output, visualized with pictures. It would be 
appreciated if a top 3 of best references can be added to the output. 
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5.1.8 Strengths 

Besides the improvement points, strong arguments are mentioned that can be of added value.   
 
The model gives an estimate based on a reference project. In that case, a contractor has fewer arguments 
why his product is more expensive if all reference projects have a lower price with the same specifications.  
The FALCON model has the capacity of being a tool to check our methods, which are used nowadays.  
 
In addition, the model can quickly provide a cost estimate. This certainly adds value if an estimate is 
requested of a project that should have been completed yesterday, so to speak. Speed is an important 
factor in these projects. 
 

5.1.9 Weaknesses   

There are cases when the added value of the model is negligible. These situations are identified. 
 
The new model is less suitable for cases where a couple of almost the same projects should be compared. 
These differences are in more detail than the parameters of the Google form of the FALCON model. 
Another case in which the model is not suitable according to the cost estimators is in case the project a 
'one-of-a-kind' project. 
 

5.1.10 Other remarks 

The model gives an estimate based on a reference project. In that case, a contractor has fewer arguments 
why his product is more expensive if all reference projects have a lower price with the same specifications.  
The FALCON model has the capacity of being a tool to check our methods, which are used nowadays. 
 
Finally, there are comments made by the respondents that do not directly fit the subjects above.  
 
The cost estimators do not agree with each other on the influence of the parameter 'location' on the total 
price. Someone remarks that all projects should be in the same range. Therefore, it was ok that some 
projects were not in the database, for example, a highway bridge. It is remarked that the samples' scores 
give much information, and he also advised to add estimates of him and his colleagues to the model.  
The application of new techniques is a point that is considered. Therefore, the model should also be 
explainable in ordinary language. In the future, the relation between construction cost and investment cost 
should be made. Just as the generation of key figures to make projects comparable according to the ICMS 
(International Construction Measurement Standards) standard. 
 

5.2 Implementation results  
In addition to the positive comments, points for improvement were suggested. However, the FALCON 
model is developed in such a way that some of these improvements can be implemented quickly. This 
paragraph discusses the improvements to the FALCON model.  
 
Further explanation remarks parameters related to improvement 
The parameters which should be added, are listed in paragraph 4.2, according to the respondents cannot 
be easily derived from the available data. Suppose the railing length is set equal to the span of the bridge 
deck, the data's accuracy in the database decreases. Thus, the parameters span, width, and length/width 
ratio are not suitable for adding to the database. However, this data is still retrievable for recent projects by 
requesting additional information, but this is too time consuming for many projects. This argument also 
applies to the following parameters: abutment height and the hydraulic profile, including width and height. 
The traffic class is mentioned by the function of the bridge and the scope of the bridge projects. The 
superstructure architecture is not added as a parameter because the architecture definition is not equal for 
everyone, which can cause inaccuracy of the data. In this section, several limiting factors have been 
mentioned. However, these limitations can also serve as the start of new research. In that case, these 
mentioned limitations have the potential to be removed.   
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Further explanation of other remarks related to improvement 
It was also mentioned to add quotations to the model. However, this would mean new data research. This 
new approach can undoubtedly be incorporated in a future improvement phase of the model. 
Currently, the FALCON model incorporates the lowest bid. It is remarked that an analysis of the other bids 
of a project could also be useful. In this project, the choice for the lowest bid as input value is a boundary 
condition. These prices must be estimated and not the other offer prices for a project. 
 
Since the model aims to make an estimate for the early phase of the project, when little information is 
known, the remark to add more parameters to generate cost estimates for small parts of the bridge is 
contradictory. Increasing the level of detail is not yet directly relevant in that phase.  
 
Differentiation between expensive and cheap projects can be made. At this stage, when the database 
consists of a relatively small number of projects, this extra parameter is not directly contributing to a better 
result. This parameter may be added later after a clear definition of cheap and expensive has been 
established.  
 
In case it would be possible, the Python model as programmed does not have that option, creating 
mandatory fields for the input had been implemented. Another suggestion was the remark about the extra 
project information. In case bridge replacement projects are included in the database, the remark to 
distinguish between new bridges and bridge replacements can be inserted as a parameter. 
 
For a top 3 of best references, the model must be adjusted in such a way that it can be useful to include this 
remark in the next improvement stage of this model.  
 
Improvements after interviews 
One remark that is made relates to the compactness of the set of entry fields. Although it is simple to enter 
true or false, a more compact sheet is desired, and the remark is fulfilled. The number of entry fields has 
decreased from 47 to 30 through a different format of the 'Google' form. Among other things, there is now a 
dropdown menu for the bridge type. In the first version, true or false had to be entered for each bridge type. 
 
It is remarked that the name of a reference project is useful. In case the model shows a picture of the 
reference bridge, then an extra improvement has been realized. This comment is processed, and the 
reference project is now also published in the model's output. Displaying an image is not (yet) possible in 
this script. 
A comparison with the database's mean value is also noted to be added as an extra option. It can give a 
first indication if a project is expensive or not. This comparison is added as an extra output value.  

5.3 Findings 
As mentioned in the introduction, this chapter aims to check if the FALCON model meets the needs as 
presented in the research strategy of chapter 2.  
 
Two needs were defined at the start of this research project. The first need is that the required calculation 
time must be reduced from hours to minutes. The second need regards to the accuracy, for Witteveen+Bos, 
a major step has been taken if the accuracy is improved one level based on the AACE values. This means 
that the expected deviation on the predicted price with the model may be a maximum of 30%. 
 
The summary of the interviews showed the requirements that cost estimators themselves set for a cost 
model. From the summary of the interviews it became clear that accuracy and computation time are factors 
that are important according to the cost estimators of Witteveen+Bos.  
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First, some cost estimators are using phone calls to speed up the search process for reference projects. 
The second point which relates to the speed is the fact that the speed is mentioned as strong point in the 
interviews. The fact that the speed is mentioned as one of the strengths and not as an improvement point 
indicates that the calculation speed of the model meets the expectations of the cost estimators. Besides, 
the ‘need’, which was determined in the first chapter of this research, to reduce the calculation time from 
hours to minutes is met. In sum, the predetermined goal regarding the calculation time of a cost estimate, 
which is achieved with the FALCON model, also meets the expectations from practice. 
 
The second ‘need’ which was predefined at the start of the research regards the accuracy. The FALCON 
model's accuracy, an average error on the total price of 24%, is in line with what the respondents expect.  In 
general, the interviewees expect a that the predictions of the model deviate 25-40% from the real value. 
The realised average deviation of the estimations is in line with target, the ‘need’, that is set in chapter 1 at 
the start of this research. In sum, the average error of the realized estimates with the FALCON model meets 
predetermined goal regarding the accuracy of a cost estimate, also meets the expectations from practice. 
The average deviation of the realised cost estimates meets the expectations for the average deviation of 
the estimations from the respondents, 25-40%, and the target of a maximum deviation of a prediction, which 
is 30%. However, as shown in table 4 in paragraph 4.3, varies the accuracy of the individual predictions of 
the FALCON model. In table 4 is shown that 75% of the predictions has a deviation up to 39%, and 25% of 
the predictions has a deviation between 39% and 75%. These values roughly correspond to the accuracy of 
cost estimates in the conceptual phase made with a conventional method such as SSK. The deviation from 
those estimates can be about 50% as presented in chapter 1. Thus, the target of 30% is not met in several 
cases.  Although, more detailed information is available, in the budget authorization or control phase, at the 
time when the maximum deviation of 30% is normally expected. 
 
Besides, the cost estimators are willing to implement new models, and they see the application possibilities. 
The interviewees are willing to implement the model in their daily activities. This is also a factor that 
indicates that the realized model meets the expectations of the interviewees.  
 
In sum, the 'need' regarding the calculation time of the estimate, determined at the start of this project, has 
been met during this research and this 'need' is in accordance with the interviewees' 'need'. In addition, the 
'need' regarding the accuracy of the estimate, determined at the start of this project, has not been met 
during this research, although the accuracy of the predictions is in accordance with the interviewees' 'need'. 
Besides, many suggestions of the interviewees are incorporated in the model.  
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6 Conclusion, discussion, and 
recommendations 
 
This chapter focuses on the aim of the research, answering the main question. The first paragraph answers 
the main question. This paragraph presents the conclusion of the research. Thereafter, in paragraph 6.2, 
the research project is discussed. The last paragraph focuses on future research, and presents some 
recommendations.  

6.1 Conclusion 
This chapter presents a conclusion after having taken research steps and leads to the answer to the main 
question that started this research:  
 
How can FALCON improve the accuracy of cost estimates for road bridge projects in the conceptual 
phase?  
 
This research presented FALCON as a model that has the potential to be suitable for cost estimates in the 
conceptual phase of road bridge projects. FALCON is a model in the field of artificial intelligence. Therefore, 
a model as FALCON is needs to be programmed to use the model in order to solve an optimization problem 
as in this research project. The first step in order to check if FALCON can improve the accuracy of cost 
estimates for bridge projects is a programmed version of FALCON. The model must be suitable for the 
purpose for which it will be used. This means that the model must be suitable for processing of cost data of 
bridge projects. Thereafter, the realized model must be used to calculate results. Subsequently, conclusions 
can be drawn based on the results. The modelling step of the FALCON model took place as presented in 
this research project.  
 
Based on the results calculated with the model, conclusions are drawn. This research has shown that within 
the field of artificial intelligence, there are various machine learning models that can be used in the field of 
cost estimates for civil projects. First, this research shows that FALCON can provide more accurate cost 
estimates for this problem compared to the standard models. In this research, the standard models K 
nearest neighbors, the decision tree, and multiple linear regression were elaborated for the optimization 
problem of cost estimates for bridges in the conceptual phase.  
 
The FALCON model offers obviously the best solution for the optimization problem compared to three 
standard model. The solution offered by the FALCON model must also be substantiated by the existing 
situation that was outlined prior to the actual research. This comparison shows that the FALCON model can 
make a fast calculation of the total price of a bridge project in the conceptual phase. The improvement is 
enormous because the time investment for a cost estimate for bridges in the conceptual phase has been 
reduced from hours to minutes. This is in accordance with the objective set at the start of the research 
project.  
 
Calculation time is one of the factors that contributes to a solution that meets the requirements. The most 
important requirement for a cost estimate is of course the accuracy of the estimate made by the FALCON 
model. The model can make accurate cost estimates for bridges in the conceptual phase. The accuracy of 
the estimates is also in accordance with the requirements set by cost estimators in practice, as shown by 
the interviews with cost estimators from Witteveen+Bos.  
 
More accurate cost estimates are expected in the budget authorization or control phase than in the 
conceptual phase of a project. The model is not yet suitable for these phases, because the individual results 
are not all that accurate to meet those requirements. Such an improvement was one of the objectives at the 
start of the research project.  
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Referring to the literature, the accuracy of cost estimates in the conceptual phase made by Witteveen+Bos 
is in line with the standard of the Association for the Advancement of Cost Engineering, AACE. According to 
those values, the errors of cost estimates in the conceptual are in the range of 15-50%. The cost estimates 
of bridges in the conceptual phase have an average error of 24% and the individual results also correspond 
for the great majority to the bandwidth of the AACE. This means that a couple projects had an estimate that 
deviated more than 50% but less than 75%.  
 
Another major advantage is easiness of explaining the FALCON model. In addition, the employees of 
Witteveen+Bos see possibilities and are willing to apply the FALCON model in practice. This will benefit to a 
successful implementation of the FALCON model for cost estimates of bridges.  
 
In sum, the FALCON model is able to calculate a cost estimate, of bridge projects in the conceptual phase, 
more quickly, and with a comparable accuracy level as with conventional methods that are used today.  
 

6.2 Discussion 
In paragraph 6.1, a conclusion is presented for the main question of this research. Applying models like 
FALCON in the early cost estimates of road bridges is a topic that is constantly evolving. Processing and 
adopting a technique as presented in papers and applying it to a new case is done in this research project. 
In this chapter, the conditions related to the design of the model, the data, and the applicability in daily 
practice are discussed. 
 
Cost data 
The cost data have been obtained from the database of Witteveen+Bos. The process from zero to a 
complete dataset was intensive. Given the number of projects that were eventually found in the dataset, a 
disproportionate amount of time was spent on the search process, since the obtained dataset is not that 
large. Besides, the amount of 39 projects not that large if this amount of bridges is compared with the 
number of bridges that are realized in the Netherlands.   
When dividing the data into categories, many sub-parts have been combined into a category. This may 
mean that a classification has been chosen that, despite the good results, may not have been the most 
logical choice since it was a time-consuming process.  
When processing the results of the interviews, it was also explained that certain parameters were not used 
because the information about them could not be obtained from the data or with insufficient certainty. 
The estimated price by the model is the construction cost tendered by the contractor. However, this is not 
the price that the contractor ultimately pays for his project. Unfortunately, these prices do not remain 
transparent to an engineering firm such as Witteveen+Bos to this day. This means that there may be a 
difference between the estimated price for a project and the actual price of that project. 
 
FALCON model   
The quality of the output of a model as FALCON depends mostly on two factors. The model itself, and the 
quality of the dataset. When the quality of the dataset is low then the predictions are probably less accurate. 
In this model, it means that the quality of the dataset is less for the data points that are at the edge of the 
dataset. This means that less comparable projects are close to these projects when all projects are 
mapped. If the data were distributed more homogeneously, the prediction for those data points at the edge 
of the set also improves. This is of course also the case when the dataset is expanded with qualitative data. 
 
The validation interviews about the results together with cost estimators were useful. The interviews gave 
additional insights that are partially implemented. When the model is used, it is recommended that the 
outcomes that the model generates are regularly checked by a cost estimator as a double-check. The 
approval of an expert gives extra security to the model output in addition to the results of the model which 
are already presented. 
 
Concerning the predicted results, this model does not make predictions using a feedback system. The 
FALCON model is not a self-learning model.  Improvement or optimization steps must therefore mainly be 
carried out by the users themselves.  
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The output can also be optimized using other models like fast messy genetic algorithm. That FALCON can 
be used together with fast messy genetic algorithm is already mentioned in paragraph 2.1.   
 
Due to the main question, the model is now mainly assessed on one property. However, this does not mean 
that no other benefits have been achieved in addition to the improvement of cost estimates for road bridge 
projects in the early phase of a project. One of these benefits is that the model can also be used when 
looking for references.  
 
Optimum solution 
In this project, the improvement for cost estimates for road bridge projects has been investigated. In this 
research project, 4 different models have been presented. However, it is not known if FALCON is the best 
solution to this problem. For example, it could be possible that another work breakdown structure will 
increase the performance of the FALCON model or one of the models as presented in chapter 4.  
 
Comparability projects 
The results produced by the FALCON model depend on several factors. Given the number of different 
options that can be chosen, one may wonder whether this does not lead to too many different data points. 
Said differently; the variation in projects may be found too large for the number of projects in the database. 
This could be one of the reasons why the deviation in the estimated total price is larger than in the paper by 
Wang et al. (2017) on which this research is partly based, in that case only concrete multi-story buildings 
were investigated.  
 

6.3 Recommendations  
This paragraph is one with a vision for the future. After all, there are still many opportunities for research in 
the field of cost management and artificial intelligence after this research. A couple of recommendations are 
given for future research. 
 
Data 
Before any type of artificial intelligence is applied, the available data set must be properly mapped out. This 
argument applies to any type of model that depends on historical data. If the available data is mapped out in 
advance, it becomes much clearer what the opportunities are. The researcher makes a well-considered 
choice for the research method in that case.  
 
It must also be considered that the available data often needs to be processed or adjusted to be suitable for 
a computer model as FALCON. This can be a time-consuming process. In advance of a new research 
project, it must be mapped out if many data processing steps are required to use the data in the new model.  
 
Optimize output FALCON 
The output of FALCON has the potential to be improved. Improvement of the results should be realized by 
using other models. One model that can be considered in that case is fmGA (fast messy genetic algorithm). 
In paragraph 2.1, it is already presented that FALCON can be used in combination with fmGA. The 
advantage of this method is that the predicted results of FALCON can be improved by an extra iteration. In 
case a completely different model is chosen, one must start again from scratch.  
 
Other models 
As mentioned in the report. FALCON is not a trained artificial intelligence model. Other artificial intelligence 
models are also applicable to this problem. These models could probably decrease the deviation between 
an estimate and the real value of a project. In the final comparison, it becomes clear which model is most 
suitable to apply to this issue. Besides, by use of a trained model, a comparison can be made between 
untrained and trained models. 
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Other project types 
The FALCON model has the potential to be applied in other areas within the infrastructure. Examples of 
these areas are dikes, highways, and quay walls. In case the dataset size is somewhat equal to this project, 
it is recommended to choose for less complex projects. Although the 4 cost categories used in this project 
will not all be applicable in the new situation, it is of course possible to define new categories following the 
same approach as in this project through an analysis of the new cost data.  
 
Wide application FALCON 
This project was based on the Dutch RAW standard and the index numbers of the Dutch organization called 
CBS are used. This is not a problem for the implementation of this model in other companies in the 
Netherlands. Although, for international implementation, the use of international standards like the 
International Construction Management Standard would be useful. Implementation of that standard to a 
new project is recommended.  
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Appendix I  
Index data  

 
During this research, two options to index prices have been investigated. Indexing the data is the first step 
to make cost data of bridges comparable. These two indexes are described in this appendix. First, the 
‘bouwkostenindex’ of the Calcsoft company is described, thereafter the CBS index is described.  
 

Content 
 

1. Bouwkostenindex Calcsoft 
2. CBS index 

 
1. Bouwkostenindex Calcsoft 
For the cost, data swaps are necessary regarding the index of prices. These swaps are one of the steps to 
make data comparable. Therefore, an index table regarding road bridges is the most optimal. In the 
Netherlands, an index for bridges is available. This index is created by Calcsoft BV and available by use of 
a license of Witteveen+Bos. In the graph below, 1-1-2010 is 100. 
 
Important to note is the difference between the construction cost index (in Dutch: bouwkostenindex) and the 
tender index (in Dutch: aanbestedingsindex). The construction cost index visualizes the development of the 
actual construction costs over time. The tender index visualizes the development of the bids made by 
contractors on projects. The difference between these indexes therefore also suggests the profits within the 
companies. 
 
In this project, bids of contractors are used as input for the model. The graph in figure 24 indicates how 
projects in the former 12 years can be placed in time. Table 11 presents the numerical values.  
 

 
Figure 24 Index bridge price period 2008-2020 ("Bouwkostenindex," 2020) 
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Table 11 Construction cost index and tender index("Bouwkostenindex," 2020) 

 

Construction 
cost index 

Percentage 
difference 

Tender 
index 

Percentage 
difference 

Jan-08 98.86  101.91  
Jan-09 101.3 2.47 100.56 -1.32 

Jan-10 100 -1.28 98.09 -2.46 

Jan-11 100.45 0.45 97.6 -0.50 

Jan-12 103.25 2.79 97.83 0.24 

Jan-13 104.4 1.11 99.16 1.36 

Jan-14 104.81 0.39 99.39 0.23 

Jan-15 106.86 1.96 102.65 3.28 

Jan-16 108.1 1.16 107.68 4.90 

Jan-17 109.55 1.34 112.5 4.48 

Jan-18 112.23 2.45 114.73 1.98 

Jan-19 116.82 4.09 121.95 6.29 

Jan-20 118.53 1.46 119.18 -2.27 

 
2. CBS index  
More than one index is available for bridges. The governmental organization CBS (Centraal Bureau voor de 
Statistiek) presents index numbers for bridges since 2000. This creates an opportunity to also implement 
projects from the period 2000-2008.  
 
CBS used for all his indexes PPI, DPI, and CPI data. This means Product Price Index, Service Price Index, 
and Consumer Price Index (in Dutch: Producenten Prijs Index, Diensten Prijs Index, and Consumenten Prijs 
Index). In other words, prices paid by clients are used. 
For this project, the annual indices of CBS are used. This creates the option to also use projects in the 
period before 2008. Via this method, more data points can be used. The numbers are presented in table 12. 
 
Table 12 CBS index bridges(CBS, 2020)  

Measurement 
moment index 

Index number 
(2000=100) 

Percentage 
difference 

Jan-00 98.5 
 

Jan-01 104.7 6.3 

Jan-02 107.1 2.3 

Jan-03 111.4 0.8 

Jan-04 117.6 -1.3 

Jan-05 107.1 0.5 

Jan-06 111.4 4 

Jan-07 117.6 5.5 

Jan-08 122 3.7 

Jan-09 130.9 7.3 

Jan-10 119 -9.1 

Jan-11 123.5 3.7 

Jan-12 124.5 0.8 

Jan-13 126 1.2 

Jan-14 126.4 0.3 

Jan-15 124.7 -1.3 

Jan-16 124.1 -0.5 

Jan-17 128.2 3.2 

Jan-18 132.6 3.5 

Jan-19 135.3 2 

Jan-20 137.3 1.5 
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Appendix II  
RAW descriptions for bridges  

 
In this appendix, the categories of work for bridge projects are mentioned including the RAW descriptions. 
These RAW descriptions are mentioned per category of work.  
  
1. Preparatory work 
10.1 Tijdelijke maatregelen en voorzieningen 
10.31.12 Verwijderen hek 
11.22 Sloopwerk betonwerk 
11.23 Sloopwerk staalwerk 
25.11 Verwijderen riolering 
34.02.02 Verwijderen lichtmast 
47.21 Verwijderen duikers 
51.01 Opruimingswerk 
51.41 Verwijderen beplantingen 
51.51 Verwijderen bomen en stobben 
52.71 Verwijderen constructies (beschoeiing) 
81.01 - 81.07 Verwijderen verharding 
 
2. Soil work 
22.01 Grond ontgraven 
22.02 Grond vervoeren 
22.03 Grond verwerken 
22.04 Grond scheiden, verdichten en profileren 
22.1 Cultuurtechnisch grondwerk 
52.11 Bestorting als verdediging c.q. filter 
52.71 Verwijderen constructies 
 
3. Foundation Structure (including bemaling/kuip/damwanden) 
21 Bemalingen 
41 Funderingsconstructies 
44 Houtconstructies 
 
4. Substructure (pijlers, vloer, landhoofd, vleugelwand, ligger, opleggingen, deksloof, poeren, 
keerwand) 
42.11 Toepassen bekisting 
42.11.31 Aanbrengen werkvloer 
42.13 Toepassen ondersteuningsconstructie 
42.2 Vooraf vervaardigde betonelementen 
42.21 Aanbrengen betonstaal 
42.31 Aanbrengen beton 
42.55 Aanbrengen opleggingen 
43.17 Transporteren en monteren staalconstructies 
44 Houtconstructies 
47.31.21 Aanbrengen betonnen stootplaten 
80.03 Aanbrengen van een gebonden wegfundering 
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5. Superstructure (randen, vloer, ankers (leuning), voegconstructie, schampkanten) 
42.11 Toepassen bekisting 
42.11.31 Aanbrengen werkvloer 
42.13 Toepassen ondersteuningsconstructie 
42.21 Aanbrengen betonstaal 
42.31 Aanbrengen beton 
43.17 Transporteren en monteren staalconstructies 
47.31.11 Aanbrengen brugdek van prefab betonelementen 
44 Houtconstructies 
 
6. Pavements 
32 Wegbebakening 
81 Bitumineuze verhardingen 
82 Betonverhardingen 
83 Elementenverhardingen 
42.81 Afwerken taluds (verharding) 
 
7. Railings 
33.11 Aanbrengen geleiderailmaterialen 
33.41 Aanbrengen betonnen geleidebarrier 
 
8. External finishes (Groeninrichting / afwatering groenvoorzieningen / openbare ruimte) 
25 Riolering (aanbrengen) 
42.11 Toepassen bekisting 
42.11.31 Aanbrengen werkvloer 
42.31 Aanbrengen beton 
47.22 Duikers 
34 Verlichting 
10.31 Afrasteringen 
51 Groenvoorzieningen 
 
9. General Cost 
56 Conserveringswerken 
41.xx Maken berekeningen en tekeningen 
42.xx Maken berekeningen en tekeningen 
43.xx Maken berekeningen en tekeningen 
62 Tijdelijke verkeersmaatregelen 
41.24 Uitvoeren metingen 
10.13 Tijdelijke voorzieningen (hekwerken, gronddepot) 
10.23 Communicatie 
10.05 Inzetten werknemers en materieel 
10.12 Gebruik hulpmiddelen 
10.16 Tijdelijke voorzieningen bescherming te handhaven beplanting 
18.14 Baggerdepots 
 
10. Overhead 
10.11 Werkterrein 
92 Uitvoeringskosten 
93 Algemene kosten 
94 Winst en risico 
01.08 Bijdragen 
10.03 Stelposten 
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Appendix III  
Extensive explanation results FALCON 
 
This appendix shows all results and predictions of tests with the FALCON model. For the generation of the 
results, cross-fold validation is used as method. Cross fold validation is possible with different sample sizes. 
In this research project, results are generated for three different test sample sizes: 1, 4, 8 (n-fold, 5-fold, 10-
fold). In the end, it also shows if the sample size has some influence on the results of this method. 
Before the results of 10-fold and 5-fold cross-validation are generated is an improvement of the results by a 
hyperparameter analysis investigated. The second section explains the hyperparameter analysis. The 10-
fold cross-validation results are shown in the third section. The fourth section shows the 5-fold cross-
validation results.  
 

Content 
 

1. N-fold cross-validation 
2. Hyperparameter analysis 
3. 10-Fold cross-validation 
4. 5-Fold cross-validation 
5. Findings 
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1. N-fold cross-validation 
In the case of n-fold cross-validation, the amount of test samples is equal to the number of projects in the 
database. Table 13 shows the results of all separate projects, in this case, equal to the size of a sample, 
which is included in the visualization. 
 
Table 13: Absolute errors FALCON N-fold cross-validation  

Total absolute 
error in % 

Foundation 
absolute error in % 

Substructure 
absolute error in % 

Superstructure 
absolute error in % 

Railing absolute 
error in % 

Project 2 42% 71% 35% 18% 203% 

Project 3 93% 41% 87% 98% 0% 

Project 4 2% 13% 2% 29% 29% 

Project 7 50% 250% 34% 61% 61% 

Project 8 6% 113% 67% 41% 234% 

Project 10 43% 11% 62% 99% 34% 

Project 11 1% 107% 24% 38% 100% 

Project 12 36% 38% 23% 57% 39% 

Project 13 23% 46% 5% 1% 94% 

Project 14 2% 7% 2% 18% 23% 

Project 15 20% 43% 47% 26% 33% 

Project 16 7% 23% 21% 24% 22% 

Project 17 46% 61% 31% 61% 17% 

Project 18 3% 31% 27% 31% 18% 

Project 19 75% 107% 26% 497% 76% 

Project 20 14% 75% 55% 52% 179% 

Project 21 65% 66% 78% 46% 54% 

Project 22 24% 199% 20% 49% 100% 

Project 23 5% 62% 28% 5% 83% 

Project 24 2% 32% 4% 1% 49% 

Project 25 10% 70% 14% 66% 87% 

Project 26 40% 52% 85% 83% 64% 

Project 27 3% 41% 43% 60% 100% 

Project 28 28% 9% 138% 22% 67% 

Project 29 9% 54% 416% 31% 28% 

Project 30 29% 43% 7% 50% 32% 

Project 32 2% 63% 23% 28% 2% 

Project 33 6% 39% 19% 40% 2% 

Project 34 38% 36% 32% 25% 1% 

Project 36 25% 58% 30% 45% 34% 

Project 37 2% 77% 30% 47% 9% 

Project 38 26% 24% 80% 26% 6% 

Project 39 19% 63% 35% 7% 26% 

 
Project 1, 5, 6, 9, 31, and 35 are not included in this list. These projects all form a real deviation from the 
data. This does not mean that these six projects are bad data points. Currently too little comparable 
material is available in the dataset.  Therefore, it is difficult to make a cost estimate for these projects if they 
are the test case.  
Project 1 is unique because of a lot of ground reinforcement. Project 5 is unique because of the concrete 
culvert construction. Project 6 is unique because the bridge is movable. Project 31 is unique because it 
concerns an old bridge that is replaced with a new one. Project 35 is unique because of the size of the 
bridge deck, 1132m2 is a lot larger than the other projects in the dataset.   
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2. Hyperparameter analysis  
In the hyperparameter analysis, the triangular function is replaced by a Gaussian membership function. 
After testing all projects, the same projects as mentioned above were omitted and the results of this 
analysis are shown in table 14. On average the results as shown below are not an improvement in 
comparison with the results presented in the former section. Therefore, the 5-fold and 10-fold cross-
validation is not executed by use of a Gaussian membership function.  
 
Table 14: Results hyperparameter analysis Gaussian membership function  

Foundation 
error in % 

Substructure 
error in % 

Superstructure 
error in % 

Railing 
error in % 

Total absolute 
error in % 

Project 2 71 89 18 62 60 

Project 3 41 87 98 0 93 

Project 4 13 2 29 46 1 

Project 7 250 16 69 57 52 

Project 8 90 67 41 9 58 

Project 10 0 63 99 58 11 

Project 11 107 24 38 100 1 

Project 12 34 28 57 91 58 

Project 13 46 5 1 113 23 

Project 14 7 2 18 32 0 

Project 15 43 47 26 9 27 

Project 16 23 21 24 8 14 

Project 17 61 31 61 7 38 

Project 18 31 27 31 9 10 

Project 19 107 26 497 27 88 

Project 20 96 31 7 130 22 

Project 21 29 78 52 20 55 

Project 22 87 73 49 85 60 

Project 23 62 403 5 37 70 

Project 24 58 4 1 53 2 

Project 25 71 54 53 100 5 

Project 26 52 94 83 5 26 

Project 27 41 362 60 0 109 

Project 28 9 138 22 38 33 

Project 29 54 416 31 0 2 

Project 30 43 51 50 111 17 

Project 32 63 23 28 30 5 

Project 33 39 19 40 23 1 

Project 34 5 16 10 35 30 

Project 36 58 30 69 20 46 

Project 37 77 30 47 61 6 

Project 38 418 80 17 21 7 

Project 39 63 25 7 34 32 

Average 68 75 53 43 32 

 
3. 10-Fold cross-validation 
In the case of 10-Fold cross-validation, the test sample size is 4. In each test sample are thus 4 different 
projects.  
In the second table, the results for each project are shown for 10-fold cross-validation. Figure 25, table 15, 
and table 16 show the results. In the n-fold cross-validation section, some project results were omitted. The 
omitted results are the same projects as in the case of n-fold cross-validation. The values above a boxplot 
maximum are only shown in table 15. 
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Figure 25: Absolute errors FALCON 10-Fold cross-validation 
 
Table 15: Values Boxplots FALCON 10-fold cross-validation  

Foundation Substructure Superstructure Railing Total error 

Value above maximum 
 

416% 
  

108% 

Value above maximum 
 

403% 
 

297% 100% 

Value above maximum 500% 362% 497% 203% 92% 

Maximum error 113% 138% 99% 100% 85% 

Upper Quartile 67% 73% 64% 83% 38% 

Average error 'X' 64% 70% 55% 52% 29% 

Median 46% 31% 38% 33% 18% 

Lower Quartile 33% 21% 19% 8% 4% 

Minimum error 5% 2% 1% 0% 1% 
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Table 16: Absolute errors FALCON 10-fold cross-validation  
Absolute error 
Foundation in % 

Absolute error 
substructure in % 

Absolute error 
superstructure in % 

Absolute error 
railing in % 

Absolute total 
error in % 

Project 2 71% 35% 18% 203% 42% 

Project 3 41% 87% 98% 0% 93% 

Project 4 13% 2% 29% 29% 2% 

Project 7 43% 16% 88% 61% 19% 

Project 8 113% 67% 41% 6% 13% 

Project 10 60% 35% 99% 34% 16% 

Project 11 107% 24% 38% 100% 1% 

Project 12 34% 23% 57% 39% 47% 

Project 13 46% 5% 1% 94% 23% 

Project 14 7% 2% 18% 23% 2% 

Project 15 43% 47% 26% 33% 20% 

Project 16 23% 21% 24% 22% 7% 

Project 17 61% 31% 61% 17% 100% 

Project 18 31% 27% 31% 18% 3% 

Project 19 107% 26% 497% 7% 85% 

Project 20 67% 31% 7% 297% 2% 

Project 21 29% 78% 29% 50% 37% 

Project 22 68% 20% 49% 100% 36% 

Project 23 62% 403% 5% 83% 92% 

Project 24 53% 4% 1% 100% 3% 

Project 25 71% 54% 66% 86% 3% 

Project 26 44% 85% 83% 64% 39% 

Project 27 41% 362% 60% 0% 108% 

Project 28 9% 138% 22% 67% 28% 

Project 29 54% 416% 31% 28% 9% 

Project 30 43% 26% 50% 32% 23% 

Project 32 55% 47% 20% 1% 5% 

Project 33 5% 19% 12% 0% 4% 

Project 34 36% 32% 82% 1% 11% 

Project 36 58% 4% 45% 34% 18% 

Project 37 77% 30% 47% 9% 2% 

Project 38 500% 80% 75% 6% 31% 

Project 39 28% 35% 7% 84% 18% 

 
4. 5-Fold cross-validation 
In the case of 5-Fold cross-validation, the test sample size is 8. In each test sample are thus 8 different 
projects.  
In the second table, the results for each project are shown for 5-fold cross-validation. Figure 26, table 17, 
and table 18 show the results. In the n-fold cross-validation section, some project results were omitted. The 
omitted results are somewhat the same projects as in the case for n-fold cross-validation. In this case, one 
extra project is omitted. The prediction for the foundation of project 12 becomes bad because the most 
comparable project for the foundation of project 12 was inside the test sample. The values above a boxplot 
maximum are only shown in table 17.   
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Figure 26: Absolute errors FALCON 5-Fold cross-validation 
 
Table 17: Values Boxplots FALCON 5-fold cross-validation  

Foundation Substructure Superstructure Railing Total 
error 

Value above maximum 418% 416% 
   

Value above maximum 250% 403% 
 

297% 120% 

Value above maximum 199% 362% 497% 203% 91% 

Maximum error 113% 138% 99% 100% 85% 

Upper Quartile 72% 74% 52% 66% 40% 

Average error 'X' 73% 74% 52% 47% 30% 

Median 53% 35% 37% 27% 25% 

Lower Quartile 33% 21% 19% 6% 6% 

Minimum error 5% 2% 1% 0% 1% 
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Table 18: Absolute errors FALCON 5-fold cross-validation  
Absolute error 
foundation in % 

Absolute error 
substructure in % 

Absolute error 
superstructure in % 

Absolute error 
railing in % 

Absolute total 
error in % 

Project 2 71% 35% 18% 203% 42% 

Project 3 73% 99% 96% 0% 91% 

Project 4 13% 2% 29% 4% 9% 

Project 7 250% 16% 61% 61% 55% 

Project 8 113% 60% 41% 6% 10% 

Project 10 60% 35% 99% 34% 16% 

Project 11 107% 24% 38% 100% 1% 

Project 13 46% 5% 1% 94% 23% 

Project 14 7% 2% 18% 23% 2% 

Project 15 43% 47% 26% 33% 20% 

Project 16 53% 59% 53% 48% 26% 

Project 17 61% 31% 61% 17% 46% 

Project 18 38% 48% 38% 21% 33% 

Project 19 107% 26% 497% 7% 85% 

Project 20 67% 31% 7% 297% 2% 

Project 21 29% 78% 29% 20% 38% 

Project 22 199% 20% 49% 79% 27% 

Project 23 62% 403% 4% 21% 81% 

Project 24 32% 4% 1% 49% 2% 

Project 25 27% 54% 66% 86% 30% 

Project 26 52% 85% 83% 64% 40% 

Project 27 41% 362% 37% 0% 120% 

Project 28 9% 138% 22% 67% 28% 

Project 29 54% 416% 31% 0% 2% 

Project 30 43% 26% 50% 32% 23% 

Project 32 55% 47% 20% 1% 5% 

Project 33 5% 19% 12% 0% 4% 

Project 34 36% 32% 25% 1% 30% 

Project 36 58% 4% 45% 34% 18% 

Project 37 77% 30% 47% 9% 2% 

Project 38 418% 80% 51% 16% 27% 

Project 39 28% 35% 7% 84% 18% 

 
5. Findings 
Based on the presented results above, table 19 is formed to show the average errors per sample size. This 
table is shown below. It must be concluded that the total error is the lowest for N-fold cross-validation. In 
this case, each test project can be compared with the highest number of reference projects.  
 
The error for the railing is another interesting topic. The error is smaller in the case of 5-fold cross-
validation. An explanation for this may be that the fit with a project that at first sight matches less in terms of 
properties does match well in terms of price of the project.   
 
Table 19: Average absolute errors different types of cross-validation 

 Foundation Substructure Superstructure Railing Total 

N-fold 61% 49% 54% 58% 24% 

10-fold 64% 70% 55% 52% 29% 

5-fold 73% 74% 52% 47% 30% 
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Appendix IV  
Extensive explanation results multiple linear regression  
 
This appendix shows all results and predictions for the multiple linear regression method. Per type of cross-
validation, first, the results of the hyperparameter analysis are presented, followed by the real results. In the 
end, it also shows if the sample size has some influence on the results of this method.  
 

Content 
 

1. Hyperparameter analysis n-fold cross-validation 
2. Results n-fold cross-validation 
3. Hyperparameter analysis 10-fold cross-validation 
4. Results 10-fold cross-validation 
5. Hyperparameter analysis 5-fold cross-validation 
6. Results 5-fold cross-validation 
7. Findings 
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1. Hyperparameter analysis n-fold cross-validation 
As mentioned in paragraph 6.1 a hyperparameter analysis is executed. Table 20 shows all test results. The 
final result is the most frequently occurring outcome. This result is used for the real model results. 
 
Table 20: Results hyperparameter analysis multiple linear regression n-fold cross-validation  

Foundation Substructure Superstructure Railing 

Fold Fit 
intercept 

Normalize Fit 
intercept 

Normalize Fit 
intercept 

Normalize Fit 
intercept 

Normalize 

1 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

2 FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE 

3 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

4 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

5 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

6 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

7 TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE 

8 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

9 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

10 FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE 

11 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

12 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

13 FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE 

14 FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE 

15 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

16 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

17 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

18 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

19 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

20 FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE 

21 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

22 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

23 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

24 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

25 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

26 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

27 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

28 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

29 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

30 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

31 FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE 

32 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

33 FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE 

34 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

35 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

36 FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE 

37 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

38 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

39 FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE 

Result FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 
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2. Results n-fold cross-validation 
Using the multiple linear regression module in Python, results are generated for each project. Table 21 
shows these results. Before the absolute errors were calculated, negative values were replaced for zero.  
Six projects are excluded from the list, they are marked as an outlier. Project 5,6,9, 22, 26, and 27 are these 
projects. A cause for a misfit can be explained for projects 5,6,9 as mentioned in Appendix III.  
The other projects are marked as extreme outliers and therefore removed.  
 
Table 21: Absolute errors n-fold multiple regression analysis  

Absolute Error 
Foundation in % 

Absolute error 
substructure in % 

Absolute error 
superstructure in % 

Absolute error 
railing in % 

Absolute total 
error in % 

Project 1 218% 100% 100% 44% 28% 

Project 2 49% 17% 100% 22% 46% 

Project 3 85% 77% 93% 0% 82% 

Project 4 71% 38% 147% 71% 110% 

Project 7 222% 88% 130% 31% 48% 

Project 8 120% 60% 35% 161% 23% 

Project 10 96% 55% 100% 161% 9% 

Project 11 60% 66% 9% 89% 41% 

Project 12 89% 100% 100% 55% 40% 

Project 13 57% 49% 30% 359% 24% 

Project 14 100% 254% 100% 15% 27% 

Project 15 102% 113% 224% 53% 150% 

Project 16 22% 34% 52% 34% 10% 

Project 17 132% 87% 249% 2% 130% 

Project 18 56% 11% 106% 27% 18% 

Project 19 38% 84% 470% 19% 143% 

Project 20 81% 87% 100% 79% 76% 

Project 21 58% 89% 100% 11% 80% 

Project 23 100% 267% 100% 16% 2% 

Project 24 63% 67% 10% 164% 38% 

Project 25 55% 683% 26% 33% 103% 

Project 28 87% 106% 100% 35% 6% 

Project 29 108% 629% 86% 37% 83% 

Project 30 10% 60% 100% 88% 73% 

Project 31 100% 4% 100% 0% 76% 

Project 32 61% 89% 58% 9% 24% 

Project 33 79% 100% 130% 38% 14% 

Project 34 61% 100% 100% 4% 17% 

Project 35 100% 1220% 100% 100% 76% 

Project 36 100% 49% 166% 105% 24% 

Project 37 100% 73% 495% 9% 176% 

Project 38 1970% 100% 89% 53% 47% 

Project 39 69% 100% 83% 19% 44% 
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3. Hyperparameter analysis 10-fold cross-validation 
For the 10-fold cross-validation variant, a hyperparameter analysis is also executed. The results are shown 
in table 22.  
 
Table 22: Results hyperparameter analysis multiple linear regression 10-fold cross-validation  

Foundation Substructure Superstructure Railing 

Fold Fit 
intercept 

Normalize Fit 
intercept 

Normalize Fit 
intercept 

Normalize Fit 
intercept 

Normalize 

1 FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

2 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

3 FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE 

4 TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE 

5 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

6 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

7 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

8 FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE 

9 FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE 

10 FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

Result FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE 

 
 
4. Results 10-fold cross-validation 
Using the multiple linear regression module in Python, results are generated for each project. Figure 27, 
table 23, and table 24 show the results. Before the absolute errors were calculated, negative values were 
replaced for zero. Values above a maximum of a boxplot are not visualized, these are shown in the 
corresponding table. 
 
Six projects are excluded from the list, they are marked as an outlier. Project 5,6,9, 19, 22, and 26 are these 
projects. A cause for a misfit can be explained for projects 5,6,9 as mentioned in Appendix III.  
The other projects are marked as extreme outliers and therefore removed.  
 

 
Figure 27: Absolute errors multiple linear regression 10-fold cross-validation 
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Table 23: Values boxplots multiple linear regression 10-fold cross-validation  

Foundation Substructure Superstructure Railing Total 
error 

Value above maximum 
 

836% 
   

Value above maximum 2308% 546% 
   

Value above maximum 752% 400% 496% 
  

Value above maximum 622% 305% 318% 348% 
 

Value above maximum 292% 268% 285% 160% 
 

Maximum error 206% 194% 223% 139% 190% 

Upper Quartile 134% 140% 115% 73% 104% 

Average error 'X' 204% 146% 102% 57% 67% 

Median 100% 100% 92% 35% 46% 

Lower Quartile 74% 60% 31% 18% 25% 

Minimum error 11% 13% 3% 0% 5% 

 
Table 24: Absolute errors 10-fold multiple regression analysis  

Absolute Error 
Foundation in % 

Absolute error 
substructure in % 

Absolute error 
superstructure in % 

Absolute error 
railing in % 

Absolute total 
error in % 

Project 1 292% 100% 100% 44% 14% 

Project 2 95% 108% 25% 28% 22% 

Project 3 137% 59% 92% 0% 76% 

Project 4 81% 32% 165% 70% 117% 

Project 7 206% 71% 107% 43% 84% 

Project 8 107% 79% 34% 160% 10% 

Project 10 77% 305% 44% 139% 77% 

Project 11 71% 69% 10% 86% 46% 

Project 12 191% 100% 5% 59% 21% 

Project 13 33% 61% 28% 348% 27% 

Project 14 100% 268% 100% 19% 32% 

Project 15 124% 154% 285% 58% 190% 

Project 16 11% 32% 4% 34% 12% 

Project 17 132% 127% 318% 12% 167% 

Project 18 56% 17% 91% 26% 11% 

Project 20 98% 35% 9% 59% 46% 

Project 21 60% 85% 45% 17% 66% 

Project 23 100% 327% 100% 6% 13% 

Project 24 47% 76% 3% 164% 43% 

Project 25 44% 546% 10% 41% 116% 

Project 27 43% 400% 112% 0% 189% 

Project 28 97% 194% 100% 28% 28% 

Project 29 130% 836% 119% 35% 111% 

Project 30 622% 100% 41% 76% 55% 

Project 31 100% 13% 100% 0% 72% 

Project 32 98% 100% 97% 28% 39% 

Project 33 90% 100% 173% 45% 28% 

Project 34 100% 80% 53% 6% 33% 

Project 35 752% 24% 42% 100% 160% 

Project 36 100% 82% 223% 107% 43% 

Project 37 100% 100% 496% 2% 166% 

Project 38 2308% 100% 187% 21% 96% 

Project 39 146% 49% 55% 22% 5% 
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5. Hyperparameter analysis 5-fold cross-validation 
For the last variant, a hyperparameter analysis is also executed. The results are shown in table 25.  
 
Table 25: Results hyperparameter analysis multiple linear regression 5-fold cross-validation  

Foundation Substructure Superstructure Railing  
Fit 
intercept 

Normalize Fit 
intercept 

Normalize Fit 
intercept 

Normalize Fit 
intercept 

Normalize 

1 TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE 

2 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

3 FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE 

4 FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE 

5 FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE 

Result FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE 

 
6. Results 5-fold cross-validation 
Using the multiple linear regression module in Python, results are generated for each project. Figure 28, 
table 26, and table 27 show the results. Before the absolute errors were calculated, negative values were 
replaced for zero. Values above a maximum of a boxplot are not visualized, these are shown in the 
corresponding table. 
 
Six projects are excluded from the list, they are marked as an outlier. Project 5, 9, 11, 19, 22, 35, and 39 
are these projects. A cause for a misfit can be explained for projects 5, 9, and 35 as mentioned in Appendix 
III.  
The other projects are marked as extreme outliers and therefore removed.  
 

 
Figure 28: Absolute errors multiple linear regression 5-fold cross-validation 
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Table 26: Values boxplots multiple linear regression 5-fold cross-validation  
Foundation Substructure Superstructure Railing Total error 

Value above maximum 
 

882% 
   

Value above maximum 5301% 559% 519% 
  

Value above maximum 1312% 443% 320% 
 

222% 

Value above maximum 953% 415% 291% 235% 210% 

Value above maximum 680% 316% 275% 177% 167% 

Maximum error 302% 163% 191% 119% 107% 

Upper Quartile 162% 122% 100% 77% 79% 

Average error 'X' 344% 148% 92% 53% 68% 

Median 100% 100% 61% 37% 46% 

Lower Quartile 65% 49% 9% 15% 23% 

Minimum error 6% 5% 1% 0% 6% 

 
Table 27: Absolute errors 5-fold multiple regression analysis  

Absolute Error 
Foundation in % 

Absolute error 
substructure in % 

Absolute error 
superstructure in % 

Absolute error 
railing in % 

Absolute total 
error in % 

Project 1 191% 100% 50% 45% 20% 

Project 2 100% 443% 5% 16% 68% 

Project 3 172% 19% 99% 0% 73% 

Project 4 74% 43% 8% 75% 47% 

Project 6 1312% 882% 74% 100% 210% 

Project 7 259% 100% 82% 173% 44% 

Project 8 103% 80% 60% 88% 15% 

Project 10 130% 316% 1% 78% 107% 

Project 12 302% 100% 8% 43% 35% 

Project 13 6% 68% 14% 177% 32% 

Project 14 100% 122% 100% 14% 9% 

Project 15 90% 147% 291% 62% 189% 

Project 16 17% 38% 19% 40% 21% 

Project 17 119% 122% 320% 15% 167% 

Project 18 46% 20% 7% 35% 19% 

Project 20 88% 5% 4% 69% 28% 

Project 21 62% 81% 4% 19% 53% 

Project 23 100% 99% 100% 1% 81% 

Project 24 34% 42% 31% 235% 6% 

Project 25 12% 415% 73% 18% 43% 

Project 26 953% 100% 100% 19% 48% 

Project 27 12% 559% 32% 0% 175% 

Project 28 133% 163% 100% 38% 30% 

Project 29 131% 100% 28% 28% 10% 

Project 30 680% 100% 62% 78% 54% 

Project 31 92% 17% 100% 0% 66% 

Project 32 94% 100% 109% 24% 48% 

Project 33 87% 100% 191% 41% 37% 

Project 34 31% 17% 7% 2% 34% 

Project 26 85% 76% 60% 119% 17% 

Project 37 100% 100% 519% 11% 177% 

Project 38 5301% 75% 275% 32% 222% 
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7. Findings 
 
Based on the presented results above, table 28 is formed to show the average errors per sample size. This 
table is shown below. It must be concluded that the total error is the lowest for n-fold cross-validation. In this 
case, the multiple linear regression calculation is made based on the highest number of reference projects. 
The average deviation per category is quite large for each category.  
 
Table 28: Average absolute errors different types of cross-validation 

 Foundation Substructure Superstructure Railing Total 

N-fold 143% 153% 121% 59% 57% 

10-fold 204% 146% 102% 57% 67% 

5-fold 344% 148% 92% 53% 68% 
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Appendix V  
Extensive explanation results decision trees  
 
In this appendix, the results for the decision tree results are given. All results are given for the 
hyperparameter analysis and the results in case the amount of folds is equal to 5, 10, and 39. As result, it 
can be concluded which parameters and fold size give the best solution.   
 

Content 
 

1. Hyperparameter analysis n-fold cross-validation 
2. Results n-fold cross-validation 
3. Hyperparameter analysis 10-fold cross-validation 
4. Results 10-fold cross-validation 
5. Hyperparameter analysis 5-fold cross-validation 
6. Results 5-fold cross-validation 
7. Findings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



       

83 

  

1. Hyperparameter analysis n-fold cross-validation 
Before the results with the use of the decision tree are generated using n-fold cross-validation, a 
hyperparameter optimization was done. Table 29 shows the results of the hyperparameter analysis. 
 
Table 29: Results 39Fold hyperparameter analysis decision tree 

Fold Max depth Min samples leaf Min samples split 

1 6 4 9 

2 4 1 2 

3 4 1 2 

4 4 1 2 

5 5 2 2 

6 4 1 4 

7 5 3 7 

8 4 1 4 

9 4 1 3 

10 3 1 3 

11 6 4 2 

12 4 1 3 

13 5 4 9 

14 4 1 2 

15 4 1 2 

16 4 1 2 

17 4 1 2 

18 4 1 2 

19 4 1 2 

20 4 1 2 

21 4 1 2 

22 4 1 2 

23 4 1 2 

24 4 1 2 

25 4 1 2 

26 4 1 2 

27 5 1 2 

28 4 1 2 

29 4 1 2 

30 4 1 2 

31 4 1 3 

32 4 1 2 

33 5 4 9 

34 4 1 2 

35 6 4 2 

36 3 1 5 

37 3 1 5 

38 4 1 2 

39 4 1 2 

Result 4 1 2 
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2. Results n-fold cross-validation 
After finishing the hyperparameter optimization, results are generated for the total price of a project and 
presented in table 30. In the testing phase, it became clear that the best results with this method are 
generated in case the total price is predicted. Therefore, only the total price, the most important price, is 
predicted.  
 
Table 30: Absolute errors decision tree with n-fold cross-validation 

Project number Abs. Error 

Project 1 21% 

Project 2 17% 

Project 3 92% 

Project 4 18% 

Project 5 91% 

Project 6 88% 

Project 7 8% 

Project 8 48% 

Project 10 61% 

Project 11 34% 

Project 12 13% 

Project 13 15% 

Project 14 24% 

Project 17 85% 

Project 19 7% 

Project 20 37% 

Project 21 77% 

Project 22 7% 

Project 23 25% 

Project 24 8% 

Project 26 23% 

Project 26 103% 

Project 27 21% 

Project 28 20% 

Project 28 58% 

Project 30 14% 

Project 31 57% 

Project 32 28% 

Project 33 34% 

Project 34 17% 

Project 35 39% 

Project 36 6% 

Project 37 17% 

Project 38 23% 

Project 39 6% 

Average 36% 
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3. Hyperparameter analysis 10-fold cross-validation 
The same method for hyperparameter analysis is applied to the 5-fold case. Results of this hyperparameter 
analysis are shown in table 31. The end result is equal to the result of the hyperparameter analysis of the 
39-fold case.  
 
Table 31: Results 5Fold hyperparameter analysis decision tree 

10Fold 
   

Fold Max depth Min samples leaf Min samples split 

1 5 1 2 

2 7 3 7 

3 4 1 2 

4 8 1 3 

5 3 1 5 

6 4 1 2 

7 4 1 2 

8 4 1 5 

9 5 4 2 

10 4 1 2 

Result 4 1 2 

 
4. Results 10-fold cross-validation 
Using the optimal parameters, the results are generated. These results are corrected for outliers and the 
results are shown in figure 29. Results from projects 9, 15,19,25, and 39 are omitted. Project 9 is a wooden 
bridge. The other projects are extreme outliers and therefore removed. Table 32 shows the results per 
project.  
 
The lowest value is 2%, the lower quartile value is 16%, the median 23%, the average value is 35% (x), the 
upper quartile value is 46% and the highest value is 85%. Three values are above the maximum value of 
the boxplot: 93%, 95%, and 103%.   
 
 

 
Figure 29: Results decision tree 10-Fold cross-validation 
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Table 32: Absolute errors decision tree with 10-fold cross-validation 

Project Absolute error 

Project 1 21% 

Project 2 16% 

Project 3 93% 

Project 4 18% 

Project 5 95% 

Project 6 41% 

Project 7 16% 

Project 8 48% 

Project 10 21% 

Project 11 33% 

Project 12 13% 

Project 13 32% 

Project 14 24% 

Project 16 103% 

Project 17 85% 

Project 18 63% 

Project 20 45% 

Project 21 80% 

Project 22 7% 

Project 23 25% 

Project 24 12% 

Project 26 18% 

Project 27 23% 

Project 28 11% 

Project 29 18% 

Project 30 14% 

Project 31 57% 

Project 32 34% 

Project 33 40% 

Project 34 2% 

Project 35 39% 

Project 36 6% 

Project 37 17% 

Project 38 23% 

 
5. Hyperparameter analysis 5-fold cross-validation 
For the 5-fold case, the hyperparameter analysis is executed. As shown in table 33, the maximum depth is 
not clear. The value for the maximum depth is set equal to the 10-fold and n-fold settings. The maximum 
depth is thus 4.  
 
Table 33: Results 5Fold hyperparameter analysis decision tree 

5Fold 
   

Fold Max depth Min samples leaf Min samples split 

1 3 3 2 

2 8 1 3 

3 2 1 5 

4 5 1 7 

5 4 3 7 

Result ? 1 7 
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6. Results 5-fold cross-validation 
Using the optimal parameters as shown in the former paragraph, the results are calculated. Table 34 shows 
the numerical values. In figure 30, the results without outliers are visualized. The results of projects 9, 15, 
16, and 23 are omitted. Project 9 is as already mentioned the only wooden bridge. Project 15,16, and 23 
are extreme outliers in this case.  
 
The lowest value is 2%, the lower quartile value is 17%, the median 28%, the average value is 36% (x), the 
upper quartile value is 53% and the highest value is 97%. 
 

 
Figure 30: Results decision tree 5-fold cross-validation 
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Table 34: Absolute errors decision tree with 5-fold cross-validation 

Project Absolute error 

Project 1 69% 

Project 2 18% 

Project 3 97% 

Project 4 26% 

Project 5 22% 

Project 6 66% 

Project 7 53% 

Project 8 48% 

Project 10 21% 

Project 11 33% 

Project 12 10% 

Project 13 32% 

Project 14 21% 

Project 17 72% 

Project 18 70% 

Project 19 35% 

Project 20 45% 

Project 21 80% 

Project 22 7% 

Project 24 60% 

Project 25 18% 

Project 26 28% 

Project 27 14% 

Project 28 14% 

Project 29 19% 

Project 30 14% 

Project 31 56% 

Project 32 39% 

Project 33 46% 

Project 34 2% 

Project 35 39% 

Project 36 16% 

Project 37 17% 

Project 38 23% 

Project 39 13% 

 
7. Findings 
In the case of n-fold cross-validation, the average error is 36%. In the case of 10-fold cross-validation, the 
average error is 35%. In the case of 5-fold cross-validation, the average error is 36%. Based on these 
results, the error does not vary a lot when the sample size varies.  
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Appendix VI  
Extensive explanation results KNN  
 
This appendix shows all results and predictions for the multiple linear regression method. Per type of cross-
validation, first, the results of the hyperparameter analysis were presented, followed by the real results. In 
the end, it also shows if the sample size had some influence on the results of this method.  
 

Content 
 

1. Hyperparameter analysis n-fold cross-validation 
2. Results n-fold cross-validation 
3. Hyperparameter analysis 10-fold cross-validation 
4. Results 10-fold cross-validation 
5. Hyperparameter analysis 5-fold cross-validation 
6. Results 5-fold cross-validation 
7. Findings 

 
1. Hyperparameter analysis n-fold cross-validation 
As mentioned in paragraph 6.3 a hyperparameter analysis is executed for each category. The results are 
shown in table 35. The result is the most frequently occurring outcome. This result is used for the real 
model results. 
In this table: N = number of neighbors, CS = Chebyshev, MH = Manhattan and EC = Euclidean.  
 
Table 35: Results n-fold hyperparameter analysis KNN  

Foundation Substructure Superstructure Railing 

39 
Fold 

Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric n 
neigh-
bors 

Algo-
rithm 

leaf 
size 

metric N 

1 ball 18 CS 7 ball 9 CS 1 brute 1 CS 6 ball 1 EC 5 

2 ball 18 CS 4 ball 9 CS 1 ball 17 CS 2 ball 1 EC 5 

3 brute 1 CS 5 ball 9 CS 1 ball 9 CS 2 ball 1 MH 6 

4 kd 17 CS 7 ball 9 CS 1 brute 1 CS 6 ball 1 MH 7 

5 ball 18 CS 5 ball 9 CS 1 ball 9 CS 2 ball 1 EC 5 

6 ball 17 CS 7 ball 9 CS 1 ball 9 CS 2 ball 1 MH 8 

7 ball 18 CS 4 ball 9 CS 1 ball 17 CS 2 ball 1 EC 5 

8 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 EC 5 

9 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 MH 6 

10 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 EC 5 

11 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 MH 7 

12 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 MH 8 

13 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 EC 5 

14 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 3 CS 3 

15 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 3 CS 2 

16 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 MH 6 

17 ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 CS 2 

18 ball 18 CS 4 ball 17 CS 2 ball 9 CS 2 ball 1 CS 2 

19 ball 18 CS 4 ball 17 CS 2 kd 9 CS 2 ball 1 CS 2 

20 ball 18 CS 4 ball 18 CS 2 ball 9 CS 2 ball 1 CS 2 
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21 ball 18 CS 8 ball 9 CS 3 ball 9 CS 2 ball 1 CS 2 

22 ball 9 CS 7 kd 9 CS 1 ball 9 CS 2 ball 1 CS 2 

23 ball 18 CS 5 kd 9 CS 9 ball 9 CS 2 ball 1 CS 2 

24 ball 18 CS 5 kd 9 CS 9 ball 9 CS 2 ball 1 CS 2 

25 brute 1 CS 5 kd 9 CS 9 ball 9 CS 2 ball 1 CS 2 

26 ball 18 CS 4 kd 9 CS 9 ball 17 CS 2 ball 1 CS 2 

27 ball 18 CS 4 kd 9 CS 9 ball 9 CS 2 ball 1 CS 2 

28 brute 1 CS 5 kd 9 CS 9 ball 18 CS 1 ball 1 CS 2 

29 brute 1 CS 5 kd 9 CS 9 ball 17 CS 2 ball 1 CS 2 

30 ball 18 CS 5 ball 18 CS 2 ball 9 CS 2 ball 1 CS 2 

31 ball 18 CS 4 brute 1 CS 5 ball 17 CS 2 ball 1 CS 2 

32 ball 18 CS 4 brute 1 CS 5 kd 9 CS 2 ball 1 CS 2 

33 brute 1 CS 7 ball 18 CS 2 ball 17 CS 2 ball 1 CS 2 

34 kd 17 CS 4 kd 9 CS 1 kd 17 CS 2 ball 1 CS 2 

35 kd 17 CS 4 kd 9 CS 1 kd 17 CS 2 ball 3 CS 3 

36 kd 17 CS 4 kd 9 CS 1 kd 17 CS 2 ball 1 CS 3 

37 kd 17 CS 4 kd 17 CS 2 kd 17 CS 2 ball 1 CS 2 

38 kd 17 CS 4 ball 9 CS 3 kd 17 CS 2 ball 1 CS 2 

39 ball 9 CS 6 brute 1 CS 8 brute 1 CS 7 ball 2 CS 3 

Re-
sult 

ball 18 CS 4 ball 9 CS 1 ball 9 CS 2 ball 1 CS 2 
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2. Results n-fold cross-validation 
Using the multiple linear regression method in Python, results are generated for each project. These results 
are shown in table 36. Before the absolute errors were calculated, negative values were replaced for zero.  
Seven projects are excluded from the list, they are marked as an outlier. Projects 5, 9, 12, 21, 22, 27, and 
37 are these projects. A cause for a misfit can be explained for projects 5 and 9 as mentioned in Appendix 
III.  
The other projects are marked as extreme outliers and therefore removed.  
 
Table 36: Absolute errors KNN with n-fold cross-validation  

Foundation 
error 

Substructure 
error 

Superstructure 
error 

Railing 
error 

Total 
error 

Project 1 68% 5% 62% 24% 60% 

Project 2 59% 45% 15% 16% 49% 

Project 3 60% 92% 97% 0% 94% 

Project 4 20% 2% 25% 52% 8% 

Project 6 17% 67% 73% 156% 32% 

Project 7 106% 16% 65% 128% 29% 

Project 8 7% 55% 23% 78% 25% 

Project 10 19% 82% 119% 169% 69% 

Project 11 56% 37% 17% 52% 3% 

Project 12 98% 55% 17% 91% 56% 

Project 13 0% 5% 28% 306% 2% 

Project 15 83% 47% 8% 12% 28% 

Project 16 46% 21% 38% 19% 25% 

Project 17 42% 31% 51% 13% 39% 

Project 18 22% 27% 3% 8% 9% 

Project 19 363% 46% 278% 140% 87% 

Project 20 57% 17% 3% 86% 16% 

Project 23 26% 31% 79% 21% 47% 

Project 24 39% 4% 44% 41% 23% 

Project 25 33% 20% 59% 62% 38% 

Project 26 125% 37% 64% 4% 6% 

Project 28 73% 50% 15% 47% 27% 

Project 29 43% 672% 20% 24% 11% 

Project 30 70% 26% 15% 87% 1% 

Project 31 82% 72% 10977% 0% 97% 

Project 32 81% 23% 24% 13% 5% 

Project 33 1% 19% 26% 25% 2% 

Project 34 7% 32% 7% 20% 29% 

Project 35 303% 395% 8% 38% 109% 

Project 36 52% 30% 30% 5% 18% 

Project 38 2481% 147% 46% 40% 38% 

Project 39 53% 85% 50% 41% 6% 

 
3. Hyperparameter analysis 10-fold cross-validation 
For the 10-fold cross-validation variant, a hyperparameter analysis is also executed. The results are shown 
in table 37. In this table: N = number of neighbors, CS = Chebyshev, MH = Manhattan and EC = Euclidean.  
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Table 37: Results 10-fold hyperparameter analysis KNN  
Foundation Substructure Superstructure Railing 

10 
Fold 

Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric N 

1 brute 1 CS 4 ball 8 CS 1 ball 8 CS 4 ball 2 CS 5 

2 ball 16 CS 5 ball 8 CS 1 ball 8 CS 2 ball 2 CS 2 

3 ball 16 CS 4 kd 8 CS 1 ball 8 CS 2 ball 2 CS 2 

4 ball 16 CS 9 ball 8 CS 1 ball 8 CS 2 ball 1 MH 7 

5 ball 16 CS 5 ball 8 CS 1 ball 8 CS 2 ball 1 EC 6 

6 ball 16 CS 8 ball 16 CS 8 kd 8 CS 2 ball 1 MH 9 

7 ball 16 CS 5 ball 8 CS 1 ball 16 CS 1 ball 1 MH 4 

8 ball 16 CS 5 ball 8 CS 1 brute 1 CS 4 ball 1 MH 7 

9 ball 16 CS 4 kd 8 CS 1 brute 1 CS 7 ball 1 CS 2 

10 brute 1 CS 4 brute 1 CS 7 kd 9 CS 3 ball 3 CS 6 

Re-
sult 

ball 16 CS 5 ball 8 CS 1 ball 8 CS 2 ball 1 CS 2 

 
4. Results 10-fold cross-validation 
Using the KNN module in Python, results are generated for each project. Figure 31, table 38, and table 39 
show the results. Before the absolute errors were calculated, negative values were replaced for zero. 
Values above a maximum of a boxplot are not visualized, these are shown in the corresponding table. 
 
Five projects are excluded from the list, they are marked as an outlier. Projects 3,5,9,27, and 35 are these 
projects. A cause for a misfit can be explained for project 5,9 and 35 as mentioned in Appendix III.  
The other projects are marked as extreme outliers and therefore removed.  
 

 
Figure 31: Absolute errors KNN 10-fold cross-validation 
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Table 38: Values boxplots KNN 10-fold cross-validation  
Foundation Substructure Superstructure Railing Total 

error 

Value above 
maximum 

1955% 
 

401% 652% 
 

Value above 
maximum 

303% 258% 327% 241% 
 

Maximum error 158% 92% 70% 115% 82% 

Upper Quartile 83% 67% 48% 87% 44% 

Average error 
'X' 

116% 46% 50% 74% 29% 

Median 48% 38% 27% 52% 23% 

Lower Quartile 20% 15% 13% 19% 8% 

Minimum error 2% 2% 0% 0% 0% 
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Table 39: Absolute errors 10-fold KNN  
Foundation 
error 

Substructure 
error 

Superstructure 
error 

Railing 
error 

Total 
error 

Project 1 4% 61% 45% 24% 50% 

Project 2 62% 69% 15% 16% 57% 

Project 4 40% 2% 25% 52% 10% 

Project 6 96% 83% 70% 81% 29% 

Project 7 82% 16% 65% 79% 21% 

Project 8 20% 75% 23% 107% 37% 

Project 10 3% 2% 58% 98% 21% 

Project 11 2% 65% 17% 87% 31% 

Project 12 82% 13% 26% 91% 43% 

Project 13 18% 5% 23% 652% 8% 

Project 14 154% 2% 13% 12% 20% 

Project 15 141% 47% 35% 12% 45% 

Project 16 33% 21% 38% 19% 24% 

Project 17 92% 31% 51% 13% 44% 

Project 18 6% 27% 3% 8% 8% 

Project 19 303% 51% 327% 91% 78% 

Project 20 63% 54% 3% 86% 29% 

Project 21 61% 92% 42% 42% 72% 

Project 22 12% 20% 29% 53% 0% 

Project 23 36% 91% 61% 21% 55% 

Project 24 48% 4% 25% 241% 8% 

Project 25 59% 56% 66% 55% 55% 

Project 26 37% 45% 14% 74% 15% 

Project 28 13% 16% 15% 47% 3% 

Project 29 47% 258% 9% 24% 4% 

Project 30 47% 26% 46% 87% 19% 

Project 31 85% 84% 401% 0% 82% 

Project 32 158% 47% 35% 44% 5% 

Project 33 58% 19% 10% 57% 13% 

Project 34 12% 32% 7% 20% 31% 

Project 36 50% 4% 41% 16% 6% 

Project 37 34% 74% 47% 74% 36% 

Project 38 1955% 67% 1% 115% 18% 

Project 39 47% 10% 0% 26% 4% 
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5. Hyperparameter analysis 5-fold cross-validation 
For the last variant, a hyperparameter analysis is also executed. The results are shown in table 40. In this 
table: N = number of neighbors, CS = Chebyshev, MH = Manhattan and EC = Euclidean. 
 
Table 40: Results 5-fold hyperparameter analysis KNN  

Foundation Substructure Superstructure Railing 

5 
Fold 

Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric N Algo-
rithm 

leaf 
size 

metric N 

1 ball 1 EC 4 ball 7 CS 1 ball 1 CS 1 ball 14 CS 1 

2 ball 14 CS 9 ball 7 CS 1 ball 2 CS 6 ball 1 MH 6 

3 ball 14 CS 5 kd 7 CS 2 ball 14 CS 1 ball 1 MH 6 

4 ball 14 CS 6 brute 1 CS 8 brute 1 CS 6 ball 1 MH 6 

5 ball 15 CS 4 ball 15 CS 2 kd 14 CS 2 ball 1 EC 8 

Re-
sult 

ball 14 CS 4 ball 7 CS 1 ball 14 CS 6 ball 1 MH 6 

 
7. Results 5-fold cross-validation 
Using the KNN module in Python, results are generated for each project. Figure 32, table 41, and table 42 
show the results. Before the absolute errors were calculated, negative values were replaced for zero. 
Values above a maximum of a boxplot are not visualized, these are shown in the corresponding table. 
 
Five projects are excluded from the list, they are marked as an outlier. Projects 3,5,9,27, and 35 are these 
projects. A cause for a misfit can be explained for projects 5,9, and 35 as mentioned in Appendix III.  
The other projects are marked as extreme outliers and therefore removed.  
 

 
Figure 32: Absolute errors KNN 5-fold cross-validation 
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Table 41: Values boxplots KNN 5-fold cross-validation  
Foundation Substructure Superstructure Railing Total 

error 

Value above 
maximum 

426% 
 

718% 
 

110% 

Value above 
maximum 

322% 201% 315% 280% 108% 

Maximum error 194% 120% 154% 130% 93% 

Upper Quartile 103% 74% 70% 82% 51% 

Average error 
'X' 

84% 50% 70% 55% 41% 

Median 59% 47% 34% 46% 38% 

Lower Quartile 31% 18% 14% 8% 22% 

Minimum error 3% 2% 2% 0% 0% 
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Table 42: Absolute errors 5-fold KNN  
Foundation 
error 

Substructure 
error 

Superstructure 
error 

Railing 
error 

Total 
error 

Project 1 73% 61% 39% 0% 59% 

Project 2 59% 69% 2% 62% 50% 

Project 3 60% 89% 97% 0% 93% 

Project 4 20% 2% 15% 46% 25% 

Project 6 46% 83% 73% 49% 46% 

Project 7 112% 16% 95% 280% 46% 

Project 8 7% 75% 16% 100% 39% 

Project 9 63% 201% 58% 8% 37% 

Project 10 3% 120% 116% 63% 65% 

Project 11 56% 65% 12% 100% 19% 

Project 12 94% 13% 27% 91% 46% 

Project 13 157% 5% 25% 113% 19% 

Project 14 194% 2% 61% 32% 37% 

Project 15 130% 47% 68% 9% 52% 

Project 16 35% 59% 37% 30% 38% 

Project 17 84% 31% 88% 7% 50% 

Project 18 15% 48% 17% 24% 35% 

Project 20 57% 7% 5% 130% 6% 

Project 21 37% 81% 34% 5% 56% 

Project 22 30% 20% 2% 100% 14% 

Project 23 3% 53% 315% 37% 108% 

Project 24 39% 4% 21% 53% 12% 

Project 25 33% 56% 56% 73% 43% 

Project 26 125% 45% 2% 71% 9% 

Project 28 59% 81% 28% 38% 36% 

Project 30 70% 26% 14% 111% 2% 

Project 31 84% 89% 718% 0% 75% 

Project 32 322% 47% 2% 4% 40% 

Project 33 158% 19% 37% 26% 29% 

Project 34 7% 32% 6% 4% 32% 

Project 35 426% 36% 44% 53% 110% 

Project 36 74% 4% 154% 20% 0% 

Project 37 23% 74% 24% 61% 36% 

 
7. Findings 
Based on the presented results above, table 43 is formed showing the average errors per sample size. This 
table is shown below. It has been concluded that the total error is the lowest for 10-fold cross-validation. As 
shown in Appendix III, the deviations from the predictions for the total price are in this case equal to the 
deviations from the predictions of FALCON.   
The average error for the superstructure in case of n-fold cross-validation depends on one single project 
that has an outlier in the substructure case.  
 
Table 43: Average absolute errors different types of cross-validation 

 Foundation Substructure Superstructure Railing Total 

N-fold 144% 72% 387% 57% 34% 

10-fold 116% 46% 50% 74% 29% 

5-fold 84% 50% 70% 55% 41% 
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Appendix VII  
Questionnaire validation interviews 
 
For the validation interviews, a set of questions is asked to the colleagues of Witteveen+Bos. These 
questions are shown below. These questions are in Dutch since all colleagues are speaking the Dutch 
language. Before these questions were asked to the respondents, a summary with information about the 
model was sent to the respondents. If there were questions about this information, extra information was 
given in that case before the interview started.  
 
Question: 

1. Als je op dit moment een brug moet ramen, in welke mate maak je dan gebruik van referentie 
projecten?  

2. Als je gebruik maakt van referentieprojecten, hoe verkrijg je deze dan? 
3. Zie jij mogelijkheden voor het gebruik van (AI) modellen, bijvoorbeeld FALCON, die kunnen helpen 

voor het maken van ramingen?  
4. Als je mogelijkheden ziet voor het gebruik van (AI) modellen, bijvoorbeeld FALCON; in welke fase 

van een project zou je deze willen gebruiken? 
5. Als jij het FALCON-model zou gebruiken voor een kostenschatting, welke gemiddelde 

nauwkeurigheid verwacht je dan en verschilt dit per fase in een project (SO/VO/DO)? 
6. Zou je naar aanleiding van de informatie die je gekregen hebt over het FALCON-model in 

combinatie met de toelichtingen die gegeven zijn het FALCON-model gaan toepassen in de 
praktijk? 

6.1 Als het antwoord ja is, op welke manier?  
6.2 Als het antwoord nee is, waarom niet? 

7. Zijn er nog verbeteringen mogelijk? Hierbij kun je denken aan het toevoegen van parameters, of 
andere informatie die volgens jou van belang is, of het uitsluiten van bepaalde categorieën?  

8. In geval je het model op dit moment nog niet accuraat genoeg vindt, zou je gebruik maken van het 
model in geval de betrouwbaarheid van het model toeneemt?  

8.1 Zo ja, in hoeverre moet de betrouwbaarheid toenemen? 
9. Het model vergelijkt zoals je weet projecten met elkaar, zou het van waarde zijn dat het model 

aangeeft welke projecten er zijn gebruikt voor het bepalen van de kostenschatting? 
10. Heb je nog andere vragen of opmerkingen? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


