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Abstract

The gravitational field of the earth can be determined globally and with high preci-
sion and resolution by means of a combined Satellite Gravity Gradiometry (SGG)
and Satellite-to-Satellite Tracking (SST) mission. In such a mission a spacecraft
equipped with a GPS receiver and a gradiometer will be flown around the earth in
a low and nearly polar orbit. The GPS receiver is used for the determination of the
long spatial wavelengths of the earth’s gravitational field and the gradiometer for
the short wavelengths. As such the two techniques are complementary. This work
focuses on the satellite gradiometry part only.

A gradiometer delivers the second order potential derivatives relative to some
local orthonormal coordinate system. In particular, the gravity gradients are deter-
mined by a technique called differential accelerometry, in which the outputs of any
combination of two out of (ideally) eight accelerometers are differenced. A planar
gradiometer consisting of four accelerometers and working according to this princi-
ple will be on-board the Aristoteles satellite, a mission planned by the European
Space Agency (ESA). The improved knowledge of the earth’s gravitational field,
resulting from such a mission, can contribute to many earth related sciences, like
geodesy (levelling with GPS), satellite orbit determination, solid earth physics (con-
tinental lithosphere, polar regions) and oceanography, the latter not only for topics
like ocean circulation but also for study of climate changes.

The earth’s gravitational potential, together with its first and second order de-
rivatives, is usually expressed as a series expansion. The coefficients of such a series
(potential coefficients) describe the gravitational potential globally and are to be
determined from SGG. The equations of the gradient series expansions, either in
geocentric polar coordinates or in orbital coordinates (Keplerian elements), are used
as model equations in the gradiometry analysis process. However, the measured
gradients are delivered relative to a local orthonormal coordinate system connected
to the instrument. We need, therefore, transformation equations for the potential
derivatives between several coordinate systems. By means of a compact, general al-
gorithm, which makes use of certain concepts from tensor analysis, these equations
can be derived.

Using a set of known potential coefficients, the series expansions can be used
to gain some insight in the signals measured by a satellite gradiometer (spherical
harmonic synthesis). Reversely, analyzing a set of gradients to obtain the harmonic
coeflicients is called spherical harmonic analysis. Both synthesis and analysis are
time consuming processes, at least if a high degree and order series expansion is used
or a large set of data points is used. Grid computation (making use of FFT routines)
and the use of vector computers (for which the algorithms should be adapted) can
decrease computation at burden. Numerical errors may enter the computations due
to the use of recursive Legendre function computations and numerical quadrature
formulas.

For the estimation of potential coefficients from a set of observed gravity gradi-
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ents we used an analysis technique based on least squares adjustment, as it was, for
the gradiometric case, proposed by O.L. Colombo. Under certain assumptions the
normal matrix attains a block—diagonal structure, making it easy to solve the large
system of linear equations. The a—posteriori error covariance matrix of the estimated
potential coefficients can be computed by means of error propagation without the
availability of actual measurements. We carried out such error analysis for several
mission scenarios, not only for an idealized mission (polar orbit, no band limitation,
full tensor gradiometer), but also more realistic situations like polar gaps, band lim-
itation of the gradiometer and the planar Aristoteles gradiometer measuring only
three tensor components. The latter, non—ideal situations have a rather large impact
on the results. Apart from numerical singularities due to ill-conditioned sub-blocks
of the normal matrix, some blocks may become singular too, which means that
certain coefficients are not estimable any more from the observations. Of course
the system can be stabilized by adding prior information, but this leads to biased
estimates. Furthermore it appears that, even with stabilization, the results with a
band limited gradiometer did not meet the requirements. Additional GPS tracking
information, as it is planned for the Aristoteles mission, is needed to resolve this
problem.

Since we had at our disposal a global set of simulated gravity gradients, we could
perform a global recovery of potential coefficients from this set. The procedure
showed here is an iterative process, but only a first step is really implemented so
far. Two strategies were applied. The space-like method uses the series expansion in
geocentric polar coordinates, and it requires the set of observations to be transformed
into a global equi—angular grid of averaged values. Such a grid is not required for the
so—called time-like method (which uses the series expansion in orbital coordinates),
but this method is more time consuming. Both methods give promising results.

In our error analysis computations we assumed an instrumental precision of 0.01
E/vHz (as foreseen for Aristoteles). However, superconducting gradiometers are
under development, aiming at a precision of 0.0001 E/ VHz . Also, orbit determi-
nation techniques are gradually improving, aiming at the centimeter level. Such
improvements of precision may, in the future, require a relativistic formulation of
the model. Furthermore, from a theoretical point of view, a relativistic description
of satellite gradiometry emphasizes that a gradiometer measures the curvature of
four-dimensional spacetime. For those reasons, we included a relativistic view on
gradiometry. The equations are derived in the weak field approximation (in par-
ticular the so—called Post-Newtonian approximation), which is sufficient for earth
orbiting satellites. The equations of motion of the satellite appear to be those of
a spacetime geodesic and they show the relativistic contributions to the satellite’s
orbit. A relativistic description of the second order potential derivatives appears
to be governed by the so—called equation of geodesic deviation. The latter shows
the relativistic contribution to the observed gravity gradients. It is concluded that
relativistic effects can be modelled although they are not required at present.

viil
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Introduction

In spite of the fact that the concept of satellite gradiometry is more than 30 years
old, no actual gradiometric mission has been undertaken yet. Several instrument
and mission proposals have been done, of which the Aristoteles mission concept of
the European Space Agency (ESA) is the most promising one for the near future.
The main purpose of a Satellite Gravity Gradiometry (SGG) mission is the global
determination of the earth’s gravitational field with high precision and spatial reso-
lution. Some central aspects of the process to derive from the actual observations
the required gravitational information will be treated in this work. This explains the
title “Gravity Field Modelling using Satellite Gravity Gradiometry”. In this title,
three topics attract our attention. Obviously, the key issue here is gravitation,
which word is reflected in the word gravity. The word gradiometry reveals that we
have to do with measurements. Finally, the word satellite points out that the
measurements are carried out in a spacecraft.

Gravitation

The tale of the falling apple marks one of the great moments in scientific history.
According to it, Isaac Newton (who lived from 1642 to 1726), when sitting in his
garden, watched an apple fall from a tree. The apple fell straight down, along a
line which, if extended inside the earth (considered a homogeneous sphere at the
moment), would go through the center of the earth. While thinking about this
phenomenon, he came up with his famous law about the mutual attraction of two
masses. The attractive force, called gravitation, is directed along the line connecting
the two centers of the objects and is, up to some constant (the gravitational constant
G), proportional to both masses as well as to the squared inverse of the distance
between the two objects. This famous tnverse-square-law thus tells us that on the
one hand the gravitational force increases with increasing mass of one of the objects,
whereas on the other hand the force decreases with increasing distance between the
objects. Objects moving under the influence of a force will be accelerated in the



1. Introduction

same direction as the force acts. Whereas the gravitational force depends on the
mass of the object, the gravitational acceleration does not.

Although Newton lived more than two and a half centuries ago, we still use
the inverse-square-law for all earth related applications. Not only does this law
explain the falling of an apple. By using the same law, the motion of the planets
around the sun and of moons and satellites around the planets or the trajectories
of projectiles can be explained. In the beginning of the 20th century, however,
measurement techniques became more accurate, and some aspects of the motion of
the planets in the solar system which showed up in the measurements, could no
longer be explained by Newton’s law. Albert Einstein (1879-1955) came up with a
new theory about gravitation. Einstein’s gravitational theory is the famous general
theory of relativity (GTR). The addition “general” refers to the fact that gravitation
is included in the theory, where this was not the case in the so—called special theory
of relativity (STR), which he conceived some years earlier. Einstein’s GTR did
not state that Newton was wrong. In fact, Newtonian theory represents a limiting,
approximate case of the GTR. For cosmological applications, the use of the GTR is
inevitable, but for most earth related applications we can still confine ourselves to
Newtonian theory. However, with increasing measurement accuracy, as for instance
is the case with many modern satellite related measurement techniques, relativistic
effects might have to be taken into account.

If the earth would have a perfectly spherical shape and if the mass inside the
earth would be distributed homogeneously (i.e. equal mass density throughout the
whole sphere) or rotationally symmetric, the line along which Newton’s apple fell
would indeed be a straight line, directed radially and going exactly through the
earth’s center. This center point would be the center of mass of the earth. The
gravitational force exerted by the earth onto a proof mass (like the apple) would be
exactly the same as the force exerted by a point mass of infinite small dimension with
equal mass as the earth and located at the center of the earth. At any other point
at the earth’s surface the force on the apple would have exactly the same magnitude
and (radial) direction. Moving away from the earth’s surface, the force would still
be directed radially, although its magnitude would decrease with increasing altitude.
The gravitational field obtained in this way would be perfectly spherically symmetric.

In reality, however, the situation is more complex. Although seen from the moon
or from any other point in space the earth may look much like a perfect sphere, the
deviations from this idealization are significant. Due to the fact that the earth is
deformable and rotates about an axis going approximately through the north and
south pole, it is better represented as an ellipsoid, flattened at the poles. Looking
in more detail we also see mass irregularities at the surface of the earth, like oceans,
mountains, plains, etc. Also the material inside the earth is not distributed homo-
geneously: the dynamics of the earth are more considered a convective system, with
an enormous variation in temperature, resulting in phenomena such as plate tec-
tonics, subduction zones, ocean ridges and a considerable radial and lateral density
differentiation. As a result, the gravitational force at different places on the earth



will not be the same: both magnitude and direction of the force will deviate from
one place to the other from that of a homogeneous sphere or spheroid.

The gravitational field of the earth is rather irregular, although the deviations
from a spherical symmetric shape are not very large. In fact, for some applica-
tions a spherical earth may be a sufficient approximation. For other applications
an ellipsoidal earth may be needed, but often higher—order approximations are re-
quired. Therefore, the gravitational field is represented by a series, of which the
spherical part is the first term, the ellipsoidal part the second term, and so on. The
more detailed information or the more accurate information about the gravitational
field we need, the more terms are required in the series expansion for an adequate
representation.

If we would exactly know the (irregular) mass distribution of the earth, we
could compute the gravitational field from it (and thus obtain all terms in the
series expansion) and see how much this field deflects from a perfectly spherically
symmetric one. Unfortunately we still do not know the exact mass distribution. On
the contrary, one of the main objectives of gravitational field determination is to
learn more about the internal mass constitution. Unfortunately an exact inference
is impossible. One speaks of the gravitational inverse problem.

Measurements

If Newton would have measured the time at which the falling apple would have
passed through imaginary levels of known distance, he could have computed the
gravitational acceleration. Modern instruments still use such free fall technique to
measure gravitation. More precisely, when situated on the rotating earth, not gra-
vitation is measured but gravity. Gravity is the sum of gravitation (attractive force
between two masses) and centrifugal acceleration. The latter is due to the rotation
of the earth and its direction is perpendicular to the axis of rotation. Today’s in-
struments are very accurate. In the case of an absolute gravity apparatus, a proof
mass is dropped in a vacuum chamber and its path is measured interferometrically
with a laser. In this way one obtains the magnitude (or length) of the gravity vector,
at the specific place where the measurement is done, to 107°. Such absolute gravity
measurements are difficult and therefore expensive. They are carried out only at a
few points on earth. Since gravity on earth is approximately 10! m/s? the achieved
precision corresponds to accelerations as small as 1078 m/s?.

In order to get an idea about gravity in between absolute stations, one mea-
sures gravity differences at arbitrary measurement points relative to the absolute
stations. Such relative gravity measurements are easier to perform than absolute
measurements and are carried out with spring gravimeters. Thereby, the length of
a spring, mounted under a particular angle and suspending a horizontal lever with
a proof mass, is measured. With modern spring gravimeters a precision of 5 to 10 -
1078 m/s? can be reached.

The direction of the gravity vector is defined by the astronomical latitude and
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longitude, i.e. the direction of the plumb line as determined by astronomical ob-
servations. Thus the gravity vector in any point is determined by three quantities:
astronomical latitude and longitude (direction) and magnitude (usually referred to as
gravity). In our surrounding three dimensional world any vector can be determined
by three quantities: its components in all three spatial directions. Mathematically
speaking these three components are the gradient of some scalar function, in our case
the gravity potential. They describe how the scalar function changes when moving
in all three directions. But we have seen that gravity itself also varies from place
to place. These changes of gravity can also be described by gradients, and are thus
called gravity gradients. They also can be used to describe the gravitational field of
the earth and are more sensitive to small variations of the earth’s mass constitution.

At the beginning of our century, the Hungarian physicist E6tvos (1848-1919) de-
veloped an instrument to measure gravity gradients. This instrument was a so—called
torsion balancel. Instead of one proof mass used in a gravimeter, a torsion balance
consists of two proof masses, (asymmetrically) suspended to the arms of a balance.
The gravity gradients produce a torque on the beam of the balance, resulting in a
rotation of the beam. The gravity torque is counterbalanced by a restoring torque
exerted by the fiber with which the beam is suspended. The restoring torque is a
measure for the gravity gradients. Eotvos achieved with his instrument a precision
of 1 E (1 E = 1 E6tvés unit = 107° /s?). With the largest gradient on earth being
approximately 3000 E, this means a precision of 1073, In general instruments which
measure gravity gradients are called gradiometers, and the measurement technique
is called gradiometry (measuring the gradients of gravity), analogous to the word
gravimetry (measuring gravity).

In principle, Newton could have measured gravity gradients if he would have
seen two apples fall simultaneously from the tree and would have closely followed
their adjacent trajectories. Both trajectories, if extended inside the earth, would
converge as to run through the earth’s center of mass, so the distance between the
paths would gradually decrease. If the change in the distance between two falling
proof masses would be measured, it would be a measure of the gravity gradient, 1.e.
of the variation of gravity in the direction of the line connecting the two masses?. In
a next step, one could think of constraining the motion of the falling proof masses,

! With the same type of instrument Edtvds did a historical test to 1072 of the so—called principle
of equivalence of inertial and gravitational mass (E5tvés, 1953), (Jung, 1961). In recent years his
tests were reanalyzed in relation to a search of the so-called fifth force (Fischbach et al., 1986).

2In the language of the GTR, the two proof masses, being in free fall in the gravitational field of
the earth, follow nearby geodesics {“shortest paths”). In a flat space, like a two dimensional sheet
of paper, geodesics are straight lines, which, if being parallel initially, remain parallel (constant
distance between the lines) and never cross. In the GTR, the space under consideration is not flat
but curved, just like the two dimensional surface of a sphere. Furthermore it is four dimensional,
where three spatial directions and time merge into one so—called spacetime (which is hard to visu-
alize). Geodesics in curved spacetime are therefore not straight lines but are curves. The distance
between initially parallel geodesics changes and this distance change is a measure for the curvature
of spacetime. So in terms of the GTR, gravity gradients describe the curvature of spacetime.



such that — during their fall — they are held in a fixed position relative to each other
and their distance would remain constant. The force needed to constrain the motion
could be measured and would again be a measure of the gravity gradients. This is
the principle used in spaceborne gradiometry. There, a gradiometer, consisting of
two or more proof masses, arranged in a two or three dimensional orthogonal set—up,
is flown around the earth on board a spacecraft. Whereas the gravity gradient is
(mathematically) defined in exactly one point of infinitesimal dimension, a real life
gradiometer has some definite size. Practical limitations (i.e. material properties)
prevent us from reducing the size of an apparatus ad infinitum, so the distance of
two proof masses in a gradiometer, although small, is not infinitesimal, but has some
definite value, say 1 meter®. This means we are actually measuring the difference in
gravitational acceleration between the locations of the two proof masses. For that
reason the technique is often called differential accelerometry. ESA has planned
a satellite mission called Aristoteles, which should carry a gradiometer measuring
gravitational gradients using the differential accelerometry principle.

Satellites

The Aristoteles project is a so—called dedicated gravity field mission, its main pur-
pose being the determination of the earth’s gravitational field. The idea, however,
of using earth orbiting satellites for such a purpose is not very new. Already from
the time of the launch of the first artificial earth orbiting satellite in 1957, people
analyzed their orbits to determine the main characteristics of the earth’s gravita-
tional field. As said before, the orbits of satellites around the earth or around any
other planet, as well as the orbit of planets around the sun, are determined pre-
dominantly by the gravitational field of the earth, respectively of other planets or
the sun. In the 17th century, even before Newton, Kepler established three laws
concerning the motion of planets around the sun. Actually Newton used Kepler’s
laws when deriving his famous inverse-square~-law. According to Kepler, planets
move in elliptic orbits around a spherical body. The earth is nearly spherical, its
gravitational field is nearly spherically symmetric, and thus the orbits of earth or-
biting satellites are nearly elliptical. The main deviation from spherical symmetry,
the earth’s flattening, results in a precession of the orbital plane and a precession of
the orbit ellipse in the orbital plane. Other departures from spherical symmetry in
the gravitational field (in general called anomalies) yield other, smaller, deviations
in the satellite’s orbit. Precise analysis of satellite orbits thus tells us something
about the gravitational field.

The principle is not so very much different from Newton’s falling apple. Also
satellites “fall” in the gravitational field of the earth. The difference is that Newton’s
apple started, relative to the earth, from a rest position at the branch of the tree

3 Actually, according to the principle of equivalence, an infinitesimal small gradiometer would not
exist. Strictly speaking this principle holds in exactly one (infinitesimal small) point only, where
one could no longer discriminate between inertial and gravitational accelerations.
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and fell straight down on the earth’s surface. Would it have been thrown away
horizontally (i.e. parallel to the earth’s surface) with high velocity, it would have
hit the ground some distance away from him. The higher above the earth’s surface
a proof mass is ejected (“launched”) and the higher its initial velocity, the further
away the point of hitting the ground. Eventually, due to the spherical shape of the
earth, the proof mass never hits the earth’s surface, but continues to fall, so to say
not to the earth, but around it. Obviously, as already pointed out by Newton, the
same law which describes the fall of the apple, describes the motion of satellites
around the earth.

Considerable effort has been invested into the determination of the earth’s gravi-
tational field from the analysis of satellite orbits. The same method will, additional
to the gradiometry part, be used with ESA’s Aristoteles mission. Especially the
main deviations from a spherically shaped gravitational field can be determined
from orbit analysis. Other, smaller deviations, i.e. the more detailed structure, rep-
resented by higher—order gravitational field parameters, are determined from the
gradiometer measurements.

Nevertheless, the range of detail with which the gravitational field can be deter-
mined from space, is not unlimited. According to the inverse-square-law, gravitation
decreases with increasing distance between the objects. This so—called attenuation
effect is especially noticeable with satellites, since they move at very large distances
from the earth’s surface. Even with Aristoteles, which will move at a “very low”
altitude of “only” 200 km, many details of the gravitational field will remain unde-
tectable. Furthermore, at 200 km there is still some atmospheric density left, which
disturbs the motion of the satellite and due to which measurements are extremely
difficult. Atmospheric drag causes the satellite to descend, so that it needs to be
kept in a 200 km orbit by maneuvers, using small rockets. These maneuvers also
disturb the measurements, as does e.g. the sloshing and consumption of the fuel in
the tanks needed for the rockets.

A great advantage of using satellites for gravity field determination is that with
one single mission (nearly) the whole earth can be covered with measurements in
short time. Of course, launching a satellite is expensive, but travelling the earth
by conventional means with an instrument and carrying out measurements with
corresponding density as a satellite, is much more expensive. Just think about
high mountains, oceans and polar regions, which may constitute insurmountable
hindrances for doing terrestrial measurements. Even after more than 50 years of
terrestrial measurements large parts of our planet remain unsurveyed. Furthermore,
a set of terrestrial measurements is not likely to have comparable precision all over
the world, whereas the satellite mission will deliver us a global data set of homoge-
neous quality.



This study in brief

This study deals with the main subjects of a global determination of the earth’s
gravitational field from a satellite gravity gradiometry (SGG) mission, and as such
includes aspects of gravitation, measurements and satellites as discussed above. Be-
sides introductory remarks on the principles of satellite gradiometry and the appli-
cations of a precise and highly detailed gravitational field, this study focuses mainly
on the analysis process of converting the observables (gravity gradients at satellite
altitude) into the gravitational information at zero altitude. Furthermore, special
attention is given to the precision of the derived gravitational information, being
a function of measurement precision, mission parameters and chosen mathematical
model. Finally, as a look into the near future, a description of Einstein’s GTR is
given, in as far as it may concern an SGG mission. Relativistic corrections to New-
ton’s theory are derived, as may be necessary to account for in future gradiometer
missions.
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Satellite gradiometry:
principles and applications

The purpose of gradiometry is the precise and detailed determination of the earth’s
gravitational field. This is done by measuring the second-order derivatives of the
gravitational potential V of the earth. An instrument which measures these second—
order derivatives is called a gradiometer. In satellite gradiometry such a gradiometer
is flown in a satellite around the earth in a low, almost circular and polar orbit. In
this chapter the principle of satellite gradiometry will be illustrated by looking at
the motion of test masses in space. Furthermore a short overview of the possible
applications of gradiometry is given, as well as a short discussion about instrumental
aspects concerning the gradiometer and the satellite in which it is flown, with special
attention to the planned Aristoteles mission.

2.1 Principle of satellite gradiometry

Consider first two proof masses situated in two nearby points A and B in space, see
figure 2.1.a. The gravitational acceleration in point A due to the attraction of the
earth is V;{A). The components are given with respect to a local cartesian coordi-
nate system z*. See appendix A for the definition of various coordinate systems and
appendix B for some remarks on notation. The gravitational acceleration vector 1s
directed along the line of force going through point A, perpendicular to the equipo-
tential surface through A. The gravitational acceleration in B is V;(B). Suppose
A and B are situated on the same equipotential surface. Without any support and
without any other forces appearing, the two proof masses will fall towards the earth.
Since the gravitational field of the earth is almost a perfect central force field, the
distance between the proof masses will decrease while falling towards the earth due
to the convergence of the lines of force. The change in distance between the proof
masses is a measure for the difference in gravitational acceleration in A and B, cf.
(Carroll and Savet, 1959) and (Savet, 1969).



2.1. Principle of satellite gradiometry

A
A B V(A
. (4)
L] O [ ]
vi(4) vi(B) B
Vi(B)
a. Proof masses on the same b. Proof masses on the same
equipotential surface line of force

Figure 2.1 Falling proof masses.

Now consider the two points A and B situated on the same line of force but on
different equipotential surfaces, see figure 2.1.b. The proof mass in B 1s closer to
the earth as the one in A and is therefore pulled harder. If the proof masses are
dropped and are falling towards the earth along the same line of force, the distance
between them will increase. Again, the change in this distance is a measure for the
difference in gravitational acceleration between the proof masses.

In a next step, consider a spacecraft (satellite) carrying out an orbital motion
around the earth. The spacecraft, or more precisely the center of mass O of the
spacecraft, is in free fall in the gravitational field of the earth. In case of a circular
orbit, the gravitational acceleration at O, which is directed towards the earth, is, at
any moment, compensated by the centrifugal acceleration resulting from the orbital
motion, which is directed outwards. In O no resultant forces appear. Suppose that
the center of mass O of the satellite is not a material point, so that we can place
one of the two proof masses from above at O. The proof mass will then also be in
free fall around the earth, carrying out the same orbital motion as the satellite and
it will remain at O (and thus at rest relative to the spacecraft) during the motion.

Suppose now that we place the second proof mass at another point in the interior
of the spacecraft, close to O. The second proof mass will be situated on another
line of force and/or another equipotential surface of the gravitational field, so it will
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start to move relatively to the first proof mass at O. This relative motion results
in a distance change between the proof masses according to the examples above
(fig. 2.1).

If both proof masses are placed inside the satellite at arbitrary points but not
at O, again a relative motion between the proof masses will appear as a result of
the difference in gravitational acceleration at the two points, cf. (Rummel, 1989a),
but furthermore they will move relatively to O. So they will start drifting inside the
satellite, eventually hitting each other or the satellite skin.

This skin consists of points, which, together with all other (material) points
of the satellite, form a rigid body. All points of this body carry out the same
orbital motion as O, i.e. they have the same angular velocity (disregarding any
deformations). Although they are at any moment situated at other points in the
gravitational field than O they remain, as a result of the material composition, in a
fixed position with respect to O.

Suppose now that the two proof masses are also kept in a fixed position with
respect to O by means of some mechanical or electrostatical suspension. Then also
the proof masses are forced to carry out the same orbital motion as O. Proof
masses constrained in this way can be seen as accelerometers. The outputs of these
accelerometers are the forces needed to keep the proof masses in these fixed positions
with respect to O (and thus with respect to each other). They are measures for the
acceleration differences between the two points and O and can therefore be used as
observations to measure the gravitational field of the earth.

These relative accelerations of the two proof masses can be expressed by expand-
ing the gravitational acceleration V; in a Taylor series with respect to O. For the
points A and B we have:

Vi(4) = Vi(0) + Vi5(0)dz!(0, A)
Vi(B) = V;(0) + Vi;(0)d=’ (0, B)

where we only kept the linear term. The dz'(O, A) are the coordinate differences
between O and A. The overall motion of the satellite (of the center of mass, i.e.
Vi(0)), which is common to both points, can be eliminated by taking the difference
between the acceleration in A and in B. We obtain:

dVi(A, B) = Vi(B) — Vi(4)
= V;;(0)(d=?(0, B) - dz’(0, A))
= V;;(0)dz’ (4, B) . (2.1)

If dz*(A, B), the distance between the points A and B, is known, we may compute
from this equation the gravitational gradients V;;(O) since dV; is measured by means
of the accelerometers. An instrument consisting of two or more of such accelerome-
ters and having as output the gravitational gradients is called a gradiometer.

The technique of measuring the second—order potential derivatives in the way de-
scribed above is known as differential accelerometry, see for example (Forward, 1974)
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or (Balmino et al., 1985). A gradiometer working according to this principle will
consist of a symmetrically arranged array of accelerometers. The gradiometer will
be built in the satellite in such a way that the center of the instrument coincides
with the center of mass O of the satellite.

The neglect of the terms proportional to the third- and higher-order derivatives
of the potential is of the order of 107'° E (1 E = 1 E6tvos Unit = 107° s72) for a
distance between A and B of about 1 m and at an altitude of the satellite of about
200 km, which is acceptable in view of the present and near future gradiometer
instrument precision, cf. (Paik and Richard, 1986). '

So in principle it should be possible to obtain information about the gravitational
field of the earth by observing the gravitational gradients V;; in the way described
above. However, up to now we considered the two proof masses and the satellite
moving through space under the influence of gravitational and rotational forces only.
In reality also other, external and non-conservative, forces may act on the satellite.
Such forces are due to, for example, solar radiation pressure, and, at lower altitudes,
air drag due to the earth’s atmosphere. They act on the outer skin of the satellite,
the satellite housing. But if the gradiometer instrument is rigidly attached to this
housing, these forces will also act on the instrument and therefore also on the proof
masses due to the suspension. The measured accelerations are in this case a mixture
of gravitational accelerations and external forces. Since we are only interested in
gravitational forces, such exterral forces are viewed upon as disturbing forces.

One way to deal with these disturbing forces is to build a so—called drag free satel-
lite. In such a satellite the instrument is not rigidly attached to the satellite housing.
This housing, the “outer part” of the satellite, undergoes the non-gravitational dis-
turbing forces causing a relative motion between the housing and the instrument (or
the “inner part” of the satellite). In order to prevent collision of the two the motion
of the outer satellite is continuously regulated. The inner satellite then carries out
a perfect free motion, under the influence of gravitation (besides that of the earth
also of the sun, moon and other planets) only.

On the other hand, since the external forces act on every accelerometer in the
same manner (i.e. same direction and same magnitude), they are, just like the com-
mon acceleration V;(O), eliminated if we take the difference between two accelero-
meter outputs, as in eq. 2.1. This elimination, however, only works properly if the
accelerometers are exactly identical (in dimensions and in orientation) and if they
are perfectly aligned relatively to one another and relatively to the instrument. The
use of a non drag—free satellite therefore puts more stringent requirements to the
construction of the instrument.

A final aspect which we will consider here is the rotation of the gradiometer
instrument. Suppose the gradiometer is at rest with respect to the local cartesian
coordinate system z*, of which the origin coincides with the center of mass O of
the satellite, and thus with the center of the instrument. Suppose furthermore that,
at a certain moment (e.g. the initial point of the mission), this local coordinate
system is oriented such, that the z—axis is directed radially outwards, away from the
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earth, the z—axis points in the direction of the motion of the satellite (along track)
and the y—axis is perpendicular to the orbital plane (cross track) as to complete a
right-handed coordinate system. The satellite (or the instrument) is said to have a
space—fixed orientation if it orbits the earth such that it keeps the same orientation
with respect to the fixed stars, i.e. the local coordinate system remains parallel to the
initial position. This means that the z-axis after the initial point no longer points
in the radial direction, the z—axis no longer along track, only the y—-axis remains
pointing in the cross track direction. On the other hand the coordinate system {and
thus the instrument) does not rotate in this case. .

If we let the z—axis keep its radial direction and the z—axis its along track direc-
tion, the satellite is said to be earth pointing. In this case the coordinate system does
rotate. In particular it performs one complete rotation during one orbital revolution
of the satellite. Its angular velocity in that case is 27 /T, where T is the orbital pe-
riod. In our example the rotation takes place about the y—axis. From an earth point
of view, such earth pointing motion may be attractive, but it has the disadvantage
that inertial accelerations occur due to the rotational motion. These accelerations
are also present in the output of the accelerometers. Since the accelerometers all
have different positions with respect to O, the effect of the rotation is not cancelled
during the differencing of the accelerometer measurements as in eq. 2.1. But if we
can discriminate between the gravitational and the rotational accelerations by either
some numerical method or some a-priori rotational information (so that the rota-
tional motion can be considered known), cf. e.g. (Rummel, 1986), we have a means of
measuring the earth’s gravitational field, called satellite gradiometry. For a compre-
hensive general treatment of satellite gradiometry, see for example (Rummel, 1985a,
1985b, 1986). For related topics on the principles of satellite gradiometry see e.g.
(Forward, 1981, 1982), or (Moritz, 1968).

2.2 Applications

The aim of a gradiometric satellite mission is the determination of the earth’s gra-
vitational field, globally with high precision and high spectral resolution. In the
case of the first planned mission, Aristoteles, one would like to obtain the following
precisions (see also section 4.2)

geoid heights : ¢ < 10 cm
gravity anomalies : ¢ < 5 mgal (1 mgal = 107° ms™?)
both with a spatial resolution of between 50 and 100 km (half-wavelength). This
corresponds to a spherical harmonic expansion (see section 3.2) complete up to

degree and order 200 to 300.
So far our knowledge of the earth’s gravity field relies on the one hand on the
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analysis of the motion of satellites and on the other hand on terrestrial measure-
ments. Several groups collect terrestrial point gravity anomalies and process them
to equal -angular mean gravity anomalies, e.g. of size 1° x 1°, &' x 10' or 3’ x 5’
(corresponding in our latitudes to 100 km, 10 km or 5 km side-length). The origi-
nal point anomalies are derived from relative gravity measurements that are tied in
some countries into national first—order networks, containing some absolute stations,
or into the International Gravity Standardization Network. For the computation of
anomalies also heights are necessary. Ideally they should be levelled heights re-
ferring to a well-defined height datum. In practice one has often to sustain with
barometric heights or not well-defined local levelling networks. As a consequence it
must be feared that the mean gravity anomalies in some areas of the world contain
systematic errors. For large areas no gravity anomalies are available at all, either
because of political reasons the data are not made available or because areas are
not easily accessible, e.g. polar regions, high mountain ranges. In particular ocean
areas, where gravity measurements are difficult to do and very costly, large areas
are not covered. A map of the current coverage with 1° x 1° mean anomalies is
given in figure 2.2. Despite large white areas the impression is seemingly not too
bad. However, inspection of a histogram of the precision of these values shows that
only a rather small portion meets present day requirements, see figure 2.3.
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Figure 2.2 World map of the coverage with 1°X 1° mean anomalies
(Rapp, 1977).

One way to get gravity information in ocean areas is to convert heights, obtained
from satellite altimetry, into mean gravity anomalies. There exist, however, two
principal objections against doing this. First, the altimetric heights, even after
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Figure 2.3 Histogram showing the precision of the 1°X 1° mean anomalies
from figure 2.2 (Rapp, 1977).

subtraction of our best models of the ocean topography, will not coincide with the
geoid. Hence systematic errors will affect the derived gravity anomalies. These types
of “gravity anomalies” should certainly never be used for geoid determination in the
context of ocean studies. Secondly, the conversion method can theoretically not
be confined to ocean areas and is intrinsically unstable. Also, because of this, the
actually applied numerical methods will introduce uncontrolled biases. However, for
some purposes, e.g. in geophysics, the gravity anomalies determined in this manner
are useful.

Neither with terrestrial (including shipborne) nor with altimetric derived gravity
anomalies a global coverage can be achieved in the foreseeable future. Global gravity
information comes from the analysis of satellite orbits and is expressed in sets of
spherical harmonic coefficients currently up to degree and order 30 to 70. These sets
are called geopotential models. They are derived at a few computing centers in the
world in a complicated estimation process consisting of several phases. In essence,
the tracking data (laser, microwave, etc.) from a large number of stations to a large
number of satellites is analyzed. Their orbits are determined and combined in a least
squares adjustment to yield e.g. spherical harmonic coefficients of the gravity field.
The separability of the individual coefficients and their precision depends largely
on a good distribution of the employed satellites in terms of orbit characteristics
(inclination, altitude, eccentricity). The error standard deviation per degree of some
of the recent geopotential models is shown in figure 2.4. The spatial resolution is
still limited. For some models a signal to noise ratio of one is reached near degree

50.
We conclude that our current knowledge of the gravity field is far from reach-
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Figure 2.4 Error standard deviation of some recent geopotential models.

ing the level of precision, resolution and completeness aimed for by gradiometry.
This leads to the question why one needs such good knowledge of the gravity field.
Examples in four fields of applications serve as illustration.

Example One: Geodesy and levelled height

Levelled heights are used in geodesy for mapping, civil constructions, monitoring
of land subsidence, control of tide gauges, etc. The process of levelling is very
time consuming and therefore expensive. In recent years satellite positioning by
GPS (see next section) became available. GPS measurements deliver meanwhile
relative positions between points at a 1077 to 1078 level (depending on the baseline
length). The cartesian coordinate differences AX, AY,AZ between two points in the
global GPS system can be converted into differences in geodetical latitude, longitude
and height. Unfortunately are the height differences conventional, referring in a
purely geometrical sense to an ellipsoid. A height difference, Ah, of this kind could,
however, be converted into a quasi-levelled height difference AH were the geoid
height AN available:

Ah=AN+ AH .

The geometric situation is sketched in figure 2.5. The precise computation of AN
requires precise knowledge of the earth’s gravity field. The gravity field as obtained
by satellite gradiometry would suffice to determine the “absolute” geoid with a
precision of & 35 cm or relative with £ 52 cm, £ 18 cm or & 2 cm over a distance
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Figure 2.5 Relation between reference surface (ellipsoid), geoid and topogra-
phy (ESA, 1991).

of respectively 100, 10 and 1 km. In combination with local gravity information,
as available in North—-America, Australia or Europe, cm-precision is feasible and
levelling can in many instances be substituted by a combination of GPS and a
precise geoid.

Example Two: Precise satellite orbits

The main obstacle on the way to orbit determination with cmm—precision is the inac-
curacy in our knowledge of the gravity field. Of course also non—gravitational effects
form a limitation, in particular for bulky spacecraft, but could be eliminated in prin-
ciple by a drag—free set—up or adequate parametrization. A precise gravity field —
in combination with accurate and dense tracking — would result in orbit accuracies
of a few cm. This would not only significantly increase the value of ocean, ice and
land altimetry, but be useful for geo~kinematical applications too.

Example Three: Solid earth physics

The applications of an improved gravity field in solid earth physics were described
in a number of reports. It is referred to (SESAME, 1986), (NASA, 1987) and
(Lambeck, 1990). In geophysics it is useful to distinguish between studies concerned
with core or core/mantle boundary, mantle convection processes and lithosphere.
Satellite altimetry in combination with bathymetric data brought a much improved
understanding of the oceanic lithosphere. Surprisingly it is the continental litho-
sphere, as well as the polar regions, where currently better insight is desirable.
Due to the inverse character of the problem gravity alone shall never suffice
for a determination of the density structure of the earth’s interior. However, pre-
cise gravity and topographic data in combination with regional and global seis-
mic tomography would drastically reduce the uncertainty range of possible solu-
tions, see e.g. (Hager, 1983) (Dziewonski, 1984) (Woodhouse and Dziewonski, 1984)
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or (Spakman, 1988).

Example Four: Oceanography and climate change

The area where the need for an improved gravity field probably is most pressing
is oceanography. Like terrain topography is defined as the deviation H of the to-
pographic relief from an equipotential surface (geoid) the sea surface topography
(SST) is the deviation of the actual ocean surface from the geoid. The ocean surface
with no external forces such as tides, winds, storms, etc. would .be level, coinciding
with an equipotential surface. Hence any deviation from a level surface can directly
be attributed to ocean dynamics. Satellite altimetry provides sea surface heights
h relative to a chosen reference surface (ellipsoid). If a precise gravity field were
available precise geoid heights N could be determined and from the relationship

h=N+H

the SST height H could be directly derived. Leaving aside the somewhat more
complicated issue of the wind driven Ekman layer (Wunsch, 1992), the slope in the
geoid can be translated into surface ocean circulation. In other words, altimetry
in combination with a known geoid would let us see the ocean surface flow. For
oceanography this would be a milestone.

However, there is more to it. To the present day, ocean circulation is studied on
basis of hydrographic measurements (salinity, temperature, pressure, depth) along
selected ocean sections. In order to derive circulation from the data — employing
equations of motion — an assumption on a level of motion at some depth has to
be introduced (Pond and Pickard, 1983). As one knows, such a layer is purely hy-
pothetical and consequently systematic errors enter the calculations. Altimetry in
combination with the geoid removes this uncertainty. It provides the needed bound-
ary constraint for the equations of motion. Thus the gravity field information also
permits to see the deep ocean in the proper way.

Circulation is the key to many ocean transport processes, whether it is heat
transport, transport of plankton or polluted water. Heat exchange between ocean
and atmosphere is probably the main uncertainty in a better understanding of cli-
mate changes. Oceans are considered a main buffer of atmosphere heat but the
correct mechanism of heat transport in the oceans and exchange of heat between
water and air is not well understood.

With these examples we tried to illustrate the need for an improved gravity field
knowledge throughout earth sciences. Satellite gradiometry could have a substantial
impact in this respect.

2.3 Aristoteles

At the time of writing the European Space Agency (ESA) is planning a solid earth
mission to be launched in the late nineties. The main purpose of this project (called
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Aristoteles) will be the improvement of our knowledge of the earth’s gravitational
field through gradiometer measurements. A second objective will be a global analysis
of the near—earth magnetic field since, besides gravity gradiometry, the satellite
will be equipped with a magnetometer. Furthermore, our knowledge of various
geophysical phenomena such as earth rotation and pole irregularities can be enriched
by means of precise point positioning measurements from space to which extent a
GPS receiver will be on board the satellite (Dornier, 1989).

The Global Positioning System (GPS) consists of 24 (21 + 3 spare) satellites,
orbiting the earth at an altitude of 20,240 km with an orbital period of 12 h. They
are evenly distributed over 6 orbit planes with an inclination of 55°. The satellites
transmit three different kinds of pseudorandom noise codes at two carrier frequen-
cles. With a GPS receiver on board, tracking at any time four of the 24 GPS satel-
lites, the position of the receiver antenna can be determined by pseudo-ranging,
and if, in addition, differential carrier phase measurements relative to a network of
ground stations are applied, orbit reconstitution at centimeter level is feasible.

A full tensor gradiometer would consist of eight ultra sensitive three—axis accele-
rometers placed on the corners of a cube (Balmino et al., 1985). However, due to the
heavy affection of the satellite by air drag in the along—track direction (accelerations
which are more than 10 times as large as the differential gravitational accelerations)
the non drag—free Aristoteles configuration will consist of only four accelerometers
mounted in the corners of a plate perpendicular to the satellite’s velocity vector
(Dornier, 1989). This instrument is called GRADIO. The four accelerometers will be
very sensitive in radial and cross—track direction whereas the along-track component
will be measured with lower accuracy.

The accelerometers which will be used consist of a cubic (or parallelepipedic)
proof—-mass which is kept in a fixed position electrostatically by means of electrodes
arranged around it (GRADIO, 1989). The force necessary to maintain the proof-
mass at the center of the accelerometer is measured by means of the output of the
electrodes. The differential measurement of these forces between two accelerometers
is a measure for the gravitational gradient (see section 2.1).

Perturbing forces resulting from air drag, solar radiation pressure, etc., are elim-
inated in the measurement process by differencing the accelerometer outputs (as we
have seen in section 2.1, so—called common mode rejection). However, this requires
a very good linearity of the accelerometers, a low coupling between the sensitivity
axes and a good matching of the scale factors and of the alignments of the instru-
ment axes (Dornier, 1989). To this extent a calibration device is provided, situated
in the center of the gradiometer plate. The calibration device is furthermore needed
to scale the accelerometer outputs to proper gravitational units.

The material out of which the satellite is built up also causes a gravitational acce-
leration which is measured by the gradiometer (so—called self gravitation). Whereas
the signal coming from the rigid satellite parts (housing, electronics, solar panels) is
constant and can be computed relatively simple, the part coming from the fuel in the
hydrazine tanks causes a problem, because it has time varying components. Firstly,
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there is the fuel consumption necessary to maintain the satellite’s low orbit. It causes
a gradual decrease of the mass and therefore a change in the self gravitation. This
problem is accounted for by a symmetrical organization and emptying of the fuel
tanks, which furthermore have a spherical shape and are equipped with elastomeric
bladders to keep the fuel centered. In this case the change in self gravitation can be
computed easily.

Secondly, and a more critical problem, is the sloshing of the fuel in the tanks. The
tanks should be of such a size as to make sure that sloshing mode is at a frequency
out of the measurement band of the GRADIO instrument (Dornier, ibid.). This
measurement bandwidth, for which an 0.01 E/\/E white noise error spectrum is
to be expected, is between 0.005 — 0.125 Hz allowing only a good recovery of the
potential coefficients above degree 27. In (Schrama, 1990) it is shown that the
on-board GPS receiver can be used in combination with GRADIO to obtain long
wavelength (below degree 27) gravitational information from the Aristoteles mission.
However, combination of gradiometric and GPS measurements will not be considered
in this thesis.

In table 2.1 an overview of error sources in satellite gradiometry is given. For
a detailed explanation and discussion of these errors see e.g. (Touboul et al.; 1991),
(Paik and Richard, 1986), (Schrama, 1990) and (Rummel, 1989b), in which further
references can be found.

The complete Aristoteles mission will last for more than four years, of which
the gravity phase, in which the gradiometer measurements with the GRADIO in-
strument will be carried out, has a duration of about 6 months. This 6 months
gravity mission will be performed at a low altitude of 200 km, the orbit being a
dawn-dusk orbit with inclination 95°.3. Because of the relatively high air density at
200 km, drag will cause an altitude decay of 400 m per revolution, so that regular
orbit maintenance maneuvers are necessary to keep the satellite in a band of £ 3 km
around the nominal altitude of 200 km. After this 6 months period the satellite is
planned to fly for another two weeks in a near polar orbit (inclination 92°.3). This
decreases the influence of the relatively large polar gaps of the 6 months period.
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Table 2.1 Error sources in satellite gradiometry

instrument | geometrical

misorientation of accelerometer

scale factor mismatch between sensitivity axes
of accelerometer

non-orthogonality of the sensitivity axes of ac-
celerometer

misalignment of accelerometers in gradiometer
frame

scale errors of instrument axes

other

displacement of instrument from center of mass
of the satellite

non-linearity of accelerometers

incorrect calibration

non-mechanical instrument noise, due to tem-
perature and electromagnetic fluctuations of the
environment

finite baseline of the instrument

satellite attitude

unmodelled rotations
orientation

external forces

surface forces due to air drag, solar radiation
pressure, etc.

environmental disturbances such as vibrations,
electromagnetic and thermal irregularities

self gravitation

time varying components due to fuel consump-
tion and sloshing

resonating masses (e.g. solar arrays, antennas)
reaction wheels noise

geodetic anomalies separation of gravitational and rotational parts
integrated observables
orbit errors
orientation unknowns
model linearization error
simplifications (truncation, symmetries)
downward
continuation
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The gradient tensor and its
series representation in
 different coordinate
systems

The first—order derivatives (gradient) of the gravitational potential V' with respect
to arbitrary coordinates z” are V, = g:, . If, for example, the system z" 1s a cartesian
coordinate system, the three components of V, for r = 1,2, 3 together form the acce-
leration vector or gravitational vector. The second—order derivatives of the potential
are V5. With respect to a cartesian coordinate system (e.g. some instrument system
with respect to which measurements are taken) they are the first~order derivatives
of the acceleration vector, i.e. the gradients of the gravitation. This is the reason we
call the V,, the gravity gradients (or gravitational gradients!). It also is the reason
for using the word gradiometry: “measurement of gravity gradients”.

In the sense of tensor analysis the quantity V,, is a tensor. It is sometimes called
gravity tensor. The two indices r, s result from a differentiation process of the scalar
quantity V', and in arbitrary coordinates (not necessarily linear coordinates) this
should be the process of covariant differentiation, see appendix B. Only in cartesian
coordinates the covariant derivative equals the usual partial derivative, because in
those coordinates the Christoffel symbols vanish.

A few general remarks about V,; can be made here. First, since the gravitational
potential function V is harmonic outside all masses, it fulfils Laplace’s equation,

which in our arbitrary coordinates z" is written as:

9" Vys =0 (3.1)

where ¢"° is the contravariant (or associated) metric tensor. In cartesian coordinates
this equation is written out in the well known form Vg, +V,, +V,, = 0. We see that

!Gravity = gravitation + centrifugal acceleration. In many texts the terms gravity and gravita-
tion are not well distinguished. If the difference is essential, it will be clear from the context.

21



3. The gradient tensor and its series representation in different coordinate systems

the diagonal elements of the gradient tensor in cartesian coordinates are linearly
dependent, leaving only two out of three independent components.
Furthermore, since the gravitational field is irrotational, it satisfies:

eV =0 (3.2)

which implies that V;, is symmetric: {V,s} = {Vir}, leaving only three out of six
independent off-diagonal components (e™! is the three dimensional permutation
symbol, which equals 1 if the value of the indices constitute an even permutation, —1
if the permutation is odd and O in other cases. 0" is the null-tensor, but one usually
writes 0, in which case, however, the index balance no longer holds.). According to
both properties (eq. 3.1 and 3.2), out of the nine components of the gradient tensor
only five independent components remain.

A last general remark concerns the tensor character of the gradient tensor. Being
R

bl

a tensor, V,, transforms to some other coordinate system, e.g. 2, as

dz" 9z’®
VRS —= a—zﬁﬁ rs - (33)
If one knows the coordinate transformation equations 2" = z"(z®) from which the
transformation matrix g;,rz is computed these equations can easily be evaluated.
This will be done for several coordinate systems in section 3.1.

We have seen in the previous chapter that, in principle, it is possible to measure
the second—order derivatives of the earth’s gravitational potential using a gradi-
ometer in an earth orbiting satellite. Actually, the gradiometer will deliver the
measurements in a cartesian coordinate system connected to the instrument. The
orientation of this instrument system, or satellite system, will in general differ from
that of a local orbital system? due to changes in the satellite’s attitude. The local
orbital system, denoted by z', will be orientated with the z-axis along track, the
y-axis cross track and the z-axis outwards. We will at this stage assume, however,
that either the differences between the instrument system and the local orbital sys-
tem are negligible, or that it is possible to transform the measurements from the
instrument system to the local orbital system, using an equation of the type 3.3.
In this particular case, such transformation will consist of a simple rotation matrix
between two cartesian coordinate systems having the same origin but a different ori-
entation, and we will assume it to be known. Thus we consider it possible to obtain
from the gradiometer the gravitational gradients V;; in the local orbital system z*.

Furthermore, the orientation of this local orbital system will, due to the inclina-
tion of the satellite’s orbit, in general deviate from the orientation of a (commonly
used) local, north-oriented coordinate system z' with the z'-axis directed north,
the y'—axis west and the z'-axis radially outwards. However, we will also assume
that it is possible to transform the components of V;; from the local orbital system

2For the definition of this system and other coordinate systems which will be used see appendix A.
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to the local, north—oriented system by means of a known transformation, again using
an equation of the type 3.3, in this case written as:

9z 9z’

V'I = —“——V
1) axtl 82:]1 L %)

(3.4)

where the %r is a known rotation matrix, cf. (Rummel and Colombo, 1985). If,
in an ideal case, all nine components of the symmetric gradient tensor are mea-
sured, 1t is, in principle, possible to solve the attitude of the instrument from the
measurements, at least if some additional information from star trackers is available
(Rummel, 1985c¢). For the moment we will assume here that we are given the grav1ty
gradients in either a local orbital system z* or a local north-oriented system z* .

From the available gradient measurements we like to obtain information about
the earth’s gravitational field. This information is usually given in terms of a set of
potential coefficients, cf. section 2.2. One therefore needs a relation between these
spectral coefficients, often denoted Ci,, and S, and the observations V;;. This
relationship is obtained by expanding the gravitational potential V into a series of
spherical harmonics as function of the geocentric polar coordinates z# = (r,0, ).
This will be done in section 3.2. In this section also a series expansion of the
potential as function of the orbital coordinates z* = (r,w.,w,) or % = (r,w,, I) (see
appendix A for their definition) will be given, which appears to be better suitable
for problems involving satellite observations.

Given V as function of e.g. z%, one may compute the second-order derivati-
ves Vyp (using covariant differentiation in this case because the z? are curvilinear
coordinates). By means of an equation of the type 3.3, in this case

azb ozt
CR FE=ACE (35)

one obtains the desired relationship between potential coefficients, contained in the
Vab, and measurements V;;.

In order to gain some insight in the signals to be expected from a gradiometer
mission, the last section of this chapter, section 3.3, deals with the synthesis problem,
i.e. how to compute from some a—priori given set of potential coefficients a set of
(simulated) gradiometer data. This section furthermore shows a simple analysis
strategy, i.e. the inverse problem of recovering the potential coefficients again from
the simulated gradient data.

3.1 Potential derivatives in different coordinate systems

In the following section 3.2 we will be given two series expansions of the gravitational
potential, one as function of the geocentric polar coordinates 4 and one as function
of the orbital coordinates z° or z* (respectively equations 3.14 and 3.17). Both series
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3. The gradient tensor and its series representation in different coordinate systems

are given in terms of the same potential coefficient set Ciy, Siym. Taking two times
the covariant derivative of these series yields corresponding series expansions for
the gravitational gradients in curvilinear coordinates, respectively Vg, Vap or V.
They have to be related to the observed gradients, expressed in local coordinates z*
or n:i', respectively V;; and Vji;i. So what we need are transformation equations for
second-order potential derivatives.

In this section we derive these transformations, which are all of the general type

oz" dz’
RS = 5 R 5.5 /e (3.6)
where in our case we take for the z” coordinates either z4, z® or 2% and for the

R we take ' or z''. For the evaluation of the V,, we need the metrical tensor and

the Christoffel symbols for the respective coordinate systems. They are given in
appendix A. In section 3.1.1 the algorithm to derive the gradient transformation
equations is explained. The subsequent section 3.1.2 gives a listing of several explicit
transformations. Compare e.g. (Reed, 1973) or (Tscherning, 1976) were some of
these transformation formulae are also derived.

3.1.1 Algorithm

The algorithm for computing the transformation equations for the second-order
potential derivatives may serve as an example for the use of tensor analysis and
index notation (see e.g. sections B.2 and B.3). For the definition of the coordinate
systems used in this section, we refer to appendix A. In the same appendix the
elements of the metrical tensor and the Christoffel symbols for those coordinate
systems are listed.

We assume we have the gravitational potential V' given as function of the co-
ordinates z¢. We could equally well assume here that V' 1s given as a function of
4, :1:"',:5"',2:‘i or z?, but we take z% as example. Since the equations are all tensor
equations they also hold for all other coordinate systems. Given V', we may compute
by partial differentiation the first—order derivatives V4, which equal the covariant
derivatives V., and which will be simply denoted by V,, so V, =V, = V,,.

The second—order derivatives have to be computed by covariant differentiation,
since partial differentiation of a tensor with rank > 1 in general does not lead to a
tensor. This yields:

Va;b - Va,b - Facb Ve

which we will simply denote by Vg4, so Vg = Vigp = Vi, We see that, in order to
evaluate V,;, we need the Christoffel symbols I';. They are computed using

1
Facb = Eng(gad,b + Gbd,a — gab,d) .

For this purpose we need the metrical tensor gqp. It is calculated, according to its
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3.1. Potential derivatives in different coordinate systems

transformation rule, from ¢ys in geocentric coordinates, 1.e.

dz! 827
Jab = @ﬁgu .

a;i is computed
from the coordinate transformation z/ = z/(z?). Thus the coordinate transfor-
mation has to be known. In the present example this transformation equals equa-
tion A.6. The associated metric tensor g% is computed as the inverse of gg. If it

is hard to invert g, one can try to compute first the inverse transformation matrix
dz¢
azt

Thereby g7 equals the unit matrix and the transformation matrix 2

and calculate ¢% from
ab — aza azb gJK
0z’ dzK
in which ¢’/ is again the unit matrix.
The V,; can now be computed. Since V,; is a tensor, its transformation equation
to another coordinate system has the form

9z* 9zb
V. = — V.
JK 823" BzK ab

We already know —g—%, so with this transformation equation we easily find the second-
order potential derivatives with respect to geocentric cartesian coordinates as func-
tion of the first— (!) and second-order potential derivatives with respect to the
I-orbital coordinates z°.

Transformation to a local cartesian coordinate system, for example the local
orbital system z', follows analogously:

dz® 3zb
ik = 37 3 g Vab s
0zl dx
where the transformation matrix % is most easily computed using the chain rule
dz?  Jz° dz’
dri  dz’ dzi
in which % is already known and % has to be computed from the coordinate

transformation z! = zI(xi). We therefore have to specify the latter transforma-

1 L .
gii’ which in the present example equals the matrix in

tion, or directly the matrix
equation A.3.
Moreover, the transformation equations for the first-order derivatives are simply

dz?
VJ = 5;7 a
_oxtor o,
T 9xd 9 )
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3. The gradient tensor and its series representation in different coordinate systems

If, during the computations above (either numerically or symbolically), use is
made of pre-programmed subroutines for matrix manipulations, care has to be taken
with the use of the transpose, inverse and original form of the matrices, especially
of the transformation matrices g;—',l etc. Strictly following the conventions from sec-
tion B.1.3, this may not lead to any problems, but it is safer to convert the equations
directly into nested DO-loops, the inner loops representing the summations over the
dummy indices and the outer loops representing the repetition of the computations
for all the values of the free indices. Both methods will be illustrated below.

Let us denote all the transformation matrices with the kernel letter X, i.e. X/, =
ozl I _ ozl
dze) t 31.:-')
matrix notation:

etc. Furthermore we choose the following transition from index to

Voo — V ; Vo — g
Vig — W , Vi - a
Vii —- U : Vi - 7
XIa - X , z° — r
X, - R , g -
Xia — T , zt —  u
gao — G ; grs — I.

The transformation equations from this section then become, in order of appearance:

gap = X l9rs X7, — ¢ =XTIX

g% = XanJKXKb - G != x1x-T
Vik = X/ VX — w =XxTvx-!
Vie = X, *Vap X — u =71Tyr!
X% = X% X7, — T7!'=X"'R

Vi =XV, — a =XTy

Vi =X,V - oy =TTy

with the transformation matrices defined through the coordinate transformation
equations:
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3.1. Potential derivatives in different coordinate systems

! = z1(29) — | = Xr
! = 2! (z%) — | = Ru
= z'(z%) — u="Tr

As an example of how a tensor equation can easily be converted into pro-
grammable code, consider the equation for the Christoffel symbols

1
Iy = §9Cd(gad,b + gsd.a — Gab,d) -

With the arrays gamma(a,b,c), gi(a,b) and dg(a,b,c) representing respectively

b g% and gab,c the loop becomes:

do a =1,3
dob=1,3
doc¢c =1,3
gamma(a,b,c) = 0
dod=1,3
gamma(a,b,c) = gamma(a,b,c) + 0.6 * gi(c,d) *
(dg(a,d,b) + dg(b,d,a) - dg(a,b,d))
end do
end do
end do
end do

The algorithm sketched in this section is shown in table 3.1 as flow chart.
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3. The gradient tensor and its series representation in different coordinate systems

Table 3.1 Computation scheme for transformation of potential derivatives
in arbitrary coordinate systems.

input: (1) V =V{(z%)
(2) zf=2(z%)
(3) ' =2/()
(4) {gs}={d"7}= {87}
output: | (5) X7, from (2) |
6) X%=(X%)"! from (5)
(7)) gar = X, X915 from (4), (5)
(8) ¢* = (9a)7" from (7)
(9)  ab,e from (7)
(10) T3 from (8), (9)
(11) Vo=V, from (1)
(12) Vi = X%V, from (6), (11)
(13) Vas from (11)
(14) Vis = Vay from (10), (11), (13)
(15) Vg = X,°X" Ve from (6), (14)
(16) X7 from (3)
(17) Xx° from (6), (16)
(18) Vi = X,%V, from (11), (17)
(19) Vi = X;°X"Va from (14), (17)
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3.1. Potential derivatives in different coordinate systems

3.1.2 Transformation formulae for the potential derivatives

We assume the gravitational potential V' to be given as function of one of the fol-
lowing coordinate sets: z4 = (r,0,A); 2% = (r,wo,w.), ¢ = (r,wo,I) or A =
(r,#,w,) (see appendix A). Then we can compute the first— and second-order po-
tential derivatives with respect to these coordinates, respectively V4, V,,V,r, V4 and
VaB,Veb, Varnr, Varpr. What we need are the potential derivatives with respect to ei-
ther the local north—oriented coordinate system z* or the local orbital coordinate
system z', i.e. Virjr or Vi;. They are obtained from the derivatives with respect to
curvilinear coordinates by means of transformation equations of the type 3.7 and 3.6,
and are given in the boxes in the remaining of this section. Notation is abbreviated
to what is commonly used: V, means %‘f = 616,}/:1, etc. For reference, also the
transformations of the derivatives in ellipsoidal and geodetic coordinates are given.

_ 9z 1
Vi=S5Va Ve = roosg Vo
_1
V=1V
V.=V,
Al 5. B'
1/” _ 6622.‘ aazzj VA’B’
1 tan ¢ 1
Vie = -V, r—2 ¢ 2 COSZ¢ WoWe
Vo 1 sin ¢
o rlcos¢ Pwo T 12 ¢ 082 ¢ v
1 1
Ve = — V. 3.9
i r2cos¢ “°  rcos¢ ° (3.9)
1 1
V= -V + ,2 Vo
1 1
Vie=—3Vet+ Vi
Ve = Vi

If we put ¢ = 0 in equations 3.9 we obtain:

1 1 1
Vie = ;Vr + r_sz,,w,) sz = r_2v¢wn
1 1 1 1
Vae = = 5 Vo, + ~Viu, Vg = Vet 5Vss (3.10)
1 1
Vyz = —T—2V¢ + ;an; Vee = Vir

Equations 3.10 will be used in chapter 4. They are obviously only valid on the
equator of the coordinate system which, in our case, is the orbit of the satellite.
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3. The gradient tensor and its series representation in different coordinate systems

]
_ dz° 1
Vi = S Ve Ve =tV
1
VU rsinonI
V,=V,
Vi = Bz“' 61:”‘V
ij T 8z° Bzi 'a'd!
1 1
VII = _VT + -_2VW0W0
r r
1 COS W,
sz = 2. 2 I
7% 81N w, résin‘ w,
1 1
Vo = v - Lu (3.11)
r r
1 1 1
Vyy = -V, Vii
v, r? tan w, r2sinw,
1 1
Vyz - - Ver — 5 %
7 Sinw, 7% 81n Wy
sz = Vrr
_ dz° _1
Vi= ai.’ Ve Ve = ?Vwo
_ _cotl _ 1
Y~ rcoswy Wo rsinl cosw, WYe
Vz - Vr
. _ 8z 2z®
V‘J = 3z° ozJ " ab
1 1
Vie = -V, + _2Vwowu
r r
1 .
Vey = 55— (cos I'sinw,V,,, —coslcosw,Vy, u,
r¢sin I cos® w,
— coswoVy,w, — Sinw,Vy,,)
1 1
Ver = Viw, — —2an (3.12)
r r
1 . . . .
Vi = -Vr + T P (51nw0(31n2 Isinw, — 2sin? [ + 1)V,
r r2 sin“ [ cos® w,

1
Vie= 55— (rcosIV,,, —coslV, —rV,, +V,,
r*sin I cosw,
sz = Vrr

+ cos? I cosw,V, —2cosIcosw,V, . + cosw,V,. . —coslIsinw,V,
oV wyW, oYV WoWw, O Wel, o7 W,

)
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3.1. Potential derivatives in different coordinate systems

_ 1
Vi = 573t Ve
_ .1
Vg - —UH—Njcosan’\
Vg — Vh
Vis
1 1 3e?M?sin pcos @
= V Viow — V.
R M T (ht M2 PP T N(L—et)(ht M) ®
-1 tan ¢
= Vor — —————=V,
(h+ M)(h+ N)cosp ** cosp(h+ N)? *
1 1
o= VN — g
A+ M ™ (ht M)
1 1 tan ¢
= v Vaa — V.
h+ N h+(h+N)2cos2<p MU (h+ M)A+ N) ¥
1 1
_ Vi v
(h+ N)2cosp A (h+ N)cose A
= Vin
_ 1
Vg - *vcosﬁv’\
VZ = ‘E‘Vu
Vas
uv? 1 E?sinfBcos 8
Ve = paVet Ve o
-1 tan 3
Veig= ———Vg — ——
¥ vLcosf ha vLcosf A
v uv vE?sin Bcos
Vig == -ﬁVuﬁ - FV[; - TVU
u 1 tan
Vi S et g™ T T
u 1
Viz = Vy - Vu
¥£ T Lvtcosf A Lcosf A
v? uE?cos? 3 E?sin Bcos 3
Viz = ‘L‘fvuu - I4 Ve + 14 Vs
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3. The gradient tensor and its series representation in different coordinate systems

A
Vo = 225V, Vo = -1V,
_— 1
VU' - _rsin(?v’\
Vo =V,
A B
Vi = 55 25V
1 1
Vorgr = =Ve + ’EVM
r r
1 cos @
Vi, = - \%
Ty rZsinf r2sin? 4
1 1
Vgt = r—2V9 ~V,s (3.13)
1 1 1
Vg = — Vs + V
vy’ r+r2tan9 T r2sin?y AA
1 1
Vg = - - —V,
v r2sind » rsing ™
Vg =Vir

3.2 Series expansion of the potential and its derivatives

3.2.1 Spherical harmonics

The gravitational potential V', being a solution of Laplace’s equation, is expanded
into a series of spherical harmonics as function of the geocentric polar coordinates

4 = (r,0, ) as:

+ Sipm sin m/\] Pin(cosf)  (3.14)

) +1
V(r,0,)) = % g <§) ! mzz:o [C_'lm cos mA
where
GM gravitational constant times mass of the earth
R reference radius
Cim, Sim normalized potential coefficients of degree [ and order m
l,m degree and order
Pin(cos8) normalized Legendre functions
r, g, A geocentric polar coordinates (6 is co-latitude).

For computational purposes it is convenient to i
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3.2. Series expansion of the potential and its derivatives

and m leading to the Fourier series, cf. (Colombo, 1981)

0 .
V(r,0,)) = Z [Am(r,8) cosmA + By, (r,6) sinm)| (3.15)
m=0
with coefficients
Ap(r, 0 s K",‘n r,0
o) | _ o [ o 1)
B (r,6) I=m | K2 (r,0)
KA (r,0 Tim
lm( ) _ H[m(r, 0) _l
KE (r,0) Sim

Hip(r,0) = u(r) P (cos §)

GCM /R I+1

w(r) = = ( . > .

We saw that, in order to compute the potential derivatives in the local north-
oriented system z* , we need the derivatives V4 and Vap of the potential with respect
to the polar coordinates 4. These can be derived from equation 3.14 or 3.15 by
means of simple partial differentiation. The derivatives, computed in this way, can
also be expressed in series analogous to 3.15, with appropriate expressions for the
factors K{fn, Kfn and H,,,. In table 3.2 one finds these factors for all the first— and
second—order derivatives of V' with respect to r,#, A. In this table we abbreviated
P/, =098P,,/30 and P! = 8%P,,/39%. The local derivatives Virji are expressed in
the same way, the expressions for Kf}n, Kﬁn and H;, now to be taken from table 3.3.
They are found by using equations 3.13.

Already at this point one might find out, by taking a glance at this table, why
satellite gradiometry is especially suitable for the determination of higher degrees
and orders of the gravitational potential. On the one hand, one notices the factor
(R/r)'*!, which is present in all six gradients (since I'; = w;/r? = (GM/R/r?) -
(R/r)!*1). This factor causes an attenuation effect with height for the gravitational
potential and related quantities. It means that, since R/r is smaller than 1, the
power contents of the potential signal decreases with increasing altitude above R.
Due to the power of { 41 this decrease is stronger for higher degrees I, making them
harder to detect if one goes further away from the earth. The attenuation effect is
inherent to all spaceborne gravity determination techniques.
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3. The gradient tensor and its series representation in different coordinate systems

Table 3.2 Potential derivatives w.r.t. (r,0, )

j:'fffztl'.entlatlon Hl(;';) Kl/:n Kllzn
r Dy B, | HOCm | HDSim
6 wh, H 1(33 Cim H z(:z) Sim
A my Py B8, | —HYC
rr Ny B, | B Cim | HE Sim
rf B, | B Cm | B Sim
rA =l P | B Sim | —Hjy Cim
90 whll, Hl(::f)élm Hl(,ia)gzm
DY mw P, H[(yi)‘)glm _'Hl(::\)élm
A —mtu P, | HOVCn, H[(:,‘,,)‘)glm

On the other hand, in the case of the second-order derivatives, this attenuation
effect is to some extent compensated by multiplication factors like (I +1)({+2), (I +
2),(!+ 1) and m, which tend to increase the power contents for higher degrees. This
makes satellite gradiometry (the technique of observing gravity gradients at satellite
altitude) an attractive candidate for gravitational recovery with high precision and
resolution compared to other techniques like orbit determination.

Table 3.3 Potential dertvatives with respect to local north-oriented coords-
o _u
nates (:1: ,y,z}. I = ,_2L

H}) K, K
D(Pl, = (1+ 1) Pi) B O | ™ Sim
z'y’ msin LT, (P!, — cot 0 Pyy,) BEVS,, | —HEVIG,,
z'2! (I + 2)F115llm z(rf:z')élm Hz(:z')glm
'y || Ti(cot 0P, — (1 +1+ m?sin™20)P) | BV V)G, | HEV)S,
y'z' m(l + 2) sin~ 14T, Py, Hl(:::zl)glm —Hl(::z’)c_'zm
27 (+ 1)( + 2)T1 P, HE | HES) S
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3.2. Series expansion of the potential and its derivatives

3.2.2 Orbital coordinates

For the description of the motion of planets around the sun or satellites around the
earth the orbital elements a,e, I,Q,w, M can be employed, which are respectively
the semi-major axis of the elliptical orbit, eccentricity, inclination, right ascension
of the ascending node, argument of perigee and mean anomaly (see figure A.1). It
is convenient to have also an expression of the gravitational potential V in terms
of these orbital elements. Upon keeping the harmonic coefficients Cj,, and S,
from eq. 3.14 as coefficients in the potential expansion, but changing from r, 4, A to
r,J,w, 2, M (we assume the orbit is (nearly) circular, so e ~ 0) we obtain:

v <E) 33 By 1)

r

=0 m=0 p=0
_ I—m:even _ l—m:even
Clm Slm
{ i cosYimp + | SIN Yimp } (3.17)
-S C
im {—m:odd im {—m:odd

where

Fimp(I) normalized inclination functions

";blm.p = (l - 2P) Wo + Muwe

w, = w+ M subscript “o” referring to “orbit”
see (Schrama, 1989)

we = {1 — 8¢ subscript “e” referring to “earth”

e earth’s argument of longitude .

A derivation of eq. 3.17 can be found in (Kaula, 1966). In (Sneeuw, 1991a) the
same expression is derived by means of a group-theoretical approach which makes
use of the so—called representation coefficients (also known as Wigner coefficients).
In such an approach it becomes obvious that it is, in fact, more fundamental, and
for satellite purposes also more convenient, to use in eq. 3.17 the index k instead
of p, with k = | — 2p. The index k has a stepsize 2 and ranges from —{ to [. So
switching from p to k and changing the notation accordingly, we make the following
replacements in eq. 3.17:

;:O - Zic:—l[z]
Flmp(l) - Fll:n(l)
1»z)lmp - Yrm = kwy, + mw,

From k =1 — 2p we see that k and ! always have the same parity, a property we will
use later on. It appears convenient to abbreviate eq. 3.17 (including the replacements
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3. The gradient tensor and its series representation in different coordinate systems

above) as
oo l
V= Z Z Z [A1mi (7, I) c0S Yrm + Bimk(r, I) sin ¢iyy | (3.18)
=0 m=0 k:——l[?]
with
Almk(r) I) im
= Himi(r,I)
Blmk(r’ [) ,Blm

Himg(r, I) = wi(r) FE (1)

B l—m:even
Clm
Qim = _
)
™ miodd
_ {—m:even
Slm
ﬂlm = _
Clm
l—m:odd
GM /R i+1
ul(r) = -—“R— 7 .

Furthermore, we mention the possibility to rearrange the summation order I, m,k
to k, m, [, as a result of which we may rewrite eq. 3.18 (truncated at some maximum
degree L) in the following manner, cf. (Schrama, 1989):

L i

L
V= Z Z Z [Almk cos d)km + Blmk sin ¢km]
m=0l=m k=-1[2]
L L L

=5 3 > [Aimkcosthkm + Bimk Sin im)

m=0 k=- L I=lmin[2]

L L
= Z Z [Akm cOS Ykm + Bim Sin Yim| (3.19)
k=—Lm=0
where
Apm | ZL: Almik
Bim i=tmin[2] | Bimk
L
qim
= > Him . (3.20)
{=lmin[2| im
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3.2. Series expansion of the potential and its derivatives

and Hinx = u,F‘l’:n. In the expression above Imin = maz(|k|,m) + § where § = 0
if k& and maz(|k|,m) have the same parity and § = 1 if they have opposite par-
ity, cf. (Schrama, ibid.). The Ak, and By, coefficients are the so—called lumped

coefficients, see (Schrama, ibid.) or (Wagner, 1983).

From eq. 3.18 we may compute the partial derivatives of V with respect to the co-
ordinates r,w,,w,, I, resulting in different expressions for the quantities Hymk, Aimk
and Bj,x. Those quantities are listed in table 3.4 for all the first— and second-order
partial derivatives of V' with respect to r,w,,w,, I. Following appendix A.l we either
consider the set (r,w,, I) or the set (r,w,,w,) so the mixed derivative with respect
to I and w, is not listed in table 3.4. In this table we abbreviated Ft' = FF /91
and F[’:n” = 8217'/;1/812. Transformation to local derivatives is, for this situation,

discussed in section 4.2.

Table 3.4 Potential derivatives w.r.t. r,wy,we, I

ilvifir.entiatlon Hl(r.r.L)k Almk Bimk
r - L:rﬂul Fll:n almHz(;)k ﬂlmHl(rrn)k
I wFk o Hie BimH )k
o, kuFt, | BmH) | —cum B
We muy F'll:n Bim H [(:L';c) —oum H l(:;}c)
- G0 FE | o) | Bkl
II U F/ﬁn” amH, l(r{n,lk) Bim H l(rftlk)
Wols —k*w FF B2 | BimH o)
Wats —m?y Fl’:n s Hl(;i«kwe) Bim Hl(::;we)
rl - HTlut F‘,m' almHt(:nIk) ﬁ'mHl(r:tIk)
rwo ~Hku B, | BmHi” | - cum i)
Tw, - ﬂ(lj—llul F[I:n ﬂlmHz(;u;:) "'almHl(rrnul):)
WoWe - mkul Fl’:n Qi Hl(;‘;cwe) ﬁlmHz(y:(;cwe)
Tw, kw F ll:n' Bim H l(r{:;:) —oum il l(r{:l)co)
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3. The gradient tensor and its series representation in different coordinate systems

3.3 Synthesis and analysis

In the previous sections we have seen that gravity gradients are measurable, in
principle, in an earth orbiting satellite by means of differential accelerometry (sec-
tion 2.1). We have seen how this technique will be realized in practice and what
kinds of problems thereby will occur (section 2.3). We have seen how to express
the observed gradients in several coordinate systems (section 3.1), how they are re-
lated to the desired potential coefficients (section 3.2) and for which applications
we need these potential coefficients, as they are derived from satellite gradiometry
(section 2.2). But what should we expect from gradiometric measurements in terms
of magnitude and spatial or spectral characteristics of the signal?

Probably the easiest way to get at least a first, rough estimate of the size of the
gravity gradients is to take for the gravitational potential V' the central term %
only, representing the potential of a homogeneous spherical mass distribution. In
terms of a spherical harmonic expansion (eq. 3.14) this means that the only non-zero
potential coefficient is Coo = 1. Then we can easily compute the gravity gradients in
a local north-oriented coordinate system 2. Since in this case V is only a function
of r all the first— and second-order partial derivatives with respect to § and A are
zero. Using eq. 3.13 this leaves for the elements of the gradient tensor:

ly, 0 0 -1 0 0

GM
Vip=]1 0 1V, 0 |=—5 |0 -10
0o 0 V, 0o 0 2

At a satellite altitude of 200 km we find in this case for the diagonal elements
Vgt = Vipryr = =3V 2 -1400 E.

In reality the earth is not a perfectly homogeneous spherical mass. In terms of
the series expansion 3.14 an infinite number of non-zero potential coefficients exists.
The potential V and the gravity gradients are not only a function of r but also of §
and X. A global computation of the gravity gradient signal should therefore include
a full evaluation of the series expansion. Whereas in this equation (and also in
eq. 3.17) the summation over [ ranges from zero to infinity, one has to choose some
finite maximum degree L > 0 when doing practical computations. Such evaluation
can be done in arbitrary points of which the geocentric polar coordinates (r,6, )
are specified. If we carry out such a computation in individual points, it is called
single point computation.

Very often, however, we like to compute the gravity gradients in the nodes of
an equi-angular world wide grid located on a sphere with radius r. Such a com-
putation, based on the evaluation of eq. 3.14, is called spherical harmonic synthesis
(Colombo, 1981). Besides the polar or orbital coordinates of the (grid) points, gra-
dient synthesis (using eq. 3.14 or 3.17) requires the availability of some known set of
potential coefficients. Nowadays several potential coefficient sets exist, for example
GEM-T2, complete up to degree and order L = 36 (Marsh et al., 1989), OSU180
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3.3. Synthesis and analysis

with L = 180 (Rapp, 1981) and OSU86F with L = 360 (Rapp and Cruz, 1986).
The first one is derived purely from orbit analysis of a variety of satellites, the sec-
ond included altimeter data from Seasat and terrestrial data (gravity anomalies),
whereas the third model was computed from altimeter data and land measurements
including geophysically predicted gravity anomalies. A maximum degree L of 180
corresponds to a smallest recoverable wavelength of 2° thus giving the possibility of
showing gravitational features in a grid of 1° x 1° blocks (half of the smallest wave-
length or the resolution). In the same way data in 0.5° x 0.5° blocks corresponds to
L = 360.

So if some known set of potential coefficients is available, the synthesis problem
may give us some insight into the signals to be expected from a gradiometer mission
by computing a set of gravity gradients. But the reverse reasoning is also of interest
to us: given the values of the gradients in a set of points, regular or irregular
distributed over the whole earth, compute from them the potential coefficients. If
one uses an equation of the type 3.14 this problem 1s called spherical harmonic
analysis (Colombo, 1981). The set of gradients could be thought of as observed
during a real gradiometer mission, from which we like to recover unknown potential
coefficients.

In general any functional of the gravitational potential may be generated and/or
analyzed by means of, respectively, the synthesis and analysis problems discussed
above. Such potential functionals could include for instance the gravitational po-
tential itself, its first— and second—order derivatives in any coordinate system, geoid
heights, gravity anomalies, deflections of the vertical, etc. Let us write f(0, ) for
such arbitrary function, defined on the surface of a sphere, and let us expand this
function in a spherical harmonic series as

L l
f(0,2) = Z Z Py (cos 8) [aim cos mA + by, sin mA] (3.21)

I=0m=0
where the a;,, and b;,, are the normalized spherical harmonic coefficients. Com-
parison with eq. 3.14 reveals the same structure, so that, if we identify f with the
gravitational potential V and ain, and by, with respectively (GM/R)(R/r)*1Cip,
and (GM/R)(R/r)"*1S,,, the two expressions coincide. In analogy with eq. 3.15 we
could write 3.21 as

L
f(0,)) = Z [am cosmA + by, sin mA| (3.22)
m=0
with
Am L _ Am
=Y Pim(cost) . (3.23)
bm l=m bim

The harmonic coefficients aym,, b, constitute the spectrum of f and are therefore
sometimes called spectral coefficients, thereby referring to the theory of Fourier anal-
ysis, where one also uses the term synthesis for the Fourier series or inverse Fourier
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3. The gradient tensor and its series representation in different coordinate systems

transform of respectively periodic or aperiodic signals and the term analysis for the
Fourier series coefficients resp. the Fourier transform, e.g. (Oppenheim et al., 1983).
Note, however, that eq. 3.21 does not correspond exactly to a two-dimensional
Fourier transform in the plane, cf. (Schwarz, 1985). From the spectral coefficients
one computes the (quadratic) power spectrum ¢;, (I =0,...,L) as

i
a=Y (ofn+b) - (3.24)
m=0
The ¢; are also called degree variances. The degree-order variances c;, are computed

from the power spectrum as
i

T2A+1’
the square root of which is referred to as r.m.s. value per coefficient per degree.
Given the f(8,A) in a grid the spectral coefficients a;» and b, themselves can be
computed using the following numerical quadrature formula:

(3.25)

Clm

aj 1 L= L1 cosmA;
L= ye ST AiBn(cost;) D f(8;,2;) ’ (3.26)
bim T =0 j=0 sinma;

where A; = AAAfsinfd; and where “*” indicates the fact that these coefficients are
estimates of the a;n, and b;,,. The f(6;, A;) are the function values at the grid points.
Eq. 3.26 is a discrete approximation of

Aim ) I i cosmA
Py (cos @) f(8,7) d\ do

bim 4m Jo=o0 A=0 sin mA

where o represents the unit sphere. This formula is based on the orthogonality
property of spherical harmonics, see for example (Heiskanen and Moritz, 1967). For
the cosmA and sin mA terms the orthogonality also applies in the case of a discrete
summation, like the summation over j in eq. 3.26. For the +—summation over the
P, terms the orthogonality property holds only approximately so the d;, and bim
will contain an error due to this approximation.

The computation of potential functionals in a grid, and the estimation of spectral
coefficients from such grid, involve some equivalent numerical techniques (duality
between synthesis and analysis (Colombo, 1981}). This can be seen by looking at
the transform pair 3.22 and 3.26. Firstly, both problems require the computation
of all Legendre functions up to degree and order L. Secondly, half of the problem
can be solved by applying pre—programmed FFT routines. For spherical harmonic
synthesis one first computes the coefficients a,, and b,, using eq. 3.23. Afterwards
the grid values are obtained by applying an inverse FFT with those coefficients
(eq. 3.22). When evaluating the spherical harmonic analysis equation 3.26, the j-
summation can also be done by an FFT, after which the 1-summation is carried out
separately.
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3.3. Synthesis and analysis

The value one chooses for L depends mainly on the specific application, but
it may have a rather large impact on numerical computations. Typical numerical
problems like underflow, numerical stability, but also problems with computation
time and data storage may occur when simulating gravity gradients (or in general
any potential functional) up to high maximum degree, for example L = 360, and
at a large number of points. Therefore, we will pay here some attention to a few
numerical aspects of gradient synthesis, in particular to the recursive computation
of Legendre functions, single point versus grid computation and vectorization.

Legendre functions

In the process of evaluating a series expansion of the potential and its derivatives
up to high degree and order the computation of the Legendre functions plays an
important role. Since the computation of the Legendre functions by means of explicit
formulas (for example (Heiskanen and Moritz, 1967), eq. 1-60 or 1-62) is too time
consuming, one uses recurrent relations. For the normalized Legendre functions we
use the relations:

Py = fisin0P_13-1 (3.27)
Pii1= frcos0Pi-111 (3.28)
I_Jl,m = f3(f4 Cosg}sl—l,m - fS-PI—Z,m) (329)
with the starting values
Poo=1
P1’1 = \/gsin 0
where
20+1
hi=\l——

fo=vV2+1
f—\/ 20 + 1
NE-m)+m)
fa=v2-1

_fl-m-1)(+m-1)
f“"_\/ 20— 3 ‘

We may visualize these recurrent relations by means of arrows in an [/, m-scheme
with degree [ on the horizontal axis and order m on the vertical axis (see figure 3.1).

Equation 3.27 is the diagonal recurrence upwards on the main diagonal, eq. 3.28
the first step in horizontal direction for fixed order m, arriving at the first sub—
diagonal and eq. 3.29 expresses all the further steps in horizontal direction for in-
creasing degree . There also exists a vertical downward recurrent relation (for fixed
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HoQ.=0

3

v

\{

degree [

Figure 3.1 Recurrence relations for Legendre functions

degree ), namely

cosf - _
Pl,'m.—l + f7]31,m.

_ 1
Pim-2 = —f;; —2m - 1)sinﬂ

with
V2 +1) if m=2
VU-m+2)({+m—-1) if m#2
fr=fl+m)i-m+1).

This recurrence, however, is not used here since it becomes numerically singular

for small 8 due to the factor sirll 5. Furthermore, a downward recurrence is not

recommendable when, during the computational process, an underflow occurs on

fe =

the main diagonal. An overview of all possible recurrence relations can be found in
(Ilk, 1983). Compare also (Gerstl, 1980).

Starting the diagonal recurrence with Pyy = 1 the value of the Py for increasing {
will decrease rapidly. The degree at which a numerical underflow will occur depends
on the value of the maximum exponent of the used computer and on the latitude
@ (see fig. 3.2). The underflow results in a zero value for the P;. In that case all
subsequent P, will also be zero. If a downward recurrence would have been used
a much larger part of all the Pj,, would be zero due to the underflow on the main
diagonal as in the case of horizontal recurrences, cf. (Koop and Stelpstra, 1989).
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3000 4000 5000

degree 1

1000 2000

0

8 (co-latitude)

Figure 3.2 Degree | at which the Py (during the diagonal recurrence) be-
come smaller than 1075% (and vs therefore set to zero on the

CONVEX) as function of §.

Whereas the value of the Py for increasing ! on the main diagonal decreases,
the value of the P, for fixed m and increasing [ during a horizontal recurrence
slightly increases. An underflow may therefore cause information to be lost for high
degrees. This is even more the case for the second—order derivatives of the Legendre
functions P/’ which can reach values up to 10%. This problem of underflows can
be dealt with by scaling techniques, as described in (Koop and Stelpstra, ibid.)
for recursive Legendre function computations or in (Sneeuw, 1991a) for recursive
inclination function computations.

The recurrent relations for the first— and second—order derivatives of the Legendre
functions may be derived from equations 3.27 — 3.29 by means of differentiation with
respect to 4, obtaining:

P}, = fi(cos 0P,_1)-1+sindP_;; ;)
Pli_y=fa(—sinfP_yy 1 +cosbP_y; )
I_)l,,m = f3(—f4 sin 0Pl—1,m + fa cosa}_)l’—l,m - f5pll—2,m.)

with the starting values
POI,O =0
P{,I =1/3cost

and

Pl',’l = fi(—sin0P,_1 ;1 +2cos 01_31'_1’,_1 + sin 0151"_1,1_1)
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Pz’,'z—l = f2(-cos 0}31—1,1—1 — 2sin 9131’—1,1—1 + cos 0}—)1"—1,1—1)
Pl,,,‘m. - f3(—f4 Ccos 0Pl—1,m - 2f4 Sinopl’—l,m + f4 cosgﬁ)llil,m - f5}-)l”—2,m)

with
P (3’,0 =0

_{"1 = —v/3sind .

Single point versus grid computation

Gradient computation, using high degree potential models, is a time consuming
process. Especially if one wishes to compute the gradients in a large number of
points. Depending on further applications, one may proceed in different ways. Either
one evaluates the full spherical harmonic expansion 3.14 in each point separately
(single point computation) or one applies spherical harmonic synthesis using FFT
techniques as described above, resulting in a grid of gradient values, having constant
step size in § and A direction (grid computation).

Grid computation is especially useful if one, for example, has to compute world
wide representations of gravity gradients using different coefficient sets as input,
aiming at, for instance, comparison of potential models or comparison with gradients
obtained from other techniques. The main advantage of this method is of course the
use of the FFT, decreasing computation time drastically. The step size in A direction
depends on the degree of the FFT, which in turn depends on the maximum degree
L of the potential model which is used as input. For example, using a potential
coefficient set with L = 180 allows to compute independent gradient values in points
with AX = 1° (Nyquist frequency). The degree of the (one-dimensional) FFT in
that case will be 360. As for the @ direction, one may arbitrarily choose the value
of § (Colombo, 1981) with the limitation that the smallest possible wavelength to
be present in the grid is determined by L (the maximum degree of the potential
model), even if one chooses more §’s than L.

For e.g. satellite applications the grid computation may not be well suited, since
the points along a satellite orbit where one wishes to compute the gradients usually
do not coincide with the nodes of a grid. Using, however, a series expansion of the
type 3.19, we may still apply an FFT, in this case not along a parallel but along
the satellite orbit. Another possibility is to compute a grid at satellite altitude
and interpolate between the grid points. Both latter methods, however, fail if the
satellite orbit is elliptical so that r is no longer constant. The interpolation method
could be extended to three dimensions (Schrama, 1984) or (Wichiencharoen, 1985),
for which grids at different altitudes have to be computed first. A final possibility
is to compute gradients at each point of the orbit individually, bringing us back to
single point computation.

The choice between single point and grid computation depends, however, not
only on the specific application, but also on the available computer hardware and
software. As for the machine characteristics, we mention the maximum value of
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the exponent, optimization properties (Koop and Stelpstra, 1989), CPU speed and
available memory. Concerning the software, accurate and fast interpolation and
FFT routines are nowadays widely available. Other aspects are handling of under-
flows, speed, portability, memory usage, handling of various types of coordinates
and potential models, accuracy of the input (coordinates and coefficients), use of
single or double precision numbers, vectorization and parallelization capabilities,
etc. In (Balmino et al., 1990) several software packages for computation of poten-
tial functionals are compared on (some of) these aspects. The influence of machine
characteristics and software capabilities on computation time and accuracy of the
results increases with increasing maximum degree L. In general, single point com-
putation will be the most time consuming method, but it does not require much
memory. Interpolation methods introduce some loss of accuracy and they require
more memory capacity. Methods using FFT are very fast, but have the restriction
of computing the gradient values at regularly distributed points.

Due to the wide availability of ever larger and faster computers the machine
influence will become less and less important in the future. Nevertheless, it is to
be expected at this moment that for future gradiometer missions the use of vector
computers or even parallel computers will be indispensable. Therefore, some remarks
about vectorization will be made in the following.

Vectorization

Vectorization is, in fact, only one aspect of what is called more generally optimiza-
tion. When talking about optimization we have to discriminate between time and
space optimization. In particular time optimization plays an important role when
dealing with very large computational problems like gradient synthesis up to high
degree. First of all it must be stated that optimization is not only a matter of hard-
ware and system software. If one likes to fully benefit the optimization capabilities
of the hardware configuration, also the users software should be optimally adapted
to it. In spite of the fact that there are some general techniques of optimization, the
specific computer which is used eventually determines the way in which the software
should be set up.

Already in the case of “conventional” computers (scalar processor or so called
“Single Instruction Single Data” (SISD) machines) the impact of the algorithm set—
up can be significant. Just look at the difference in execution speed between linear
and binary search. Compilers running on machines equipped with a vector processor
(so called “Single Instruction Multiple Data” (SIMD) machines) modify the code in
order to fully benefit the use of the vectorization capabilities. But the programmer
still has to design the algorithm in such a way as to fit optimally the compiler.
Whereas vectorization intends to decrease CPU time, parallelization tries to reduce
“time to solution” by spreading work across multiple CPU’s. The development
of parallel computers (“Multiple Instruction Multiple Data” (MIMD) machines),
equipped with a large number of paralle] connected processors, is still going on, and
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3. The gradient tensor and its series representation in different coordinate systems

they are not yet very common in use.

In (Koop and Stelpstra, 1989) it is described how the algorithms for the recursive
computation of the Legendre functions as well as the final evaluation of the potential
functionals have to be organized as to perform optimally on a CONVEX C240 vector
computer. It appeared that, in the case of single—point potential synthesis, the
best way to go through the I, m—scheme was diagonally, i.e. first the main diagonal
(m =1, Vm < L), then the first sub-diagonal (m =[—1, Vm < L — 1), then the
second sub—diagonal (m =1 -2, Vm < L — 2), etc. For grid computation, the same
order is used, evaluating in each call the Legendre functions or potential values for

all @’s.

Numerical tests

We did some numerical tests concerning spherical harmonic synthesis and analysis.
The tests were carried out on the CONVEX C240 vector computer. We used the
OSUB86F (Rapp and Cruz, 1986) set of potential coefficients, however GRS80 refer-
ence values for the first four zonal coefficients were subtracted and Cy1 and Ss; were
assigned special values, see table 3.5. Furthermore, a maximum degree L = 240 was
chosen for the computations.

Table 3.5 Specifications of the numerical tests

OSUS86F with Jq, Jy, Jg, Jg from GRS80 subtracted
Coo =0
Cy1 = —0.10-107° Sz; = 0.102-1078
GM = 3.986004404 - 1014 m3s~?2
R =6378137T m

First we examined the approximation error introduced by the numerical quadra-
ture formula 3.26. We have seen that this error is caused by the i-summation
only, so we inserted eq. 3.21 into 3.26. In the resulting equation, from which the
J-summation is eliminated due to the orthogonality of Fourier series, we inserted
on the right hand side the OSU86F coefficients. After numerical evaluation of this
equation, we obtain the estimates a;,, and IA)lm, which can then be compared with the
original OSU86BF set. Figure 3.3 shows the logarithm of the degree variances of the
relative differences between the estimated and the original coefficients for two cases:
a step size in 6 direction of A8 = 0°.5 (i.e. 360 parallels) and a step size Af = 0°.25
(720 parallels). Since the i—summation is in fact nothing more than a numerical
integration, the error should decrease with decreasing step size, as indeed can be
seen in the figure. Furthermore we see that the error slowly increases with increasing
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degree I, reaching about 107° at [ = 240 in the case of 360 parallels. We have to
bear in mind, however, that part of this error may be caused by underflows in the
Legendre recursions, compare figure 3.2 and the paragraph on Legendre functions.

o T T T
A8 =05"°
o
- = |}
|
proe]
o
°
1
; ‘
S L
(=)
a - -
|
A8 = 025"
8 L . 1 ) L 1 : . 1 . .
Lo 60 120 180 240
degree

Figure 3.3 Relative error made by using the numerical quadrature formula

Secondly, a program was made for grid computation of potential functionals.
The program is an adapted version of the single point program EVLPOT described
in (Koop and Stelpstra, 1989), which is especially tailored for use on the CONVEX
C240 vector computer. It computes a grid of nine potential functionals in one run
(potential and first— and second-order derivatives), both in geocentric cartesian and
local north—oriented coordinates. Due to the vectorized set—up is does not make use
of an FFT routine. Comparison with a spherical harmonic synthesis version (which
uses FFT) did not show any significant differences in computation time (!), at least
up to L = 240 on the CONVEX. With the program we computed a world wide grid
of gravity gradients in a local north-oriented coordinate system at an altitude of
200 km. This grid was then analyzed for each of the six gradients using Colombo’s
HARMIN program for spherical harmonic analysis (Colombo, 1981). We slightly
adapted the program in order to perform better on the vector computer. HARMIN
makes use of the numerical quadrature formula 3.26 so it yields estimates a;p,, ium of
the spectral coefficients aim, bim (eq. 3.21) for some function f, in our case gravity
gradients. From these estimates we computed power spectra using 3.24, which are
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shown in figure 3.4.
From this figure (and confirmed by degree-wise comparison of the power spectra)
we see that the power of the various gradients approximately obey the relations (cf.

(Rummel and v. Gelderen))

ot(a'y) ~ so('2)
o¥(ee) ~ oF(yy) ~ Soi(2)
(&) ~ oY) m bod(<7)

Note that the spectral coeflicients a;,,, b;,, are in general not in a simple way
related to the potential coefficients Cp,, Sipn. Only for Vi such relation is easy:

(2'2")

e, GM (R\'*3 Cim
= (5) sneen |
bz r Sim

This relation gives us an easy way to compare the results, obtained via synthesis and
analysis, with the original coefficients. The absolute relative differences between the
left—hand side and the right—hand side of the above equation are shown in figure 3.5.
It can be seen the error remains below the level of 1072 over the whole spectrum.
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Figure 3.5 Relative difference between original potential coefficients and co-
efficients computed via synthests and analysis of a Vyi,1-grid.
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Global gradiometric
analysis

In chapter 2 we have seen that our main interest in satellite gradiometry is the precise
and detailed determination of the earth’s gravitational field. The gravitational infor-
mation derived from the observed gravity gradients is presented by means of a set of
potential coefficients Cip,, Sim up to some maximum degree and order, together with
an indication of their precision. The relations between the measurements and the
unknown parameters (potential coefficients or potential coefficient corrections) are
derived in chapter 3. In the present chapter attention shall be paid to the method of
solving the potential coefficients from the measurements (analysis). We restrict our-
selves to a global analysis, which means each spherical harmonic coefficient reflects
a feature of the global field, corresponding to some spatial wavelength. Investiga-
tions into regional (local) approaches can be found in e.g. (Tscherning et al., 1990),
(Robbins, 1985), (Arabelos and Tscherning, 1990), (1lk, 1987) or (Ilk et al., 1990).
Furthermore, emphasis will be laid on error analysis, which means that we study
the error propagation during the adjustment process. This will be done for several
kinds of possible mission scenarios.

The method we use here is based on least squares adjustment and was proposed
by O.L. Colombo (1987, 1989). One of the main characteristics of this method is
that, under certain assumptions (see section 4.2), the normal matrix in the least
squares estimation process attains a block—diagonal structure which can be inverted
without much (computational) effort. Without the block-diagonal structure it will
be a tough job to invert the normal matrix, especially for high degree solutions
(Balmino and Barriot, 1990). After a description of the least squares adjustment
method in the first section of this chapter, the second section deals with the error
analysis. Finally the third section deals with methods of global recovery (i.e. solving
the potential coefficients), again based on a least squares adjustment.
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4. Global gradiometric analysis

4.1 Least squares analysis

We will show here how the problem of solving the potential coefficients from gradi-
ometer measurements is set up in terms of a least squares adjustment model. For
the measurements we take a set of observed second-order radial derivatives. This
is just an example. Equivalent derivations hold for other gradients, as well as for
combinations of gradients. For the moment, orbit and orientation uncertainties are
neglected.

Observations are given along a satellite orbit and it is therefore appropriate
to use an expansion of the gravitational potential in inclination functions, as was
given in section 3.2. We assume the measurements are given with respect to a local
orbital coordinate system z'. In appendix A this local orbital system is defined.
From section 3.1.2 we find that V,, = V,,. Using equation 3.18 and table 3.4 from
section 3.2.2 we have for the second—order radial derivative:

L [} [}
Ve = Z z Z [Al(::lz COS Ykm + Bl(::k) sin wkm] (4.1)
=0 m=0 k:—l{2]
with
A(z") o
imk — H(zz) Iim
(22) lmk
Blmk ,Blm

HED = 1y(1+1)(1 + 2) F,

GM (R\'"®
=%\7) =n
R r r
B l—m:even
Clm
Qlm — _
)
im l—m:odd
_ l—m:even
Slm
Bim = _
C
tm l—m:odd

Yim = kwo + mw,

For practical computations we have to truncate the infinite summation over [ at
some maximum degree L. In equation 4.1 the potential coefficients Ci,, and S, are
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the unknowns. Now consider a large set of measurements V,, given for all kinds of
values of the coordinates w,,w, (we assume the inclination I of the orbit remains
constant during the mission). For each measurement we have an equation of the
type above, each as a function of the same potential coefficients Cj,,, Si,,. Now let
us arrange all these measurements V,, in one vector, denoted ] (the “” denotes
stochastic quantities). We may also order the unknown coefficients, for each value
of degree ! and order m successively, in one vector, denoted ¢, merging the double
summation over ! and m into one. In this way we obtain the following system of
equations:

L=Ac+¢ (4.2)

in which & are the residuals between the observations and the model. This model is
represented by the design matrix A of which each element is of the type

l
> Hl(;zk) oS Yim (4.3)
k=—1[2]
or
i
Z Hl(:zzk) sin Yem (4.4)
k=—1[2]

depending on whether we are dealing with a C),,, or Si,, coefficient and whether
l — mis even or odd. The a-priori variances and covariances of the observations are
collected in the variance—covariance matrix Q... Solving the model 4.2 in a least
squares sense (i.e. minimizing é7Q,!€), we find for the estimates é of the potential

coefficients:
é=N1ATQ ¢t (4.5)

with the normal matrix N
N=ATQ; 4.

The inverse of the normal matrix, N !, represents the a—posteriori variances and
covariances of the estimated potential coefficients. It can be calculated without
having to perform a complete adjustment. This offers the possibility of carrying out
an error analysis without the availability of a real set of observations. This fact will
be used in the next section.

Since a gradiometer not only measures the second-order radial derivative but
also, as in the case of Aristoteles, the gradients V,, and V., and in the future
hopefully all six gradients, we will need observation equations for these gradients
too.

The relation between the local gradients V;; and the potential derivatives with
respect to r,I,w,,w. are given in section 3.1.2. There we see that we have two
possibilities. Either we choose the set {z%|a = 1,2,3} = (r,w,,w.) (equations 3.12)
or the set {z%|a' = 1,2,3} = (r,w,, I) (equations 3.11). It can be shown that both
sets of expressions give the same result if used for gradient synthesis. Just for the

53



4. Global gradiometric analysis

sake of convenience we choose equations 3.11. For all six gradients an expression of
the type 4.1 can be derived, using equations 3.11 and table 3.4, resulting in again
different expressions for the quantities Ajmg, Bimk and Hypk. For all six gradients,
those quantities are listed in table 4.1.

Table 4.1 Ezpressions for local gradients in terms of derivatives of the po-
tential with respect to (r,w,, I).

mb), Atmis Bimk
zz | —(+1+ Kk} FE oy HZ5) B HZ2)
zy | —sinTlw LR | (cotwoaim — kBim)HS) | (Kottm + cot wofim) Himy
Tz —(1+ 2)TikFE, ﬁlmHz:k) —azmHz(Z?
vy -((l + 1)2 - kz)Fle]:n almHz%Q BimH lmlc
yz || = (1 +2) sin"tw, I‘IF’,’;n' almHl(#sz) BimH lmk
ez | (14 1)+ TR, i Hiy BimH i)

In this table we computed the expression for V,, using the Laplace equation:
Vyy = —(Vzz + Vz2), thereby avoiding the second—order derivatives of the inclination
functions and obtaining a simpler equation. As an example we derive here the
expression for V.. From equation 3.11 we have

1 1
e T 3

sz - Vw

o *

From table 3.4 we have for the quantities A;mk, Bimk and Hiyi for the rw,—derivative

ru)o fwo
lmk = Bim H, imk
(rwo) _ (rwo)
By’ = —oumHpp
"wo) _ (l + )
i
and for the w,—derivative
w()
lmk = Bimf lmlc
(wo) _ (UJ{,)
Bk = —oumHp )

Hl( k) — ulkF/f,n .

This yields for V;,:
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Viez =

x| =

S (454 cos pem + Bl sin ]
l,m.k

1 w w .
) > [Az(m‘k) cos km + Bl sin ¢,,m]

I,m,k

r r

[+11 1 _
=> [(— - - ;3) Bimkw Fi, c08 thm +

l,m,k

r r

+ (—1 L i?) almkulpzl:n sin z/)km]
r
= 3 [(~(+2)) B kD B, 005 tm+

lmk

+ (—(l -+ 2)) almkF,F‘,’:n sin wkm]

= 314 cos i + BED sin i)
Lm,k

with Al(f:k), Bl(::k) and Hl(;? as in table 4.1.

If we take a closer look at the expressions of this table we see that the V;, and
Vy. gradients contain a sinw, term in the denominator. Apparently those expres-
sions are singular for w, = 0 + nm,n = 0,1,2,.... Although this is not a very
strange phenomenon (just take a look at all other transformation equations of the
potential derivatives in section 3.1.2), it will appear to be inconvenient (see sec-
tion 4.2.1). In order to avoid these kinds of singularities, we proceed following
(Betti and Sanso, 1989).

In section 3.1.2 also the transformation equations for the second—order potential
derivatives from the {z4'|A’ = 1,2,3} = (r, ¢,w,) coordinates to the local orbital
coordinates ' are given (equation 3.9). Confining ourselves to points along the
satellite orbit, where ¢ = 0, we obtain the simpler equations 3.10. These equations
obviously do not contain a singularity (except of course for r = 0}, but the restriction
to points along the satellite’s orbit limits their use. Furthermore, we face the problem
that the potential is not given as function of ¢. In appendix C it is explained,
however, how to find the potential derivative with respect to ¢, V4, as function of
the derivative with respect to the inclination I, V;. This results in a new kind of
inclination function, F’l':n*(l) In this appendix it is also shown how to compute these
cross—track inclination functions.

Comparing equations 3.10 and 3.11 we see that the expressions for V;,V;, and
V.. are the same in both coordinate systems whereas the expressions for the other
gradients differ. If we derive the expression for V,, (using the Laplace equation)
as —(Vzz + V32), then only the expressions for V;y, and V), remain different. These
are exactly the expressions with the singularities. The sinw, terms in the denomi-
nators are accounted for in the cross-track inclination functions F‘l’:n*. The relation
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4. Global gradiometric analysis

between 3.10 and 3.11 for these two gradients is easy if we use equation C.1 from
appendix C:

— COS W, 1
Viy = Vi V
T y2sinw, 1+ r2 sin w, Two
1 4 1
SENERY
r? Ow, \sinw,
1
= T_zvdwa
and
-1 1
Vyz = o VI + . VrI
r2 s1n w, r sin w,

0 1
= — V
ar <r sin w, I)

-1 1
= r—2V¢ + ;Vrdz .

In terms of the cross-track inclination functions F‘l’:n‘ we now find for the gradients
Vzy and Vy, the expressions listed in table 4.2. The other gradients are the same as
in table 4.1.

Table 4.2 New ezpressions for Vyy and Vy, in terms of the derivatives of
the potential with respect to (1, ¢, w,).

Hl(r',;) Aimk Bimk
Ty —kF[Flm* almHl(::Q ;BlmHl(:zgc)

yz || —(I+2)T Ff; ﬁlmHz(:sz) —almHl(rngk)

In table 4.2 the A;x and Bjnk are now the coefficients of respectively the cosine
and sine of the argument ¢y, = kw, + mw, where now k = ! — 2p — 1 (compare
appendix C). The summation over k runs for these gradients from —(/ —1) to /1.

In the sequel we will use the expressions from table 4.2 for the gradients V, and
Vy. and for the other gradients the expressions from table 4.1.

4.2 Colombo’s method of error analysis

The idea of a gradiometric error analysis as it is presented here originated from
(Colombo, 1987). As described in the previous section, it consists of the computa-
tion of the inverse of the normal matrix in the sense of a least squares adjustment,
thereby using an expression for the gradients in terms of inclination functions. The
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4.2. Colombo’s method of error analysis

diagonal elements of this inverse represent the a—posteriori variances of the estimated
potential coefficients. As we have seen, they can be computed without the use of
actual observations. The latter implies that we are not restricted to some specified
orbit and instrument characteristics. Given some mission goals in terms of resolu-
tion and accuracy requirements of derived gravity anomalies or geoid heights (as
were given in section 2.2) one can search for the specific orbit and instrument char-
acteristics matching these requirements. In turn, given some orbit and instrument
characteristics (e.g. mission duration limitations, instrument accuracy limitations
etc. imposed by technical or practical considerations) one can derive the resulting
accuracy and resolution of the estimated potential coefficients or of certain derived
quantities like gravity anomalies or geoid heights. Of course, the value of such com-
putations is limited by the underlying assumptions of the method of analysis. For
example, as already stated before, the present method does not include orbit or ori-
entation uncertainties. We simply assume to be given a global, regularly distributed
set, of gradient observations relative to some known local coordinate system. For the
sake of simplicity, however, we make several other assumptions. These will be listed
below, see also (Colombo, 1987) and (Colombo, 1989).

1. We assume the orbit of the satellite to be circular. In reality the orbit will
have an eccentricity different from zero, although very small. Furthermore, by
assuming the orbit to be circular we neglect the orbital decay as a result of air
drag. For non-circular orbits (e # 0), we would have to include in the model
the so—called eccentricity functions Giyq(€) (Kaula, 1966) which in general are
to be summed for —co < q < co. However, it appears that for nearly circular
orbits the index ¢ can be restricted, with sufficient accuracy, to three values:
-1 < ¢ < 1, cf. (Schrama, 1989) or (Wagner, 1989). In spite of the fact
that inclusion of these eccentricity functions would not influence our analysis
method fundamentally, we leave them out for simplicity. If required, the error
analysis can be carried out at different values of r to reveal the influence of
varying satellite altitude.

2. We consider the data to be distributed regularly along the orbit. During
the measurement periods this assumption is very well met, but gaps occur
during e.g. instrument failures and orbit maintenance maneuvers, since in those
periods data is not useful or not even present. Also in a real mission gaps near
the poles and, to a smaller extent, at the equator may occur as a result of
excessive drag variations (Touboul et al., 1991). However, if the mission is
long enough the overall data set may yield a very regular data distribution.

3. Regarding the mission length we assume that it consists of an integer number
of complete revolutions and an integer number of nodal days. Furthermore
we will assume that the mission duration equals that of one repeat period T,
so that no ground-track repeat will occur during the mission. To this extent,
the number of orbit revolutions N, during the mission period and the number
of (nodal) days N4 contained in it have to be relative prime integers. This
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can be seen as follows. Consider equation 3.18, which constitutes a Fourier
series as function of the argument y,,. This series can be regarded a time
series if successive measurement points along the orbit are considered. The
time parameter t enters the argument 9y, if we write w, = w + w,(t — to)
and w, = w{ + @ (t — to) where the dot denotes differentiation with respect to
¢t and where w? and w? are evaluations of respectively w, and w, at t5. Thus:

Yim = kw, + mw,
=k (wl + @o(t — t0)) + m (w2 + we(t — to))
= kwg + mwg + (kwo + mawe)(t — to)
= Y+ em(t — t0) (4.6)

Whereas the term 1,[)2m only represents a phase shift, the term ¢km represents
the actual measurement frequency. However, the frequency in terms of cycles
per revolution (c.p.r.) is denoted By, (= ¢km/d)o) and may be written as (cf.
(Schrama, 1989) or (Schrama, 1990)):

Bim = k + m&
[
so that Ygm = Y3, + Bkm@o(t — to). Now one nodal day is 27/, seconds and
one revolution is 27 /w, seconds. If the mission (7, seconds) takes exactly Ny
nodal days and N, orbit revolutions, there exists an integer ratio between w,
and w,, l.e.
we . Ny
W, N
This means that after N; nodal days and N, orbit revolutions the ground track
will exactly repeat. However, if N; and N, would have some common divisor
d, this repeat would already occur after Ny/d days and N,/d revolutions.
Requiring Nj and N, to be relative primes therefore ensures no orbit repeat
during the mission period T,. This also means that during this mission period
the finest possible coverage of the earth’s surface is obtained. More repeat
periods, being nothing more than a “repetition of experiments”, would, on the
other hand, only result in a re—scaling of the variances.

. The measurements which the instrument delivers are in general the result of

an averaging process over some time interval At', which has to be less or equal
to the sample interval At. This averaging can be accounted for in the following
manner.

Consider equation 4.6. Let us, for the sake of simplicity, assume t; = 0 and
the initial value 1/)2m to be zero. We then have Y, = z,!}kmt. Being a function
of time t, the expression for the gradients can be integrated in order to ac-
count for the time-averaging mentioned above. The integration only applies
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to the cosine and sine terms and takes place over the time interval At'. Upon
introducing the integration variable 7, this integration becomes:

1 s 11 [, . At At
AL /t—AT" COS Ypm7drT = Ht/)_k,; sin Yem (t + —5—) — sin Ypm (t — —2——)
2 . emAl ,
= 2 (P2l cos gyt
1/)kmAt’ 2
1 t+AT" . 2 d)k At’ .
NG /t—AT" sin Ygm7dr S Ap sin( ) sin Yrm

The factor Ji,, = 2sin(ﬂm§é—t—')/(¢kmAt') may be incorporated in the inclina-
tion function to obtain a kind of smoothed function kaF‘l’ﬁn. In the sequel we
will assume all inclination functions to be multiplied by Ji,,,. We furthermore
take At' = At.

. Non-gravitational effects will not be included in the present error analysis.
We assume that, to first order, these effects are eliminated through common
mode rejection (see chapter 2). Only second-order effects, due to e.g. non-
symmetry in the instrument, remain. Following (Colombo, 1987) we assume
a large part of these effects, as well as some instrument errors like thermal
noise, to be present in a low frequency band, mainly below Bpin = 4 c.p.r.
(Schrama, 1990). Removing from the analysis the low frequencies |Bim| <
Bmin may be considered appropriate to account for these non-gravitational
effects. Other high-pass filters may also be used, but are not considered here.

. For the moment the covariance matrix of the measurements, @, will be con-
sidered to be a scaled unit matrix, i.e. Q = o*I. This means that consecutive
measurements are considered to be uncorrelated and of equal variance. The
variance factor 2 may, however, have arbitrary values for different gradients.
Spatial differences in the precision of the data due to phenomena like e.g. drag
variations are therefore not included in the present analysis.

One of the most important consequences of the assumptions above is that the

normal matrix (which is to be inverted) attains a block-diagonal structure. This
will be explained in the next section. Each block of the normal matrix can be
inverted separately, which means an enormous reduction of computation time. In
this way it becomes possible to carry out the error analysis several times with only
limited (computational) effort. Each time we may change the orbit and instrument

characteristics (like the inclination or instrument noise level) thereby allowing the
investigation of several different mission scenarios. These mission scenarios depend
on the value of the following mission parameters:
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4. Global gradiometric analysis

h satellite height above reference radius R,i.e.r =R+ h

1 inclination of the orbit

At sample interval, i.e. time between two successive measurements
T, mission duration (one repeat period)

o measurement precision

Bmin lowest measurement frequency included in the analysis

Bmaz highest measurement frequency included in the analysis

It will be shown later (section 4.2.3) that only for a change in some of these
parameters a new run of the error analysis program is needed (e.g. for the inclination
I}, but that a change in the other parameters (e.g. the height k) can be accounted
for by simply scaling the tnverted normal matrix.

4.2.1 Normal matrix

The normal matrix N of the least squares adjustment problem 4.2 is given by
ATQYA. In this section we will derive the expressions for the elements of this
matrix, under the assumptions given in the last section.

Inserting for the covariance matrix Q the expression o2I leaves for the normal
matrix

1
N=—=ATA.
o

We see that the elements of the normal matrix are computed by taking the inner
product of columns of the design matrix A. Each column of A contains, for one
specific combination of | and m, terms of the form 4.3 or 4.4, the argument g,
(being a function of time t) indicating consecutive observation points (epochs). If
we, for simplicity, assume tg = 0 and 1//2m = 0, we have from equation 4.6 Y, =
kw,t + mw,t for all t = 0,...,T, where T, is one repeat period, in our case equal
to the mission duration. Now we only have measurements in discrete points along
the orbit with interval At, so we may write i, = kw,jAL + mw.jAt with 7 =
0,...,Np—1and N, = T, /At, the total number of measurements during the mission.
In the previous section we have seen that N, is the number of nodal days during
the mission period T, and N, is the number of orbit revolutions. So we have:

IS
3

2 o 2r __
T,-:Ndw—:r = we—NdT_:r—

_ a2 A 2
T,=N¥ = 4,=NEZ=

»
N

2l Bz
=

Z
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4.2. Colombo’s method of error analysis

which yields for ¥,

277 .
¢km: (ﬂkmN) j:0,...,Np-—1

with Brm =k + m%‘r‘. Note that, since —L < k < L, Bim may take negative values
too.

Taking the inner product of two columns 1 and 2 of A means a summation over
the index j over all measurement points j = 0, ..., N,—1 for different values 1,12, m;
and mg. Let us take as an example the gradient V,, and the case | — m even. For a
Cim coefficient (indicated by an upper index cc) the element of the normal matrix
now becomes (leaving out, for the moment, the factor (I + 1)(! + 2)T):

N,—1
17 k
hl(ffrz:lc2m2 = ; Z Z Flllml (ﬂklmlN ) Z F‘lzlmq (ﬂkzmzN )
J=0 p p
1 k Ny—-1 2
= 0._2 Z 1‘1m1 12m2 Z COS :Bklmx )COS N (ﬂkzmgN ) -
ky,k2 p p

According to the orthogonality properties of trigonometric series, the summation
over j in this equation reduces to:

0 if |Bkim.| # |ﬂk2m2|
lviz if Iﬁk1m1| = |,6k2m2| #0
Np if ﬂklml = ,Bkzmz = O N

In case N, is even the result of the j-summation may also be equal to N,/2 if
|Brimyl = |Bryma| # %‘1 and equal to Np if Bg,m, = Bkym, = %"-, but in a realistic
mission with millions of measurement points this situation will never occur. The
frequency B, equals k + m—M“ where k may take values between —L and L and m
may take values from 0 to L This means that there may be several k, m combi-
nations corresponding to the same frequency f,,. This also implies that we may
have

Iﬂklmll = |ﬂk2m2| for kl # ’Cg and mi 7/—‘ my (47)
cf. (Schrama, 1990). This situation will not lead to a block-diagonal structure of
the normal matrix, as will be explained later. Now the situation Bk,m, = Biym,
implies:

Ny k1 -—-
N, mi-mg

where (as explained before) the numbers N4 and N, are relative primes (i.e. they
have no common divisor, so their fraction cannot be simplified any more). The
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4. Global gradiometric analysis

denominator on the right hand side will never be greater than L. If we now ensure
that N, is always greater than L there is no possible combination of the numbers
k1, k2, m1, me for which 4.7 holds.

Furthermore, we have to avoid the situation where for certain k, m combinations
frequencies Bim occur which are 180° out of phase, i.e. Bg;m, = ~Bkym,- A similar
reasoning as above will, for this case, lead to the requirement that N, be greater than
2L. If now N, > 2L we only have Bx,m, = Bkym; if mi =mz =m and ky = k2 =k,
at least for m # 0. Furthermore, in this case we never have B¢, = 0. Ifm=mqe =
m = 0 we have a special situation since in that case 8,0 = —Bk,0 ¥V k1 = —ka. Also,
for m = 0 we have Bim = O for ky = ko = k = 0. The expression for an element of
the normal matrix can now be simplified to:

. l ,l
l(le)CC r mm'E( o

m 2A
162 20 t k——-min(h,h)[z]

where for m # 0

and form=0
LI AL . p—k pk
F+_ = FllmFlgm + FllmFlgm N
The notation min(ly,l3) means the minimum of the two numbers [y, I3, where {3
and I have the same parity as a result of k1 = k2 = k.

(zz)ss

1ylam > the same result appears except that the case

For an Sj,, coefficient, h
(zz)cs

m = 0 is not present. The cross products for one Cj,, and one Sim coefficient, k) 1ym

and hl(lzf;)if, are always zero due to the orthogonality properties of trigonometric
functions. In an analogous manner the situation { — m odd is treated. For the other
gradients similar derivations hold, using the expressions from tables 4.1 and 4.2.
Now it also becomes clear why we had to derive new expressions for the zy and yz
derivatives. The sinw, term in the denominator of the old expressions of those two
gradients would have destroyed the orthogonality properties of the trigonometric

functions. In general, the expressions for the elements of the normal matrix are:

min(ly,l2)

I, T,T,
Ltam = 2;2 zAtr > Ziytymek (4.8)
k:—min(ll,lg)[2]

hfflgm = hff (except for m = O)

l2m

him = Mgm =0

38
1112m

with Zj,1,mk taken from table 4.3 (with factors like (I +1)(I + 2)T; restored).
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Table 4.3 Ezpressions used for the elements of the normal matriz.

D1y mk
Tz (L+1+E)(+1+K)F,
zy k*F;_
Tz (li+2)(l2 + 2)k*Fy
yy | ((h+1)2 = E)((la +1)% - k) Fy o
yz (Lh+2)(la+2)F;_
zz | (W+ D)L +2)(2+1D)(l2+2)F4—

In this table it is for m # 0
* _ pk * pk *

F+— - Fl;mFlzm

and for m =0
* nk o« ko n—k x vk o*
F+— = BlmFlgm + Fllm Flgm .

Note that the summation over k for the zy and yz gradient runs from —min(l; —
1,3 — 1) to min(l; — 1,1 — 1).

If several gradients are measured simultaneously at each observation point with
equal variance and if they are used as independent measurements in the adjustment,
the elements of the normal matrix can be found by summing expressions like 4.8
for each individual gradient. For example, if the gradients V};,,V,, and V,, are
measured, the expression for the elements of the normal matrix is equation 4.8 with
in this case

Zn ) = ([ + )2 = K[+ 1) - K]+
(h+ 1)+ 2)(+ 1) (2 +2) }Fyo +

If some combination of gradients is used as a single observation, for example 2V}, +
V.z, the expression for the elements of the normal matrix is found by using equa-
tion 4.8 with

Z03Whe) (L 4 1) — 2k ) [Iy(ly + 1) — 2k | Fa_

lilomk

We see that with this method we can easily investigate various situations with respect
to available measurement configurations.

But a much more interesting consequence of the derivations above is that, as a
result of the orthogonality relations of the trigonometric series, through a suitable
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choice of the ordering of the unknown potential coefficients, the normal matrix
will attain a block—diagonal structure (Colombo, 1987) which is much more easy
to invert. First of all, we have seen that the normal matrix elements connecting
an arbitrary C;,, and an arbitrary S),, coefficient are all zero. This means that
if we order the coefficients in such a way that all Cj,, coefficients come first, the
normal matrix is divided into four blocks, the upper right and lower left one (the
off-diagonal blocks) contain only zero’s. Furthermore the two diagonal blocks are
exactly the same. Also, since only elements for equal m differ from zero (at least
if N, > 2L), ordering the unknowns according to m causes the two main diagonal
blocks to be divided into smaller blocks, one for each m. The size of these smaller
blocks decreases from L + 1 for m = 0 to 1 for m = L. Finally, as a consequence
of the vanishing of the summation terms for which k; # k; (again only if N, > 2L)
only elements for which k is the same remain, which in turn implies that {; and I,
have to have the same parity. So, the m-blocks are again divided into four smaller
blocks if for each m the [ are ordered according to their parity, first all even [ and
then all odd {. Of those four blocks only the diagonal blocks differ from zero, see
figure 4.1. The size of these blocks is half the size of the m-blocks. The inversion
problem is now reduced from that of a matrix of size L? to one of 2L times a matrix
with a size of at most %L, which means an enormous reduction of computation time.
The block—diagonal structure also implies that the error analysis can be carried out
for certain groups of coefficients independently.

4.2.2 Presentation

With the expressions for the elements of the normal matrix N which are derived in
the last section, we are now in a position to compute in an easy way the a—posteriori
variances of the estimated potential coefficients. The assumptions stated in the
beginning of section 4.2 may, to some extent, put limitations on the usefulness of the
method. Nevertheless, the method is still very useful to gain a better understanding
of the gradiometric analysis problem and at the same time shows possible problem
areas.

The required a—posteriori variances are found to be the diagonal elements of
the inverse normal matrix N™!. A very common way of representation of these
variances is by means of degree variances. The error degree variance (of the formally
propagated error) is

!
of =0o(C) + D 0in(C) + ol (5)

m=1

l
= 0120 +2 Z alzm ’ (4'9)

m=1

where use is made of the equality of the error variances for the Cj,, and S, co-
efficients and where o is a diagonal element of the inverse normal matrix N~!
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C-’l'm.

L+1

1
2

Block-diagonal structure of the normal matriz. The notation “”

Figure 4.1

means even | and “0” odd [.
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for a specific value of [/ and m. From equation 4.9 we compute the error r.m.s. per
coefficient per degree as

ot
20+1°

the square of which is called error degree—order variance. Degree variances and

(4.10)

Oim =

degree—order variances can also be computed for the potential coefficients them-
selves, in which case they are called respectively signal degree variances and signal
degree—order variances. They are defined as

i

a=Clh+ ) (Clu+ Sin) (4.11)
m=1
and c
!
= . 4.12
‘m = 91 (4.12)

For computational purposes, the potential coefficients Cj,, and S, in eq. 4.11
may be taken from some a—priori known potential coefficient model, e.g. OSU86F
(Rapp and Cruz, 1986). Another possibility is to compute the ¢; directly using some
degree variance model, like Kaula’s rule (Kaula, 1966) or the Tscherning/Rapp
model (Tscherning and Rapp, 1974). Note that, since the potential coefficients
Cim, Sim are dimensionless, so are 012, Olm, €1 and cpm.

Whereas the degree variance of some function (either signal or error) represents
the power of the function per degree, one is also often interested in the total power
of the function over all degrees. For example, the total signal power for potential
coefficients is Y 2, ¢; with the ¢; taken from equation 4.11. This total power also
represents the average square value (or norm) of the signal over the unit sphere,
cf. (Heiskanen and Moritz, 1967). The global r.m.s. is the square root of the total
power. In the same way we may compute from the error degree variances (equa-
tion 4.9) the global error r.m.s. for potential coefficients by summing the 2 over all
degrees. The mission goals for gradiometry are expressed in terms of global error
r.m.s. values for gravity anomalies or geoid undulations. They can easily be com-
puted from the global error r.m.s. for potential coefficients by multiplying the latter
with the eigenvalues A} of the linear operator connecting the respective quantity
with the potential coefficients (Rummel, 1991). The global error r.m.s. becomes

(o]

> Aot

=0

with for gravity anomalies A\; = C}v{—];d(l — 1) and for geoid undulations A\; = R. The
global r.m.s. of each arbitrary other gravitational quantity can be computed in a
similar manner, as long as it is linearly related to the potential. Here we will only
show the two mentioned quantities, namely the surface gravity anomalies and the
geoid heights.
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4.2. Colombo’s method of error analysis

We see that the summation above includes all degrees from zero to infinity. The
reason for this is that the gravitational potential is considered an element of an
infinite dimensional Hilbert space of functions defined outside a convergence sphere
which is approximately the surface of the earth. The spectrum of such functions
includes all frequencies from zero up to infinity. In our error analysis, based on the
availability of a finite number of measured samples, we can only estimate a limited
part of this spectrum, e.g. up to some maximum degree L. As a consequence, the
gravitational field can never be perfectly reproduced from the measurements, even
in case of perfect measurements. There always remains a part of the spectrum
which is neglected in the analysis. This neglected signal is called omission error.
In case of regular sampling, it contains primarily the high frequency signal part
for degrees | > L. As a result, the global error r.m.s. should consist of two parts:
the propagated error from the analysis for degrees | < L (called the commassion
error) and the omission error (neglected signal for degrees I > L). Since we do
not know the true spectrum of the gravitational field, and since it is impossible in
practice to really include all degrees up to infinity, the omission part is computed
only up to some limited maximum degree /mzs using a model representing the true
spectrum. Thus, the global error r.m.s. values for gravity anomalies or geoid heights
are computed as

L, imzs
Do+ D Bt (4.13)
1=0 I=L.+1

where the first summation indicates the commission error and the second the omis-
sion error, and where

B = ﬁmﬂ—}ﬁ [P,-1(cosp,) — Piy1(cos )] smoothing operator

e . radius of a spherical cap with equal area as an equiangular block
of size 4, at the equator

%(1 —1) for gravity anomalies

Al =
R for geoid undulations
L; . degree of truncation of the commission error which is less or
equal to the maximum degree L of the performed error analysis
Imzs : truncation degree for the omission error .

The reason for including the smoothing operator g, see e.g. (Meissl, 1971}, will
be explained in section 4.2.7. A truncation degree for the commission error L
smaller than L may be chosen, for example, if the error in the estimated coefficients
for degrees | > L; exceeds 100 % of the signal, i.e. if for those degrees the signal to
noise ratio a2 /¢; > 1, cf. (Colombo, 1989) or (Rapp, 1989). Choosing L; in this way
is in fact comparable to “ideal” low-pass filtering. However, a more optimal way for
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computing the global r.m.s. is using a minimum variance filter, like a Wiener filter,
e.g. (Papoulis, 1965). In that case the expression becomes:

L imzs
DB (W +a(l - W)Y + D B (4.14)
=0 I=L+1
with
Wiener filter: W, = “ 7 -
c; + 0]

The Wiener filter is derived as to ensure a minimum total error (commission +
omission). For degrees where the signal power largely exceeds the noise power, the
filter will approximately attain the value 1. In the estimation procedure this would
imply that the data at these degrees are almost completely used. For the global
error computation it therefore means that the error for those degrees comes almost
exclusively from the propagated error o from the gradiometric analysis. If the
noise power, however, is larger than the signal power, the filter tends to zero. For
the global error this means that for those degrees the contribution comes largely
from a—priori available gravity information, in our case the signal degree variances
c1, which can be seen from equation 4.14. In this equation, the term including o}
represents the commission part and both other terms the omission part. This means
that, if one uses a Wiener filter, one may also have an omission error part for degrees
below L, which in fact results from the imperfection of the measurements. We will,
in our computations, exclusively use the latter equation 4.14.

The above derivations shall now be used to study the error behaviour of gra-
diometric experiments. Thereby we shall start with the most ideal situation. It is
characterized by a gradiometer instrument which measures all six components of the
gradient tensor (a so—called full tensor gradiometer). The full measurement signal
(the complete spectrum of measurement frequencies, here indicated by the index
k) is used with equal variances for all frequencies. Considering the orbit, an ideal
situation is a polar orbit (I = 90°) in order to obtain complete global coverage. Af-
terwards we shall consider a number of restrictions (band limitation and non-polar
orbits) and finally we discuss a scenario that resembles as closely as possible the
current plans of the Aristoteles mission.

4.2.3 Ideal case

We consider here a full tensor gradiometer, which measures all six components of
the gradient tensor. To obtain complete global coverage we assume the inclination of
the orbit to be 90°. Finally we consider the instrument not to be band-limited. The
latter implies that we include all measurement frequencies, low and high enough to
recover the potential up to some specified maximum degree, in the analysis, and that
we assume them to have equal accuracy. A discussion on a band-limited instrument
will be given in the next section. For the moment we simply take i, to be zero and
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4.2. Colombo’s method of error analysis

Bmaz > 254, which is high enough to recover potential coefficients up to L = 240, see
section 4.2.4. These, and other characteristics of the ideal case gradiometer mission
are listed in table 4.4.

Table 4.4 Characteristics of the ideal case gradiometer mission.

inclination [ = 90°
components Vi, Vey, Vs, Vi, Vyz, Ve
no band limitation S, =0
satellite height h = 200 km
sampling interval At =4s
mission duration 7, = 6 months

error spectrum  0.01 E/\/Hz white noise

In figure 4.2 the (dimensionless) error r.m.s. values for potential coefficients com-
puted with equation 4.10 are shown for 10 different cases: for each of the six tensor
components individually, for several combinations of components (namely all six to-
gether, {Vy,,V,., V. } and {Vy,,V,.}) and for the quantity 2V,, + V,,. The latter
quantity is chosen because it will be used in the potential coefficient recovery in
section 4.3. The ordinates in these figures have a logarithmic scale. For all sit-
uations the overall pattern of the graphs is the same: after an initial decrease of
the r.m.. value (i.e. an increase of the a—posteriori accuracy) the lowest point is
reached around degree ! =~ 60, after which a steady increase occurs. This overall
pattern can be explained by remembering the expressions for the elements of the
normal matrix from table 4.3. As the result of two differentiations all the gradients
are multiplied by a factor proportional to at least [2. For the signal this means a
higher contribution for higher degrees, as to be expected for second—order derivati-
ves. For the a—posteriori error (inverse of the normal matrix) this means a decrease
with increasing degree I. However, as already indicated in section 3.2.1, the natural
attenuation effect of the gravitational potential with height is also present. For the
gradients this factor is (B/r)"*3. For the elements of the normal matrix this factor
is again squared. For higher degrees, the signal will decrease, and the error r.m.s.
will therefore increase. On a logarithmic scale this attenuation factor will result in a
straight line, starting left below and reaching for the upper right side (see figure 4.3).
Eventually this effect will be dominant, so the r.m.s. plots are likely to approximate
this straight line for higher degrees, as can be seen in the figure.

Combination of the effects described above results in the lowest error for the
part of the spectrum somewhere between degrees 30 and 100, slightly dependent on
the observation type, making gradiometry especially suitable for determination of
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these degrees.

From figure 4.2 we see that the largest error is obtained for the V;, and V,
components, followed by that from respectively 2Vy, + V,,, V4, V;, and V.. Out
of the seven individual observations shown in the figure, V,, gives the best result.
Redundancy, however, ensures even better results for combinations of observations,
the combination {V,,,V,.} being slightly better than V,, alone, followed by the
combination {V,,,V,.,V,.} and the best results for the full tensor combination
{Vzz,Vay, Vaz, Vyy, Vyz, V22 ). Note that for the six individual gradients, the level
of the a—posteriori error relative to one another is not necessarily the inverse of the
signal power level, cf. figure 3.4.

Once we have computed the r.m.s. values for a specific inclination and B,,,, it
is very easy to derive from them equivalent values for various altitudes, with various
mission durations, sampling intervals and measurement precisions. We do not need
to invert a new normal matrix in these cases. This can be understood as follows.
Columns of the design matrix A are multiplied by the downward continuation factor
(R/r)!*3, cf. eq. 4.1, where r = R+ h. So A can be written as A = A' D, where D
is a diagonal matrix containing only the factors (R/r)"*3 and A’ equals A without
these factors. Then, since N = ATQ 1A, we have

N=DTATQ 'A'D=DN'D

with N' = ATQ~1A'. Computing N'~! first, it can be scaled by pre and post
multiplication with D! to obtain the results at satellite altitude, since N™! =
D=IN'"1D~1 Furthermore, from eq. 4.8 we see that each element of N is multiplied
by a factor T,/0? At. The square root of this factor can be included in D, and can
thus be left out of the matrix inversion. If we now like to compute error r.m.s. values
for other, arbitrary values of h, At,T, or o%, we do not need to carry out a new
normal matrix inversion. The inverse N'~!  computed only once, is simply scaled
with an appropriate diagonal matrix D. Note that for combinations of gradients,
like {V,,,V.}, the scaling with 0% does not always work. If different gradients are
given different o’s, a new inversion has to be established.

For the graphs of figure 4.2 scaling with T}, 62 or At means a uniform shift of
the complete curve. A different altitude means that the straight line representing
the attenuation factor (see above) obtains another slope with subsequent effect on
the r.m.s. curve. In figure 4.4 the effects mentioned above are illustrated for the
error r.m.s. from V,,.

As described in the previous section the error degree variances can be used to
compute global error r.m.s. values for gravity anomalies and geoid undulations. The
influence of the individual mission parameters Ty, At,h and o on this global r.m.s.
is not so obvious any more. For a full tensor gradiometer, measuring all six tensor
components, and for the case that all these six components are used in the error
analysis with equal weights, this global r.m.s. is shown in figures 4.5 and 4.6.

Figure 4.5 shows the global r.m.s. for three different mission durations as a
function of height. (Note that the straight lines are just added for clearness. They

72



4.2. Colombo’s method of error analysis

200 km, T, = 6 months, ¢ = 0.01 E/VHz

h

h 160 km
- — — T .= 9 months

- = o = 0.02 E/VHz

©

| : , . . , , .
|9
Q
A
[
[
o]
Q
1
Q
[}
22]
=
m

a n 1 | 1 1 | 1 " ] L I

Lo 60 120 180 240
degree 1
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do not represent functional values since only the nodes (5 different altitudes) were
really computed.) The numbers in this and the following figures of this type were all
computed using equation 4.14, including the Wiener filter, where for the omission
error (computed using the Tscherning/Rapp degree variance model) a maximum
summation value Imzs = 1000 was taken. The numbers furthermore represent
1° x 1° block averages since the smoothing operator 8; was included with 8, =
1°. The influence of {mzs and 6, on the results will be discussed in section 4.2.7.
The most remarkable fact from this figure is that at the lowest altitude (160 km)
tripling the mission duration gives no substantial improvement of the total r.m.s.,
cf. (Rapp, 1989).

Figure 4.6 is of the same kind as the previous one, but now results are shown
for three different measurement precisions. The case o = 0.0001 E/v/Hz refers to
the anticipated measurement precision of the superconducting gradiometer under
development at NASA (Paik and Richard, 1986). What can be seen from this figure
is that with this kind of high measurement accuracy, satellite altitude becomes of
less importance, whereas for the lower accuracies it still plays an important role. At
160 km, however, all 0’s give nearly the same result, cf. (Rapp, 1989). Apparently
there is some lower limit for the total r.m.s. To understand this, we have to bear
in mind that the r.m.s. values represent the total error, commission and omission
error (see the previous section). Increasing the measurement precision changes the
commission error part. For example, the commission error for gravity anomalies
for the three increasing measurement precisions (0.02, 0.01 and 0.0001 E/+/Hz ) at
160 km altitude is respectively 0.28 mgal, 0.14 mgal and 0.0014 mgal. As for the
omission error, only the contribution for degrees below L is changed (due to the
Wiener filter) when increasing the measurement precision, whereas the part above
L is not changed at all. The total error therefore has some constant base level
determined by the omission error, especially the part above L. This part has to
be decreased in order to fully benefit the improved measurement accuracy, which
implies that we have to increase L. The maximum value for L is determined by
the sampling density of the measurements, which is represented in our case by the
combination of mission duration 7, and sampling interval At. So we see that in
the end improving the measurement accuracy will not give better results if at the
same time not also the sampling density is increased. A same reasoning explains the
limited influence of the mission duration at 160 km altitude in figure 4.5.

In any case, both figures show that in the present ideal case the goals described
in chapter 2 (5 mgal accuracy for gravity anomalies and 10 cm for geoid undulations
with a resolution of better than 100 km) can easily be met, at least for a full
tensor gradiometer. This conclusion is, however, a theoretical one since in reality
the situation may and probably will not be so ideal. Nevertheless, the previous
discussion gives more insight in the way in which various parameters influence the
process and it shows the maximum obtainable result from gradiometry, of course
under the present assumptions.
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4.2. Colombo’s method of error analysis

Singular normal matrix sub—blocks

When trying to invert the sub-blocks (m-blocks) of the normal matrix, it appears
(and it will appear for other cases in subsequent sections) that some blocks are
singular and can therefore not be inverted. The reason for this might be either a
physical one or a numerical one. An example of a physical cause underlying such
singularities can be found for the components V;, and V,, (both of which contain one
differentiation in the cross-track direction). For a perfect polar orbit (I = 90°) zonal
coefficients cannot be estimated from these components, the cross—track direction
being always orthogonal to the direction of variation of the zonal coefficients (along
the meridians). This is reflected in the model by means of vanishing of the cross—
track inclination functions F_‘l’fn* for m = 0. Consequently, the m = 0 blocks for these
components are singular.

We may also encounter numerical singularities. Especially for low orders (which
constitute the largest sub-blocks, since the degrees [ contained in them run from m
to L) the difference between the largest and smallest eigenvalue may become very
large, so the block will be ill-conditioned (see also section 4.2.6).

In either case, we do not obtain propagated error variances for the potential
coefficients belonging to those blocks. Or stated otherwise, the potential coefficients
belonging to the singular blocks apparently cannot be estimated from the obser-
vations. However, when computing error degree variances using equation 4.9, a
summation is done over all orders m. Leaving out certain orders, due to the sin-
gularities described above, would therefore result in incorrect values for the degree
variances. We would have, so to say, assumed zero error for those orders, where per-
haps an infinite error would have been more appropriate. Therefore, the error r.m.s.
plots included in this work have to be interpreted very carefully, always bearing in
mind which m-blocks are left out. To this extent, table 4.5 shows which blocks
appeared to be singular and were omitted from the analysis. For later reference, we
included in this table all the cases yet to follow in subsequent sections.

What can we do about this? Probably the best (but certainly not the most
pleasant) answer would be not to compute degree variances at all. The problems
above first arise when computing the degree variances, whereas there is, of course,
nothing wrong with the propagated error variances for each individual coefficient
themselves, at least as far as they can be estimated (i.e. the non-singular blocks).
There are, however, some reasons for using degree variances. First of all, they are
generally found to be very illustrative, giving a good picture of the gravitational
field and its main spectral characteristics. Secondly, if we do not compute degree
variances, we are left with a very large amount of individual error variances to be
compared for several cases. Whereas the number of degree variances “only” amounts
to L (the maximum degree of the analysis), the number of individual coefficients is
(L + 1)(L + 2) minus the non-estimable ones. It is hard to make good pictorial
or graphical representations for so much coefficients, at least for high maximum
degrees, like L = 240 in our case.
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An alternative would be to compute order variances. Then orders for which the
sub-blocks of the normal matrix are singular appear in the graphs simply as gaps,
but at least they would not interfere with other orders. But from table 4.5 we see
that often only the even or odd degrees for a certain m appear to be singular. Then
we are faced again with a similar problem as above. Furthermore, one is not used
to interpret order variances, so we will not show this alternative here.

We already suggested above that instead of zero error, an infinite error for the
coefficients of the singular blocks would perhaps be realistic. So we could try, in
some way, to fill in the shortages occurring due to the singular blocks. For example,
one could regard the non-estimable coefficients as contributing to the omission error
and thus insert for them the signal degree—order variances from some degree variance
model or the value of the coefficients from a potential coefficient model. But since
for large parts of the spectrum the signal is much higher (partly by several orders)
than the error, the results would become extremely bad (very high error r.m.s.
values). Another possibility would be to insert the error variances from some existing
potential coefficient model. But especially for the low degrees (where the influence
of the singular blocks is relatively large) the error of the existing models is much
smaller than that from gradiometry. Our results would therefore hardly change.
Even a multiplication of the model error variances with a factor 3 before adding
them to the degree variances did not have much influence.

Furthermore, both methods, inserting model signal or error variances for the
singular blocks, lead to the problem of how to interpret the corresponding obser-
vational model belonging to such a strange combination of (error) variances. Con-
cerning the additional error variances from some model, one could view upon them
as a—priori information added to the estimation procedure. But those model error
variances themselves are the result of another, former, estimation process, leading
to a strange mixture of data, models and methods.

In the remaining of this chapter, we will therefore not pay any special attention
to the phenomenon of the singular sub-blocks. For reference, the singular blocks are
listed in table 4.5. In any case, the influence of the singular blocks on the computed
degree variances is not so large, as might be illustrated by the following test. We
computed the error r.m.s. values for the case I = 90° and f,,;, = O for the six tensor
components leaving out exactly the same orders for all components. From table 4.5
one can see that this means leaving out m = 0 (both even and odd degrees). Apart
from a slight change in the individual r.m.s. curves, the ratios between the error
r.m.s. curves, as compared to figure. 4.2, did not alter. The error from V,, and V},
remains largest, followed by that from V,,, then V,, and Vi, and finally V..

4.2.4 Band limitation

In the previous section we assumed for the gradiometric measurements a 0.01 E/+/Hz
white noise error spectrum over the full measurement bandwidth 0 < |fim| < c0. In
that case all measurements V;;(t) in the time domain will have equal precision, 1.e.
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Table 4.5 Singular sub-blocks of the normal matriz. “e” means even de-

grees, “o” means odd degrees, + means both even and odd

degrees. For the combinations {Viz,Viy,Vaz,Vyy,Vyz,Vzz},
{Vw,Vyz,sz} and {VW,V”} never singular m-blocks appear.
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the covariance matrix Q is a scaled unit matrix. As a result of Parseval’s relation
this measurement precision will in our case be 0.01 E. In reality the error spectrum
of a gradiometer will only be white in a limited band, between some lower band limit
Bmin and an upper limit Bpqz. The measurement frequencies | Bkm | below Bpin and
above Bmaz will either not be present in the signal at all due to the sampling rate
or will be distorted too much due to instrumental and environmental error sources
(coloured notse).

An upper band limit B,z 1s caused by the sampling rate with which the mea-
surements are taken along the satellite’s orbit. For Aristoteles this sampling rate is
foreseen at 4 s, so that the highest measurement frequency present is 0.125 Hz (twice
the sampling rate or Nyquist rate). At an altitude of 200 km, the orbital period of
the satellite is approximately 5310 s, so that 8,4, = 5310 x 0.125 ~ 664 c.p.r. We
limit our error analysis to L = 240, so also |k| and m are limited to L. As a result,
the highest measurement frequency included in the analysis is |Bkm| = 254 c.p.r.
which is well below fpaz. An upper band limit as discussed here will therefore not
cause any problems. Note that the choice of L = 240 means that frequencies above
254 c.p.r., although present in the signal, are not used in the analysis.

A lower band limit is the result of instrumental and environmental influences.
For Aristoteles instrument stability (especially thermal stability) can only be main-
tained over a maximum period of 200 s. This limits the white noise error band to
measurement frequencies with a period not exceeding 200 s, i.e. the lowest measure-
ment frequency is 0.005 Hz, or Bpin &~ 27 c.p.r. Frequencies with a period exceeding
200 s (|Brm| < 27) will be present in the signal, but with degraded accuracy. A 1/8
error behaviour for these frequencies can be assumed for such coloured noise situa-
tion (Schrama, 1990). Therefore, an absolute lower band limit of 27 c.p.r. (with all
frequencies below this limit removed from the analysis) will not be discussed here.
Finally, non-gravitational orbital effects disturb the spectrum, mainly below 4 c.p.r.
(see section 4.2). Removing these frequencies from the analysis can be considered
appropriate to account for these effects. One could think of this as assuming an
infinite error for these frequencies. A B, of 4 c.p.r. should be considered as a
minimum, also for the coloured noise situation.

In this section we will investigate the consequences of a lower band limit of 4
c.p.r., thereby assuming white noise for the full error spectrum above this limit. A
coloured noise situation, with a 1/3 error behaviour between 4 and 27 c.p.r. and
white noise above 27, will be discussed in section 4.2.8.

One of the consequences of the band limitation described above is that the covari-
ance matrix of the measurements is no longer a scaled unit matrix. In particular, the
covariance matrix will be a full matrix, however, with a certain favourable structure.
It will have constant diagonals (so-called Toeplitz matriz) and it can be shown that,
with such covariance matrix, orthogonality properties of the trigonometric func-
tions are preserved, so that the normal matrix will still be block-diagonal (compare
section 4.2.1).

Another consequence of (lower) band limitation is that some degrees [ below the
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value of B, cannot be estimated from the measurements any more, since for those
degrees the total power content mainly (or solely) comes from the measurement
frequencies below Bi,. This can be seen as follows. Removing from the analysis
the frequencies below f,,;, means that only the By, for which |Bim| > Bmin are
included. Let us first consider the case fi,, > 0, so that we have Bim > Bmin. With
Bkm = k + ma (where o = Ny/N,) and k = [ — 2p, 0 < p < [ we find that only
those degrees [ are present for which | > £,,;,. The other case, B, < 0 leads to
[ > (1-0a) Bmin. If we take N, = 727 and Ny = —45 (Schrama, 1990), which fulfil
the conditions stated in section 4.2.1 and which refer to the Aristoteles mission, we
find that e.g. for B, = 4 degrees | < 4 are not present and for B, = 27 degrees
1 < 26.

Figure 4.7 shows the a—posteriori error r.m.s. values for the case that By, = 4.
Frequencies below 4 c.p.r. were removed from the analysis and for the remaining
frequencies a white noise error spectrum was assumed. A remarkable difference
with figure 4.2 is the zig—zag pattern which occurs for certain components and
combinations. This has to do with the step size of 2 for the index k, cf. equation 4.8.
Given a certain value of m a g-limitation also implies a k-limitation, since f,, =
k+ma. This is especially clear for low orders m (since « is small), where a relatively
large part of the total signal content is concentrated. The consequences of limiting
k are different for even and odd degrees, due to the step size of 2. For example,
consider the case m = 0. This is the easiest case since for m = 0 we have By, = k. If
we choose f,,;, = 1 this means all k—contributions for k = 0 are removed. But only
the even degrees include a k = 0 part, so that the odd degrees remain unaffected.
For other values of 8,,;, a same reasoning can be applied. For higher values of m,
limiting the Bk, results in a difficult pattern of dropped k, m contributions. It is
not so clear any more how this limits the k-summation for a certain degree [ and
how this is related to the parity of . But since the contribution to the total signal
content for higher orders is relatively small, the main effect of S-limitation is to be
expected to come from the low orders.

It can be seen from the figure that, for certain observation types, the zig-zag
pattern damps out with increasing degree. Two explanations can be given for this.
As we have seen above, the main effect of a lower band limitation comes from the low
orders. Low degrees are therefore more affected than high degrees since a relatively
larger part of the total signal content comes from the low orders. Furthermore, as
explained in the previous section, for higher degrees the r.m.s. curves approximate
more and more a straight line induced by the attenuation factor (R/r)'*3. It should
be noted that (part of) the zig-zag pattern could be caused by the occurrence
of singular m-blocks, as discussed in the previous section. Compared to the case
Bmin = 0 significantly more m-blocks are singular, however often only the even or
the odd degrees, see table 4.5.

The singular m—blocks make it furthermore difficult to compare the overall level
of the r.m.s. curves in the case B, = 0 with that of 8., = 4, especially if the
cause of the singularities is numerical instability. That the situation becomes worse
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in the latter case (i.e. larger propagated error) is not very surprising, but only a
comparison for each coefficient individually would give a clear picture of the exact
amount of distortion. If we, nevertheless, try to compare figures 4.2 and 4.7 we
see that indeed mainly the lower degrees are affected. R.m.s. values reach up to
two orders of magnitude higher values in the case B,,;, = 4. As a consequence, the
minima of the curves are moved in the direction of increasing degree, around ! = 60
for Bin = 0 but around ! = 120 for B, = 4.

A last remark concerns the discontinuous behaviour for some components for
low degrees (I < 20, e.g. V,;). This is a direct consequence of the singular m-blocks.
As discussed in the previous section, the singular m-blocks are removed from the
analysis so no contribution for those orders is included in the r.m.s. values, resulting
in too optimistic error estimates. From table 4.5 we see that singular m-blocks
mainly appear for low orders. Since low degrees are relatively more affected by low
orders, this explains the bumpiness for low degrees.

Figures 4.8 and 4.9 present global r.m.s. values for surface gravity anomalies
and geoid undulations for the present case fB,,;, = 4, figure 4.8 for several mission
durations and figure 4.9 for several measurement precisions. Both figures give the
results for a full tensor gradiometer (i.e. the combination of all six gradients), the
r.m.s. being computed with a maximum degree for the omission error of 1000 and a
smoothing factor 3, representing 1° x 1° block averages. Comparison of these figures
with figures 4.5 and 4.6 reveals that the r.m.s. for gravity anomalies is hardly affected
by this value of B, whereas the geoid undulations show clear differences. These
differences not only concern the overall higher level of r.m.s. Also the influence of
both the mission duration and the measurement precision is noticeable now, even
for lower altitudes, where it was not in the previous section (see the differences at
h = 160 km). Geoid undulations constitute a smoother signal than gravity anoma-
lies. The latter are first—order derivatives of the gravitational potential, resulting in
multiplication factors (I + 1) etc., see chapter 3. It is therefore to be expected that
the geoid undulations are more affected by changes in the lower degrees (as is the
case if we choose fBpin # 0) than gravity anomalies. Note that the high precision
gradiometer (o = 0.0001 E/v/Hz ) now shows its value, the r.m.s. of the geoid un-
dulations being for this ¢ nearly the same for both B, = 0 as well as Bpnin = 4,
for all altitudes.

We have to bear in mind, however, that the figures present the results for a full
tensor gradiometer. For the combinations {Vyy,Vy., V.. } or {Vyy, V. } (as for Aris-
toteles) the results are somewhat worse, especially for the geoid undulations. Global
r.m.s. values from those combinations are respectively 15.6 cm and 97.0 cm for geoid
undulations (at 200 km, 6 months mission and ¢ = 0.01 E/v/Hz ), whereas the val-
ues for the gravity anomalies are hardly changing. Individual components give even
worse results. This shows the importance of combinations of components, i.e. the
need for additional observations, in the band limited case. If other components are
not available, like for Aristoteles (planar gradiometer, band limited, degraded lower
spectrum), additional information from other measurement techniques (like GPS) is

83



4. Global gradiometric analysis

necessary, see section 4.2.8. Furthermore, in section 4.2.6 we will discuss the possibil-
ity of improving the solution by adding prior information, i.e. stabilizing the solution
by adding constraints in the sense of least squares collocation (Rummel et al., 1979).

4.2.5 Polar gaps

A realistic gradiometric mission not only differs from the ideal case sketched in
section 4.2.3 through band limitation. In reality the satellite is also not likely to
fly in a perfect polar orbit. For Aristoteles two different inclinations are considered:
92°.3 and 95°.3. Aristoteles is planned to fly for approximately six months in an
orbit with inclination 95°.3 and another two weeks in an orbit with inclination 92°.3.
A non-polar orbit gives rise to polar regions where no measurements are available.
If the inclination of the orbit is I, polar caps, of size 2 x (I —90)°, will arise which are
not covered by ground tracks of the satellite’s orbit. As a consequence an incomplete
global coverage is obtained which is expected to influence a global recovery method
as it is performed here. At first sight, one expects a polar gap, with size larger
than half of the smallest wavelength to be recovered, to disturb the solution, at
least for those short wavelengths (i.e. high degrees). For recovery, on a global scale,
of gravitational features with very short wavelengths there are simply not enough
(well distributed) data points. On the other hand, it is very difficult to exactly
translate the missing of data in certain spatial regions to a possible distortion of
recovered potential coefficients. This may become clear from figure 4.10, in which
the propagated error for the case I = 92°.3 is shown.

Remarkably no substantial deterioration occurs compared to the case I = 90°,
except for Vy,. Whereas the result for some components becomes only slightly
worse, other components seem to become even better. In spite of the fact that this
outcome is confirmed by other investigations (Schrama, 1990), it is difficult to give
a clear explanation for it. Several aspects may play a role here. First consider
the data distribution. In both cases, I = 90° and I = 92°.3 we have the same
amount of observations (namely a total of T,/At observations). Although for a
92°.3 inclination the polar gaps occur, the data density in the remaining part (the
band 2°.3 < < 177°.7) becomes higher. Whereas the polar gaps may distort the
recovery of some coefficients, the higher data density may improve the recovery of
others. On the whole, a small improvement may occur if the inclination differs not
too much from 90°. If the deviation from 90° becomes too large, the influence of
the polar gaps will ultimately surpass that of the higher data density.

A second aspect which may play a role is the behaviour of the inclination func-
tions. Besides on factors like Iy, ({ + 1), k, etc. the total signal power contained in
a specific degree depends on the inclination functions F‘l’;n (or the cross—track incli-
nation functions Fﬁn* for V,, and V;). They make part of the so—called sensitivity

coefficients Hl(,',;)p from tables 4.1 and 4.2. Let us focus here on one specific degree
and order (i.e. fixed | and m). What remains is a summation over k of inclination
functions and a possible factor k or k? (cf. tables 4.1 and 4.2). If we compute the

84



tot. rms in mgal

tot. rms in em

4.2. Colombo’s method of error analysis

GLOBAL RMS FOR Ag IN MCAL

4.8

4.4

3.6

T T { T T

l | i | 1

140

160 180 200 220 240 260

GLOBAL RMS FOR N INCM

18

18

14

12

0

1 | 1 1 |

140

160 180 200 220 240 260
satellite height in km

as in figure 4.5 ezcept now Boin = 4.

XX,XY,XZ,VY,Y2,22

I =80

pmln =4
Imxs = 1000
. =1

* 3 months
=] 68 months

® 9 months

Figure 4.8 Global r.m.s. values for several mission durations. Specifications

85



4. Global gradiometric analysis

GLOBAL RMS FOR Ag IN MCAL

T T 1 I T
o - 4

o L

i)

E w

oSl . XX,XY,XZ,YY,YZ,22Z

E =90

=4
- ¥ N Imxs = 1000
L ec = 1’

i 1 1 I 1

[to)
“40 160 180 200 220 240 260

GLOBAL RMS FOR N INCM

r T T T T T
x  0.0001 E/VHz

&r 1 o 0.01E/VHz
g ©® 0.02 E/VHz
g |
i=]
o I?—_—‘3/a/,3/a
s |
-

8 - -

1 1 | 1 1 1
140 160 180 200 220 240 260

satellite height in km

Figure 4.9 Global r.m.s. values for several measurement precisions. Specifi-
cations as in figure 4.6 except now Bumin = 4.

86



RMS per coef. perl

-11

RMS per coef. per 1

RMS per coef. per 1

-11

Figure 4.10 Propagated error from gradiometry.

-10

-9 -8 -7 -12 -11 -10 -9 -8 -7 -12

-10

—-12

4.2. Colombo’s method of error analysis

60 120

degree 1

180

ure 4.2 except now I = 92°.8.

yz

— — — — XX,XY.XZ,
YY.yZ.2Z
YY.yz.22

Specifications as in fig-

87
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inclination functions for a specified {,m and k as function of I, not necessarily a
maximum value is obtained for the F,'jn at [ = 90°. The value of some inclination
functions will increase if I > 90°, some will perhaps decrease for higher inclinations.
We did some test computations which confirmed this behaviour. If all inclination
functions would obtain a maximum value at I = 90°, one would expect the signal
amount to decrease for I > 90°, so that the propagated error would increase. Since
this is not the case, the signal amount may also increase for higher inclinations (so
that the propagated error decreases). Carrying out the k-summation for one specific
I, m over all corresponding Fll:n (some of which have a larger value, others a smaller)
the result for 7 = 92°.3 might either be larger or smaller than the same sum for
I = 90°, depending on the specific sensitivity coefficient (i.e. on the gradient).

A third aspect applies only to the V,, and V,, components. As mentioned in
section 4.2.3 the cross—track inclination functions are all zero for I = 90° and m = 0.
This resulted in two singular m-blocks, cf. table 4.5. For I = 92°.3 this does not
happen any more, i.e. the potential coefficients for m = 0 are now estimable from
the observations. This means that the m = 0 contribution is included in the r.m.s.
values shown in figure 4.10, whereas it was not in figure 4.2. This troubles a direct
comparison of the two figures.

An inclination of 95°.3 has a very strong impact on the results, as can be seen
in figure 4.11. Not only does the level of the r.m.s. increase, also the shape of the
curves changes drastically. Whereas it is expected that for this case the exchange
between positive and negative influence of respectively data density and polar gaps
will result in the negative, inclination function behaviour and singular m-blocks
may play an important role here. In any way, without any stabilization method or
without any additional information to account for the data gaps at the poles, these
results are not acceptable.

4.2.6 Stabilization

The problem of solving gravitational information at the surface of the earth from
observed data at satellite altitude is known to be improperly posed (also called ill-
posed or ill-conditioned). A problem is called improperly posed if it does not meet
at least one of the following three requirements: 1.) existence of the solution, 2.)
uniqueness of the solution and 3.) stability of the solution (Rummel et al., 1979),
(Moritz, 1980) or (Neyman, 1985). In our case, where we try to derive detailed gra-
vitational information at the surface of the earth from a relatively smooth (atten-
uated) signal at satellite altitude (downward continuation), we encounter problems
with the uniqueness and with the stability of the solution. The former case applies
when some eigenvalues of a normal matrix sub-block become zero so that the block
becomes singular, as we have seen e.g. for the V,, and V|, gradients for m = 0 at
I =90° (cf. table 4.5). In the latter case, eigenvalues may become extremely small,
so that the matrix is ill-conditioned and errors in the data, but also round-off errors
of the computer, are greatly amplified during the inversion process. The block may
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even become numerically singular in this case. We have already seen clear examples
of such improperly posed problems in the foregoing sections, e.g. the case B, = 4
or the case I = 95°.3.

For both cases the instability is again illustrated by means of the condition
number of the individual blocks of the normal matrix. As we know, the normal
matrix consists of blocks on the diagonal, decreasing in size. There is one block for
each order m and degrees [ of equal parity. Figures 4.12 and 4.13 show the condition
number for the even degree blocks for the case B, = 4 and I = 95°.3 respectively.
The odd degree blocks give similar results. The condition number « is defined here
as the largest eigenvalue A,,,, divided by the smallest eigenvalue A ;n:

A7’7),(12
K= ——

/\min

The blocks which are expected to be numerically unstable can be traced by compar-
ing the inverse of the condition number k™! for each block with the internal accuracy
of the computer. In our case, all the computations are done using FORTRAN REAL*8
(double precision) numbers, i.e. some 15 or 16 significant digits. Relative errors of
the order 10715 or 10718 are likely to occur. Blocks for which the condition number
approaches (e.g. k™! > 107!2?) or exceeds this value are very ill-conditioned. In-
spection of figure 4.13 leads to the conclusion that for almost all components and
combination of components the blocks belonging to orders approximately below 20
tend to be ill-conditioned. Hence, also degrees below 20 are likely to give bad re-
sults. Also higher degrees are influenced by those ill-conditioned low orders. For
the case Byin = 4, condition numbers for low—order blocks (approximately m < 10)
reach even higher values, up to 10'8 or higher, as can be seen from figure 4.12.

One of the possibilities to stabilize the solution is to make use of additional prior
information about the unknowns. In terms of least squares collocation one adds
the prior expectations of the unknowns together with their covariance matrix. The
solution then becomes (compare equation 4.5):

é=NYATQ e+ P¢)
with the matrix N now defined as
N=ATQ 'a+ P! (4.15)

where ¢’ are the prior expectations of the potential coefficients and P is their co-
variance matrix. In our case ¢’ could contain the coefficients of one of the existing
geopotential models, such as OSU86F, with P the corresponding covariance matrix.
For the purpose of a global error analysis, as discussed here, a more common choice
for ¢’ is zero with P one of the existing signal degree variance models, e.g. Kaula’s
rule (Kaula, 1966). Here we take the degree variances from a Tscherning/Rapp
(TR) model (Tscherning and Rapp, 1974). Such a choice implies that we consider
the prior value of the potential coefficients to be zero and their variances to follow
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the TR model. The solution is in this case again given by equation 4.5, but now
with the normal matrix as in equation 4.15. This means that the solution is a kind
of weighted mean of a—priori information and gradiometry results.

Figure 4.14 shows the error r.m.s. for the case Bp,;, = 4 where the solution was
stabilized by adding to the normal matrix a diagonal matrix containing the TR
degree variances. This figure should be compared with figure 4.7. For completeness
the curve for the TR model is added. We see that the zig—zag pattern is damped
for most solutions (clearly visible for V,,). On the other hand, the curves tend
to approximate the TR curve. Questions can be asked about the value of the, in
this way, estimated coefficients, especially for higher degrees, since they obviously
do not add much information to the a-priori known model degree variances. Above
degree 240 all curves will follow almost exactly the TR model curve. This is a reason
why we choose a maximum degree of 240 for our computations. Above this degree,
potential recovery is not likely to give any new information, at least not for more
realistic (and thus ill-conditioned) situations, like the one in figure 4.14.

The stabilized solution for I = 95°.3 is shown in figure 4.15. Compared with
figure 4.11 the stabilization certainly has much influence, since for lower degrees the
error r.m.s. curves now show a behaviour comparable to figure 4.2, though a little
disturbed. For higher degrees the curves tend to follow that of the TR model.

Following (Xu and Rummel, 1991) one may view upon stabilization as biased
estimation. As a purely mathematical technique, one of the purposes of biased
estimation is to control instability. It is defined as:

ép=(ATQ 'A+ K) 1ATQ ! ¢

where the index b means “biased estimate” and K is some arbitrary but positive def-
inite matrix. This way of looking upon stabilization becomes important if the prior
information added to the problem is not correct (Xu, 1991). In fact, this is exactly
the situation in our stabilization method (where we take for K~' the covariance
matrix P of the prior expectations of the coefficients), since the degree variances of
the TR model do not describe error variances of the potential coefficients, but are
possible magnitudes of the coefficients themselves (signal variances).

Following (Xu and Rummel, 1991) the magnitude of the expected bias in this
case can be computed as

Bia(y) = -(ATQ7'A+ P 1) 1P e

where we should insert for ¢, in principle, the true potential coefficients. In general
one does not have the real coefficients, so the bias is approximated by replacing
the real coefficients with either the biased estimates themselves, or some model
coefficients. In (Xu and Rummel, 1991) it appeared that the former choice (biased
estimates themselves) leads to too optimistic conclusions about the bias. Choosing
coefficients computed from the model which was used for the K matrix appeared to
give more conservative results.
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For both stabilized solutions presented above (Bmin = 4 and I = 95°.3) we
computed the bias using the equation above. We chose as coefficients ¢ the same
values from the TR model which were used in the P matrix, but with the sign taken
from the OSUSGF potential coefficient set. Since we, at this moment, do not have
“true” coefficients estimated from gradiometer measurements, we cannot compare
the biases with such coefficients. But since using TR coefficients may give the most
conservative result, cf. (Xu and Rummel, 1991), we may compare them to e.g. the
OSUS86F model. To this extent, the percentages of the degree variances of the biases
with respect to those of the OSU86F model are computed and shown in figures 4.16
and 4.17. Depending on which component or combination of components is used
for the analysis, large parts of the spectrum show biases which exceed 20 %, even
100 % of the model variances. However, for the case I = 95°.3 this only happens for
higher degrees. Note that the results for all six components together, for V,, and
for the combinations {Vy,Vy., V.. } and {V,y,V..} are not so bad at all, the degree
variances of the bias in these cases reaching approximately 25 % of the model values
only for very high degrees (I > 220).

The accuracy of biased estimates is no longer given by the inverse of the normal
matrix only. The bias term needs to be added to the a—posteriori error. The so-
called mean squared error of &, MSE(ép), obtained in this way is given by:

MSE@) = N~' = NT'P7IN"! + Bia(éy)(Bia(ép))” (4.16)

with N from eq. 4.15, see (Xu and Rummel, 1991). Figures 4.18 and 4.19 show the
percentages of this MS E with respect to the propagated error (as coming from the
inverse of the normal matrix only) from figures 4.14 and 4.15, for the cases Bpin = 4
and I = 95°.3 respectively. In these figures the straight horizontal line indicates
the 100 % line. If the bias would not have any effect, all percentages would have
to lie on this 100 % line. Percentages smaller than 100 indicate degrees for which
the propagated error (no bias term included) is larger than the MSE. It means
that, for those degrees, the previously shown results (without the bias) were in fact
too pessimistic. In this case we don’t have to worry that stabilization leads to too
optimistic error estimates. Higher percentages indicate degrees for which inclusion
of the bias causes a higher a-posteriori error, so for those degrees the results from
figures 4.14 and 4.15 were too optimistic.

Whereas in figure 4.18 some percentages reach high values of nearly 160, they
show no substantial degree dependent systematic deviation from 100 %. On the
average, the components V,,,V;, and V,, seem to give less favourable results due to
the stabilization (if the bias is included in the error), whereas the other components
seem to become slightly better. For I = 95°.3, on the average, for most compo-
nents the percentage is smaller than 100 (at least for large parts of the spectrum),
indicating that if one accounts for the bias, estimates will become better.

So, although the estimates become biased, this bias stays limited, the a-posteriori
error (which has to include the bias, so it is the MSE) being positively affected by
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it on the average, especially for the case I = 95°.3. Thus, stabilization seems to be
a satisfactory means of obtaining a stable and meaningful solution.

4.2.7 Omission, cormmission and smoothing

In sections 4.2.3 and 4.2.4 global r.m.s. values for gravity anomalies and geoid un-
dulations were presented. They were computed using equation 4.14 and therefore
included commission error and omission error. The commission error represents the
propagated measurement error. It only concerns that part of the spectrum for which
the potential coefficients can be estimated from the measurements, i.e. for degrees
[ < L (see section 4.2.2). The omission error includes the neglected part of the spec-
trum above L, in principle up to infinity, but in practical computations truncated at
some maximum degree Imzs. Furthermore, due to the Wiener filter, the omission
error includes that contribution from degrees below L for which the signal to noise
ratio is smaller than one. This part, in fact, stems from the imperfection of the
measurement process. For the omission part we used the TR degree variance model.
In the results presented above we truncated the summation for the omission part at
Imzs = 1000.

The magnitudes of the degree variances computed with the TR model gradually
decrease with increasing degree. The signal power contained in the upper parts of
the spectrum therefore will be small. In order to see whether a maximum degree
of 1000 is reasonable or not (i.e. the power above degree 1000 is negligible) we
compute here the total error once again, but choose a maximum degree of 10,000.
Thereby one should keep in mind that such a model is only based upon observational
information up to a certain maximum degree, typically somewhere between 300 and
1000, above which it is speculation. This may become evident by comparing the
high spectral part of various existing models, such as Kaula’s rule (Kaula, 1966), TR
(Tscherning and Rapp, 1974) or Jekeli/Moritz (Moritz, 1980) and (Jekeli, 1978).

Table 4.6 shows the global (commission, omission and total) error for surface
gravity anomalies and geoid undulations in three different situations for the cases
Imzs = 1000 and [mzs = 10,000. For reference also the case Imzs = 240 is added
(i.e. omission error only due to Wiener filtering). It can be seen that the error for
geoid undulations does not change if the omission error is summed up to degree
10,000 compared to the case where it is summed “only” up to degree 1000. Only if
the numbers would have been presented with more decimal digits, differences could
be detected, but then the numbers would pretend to be very accurate, which is not
the case. Since the geoid signal is relatively smooth, this result is not surprising.
The error for gravity anomalies only increases slightly (0.01 mgal), the gravity field
being a little rougher than the geoid. In view of the present accuracy, this test
confirms our procedure to carry out the omission error summation only up to a
maximum degree Imzs = 1000.

The part of the omission error for degrees below 240 is relatively small, at least
for the case Bmin = 0, I = 90° and Bmin = 4,1 = 90°. For the other case (I = 95°.3)
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Table 4.6 Commaission, omission and total error for the observation com-

bination {Vu,sz,Vu,Vw,Vw,sz} and h = 200 km, At =

4s, Ty = 6 months, 0 = 0.01 E/\/Hz, L = 240 and §, = 1°.

gravity anomalies (mgal) geoid undulations (cm)
commission omission total | commission omission total
I =90° and Bpin =0
Imzs = 240 0.73 0.14 0.75 2.34 0.39 237
Imzs = 1000 0.73 3.63 3.70 2.34 832 8.64
Imzs = 10,000 0.73 3.64 3.72 2.34 832 8.64
I =90° and Bpin = 4
Imzs = 240 0.74 0.14 0.76 8.38 0.40 8.39
Imzs = 1000 0.74 3.63 3.71 8.38 8.32 11.81
Imzs = 10,000 0.74 364 3.72 8.38 8.32 11.81
I =95°3 and Byun =0
Imzs = 240 5.90 5.55 8.10 29.78 24.49 38.56
Imzs = 1000 5.90 6.63 8.87 29.78 25.86 39.44
Imzs = 10,000 5.90 6.64 8.88 29.78 25.87 39.44
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Table 4.7 Commission, omisston and total error for the observation com-
bination {Vu,sz,Vu,Vw,Vyz,sz} and h = 200 km, At =
4s, Ty =6 months, 0 = 0.01 E/x/Hz , L = 240,60, = 1° and

a stabilized solution.

gravity anomalies (mgal)

geoid undulations (cm)

commission omission

total | commission omission total

I =90° and Bnin =0

Imzs = 240 0.72 013 0.73 2.31 037 2.34

Imzs = 1000 0.72 363 3.70 2.31 8.32 8.63

Imzs = 10,000 0.72 364 3.71 2.31 8.32 8.63
I =90° and Bpin = 4

Imzs = 240 0.73 0.13 0.74 8.37 0.38 8.38

Imzs = 1000 0.73 3.63 3.70 8.37 8.32 11.80

Imzxs = 10,000 0.73 3.64 3.72 8.37 8.32 11.80

I =95°3 and Bmin =0

Imzs = 240
Imzs = 1000
Imzs = 10,000

0.84 0.14
0.84 3.63
0.84 3.64

0.85 3.08 039 3.11
3.73 3.08 8.32 8.87
3.74 3.08 8.32 8.87
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the propagated error is so high that a large part of the omission error comes from
degrees below 240. Obviously, for this case, the gradiometer contributes little to the
outcome.

The large errors in the case I = 95°.3 are due to the instability of the solution,
as pointed out in the previous sections. For comparison we therefore also give a
similar table (table 4.7), now computed from the stabilized solutions. The cases
Bmin = 0,1 = 90° and B, = 4,1 = 90° are hardly affected. Compare this to
the figures 4.14 and 4.15. For all cases, the difference between Imzs = 1000 and
Imzs = 10,000 is still very small. On the other hand, for the case I = 95°.3, the
contribution to the omission error from degrees below 240 decreases substantially,
as does of course the commission part.

Another point which is important in this context, is the smoothing of the total
error. If we look at equation 4.14, we see a smoothing operator f; is included. This
is done, because a global recovery of the gravitational potential always has some
limited resolution as a result of the finite sampling distance of the measurements.
This sampling distance limits the maximum obtainable degree, thereby introducing
an error to the potential solution. In terms of equal angular blocks, the resolution to
be obtained from a gradiometric analysis up to some maximum degree L is typically
180°/L. If no smoothing is carried out, the global r.m.s. for gravity anomalies or
any other quantity computed from a potential coefficient set which is derived from
a global analysis, represents the error in discrete points in which all frequencies are
present. This error would be very large, mainly due to the relatively poor determined
higher frequencies and the frequencies in the omission part. This is not realistic,
as we know that the analysis aims for, and has, a limited resolution. For certain
applications (especially global gravity field investigations for the purpose of e.g.
oceanography), the r.m.s. values should therefore be considered as block—averages
over blocks with size induced by the maximum degree of the analysis. For other
applications, e.g. regional geophysical investigations, the high frequency part should
be obtained from a dense network of local gravity measurements. In order to obtain
block—averages, a smoothing operator §; is used which in fact damps out the high
frequencies, aiming at a decrease of the sampling error.

In our analysis, we used a maximum degree L = 240 for the potential recovery,
corresponding to a resolution of 0°.75 x 0°.75. But as we have seen that the higher
degrees are only poorly determined and since the goal for gradiometry is a resolution
of 100 km (corresponding to 1° x 1°) we introduced a block-size of . = 1° for the
smoothing operator. Nevertheless, in table 4.8 the influence of the smoothing is
shown. There we computed the global r.m.s. for three cases: 6, = 0° (i.e. no
smoothing), 8. = 0°.75 and 8. = 1°, cf. (Rapp, 1989). From this table we see that
the influence of smoothing is much larger than that of the maximum degree of the
omission error. No smoothing gives unsatisfactorily error estimates. Again, geoid
undulations are much less affected by both aspects than gravity anomalies. It can
also be seen that the two aspects (inclusion of omission error above L on the one hand
and smoothing on the other) have opposite effects on the global r.m.s. Inclusion of
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Table 4.8 Global r.m.s. for several block-sizes. Specifications as in ta-
ble 4.6. I = 90° and Bpin = 0.

gravity anomalies (mgal) geoid undulations (cm)
commission omission total | commission omission total
g, =0°
Imzs = 240 1.43 0.29 146 4.32 0.81 4.40
Imzs = 1000 1.43 21.71 21.75 4.32 34.56 34.83
Imzs = 10,000 1.43 27.86 27.90 4.32 35.23 35.49
§, = 0°.75
Imzs = 240 1.00 0.19 1.02 3.09 0.55 3.14
Imzs = 1000 1.00 6.66 6.73 3.09 14.90 15.22
Imzs = 10,000 1.00 6.68 6.75 3.09 14.90 15.22
6. =1°
Imzs = 240 0.73 0.14 0.75 2.34 0.39 237
Imzs = 1000 0.73 3.63 3.70 2.34 8.32 8.64
Imzs = 10,000 0.73 3.64 3.72 2.34 8.32 8.64

omission error above L increases the global r.m.s. because we have to account for
the neglect of the higher spectrum parts. But smoothing decreases the global r.m.s.
by gradually removing the influence of these higher degrees, which, nevertheless,
remain present.

4.2.8 Aristoteles

In previous sections deviations from an ideal case were investigated by considering
either a band limitation or a non—polar orbit. A combination of both effects will be
investigated in this section, aiming at the situation of ESA’s Aristoteles mission (see
section 2.3). We do, however, not include in our analysis the possible contribution
from GPS observations, we only give “gradiometry only” results. An error analysis
for the combination “GPS + gradiometry” can be found in (Schrama, 1990) or
(Visser, 1992).

Concerning the band limitation we refer to section 4.2.4. First of all we choose
Bmin equal to 4 in order to account for the non-gravitational effects. Secondly,
Aristoteles will have a lower band limit of 0.005 Hz, corresponding approximately to
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B = 27. Below 27, the frequencies will be available but with degraded accuracy. The
0.01 E/\/E white noise error spectrum applies to the frequency band between 0.005
and 0.125 Hz (the latter approximately corresponding to Bmaz = 664). Following
(Schrama, 1990) a 1/8 behaviour is assumed for the frequencies between 4 and 27.
Between 4 and 27 the precision per frequency then becomes (27/Bkm) - 00 with
og = 0.01 E/\/m . Such a coloured noise situation will be assumed in the present
section.

As for the inclination, we choose here I = 92°.3, despite the fact that Aristoteles
will fly for 6 months in an orbit with inclination I = 95°.3. The reason is that in the
two weeks after this 6 months phase, in which the orbit of the satellite will have an
inclination of 92°.3, a so dense coverage of the polar regions is achieved (of course
a small cap of 4°.6 excluded) that the complete mission may safely be assumed
to be flown in this 92°.3 inclination orbit. The important mission parameters and
specifications are listed in table 4.9.

Table 4.9 Characteristics of the Aristoteles gradiometer mission.

inclination [ =92°.3
components V,,,V,,

band limitation B, = 4

satellite height A = 200 km
sampling interval At =4s
mission duration 7T, = 6 months

error spectrum 0.01 E/\/m white noise above 27 c.p.r.

1/5 behaviour between 4 and 27 c.p.r.

Figure 4.20 shows the error r.m.s. values for the present specifications. In this
figure again the results for all 10 components and combinations are given. Since
Aristoteles only measures V,, and V,, with sufficient accuracy the lowest of the
three graphs is of special interest here. The others are included for reference and for
preserving a uniform presentation. Comparing with figure 4.7 (in which B, = 4
and I = 90°) it appears that the latter is little worse, despite the fact of complete
global coverage when I = 90°. This fact was already observed and discussed in
section 4.2.5. As a result of the lower band limit and the coloured noise the results
for low degrees (approximately below 30) are not satisfactory.

For this reason also a stabilized solution was computed for the present case
(shown in figure 4.21), which, however, appears to have mainly effect on high de-
grees. Comparing the unstabilized with the stabilized solution one can see that some
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Table 4.10 Global r.m.s. for several observation types. Specifications as in

figure 4.20.
gravity anomalies (mgal) geoid undulations (cm)
commission omission total | commission omission total
unstabilized solution
Viy 5.53 7.54 9.35 613.67 396.20 730.46
2Vyy + Ve, 4.14 5.18 6.63 211.89 89.89 230.18
Ve 2.97 461 5.48 388.86 453.81 597.62
{Vyy, Ve } 1.15 3.64 3.82 44.11 8.49  44.92
stabilized solution
Vi 4.49 4.07 6.06 443.92 163.34 473.01
2Vyy + Va2 3.52 4.00 5.33 162.47 32.61 165.71
Vez 2.27 3.70 4.34 283.53 103.16 301.71
{Vow, Ve } 1.12 3.64 3.81 43.92 8.48  44.73

components become worse for lower degrees in the latter case (e.g. V). However,
this conclusion may be misleading, since contributions from singular blocks are ex-
cluded in the unstabilized case (compare table 4.5) and since we saw in section 4.2.6
that for a proper description of the error of a stabilized solution we should compute
the MSE, equation 4.16, which includes the bias term.

Finally, table 4.10 gives global r.m.s. values for surface gravity anomalies and
geoid undulations for the observation types Vy,, 2V,, + V.., V;, and {Vy,,V..}.
Also the results of the stabilized solution are included. The numbers in this table
represent 1° x 1° block averages (i.e. smoothing operator included). The maximum
degree for the omission error is 1000.

The most important conclusion from this table is that if geoid undulations have
to be derived from the present mission scenario, additional information is necessary
since the results do not meet the goals from section 2.2. Even the stabilized solution
gives too large errors for geoid undulations. The cause of this is the lower band limit
of 4 c.p.r. and the coloured noise of the lower part of the measurement spectrum,
which influence the geoid undulations rather heavily due to the relative smoothness
of the signal. Gravity anomalies, on the other hand, already give satisfactory results,
at least for the stabilized solution (although of course biased in this case). They are
more sensitive to higher degrees than geoid undulations. Obviously, the higher part
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of the spectrum is determined well enough by the gradiometer. In (Schrama, 1990)
or (Visser, 1992) it is shown that additional GPS tracking information can be used
to obtain long wavelength gravitational information, in which case also geoid undu-
lations will be derived with the desired precision. The two techniques, GPS for the
lower part of the spectrum and gradiometry for the higher part, are thus comple-
mentary, and the combination of the two on Aristoteles will meet the requirements
of section 2.2.

Finally, is can also be seen from table 4.10 that stabilization in the present case
mainly influences the omission part of the total error. This can be explained as
follows. In the unstabilized case, the propagated error is relatively large, but the
Wiener filter decreases its contribution to the commission part of the total error,
thereby at the same time increasing the omission part. Since we have seen that the
omission part, due to neglecting the degrees above L, is small, the large value of the
omission part in the unstabilized case must be mainly due to the mentioned filter. In
the stabilized situation, the propagated error gives significantly better results (com-
pare figures 4.20 and 4.21), causing the filter to letting pass more commission error
(however with less power). As a result the omission part decreases substantially.

4.2.9 Some computational aspects

The software for the error analysis runs on a CONVEX vector computer. This is
a so—called SIMD machine (see section 3.3), nevertheless equipped with 4 CPU’s
which offer some possibilities of parallelization. Despite the fact that the optimal-
ization capabilities of this computer (and especially the vectorization techniques) in
general greatly reduce execution time, a single run of the error analysis program
takes as much as 500 CPU seconds (for all 10 observation types). This, of course,
depends mainly on the maximum degree L (and minimum degree) of the analysis,
the mentioned time referring to an analysis up to degree 240. The number of degrees
up to L determines the size of the blocks of the normal matrix, the range of the
orders m between mmin and mmaz determines the number of blocks in the normal
matrix, though one usually takes mmin equal to 0 mmaz equal to L.

Whereas one often expects matrix inversion to account for the major part of
CPU time, it appeared here that setting up the normal matrix blocks is more costly.
This is mainly due to the computation of the inclination functions Fl’:n and Fl’fn*,
which is responsible for approximately 46 % of the total CPU time. One could
suggest to compute the inclination functions only once and store them for future
reference. This costs, however, much memory space. Storing all inclination func-
tions and cross—track inclination functions up to degree L requires the storage of
L(L + 1) (L + 2) (4L + 3) numbers (Sneeuw, 1991a). If represented by
double precision numbers this corresponds, for L = 240, to over 71 Mbyte, for one
inclination only. For many inclinations, the memory costs may be too much.

We tried two methods for the computation of these inclination functions. The
first one is described in appendix C and is based on an algorithm used by Wagner
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(1983). It evaluates a kind of unit potential function at equidistant points along
a great circle (which represents the satellite’s orbit). With an FFT routine one
obtains the Fourier coefficients of this function from which the inclination functions
can be derived. For the evaluation of the unit potential we need to compute the
Legendre functions. Even if one makes optimal use of the symmetry properties
of these functions, cf. (Schrama, 1989), the largest part of CPU time goes to the
recursive computation of the Legendre functions. The FFT is relatively fast (as it
should be, considering its name).

The second method for computation of the inclination functions is by using re-
current relations. A subroutine package programmed by N. Sneeuw (Sneeuw, 1991a)
and based on an algorithm by Emeljanov and Kanter (1989) was used for this pur-
pose, with a supplementary routine for the cross-track inclination functions Fﬁn*
(Sneeuw, 1991b). Since some of the recurrences for the inclination functions are un-
stable and overflows are likely to occur, extensive use is made of scaling techniques,
which become especially important if the inclination functions are required for high
degrees.

A few differences between the two methods are to be mentioned. First of all, the
second (recurrent) method appeared to be slower. One of the main reasons for this
is that recurrent relations are (almost) not suitable for vectorization. Furthermore,
the method of scaling makes extensively use of conditional statements, which, espe-
cially if used inside inner DO-loops, prevent vectorization. For the FFT in the “unit
potential” method a FORTRAN programmed subroutine from a CONVEX math-
ematical library was used, which is especially tailored for vectorization. A more
conventional FFT routine, made for use on scalar computers, proved to be up to 6
times slower for FFT’s of the order 1024 if run on the CONVEX.

Whereas the two methods give identical results in nearly all cases, small differ-
ences may occur in special situations. The latter are mainly the situations when
the inclinations functions ought to be zero. The first method will almost always
give zero values in these cases, but the second method may give small values of the
order 10715 or 10718 due to numerical round-off errors during the recursions. For
example, if I = 90° and m = 0, all Ff * are identically zero, resulting in singular
blocks of the normal matrix for the components V, and Vj,. The recursive method,
however, would result in F',’:n* values of the order of 1071%, so that not all elements
of the m = 0 blocks will be equal to zero. If none of the diagonal elements of such
block is exactly zero, the block may not be singular, so that, after inversion, very
large values for the a—posteriori variances appear. Therefore, care has to be taken
with the recursive method.

Since we do not need the complete inverse normal matrix, but only the diagonal
elements, in reality the inverse is not computed at all. A Cholesky factorization is
carried out on the normal matrix N, resulting in an upper triangular matrix R, such
that N = RTR. The i-th diagonal element of the inverse normal matrix, N,-:l, is
then computed in the following way:
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-1_ T
N, = 8y 8;
in which the expression on the right hand side is the inner product of the vector s;
with itself. This vector 8; is computed by solving the triangular system
T —
R Si == e,-
where e; is a vector containing only zero’s except the 1-th element, which equals 1.

The computation of the diagonal elements of the inverse normal matrix in this way
costs about 7 % of the total CPU time of the error analysis.

4.2.10 Conclusions

Due to the assumptions stated in section 4.2 the error analysis carried out here refers
to a somewhat idealized situation. Of the six assumptions given there (circular orbit,
regular data distribution, no ground-track repeat during mission period, measure-
ments are considered to be averaged over sampling period, non—gravitational effects
excluded, measurements are uncorrelated and of equal variance), the second one is
probably the most critical one. As already mentioned, data gaps are likely to occur.
A non-continuous data stream destroys the orthogonality properties on which in
fact the whole analysis is based. Without orthogonality, the normal matrix becomes
a full matrix, leading to an enormous amount of extra work for the inversion.

In an idealized situation (polar orbit and no band limitation) the mission goals
in terms of r.m.s. values for derived gravimetric quantities like gravity anomalies
and geoid undulations can be met in terms of accuracy level as well as resolution,
at least for a full tensor gradiometer. Nevertheless, figure 4.2 suggests that also a
planar gradiometer (of the type as will be used in the Aristoteles mission) may give
satisfactory results in such an idealized situation, as numerical verification showed
(although these results are not given here). Whereas satellite altitudes lower than
200 km seem to improve the results not very much, higher altitudes are certainly
not desirable. The same applies for the mission duration. Finally, the measurement
precision has somewhat more influence, although mainly for higher altitudes than
200 km.

We considered two major deviations from an idealized situation: (lower) band
limitation and non—polar orbits. Of these two, lower band limitation has the largest
impact on the results. The influence of a non-polar orbit can be greatly reduced by
stabilization. A negative consequence of stabilization, biasedness of the estimates,
appeared to have not so much influence, although it remains of course present and
one has to bear that in mind.

Whereas stabilization may help for non—polar orbits, it is no remedy against
band limitation, as can be concluded from section 4.2.6. Lower band limitation
significantly degrades the lower degrees of the spectrum, whereas stabilization seems
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to improve primarily the higher degrees. As a result too large biases occur for the
lower degrees. For this problem, only the addition of supplementary observations,
such as GPS tracking, can be of any real help (Schrama, 1990), (Visser, 1992).

For Aristoteles we assumed the total 6 months mission to be flown in a 92°.3
inclination orbit. Whereas this is not actually the case (only for an additional two
weeks), the conclusions above indicate this assumption not to be very critical. As
for the lower band limitation, this may really jeopardize the success of the mission,
especially if we take a look to the r.m.s. values of geoid undulations (table 4.10).
Additional GPS observations really become very important to obtain the long wave-
length part of the spectrum with high enough precision. Two complementary tech-
niques are necessary, GPS for the low degrees and gradiometry for higher degrees.
Indeed, a GPS receiver is planned to be on board the Aristoteles satellite.

Inclusion of omission error and smoothing have a major influence on the pre-
sented global r.m.s. results. As for the omission error, neglecting the degrees above
1000 does not make much of a difference, but, especially in non-ideal cases, omission
parts for degrees below L do have some influence. In fact, the omission error part
determines some lower limit for the global r.m.s., see section 4.2.3.

Much more influence than the inclusion of the omission error has the introduction
of a smoothing operator into the global r.m.s. computations. Without such an opera-
tor, r.m.s. values become extremely high. However, for our purposes, representation
of the results in terms of block—averages is justified by taking into consideration the
difficulty of deriving high degrees (although present in the true signal) globally from
any measurement technique due to the inevitable limited sampling distance and mis-
sion altitude. If the goal of a gradiometric mission is a resolution of approximately
100 km, block—averages for 1° x 1° blocks are appropriate.

4.2.11 Other error analysis methods

The error analysis presented so far was first used by O.L. Colombo (Colombo, 1987).
It uses the actual gradiometric measurements as observations, related to the un-
known potential coefficients by a linear model of the type 4.2. Another possibility
is described in (Schrama, 1990). There, lumped coefficients Agm, Bim (in eq. 3.19)
are used as observations. Equations of the type 3.20 are used as model equation,
with for each gradient a different expression for Himk.

The lumped coefficients are determined from the observed gradients by means of
a Fourier transformation. They serve so-to-say as pseudo observables for the next
step, in which the potential coefficients are derived from them using equation 3.20
as observational model.

Both methods of error analysis, the one in which the observed gradients or
the one in which lumped coefficients are taken as observations, agree in the sense
that they both treat the gradient measurements, given in subsequent points along
a satellite orbit, as a time series. The methods will therefore be called time-like
(Koop et al., 1989). Furthermore, since the method used in this work takes the
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gradient measurements themselves as observations, it is referred to as time-like in
the ttime domain. The method which uses the lumped coefficients as observations
may then be referred to as time-like in the frequency domain.

In (Koop et al., ibid.) also a different approach is mentioned. Instead of consid-
ering the measurements as being functions of time, one may also consider them as
functions of space. One then assumes the measurements to be given on a sphere or
in a spherical shell at satellite altitude. Such an approach is referred to as space-
like!. It is equivalent to solving a geodetic boundary value problem. Depending on
assumptions about the spatial distribution of the measurements and the a—priori
variances, different strategies are possible.

First one may assume to have a complete, continuous global coverage of the
earth with measurements. In this case an analytical solution for the inverse of
the normal matrix exists (Rummel et al., 1989), at least for V,,, {V,,,V,.} and
{2V%y,Vzz — Vyy}. In reality, of course no continuous coverage is available. This fact
is taken into account by weighting the a—priori covariance matrix in such a way that
some assumed finite spatial resolution enters the solution. This method is referred
to as space-ltke continuous.

The idea can be modified by assuming we are given a finite number of mea-
surements randomly distributed inside some global spherical shell containing the
satellite’s orbit. This spherical shell is divided into equal-angular cells, inside of
which the measurements are averaged per cell. Observations are now assumed to
be regularly distributed point values (or block mean values), the observational noise
being adapted accordingly, see e.g. (Rapp, 1989). Using a spherical harmonic ex-
pansion for the gradients, the normal matrix takes on a block—diagonal structure,
due to the orthogonality of the sine and cosine series, and can be easily inverted.
This method is referred to as space-like discrete. In (Koop et al., 1989) it is shown
that all four mentioned methods (time-like in the frequency domain, time-like in the
time domain, space-like continuous and space-like discrete) yield the same results.

4.3 Global recovery

Whereas the previous section (section 4.2) “only” discussed the quality of the poten-
tial coefficients to be derived from space-borne gradiometry (in terms of a-posteriori
error r.m.s. values), we are n fact primarily interested in those estimated potential
coefficients (Cim, Sim) themselves. As already explained in section 4.1 we try to
solve potential coefficients from globally distributed gradiometric data. This pro-
cess is indicated with the term global recovery. There are several methods of global
recovery, one of them will be discussed in the present section. In order to carry
out a global recovery of potential coefficients, we need a data set of measured gra-
vity gradients. Such a set is not yet available, the first set has to be generated by

!The terms space-like and time-like used in this context have nothing to do with the same terms
known from the theory of relativity.
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the Aristoteles mission. Therefore, in this section, a simulated set of gradient data
is used, computed at the Center for Space Research of the University of Texas at
Austin, (Schutz et al., 1987) and (Schutz et al., 1988). A description of this simula-
tion will be given in section 4.3.4. We will, for convenience, denote in the sequel the
potential coefficients by {Cima|a = 0,1}, meaning Cy, if @ = 0 and Sy if @ =1.

4.3.1 Linear model

The observed gravity gradients are functions of the location of measurements and of
the gravity field. In general, the location (e.g. the coordinates of the measurement
point in some coordinate system) as well as the gravity field (e.g. expressed by means
of a series expansion in terms of potential coefficients) are unknown. These are
exactly the unknowns which we like to derive from the measurements. To this extent,
the measurements are linked to a mathematical model, describing (approximately)
the physical reality. In section 4.1 such a mathematical model (e.g. equation 4.1 for
second-order radial derivatives) was the starting point for our discussion on (least
squares) error analysis. In that section, we simply assumed to be given a global,
regularly distributed set of gradient observations with some known measurement
error. The given model equation was assumed to properly describe the physical
reality and the unknown potential coefficients were assumed to be obtainable from
the measurements by means of a least squares adjustment. All this meant that
we implicitly assumed that the location of the measurement points was known, 1.e.
circular orbit with known radius and equal spaced measurements along the orbit to
invoke orthogonality of the trigonometric series. Also the orientation of the local
coordinate system in which the measurements are given was assumed to be known.

In reality, the coordinates of the measurement points are not exactly known,
only approximately. Then the model equation which we used becomes non-linear.
In this section we will show one possibility of dealing with the non-linear problem, a
linearization procedure following (Rummel and Colombo, 1985) for gradiometry or
in general following (Rummel, 1985a).

Consider an observation point P on the true (or actual) satellite orbit. Initially,
the gradiometer output (i.e. the gradient observations) is given in an instrument
or satellite coordinate system which has its origin in P. But as already mentioned
in chapter 3 we assume that the gradients can be transformed to a local orbital or
local north-oriented coordinate system (with origin also in P) by means of a known
rotation matrix. However, since the actual orbit is unknown, the orientation of such
local system in P is also unknown. Suppose now that we are given the coordinates
of a nearby point P’ on a known approximate (or nominal) orbit. Then we may take
for the orientation of the local system the orientation of such a system in P', see
figure 4.22. We will denote the local coordinate system situated in P but with the
orientation of the system in P', with z', and assume we are given the components of
the gradient tensor, V;;(P), in this system (the coordinates of P of course remaining
unknown).
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4. Global gradiometric analysis

If we were given an initial state vector, the nominal orbit could be computed by
means of integrating the dynamic equations of motion of the satellite, using as force
model a gravitational field represented by some known set of potential coefficients
(up to some maximum degree and order), and using the measurements from some
satellite tracking system. The initial state vector is usually given in terms of the
three location coordinates in a geocentric cartesian coordinate system (X,Y, Z) and
the three components of the velocity vector (X Y Z) at the initial time t. The
differences between the true orbit and the nominal orbit are the orbit errors. The
orbit errors contain a geometrically induced part (due to errors in the initial state
vector) and a gravitationally induced part (due to the imperfect choice of a potential
coefficient set for the orbit integration). This means that the observations are doubly
dependent on the gravitational parameters, directly through the measurement type
itself and indirectly by means of the dynamics of the satellite orbit, the latter being
reflected in the orbit errors (Betti and Sanso, 1989). Furthermore, the orbit errors
contain contributions from various other sources, of which atmospheric drag will be
the most important. The latter error parts will, however, at the moment not be
considered.

z(P")

actual orbit

e v ——

nominal orbit

Figure 4.22 Location of actual and approzimate points P and P' and the local
coordinate systems in those points.

What follows is the introduction of a mathematical model to which the obser-
vations are linked, e.g. equations like the ones derived in section 4.1. In general we
write:

UPV)=LPV)+E

where Z(P,V) are the observables as function of the point P and the gravitational
potential V', £ represents the mathematical model and ¢ the (small) residuals be-
tween the observables £ and the model £. The “™” denotes stochastic quantities.
In general, the residuals not only contain measurement noise but also model errors.
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For our purpose, however, we assume that the stochastic behaviour of the residuals
€ after linearization is properly described by their first moment (expectation) to be
zero, i.e. E{é} = 0 (zero mean) so that E{£} = £ (unbiasedness), and its second
moment (error variance) to be E{ééT} = Q, with Q the error covariance matrix of
the observations. In general, the mathematical model £(P,V) will be non-linear in
P and V. The linearization procedure therefore consists of two parts, a linearization
with respect to the gravitational potential V' and one with respect to the coordinates
z*(P) of the point P.

The former is done by splitting the gravitational potential V into a known normal
(or reference) part U and an unknown disturbing part 7'

V(P)=U(P)+T(P).
Hence for the second-order derivatives we have
Vi;(P) = Uij(P) + Ty (P)

where 17 may take any of the values zz, zy, 2, yy, yz or 2z. The observation equation
thus becomes:

‘/,](P) = U,](P) + T,](P) + 5.'1‘ . (417)
The second step of the linearization process is the linearization with respect to the
location P, for which we expand U;;(P) into a Taylor series with respect to the
coordinates of the known approximate point P’, truncated after the linear term:

U,"(P) ~ Uij(P,) + U,'jk(P')AIk

where U, = %%';} and Az’ = z*(P) — 2*(P') = (Az, Ay, Az) the coordinate cor-
rections between P and P’, i.e. the orbit corrections between the actual and the
nominal orbit. It is convenient (although not necessary) to compute the nominal
orbit using the same potential U as is used above for the potential linearization.
Since the disturbing potential T is a small quantity of first order we assume

Ti;(P') =~ Tij(P). Inserted into equation 4.17 this yields:
Vij(P) = Ui (P') + Uiju(P') Az* + Tis(P') + &5,
or

ATy = Vi (P) — Uy (P

7
U,'jk(Pl)Axk + T,'j(Pl) + E,’j (418)

with Af‘;j the gradient enomaly. In the simplest case the normal potential U is the
potential of a spherically symmetric gravitational field (i.e. U = %), but it may
also be the potential of an ellipsoidal field or any other higher order approximation
of the actual gravitational field. In general, the normal potential U is expanded into
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a spherical harmonic series (or a series of inclination functions) represented by some
(limited) set of harmonic coefficients C},,,. With the actual potential V' expanded
into a similar series with coefficients Cine we find for the disturbing potential T
an expansion in terms of the coefficient corrections AC;p,, Where Cima = C_'l'ma +
ACimo. In equation 4.18 the unknowns are the potential coefficient corrections
ACimq in Ty (P'), and the coordinate corrections Azt

It is known from the theory of adjustment that, although the choice of approxi-
mate values does not influence the results (as long as they are inside the bounds of
convergence so that the iterative estimation process will converge), it is important
to compute these approximate values (in our case the normal potential U in the
approximate point P') accurately, in order to obtain small anomalies and thus ac-
celerating the iteration process. On the other hand, the coordinate corrections Az’
will, in general, also be small so that the elements of the coefficient matrix Uy;x(P')
can be computed with less accuracy. Whereas one usually takes for U a series ex-
pansion up to some (high) maximum degree if it concerns the computation of the
anomalies (i.e. for U;;(P')), a spherical or ellipsoidal U suffices for computation of
the coefficient matrix (i.e. for U;;x(P')).

Let us take, for example, the potential of a homogeneous spherical mass distribu-
tion as simplified normal potential for the computation of the coefficient matrix U
This matrix can then be computed very easily, and if inserted into equation 4.18, it
yields (for all six gradient tensor components separately):

[ AT, | (00 1] (.| [&.
AT, 00 0 N Tyy €y
Al:zz _ 36;M 1 0 O Ay |+ Tz. . Sz | (4.19)
AT, ™ |0 0 1 N T,y Eyy
AT, 01 0 Tye Eyz
| AT, | |0 0 -2 | | Tee | | Bz |

An equation like 4.19 can be set up in each observation point. If we have N,
observation points, we have 3N, coordinate unknowns and 6N, unknown Tj;’s. But
the gravitational potential is common to all measurement points, so, expressing
the potential by a series expansion up to some maximum degree L, the potential
coefficient corrections ACj, are the same for all points, leaving us with (L + 1)2 -3
potential unknowns (which is the total number of unknown coefficients in a series
expansion up to degree L minus the three first—degree coefficients (I = 1) which are
identically zero if the origin r = 0 of our geocentric coordinate system is the center
of gravity of the earth). A system of observation equations arises if one joins the
model equation 4.19 for all observation points together as function of the same set
of potential coefficients.
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Now one may proceed in different ways. Either one solves the system of equations
for all unknowns simultaneously (i.e. position as well as potential unknowns). This
method is used in the so—called theory of integrated geodesy, see e.g. (Hein, 1986)
or (Moritz, 1980). Or one eliminates certain coordinate unknowns by forming ap-
propriate linear combinations of anomalies, a method often used in the theory of
the geodetic boundary value problem. One is then left with an adjustment problem
with only potential coefficient corrections as unknowns. After they have been esti-
mated, back substitution into the model equation gives estimates for the coordinate
unknowns. Iteration of this procedure should converge to the right results. The
next section will discuss such a procedure.

4.3.2 Iteration

In this section a possible iteration procedure will be sketched which can be used to
solve potential coefficients (and coordinate unknowns) from gradiometric observa-
tions. The procedure used here was first presented in (Rummel and Colombo, 1985).
The first step in this method is to carry out a pre-adjustment of the diagonal com-
ponents of the gradient tensor using as model equation the Laplace equation (zero
trace of the gradient tensor). In the case of Aristoteles this pre-adjustment cannot
be carried out since not all diagonal tensor components are measured.

As starting point for the adjustment to follow we use the linearized model 4.19
derived in the previous section. The idea is to separate the solution of the potential
coefficients from that of the coordinate unknowns. If we take a look at equation 4.19
we see that, in the present spherical approximation, only AT, depends on the
coordinate correction Az, Af’uz only on Ay but that the three diagonal components
all depend on Az. These three can therefore be used to eliminate the radial orbit
correction Az from the model equation. If we assume only Af‘w and Af‘zz to be
available (like with Aristoteles) then the linear combination

2AT,, + AT, (4.20)

eliminates Az. If we take this linear combination in each observation point as new
observables, there remains a system of linear equations with only the potential coef-
ficient corrections as unknowns. Note that this is the reason we took this particular
combination of gradients 2V, + V,, as one of the combinations in the previous sec-
tion on error analysis, section 4.2. Now we have separated the determination of the
gravitational field from that of the orbit. This is only true up to the order of the
earth’s flattening, since we took the coefficient matrix of the coordinate corrections
in equation 4.19 in spherical approximation.

On the left hand side of the resulting model equation we now have the linear
combination 2AI~‘W+AI~‘ZZ and on the right hand side the corresponding combination
of the disturbing potential 2Ty, + T,,. This equation can be used to estimate the
potential coefficient corrections ACima.
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Also, from equation 4.19 we see that the tensor component Af‘zy does (in spheri-
cal approximation) not depend on any coordinate correction at all. This equation can
therefore be used for the estimation of the potential coefficient corrections together
with the linear combination above (at least if this tensor component is measured,
which is not the case in the Aristoteles mission).

The linear model is now of the same form as equation 4.2, and can be solved by
means of a least squares estimation procedure, as describefi in section 4.1. This re-
sults in a set of potential coefficient correction estimates AC/pq, from which we may
compute an up-dated set of potential coefficients byA adding them to the coefficients

C},o Of the normal potential U: C} = C|_ . + ACimq.

What should follow is the computation of the coordinate corrections Az by
means of backward substitution of the solved potential coefficient corrections into
the linear model eq. 4.19. We saw already that these coordinate corrections are in
fact the radial orbit errors, the differences between the true and the nominal orbit
in radial direction, and that they contain gravitationally and geometrically induced
parts. The orbit errors reflect the unmodelled part of the motion of the satellite.
This motion (being the time evolution of the state vector (Betti and Sansd, 1989))
can be described by an initial state vector (z' and z* at the initial time ¢y) and some
system of dynamical equations (equations of motion), e.g.: #;(t) = V;(2%(t)) + F;,
where P; are perturbing terms, which are neglected here for convenience, and t is
time. In order to include the satellite motion (through the dynamical equation)
into the estimation procedure, the determination of the coordinate corrections is
divided into two parts. Assuming that the corrected set of potential coefficients

C}l .. constitutes a better gravitational field representation than the set C _, we
first compute an up—dated nominal orbit with these new coefficients C}!__ but with
the old initial state vector. In this way we obtain a new set of up—dated approximate
points P" in which we compute new anomalies: AT}, = TI';;(P) — U;;(P"). Inserting
these new, smaller, anomalies and the estimated potential coefficient corrections
AC\mq into equation 4.19 and assuming T;;(P") ~ Ti;(P') ~ Ti;(P), we obtain

ALy = Ti;(P") = Uije(P") At (4.21)

where the Ujjy is still in spherical approximation and where the (also smaller) co-
ordinate corrections Az* = z*¥(P) — z*¥(P") are now the orbit errors between the
true orbit and the up-dated nominal orbit. They are therefore free from the influ-
ence of the Aé’lma and are only due to uncertainties in the initial state vector, cf.
(Rummel and Colombo, 1985). From this equation coordinate correction estimates
AZ can be obtained.

With the resulting set of coordinate corrections AZ we may compute an up—
dated initial state vector using some linear model. An example of such a linear
model is the solution to the homogenous Hill equations (ibid.). The Hill equations
are derived from linearizing the equations of motion of the satellite relative to some
reference motion (e.g. a circular motion in a spherical gravitational field). For an
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exact derivation of the Hill equations and their solution see e.g. (Kaplan, 1976) or
(Colombo, 1986). For example, for the radial direction, the homogeneous solution
of the Hill equations is given by:

2 . Azp 2 .
A3(t) = —(8Azp + —Adp)cosnt + 220 sinnt + 4Az + —Adg (4.22)
n n n

where the initial conditions Azg, Azg, Azg are considered at ¢t = 0 and n = GTM

is the mean motion of the satellite. For each measurement epoch t an equation
like 4.22 can be set up. All these equations are function of the same initial conditions
Azp, Azg, Azg. Merging these equations into one system, estimates of Azp, Azp, Azo
can be obtained by solving the system of equations by least squares adjustment.

Now we have improved the two error parts contributing to the orbit errors: the
gravitational part by improving the potential coefficient set and the geometrical part
by improving the initial state vector. As a consequence we may again compute an
up-dated nominal orbit with the coefficients C},,, and the improved initial state
vector. In fact, from here on, the whole process described above repeats itself, since
with this new nominal orbit, up—dated gradient anomalies are derived, the linear
combination is formed, potential coefficient corrections are estimated, etc. Assuming
the process to converge to the right solution (cf. (Rummel and Colombo, 1985)), one
repeats the above procedure until satisfactory accuracy is obtained.

In the case of Aristoteles the procedure ends here. If also the gradients V;, and
V. are measured the procedure may be continued by estimating the other two coor-
dinate corrections Az and Ay. The coordinate correction Az can be obtained from
AT, (which is computed along the final nominal orbit) by inserting the final poten-
tial coefficient set resulting from the repetition process above into equation 4.19. In
the same way Ay is obtained from Af‘yz. The corresponding two solutions (cross—
track and along-track directions) of the homogeneous Hill equations are:

Az 4Ax
AZ(t) = 0 cosnt + (6Az + xo)sin nt — (6nAzg + 3Azg)t +
n n
2Az
Azy — =20 (4.23)
n
A4
A(t) = Ayocosnt + =% ginnt (4.24)
n

which, together with the radial solution, may be used to estimate a last improvement
of the initial conditions and to compute a last nominal orbit. This best estimate of
the orbit could be used to carry out a final potential coefficient estimation.

The whole estimation procedure is listed in table 4.11.

4.3.3 Space-like v. time-like

Whereas the iteration method described above may seem a nice example of gradi-
ometric data analysis (since it separates the determination of the orbit from that
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of the gravity parameters Ci;,) there remains one big problem, namely that of the
enormous amount of data to be handled by the software. Two aspects have to be
considered in this context.

First the number of observations. During a six months mission and with a data
sampling rate of 4 seconds, almost 4 million measurement epochs become available.
If we confine ourselves to the case of Aristoteles this means that at each epoch two
observations are given, V,, and V,,, from which the linear combination 2AT,, +AT,,
is derived. In terms of the model equation 4.2 this therefore means that the vector of
observations £ has over 4 million elements. In the least squares estimation procedure,
eq. 4.5, we have to carry out the multiplication b = A7 ¢ (if we assume the covariance
matrix @ to be a scaled unit matrix) which involves inner products of the columns
of A with the observation vector £. One such inner product thus consists of a
summation over 4 million elements. Each column of A belongs to a certain I, m-
combination and each row of A belongs to one individual observation. Each element
of A is therefore of the type 4.3 or 4.4 for a unique set of (w,,w,,r). For each of the 4
million inner product elements the trigonometric functions cos 9y, or sin,, have
to be evaluated for all necessary values of the index k. Even when using recursive
type methods for the computation of these trigonometric functions, this part of the
estimation process, i.e. computing b, remains very time consuming.

Another aspect concerns the number of unknowns. Given some specified max-
imum degree L up to which one likes to estimate the potential coefficients, a total
number of (L + 1)(L + 2) unknown Cimq coefficients appear. E.g. if L = 240 (like it
is usually the case in this thesis) we have over 58,000 unknowns. This means that
the design matrix A has more than 58,000 columns and, as we have seen, almost
4 million rows. The normal matrix N has a size of (58,000)2, but it is symmetric.
Solving such a linear system is still an enormous effort, which under certain assump-
tions, however, can be drastically reduced by invoking a block—diagonal structure,
as was done in section 4.2 with the error analysis.

If we are willing to accept some assumptions and approximations as far as it
concerns the observation distribution, something can be done to reduce the compu-
tational efforts. Two methods are mentioned here: the space-like and the time-like
method. The terms space-like and time-like are those used in section 4.2.11. The
difference between the two is the way in which we look upon the data distribution.
Both methods will be illustrated below.

Space-like

In the space-like approach we view upon the data set as being a set of observations
distributed in some way (regular or irregular) in three dimensional space. The mu-
tual relationship between the observations (they are all taken along one common
satellite orbit) is not taken into consideration. The latter point is only reflected by
the fact that during the iteration process (table 4.11) the initial state vector com-
ponents are updated using some dynamical model for the satellite motion (i.e. Hill
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equations), and by the fact that all measurements are considered to be located inside
a spherical shell around the earth. This shell, concentric with the earth’s center of
mass, is just thick enough to contain all measurements. An observation is considered
a function of its position coordinates r,8, \. An easy way of expressing the gradients
in this case is by means of a spherical harmonic expansion, equation 3.16. When
using this formulation, a block—diagonal structure of the normal matrix is achieved
if the data, assumed to be situated on a sphere (i.e. constant radius approximation),
is distributed regularly in 6-direction (observations along parallels) as well as in
A-direction (observations at equal intervals A)). Along each parallel the observa-
tions constitute a set of equally spaced samples. On such a set, the trigonometric
functions sin mA and cos mA\ are orthogonal. This causes the elements of the normal
matrix belonging to the coefficients C_'zlmla1 and élzmzaz to be only different from
zero if a3 = ag and m; = mz (Rummel and Colombo, 1985). Compare this with
the orthogonality in section 4.2.1.

Thus a regular, global grid of observations is needed in this case. But we
do not have such a grid. If the actual data distribution shows some particular
pattern at all, it will certainly not be of the type described above. However, in
(Rummel and Colombo, 1985) it is suggested that such a grid structure can be ob-
tained in the following way. The spherical shell in which all observations are con-
tained, is divided into equal angular cells of thickness Ar (the thickness of the shell)
and with size A8 = A), the latter chosen at most half of the smallest gravitational
wavelength to be recovered. All the gradient observations inside each cell are aver-
aged. All equi—angular cells with their average gradient values formed in this way,
together constitute a global grid of gradient observations.

A block-diagonal structure of the normal matrix is now obtained which means
an enormous reduction of computation time. But also the number of “observations”
(i.e. cell averages) has become less. If we, for example, like to recover the potential
coefficients up to a maximum degree and order L = 240, the grid size Af = AA
has to be at most 0°.75. The number of cells contained in a grid of this size is
115,200, which is much less than 4 million. So also the amount of time needed for
the computation of b has been decreased.

The drastic decrease of computation time is a big advantage of gridding the
data. On the other hand, averaging means a loss of precision due to the smoothing
of the signal. Furthermore, we may put some questions about how to carry out
the averaging process. A first problem is that in reality, we do not know the exact
coordinates of the measurement points P. The decision in which cell an observation
lies and where it is located inside the cell, can only be made on the basis of the
coordinates of the approximate points P' along the nominal orbit. Due to orbit
uncertainties in cross—track or along-track direction, an observation may therefore
contribute to the cell average of the wrong cell (the radial orbit error will not lead to
such problems). Since we have seen that the second-order derivatives have a large
power content in higher degrees, these kinds of mistakes may have considerable
influence. Furthermore, since the error variance of cell averages is computed from
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the measurement error propagation through the averaging process, the resulting set
of grid values will not have equal variances any more. Unfortunately, as long as we
do not have the true coordinates, nothing can be done about the former problem,
unless we could determine the true orbit with enough precision independently, e.g.
by using GPS, which would imply that we are back at the earlier situation, where
we don’t have to estimate the orbit from the gradient measurements.

A related question is how to interpret the average values. One possibility is to
first average the original gradient observations, and to attribute the average values
to the center points of the equi-angular cells. The coordinates of those center points
are known. The problem is reduced to that of just estimating potential coefficients,
since the “orbit problem” is suppressed, compare {Vermeer, 1991). No linearization
with respect to the coordinate unknowns is possible any more. Another possibility
is to attribute the average gradient value to some imaginary average location inside
the cell, not coinciding with the cell center. This average measurement point could
be thought of as being computed by means of averaging the (unknown) coordinates
of all the actual measurement points inside the cell. The cell center could then be
chosen as approximate point P'. In this case there remains the problem of which
kind of relation there is between on the one hand the averaged measurement points
and the true orbit and on the other hand the cell centers and the nominal orbit.

Probably the best choice is to first linearize the problem and compute the gradi-
ent anomalies (eq. 4.18) and the linear combinations (eq. 4.20) for all observations
individually. All observations inside the same cell are linearized with respect to the
same approximate point P’, namely the cell center, and for the normal gradient Uy;
the value at the cell center P’ is taken. The resulting set of linear combinations of
gradient anomalies are now averaged on the basis of their approximate locations P'.
In the estimation procedure from table 4.11 this means that the cell averages are
formed between step 6 and 7, and that they only apply to step 7. Back substitution
(step 10) is done with the original system of equations (one equation per observation,
not the averages). Furthermore, one could use the cell averages only for computing
and inverting the normal matrix N = U%ATA, whereas the multiplication AT £ is
carried out for all observations individually. In that case it is not even necessary
to actually compute the cell averages. One simply chooses a global grid at a cer-
tain mean radius and with a certain step size in §-direction. The A-dependence
is cancelled due to the trigonometric orthogonality relations. In this way however,
we have to compute b again for almost 4 million observations. Note furthermore
that, if we want to use the inverse of the present normal matrix (where cell averages
are assumed) to describe the a—posteriori precision of the estimated potential coeffi-
cients, we have to adapt the scale factor o2 of the variance matrix of the observations
Q to represent the variance of cell averages. In fact, in general the variance of a
cell average becomes a function of the number of observations inside the cell and
their location relative to the cell center. This results also in a §-dependence of the
variances.

Nevertheless, if one likes to compute cell averages, there remains the question
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of the validity of the averaging process. Inside each cell the observations might be
distributed rather irregularly. It should therefore be preferred to reduce the obser-
vations to the cell center using some higher order model, at least one which includes
a dependency on the relative location of the measurement points with respect to
the cell center. This becomes extremely important if the actual observations V;; are
averaged, since these numbers are relatively large and vary considerably throughout
a cell. E.g. at 200 km altitude differences in the value of the gradients inside a cell
with size Ar = 10 km and Af = 0°.5 may be of the order of 10719572 due to the
C3o contribution only.

It should be mentioned that a possible negative influence on the results of the
averaging process may be overcome during the iteration procedure (see table 4.11,
step 14), at least if the cell averages are formed between step 6 and 7 (as suggested
above).

Time-like

As pointed out in section 4.2.11, the time-like approach considers the data set a
time series, the observations given in subsequent points along a satellite orbit. The
usual way of expressing the gradients in this case is by means of an expansion into
a series of inclination functions, like eq. 3.18. The time dependency is expressed by
the argument Y, = Y9 + ¢kmt, compare eq. 4.6.

In order to achieve a block-diagonal structure for the normal matrix in this
case, we do not need an equi-angular global grid of observations. In section 4.2.1
we saw that such a structure is already obtained if the data is distributed regularly
only along the orbit, under the condition that the number of nodal days N4 and
the number of orbit revolutions N, contained in the mission are relative primes and
that N, > 2L. For L = 240 the latter condition is fulfilled in a 6 months mission,
like with Aristoteles. Also, with the foreseen constant sampling rate (4 seconds for
Aristoteles) with which the measurements are taken, the requirement of a regular
data distribution along the orbit is very well met. What remains as an assumption
is the absence of data gaps. Unfortunately, data gaps will occur in a real mission
(due to orbit maintenance manoeuvres and excessive drag variations at the poles).
Note that in the space-like situation along-track data gaps play no role as far as
it concerns the orthogonality requirements. Another problem that remains is the
fact that not one reference orbit is computed for the full mission period. Instead,
reference trajectories are integrated for some limited amount of time, e.g. every three
or six days.

In the time-like approach there are no problems concerning the true orbit, nom-
inal orbit and average values, because no averaging of the data is needed to invoke
orthogonality. Except for the data gaps assumption, the time-like approach there-
fore seems more suitable for the gradiometric analysis (in the way described in
section 4.3.2 above) than the space-like approach.
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4.3.4 Simulated data

Whereas an error analysis can be carried out without the availability of a set of real
measured quantities (like it was done in section 4.2), potential coefficient estimates
can only be obtained if one has at ones disposal some set of observations. Up to
now, however, no gradiometric satellite mission has been carried out, so no true data
is available yet. In order to be able to investigate the gradiometric analysis process
and to carry out test computations one depends on simulated data. The Center
for Space Research (CSR) of the University of Texas at Austin computed a set of
gravity gradient data along a simulated satellite orbit. Detailed information about
this simulation can be found in (Schutz et al., 1987) and (Schutz et al., 1988). In
this section we will only briefly discuss the main characteristics of this simulation.

In order to obtain a good global coverage, the CSR simulation spans 32 sidereal
days after which the ground track of the satellite’s orbit will repeat to within 10 km
(i.e. T, = 32 days). For a satellite, moving along a polar orbit (I = 90°) at a mean
radius of approximately 6527 km, this results in 525 orbital revolutions. The force
model used for the orbit computation consisted of the complete 360 x 360 OSUS6F
potential coefficient field (Rapp and Cruz, 1986) and the following values for the
gravitational parameter GM and the reference radius R:

GM = 3.986004404 - 10" m3s™2

R =6378137m .

Furthermore, the Cy; and S3; coefficients were assigned the values Gy = —0.10-107°
and S2; = 0.102- 1078, The force model did not include non-gravitational forces,
luni-solar effects or temporal variations in the gravity field (Schutz et al., 1988).
The computed data set contains the ephemeris of a low—orbiting GRM (Geopotential
Research Mission) satellite at 4 second intervals. This resulted in a total amount of
691,210 measurement epochs.

At each epoch the elements of the gravity gradient tensor V;; are evaluated. De-
spite the fact that only five elements of the gradient tensor are independent (V;; is
symmetric and traceless), all six elements comprising the upper (or lower) triangular
part of V;; are provided. The gradients were computed as the second-order partial
derivatives of the gravitational potential in a geocentric cartesian coordinate system
using a spherical harmonic expansion up to degree and order 360. The potential
coefficients for this expansion were also taken from the OSU86F field, but the con-
tribution from the zeroth order term ($M) was not included (i.e. Coo = 0). All
measurement errors were excluded from the simulation. For the purpose of the com-
putations the observations were assumed to be uncorrelated, having a 0.01 E/ VHz
white noise error spectrum.

At this point already some remarks can be made about this simulation, as far as
they concern our intended use. Referring to section 4.2.1 it is reminded here that for
a good recovery of potential coefficients from satellite data up to a maximum degree
L (avoiding a situation where different orbital frequencies, represented by some k,m
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combination, are projected onto the same gravitational frequency, represented by an
[, m combination), the number of orbital revolutions N, in one repeat period has to
be larger than 2L. This in turn implies that for the present simulation (525 orbital
revolutions) we can expect only a good recovery up to approximately L = 262.
The choice for repeating ground tracks after 32 days ensures a finest possible
global coverage within this period. As a result the ground track nodes (cross over
points between descending and ascending tracks) for the 525 orbital revolutions
included in this repeat period have, at the equator, a spacing in A-direction of
approximately 0°.68. Simple reasoning tells us not to expect recovery of potential
coefficients above degree | = 262 in this case, despite the fact that, due to the 4
second sampling interval in along-track direction, the spacing in f-direction will
be approximately 0°.27. Figure 4.23 shows for a small area (50° < A < 60° and
0° < ¢ < 10°) the ground tracks (continuous lines) of the simulated orbit, as well
as the grid lines of a 0°.5 X 0°.5 grid (broken lines). It can be seen from this figure
that several blocks of the grid are not covered by ground tracks. An attempt to
derive from the simulation potential coefficients up to degree 360 with the space—
like method (for which such a 0°.5 x 0°.5 grid is needed) is therefore not likely to
succeed, at least if the empty blocks are not accounted for in some manner.
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Figure 4.23 Ground tracks (continuous lines) of the simulated CSR orbit for
a small area. The broken lines are the grid lines of @ 0°.5% 0°.5

grid.
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4.3.5 Space-like results

A computer program was written by D. Stelpstra (Stelpstra, 1990) to estimate po-
tential coefficients from gradiometer measurements following the linearization pro-
cedure in the space-like approach, which was described in previous sections. As
input data the satellite ephemeris and gravity gradients from the CSR simulation,
described in the last section, was used. Test computations were done to demonstrate
the possibilities of the present recovery method (Koop and Stelpstra, 1991).

To this extent, a global 1° x 1° grid, being a commonly used and easily man-
ageable grid type, was established from the gradient data set. Such a grid consists
of 64,800 equi—angular blocks. For each measurement epoch, the given geocentric
cartesian coordinates were transformed into curvilinear coordinates 8, A. The latter
coordinates determined in which block the measurement was assumed to be situ-
ated. Since there were 691,210 measurement epochs in the simulation, the result
was an average number of N, = 10 measurements per block. To simulate the elim-
ination of the coordinate unknowns (i.e. the orbit errors), as is done in the linear
model approach, at each measurement epoch the linear combination of observations
2Al~‘u + Afu was computed. The resulting numbers were then averaged inside
each grid block. For convenience we assumed all those block averages to have the
same measurement precision (namely o1/5/N, with o the precision of one gradient),
which of course is not really true, since not each block contains the same number
of measurements. At this stage we are only interested in estimates for the potential
coefficients. Their a—posteriori error behaviour was already discussed in section 4.2.
This means that the one important item concerning the error variances is the as-
sumption of equal variance for block averages. This leads to a simple variance
matrix, namely a scaled unit matrix. The value which we choose for the variance
factor o2 is not important here. As can be seen from eq. 4.5 it will, in case that @
is a scaled unit matrix, drop out when computing ¢é.

From the 1° x 1° grid one may estimate potential coefficients up to degree and
order 180. We expected a good recovery of potential coefficients from the simulated
525 orbit revolutions only up to degree 262, so with L = 180 we are on the safe
side. The estimated potential coefficients were used to compute signal degree vari-
ances. They are shown in figure 4.24, together with the degree variances from the
original OSU8GF model. Up to degree 140 the signal power seems to be recovered
very well. Above degree 140 the estimated power is higher than the original one.
This fact may be due to an aliasing effect, where the power of higher degrees, con-
tained in the measurement signal but not solved for, is reflected in the lower ones
(Jenkins and Watts, 1968). In time series analysis, this effect always appears when
the chosen sampling interval is not small enough to detect the highest frequency
which is present in the signal. The highest frequency which can be detected given
some sampling interval A is the so—called Nyquist frequency fy = 1/(2A). If fn is
smaller than the highest frequency present in the signal, aliasing occurs. When us-
ing spherical harmonics the aliasing effect cannot be expressed in a simple manner,
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4.3. Global recovery

but it will be present. In our case, the OSU8GF field contains potential coefficients
up to degree and order 360, which were all used to simulate the gradient data. But
we only solve for coefficients up to degree 180, so the power content for the degrees
181 <1 < 360 will be reflected in the spectrum between 0 and 180. Since in reality
the gravitational field contains degrees up to infinity, an aliasing effect will always
be present, even for higher degree solutions, although block-averaging of the data
will decrease its influence to a large extent.
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Figure 4.24 Degree variances from solved potential coeffictents from simulated
gradient data using the space-ltke approach, as well as those from

OSUS6F.

Nevertheless, the solution seems not bad at all. Especially if we remember that
this estimation is in fact only one step of an iteration process in which one simul-
taneously solves for the gravitational field as well as the orbit. Furthermore, since
we did not remove from the simulated data any other potential contribution apart
from the central (zeroth order) term, the anomalies are relatively large.

The degree variances, however, show the spectral behaviour of the signal in
terms of the power per degree. If this signal power per degree is well solved for, it
does not necessarily mean that the distribution of the power over all orders inside
this degree is properly solved for. One has to look into the individual potential
coefficients themselves. To this extent the absolute values of the relative differences
between the solveAd coefficients Cmq and the original OSUSBF coefficients Cmq were
computed, i.e. |(Cima — Cima)/Cima|. If the resulting value is, for example, 10° = 1
this means the relative error is 100 %. A value of 1072 means 1 % relative error. We
counted how much of these numbers were present in each 10%!-class between 1075
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4. Global gradiometric analysis

and 10°. A cumulative graph of these numbers, in percentages of the total amount
of solved coeflicients, is shown in figure 4.25. From this figure we see that over 80 %
of the coefficients is solved with an error less than 100 %, however only about 20 %
with an error less than 10 %. In order to see whether some particular pattern exists
in the error or not, a grey-scale map of the same numbers in an I, m-scheme was
created. This map showed no particular pattern, except for a slight increase with
increasing degree.

Cnm
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T T

perc of coeff.

20

log abs rel dif

Figure 4.25 Cumulative graph of the number of errors between solved and
OSUSEF coefficients in percentages of the total amount of solved
coeffictents. Horizontal azis: order of magnitude of the relative

differences, logarithmical.

It should be mentioned that the differences between the solved and original
coefficients, as they are computed here, do not contain measurement errors, since
we adopted a scaled unit matrix for the covariance matrix of the observations. The
remaining error therefore consists of model errors and numerical errors. The latter
are inevitable in each computational process.

4.3.6 Time-like results

In the time-like approach the observations are treated (as they are in reality) as
measurements done in successive points along the satellite orbit. The parameters
to indicate those measurement points are the orbital elements a,e, I,w,,w,. For
the CSR simulation we have I = 90° and for our convenience we assume e = 0.
Furthermore, we assume all measurements to be situated on a sphere with radius
equal to the mean radius of the simulated orbit. This leaves us with w, and w, as
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variables to indicate the successive measurements. They are to be computed from
the given geocentric cartesian coordinates =/ and the time t of the epoch. Care
has to be taken with this transformation from z’,t to w,,w., especially with the
identification of the correct quadrants.

No averaging of the measurements has to be done, so we are left with a data
set of 691,210 records, each containing the measurement (or the linear combination
2AT,, + AT,,) as well as the two coordinates w, and w, at the measurement time ¢,
in double precision a storage requirement of a little more than 16 Mbyte. A computer
program was written to estimate from this data set potential coefficients following
the method described in sections 4.3.1 and 4.3.2. This estimation program is in fact
an extended version of the error analysis program from section 4.2, now including
the computation of b = AT £ and the solution of the normal equations. Due to
the enormous CPU time requirements for this program, we decided for the first
run to average every two successive measurements, thereby halving the number of
observations to be used in the estimation process. Since we only attempt to estimate
coefficients up to a maximum degree L = 180 (like in the space-like approach) the
data interval in f—direction after this averaging (approximately 0°.54) will still be
sufficient.

Whereas in a real mission like Aristoteles the lower part of the measurement
spectrum will be too much distorted or not available with enough precision (band
limitation, see section 4.2.4) we included in the present estimation the complete
measurement spectrum (all Bgm for 0<m < L and —L <k < L). No stabilization
technique was used (see section 4.2.6).

Degree variances, computed from the potential coefficients solved with the pre-
sent time-like program, are shown in figure 4.26, together with the original OSU86F
degree variances. Above degree 120 the solved spectrum diverges from the original
one. However, the differences are larger than in the space-like approach (compare
figure 4.24). Since, in both cases, we did not remove the contribution from the
degrees above 180 from the measurements, the differences are due to an aliasing
effect. In the space-like approach, where we first computed cell averages, this aver-
aging acts as a smoothing process, decreasing the power content of the high degrees.
Therefore the aliasing effect is expected to be less than here.

Also for the present solution we show (figure 4.27) the cumulative percentages
of the relative errors in each coefficient. Somewhat less than 80 % of the coefficients
is solved now with an error less than 100 %, but still about 20 % with an error less
than 10 %.

It should be re-emphasized that, for both the space-like as well as the time-—
like approach, the results shown here are “only” a first step of what should be
an iterative process in which at the same time the orbit is improved and the co-
efficients are estimated. A simplified simulation, based on zonal coefficients only
(Rummel and Colombo, 1985), indicated that only a few steps are necessary for the
iteration process to converge. A final judgement of the results and the estimation
method can thus only be given if a complete iterative solution is computed. Nev-
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Figure 4.26 Degree variances from solved potential coefficients from simulated

gradient data using the time-like approach, as well as those from

OSUSGF.

ertheless, the present results are promising, especially considering the fact that in
both cases no stabilization technique was used.

4.3.7 Some computational aspects

From a computational point of view, the programs for the space-like and the time-
like methods are very much alike, at least in broad outlines. Both programs do, in
principle, nothing more than solving a system of the type £ = Ae¢ by means of a
least squares adjustment for the same vector of unknowns ¢ (which are the potential
coefficients). The differences between the two approaches are found in the vector of
observations £ and the expression for the elements of the design matrix A. In case
of the space-like method, the vector of observations £ consists of block averages,
a total of 64,800 elements in the case of a 1° x 1° grid. In the time-like approach
this vector consists of the original observations along the satellite orbit which are
691,210 elements in case of the one month CSR simulation.

Concerning the design matrix A, the difference between the two methods is that
the space-like method uses spherical harmonics as base functions (for which we need
to compute the Legendre functions Pj,, and their derivatives), whereas the time—
like method is set up in the rotated orbital system and is therefore based upon the
inclinations functions Fll:n and F‘l’fn*

Both differences have far-reaching consequences as far as it concerns computa-
tion time. Before we illustrate this, we have to remind ourselves that the required
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Figure 4.27 Cumulative graph of the number of errors between solved and
OSUSEF coefficients in percentages of the total amount of solved
coeffictents. Horizontal azis: order of magnitude of the relative
differences, logarithmacal.

computational effort strongly depends on the maximum degree L and the available
hardware. All CPU results given in this section refer to software running on the
CONVEX C240.

First of all, computing the inclination functions for all valid {,m,k up to some
maximum degree L is much more time consuming than computation of the Legendre
functions for all /,m up to the same degree. If the space-like program is used
only for error analysis (i.e. setting up and inverting the normal matrix) it requires
only 40 CPU seconds (for one observation type), against the time-like program
approximately 800 seconds (for 10 observations types), both up to L = 180 and
both on the same computer.

Secondly, and what is more important, the product & = AT t puts a heavy
burden on the computations. Compared to the computations involved in b the error
analysis contributes only little to the total CPU time for the adjustment process. For
the space-like program the coefficient estimation up to L = 180 requires 370 CPU
seconds (Stelpstra, 1990). For each of the 64,800 cell-averages we have to evaluate
the sine and cosine of mA, multiply them with the Legendre functions, some other
factors and with the observation. But since the observations are regularly spaced
on a grid, the amount of extra effort can be kept limited.

For the time-like program the discrepancy between “only” error analysis and
adjustment is much larger. This is due to the fact that we have much more ob-
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servations than in the space-like method. For each observation an element of A
consists of a summation over k. For all [, m combinations we have to evaluate the
sine and cosine of the argument Y, = kw, + mw,, multiply them with the incli-
nation functions and some other factors, add them for all £ and multiply them with
the observation. As an example, consider the estimation of the zonal coefficients up
to L = 100, which requires 717 CPU seconds, of which 95 % (681 sec.) is needed for
setting up b. Bearing in mind the total run-time for the error analysis for all orders
and degrees up to L = 240 (500 CPU seconds, see section 4.2.9), one can imagine the
computational effort to be delivered for a complete estimation up to such maximum
degree. Indeed, the estimation of all potential coefficients up to degree and order
180 from the halved data set of 345,605 observations (as described in the previous
section) required approximately 69 hours CPU time on the CONVEX. The time
needed for setting up and inverting the normal matrix in this case becomes almost
negligible.

A last remark concerns the system of normal equations. The solution of the
system of normal equations, N ¢ = b is obtained in an equivalent manner as were
the diagonal elements of the inverse normal matrix in the error analysis. With
the upper triangular matrix R, resulting from a Cholesky factorization of N, the
triangular system

RTw=1b
is solved for w by forward substitution. Afterwards, backward substitution of the
system

Re=w

gives the required vector c.

4.3.8 Conclusions

On basis of the presented results we cannot yet decide in favour of either the space-
like or the time-like approach to estimate potential coefficients from gradiometer
observations. However, the results shown in figures 4.24 to 4.27, make us believe
that both methods bear the potential of converging to the right solution, if the
iteration procedure is continued. At this moment we have to keep in mind that we
only carried out the first step of this iteration process. Furthermore, in an actual
mission one shall be faced with the presence of data gaps and non—polar orbits.

The space-like method is very attractive because it reduces computation time
drastically, not only because of the block-diagonal structure of the normal matrix,
but much more because of limitation of the length of the vector b = AT £. On the
other hand, the required averaging process in this case (to obtain cell averages) acts
as a kind of smoothing operator, which may not be attractive if higher degrees are
to be obtained from the measurements. Another point is that the space-like method
does not offer the possibility of including the band limitation of the gradiometer into
the procedure in a proper manner, whereas this band limitation is very likely to be
present in a real mission.
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The time-like method does not have those disadvantages due to its set—up in
terms of measurement frequencies in c.p.r. (by using inclination functions). Fur-
thermore, no averaging of the observations has to be done in this method to create
a block—diagonal structure of the normal matrix. On the other hand, the influence
of along-track data gaps may have more influence than in the space-like approach.
A big disadvantage of this method is furthermore the required CPU time, which, in
case of a real 6 months mission, will be large.

Both methods suffer from aliasing effects. Since in our simulation we know where
and with which potential coefficients the observations were calculated, we could
remove the contribution for degrees which we do not solve for from the observations.
In reality, however, this can never be exactly done since we do not know these
contributions, especially not the high degrees. A better test might be to set up and
invert the m-blocks of the normal matrix (the step in the computations where the
coefficients become correlated and aliasing finds its origin) for as much degrees as
possible, but compute the vector b and solve the system only for the required degrees.
For example, in our case we could have constructed and inverted the normal matrix
for all degrees up to 360 (the maximum degree of the simulation) and solve only
for degrees up to 180. In that case, at least theoretically, the aliasing effect must
vanish.
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Table 4.11 Gradiometric potential coefficient estimation procedure, follow-
ing {Rummel and Colombo, 1985).

1 | Pre-adjustment of the diagonal tensor components (if available) using
Laplace’ equation, including error propagation.

2 | Choice of the normal potential field U.

3 | Given U, tracking data and some first estimate of the initial state vector,
compute a first nominal orbit.

4 | Compute at approximate points P’ the normal gradients U;;, with which
the gradient anomalies AT;; are derived.

5 | Evaluation of the coefficient matrix of the coordinate corrections Uyji at
the approximate points P’ in spherical approximation.

6 | Forming a linear combination, e.g. eq. 4.20 which means elimination of the
coordinate corrections. The a-priori variance of the linear combination
should be computed by error propagation.

7 | Least squares adjustment to determine estimates of the potential coefficient
corrections AC)n., based on the linear combination 4.20 and AT, (if
available).

8 | Up—date of the nominal orbit with the old initial state vector and the up-
dated potential coefficients C}! .

9 | Compute at new approximate points P" the normal gradients U;;, with
which up-dated gradient anomalies AT';; are derived.

10 | Back substitution to obtain coordinate corrections Az, eq. 4.21.

11 | Improvement of the initial state vector elements Azg, Azp, Azg, eq. 4.22.

12 | Up—date the nominal orbit again with improved initial state vector and
improved potential coefficients C}! .

13 | Again up—date the gradient anomalies with new nominal orbit.

14 | Repeat the process from step 5 on until it converges.

If the gradients V;, and V., are available:

15 | Back substitution into eq. 4.19 to obtain coordinate corrections Az and
Ag.

16 | Final improvement of the initial state vector with equations 4.22, 4.23
and 4.24.

17 | Compute final best estimate of the nominal orbit with this improved initial
state vector and the final potential coefficient set.

18 | Final potential coefficient estimation based on this best nominal orbit.
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5 |

Relativistic view on
gradiometry

As we have seen, a gradiometer measures the second—order partial derivatives of the
gravitational potential. The nine elements {V;;|i,57 = 1,2,3} (of which only 5 are
independent) together built up the gradient tensor, also called tidal tensor or E6tvos
tensor. The latter names point at a geometrical interpretation of the gradients in
terms of curvature. Indeed, the elements of V;; are related to the curvature of the
equipotential surfaces and the lines of force in the following manner:

Kk t N
Vis}=-9| t ka2 fo
fi f. H*

cf. (Hotine, 1969), (Marussi, 1982) or (Rummel, 1986), where «x; and k; are the
normal curvatures of the equipotential surface in z!, respectively z? direction, t is
the geodetic torsion, fi and f2 are the components of the curvature vector of the
line of force in z!, respectively z? direction and H* is the mean curvature of the
equipotential surface. In this sense, gradiometry gives us insight in the geometrical
structure of the space around the earth, being the result of the earth’s gravitatio-
nal field. However, these curvatures refer to either a two dimensional space (an
equipotential surface) or a one dimensional space (the line of force). The embedding
three dimensional space is just flat. This geometrical picture is appropriate in the
Newtonian theory of gravitation. In Einstein’s theory of gravitation, better known
as the general theory of relativity, the viewpoint is different. The embedding space
is no longer a three dimensional flat space (which of course is simply the space sur-
rounding us, where we live in) but a four dimensional space, called spacetime, built
from the usual three dimensional spatial part and the time as fourth dimension.
This spacetime can hardly be visualised any more, but it has proven to be a useful
mathematical concept in order to accurately describe physical features.
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There are several reasons why a relativistic description of gradiometry may be
of interest. We will see later, that Einstein’s general theory of relativity is in fact a
geometrical theory of gravitation. Geometry and gravitation become two indistin-
guishable concepts. Geometry plays an essential part in the theory of relativity and,
since gradiometry is so closely related to Newtonian geometry, it may be interesting
to find out how gradiometry looks like in relativistic terms.

One of Einstein’s conditions in the development of his gravitational theory was
that, in the limit, it should reduce to Newton’s theory. Indeed it can be shown
that, after specifying this limit, Einstein’s equations yield the Newtonian equations
as an approximation. Conversely, we may expect that Newtonian concepts have a
generalization in relativistic terms which, at least conceptually, must be very similar.
So we may expect that in some way a relativistic description of gradiometry will
include the geometrical structure, especially the curvature, of spacetime. This indeed
will appear to be the case. The general relativistic counterpart of the gradiometric
model equation is the so—called equation of geodesic deviation, in which relative
accelerations are related to the curvature of spacetime. This curvature is fully
described by the elements of the Riemann—Christoffel tensor and it appears that
the non—vanishing elements of this Riemann tensor in the Newtonian limit, appear
to be elements of the tidal tensor, the one shown above.

In this way relativity contributes to the gradiometric measurements themselves
since the V;; are part of the Riemann tensor. A second aspect which should be
included in a relativistic description of satellite gradiometry, is the orbit of the
satellite. One may be familiar with the ideas from special relativity (valid in the
absence of gravitation) that features like time dilation or length contraction may
play a role, at least if we consider particles moving with high velocities, such as
earth orbiting satellites. However, satellites are in free fall in the gravitational field
of the earth. In the general theory of relativity (with gravitation included) such
motion is governed by the geodesic equation. Gravitation is not looked upon as
some external force, but it is part of the geometry of spacetime. In fact, gravitation
“curves” spacetime. Hence a satellite falling around the earth is regarded as a free
particle, on which no forces act (disregarding disturbing forces like air drag etc.). Its
path through spacetime is the “straightest” possible line, a geodesic, but spacetime,
and thus the geodesic, are curved due to gravitation.

So, the equations of motion of a particle moving under the influence of gravita-
tion, constitute a second object of study in which relativistic influences may play a
role. A third point worth mentioning concerns the local reference system with re-
spect to which the gradiometer measurements are taken. In the Newtonian case, as
described in the foregoing chapters, we use a local cartesian (or orbital) coordinate
system with its origin in the center of mass of the gradiometer and one axis always
pointing radially outwards. Another possibility would be to keep the gradiometer
“Inertially” fixed (with respect to far stars), so that the coordinate system would
not rotate. In both cases, the formulation implies the possibility of using some pref-
erential coordinate system (in the latter case an inertial system). Newtonian theory
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is based upon the existence of such inertial system(s). But in the general theory of
relativity, no (global) inertial systems exist, only local ones, valid over some small
spacetime region. Furthermore, each coordinate system should be equally well suit-
able for the formulation of physical features, there is no system to be preferred. It
is therefore common to work with four dimensional local inertial systems, defined
in the framework of relativity as moving with the particle along its worldline (its
trajectory in spacetime). Their motion is determined by parallel transport of the
systemn axes along the trajectory. Due to the curvature of the space, the local system
may therefore move somewhat different than it would do in Newtonian physics.

In this chapter, we will pay some attention to the relativistic description of gra-
diometry. The first two aspects, (the relativistic contribution to the gradiometric
measurements in terms of the Riemann tensor and the satellite’s equations of mo-
tion) will be illustrated, the third aspect (parallel transport of the local inertial
system) will not be treated separately. The reader is not supposed to be acquainted
with the general theory of relativity. To this end, the chapter contains introduc-
tory sections on the theory of relativity, as far as needed for our purposes. The
intention is to sketch the outlines of general relativity and the way in which it
may play a role in gradiometry. However, this thesis is certainly not a textbook
on relativity, and we do not try to give a complete treatment of all aspects of
the theory. Therefore, only a few of them are treated, some of which only briefly.
Many textbooks are written on the theory of relativity. As for the general theory
of relativity, we mention (Bergmann, 1942), (Misner et al., 1973), (Ohanian, 1976)
or (Foster and Nightingale, 1979). Extensive reference can be made everywhere to
the literature mentioned above, as well as to others. Furthermore, recently sev-
eral authors have published on the relativistic description of gradiometry. As for
the three aspects mentioned above, we refer to (Thei8, 1984), (Soffel et al., 1987),
(Soffel, 1989), (Ries et al., 1990), (Kopejkin, 1991) and (Gill et al., 1992). Further-
more, as gradiometry is expected to be a very sensitive technique (especially the su-
perconducting gradiometer of Paik and Richard (1986)), gradiometric measurements
could be used to test certain effects predicted by the general theory of relativity. See
e.g. (Paik, 1989) or (Mashhoon et al., 1989).

5.1 Some aspects of the general theory of relativity

It is very customary to distinguish between the special and the general theory of rel-
ativity, abbreviated respectively by STR and GTR. The essential difference between
the two is that the latter is capable of incorporating gravitation into the theory,
whereas the former is only valid in the absence of gravitation. Despite this differ-
ence, and despite the fact that the special theory was developed first, the indication
“general” and “special” suggest that the latter can be derived from the former by
considering a special case (namely no gravitation), which indeed is true. We will
therefore, in this chapter, focus on the GTR. Furthermore, since gravitation is the
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5. Relativistic view on gradiometry

major subject of this thesis, we will not specialize to the STR. Moreover, only those
aspects of the GTR, which are either of special interest to us or are indispensable
to a good understanding of the theory, are treated.

5.1.1 The spacetime of relativity

In Newtonian theory, any event (or happening) can be described by stating where
(space) and when (time) it took place. “Where” is usually indicated by three coor-
dinates, {z|{ = 1,2,3} (for example z,y, z). The chosen coordinate system thereby
spans a three dimensional space. Analogously, we may look upon the time ¢ as a
coordinate spanning a one dimensional space, indicating the “when”. In the theory
of relativity, the three dimensional space and the one dimensional time are merged
into a new, four dimensional space, called spacetime (Minkowski, 1952). Plotting the
position of an event in an, in general, four dimensional diagram, gives its trajectory
in spacetime, called the worldline. Usually a two dimensional subspace is plotted,
one axis of which is always the time coordinate.

In order to put a geometry onto the space, we introduce a quadratic form ds?,
called the line element (see appendix B.1.3). This quadratic form is set up in terms of
dz,dy,dz and dt, describing in a way the infinitesimal distance between two events.
In the Newtonian case we have in fact two such “distances” (Ohanian, 1976):

di? = dz? + dy? + d2?
and dt

but in relativistic spacetime there is only one:
ds? = c*dt? — da® — dy? — d2* (5.1)

where the scalar ¢ is the velocity of light in vacuum (multiplication of dt with ¢
matches the dimensions of the separate terms; with ¢ included, the unit of time
is chosen such, that the velocity of light in vacuum is equal to unity). The “dis-
tance” between two events, expressed by the line element ds is an invariant, i.e. it
is independent of the coordinate system used to express it. The specific form of
equation 5.1 can be understood by recalling one of the fundamental postulates of
relativity, which says that the speed of light ¢ is the same in all inertial coordinate
frames. Consider the motion of a light photon. If we have two coordinate systems z*
and z! (with {z!|i = 1,2,3} = (z,y,2) and {z'|I = 1,2,3} = (X, Y, Z)), its velocity
is ¢ = dr/dt in the first coordinate system, and ¢ = dR/dT in the other, where
dr? = dz? + dy? + d2? and dR?* = dX? + dY? + dZ*. The constantness of ¢ can then
be expressed as:

cidt? — dz? — dy? — dz? = 2dT? —dX? - dY? - dZ* =0

which is consistent with the assumption of the invariance of the line element ds in
eq. 5.1, cf. (Foster and Nightingale, 1979). Eq. 5.1 shows that, for objects, other
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than photons, the line element (also called sometimes spacetime interval) can be
positive or negative. If ds? is positive, the line element is called timelike, if it is
negative spacelike, and if it is zero (like for a photon) it is called lightlike.

It is convenient, and very customary in relativity, to introduce the following
notation:

(:z:“ 0 p= xu—2’zu—3)
(2°, 21, 2%, 2%)
= (ct, 7,9, 2)

— (Ct,:l:t l’x‘l 21,i=3)

= {ct,2'|i = 1,2,3} (5.2)

{z*#|u =0,1,2,3}

Il

where we adopt the convention to use Greek indices to denote the four relativistic
spacetime coordinates and Latin indices to denote the three “usual” space coordi-
nates. It is, furthermore, convenient to write

ds? = n,, dzdz” (5.3)
where i _
1 O 0 0
0 -1 0O 0
{'}uu} =
0O 0 -1 O
(0 0 0 -1

is the so—called Minkowsk: tensor. Comparing equation 5.3 with equation B.12 from
appendix B.3.1 we see that the Minkowski tensor corresponds to the metrical tensor,
describing the metrical properties of the space. Furthermore, since it is diagonal and
has constant elements, we learn from this appendix that it is the metrical tensor for
flat space expressed in “cartesian” coordinates. This space is the spacetime from
STR. The Minkowski metric replaces the three dimensional cartesian metric if we
switch to four dimensions.

In the Newtonian formalism, in three dimensions, it is possible to introduce a
cartesian coordinate system covering the entire space. Such a coordinate system is
called (globally) ¢nertial. All other coordinate systems, connected to such an in-
ertial system by means of linear coordinate transformations (not involving time},
so—called Galilean transformations, are also inertial systems. In relativistic space-
time, the coordinate system (ct,z,y, z), for which the line element 5.1 holds, is the
generalization of a Newtonian inertial system. Different inertial systems are con-
nected via the well-known Lorentz transformations, which are still linear coordinate
transformations, but now the time ¢ is transformed too.

Accelerated coordinate systzms are not inertial. In the presence of a gravitational
field, all coordinate systems are accelerated, so there is no privileged system (inertial
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system) in which the metrical tensor takes on the simple Minkowski form. Therefore,
gravitation cannot be included in the STR. Einstein solved this problem when setting
up his GTR. We will see later that, in the GTR, we are no longer restricted to
linear Lorentz coordinate transformations, but more general non-linear coordinate
transformations are involved. The metrical tensor is no longer diagonal and its
elements are in general functions of the coordinates, instead of constants. We will,
furthermore, see that in this case the space is no longer flat, but curved, so that
it is no longer possible to introduce into the space a cartesian (inertial) coordinate
system which is “global in the sense that its coordinate neighbourhood is the whole
of spacetime” (Foster and Nightingale, 1979). In a curved space such a coordinate
system is only valid in an infinitesimal region of the space (“locally”).

5.1.2 Equations of motion

Consider a particle freely moving in space. Since no forces act on the particle, it will
move along a geodesic. A geodesic is the generalization of the concept of a straight
line in three dimensional Euclidean space (Es) to more general curved spaces of
arbitrary dimension. This generalization is done by requiring that there exists a
parametrization u of the geodesic, such, that the tangent vectors dz¥/du along the
curve constitute a parallel vector field. The concept of parallelism is generalized by
means of the absolute derivative Dv¥(= v¥, dz”, see appendix B.2.3). The parameter
u is called an affine parameter.

In the space under consideration the geodesic gives the shortest path between
two points. Newton already stated (in his first law) that each particle at rest or in
uniform motion along a straight line preserves its state if no forces are exerted on
it. Considering a free particle to move along a geodesic is therefore nothing more
than a generalization of this Newtonian law to arbitrary spaces. The equations of
motion of the particle may thus be represented by the equation of a geodesic:

B4 TH Y% =0 (5.4)

(see appendix B.2.3). In equation 5.4 the dot denotes differentiation with respect to
the affine parameter u, i.e. ¥ = dz”/du, and the [} are the Christoffel symbols (of
the second kind), which may be computed from the metrical tensor g, as

1
Pul:r = Eg“p (gl/p,a + opv — gua,p) (5.5)

(compare eq. B.15). Note that, if we would like to insert for the parameter u time
t, we should bear in mind that, since time is in four dimensional spacetime one
of the coordinates, it is no longer universal for the whole of space, so it is not
an affine parameter. Therefore, we introduce the so—called proper time 7, which
is measured by a clock, co-moving with the particle, and not by some kind of
“inertial ticking” clock. This has also consequences for the velocity of the particle.
In three dimensional non-relativistic space, the components of the velocity vector
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are v = dz' /dt. In four dimensional relativistic spacetime, we have to take the
derivative with respect to the proper time r. We obtain the so—called 4—velocity
u# = dz#/dr, also called world velocity. We may of course also differentiate the
coordinates with respect to the coordinate time ¢. Then we obtain the coordinate
velocity v# = dz#/dt = u#/v. The quantity v is given by vy = 1/1/1 — v¥/c? = dt/dr
(with v? = v'v;), which appears in the four dimensional Lorentz transformation of
STR. With eq. 5.2 we may write the coordinate velocity as v# = (c,v*).

Thus, if the elements of the metrical tensor are given we may compute the
equations of motion of the particle by means of equation 5.4. Often, however, the
metric has a complicated form, and one would have a hard time computing the
equations of motion in this way.

One may therefore proceed in another manner (Foster and Nightingale, 1979).
The equations of motion can also be obtained by using the Fuler-Lagrange equations:

d oL oL
= (3m) - 3= =0 (5.6)

which can be found in many textbooks on classical mechanics, tensor analysis or
relativity, e.g. (Goldstein, 1980), (Sokolnikoff, 1951) or {Ohanian, 1976). In this
equation L is the Lagrangian, which is a function of the independent variables z#
and z¥. Let us consider the following Lagrangian:

L =g,,2"%" . (5.7)

As we will show now, with this L the Euler-Lagrange equations reduce to the
geodesic equation 5.4. (Note the resemblance of this L with the infinitesimal length
(or line element) ds (equation B.12) from appendix B.3.1, which will appear to be
more than just a coincidence.) From equation 5.7 we obtain:

oL _ 10

ozr ~ 2L oze )
1 . )
= ﬁ (gua‘s;;za + gvaxyfsg)
1 .
- Eg;wxy
oL 1 9 "
328 = 2L zn 9o %)
1 Ly
= ﬁgua,#x"z" .
Inserting these in equation 5.6 yields:
d ) 1 Y-
Tu (guvz”) — ng,,‘z"z" =0&
1

guufiu + guu,aiuia - Egya,uiyia =0«

. 1 .
[P (guv,a - 591@#) "2% =0
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and on multiplying with the inverse (or associate) metrical tensor g°” and using
eq. 5.5 together with the identity

g;w,afbyi:a = %guv,aiyd:a + %gua,uiyia
we obtain the geodesic equation 5.4. This means that the Euler-Lagrange equa-
tions 5.6 are equivalent to the geodesic equations 5.4, at least if one uses a La-
grangian L of the form eq. 5.7. Evaluating equations 5.6 for deriving the equations
of motion is often more convenient than straightforward application of the geodesic
equation.

The variational principle and the equations of motion

Geodesics are the “shortest” paths between two points in the space under considera-
tion (e.g. in Euclidean space a straight line). Consider a particle moving along such a
geodesic and suppose we have parametrized the curve with the arc-length s, instead
of some arbitrary parameter u. It can be shown (Foster and Nightingale, 1979) that
the arc-length s is an affine parameter. The parameter s can be used as a measure
of the length of the curve. It appears in the expression of the invariant line element
ds:
ds? = gupdztdz” .

With the help of this line element ds, the distance S between two points on the curve
P, with coordinates z#(s1), and P;, with coordinates z#(sz), can be expressed as:

82
/ ds
31
32
/ \/ guvdzhdz?
1

82
/ \/ g EHEVds (5.8)
31

S

where ¥ = dz*/ds. Since we are dealing with a geodesic we look for the “shortest”
distance between the points P; and P;. The integral in equation 5.8 therefore has
to have a stationary (in our case minimal) value. This value can be found with the
help of the so—called calculus of variations.
If the geodesic S has a minimal value, it will grow if we replace z#(s) with an
arbitrary function
z#(s) + 8z (s) (5.9)

in which the §z#(s) are small in the interval s; < s < s3 (we call §z#(s) the variation
of z#(s)). So eq. 5.9 would represent another curve through the end points P; and
P; in the neighbourhood of the geodesic. Since this other curve also passes through
Py and P it is

6z#(s1) = 6z#(s2) =0. (5.10)
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If we now put /gy, z¢z¥ = f(z#,2*) we may write the change in distance between
P, and P», being the result of replacing z# with z# + éz#, as:

32 32
5S = / f(zh + 62k, &# + 63*)ds — / f(z#,&*)ds .
81 3
In linear approximation we have

f(z* + 6z#, 2" + 62#) = f(=*,2¥) + aaf Sz# + :f szH

thus
68 = 5/ (z*,2")d

_ Of squ 4 O u)
=/ (ax#zs + 5opb8* ) ds

22 af d
— 2 sab oz
/31 (aw“ + g oobT )ds

and upon integrating by parts the second term:

o]+ [ (w5 (G5)
68 = Szt — - — #
[8 uo® s * sy \OzH ds \Oz+ bztds
in which, with eq. 5.10, the first term disappears. For the geodesic 6S should be
equal to zero for arbitrary éz#, so

= (55) - 3% =0 (5.11)

ok ozH

is the equation determining the geodesic. This equation has exactly the same form
as the Euler-Lagrange equations 5.6 if we put f = L, so that the Lagrangian from
eq. 5.7 is indeed identified as the line element.

Already at this point we may suspect an important concept which is used in
the GTR. In classical mechanics, the Lagrangian L is related to the energy of the
particle. If a Lagrangian of the form as in equation 5.7 properly describes the motion
of the particle, then the expression for the line element ds must contain in some way
the particle’s energy. As the dz* are nothing but infinitesimal coordinate differences,
the energy must be present in the elements of the metrical tensor! This notion is
very important and we will come back to it in the next section.

5.1.3 The principle of equivalence

According to the principle of equivalence it is not possible to distinguish between
gravitational and inertial accelerations. Consider for example an observer (astro-
naut) in a freely falling spacecraft. Suppose the spacecraft has no windows and the
astronaut awakens after a long sleep. He does not know whether he is still in orbit
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around the earth or has drifted away from the earth and from all other attracting
masses. In order to find out he releases an object (proof-mass) and observes its
motion. In both cases, the proof-mass will stay floating in front of him. If no forces
act on either the astronaut or the proof-mass, this can be understood very easily.
Newton already stated it in his first law (law of inertia). The spacecraft, astronaut
and the proof-mass are in rest or in straight-line, uniform motion and will persist
in doing so, as long as no forces are exerted on them. If o’ is the acceleration of the
body with respect to some inertial coordinate system z*, the equations of motion of
the body can be described by:
a =0

i.e. the motion is unaccelerated. If we would describe the motion of the spacecraft
with respect to some other coordinate system z", which rotates with a constant
angular velocity with respect to z*, the acceleration a” is no longer zero. Multiplying
these accelerations by the masses of the bodies, ma”, we obtain so—called apparent or
inertial forces, which seem to act on the bodies (centrifugal and/or Coriolis forces).
These are in fact no real forces, since with a linear coordinate transformation z* =
z*(z") we can always “transform them away”. Let us call the mass m mentioned
above the inertial mass. If there exists a coordinate system with respect to which
all bodies not subjected to (real) forces are in rest or in uniform motion, it is called
an inertial system. The z* would be such inertial system, the z" not, because of its
rotation. However, all coordinate systems which are at rest or in uniform motion
with respect to each other, are inertial systems.

If now the astronaut would find himself in free fall in a gravitational field, a force
does act on him and the proof-mass. This gravitational force is proportional to the
mass of the object it acts on:

fi — Mgt
with M the gravitational mass and ¢* the gravitational acceleration. So if the motion
of the astronaut is due to a gravitational force, it undergoes an acceleration

i M
a = —n;g .
Currently we know that for all objects the ratio M/m is equal to 1 (accurately to
10711) ) i.e. the gravitational force results in the same acceleration for all objects,
independent of their mass. This is exactly what the principle of equivalence says:
there is no difference between inertial and gravitational mass. So also in this case
the proof-mass will remain floating in front of the astronaut. Obviously, there is a
coordinate system, co-moving with the spacecraft, relative to which the gravitational
force can be “transformed away”, as if it was an inertial force.

However, there is a solution to the astronaut’s problem. Due to the convergence
of the lines of force of the gravitational field of a spherical body, the proof-mass
will very slowly move relative to the astronaut (often referred to as moving under
the influence of tidal forces). Note that this is exactly the reason why satellite
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gradiometry is possible. The relative motion as a result of the radial force field
does not really violate the principle of equivalence, provided we limit the validity
of the principle to infinitesimal small regions of space, where the tidal forces can be
considered negligible. The co-moving coordinate system, extended over this small
region (often referred to as local coordinate system) looks very much like a real
inertial system, of which the metric is described by the Minkowski tensor.

In the STR (valid in the absence of gravitation) the laws of physics apply with
respect to inertial coordinate systems. Non-inertial systems can always be trans-
formed to inertial systems by suitable Lorentz transformations. According to the
principle of equivalence, all frames of reference, including those in which a gravi-
tational field is present, are equally well suited for formulating the laws of nature,
since we have seen that gravitational fields can (at least locally) be transformed
away by a suitable coordinate transformation. In this sense, the difference between
the STR and the GTR is that in the latter all continuous, differentiable coordinate
transformations are considered, whereas the STR “only” involves linear Lorentz
transformations. In the literature one finds many different formulations of the prin-
ciple of equivalence, in terms of mass, accelerations, coordinate systems, coordinate
transformations, STR or GTR, validity of the laws of nature or physics, etc. etc.
See e.g. (Bergmann, 1942), (Foster and Nightingale, 1979), (Ohanian, 1976).

We have seen that a free particle moves along a geodesic of which the equations
are given by 5.4. This equation is a tensor equation, that is, it has the same form in
all possible coordinate systems. If a gravitational field is present, the particle will no
longer be a free particle since it moves under the influence of gravitation. However,
according to the principle of equivalence, the gravitational field may be “transformed
away” (at least locally) by a suitable coordinate transformation. Indeed, an observer
moving along with the particle and carrying a coordinate frame with him, will
consider the particle to be a free particle with respect to his coordinate frame, just
like the astronaut in the example above. For this observer, equation 5.4 still holds
for the motion of the particle. Then this equation should also hold in all other
coordinate systems, including those not co-moving with the particle (in which the
particle does accelerate). In that case it must be so that the gravitational effects are
already present in equation 5.4. They must be included in the Christoffel symbols
T#. The Christoffel symbols in turn, are related to the metrical tensor g,, (see
equation 5.6), so that we conclude that the gravitational field must be present in
the elements of g,,, or as Bergmann (1942) writes: “the g,, are the potentials of
the gravitational field”.

Since the gravitational potential is in general a function of the coordinates, the
elements of the metrical tensor will also be functions of the coordinates. They
describe the geometrical structure of the space. In flat space, in global cartesian
coordinates, g,, has a diagonal form with constant elements. In such a coordinate
system the [* are zero and equation 5.4 reduces to

#=0.
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If a gravitational field would be present it would appear as if we could transform
away the effects of gravitation globally by a coordinate transformation to global
cartesian coordinates. We know, however, that the principle of equivalence only
holds locally (in an infinitesimal region of space). Apparently we are not able to
introduce a global cartesian coordinate system. In such a situation we infer from
geometry (see appendix B.1.3) that the space is curved. The conclusion must be
that gravitation curves the space. Note that mathematically the correct formulation
for a curved space is a non—vanishing Riemann-Christoffel tensor.

The above conclusion implies that, in the GTR (i.e. in the presence of gravitation)
gravitation is no longer considered a force, but a part of the geometry of the space.
A free particle is now meant to move under the influence of gravitation alone, and
it will still move along a geodesic, the geodesic, however, now being some curved
trajectory, but still the “shortest” distance between two points, but in a curved
space. This notion is the most important concept in the GTR. Gravitation and
geometry are no longer two different concepts. The theory of gravitation becomes a
geometrical theory in which the usual geometrical formalism can be applied. This is
also one of the reasons that index notation and tensor analysis are much used in the
GTR, since they are both especially suitable to geometrical problems. Note that in
the above reasoning the crucial point was the validity of the geodesic equation in
all coordinate systems. Since this is a natural result of the tensor formalism, one
can understand Einstein’s choice to use tensor analysis as mathematical tool in the
development of the GTR.

5.1.4 The Einstein field equations

In the foregoing, we have seen that, in the GTR, based on the principle of equiva-
lence, the gravitational potential is present in the elements of the metrical tensor. In
Newtonian theory, the gravitational force field, being the gradient of a gravitational
potential, finds its origin in the presence of matter. Poisson’s equation

g"Vu = —4mpG

(or in index free notation V2V = —4rpG) where p is the mass density, V' the gravi-
tational potential and G the gravitational constant, describes the relation between
this gravitational field and the matter distribution. This equation is referred to as
field equation. When developing his GTR, Einstein was searching for an equivalent
relation, with on one side the gravitational potential (in terms of (functions of) the
metrical tensor g,,) and on the other side some quantity expressing the matter (or
in general: energy) distribution. Naturally, the equation had to be a tensor equa-
tion (since it must be invariant with respect to coordinate transformations), so the
quantity expressing the energy distribution had also to be a symmetric, second—order
tensor. It is called the energy tensor (also called: energy-momentum-stress tensor,
stress tensor, stress—energy tensor, etc.), and it is denoted by T#. It may contain
the matter density, momentum, as well as other kinds of energy, like electromagnetic
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radiation. The energy tensor must satisfy
T" , =0 (5.12)

(i-e. vanishing divergence) which merely expresses conservation of energy. A last
condition for the relativistic field equations is, that they have to reduce to Pois-
son’s equation in the Newtonian limit. After a long search, Einstein came up with
equations fulfilling all conditions, the famous Einstein field equations:

RW — —;—Rg‘“’ = kTH (5.13)

where R*¥ is the contravariant Ricci tensor, R the curvature scalar, equal to a
contraction, R¥,, of the Ricci tensor (the trace), and k some constant, equal to
—87G/c*. Equivalently one may write this equation in covariant form, with lower
indices, or, after some manipulations, in the following form:

1
Ry, = k(Tyy — ETg,“,) , (5.14)

with T = T¥,. The left-hand side of equation 5.13 is called the Einstein tensor
G# . Since the Ricci tensor is a contraction of the Riemann—-Christoffel curvature
tensor, i.e. R,, = R°,,,, and since the latter contains the second-order derivatives
of the metrical tensor, the field equation is indeed very analogous to the Newtonian
situation, where we have also on the left hand side some function of the second—order
derivatives of the gravitational potential, and on the right hand side the source term.

In general, the Einstein field equations are non-linear. Furthermore, since the
Ricci tensor has 10 independent components, equation 5.14 is in fact a system of
10 non-linear equations. Solving these equations for g,, if some information or
assumptions on the energy tensor are given, is therefore a very tedious job. Whereas
the field equation is a tensor equation and therefore valid in all coordinate systems,
one coordinate system may appear more convenient for finding a solution of the
field equations than another. In order to simplify the search for a solution, one may,
under certain assumptions, linearize the field equations and put some constraints on
the matter distribution. This will be done in subsequent sections.

5.2 Weak field approximation

Suppose we have a coordinate system in which the metric tensor may be written as

Juv = Nypw + h;w (5.15)

where 7,, is the Minkowski metric and the h,, are small quantities, such that
products of them may be neglected. Since the elements of the metrical tensor include
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the gravitational potential, the latter must now be present in the h,,. Scaling with
the velocity of light ¢ to obtain dimensionless quantities, we have the condition

GM
g (5.16)

If this condition is fulfilled (which, in many applications, e.g. computations in our
solar system, is usually the case) one often calls the linearization 5.15 the weak field
approzimation. But it is in fact not the above condition that makes the field weak.
A weak field is obtained only if we assume the derivatives of h,, to be small too!
The value of the gravitational potential itself does not tell us anything about the
weakness or strongness of the field. We have to look at the amount in which the
potential varies throughout space, since it is the potential difference which produce
the gravitational force, i.e. the potential derivatives.

In general the metrical tensor can be used to raise and lower indices (see ap-
pendix B.3.2). In the linearized case of eq. 5.15, however, we shall, since the h,, are
small, raise and lower indices using 7,, .

5.2.1 Newtonian limit

In the development of the GTR one of the conditions was, that, in the limit, the
theory reduces to the Newtonian case. This limit is partly characterized by the weak
field approximation, as described above. But, to arrive at Newton, some additional
assumptions have to be taken. One of them is the assumption of a quasi-static
gravitational field. For a quasi-static field, the time derivatives of the h,, are small
compared to the space derivatives, i.e.

a 10
—h,, <

ad
A B 17
9z0 ¥ ¢ Ot # (5.17)

az’
and are therefore neglected. Furthermore, we only consider particles which move
with low velocity v, i.e. v < ¢. For such a particle y = 1/4/1— v2/c? ~ 1 so that

ut ~ v#. Using these assumptions in the geodesic equation 5.4 and neglecting terms
quadratic in v, we obtain:

Por a0 _
dr? 0 dr dr

For the Christoffel symbols we find with eq. 5.5

1
1‘0‘6 = - 59“0900,0
1

= - 5']"0 hOO,a

1

= _'2‘77“jh00,j
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where we used the stationarity condition 5.17. The equation of motion for the p =0
component will in this case read

which exactly expresses our assumption ¥ = dt/dr = 1, and furthermore implies
that z0 = ¢. Therefore, switching from 7 to t, the spatial part of the equations of
motion become

p=i : GE = 3enThoo; .
Using well-known symbolic notation, the right hand side of this equation can be

written as —922—Vh00, where we used n*/ = —§* (Kronecker delta) and &% 3%; — V.
From Newtonian theory we know

d?zt
dt?

= 69V,

with V the Newtonian gravitational potential, so that, in the present approximation,
the relativistic theory will reduce to Newton if we identify:

2V
hoo =~ , (5.18)
with which the gog component becomes:
2V
goo = 1 - ;2— . (5.19)

Note that this expression for goo (Newtonian limit) is derived by comparing the
relativistic equations of motior in the weak field, slow motion approximation, with
the Newtonian equations. Nothing can be said at this point about the other ele-
ments of the metrical tensor (go; and g;5), cf. (Misner et al., 1973). In fact, it does
not matter how those other components look like, because, to the present level of
approximation, they will not contribute to the equations of motion, because they
are multiplied with small quantities v or v2.

In the non-relativistic limit, the dominant component of the energy tensor is
Too = pc? (Ohanian, 1976) where p is the mass density. For this 00-component, the
Einstein field equations 5.14 are:

1
Roo = K (Too - §T900> .

Since Too = T = pc? and, to the present level of approximation,

9 1 1
Roo = —%Ib‘o = En"hoo,ij — —Evzhoo
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5. Relativistic view on gradiometry

this field equation reduces to

Lo, 1 4
2V hoo = 5 kpe (5.20)

or with hop = —2V/c? and k = —87G /c*:
VIV = —471pG

which is the familiar Poisson equation. We see that, indeed, with the present as-
sumptions and level of approximation, the relativistic theory reduces to Newtonian
theory.

5.2.2 Linear approximation in relativistic terms

When working in terms of relativity, we no longer assume that we have a quasi-static
field. Furthermore, we no longer deal with small velocities. We proceed, in this
case, by inserting the metric 5.15 into the field equations 5.13. It can be shown, e.g.
(Foster and Nightingale, 1979) or (Ohanian, 1976), that the field equations reduce
to

Poo® + Mk sy = e = P ) = 26T0 (5.21)

where )
}_l;w = h;w - ihnpu (5'22)

h = h““ .

If we would carry out a small coordinate transformation, ¢ — gk + £# a straight-
forward calculation shows (Foster and Nightingale, 1979) that

B#IV' - Euu _ nuagu’a _ nua v + nuv&ala (523)

N

so that

RN P | -
u'o o _ ¢p o
h ’a,—>h ' f,a .

If we choose the small quantities £# to be a solution of

g, 0 = b,

} )

it results (in the new coordinates) in
R*? ,=0. (5.24)

This is called the gauge condition. The quantities l—z“,, are the potentials of the
field. The field equations will not determine these potentials uniquely. We are
free to replace h,, with the expression from eq. 5.23, because it will leave the field
equations intact. Since we are free to choose the coordinates we like (because all
equations are tensor equations), it is always possible to transform to a coordinate

152



5.2. Weak field approximation

system such that the gauge condition is fulfilled. This particular choice for £#, will
simplify eq. 5.21 a great deal, because all three terms between brackets are zero. We
obtain (we drop the primes) :

Ruvo® = 26Ty, . (5.25)

One often introduces the d’Alembert operator O, defined by
a o v 1 82

8z dzf  ctoe?’

ag=-n%

which is the extension of the Laplace operator to four dimensional spacetime. With
this operator, the simplified field equations 5.25 (in contravariant form) may be

written as
OR* = —2kTH (5.26)

which holds provided the quantities h*" satisfy the gauge condition (cf. eq. 5.24):

Equation 5.26 is the extension to four dimensional relativistic spacetime of the Pois-
son equation in non-relativistic three dimensional space. The generalization to rel-
ativity of the Laplace equation would be

OR¥ =0

which is valid in empty space.

The d’Alembertian is known from the theory of electromagnetism. It is some-
times called the “wave operator”, and an equation like 5.26 is referred to as a wave
equation. Analogously to electromagnetism, one therefore assumes the existence of
gravitational waves, generated by a source term —2xT*¥, and propagating through
space like radiation.

We will solve the field equation 5.26 for some special (simplified) situations. To
do this, consider an isolated gravitating mass. We will (as we did in the Newtonian
limit) assume this mass to be stationary, so that both h# and T are only functions
of the space coordinates z*. With this assumption the d’Alembertian reduces to the
Laplacian V2 so that we have to solve the equations:

VIRM(x) = —26TH (x)
where x denotes the position vector in spatial coordinates. The general solution to

this equation is
- K TH (x')
R (x) = — / ———d¥
(x) 2m Jy |x — x|

cf. (Ohanian, 1976), where the integral is taken over the region X containing the
mass, and the prime denotes the integration variable. Expanding 1/|x — x'| into

153



5. Relativistic view on gradiometry

a Taylor series and truncating after the second term (i.e. we neglect higher—order
multipoles of the mass), we obtain:
K

k
R4 (x) = /E T (x')dE + - /2 2, T (x')d . (5.27)

2rr

With a few manipulations, one can show that, in this expression, the integrals
/ Tikdy / £ TS and / 2, T d5
b ) b

vanish. The vanishing of the first and last of these three integrals is a consequence
of the conservation of energy (since the energy tensor satisfies the conservation law
eq. 5.12), whereas the vanishing of the second integral expresses the choice for the
origin of the coordinates to be in the center of mass.

In the following we shall give, for a few simple masses, the components of the
energy tensor and derive, by means of the linearized field equations, the expression
for the metrical tensor.

The field of a spherical, stationary mass

The elements of the energy tensor T*¥ for a spherical, stationary and non-rotating
mass, are:

T00 — p¢?
T% =0
T =0

where p is the mass density, which can be obtained by comparing the energy content
of spacetime with that of a perfect fluid without internal stress and pressure, of which
the particles are motionless. Using these expressions in equation 5.27, we obtain for

the h#v:
ke M _ 4GM

27r rc?

)

2
Boozg—c——/pdzz
nr Jyg

while all other components vanish. From h#*¥ = h#¥ — 1hn*” (which follows from
eq. 5.22) we obtain

With these disturbances, the elements of the metric tensor become:

2U
=1 —
goo o2
goi =0 (5.28)
2U
gij = —5ij(1 + —c‘i—)

where U = %
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5.3. Post—Newtonian approximation

The field of a rotating, stationary mass

Consider now a rotating mass, however still stationary (i.e. negligible time derivati-
ves). The mass particles, out of which the body is built up, have, in this case, some
spatial velocity, v'. The elements of the energy tensor are:

TOO — pC2
TOi — pcv‘i
TV = pvivj.

Inserting these values into eq. 5.27 yields:

joo _ _4GM
- rc?

70i _ K¢ i K ik

RO — Py /Ep:z:jv d¥ = i z;Sk

R =0

where
S; = / ez THdS
b

is the spin angular momentum (sometimes denoted J). Proceeding in the same way
as before, the elements of the metrical tensor become:

o
goo=1- )
2G .
doi = ;’mé‘iikxjsk (529)

2U
g = —8i;(1+—3) -

Assume that the mass rotates around the z°-axis with constant angular velocity w,.
Then the elements go; become:
4U (R\? i
goi = p 5\, | weis?’ (5.30)

where R is the radius of the sphere.

5.3 Post—Newtonian approximation

Let us compare the metrical elements for the Newtonian limit, a spherically symmet-
ric, stationary mass and a rotating mass, respectively eq. 5.19, 5.28 and 5.29. We
see that the term proportional to ¢=2 in the gop component is not a relativistic one.
The factor ¢? arises from the fact that the goo corresponds to the time coordinate,
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5. Relativistic view on gradiometry

which is z° = ct. All other terms in the three metrics that contain ¢, are relativis-

tic contributions. These metrics were obtained by considering simplified situations.
In general we have to do with more complicated forms of the energy tensor TH¥,
with more types of energy included (e.g. internal stress and pressure) and with a
non-spherical and non-homogeneous mass distribution. This may make it difficult
to obtain an analytical solution of the field equations.

Following the line of construction of the metrics above, it seems a good approxi-
mation to expand the elements of the metrical tensor in terms of the small parameter
U/ct. The smallness of this quantity was one of the conditions for the weak field
approximation, equation 5.16. Starting from the Newtonian limit, equation 5.19, the
first step would be goo up to O(c™*), gi; up to O(c™2), and go; up to O(c™3). Fol-
lowing steps would include terms of respectively O(c™®), O(c™*) and O(c™*). This
way of approximating the metric is called the Post-Newtonian approzimation (PN
approximation), and the metric is called PN-metric, see e.g. (Misner et al., 1973).
Including, for all elements, only the first relativistic contribution, we obtain the
so—called 1PN-metric, given by :

U  2U? -
goo=1- "%+ =+ 0(c™)
C (4
4V; _
goi = —5 + 0(c™®) (5.31)
2U _
gij = —6;;(1+ ;{) +0(c™)

cf. (Soffel, 1990), (Mashhoon et al., 1989), or (Gill et al., 1992), where U is the gra-
vitational potential of the mass and V; is a vector potential' describing the field
contributions of magnetic type, arising from moving masses (compare the go; in met-
ric 5.29). Note that, whereas in the metrics 5.28 and 5.29 the potential U = GM/r
comes from a spherical mass distribution, the potential U and V; in 5.31 (and also
in 5.19) are generated by arbitrary masses and are determined respectively by the
equations:
ViU = 4nGp

V2V, = 4G pv;

cf. e.g. (Chandrasekhar, 1965), where v; are the spatial velocity components of the
mass points. So in general

[
v-c [ %) i

T |x — x|
! (]

Vi=G p(x_)v'-dz.
¥ |x — x|

! A note on notation: The use of the notation U for the Newtonian (scalar) gravitational potential
and V; for the vector potential is customary in PN theory. For this reason we adopt this notation
here, in spite of the fact that we, in previous chapters, used V for the Newtonian potential and V;
for the first derivative (gradient) of the potential.
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5.4. Equations of motion revisited

Expanding 1/|x — x'| into a Taylor series, we obtain, for a nearly spherical body,
metric 5.29 as a first approximation, i.e. U ~# GM/r and V; »~ %geﬁkxjsk (cf.
(Soffel, 1990)). It must be noted that the expansion of the metrical elements in this
way does in general not constitute an exact analytical solution of the linearized field
equations. The PN formalism simply assumes the existence of a coordinate system
where the metrical tensor has the form 5.31, cf. (Soffel, 1989).

5.4 Equations of motion revisited

If we are given some expression for the elements of the metrical tensor, we may com-
pute the equations of motion, either by means of a direct evaluation of the geodesic
equation 5.4 or using the Euler-Lagrange equations 5.6. In relativistic terms, the
gravitational potential is included in the metric, so these equations describe the mo-
tion of a free particle (i.e. moving under the influence of gravitation alone), e.g. an
earth orbiting satellite (if we neglect disturbing forces like drag or solar pressure).
The geodesic described by equation 5.4 is parametrized with an affine parameter
u, in our case the proper time 7. For practical computations, one likes to obtain the
equations of motion with respect to the coordinate time t. These can be obtained
in the following way. We replace the differentiation % by %%' Then we obtain:
dz¢  dz* dt
dr  dt dr
dz# _ d*zt (dt\® d% (dt\ ! dzH
dr? T diz (E) dr? <_> dr

dr
which, if inserted in the geodesic equation, gives

d2z“+d_2t<£>‘zi{‘i+  da* dz°
dt? dr? \dr dt Yo dt dt

From the time component (u = 0) we obtain:

d?z0 _ o dz¥ dz° d%t dz° [dt\ 2
At T g At dr? dt (2?)
. d2ct _
dt
Lo () gl
dr? \dr Yo dt dt ’

so that, if we use this in the equations of motion for the spatial components (u = 1),

we obtain: y .
d“z’ . dz¥ dz° dz¥ dz° dz*
= [V tedihetediietadipt SUN 0
dt? t o dt dt vo gt dt dt ©
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5. Relativistic view on gradiometry

or

d2zt . dzt dzV dx°
d; + <F1:a _ I:’O"d—g;c—1> @ i _ 9 (5.32)

as the spatial equations of motion in coordinate time.

For the computation of the equations of motion one needs the Christoffel symbols.
They are computed using equation 5.5. In the following we will neglect the time
derivatives of the metrical elements, since we assume they will be small compared
to the spatial derivatives. Furthermore, we will put ¢ = 1. Since c is constant,
it acts as a kind of scaling parameter, so that putting it equal to 1 merely means
a change of units. When numerical values have to be computed, one inserts in
every term as many c’s as needed, in order to match the dimensions of all terms, cf.
(Ohanian, 1976). The PN-metric for which we will give the equations of motion is

goo = 1 — 2U + 28U*
goi = 2(v+ 1)V; (5.33)
g,'j = -—5,']'(1 + 2’7U)

where the parameters 8 and ~ are added for convenience. If § = 1 and v = 1,
we obtain the 1PN-metric 5.31. If 8 = 0 we obtain eq. 5.29, the metric of a
rotating, stationary mass, and if V; = 0, we obtain 5.28, the metric of a non-
rotating mass. In the so—called Parametrized Post-Newtonian (PPN) theory, valid
for more general mass (or in general energy) distributions, other types of potential
functions are included in the metric, each with its own parameter as factor, see e.g.
(Misner et al., 1973) or (Will, 1981). Nowadays it is common to include 10 such
parameters in the PPN metric, two of which are 8 and +, as above. Depending on
the value of these parameters, different relativistic theories are obtained (also called
metrical theories of gravitation). Einstein’s theory of gravitation does not include
all these extra PPN terms (i.e. they do not appear in the solution of the Einstein
field equations). However, if we choose all PPN parameters to be zero except for 8
and v which we choose to be 1, Einstein’s theory is included in the PPN formalism.
The latter is what we will do here, so we insert v = 1. The parameter f is retained
and will be propagated into the results so that the influence of the term containing
it will be clear. For the 1PN-metric 5.33 the non-vanishing Christoffel symbols
become:

Gh=-Us(1-2(8+1)U)

Ly =-Us(1-2(8 - 1))

L5 = 6l + 63U = 65U (5.34)
T = 2(Vej — Vi)

LY =2(Vi; + Vi)
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5.4. Equations of motion revisited

where the comma, as usual, denotes partial differentiation. In order to agree with
much used (index free) notation, we introduce:

x = (z,y,2) particle’s spatial position vector

v = (z,9,2) particle’s spatial velocity vector (the dot means
differentiation with respect to t)

vU = (U;U,,U,) potential gradient vector

vV = (Vg,Vy,V:) vector potential V;

v? = ¥+ ¢+ :? squared magnitude of velocity

X cartesian outer product

cartesian inner product .

With this notation, the equations of motion will become (cf. (Soffel, 1989),
(Mashhoon et al., 1989) or (Ries et al., 1990)):

d 1

% = VU + = [-2(8+ 1)UVU - 4(VU -v)v + v?VU —4v x (VX V)] , (5.35)
¢

where clearly the term between square brackets is the 1PN relativistic contribution

to the equations of motion. The dominant relativistic contribution will come from

a spherical, non-rotating mass, eq. 5.28. If we, therefore, insert V; = 0, 8 = 1 and

U = &M (50 that VU = — M), equation 5.35 will reduce to
r r
d GM GM [ GM
d_‘t, =Xt 55 4 . X+ 4(x - v)v — v¥x| . (5.36)

These equations may be solved for x to reveal the relativistic effects in the particle’s
motion, see e.g. (Soffel, 1989). Here, we are interested in the relativistic contri-
butions to the motion of an earth orbiting satellite, in particular the Aristoteles
satellite. So we take for M the mass of the earth and for {z|{ = 1,2,3} = (z,y,2)
a geocentric coordinate system. It should be noted that this coordinate system, de-
spite the commonly used notation (z,y, 2), is not a rectilinear (cartesian) coordinate
system. In fact, the three coordinates are the spatial part of the four dimensional
coordinate system (t, z, y, z) which labels points (events) in spacetime. And we have
seen that spacetime is curved, compare the metric 5.33, so that no rectilinear co-
ordinate system can be introduced on a global scale, only locally. In particular,
for a spherical symmetric mass distribution, the curvature of spacetime manifests
itself in the radial direction and in the time coordinate. This feature was already
used by K. Schwarzschild in 1916 who found the first exact solution of the (non-
linearized) Einstein field equations. His famous solution for a static spherically
symmetric gravitational field (nowadays known as The Schwarzschild solution) was
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5. Relativistic view on gradiometry

put in terms of polar coordinates (¢,7,0, ). In this case spacetime is curved in the
two coordinates (t,r). As a consequence r does not measure the usual radial dis-
tance. However, the geometry for those parts of space which have fixed ¢ and r 1s
just that of a usual sphere. It can be shown that, by a proper choice of coordinates,
the Schwarzschild solution gives the 1PN metric as a first approximation, at least
the 1PN for a static (i.e. non-rotating) spherical symmetric mass. This means for
the coordinates {z'|i = 1,2,3} = (z,y,2), if one would relate them to some kind
of polar coordinates {z%la = 1,2,3} = (r,6,A) by means of a coordinate transfor-
mation ' = z*(2%) with = rsinfcos A, y = rsinfsin A and z = rcosf that r is
not the usual radial distance. In order to deal with this problem, one sometimes
introduces a new radial coordinate r', defined by r' = r + a%% where o acts as a
gauge parameter for the choice of a definite coordinate system (Soffel, 1989). As a
consequence all orbital parameters used to describe the satellite motion depend in
this sense on the choice of the coordinate system.

Nevertheless, we will solve the equations of motion 5.36 by interpreting the
satellite motion to be the solution of a perturbed Keplerian problem, where the
second term on the right hand side (the one with the square brackets) is regarded as
the perturbing force. If, in our simulation, one subtracts from the solution obtained
in this way, that of a simple Keplerian problem with the same initial state vector but
without the relativistic term, one obtains the relativistic contribution to the orbit of
the satellite. We used a computer program developed by E. Schrama (1992) to carry
out such computations. In reality, when working with real data, one solves, among
other parameters, the elements of the initial state vector from the observations
in the orbit determination process. In that case the relativistic effect cannot be
determined in the way described above, since both orbits (with and without the
relativistic perturbation) would have different initial state vectors and can thus not
simply be subtracted. Furthermore we have, in that case, to bear in mind that
existing values of parameters, which are used in the computations, could originally
have been determined without relativistic models, so that possible relativistic effects
are implied in those parameters.

It is well known that the dominant relativistic contribution in the motion of
a particle in orbit around a spherical symmetric mass (whether it is an artificial
satellite around the earth or a planet around the sun) is an advance of the periapse.
This can be seen in figure 5.1. In this figure the relativistic orbit contributions for
the Aristoteles satellite are shown, expressed in terms of radial, cross track and along
track components. This figure was computed in the way described above, namely
by solving equation 5.36 for x and subtracting the solution of the same equation
without the relativistic term.

The figure reveals the dominant relativistic orbit contribution as a linearly grow-
ing along track effect to be interpreted as the perigeum advance mentioned above.
It reaches over 38 m after two weeks. The figure also shows a periodic effect with a
frequency of once per orbital revolution. This can be clearly seen if one removes the
linear trend and computes the power density spectrum, as is done in figure 5.2 for
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radial (cm)
______ along track (m)
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Figure 5.1 Relativistic orbit contributions for the Aristoteles satellite where
only tle central term of the potential of the earth was included
(so—called Schwarzschild effect). Satellite height was taken to be
200 km and orbit inclination 95°.8. The along track perturbation
15 plotted tn m, the other perturbations tn cm.

the along track effect. For the radial perturbation this periodic effect, with a linearly
growing envelope, can be seen in figure 5.1. Nevertheless the radial perturbation is
much smaller then the along track effect, being of the order of a few cm after two
weeks. The cross track contribution remains below the level of 107* m.

The along track relativistic effect can not be separated from a change in the value
of the gravitational parameter G M, which relates the satellite’s mean motion to the
semi—major axis a and therefore merely acts as a scaling factor. Estimating the value
of GM in the orbit determination process will therefore yield a value in which the
dominant relativistic orbit effect is absorbed, cf. (Tapley, 1989) or (Schrama, 1992).

One of the most remarkable differences between the classical Newtonian gravita-
tional theory and Einstein’s relativistic theory of gravitation is the fact that in rela-
tivity not only a static mass distribution causes a gravitational field (generated by a
scalar potential function), but also the motion of a mass causes a gravitational field
(generated by a vector potential function). In analogy with electromagnetic theory
the former gravitational field is said to be of electric type (sometimes called gravito—
electric field), whereas the latter is of magnetic type (gravito-magnetic field). The
vector potential for moving masses (for example rotating objects) appears in the
metric in the gg; components, the ones describing the interaction between time and
space. In the 1PN metric it was included as the vector potential function V; (or V
in index free notation). The equations of motion 5.35 in their general form (with
Vi included) allow us an easy check of the relativistic contribution to the satellite
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Figure 5.2 Power density spectrum for the along track relativistic orbit effect
for the Aristoteles satellite, remoining after removal of a linear

trend.

motion caused by moving masses. This gravito-magnetic effect on satellite orbits is
also called the Lense-Thirring effect, first described by Lense and Thirring in 1918
(Thirring and Lense, 1918).

From eq. 5.35 we see that, leaving the vector potential V in, an additional
relativistic term

4
—c—zvx(VxV)

enters the disturbing acceleration. Let us evaluate this term for our spherical sym-

metric mass, which we now assume to rotate around the z—axis with angular velocity
w,. Comparing eq. 5.30 with the 1PN metric 5.33 (with v = 1) we find for V:

1GM [(R\*? .
Vi=<— <—r_> weEjisT’
or in vector notation
-y
1GM <R>2
V=- | We T
5 r r
0
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5.5. Equation of geodesic deviation

With this expression for V the Lense-Thirring part in the relativistic acceleration
becomes

y(z? + y? — 22%) + 3yz2

—z(z? + y? — 22%) — 322z

5 r r) ric?

4GM (R)2 we
3z(zy — y1)

cf. (Soffel, 1989). The effect of this term on the orbit of the earth orbiting Aristoteles

satellite is shown in figure 5.3. It is computed in the same manner as figure 5.1 but

now for the Lense-Thirring term only.

T T T ¥ T T

cross track (cm)
______ along track (mm)

radial (cm)

1 1 1

1
0 48 96 144 192 240 288 336

time (h)
Figure 5.3  Relativistic Lense—Thirring effect on the orbit of Aristoteles. The
earth was assumed a spherical homogeneous mass, rotating unth
a constant ang:tlar velocity around the z—azis. Satellite height

was taken to be 200 km and orbit inclination 95°.8.

The figure mainly shows a once per revolution periodic effect due to this term,
being largest in the cross track direction with a linearly growing envelope. In the
along track direction the effect is smaller showing a secular trend. The radial effect
remains below the level of 107* m.The cross track effect is caused by a drift of the
right ascension of the ascending node {1 at a rate of approximately 3.8 - 10714 /s.

Such a drift rate is well within the observable limits of modern tracking systems
(Schrama, 1992).

5.5 Equation of geodesic deviation

As mentioned in the beginning of this chapter, the gradiometric model can be
interpreted in relativistic terms by considering the so-called equation of geodesic
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deviation. This equation describes the relative motion of two neighbouring parti-
cles moving on geodesics. We will derive and discuss it in this section. Consider
to this extent the two geodesics, both affinely parametrized, e.g. with the proper
time r. The geodesics are close, and the particles move along them close together,
such that, at any value of the parameter r the coordinates of the first particle are
z#(r) and of the second z#(r) + &¥(r), where ¢# is a small vector of coordinate
differences. We will assume these coordinate differences to be infinitesimal, as well
as their derivatives d€*/dr, which means that not only are the particles close to-
gether, but they remain so for a long time. Higher—order terms in, or products of
these quantities will therefore be neglected in the derivations. Note that, in gen-
eral, the coordinates z* do not constitute a vector (rank 1 tensor). A tensor A*
should transform to another coordinate system z#* with the transformation matrix
X“‘: = 81“’/32:“, e A¥ = X“;A“. But coordinates transform via the coordinate
transformation equations z# = z*'(z#), from which the transformation matrix is
derived by means of partial differentiation. However, if differences between coordi-
nates are small (like we assume for the £#) they may be considered the elements of
a vector (Foster and Nightingale, 1979), such that they transform as {“' = X“,:{".
The equations of motion for the two particles become:

N

dr? + T (2) dr dr
d*(z* + ) d(z” +¢") (=7 + £°)
dr? dr dr
where the Christoffel symbols are evaluated respectively in a point of the first

geodesic (with coordinates z#) and a point of the second geodesic (with coordinates
z# + €#). The latter is approximated as

+ L (z+¢) =0,

Lo (z + €) = [lo (2) + Tfg (2)€”

so that, if we take the difference between the two geodesic equations, we obtain
(neglecting terms quadratic in £# and &#):

€M+ 2K E7Y + T £93¥1% =0 (5.37)

where the dot denotes differentiation with respect to 7. The first absolute derivative

(see appendix B.2.3, eq. B.10) of £* is
Det _ dev
dr  dr

- dz”’
+ L€ o

from which the second absolute derivative is computed as

DZ&“ cu u ca 3 U gV, o v poaB v oo o p
— = "+ T, €7 2%27 + 200 € + I 15 €72%2" — [ {7 2%z
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or
D¢+

dr?
where we made use of the geodesic equation and relabelled dummy indices whenever
convenient. Inserting this result in eq. 5.37, yields

g amp i =

Bvrac

— (Tf 5+ DALY, — DALY ) €570

D2 6“ . . . .
d1-2 - (Fa‘:r,ﬂ + Fﬂlt/ alla - l;‘:,l‘a”ﬁ) Eaxaxﬁ _.I_ Fayﬂ’g Eazazﬁ — 0
or
D2 6“ . .
dr? = (Fal:’xﬂ - Fa“ﬂ,a + Fﬁ“yraua - Iy:/rauﬂ> fazal‘ﬁ
= R, 75! (5.9
with R“aﬁa the Riemann-Christoffel curvature tensor. This is the equation of

geodesic deviation, sometimes called Jacob? equation. It shows how two neighbour-
ing geodesics deviate relative to each other. It is interesting, though not surprisingly,
that the Riemann tensor enters this equation. The Riemann tensor describes the
curvature of the space under consideration. If a global (i.e. covering the whole of
space) coordinate system can be introduced, in which all components of the Rie-
mann tensor vanish, the space is flat. In a flat space, in cartesian coordinates, the
absolute derivative D¢#/dr reduces to the ordinary total derivative dé*/dr. So,
with R“aﬂa = 0, the equation of geodesic deviation would reduce to

d2¢w
dr? 0

of which the solution for £* is
¢*(r) = C#r + D*

where C* and D* are constants. We see that in this case, the separation between the
geodesics grows linearly, as it should, since in a flat space we know that geodesics are
straight lines. In a curved space, some components of the Riemann tensor will always
be different from zero, whatever coordinate system we choose. The separation vector
between the two geodesics will not change linearly as function of 7, but accelerated
(the quantity D?¢#/dr? is the “relative acceleration” vector), depending on the
curvature of the space.

So the curvature of a space determines the relative acceleration between two
free particles. On the other hand, measurement of this relative acceleration, tells
us about the curvature of the space. Since in satellite gradiometry we measure
such relative accelerations, this technique should give us the curvature of spacetime,
which is curved due to the earth’s gravitational field. If this is so, then the equation
of geodesic deviation should reduce to the basic gradiometric model equation 2.1 in
the Newtonian limit. This will be shown in the sequel.
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5. Relativistic view on gradiometry

First we will repeat the assumptions needed to arrive at Newton. The Newtonian
limit is derived from the linearized (weak field) approximation. In this approxima-
tion we take for the metrical tensor g,, the expression 7, + Ay, with small hy, and
small derivatives h,,,. The latter also implies that the Christoffel symbols 7, are
small. Another assumption we made in order to arrive at Newton was v << ¢, so
that v ~ 1, thus d/dr = d/dt. This expresses the Newtonian situation of universal
time ¢, i.e. all clocks read the same time. Furthermore, derivatives with respect to
time are assumed small in comparison to spatial derivatives. In section 5.2.1 we
compared the geodesic equation 5.4, under the above assumptions, with the Newto-
nian equations of motion, in order to show that the former will reduce to the latter.
This appeared to be so if the only non-vanishing Christoffel symbols are

. 1 ..
o = 567 hoo, - (5.39)

Since all clocks measure the same universal time ¢, so will the two clocks moving along
with the two particles on the neighbouring geodesics, so that the first component
of the separation vector £# will be zero, i.e. £ = 0. This simply means that the
particle’s accelerations are compared at equal times (Ohanian, 1976). With this
result, and with eq. 5.39, the equation for the absolute derivative of the separation
vector will become:

DE“_dE“ u dz?

dr  dr +LeC g dr
— df 0 u i 4z’ u 002" u e 4T
- +[60§—+Ib; d—+l:of?+nj§]d—
_ﬂ
T odr

In the same way, we find for the second absolute derivative DX¢#/dr? = d2¢#/dr?.
The latter is equal to d>¢#/dt? since v = 1. Thus, in the Newtonian limit, the left
hand side of the equation of geodesic deviation 5.38 reduces to d*¢#/dt?. In order
to find the Newtonian limit of the right hand side, we look at the expression for the
Riemann—Christoffel tensor B.16. Products of the Christoffel symbols are neglected,
and we are left with

R* P“

aaﬂ aﬁ o

With eq. 5.39, the only non-vanishing components of this tensor are R'.Oko =
Rl = oo = %5" hoo,jk- For p = 0 the equation of geodesic deviation becomes

d2£0
itz
which indeed agrees with £° = 0. The spatial components yield

dz° dz° dz° dz*

d2 6:’ 60
dt dt B o dt dt

k
iz Rioo€

166



5.5. Equation of geodesic deviation

= —R'opo*e? (5.40)
1 ..
= —55”h00’jk62§k

v

— &Y
Oxi 9k

gk

In the latter equation we inserted the hgg from eq. 5.18. Comparing the above
equation with 2.1, we see that, indeed, the equation of geodesic deviation is the
relativistic generalization of the gradiometric equation, at least if we take £* as the
coordinate differences between the two proof masses and d?¢*/dt? as their accelera-
tion difference. In relativistic terms, a gradiometer measures the curvature of the
space, cf. (Misner et al., 1973), (Ohanian, 1976) or (Gill et al., 1992).

This curvature is completely determined by the elements of the Riemann—Chris-
toffel tensor. Therefore, we will give those elements (or rather those of the covariant
form of the curvature tensor, R,4,3) for the 1PN metric 5.33. Inserting the Christof-
fel symbols from eq. 5.34 into the expression for the Riemann tensor B.16, we obtain
for the non-vanishing elements of R, ,,4:

Roioj = U(1 - 28U) — (1 + 2B)U,U ; + 8;8%U U,
Riju = 6 U ji — 60U ji + 60U ik — 656U a1 (5.41)

Roijk = 2(Vi,ji — Vi ki)
from which the non-vanishing elements of the Ricci tensor may be computed as:

Roo = 88 {(1 - 2(8 + L)U)U jy + 2(1 - B)U 4U 1}
Ry = 88Uy

Ry =2V x (VxV)
and the curvature scalar
R=-26%{(1- (8 =2B8)U)Ux — (5-2B)U:U,}.

The elements of the Riemann tensor in eq. 5.41 are given with respect to the
global (and curvilinear!) 4-dimensional coordinate system (t,z,y,z) spanning the
whole of curved spacetime. They are not exactly the quantities which an actual
satellite gradiometer directly measures. In order to find out what the relativistic
contributions to the gradiometric measurements are we have to switch from the
general expression 5.38 to some, more operational, equation in three dimensional
space. To do this, some additional steps have to be taken, the most important of
which is the definition of the so—called proper reference frame.

This is a local reference frame, moving with the observer along its worldline, and
consisting of four orthonormal base vectors (also called an orthonormal tetrad), see
e.g. (Synge, 1960) or (Misner et al., 1973). The base vectors may be chosen such as
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5. Relativistic view on gradiometry

to coincide in every point of the observer’s worldline with the tangent vectors to the
coordinate lines of some global coordinate grid. Such a frame is sometimes called
a coordinate induced frame (Soffel, 1989). In this case we have, denoting the base
vectors by e(,) (sometimes e;)

9
€a) = 9zr®

The fact that these base vectors are orthonormal is expressed by

9" e@)uc(py = Map) (5.42)

In the notation e(,), the index («) indicates which base vector it is and the in-
dex u indicates the component of this base vector with respect to the coordinate
system z#. In the sequel, the “indices between parentheses” (which in fact are la-
bels to distinguish the base vectors) are treated as normal indices, which can be
raised or lowered and summed over, cf. (Synge, 1960). This means we may define
“contravariant” base vectors in the following way:

i

o@) = p(@g )

Note that for the components of these base vectors with respect to some coordinate
system the usual relations for raising and lowering of indices applies, i.e.

€(a)n = Juv€(a) -

If the observer moves along a geodesic (i.e. he is not accelerated due to some external
force or rotation) this proper reference frame is a local Lorentz frame, in which

9(ap) = N(ap) and I‘((ﬂ‘;)) =0. (5.43)

Along a geodesic the base vectors of such orthonormal tetrad form a parallel vector

field, i.e.

(@) _
=0 (5.44)

Constructing an orthonormal tetrad in the way described above, we may resolve any
vector or tensor into components along this tetrad, e.g.
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5.5. Equation of geodesic deviation

and the inverse relations

and analogously for higher—order tensors. These kinds of components are invariants
in the sense of tensor analysis (because they are not the components with respect
to some coordinate system) but they obviously depend on the chosen orthonormal
tetrad (Synge, 1960). We will now transform the equation of geodesic deviation
from the tensorial expression 5.38 into an invariant expression with respect to a local
orthonormal tetrad. Since the actual gradiometric measurements are performed with
respect to such a local tetrad (namely a frame “bolted into the floor and walls of the
satellite”, (Misner et al., 1973, p. 327)), the resulting invariant deviation equation
should reveal the relativistic contributions to the measured gradients. In this way
we have constructed an operational description of relativistic gradiometry.
First, we have from equation 5.44

n 7 o
Dela) _ %a) , pupr 427 _
du du voH{a) gy
or u
de dz°
(2) _ v i
W = —Fu‘ﬁ,e(a) du . (545)

For the infinitesimal displacement vector £# between the two neighbouring geodesics
from eq. 5.38 we have

DgH _ dg* L, ,.d2°

- [ Sanni

du du ¥7> du
and if we write £# = f(a)ef‘a) this yields

Der de(@) (a)de(a) i ) dz°
du "0 gy T8 gy et gy
which becomes if we insert eq. 5.45:
Dgr dg(a)
du )Ty

For the second absolute derivative we then find

sz":2(£>:2 o 3
du? du \ du du \ (@) du
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5. Relativistic view on gradiometry

De"a) del@) Bdg(a)
du du e(")du du

Dd .
= o) 70 Zu (with eq. 5.44)
d del (@) deB) dz(n)
—et | = T
“(a) (du du * BY) du  du
. dele) _
= C(a)'—d‘u—z“ (Wlth €q. 543) (546)
Insertion into eq. 5.38 gives
d?ele) .y
S R e =0,

Multiplication of this equation with eff’) yields

p d2¢le)
e# e(a) du

d2¢la)
du?

If we now insert for the vectors z¥, z# and £7 their transformations to the invariant
components relative to the orthonormal tetrad (respectively i:(ﬂ)et’ﬁ), :i:(‘s)efs) and

¢Me {,)) we obtain

+ e(ﬁ R¥,,,E°272P =0

+e®HR,,,, 67272 =0 .

d2§( a)
du T2

where we defined the invariant components

+ n("‘)R(sﬁw)E(")éz(ﬂ):b(é) -0

R(apys) = Rwa,,efa)e'(’ﬁ)e(q)e
As a final step we define
K(es) = Rieprs)a D2l
with which the invariant deviation equation becomes, cf. (Synge, 1960):
d2¢(@)
du?

+ n(2f) K(ﬂ,,)ﬁ(”) =0

or in “covariant” form (obtained after multiplication with 7(4s))

d*§(a)
—g K(aﬂ)f(ﬁ) =0
of which the spatial part is
d*€ .
- + Kij) ¢ =0 (5.47)
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5.5. Equation of geodesic deviation

which closely resembles the Newtonian form of the gradiometric equation. The
quantity K(;; takes the place of the gradient tensor and is therefore sometimes
referred to as tidal matrix. Its components are found as

_ B .6
K(ij) = Ripje) ="z
which approximately equals (at least for low spatial velocities)
2
K(ij) = ¢"Riojo)
— A2 M 14
The dominant relativistic contributions to the gradients are again expected to
result from a static spherical symmetric mass distribution. For such a mass distribu-
tion it is convenient to use the 4—dimensional polar coordinates {:c“' ' =0,1,2,3} =
(ct,r,0,)) with the primes dropped in the sequel. In these coordinates, the non-

vanishing components of the Riemann tensor, computed from eq. 5.41 with ¢’s re-
stored, are (up to 1PN order in ¢~ 2)

2GM GM
Ro101 = <1 -3 )

r3c? rcl
GM GM
Ro2o2 = —— (1—3 2)
rc rc
GM
Rozos = —sinZBGAZ/I (1 -3 > (5.49)
rc rc
GM
Ri212 = —
rc
GM

R1313 = sin2 0 2
rc

. 2, GM
R2323 =2 rsm2 0—2
c
where we have put @ = 1. Finally we need, in order to evaluate eq. 5.48, expressions
for the components of the base vectors of the orthonormal tetrad. The tangent
vectors to the coordinate lines of the coordinate grid (ct,r,0,A) are respectively

d/cdt, 3/r, 3/36 and 9/3X. In order to fulfil eq. 5.42 (so that the base vectors
are orthonormal) we have (up to first order in U/c?)

(. GM\ 3
o) = {1t rc? ) cot

(. GM\ 8
em) = \1- re? | or
1
,

3 GM\ 9
e(?)*‘(l‘ﬁ 26

1 (1_ GM) El
°® = rsind re2 / Ox
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5. Relativistic view on gradiometry

This system of base vectors can be constructed in every point of the observer’s
worldline. But each of those frames is at rest with respect to the spatial part of
spacetime. The proper reference frame of an observer co-moving with a satellite
is moving through space, and if it is earth pointing, it also undergoes a spatial
rotation. Without any loss of generality (as a result of the spherical symmetry of
the mass) we will, for convenience, consider here an equatorial satellite orbit, i.e.
6 = n/2. The motion of the proper reference frame then takes place in the e(3)
direction, and we assume it to be circular. In order to obtain the co-moving tetrad

€(a"), We apply a Lorentz transformation to the e(y) frame where we take for the
velocity the satellite’s mean orbital motion ng. Thus Wi = nork(‘) where k() is a
spatial unit vector pointing in the along track direction, which in our case is the e(3)
direction, so {k{)} = (0,0,1). Such a transformation is also called a Lorentz boost
in e(3) direction. So

(,ﬁ)e
) €(8)

a

e(a,) = A(

where A(a(,?) is the Lorentz transformation matrix (e.g. (Misner et al., 1973) or

(Soffel, 1989)) given (up to 1PN order) by

r
1+3%% 00 =
o 10 o0
(A} =
o 01 o0
mE0 0 1436

With this matrix the base vectors of the co-moving frame e(,") become

3GM 0 no a
e = 1+ +

2 rc? ) cdt ' ¢ O
[, GM\
ea) = \1- re? ) or

= 1(1-EM) 2
()= 5 rc? ) 90

ngr 4 1 1GM\ 0
ey = L2 4o (1-- Z
) c cot r 2 rc? /oA

Now we are in a position to compute the components of the tidal matrix K5
(omitting the primes). We obtain from eq. 5.48:

GM _(GM)?
Ky =2 I
GM
K2y =——3 (5.50)
GM _(GM)?
K(s3) = - 5 P31
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5.5. Equation of geodesic deviation

of which the terms with ¢~2 are obviously the first relativistic contributions to the
gradients. The first terms on the right hand side coincide with the Newtonian ex-
pressions for the gradients of a spherical symmetric mass distribution. For example,
since the z{®)=1 component points in the radial direction, K1) is equivalent to V;, in
the local orbital (cartesian) coordinate system which we used in the non-relativistic
approach. In the same way K|33) coincides with V,, and K (93) with V. Estimating
the size of the relativistic contributions, we see that they are of the order of 3-10~8 E
for a satellite at 200 km altitude, cf. (Soffel et al., 1987) or (Gill et al., 1992). For the
present Aristoteles mission scenario (200 km, 0.01 E/\/Hz measurement precision)
such small contribution can be neglected. Other relativistic effects on the gradients
due to e.g. the gravito-magnetic field or higher—order multipole expansions are not
discussed here. The reader is referred to (Thei}, 1984) and (Gill et al., 1992).
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By means of a technique called differential accelerometry it is possible to measure
the second—order partial derivatives of the earth’s gravitational potential. An in-
strument which measures these so—called gravity gradients is called a gradiometer.
If a gradiometer is on board an earth orbiting satellite, a global set of gravity gra-
dients can be obtained in a few months time. From this set of observations the
gravitational potential (represented by a set of potential coefficients) can be derived
by means of an iterative least squares adjustment, with which at the same time the
satellite’s trajectory can be estimated. The linear model used for the adjustment is
usually obtained from partial differentiation of a series expansion of the gravitatio-
nal potential. If, in the future, more accurate gradiometers and/or satellite tracking
systems become available, it might be necessary to include relativistic effects in the
model both for the satellite orbit and the gradients.

It is customary, and for our purposes also appropriate, to expand the gravitatio-
nal potential function, using geocentric polar coordinates z4 = (r,0, 1), into a series
of spherical harmonic functions. In such a series the Legendre functions appear. For
satellite applications, however, it is more suitable to use a coordinate system related
to the satellite orbit. In that case, the gravitational potential is written as function
of orbital coordinates z* = (r,w,,w,) or 2% = (r,w,,I). Due to the rotation of an
equatorial coordinate system to an orbital system, so—called inclination functions
appear in the series. Expressions of the first— and second-order derivatives of the
potential can be easily derived by differentiating the series expansion with respect
to the coordinates. In the case of satellite gradiometry, expressions for the second—
order derivatives are needed with respect to a local cartesian coordinate system.
Therefore, the partial derivatives of the potential series expansion have to be trans-
formed from any of the geocentric curvilinear coordinate systems z4,z°% or z% to
this local cartesian system. With the help of indez notation and tensor analysis a
compact, general algorithm can be formulated for the transformation of potential
derivatives between arbitrary coordinate systems.

The transformation equations, in which series expressions for the potential deri-
vatives are inserted, then serve as observation equations in a gradiometric analysis
procedure. By means of a least squares adjustment approach, the unknown parame-
ters (in our case the potential coefficients) can be estimated. An advantage of such
least squares estimation is that an error analysis can be carried out prior to an actual
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experiment. The inverse of the normal matrix provides the formal variances and co-
variances of the unknown parameters. Thus, given some mission scenario (in terms
of satellite altitude, orbital inclination, mission duration, sampling interval and mea-
sured tensor components) and some a—priori error model for the observations, the
precision of the estimated potential coefficients can be computed and compared with
the requirements. Reversely, given such requirements, the error analysis can be used
to put demands on the mission scenario as to meet these requirements.

The requirements for a gradiometer mission typically are less than 100 km spatial
resolution (half-wavelength) and a precision of less than 10 ¢cm global r.m.s. for geoid
heights or 5 mgal for gravity anomalies. The mentioned resolution corresponds to a
spherical harmonic expansion up to at least 180 or more (somewhere between 200 or
300). From the error analysis appeared that, for most mission scenarios, a signal to
noise ratio of 1 was reached near degree 240, which will be sufficient for the required
resolution.

If global r.m.s. values for geoid heights or gravity anomalies have to be computed
from the a—posteriori error estimates of the potential coefficients (as they result from
the error analysis), we have to bear in mind that in reality the gravitational potential
is a continuous function and should be represented by an infinite series (including
all frequencies from zero to infinity). The error analysis, however, is limited to
some maximum degree and order, in our case 240. The error resulting from this
part is called commaission error. The neglected part of the spectrum, above degree
240, also contributes to the global mean error, and should in fact be taken into
account. This neglected part is called omisston error. Since we do not know the
true gravitational spectrum, the omission part can only be approximated by using
some prior knowledge of the average behaviour of the gravity field. The global error
r.m.s. values presented in this work always represent the sum of commission and
omission error. The omission part is taken into account up to a maximum degree
of 1000. Above this degree no substantial contribution was found. Furthermore,
we always show smoothed global error values, representing 1° x 1° block averages.
Due to the mission altitude and the sampling distance it is difficult to estimate
higher degrees so that smoothing is justified for our purposes. Depending on further
applications, un-smoothed values (representing point values) can be used too.

A spherical harmonic expansion up to a maximum degree and order L of 240
contains more than 58,000 potential coefficients. If these are to be estimated in a
least squares adjustment, the normal matrix will have a size of (58,000)%. Even with
large computers, the solution of a system of linear equations of this size will be a
major task. Under certain assumptions, and by ordering the unknowns in a specific
manner, the normal matrix attains a block-diagonal structure. The largest block to
be inverted will have a size of (240/2 + 1)?, so that computation time is drastically
decreased.

The assumptions to arrive at the block—-diagonal structure are: 1.) circular
orbit; 2.) regularly distributed data along the orbit (i.e. no data gaps); and 3.)
the number of orbital revolutions and the number of nodal days contained in one
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repeat period are relative prime integers, where the number of revolutions should be
larger than 2L. The second of these assumptions seems to be the most critical one.
Data gaps are likely to occur, not only due to instrumental failures, but also due to
orbit maintenance maneuvers and as a result of excessive drag variations near the
poles and the equator. A non-—continuous data stream destroys the orthogonality
properties on which the block—diagonal structure is based.

In an ideal situation, an SGG mission will be flown with a full tensor gradiometer,
measuring at a sampling rate of 4 seconds all nine gradients with a 0.01 E/ v/Hz white
noise error spectrum. The satellite will fly in a circular, polar orbit at e.g. 200 km
altitude for at least 6 months. Global error r.m.s. values derived from such an ideal
mission will be approximately 8.6 cm for geoid undulations and 3.6 mgal for gravity
anomalies at a resolution of 0.°75 half-wavelength. These results easily fulfil the
requirements given above, even without having additional information, either from
a GPS receiver on board the satellite or in terms of a—priori information in a kind
of least squares collocation set—up.

However, a more realistic mission like Aristoteles differs from the ideal situation
on several aspects. The three most important differences are: 1.) band limitation
and coloured noise measurement error spectrum; 2.) non-polar orbit; and 3.) planar
gradiometer measuring only the out of plane tensor components with high enough
precision. All three limitations have a rather large effect on the results. Apart from
numerical singularities (resulting from ill-conditioned normal matrix sub-blocks)
other normal matrix sub—blocks will be singular too as a result of the limitations.
The occurrence of such singularities shows that certain unknown parameters are not
estimable from the observations any more.

The planar gradiometer is a penalty resulting from the non drag free concept of
Aristoteles. The along track disturbance accelerations due to air drag are too large
to allow for very sensitive accelerometer axes in this direction.

Aristoteles is planned to fly for approximately six months in an orbit with incli-
nation 95.°3. During additional two weeks the orbit will have an inclination of 92.°3.
In both cases, polar gaps occur, i.e. polar areas which are not covered by ground
tracks of the satellite. If a global recovery of potential coefficients is intended, prob-
lems might occur due to these gaps. Small deviations from a 90° inclination do not
deteriorate the results significantly. Remarkably, the results slightly improve for a
92.°3 inclination. It is very likely that this phenomenon results from a higher data
density in the remaining part of the earth. Furthermore, the behaviour of the incli-
nation functions may play a role, as well as the fact that with a polar orbit, zonal
coefficients are not estimable from gradients involving one cross—-track derivative.
For a 95.°3 inclination large polar gaps occur and the problem to derive a complete
global set of potential coefficients from the data becomes improperly posed. The
solution can be stabilized by adding prior information (e.g. prior expectations of the
potential coefficients and their covariance matrix) and solve the system in the sense
of least squares collocation. The solution becomes stable, but the estimates will
be biased. However, investigations showed that, for large parts of the spectrum, a
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stabilized solution does not lead to too optimistic error estimates.

More than the polar gaps, the band limitation of the Aristoteles gradiometer will
be a problem. Only in a frequency band between 0.005 Hz and 0.125 Hz a 0.01
E/ VHz error level can be achieved. The upper limit (resulting from the sampling
rate of 4 seconds) will not cause any problems if the maximum degree and order of
the analysis is 240. However, a lower limit (resulting from instrumental instability
and non—gravitational orbital effects), has influence on all degrees in the solution.
Whereas a frequency of 0.005 Hz would correspond to approximately 27 cycles per
revolution (c.p.r.), we took an absolute lower band limit of 4 c.p.r. (to account for
non-gravitational orbital effects). Furthermore, we investigated, apart from a flat
error spectrum above 4 c.p.r., a 1/8 coloured noise error behaviour between 4 and
27 c.p.r.

With a band limited gradiometer, certain potential coefficients are no longer
estimable from the measurements due to a lack of information, resulting in singular
normal matrix sub-blocks. Especially the lower part of the spectrum, where the
contribution of the low orbital frequencies is relatively large, will cause problems.
The requirements for an SGG mission are no longer met. Additional information
is necessary. Given the present Aristoteles—gradiometry specifications, a combined
SGG/SST mission seems to be the best alternative. For an SGG-only mission one
has to use a gradiometer with either a much better precision (e.g. 0.0001 E/v/Hz )
or one which measures more components of the gradient tensor.

The results of the error analysis are presented in terms of error degree variances.
The degree variance is the sum over all orders of a degree of the individual error
estimates per coefficient. In some of the above situations, however, we do not obtain
error estimates for all coefficients, viz. those cases where singular normal matrix
sub-blocks appear. The degree variances computed in such cases thus do not rep-
resent the whole spectrum. Adding prior information in the sense of a stabilized
solution overcomes this problem, but it is difficult to interpret the resulting “mixed”
degree variances. In fact, the problem of singularities on certain degrees or orders is
inherent to satellite methods. Degree variances are not the appropriate representa-
tion of the error situation in such cases. “Order variances” might be an alternative.
Perhaps it gives more insight to plot all individual error estimates per coefficient in
a perspectively plotted !, m—scheme, and find ways to identify the contribution of
the prior information.

Whereas an error analysis learns us much about the influence of mission scenarios
on the precision of the estimated unknowns, the final goal of a SGG mission is a set
of estimated potential coefficients, together with the precision of all coefficients. The
recovery of potential coefficients can be done in an iterative least squares adjustment
scheme, in which at the same time the satellite’s trajectory is determined. Depending
on the way in which the data is handled there are, in the present set—up, two
possible methods for the recovery. In the space-ltke method one transforms the data
along the orbit into a global equi-angular grid of mean values. The observation
equations are based on a series expansion of the gravitational potential in geocentric
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polar coordinates. Equal step size in A-direction and orthogonality of trigonometric
series give rise to the block—diagonal structure of the normal matrix. The number
of “observations” in the least squares estimation process is limited (it equals the
number of blocks in the grid) so computation time is relatively short. The averaging
process, required to obtain the gridded data, on the one hand acts as a smoothing
operator so that high frequencies are lost, but on the other hand aliasing is reduced.
A disadvantage of this method is the impossibility to include band limitation of the
gradiometer in an easy manner.

In the time-like method the data does not need to be transformed into an equi-
angular grid. A series expansion of the potential in orbital coordinates is used
and with equal data step size along the orbit a block-diagonal normal matrix is
obtained. Data is not averaged, so higher degrees are preserved, as a result of which
however aliasing will play a larger role. Due to the very large number of observations
the computation time will be rather large. Since possible data gaps may destroy
orthogonality they have to be accounted for. With this method it is easy to include
the effect of band limitation of the gradiometer. A test was done with both methods.
We used a set of simulated gradients, computed along a circular, polar orbit for a 32
days mission. Only a first step of the iteration process was implemented, without
updating the orbit. Potential coefficients were estimated up to degree and order 180
(approx. 33,000 unknowns). Although the.test should be considered preliminary,
the results look promising.

The requirements for an SGG mission are very high. Already a mission like
Aristoteles puts high demands on the technology of the instrument and the space-
craft. Nevertheless, with ever improving technological developments gradiometers
with much higher precision may become available, e.g. superconducting gradiome-
ters. Also satellite orbit determination techniques are still improving. In order to
fully benefit from such future perspectives it shall be necessary to improve the math-
ematical models as to include relativistic effects. Even better, gradiometry might
become a technique such accurate, that aspects of the theory of relativity can be
tested. Finally, from a theoretical (geometrical) point of view, gradiometry perfectly
lends itself to be formulated in terms of curvature of spacetime.

We mention three aspects of an SGG mission where relativistic theory may play
a role: 1.) the satellite orbit; 2.) the observed gradient tensor; and 3.) the mov-
ing local reference frame. The third one is important for the orientation of the
instrumental frame with respect to which measurements are taken, but this aspect
is not treated here. In the general theory of relativity a satellite can be considered
a freely falling particle, moving along a four dimensional spacetime geodesic. Gra-
vitation is not considered an external force, but is translated into the geometry of
the space. Due to gravitation, four dimensional spacetime is curved and so are the
geodesics. The equation of the geodesic therefore constitute the equations of motion
of the satellite. Extracting the spatial part of these equations reveals the relativistic
contribution to the satellite motion.

Viewing upon gradiometry as the relative movement of two or more proof masses,
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we find the relativistic correspondence in the so—called equation of geodesic devia-
tion. This equation is governed by the Riemann tensor, in which the second—order
derivatives of the gravitational potential appear. Thus relativistic effects are also
present in the observed gradients, and in this sense, a gradiometer measures the
curvature of four dimensional spacetime.

In relativistic terms, the gravitational field of the earth can be considered a weak
field. The equations of the satellite motion and the gradients are therefore derived
in the so—called weak field approzimation. In particular, we use the so—called first
Post-Newtonian (1PN) approximation of the spacetime metric, keeping only the
first—order relativistic contributions. The dominant relativistic orbit contribution is
an effect in along track direction, which, however, in reality cannot be separated
from a change in the value of the gravitational parameter GM. For a spherical,
non-rotating earth and for a satellite like Aristoteles, other relativistic orbit effects
are, at the moment, small enough to be neglected. Effects due to the rotation of
the earth are even smaller. Furthermore, in the case of a spherical, non-rotating
earth, relativistic contributions to the gradients at 200 km are of the order of 10~°
E. Although this is much smaller than the Aristoteles measurement precision, the
question whether the relativistic effects in the gradients can be determined from such
satellite missions is a difficult one, depending not only on the measurement precision
but also on the mission duration and the principle character of the instrument.
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Coordinate systems

Several coordinate systems are used in this thesis, curvilinear as well as rectilinear,
with different orientations and located with the origin in different points. Further-
more, the derivatives of the gravitational potential function with respect to most of
these coordinate systems are needed at different stages during the derivations. The
choice for a particular coordinate system often depends on the specific application,
either because the coordinate system is particularly well suitable for the geome-
try of the problem, or because the practical or instrumental implementation of the
problem prescribes the use of a specific coordinate system. In principle one could
choose any coordinate system one likes, in practice only a few coordinate systems
will have favourable characteristics for that specific problem. On the other hand,
the introduction of a coordinate system is only artificial, it has in fact nothing to do
with the physical reality of the problem itself. .

In this appendix we introduce some special, much used, coordinate systems.
Some of them are applied in this thesis, others are just given for illustration. Refer-
ring to section B.3.1, we will only consider metrical spaces, in most cases also linear,
i.e. Euclidean spaces E™, in particular for n = 3.

In the first section the coordinate systems will be defined, in most cases relative
to a cartesian geocentric coordinate system, by giving the coordinate transformation
equations between the geocentric cartesian and the new coordinates. Each coordi-
nate system will be addressed by a special set of indices which indicate the particular
system. Note that in appendix B the choice of indices was arbitrary, since at that
stage no connection to some particular coordinate systems was given.

In the second section the metric tensor and the Christoffel symbols for some of
these coordinate systems will be listed. They are needed when deriving expressions
for the transformation of potential derivatives by using tensor analysis, as is done
in section 3.1.
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A.1 Definition

Possibly the most familiar coordinate system is the cartesian coordinate system.
This is a rectilinear coordinate system of which the coordinate axes intersect in one
point (the origin), are mutually orthogonal and along which the scale is the same in
all directions. If the origin of such a cartesian coordinate system is in the geocenter,
the coordinates are denoted with z!, the indices coming from the set {I,J,K,L}.
This system is called the geocentric cartesian coordinate system. As we will do for all
coordinate systems, the separate coordinates are given special names (kernel letters),
which, in this case, are

{f|I=1,2,3} = («!7},2772 27=%) = (X,Y,Z).

The X-axis points to the Greenwich meridian, the Z-axis to the North—Pole and
the Y-axis completes the set to a right handed coordinate system, see figure A.1.

Figure A.1 Geocentric cartesian and orbital coordinate systems.

In cartesian coordinates, the metrical tensor takes on the diagonal form with all
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diagonal elements having the value 1, so:

1 00
{grs}=|0 1 0. (A1)
0 01

In this case we also have {g’7} = {g7s}. Also in every other cartesian system (with
a different origin and/or a different orientation) the metrical tensor has this form.
For example, if we rotate the =/ system in such a way that the XY -plane coincides
with the orbital plane of a satellite in orbit around the Earth, we obtain a new
geocentric cartesian coordinate system, denoted by {z''|I' = 1,2,3} = (X',Y’, 2"),
which has the same origin but a different orientation, see figure A.1. The X'-axis
of this system is directed towards the ascending node. This system is called the
orbital cartesian coordinate system. The coordinate transformation between the two
systems, zf = z/(z'), is as follows:

X cosw, —sinwgcosl sinw,sin/l X!
Y | = | sinw, coswecosI —coswesinl Y' (A.2)
Z 0 sin [ cos I A

which is obtained through successive rotations about the angles w, and I. The
matrix in this equation is the transformation matrix gz%lr.

A third cartesian coordinate system we will frequently use is a local cartesian
system, denoted {z'|¢ = 1,2,3} = (z,y,z), which has its origin in a point on a
satellite’s orbit and which is oriented with the z—axis radially outwards, the z—axis
directed along track and the y—axis cross track such that it is a right~-handed system
(see also figure A.1). This system is called the local orbital coordinate system. The
transformation between the geocentric cartesian system and the local orbital system,
z! = z¥(z'), can be obtained through successive rotations about the angles we, I and

w, and a translation in radial direction by r. This will yield:

— COS W, SIn W, — sihnw,sin] cosw, Cosw,—
X sin w, cOS W, cos | sin w, sinw, cos | z
Y | =] —sinw,sinw,+ —cosw, sin I sinw, cosw,+ y
COS W, COS W, cos | COS W, Sin w, cos |
Z z+r
cosw, sin I cos [ sinw, sin [
(A.3)

Another cartesian coordinate system to be used is a local north-oriented carte-
sian system, denoted by {z'|i' = 1,2,3} = (z',y',2'), which has its origin in some
terrestrial or space point and is oriented with the z'-axis radially outwards, the z'-
axis directed north and the y'-axis directed west. This system is called local north-
oriented coordinate system. The transformation z! = z!(z") is obtained through
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A.1. Definition

successive rotations about the angles § and A and a translation in radial direction
(see figure A.2):

X —cos Acos¥d sinA cosAsinf z'
Y | =| —sinAcosf —cosA sinAsind y' . (A.4)
VA sin § 0 cos 2 +r

Z

Figure A.2 Geocentric cartesian, local north-oriented and geocentric spheri-

cal coordinate systems.

Whereas in the transformation equations above the quantities I, w,,w,,r,8, A act
as parameters to fix the orientation of the z!' 2" and z* coordinate systems with
respect to the z! system, they themselves can also be used as coordinates. From the
mentioned quantities we select the following coordinate sets:

{z4]|A =1,2,3} = (r,0,)\)  geocentric polar coordinates
{z%|la=1,2,3} = (r,w,,w,) I[-orbital coordinates

{z%]a' = 1,2,3} = (r,w,,]) w.-orbital coordinates .
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The transformation equations =/ = a:I(:cA) are given by:

X =rsinfcos A
Y =rsinfsin (A.5)

Z =rcosf .
The z* and z% systems both have the same transformation equations:

X = r(cosw, cosw, — sinw, sinw, cos )
Y = r(sin w, cosw, + cosw, sinw, cos I) (A.6)
Z = rsinw,sin [

@=3) and [ acts as a

where in the case of the z® system w, is the third coordinate (z
parameter fixing the orientation of z* and vice versa for the z% system. Note that
equation A.5 can be obtained from equation A.4 if we put 2’ = 3’ = 2/ = 0 and
that equation A.6 can be obtained from equation A.3 by putting z = y = z = 0.
Note furthermore that the z® system is not an orthogonal coordinate system so we
expect some off-diagonal components of the metrical tensor in these coordinates to
be unequal to zero.

All of the above coordinate systems, except one, can be used to label all points
of the 3—dimensional space under consideration, regardless of the arbitrary values
of the possible parameters. The exception is the z® system. This system has the
inclination I as parameter. If I # 90° parts of the space are not “covered” by the
coordinate system. These parts are cones with the top in the geocenter and with the
Z—axis as symmetry axis and with the top angle with respect to the Z—axis equal to
I. However, this system will only be used to describe points along a satellite orbit
with inclination I and for that purpose the system can be used very well.

A fourth curvilinear coordinate system which will be used is also a polar co-
ordinate system but not relative to the geocentric cartesian coordinate system z!
(like z4), but relative to the orbital cartesian system z!'. Tt is called orbital polar
coordinate system and is denoted by {z4'|A' = 1,2,3} = (r,$,w,). We have the

following relations (see figure A.1):

X' = rcos¢cosw,
Y'=rcospsinw, (A.7)
Z'=rsing.
The transformation z/ = z/(z4') can be found by inserting equation A.7 into equa-
tion A.2.

The final two coordinate systems to be introduced are two ellipsoidal systems
(see figure A.3):

{::AM =1,2,3} = (h,p,A) geodetic coordinates
{z%|la = 1,2,3} = (u,8,A) ellipsoidal coordinates ,
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of which the transformation equations to geocentric cartesian coordinates are:

! = 21 (24) :
X =vcosfcosA
Y = vcosfsin A (A.8)
Z = usinf

gl = 21 (2?)

= (N + h)cospcos A
(N + h)cospsin A (A.9)
(N(1- €% +h)singp,

Il

X
Y
VA

with v = Vu2 + E2, E? = a® — b3, N = a(1 — e*sin® ) 1/2 e? = (a® - b?)/a?, a
is the semi-major axis of the ellipsoid and b the semi-minor axis. For problems
expressed in ellipsoidal coordinates it is often convenient to have a local cartesian
coordinate system directed along the normal to the ellipsoidal surface. This cartesian
system is called local ellipsoidal coordinate system and it is denoted by {z*|t =
1,2,3} = (%,9,2). The z-axis is directed outwards, normal to the ellipsoid, the
Z-axis directed north, tangent to the ellipsoidal surface and the §-axis is directed
west (see figure A.3). We will not actually use these ellipsoidal coordinate systems
in this work, but they are given here just for reference.
In table A.1 all mentioned coordinate systems are listed.

A.2 Metric and Christoffel symbols

As already mentioned, the metrical tensor in all cartesian coordinate systems is the

Same, SO:
1 0 O
{915} ={9rs} = {9ij} ={9aj} =] 0 1 ©
0 01

The Christoffel symbols are therefore zero in all these coordinates. This is not
true in curvilinear coordinates. From equations A.5 — A9 we may compute the

transformation matrices 22, etc. These can be used in equation B.13 to compute the

azA 3
. N ' [ i P .
metrical tensor in the systems z4,z% z% ,z4 , z# and z?® from the one given above.

For each of the coordinate systems the Christoffel symbols are then computed using
equation B.15. In the sequel all the metrical tensors (table A.2) and the Christoffel
symbols (tables A.3 to A.8) are listed.
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Z

o~ —

2

Figure A.3 Ellipsoidal and geodetic coordinate systems.

Table A.1 List of coordinate systems and their notation

T (X,Y,2)
z4  (r,0,})
II

(X', Y', 2"
(r,4,wo)
2 (a,y, )
(
(
(

z z,y,2)
z° Ty Woy We)
% (r,wo, I)
zh (k0,2
zt (u,8,})
= (%,§,%)

geocentric cartesian coordinates
geocentric polar coordinates
orbital cartesian coordinates
orbital polar coordinates

local north—oriented coordinates
local orbital coordinates
I-orbital coordinates

we—orbital coordinates

geodetic coordinates

ellipsoidal coordinates

local ellipsoidal coordinates
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Table A.2 Elements of the metrical tensor for several coordinate systems.

(M = (1 - €*)N3/a? and L? = u? + E%sin? §)

geocentric polar || 1 0 0
(r,8, ) 0 r? 0

0 0 rZsin? @
orbital polar 1 0 0
(7, ¢, wo) 0 r 0

0 0 r? cos?
I-orbital 1 0 0
(r,wo,we) 0 r r? cos I

0 | r?cosI | —r?(sin®Isin®w, —1)
we—orbital 1 0 0
(rywo, 1) 0 r? 0

0 0 r? sin® w,
geodetic 1 0 0
(h, 0, A) 0 | (h+ M)? 0

0 0 (h+ N)2cos? p
ellipsoidal -Iv‘; 0 0
(u,B,A) 0 L* 0

0 0 vicos?p
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Table A.3  Christoffel symbols in geocentric polar coordinates (r,8,A)

0| O 0
Cig | 0] —r 0

0| O ~rsin? 8

o 1L 0
i o | o

0| 0 | —sinfcosé

0| © 1
T3s 0 0 cot §

% cot d 0

Table A.4  Christoffel symbols in orbital polar coordinates (r, ¢,w,)

0| O 0
F/%'B' Of —r 0

0 0 —rcos? ¢

o 1 0
o |t 0 | o

0 0 —sin¢cos ¢

0| O -
FX’B’ 0 0 tan ¢

% tan ¢ 0
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Table A.5 Christoffel symbols in I-orbital coordinates (r,wo,we)

A.2. Metric and Christoffel symbols

0 0 0
I‘alb 0 —r —rcos [
0 —rcos ] r(sin2 wosin® I — 1)
1
0 v 0
I‘a";, % 0 cos I tan w,
0 | cosItanw, | — tan wo(sin2 wesin? I — 1)
0 0 1
Iﬁ 0 0 — tan w,
% — tanw, —cos [ tanw,

Table A.6 Christoffel symbols in w,-orbital coordinates (rywo, 1)

0 0 0
iy llo| —r 0
0 0 —rsin w,
o 1 0
w2, [ 1] o 0
0 0 — sin w, cos w,
0| o 1
Iﬁb, 0 0 cot w,
% cot w, 0
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Table A.7 Christoffel symbols in geodetic coordinates (h,p, A)

0 0 0
I;%B 0 ~(h+ M) 0
0 0 —(h+ N)cos?p
1
0 h+M 0
2 1 3e2A0L2 .
Ti5 || 7on | NiRem)(izen) S0 P COS P 0
0 0 f{—f{ sin @ cos @
1
0 0 h+N
3 A+M
fas | O 0 —hiN tang
1 h+M
AN —rN tanp 0

Table A.8 Christoffel symbols in ellipsoidal coordinates (u, 3, )

':‘211‘;22 cos? B f—: sin 8 cos 3 0

I‘al5 15_2 sin B cos - “Ii’—: 0
0 0 - “LL: cos? B8

- BE—I; sin B cos B 77 0

I:_;% 1z -LE—j sin S cos B 0
0 0 2—22 sin B cos B

0 0 &

L3 0 0 —tan 8
P —tanf 0
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Index notation and tensor
analysis

A large part of the time spent on the solution to problems is often devoted to,
on the one hand, the language in which the problem and its solution are written
(i.e. notation) and on the other hand the mathematical formalism or tools used for
solving the problem. It is said that without the use of index notation and tensor
analysis Einstein could not have made his general theory of relativity to become such
a success, or even that this theory would never have been developed at all without
its use. This may illustrate the influence which the choice of a proper notation and
formalism may have on the theory and it therefore justifies the amount of effort put
into the question of notation and mathematical formalism.

This appendix will therefore contain a short treatise on the two mentioned sub-
Jects: notation and mathematical tools. However, not all possibilities will be treated
here. For the notation we choose here the (kernel-) index notation and as mathe-
matical tool the tensor analysis. Of course there are other possibilities, which are
perhaps more modern or more commonly used. There are, however, two reasons
that we choose here for index notation and tensor analysis. At first index notation
and tensor analysis are very elegant tools and easy to work with. Of course it re-
quires, as always, some experience to work efficiently with them, but as soon as one
is getting acquainted with it, one discovers that they are very suitable for almost
all our problems and that they therefore create a single general framework in which
all parts of the subject fit, that formulas become very short and easy to read and
write and (last but not least) that these formulas can be very easy converted into
programmable code for computational purposes. The second reason is that this the-
sis contains a chapter on relativistic aspects. At present index notation and tensor
analysis are still very commonly used for relativistic purposes.

Nevertheless, the use of vectors and matrices and their corresponding notation
is perhaps even more widespread. Also in this thesis it is used, since it is often
convenient and it suffices our needs. However, sometimes people like to switch
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between index notation and matrix notation. To this extent, the present appendix
will also contain a section on the relation between them.

B.1 Index notation

The terms index notation and tensor analysis are often mentioned in one breath.
One has to bear in mind, however, that they are two distinct topics. As already
illustrated above, index notation is only a kind of language for writing something
down. It can be used for all kinds of quantities, including the ones which are
not tensors (Moon and Spencer, 1986). Tensor analysis is a kind of mathematical
tool which can be used to solve certain problems. It can be expressed using index
notation but also other notations may be used. The two topics will therefore be
treated separately. In this section some fundamental concepts of index notation will
be pointed out, in the next section some concepts of tensor analysis.

B.1.1 Xernel letters

In index notation an object (or entity) is a set (or system or array) of numbers which
are in some sense related to each other. The relationship between the numbers may
be based on geometrical or physical properties or may be a purely mathematical
one. In the latter case we may also use the word holor (Moon and Spencer, 1986),
in the former case the word quantity is often used. Since in this work almost all
objects have some physical or geometrical background, we will use the word quantity
throughout the work. The numbers may also be called elements or merates. Usually
the numbers out of which a quantity is built up are taken relative to some coordinate
system. Then they may be called coordinates or components. We will use the word
components throughout this work. The meaning of the word component used in this
sense must not be confused with the meaning of the same word customary in vector
analysis, although the two may in special cases coincide (Moon and Spencer, 1986).

A quantity is represented by a letter. For example, the gravitational potential
is denoted by V', the metric of a space by g, the Christoffel symbols are T', a base
vector is e, coordinates are z, etc. As one can see, letters to indicate quantities may
be roman or greek, small or capital, even boldfaced. It is not recommendable to
add other symbols or characters, like bars, accents, numbers or tildes, to the kernel
letter. This is to avoid confusion with indices and to keep formulas visually as clear
as possible. One should, furthermore, never assume that the reader is familiar with
what the writer thinks is a commonly accepted notation. It is better to state always
explicitly the meaning of all kernel letters and the quantities they represent.

In the kernel-index notation of Schouten (Schouten, 1954) a quantity is always
denoted by the same letter, independent of the coordinate system with respect to
which the components of the quantity are expressed. In this case we call the letter the
kernel letter. Not all authors using index notation follow this convention, so one often
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sees that if the same quantity is expressed with respect to another coordinate system,
another kernel letter is used, or that a bar or some other symbol is added to the kernel
letter (e.g. ¢ — g or V. — V'). In the kernel-index notation a change of coordinates
is indicated by a change of the type of indices (see next section). So the word
“kernel letter” not only has the visual meaning of the central character representing
a quantity but it also has the fundamental implication that the introduction of
an arbitrary coordinate system is only artificial and does not change anything of
the physical or geometrical nature of the quantity. The numerical value of the
components of the quantity may change when transforming to another coordinate
system, but the physical or geometrical characteristics remain, of course, the same.

Furthermore, we will try to leave the kernel letter intact as much as possible,
also when performing other operations on it then coordinate transformations. So if
the effect of any operation can be indicated by a change in the type, number or place
of the indices, the kernel letter will remain the same. These kinds of operations are,
for example, raising and lowering of indices, contraction, covariant differentiation,
transpose.

B.1.2 Indices

A quantity which consists of more than one component (so it is not a scalar) is
indicated by a kernel letter with one or more subscripts or superscripts, also called
(lower or upper) indices, attached to it. For example, the components of the gra-
vitational acceleration vector are indicated by V4, the components of the metrical
tensor by g;;, the components of the Christoffel symbols by I, etc. Indices may
be roman or greek letters and small letters or capitals. The index is in fact a short
hand notation for the separate components, for example in 3-dimensional space we
have
{VAIA = 1,2,3} = (VAzl,VAzg,VAzg) .

If this is simply abbreviated by V4 we have to state explicitly the range (dimen-
sion) and the meaning of the index A, for example: the index A represents polar
coordinates in 3—dimensional space:

{z*|4 = 1,2,3} = (27}, 2472 2479) |
the index 7 represents cartesian coordinates
{z'li =1,2,3} = (271, 272 273 |
It is often convenient to give the various components special symbols like
{z4|A=1,2,3} = (r,8,))
and

{z'|i = 1,2,3} = (z,9,2) ,
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so that we also have
{VA|A = 1,2,3} = (V,,Vg,V)‘)

and
{Vili =1,2,3} = (Vz,Vy,Vz) .

The latter notation is of course not according to the conventions in the last paragraph
but in most cases this kind of notation will not lead to any confusion and the meaning
of the symbols will always have to be evident from the context. The following
notation, however, is ambiguous:

(V]. ) V2> V3)

because this notation does not show with respect to which coordinate system the
components are given.

From now on we will adopt a much used convention which is to confuse a quan-
tity with its components (Foster and Nightingale, 1979). For example, we refer to a
quantity V4 rather than a quantity V with components V4. Note that this conven-
tion becomes important if we follow the rule given in the last section to leave the
kernel letter intact as much as possible, even under operations changing the number
of indices such as contraction or covariant differentiation. When referring explicitly
to the quantity and not to its components, the kernel letter is often printed boldface,
like in the example above: quantity V with components V.

So the type of the indices indicates the coordinate system. In the kernel-index
notation we address to each coordinate system a special (limited) set of succes-
sive letters from the alphabet to be used as indices. For example, the set of in-
dices {1, 7, k,1} can be used for a local cartesian coordinate system, {A, B,C, D} for
curvilinear polar geocentric coordinates, etc. We allow for indices the use of other
symbols attached to the letters, like {1', ', k', I'},{A, B,C, D}. In combination with
the kernel letter we then have for example V4 the components of the gravitational
acceleration vector with respect to the polar coordinates z#, V; the same quantity
but expressed with respect to local cartesian coordinates z*, etc.

As one can see, indices may be placed high or low. Upper indices represent
contravariant components and lower indices represent covariant components, at least
if we are dealing with tensors. In section B.2.2 the meaning of these terms will be
discussed.

Any index appearing twice (one upper and one lower index) in a quantity or
in a product (in general in a term of an expression) is, according to Einstein’s
summation convention, summed over all values the index can take (i.e. over its
range or dimension), for example

R%TP =3 R% TP,
p=1

where n is the dimension. Such indices are called dummy or summation indices
because after evaluating the expression they are cancelled. Summing over equal
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indices in a quantity or in a product is also called contraction. Indices which are
not dummy indices are called free indices. After summation over dummy indices in
an equation the remaining (free) indices on the left hand side and on the right hand
side should be the same and in the same place (upper or lower), for example

are correct expressions, but

is not. We will call this rule here (weak) indez balance.

Since dummy indices are summed over, we may always replace them by other
letters, as long as they belong to the same coordinate system and as long as they
are not already in use as free indices.

The number of indices attached to a kernel letter indicates the rank (or valence
or order) of the quantity. If a quantity is of second rank it is represented by a kernel
letter with 2 indices, for example a;;. If the i-index is raised we could write the
result as a;, a‘j or afj. When working only with index notation, the first form is
always clear. The indices may always be placed as near as posstble to the kernel
letter. If one likes to convert certain equations at the end of a derivation to matrix
notation, the second (or third) form is to be preferred. In this case not only the place
of an index upper or lower matters but also the place right or left: when raising or
lowering an index it must keep its place in horizontal direction relative to the kernel
letter (see next section). It may help to place a dot under each upper index if other
indices follow (third form), but this makes the expression visually unattractive.

B.1.3 Matrices

Despite the fact that the language of index notation is sufficient for writing down
all kinds of problems, many people still like to work with matrices because matri-
ces and matrix notation (including vector notation, sometimes called symbolic or
abstract notation) are found to be more illustrative than index notation. Now the
conversion between the two is not always clear. Problems occur with the ordering
of the quantities in a term, with the transpose and with the inverse of a matrix.
In this section we will discuss these problems. Furthermore, additional conventions
will be given, which, if strictly followed, will prevent these problems to occur.

One of the most important differences between the two languages is that in
matrix notation only quantities up to rank 2 can be expressed adequately, whereas
in index notation there is no limitation on the rank of quantities. So in this section
we will restrict ourselves to scalars (rank 0), vectors (rank 1) and matrices (rank 2).

In index notation the ordering of the quantities in a term is of no importance:

L

J
ajbk
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is the same as

J i
bka]'

(i.e. multiplication is commutative). But in matrix notation it is known that AB #
BA (where A and B are matrices). So if we derive in index notation an expression
and we like to convert it later to matrix notation, we have to find a way to discover
the ordering of the quantities in a term. Furthermore we have to find out if we are
dealing with the original quantity, its transpose or its inverse. In index notation the
latter two play no explicit role. An expression can always be evaluated correctly if
one strictly follows the rules for dummy and free indices, without having to know
anything about the transpose or the inverse. It is not even necessary to define
these forms (although this is possible). Since in matrix notation the two are very
important, we have to find a way to see whether the quantity is a transpose, inverse
or the original one.

The problems mentioned can be dealt with by following some additional conven-
tions than the ones mentioned already earlier.

1. Pirst of all we connect to the first index (when reading from left to right) the
rows of the matrix and to the second index the columns, for example in A,;,
¢ indicates rows and j columns. Also z* is a one column (“standing”) vector,
the index ¢ indicating the rows. A “lying” vector has, in this sense, to be
written as z*, ¢ denoting the columns now, the dot (in the place of the rows)
being added for clearness. This implies that indices should always maintain
their place in horizontal direction. This is especially important during the
processes of raising and lowering the indices. A quantity with one upper and
one lower index belonging to the same set, should therefore always be written
with shifted indices: A;’ and not Al. In an equation the free indices on the
left and right hand side should now also be in the same place left or right, not
only upper and lower. For example

za — Riax‘l

should be written as

z* = R%z' .

We call this strong indez balance. In terms of a matrix product this is easy to
understand: z' and z° are “standing” vectors (the indices indicating rows) of
which the lengths have to agree with respectively the number of columns and
the number of rows of the matrix R. This also means that in a product equal
indices always appear twice: once as row and once as column index.

2. Secondly, when reading the indices from left to right, the alphabetical order
indicates which form of the quantity we have: alphabetical order indicates the
original form and reverse order the transpose, for example A;; is the original
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quantlty and Aj; the transpose. Also: b, k original, b’c transpose or dch orig-

inal, dk transpose. This rule only applles if the 1nd1ces belong to the same
coordinate system.

In the case of coordinate transformation matrices we are dealing with quan-
tltles of which the indices belong to different coordinate systems, for example
R',. In that case we have to look into the definition of R. If R (or any other
kernel letter used for the coordinate transformation) is defined (or introduced)
by means of an equation like

the normal order of the indices is {7, a} and if it is defined using
= R%z!

the order is {a,}. So the indices indicating the “new” coordinates (left hand
side of the transformation equation) come first.

Strictly speaking the transpose should be expressed by a different kernel letter.
But since the two are very strongly related (they are built up out of the same
(numerical) values only in a different ordering), since the difference between
the transpose and the original quantity can be shown without ambiguity by
means of the indices and since it is commonly accepted, we will use the same
kernel letter for the original quantity and the transpose. This is also common
in matrix notation.

. In matrix notation the inverse A~! of a matrix A is defined as A~'4 = |
where [ is the unit matrix. In index notation the inverse ars of a quantity A™
is defined through

A”ast — 5rt

where 67, is the Kronecker delta whose value is 1 if r = ¢ and zero if r # t.
We see another kernel letter has to be used for the inverse, since the inverse is
in fact another quantity. The definition equation relates the inverse with the
original quantity. We try to pronounce this relationship a little bit more by
using for the original quantity and the inverse the capital and small version
of the same letter (or vice versa) but this is not strictly necessary. Using
a different kernel letter becomes extremely important if we are dealing with
mixed quantltles (quantities having both upper and lower indices) like R'

Its inverse r* ; would be defined by R’ rJ P = 5 If we would have used
the same kernel letter here the notatlon would have been very ambiguously:
R’ RJ = 'k One has to customize oneself to take for the inverse always a

dlﬂ'erent kernel letter and state explicitly the definition equation. So if R’

is in matrix notation R and r* ; 1s its inverse R~ ! we have the following four
possibilities:

197



appendix B. Index notation and tensor analysis

index notation — matrix notation

original quantity R i — R
transpose Rj‘ — RT
inverse r i — R71
transpose of inverse r N — R T

There are however two situations in which we may use the same kernel letter
for the inverse and the original quantity. That is if the quantity has either
two upper or two lower indices or if the indices do not belong to the same
coordinate system:

original quantity A7 By ,C',—A ,B ,C
transpose A% | Bji, c,t — AT BT | CT
inverse Aij B | Caj _, A-! B! Nom

transpose of inverse Aj; , B , C’ja — AT , BT ) c T

It is repeated here once again that for mixed quantities the latter does not
apply so a different kernel letter has to be used.

4. The last new convention concerns the ordering of the quantities in a prod-
uct. From convention 1 it follows that this ordering is such that equal indices
(dummy indices) are as close as possible together. So if a derivation in index
notation leads to a product like

GStbrs
it has to be written as
brsa®,
the dummy index s appearing in both terms close together. In the same way:

VabRi“Rb]- has to be written as R, ® abij and gijx'iyj as x'ig;jyf.

13

Example

To illustrate the use and consequences of the new conventions we show an example.
Imagine two coordinate systems of which the base vectors are respectively e; and
ea. We assume the dimensions of i and a are equal. The components of a vector x
in the two systems are respectively z' and z%:

x =z'e;=1z", .
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Suppose the two systems are connected by a transformation:
ei = R‘l aea .

Then we have
X ==z"ej=z"R;%, = 2%, .

Inspection of the last equation shows that the transformation of the components is
xa — Ra'.xl ,

where we have interchanged the indices ¢ and a of R based on convention 1 and
reversed the order of z and R based on convention 4. The inverse of the last equation

18
o = g0

with .
Riaraj - 5‘-] .

So if, in matrix notation, we substitute R for R;* we see that if the base vectors
transform with R, the coordinates transform with R~7, based on convention 3. If a
vector v, transforms like v; = A,%v,, a matrix V,, will transform like

Vij = AV A

(see section B.2.1). In matrix notation this becomes (if we substitute V;; — T,
Vap = V):
Fr=AvaT,

a familiar result.

There remains one thing to be explained. Sometimes we have the situation where
the numerical values of two sets of components (of the same rank and dimension)
are the same, but the two sets are not represented by kernel letters with the same
indices in the same places. According to the new conventions above we may only
equate quantities if free indices are of the same type and in the same place (upper
and lower as well as right and left). For example, in “ordinary” index notation,
the symmetry of a matrix is expressed as a*/ = a’*. This would not be correct
based on the strong index balance. Another situation where this occurs is with
orthogonal rotation matrices, where the transpose equals the inverse. Expressing
this as R’, = r.” is not correct.

These kinds of equalities will be expressed with brackets!:

{a”} = {a”'}

!This notation is chosen following (Moon and Spencer, 1986). In this book a very beautiful and
extensive treatment on index notation and tensor theory is given, which, however, does not fully
coincide with the conventions presented here.
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and ‘ ‘

{RJ,'} = {’,‘]} .
The number and type of the indices on the left and right hand side are still the same,
but the place may be different. This indicates numerical equality for all values the
indices can assume, so {a*} = {a/'} means a!! = a'!,a!? = a?,a!® = a®l, a?® = a%?,
etc.

Example

Suppose that, in the previous example, the matrix V is symmetric: {Va3} = {Via}-
Now let us derive the transpose of I', which is in index notation Vj;:

{Vii} = {Rj"VabRbi } = {R]-beaR“i} (dummy indices)

= {R’VaR%} (symmetry of V)

= {R%VaR;’} (convention 4)

= {Ria abij} (
(

= {Viy}

convention 1)

expression for V; ) ,

so we see I' is also symmetric.

As already said, the additional conventions given in this section are only needed
if one likes to convert from index notation to matrix notation. If this is not
the case (what is to be recommended) “ordinary” index notation can be used
(Moon and Spencer, 1986).

B.2 Tensor analysis

We use tensor analysis in some chapters of this work because it is a suitable math-
ematical tool, as stated in section B.1. Another reason we use it, follows from the
fact that this work deals with some aspects of gravitation. And since Einstein we
know that gravitation is closely connected to geometry, in particular the geometry
of curved spaces. Especially in the latter case, the tensor analysis, as it is based
on the absolute differential calculus of Ricci and Levi-Civita, is found to be a very
suitable mathematical concept.

In the same sense as index notation and tensor analysis are two different topics,
though strongly connected in practice, also geometry and tensor analysis are not the
same. If we, in this work, talk about geometry, we are dealing with metrical spaces,
curvature, surfaces, metric, curves, etc., all in a more or less concrete sense. The
geometrical objects are the objects of study themselves. If we look upon geometry
in this way, tensor analysis is again (only) a mathematical tool to help us solve
our geometrical problems. The two topics, being distinct, are therefore treated
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here separately. First we deal, in the present section, with tensor analysis. We
discuss the tensor concept, the terms contravariant and covariant and the process of
differentiation. In the next section, some geometrical aspects are discussed: spaces,
metric and curvature.

The division of the topics, treated in this appendix, into three parts (i.e. index
notation, tensor analysis and geometry) based on the considerations given above
and in the last section, may seem artificial to some readers, but it is just a way
of ordering the broad range of topics related to the theory and it suits the present
work.

B.2.1 Tensor

A quantity is defined as a set of elements which are in some sense mutual connected.
This connection depends in its turn on the definition of the quantity and it will
in most cases be a physical or a geometrical one. Such a relationship between the
elements of a quantity is one of the characteristics of tensors. But a more important
aspect of a tensor is that its elements are the components of the quantity with
respect to some coordinate system. This does not mean that all sets of components
are tensors. To be a tensor, the set needs to have some additional, special properties,
which will be explained in this section. The important point here is that there is
a distinction between on the one hand the quantity itself, which has some physical
meaning, and on the other hand its representation by a set of numbers with which we
can carry out computations. These numbers may be the components of the quantity
relative to a coordinate system and this has to be so as one of the conditions for the
set to be a tensor. One can imagine that the value of the numbers changes if another
coordinate system is chosen to represent the same quantity. Consider for example
the components of a displacement vector in E3 in two different cartesian coordinate
systems having the same origin but a different orientation. Since the introduction of
a coordinate system is only artificial and has nothing to do with the quantity itself,
we like to have a mathematical framework underlying our computations which is
independent of this arbitrary choice of coordinates. This is exactly the essential
characteristic of tensor analysis and it is captured in the word “absolute” in the
absolute differential calculus of Ricci and Levi-Civita: “The tensor calculus is said
to be absolute because it is independent of the details of the choice of coordinates,
that is, the equations have the same form in all coordinate frames” (Ohanian, 1976,
p.221).

To see what this means mathematically we discuss the transformation between
two coordinate systems. Let us denote the “old” coordinate system with z® and the
“new” with z* and let the two be connected by the relationship

7 = z'(2%) (B.1)
expressing the fact that the new coordinates are some functions of the old. The

coordinate transformation B.1 may be chosen at will, but for convenience we will
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impose some limitations on it, namely that the transformation function is single—
valued (which means that there is a one-to-one correspondence between z* and z°),
that it is analytic (i.e. its derivatives up to a sufficient order exist and are continuous)
and the Jacobian of the transformation is different from zero in every point, cf.
(Moon and Spencer, 1986). In this case also the inverse of the transformation exists:

z® = z“(:ci) .

For the rest the transformation may be completely arbitrary, non-linear as well as

linear. Manipulations of equation B.1 tend to be complicated if the transformation

is non-linear. But if we are willing to deal with infinitesimal coordinate changes

(which is the case in tensor analysis), we may linearize the transformation B.1.
Differential changes in the coordinates are then transformed as

. 9zt
dz' = dz*
dzs
or inverse 540
T .
dz® = —dz*,
art

where the partial derivatives g:—; are computed from B.1. These partial derivatives
are in general functions of the coordinates. Only in the case of linear coordinate
transformations they are constants.

Now we define a contravariant tensor (under general coordinate transformations)

as a quantity which transforms according to

A,'Jn..p _

dz* 9z’ ozP
. af--¥
dz* 8zP az? 4 ’ (B-2)

a covariant tensor as a quantity which transforms according to

oz 8z” oz’
Ajioog = ——++ ——Aup... B.3
IP T pgt 9zi  Qxp PP (B-3)

and a mixed tensor as a quantity transforming according to

mop T gga 9zf 9gm QP e (B-4)

where the partial derivatives c%’:—:; and ?T? (defined above) are the inverses of one
another according to
oz’ B_ﬁ — 5
dz® 0z7 7
Tensors of rank O are called scalars, tensors of rank 1 are called vectors. We will
in general not call tensors of rank 2 matrices, because not each set of numbers which
can be written as a system with rows and columns (a matrix) has to be a tensor. A
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quantity is a tensor only if it fulfils one of the transformation laws B.2, B.3 or B.4. A
tensor of rank 2, however, can always be represented as a matrix, but that does not
make the two identical. As a concession to matrix notation we will, in the sequel,

t . . a . -
refer to g% as the transformation matrix and to %‘2; as the inverse transformation

matrix, thereby keeping in mind the remark about second-rank tensors made above.
We see that the tensor character of a quantity is only of interest if we are dealing
with different coordinate systems or with coordinate transformations. This does
not always necessarily have to be the case. But if different coordinate systems are
involved and a quantity is a tensor, its representation in each coordinate system is
the same except for the type of the indices, for example A* versus A%, Bgp, versus
Bjijipr, etc. Transforming from one coordinate system to another may never cause
the tensor representation to change from, for example, A* to ay, A* to Agp or A* to
A% + B%, etc. This means that, if an equation consists only of tensors, its form is
the same in any coordinate system, except for the type of the indices. This fact is
one of the most important and most powerful concepts of tensor analysis. We have
for example
vl = w’kzkj + 9z,
S = giz'y’
in one coordinate system, which is written as
vh = w28 + ¥z,
S = gabxayb

in another. But also if all components of a tensor A;; are zero in one coordinate
system, i.e. A;; =0 (or A;; = 0;;, the right hand side being the “null tensor”) then
they are zero in any other coordinate system.

In the examples above, we see that tensors may be added or multiplied with
other tensors. Addition of tensors in only possible with tensors of the same rank
and the same type (remember: dummy indices are to be considered cancelled after
evaluation). The result is again an tensor of the same rank and the same type.
Multiplication of tensors will result in a new tensor of which (a) the rank is the sum
of the rank of the multiplied tensors minus the number of dummy indices, and ()
the type of the indices is the type of the remaining free indices in the product. It
can be shown (cf. (Hotine, 1969), (Moon and Spencer, 1986)) that these operations
indeed result in new tensors. Reversely, each tensor can be written as the product
or sum of other tensors, with or without contraction, as long as they obey the rules
above.

B.2.2 Co- and contravariant

In the previous section covariant and contravariant tensors were defined as quantities
of which the components transform in a certain manner. This way of introducing
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tensors is based on the classical approach to tensor algebra and tensor analysis (cf.
(Ohanian, 1976), (Sokolnikoff, 1951), (McConnell, 1957), (Hotine, 1969) and many
other textbooks). This classical way of introducing tensors is a geometrical one
and it in fact goes back to Euclides. He, for the first time, gave a meaning to
the concept of a geometrical space when trying to describe the world (or space)
surrounding us. Later the connection to some specific geometrical structure was
abandoned and a space was considered just a set of points with some arbitrary
structure. Whereas the space considered by Euclides was a linear, 3—-dimensional,
geometrical space (Euclidean space or E?®), a space in a purely mathematical sense
may be of any dimension, linear or non-linear and with or without any special
geometrical structure.

Later, when Descartes suggested to project the collection of real-numbers onto
a straight line, the concept of coordinates was introduced into the space. The ele-
ments, out of which a space was built up (i.e. points) could now be represented by
a set of numbers ({z}|{ = 1,...,n},n being the dimension of the space). The points
are said to be labelled by n real coordinates. If the structure of the space is reduced
to zero, we are merely considering a set of labelled points and the space is said to
be arithmetic, denoted by X"™. Whereas Descartes used linear coordinates to label
the points of E3, in general also non-linear coordinates may be introduced. A lin-
ear space (a space in which linear coordinates can be introduced) without metrical
structure (see section B.3.1) is called an affine space: A™. In such a space, various
coordinate systems are connected through linear (or affine) coordinate transforma-
tions. A next step is the introduction of an orthonormal coordinate system into an
affine space (i.e. a system of which the coordinate axes have the same origin, are
mutual orthogonal (independent) and have the same scale). In doing so, we endow
the space with a specific metric and the space is called Euclidean.

As already mentioned before, the tensor character is in fact only of importance if
different coordinate systems and the transformations between them are concerned.
A tensor is a quantity which behaves as an invariant under such coordinate trans-
formations. In this sense, a tensor is an extension of a vector, a concept originally
coming from physics. Gibbs introduced a geometrical visualization of a vector,
namely an arrow, characterized by its direction and its length. A point, having
a fixed location, is the most elementary (geometrical) invariant under coordinate
transformations. A vector, fixed by means of its begin and end points, is also an in-
variant. Of course the numerical values of the components of the vector may change
if we carry out a coordinate transformation, but the vector itself, having some defi-
nite physical or geometrical meaning, remains unchanged. Its components express,
however, the connection between the invariant vector and the arbitrarily introduced
coordinate system.

The components of a vector A are the scalars A* relative to a basis {eala =
1,...,n} such that A = A%ea. The set of vectors ea can be considered a basis of
the space if it spans the space (i.e. every vector in the space may be written as a
linear combination of the members of the set eq) and if its members are linearly
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Aa:l

Figure B.1 Contravariant components.

independent. The base vectors may also be visualized by arrows, however of unit
length, lying along the coordinate axes, pointing in the positive coordinate direction
and with the begin points in the origin of the coordinate system. In a linear space
(affine space) the components of an arbitrary vector with begin point not in the
origin of the coordinate system, may be obtained by parallel transport of the basis
from the origin to the begin point of the vector. If we now consider a vector field,
defined throughout the whole space, such transport of the basis will result in a
basis—field, i.e. in each point of the space we have a set of base vectors.

If we use curvilinear coordinates in a linear space, or if the space is not linear
itself, we generalize the concept of a basis to the set of tangent vectors to the coor-
dinate curves in each point. The tangent vectors now span in each point the (local)
tangent space. The basis now depends on the coordinates, just as the vectors of a
vector field may depend on the coordinates. (In tensor algebra we deal with problems
either restricted to the local tangent space in a point or concerning the whole space
in which case the space has to be linear (so that all tangent spaces coincide with
it). Tensor analysis studies problems either dealing with the connection of different
tangent spaces in a non-linear space or dealing with curvilinear coordinates in linear
space, in both cases forcing us to linearize and to consider infinitesimal coordinate
changes.)

The components of a vector relative to a basis in the sense described above (i.e.
in general the tangent vectors to the coordinate curves in a point) are now called
contravariant components, denoted with upper indices as in A = A\%e,. This defini-
tion is, at this point, completely arbitrary, but we have to make a start somewhere.
The geometrical interpretation of these contravariant components is probably well
known to everybody, at least in Euclidean 2 or 3-dimensional space. There, those
components are the parallel projections of the end point of the vector onto the co-
ordinate lines, see figure B.1. In the case of non-linear coordinates the picture is
essentially the same being only differential now.

Sets of coordinate lines in an n-dimensional space, along each of which one
particular coordinate varies and the other n—1 coordinates are constant, are not the
only way in which a coordinate system reflects the geometrical structure of a space.
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A coordinate system provides us also with a dual structure of sets of coordinates
planes on each of which one particular coordinate is constant and the other n — 1
coordinates vary. In the former structure (sets of coordinate lines) we may find
the base vector in the zP~direction by taking the derivatives of all the coordinates

z%,a=1,...,n with respect to z*:
oz
{z*}
fora=1,...,n and fixed b. This gives a unit vector (tangent vector) in zb—direction.
The complete basis is found by repeating this for all values b can take (i.e. b =
1,...,n).
In the case of sets of coordinate planes (dual structure) we take the derivative
of one particular z® with respect to all coordinates 2b=1,...,n
a{z*}
ozt
forb=1,...,n and fixed a. This also gives a unit vector which is to be regarded as

the gradient vector of the scalar field z°. Repeating this for all values of a we obtain
the so—called dual basis e®. Gradient vectors of arbitrary scalar fields ¢ = p(z®) may
now be written with their components relative to this dual basis. So if the vector p
is the gradient of ¢ then p = p,e®. The components with respect to the dual basis
are called covariant components and they are written with lower indices?. In the
same sense as the gradient of a scalar field reflects the rate of change of it in a certain
direction (i.e. the density of the ¢ = constant surfaces) the covariant components
are related to the density of the coordinate planes in the direction perpendicular to
those planes. Only in an Euclidean space (with a metric defined) we may visualize
these components as the orthogonal projections of the end point of a vector onto the
coordinate lines, see figure B.2 (Hotine, 1969). Note that in this figure the vectors
are not of the same type as in figure B.1, which fact we tried to indicate by using
dashed lines in figure B.2. In other spaces no satisfactory visualization is possible.
So we have at this moment two types of vectors. At first we have ordinary vectors
(contravariant vectors) with (contravariant) components relative to the basis. Exam-
ples of this type of vectors are displacement vectors, velocity vectors, etc. These are
the vectors everybody is customary to work with. Secondly we have covectors with
covariant components relative to the dual basis. These are, for example, gradient
vectors. Only if in the space a metric is defined the two sets of components are re-
lated by means of the metrical tensor (see section B.3). In this case each vector may
be written with covariant or contravariant components. The distinction “vector”
and “covector” looses its usefulness and we will simply talk about vectors. For the
components, however, the distinction between covariant and contravariant remains.

2gometimes quantities which can be written with covariant components relative to the dual basis
are called 1-forms, cf. (Misner et al., 1973).
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Figure B.2 Covariant components.

Tensors, being an extension of vectors, may also have covariant or contravariant com-
ponents. For tensors of rank 2 or higher these components are, however, difficult to
visualize geometrically, the extension being a purely mathematical one.

Now consider a general coordinate transformation z* = z*(z%). From this trans-

formation we may compute the transformation matrix g:;
mation matrix % such that gza ng = 6' In a point P we now have two sets of

coordinate lines, one set for the z —coordmates and one for the z%—coordinates. The
tangent vectors along all the coordinate lines 2 (together forming the basis e, ) were
found above through fTﬁ‘}’ a=1,...,n for each b. In the same manner we may find

a set of tangent vectors along the z' coordinate lines through aa{’ 7,8 = 1,...,nfor
each 1. This set forms a new basis e; in P, spanning the same tangent space as does
ea. The quantltles - may be interpreted as the components of the base vectors ¢;
relative to the ba31s ea, Jjust as the quantities a 575 = 6 are the components of the
base vectors e, relative to this basis itself:

dz?
4T g
and ,
eg = Oz ep = 8le
a axa b a€b -
We see that under a coordinate transformation :Ci = 7'(z ) the contravariant base
vectors eg ‘;z Then we have also

the inverse relation: )
azt

€y — égei .

For the dual basis we have in a similar manner

oz'

i ol
e
3:1:“
dz°
e = ¢!
azt
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In order to see how the contravariant components of a vector transform, we proceed

as follows: )
az!

A= )%, = A\° P Mg
. 9z
= A= _—A\°
dz°

so the contravariant components transform with the transformation matrix g:;

In a similar manner we may show that covariant components transform with the
inverse transformation matrix %’;—a;. Whereas we already defined the contravariant
and covariant components at the moment of introduction of the two sets of base
vectors (basis and dual basis) we could have equally well defined them at this stage as
the components transforming under a general coordinate transformation ' = z'(z%)

with respectively the transformation matrix g::, or the inverse transformation matrix

%. Extension of this reasoning to quantities of higher rank forms the background
of the tensor definition given in section B.2.1.

Besides the classical theory of tensors described above (which is strongly con-
nected with geometry due to historical developments) there is also a more mod-
ern approach for introducing tensors, which uses the abstract-algebraic concepts
of space, vector space, sets, linear and multi-linear functionals, mappings, man-
ifolds, groups, charts, atlases, etc. Examples of this approach can be found in
(Foster and Nightingale, 1979), (Bishop and Goldberg, 1968) and others. Whereas
in the classical approach the first step was a special metrical 3—space (Euclidean
space Es) which was later generalized to non—metrical spaces of any dimension, the
modern approach starts with general spaces of arbitrary dimension and may end up
(after imposing more and more conditions onto the space) with the E3 as a very
special case. In spite of the E3 being in fact the traditional “working space” of
geodesists, the modern approach must also have some appeal to them if interpreted
as a framework in which we work from “large” (most general) to “small” (specific

case).

B.2.3 Derivatives

In the last section we saw that tensor analysis deals either with problems concerning
non-linear spaces or problems in linear spaces expressed in curvilinear coordinates.
(It is obvious that the use of curvilinear coordinates in a non-linear space is in-
evitable.) Consider now one of these two possible situations. In the space, a tensor
field is defined which, in general, will be a function of the coordinates. In a point of
this space we may construct a basis spanning the local tangent space in that point.
In curvilinear coordinates this basis will also depend on the coordinates so we are
in fact considering a field of coordinate dependent base vectors and tangent spaces
(O’Neill, 1966). A change of coordinates will in general imply a change of the local
basis with respect to which the tensor field is defined. Study of the tensor field
therefore requires knowledge about the way in which neighbouring tangent spaces
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are connected. The situation of continuously changing base vectors (which is the
case when using curvilinear coordinates) forces us to consider differential coordinate
changes. This brings us to examining the process of differentiation of tensors. If we
like to continue our computations using tensor analysis, we require that this differ-
entiation process yields again a tensor. Partial differentiation of a tensor, as known
from “ordinary” analysis, does, however, in general not lead to a tensor, as can be
shown easily. Consider an arbitrary contravariant vector v® which, under a general
coordinate transformation z* = z*(z?) will transform as v’ = g:—;v“. The partial
derivative of this equation with respect to z* yields:

97 93 \ 9z° dzt 9zt

8%zt 9zb dz* 9z Jve

a

T 9299z 913 © A2 8xi Azt

' d (8:19) . Oz' Ove
v 4

(B.5)

The partial derivative is denoted by a comma preceding the differentiation index:

vij = %5'7' If the term containing the second—order partial derivative was absent,
vi,j would transform as a mixed tensor. We conclude that obviously the ordinary

partial derivative is not a tensor. One exception to this conclusion is the partial
derivative of a scalar field S, which, according to the chain rule, transforms as

95  0z° 88
dzt 9z Jz¢

So for each scalar field S, S, is a tensor.

Partial differentiation obviously is not the right method to account for the con-
nection of neighbouring tangent spaces. In order to find this connection, we look at
the way in which the basis ey changes under a differential change of coordinates dz®
in each of the coordinate directions. Expressing this change of the base vectors %%
relative to the basis e, itself, we may write

e oo
where the T are called the coefficients of the linear connection or for short “linear
connection”, “connection coefficients”, “affine connection”, etc. The way of intro-
ducing the connection coefficients as in equation B.6 may be interpreted as imposing
a certain structure on an arithmetic space (although this structure is not a metric).
This structure consists of nothing more then requiring the base vectors to change in
a linear way under a differential coordinate change and not completely arbitrarily.
The space is now said to be a linearly connected space (Moon and Spencer, 1986).
The I} may in general be functions of the coordinates. Sometimes they are intro-
duced just by giving their transformation equation (ibid.), which is:

c az"a_xfazc Ozt 9%z

= _— B.7
7 9z0 9zb dzk 7 T Bzt 9zodzd (B.7)
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This equation (which we give without derivation) shows that the connection coef-
ficients do not form a tensor. It furthermore shows that the linear connection is
symmetric in its two subscripts, at least if aaaz = 52,,26',,. We will in the sequel
assume that the latter is always the case. If thxs is not true, the basis field is called
anholonomic and the space is a so—called torsional space in which differentiation is
possible, but integration is not.

With the linear connection we try to find a process of dlfferentlatlon of a ten-

sor which gives again a tensor. From equation B.7 we solve for 3
az? .
8z°”

p a s through

multiplication with

s ozt ozt oz*

—_ ¢

9z°9zb 9z *  9ze 9zb Ik

Substitution of this expression into equation B.5 gives after some manipulations (cf.
(Moon and Spencer, 1986)):

vt : Azt dzb /v
by F} k = T .
oz’ t kY Ozs 0x? (31: + Tic >

This equation shows that the quantity on the left hand side transforms as a mixed
tensor. It is called the covariant derivative of a contravariant vector and is denoted
by a semi—colon preceding the differentiation index: v* ; (or Vjv'):

o= vi’j + I}ik ok (B.8)

¥

We see the covariant derivative consists of two parts. One part is the familiar partial
derivative. The additional term, containing the connection coefficients, accounts for
the change of the basis in the differentiation process. Sometimes it is no longer
important that a tensor was originally created through the process of covariant
differentiation. In that case we simply write v} . This also means that every covariant
index of a tensor of rank r can be viewed upon as originating from a process of
covariant differentiation of another tensor of rank r — 1, namely one covariant index
less. For example: A]k—A]k—A’ O Vi = ,S—V,S OF Pg = P.a = Pia-
Consider now the scalar field S = v,w®. Since for a scalar field the partial

derivative transforms as a tensor, it is S, = S;q. So we have:
a — a
(vaw®)p = (vaw®)s
or

Uap W + g W = vajp w? + vg w?y
= vgp w* + va(w®y + L2 w®)

yielding (with a change of dummy indices)

Vg p W* = vgp w? 4 vl w®
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which has to be true for arbitrary w?, so that we find for the covariant derivative of
a covariant vector:
Vap = Vgp — Ly vc (B.9)

The covariant derivative of a contravariant tensor of rank 2, t3 can be found in a
similar manner by writing t*® = v®w®. The extension to tensors of arbitrary rank
or type follows analogously. For each superscript one adds to the partial derivative
a term with I', and for each subscript one subtracts a term with ' (like the ones in
equations B.8 and B.9).

The covariant derivative is the tensor analogy of the partial derivative of classical
analysis. For the total derivative dv® = -glz:—dxb the analogy in tensor analysis is the
absolute derivative, defined as:

Dv® = v%, dz® = dv® + 2 v°dz’ . (B.10)

Again only for a scalar field the absolute derivative of tensor analysis equals the total
derivative of ordinary analysis. The absolute derivative can be used to extend the
notion of a field of “parallel” vectors along a straight line in E3 (which is %%a =0) to
a parallel field of vectors along a general curve in a general space (see section B.3.1).

For the latter we have
Dv®

du

along the curve parametrized by the parameter u. If we take for v® in this equation
the tangent vector dz®/du along the curve, equation B.11 becomes

d*z® . dzb dz¢

— S +Li—=—=0

du? ¢du du
which is the equation of a geodesic. So geodesics are those curves in space along
which the tangent vectors in all points form a parallel vector field. Note that the
meaning of the word parallel in this sense is much more general and abstract than
the visual meaning it has in Euclidean space.

=0 (B.11)

B.3 Geometry

In the previous sections some aspects of index notation and tensor analysis were
treated. As explained in section B.2 purely geometrical subjects were left out. In
the present section attention will be paid to geometry. First the notion and classifi-
cation of several spaces will be treated, which was already initiated in section B.2.2.
Furthermore, we saw in section B.2.3 that the introduction of the linear connection
I' already imposes some kind of structure to a space. The step from such non-
Riemannian (non-metrical) spaces to Riemannian (metrical) spaces consists of the
introduction of a metrical tensor. This tensor will be treated in section B.3.2. Spe-
cial attention will be drawn to curvature and curvature related quantities in the last
part of this section. Many general textbooks exist on geometry. As an example see
(O’Neill, 1966).
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B.3.1 Spaces

In section B.2.2 a space was considered a set of points with some structure. Such
a definition still remains vague because no explanation of the words ”point” and
“structure” is given (Moon and Spencer, 1986). The reader, probably familiar with
these concepts, will have an intuitive understanding of these ideas. When proceed-
ing, the meaning will become clearer through the description of some special cases.
Instead of “space”, the word manifold is also used sometimes, but in the literature
one encounters various definitions of a manifold, strongly dependent on further appli-
cations. Most frequently it is used when introducing the tensor concept in a modern,
abstract—algebraic manner (see section B.2.2). In that case, the structure imposed
on the set of points (which has to have a finite dimension) has to be such that co-
ordinate transformations involve differentiable functions. Or simply put: the space
has to have certain smoothness properties. The classical, geometrical treatment of
tensor analysis usually uses the word space. The introduction of a coordinate system
(viewed upon as a mapping of the elements of the space (the points) onto the set of
real numbers) allows labelling of the points in a unique manner. If the structure of
the space is reduced to zero, we call it an arithmetic space, denoted by X™.

A very primitive structure can be imposed on the arithmetic space by giving
a certain meaning to concepts like “in”, “out”, “near”, etc. The space is then
called topological. As we already saw, another way of giving some kind of structure
to a space is the introduction of the connection coefficients I,%. In general these
are functions of the coordinates, i.e. ,3(z®). The space is now a linearly connected
non-metrical space, denoted by L™. If, in such a space, linear coordinates may be in-
troduced, we have a linearly connected, non-metrical linear space, which we already
encountered before as an affine space, denoted by A™. Calling the latter space affine
or linear may tempt us to call the former “curved”, but since curvature is a concept
which only has a meaning in metrical spaces, this may be misleading. As a compro-
mise a linearly connected, non-metrical and non-linear space is sometimes called
“pseudo—curved”. Different coordinate systems labelling a pseudo—curved space are
connected via non-linear transformations. The “point” is one of the few invariants
of such a space. In affine space (in which coordinate systems are connected through
linear transformations) there are more invariants (like proportionalities of lengths
and surfaces or all kinds of intersection properties) giving already the possibility of
solving some elementary geometrical problems.

What remains are concepts like distance, angle, orthogonality and others, which
first obtain a meaning if a metric is introduced in the space. This idea originated
from Riemann, who proposed to introduce the concept of distance by means of a
quadratic differential form

ds? = ggpdzdz’ | (B.12)

the infinitesimal distance ds being an invariant and the quantities g,5 the metrical
coefficients (or metrical tensor), which, in general, are functions of the coordinates.
The metrical tensor will be discussed in the next section. A space endowed with a
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metric by means of equation B.12 is called a Riemannian space®, denoted by R®.

In general a Riemannian space is curved. We may use this word here, since in
a metrical space we can give a meaning to the word curvature, as we will see in
section B.3.3. Only if it is possible to introduce in the space globally (i.e. covering
the whole space) a linear orthogonal coordinate system, the space is called linear,
flat or Fuclidean and is denoted by E™. The complete classification of spaces as it
is presented here is given schematically in figure B.3.

arithmetic: X™
T
\
lin. coord.
non—metrical: linearly connected: L®* ————» affine: A"
g g
Y Y
lin. coord.
metrical: Riemannian: R® e — Euclidean: E®

Figure B.3 Spaces

B.3.2 Metric

The metric, imposed on a space by means of the introduction of the metrical tensor
g, allows us to give a meaning to geometrical concepts like length, angle, volume,
etc. From the definition of the invariant ds (equation B.12) it follows that g, is sym-
metric. In general g,; is a full matrix of which the components are functions of the
coordinates. Since ggq is a tensor (which we will not prove here), its transformation

3In fact, Riemann introduced the quadratic form directly into an arithmetic space. The con-
nection coefficients I' were afterwards expressed in terms of the metrical tensor, as we shall see
later.

213



appendix B. Index notation and tensor analysis

equation is .
dz* 9z?

Gab — Ez—awg,] . (B13)
This equation is extremely useful for computation of the components of g, in vari-
ous curvilinear coordinate systems from g;; in cartesian coordinates, at least if the
transformation equations z' = z*(z*) are known. The metric tensor provides the
space with an inner product. So analogously to equation B.12, which gives the in-
finitesimal length ds belonging to a differential change of coordinates dz, the length
v of a vector v* is given by

v = gabvavb ’
and the inner product of two vectors v* and w® is
gabvawb

If the latter quantity is zero, the two vectors are orthogonal. The angle § between
the two vectors is now defined as

gabv“wb
cosf = ¥—F——
vw

with v = V/gapv2v® and w = \/gawwb. If we have an orthogonal coordinate system

and we take for v® and w? differential changes of the coordinates in each of the
coordinate directions, we can show that the metrical tensor g,; takes on the diagonal
form, cf. (Moon and Spencer, 1986). If, furthermore, the coordinates are linear, the
diagonal components of g, are constants. In a linear, non-orthogonal coordinate
system, g, has not the diagonal form, but its components are still constants.

The contravariant metric tensor g°° (also called associated or conjugate metric
tensor) is defined through

b
ga gbc = 5ac
and it can be considered the inverse of gqa3. The contravariant metric tensor provides
the dual space with an inner product:

gabVaWb .
Now let us define the components of a covariant vector p as the tensor product
fa = gapX’

where A’ are the components of an arbitrary contravariant vector A. Using the
definition of the contravariant metric tensor we find the inverse relation as

A= g%py .

The lengths of the two vectors p and A are respectively

1= 1/9%paps
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and

A= \/gab/\a/\b .

ut = g% paps = A,
X = g oAb = A%,

We may now write:

from which we conclude that p? = A%, We therefore identify the two vectors and

write for the components
Ag = gab/\b

or
A% = gab/\b .

These operations (which involve the metrical tensor) are called respectively the
lowering and raising of indices. They give us the possibility to compute from a
vector either the covariant or the contravariant components. In a space where a
metric is defined, the distinction between covariant and contravariant therefore only
applies to components, not any more to the vectors (or in general tensors) themselves
(compare section B.2.2).

Whereas the introduction of a metric offers us the possibility of solving a large
number of geometrical problems more than without a metric, it is in fact a limitation
on the generality of the space. As we shall see, the introduction of the metric limits
the choice for the connection coefficients I'. These have now a specified form to be
computed from the metrical tensor. This relationship will be derived now.

Consider two arbitrary parallel vector fields A% and u? along a curve parametrized
by a parameter u. According to equation B.11 we have for the two vector fields

D)¢
=0
du
and Dus
Ko
™ =0.

In E3 the inner product of two parallel vector fields is constant along the curve, so
we require analogously that in curved space of any dimension

d(gapA®pb) _ D(gapA°u®)
du du

(For scalars the total derivative equals the absolute derivative, see section B.2.3)
This yields:

D(gapAu® Dgas)\ |, D)® . [ Dub
(g “)=< gb)/\ #"+gab( )u’”rgabA (—“)

=0.

du du du du

Dgab) b
7= Aa
( du ®
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_ dz
= Jab;c d

=0.

‘ b
N
° u

This must hold for arbitrary vector fields A% and u® and for arbitrary tangent vectors

c
% so we have

Jabie = 0
(which is a tensor equation, so it holds in any coordinate system) or if we use
equation B.9
Jabe = Tyt gba + Tt gaa -

Cyclic permutation of the indices gives
Geah — I;g 9ad + Iﬁz ged

ghea = L3 gea+ L2 goa -

Adding the second and the third equation and subtracting the first and also dividing
by 2 yields

1
Eﬁ, Ged — 5 (gac,b + Gbe,a — gab,c) (B'14)

or

1
= 59“ (9adp + 9bda — Gabd) - (B.15)

Christoffel already derived this quantity (equation B.15) some time before the de-
velopment of the tensor analysis, and it is therefore called Christoffel symbol of the
second kind. The Christoffel symbol of the first kind is equation B.14:

I1abc = ngI:zdb .

The explicit form of the components of the metric tensor and the Christoffel
symbols are given for several coordinate systems in section A.2.

We should mention that, with the use of the metric tensor, we may also give
a definite meaning to the concepts of divergence and the Laplacian. Consider a
scalar field ¢. The gradient of this scalar field is ¢, = pq, which forms a covariant
vector. The contravariant components are ® = g*®,. Covariant differentiation of
the latter and contraction of the indices gives the divergence of p?:

0% = 0% = "0,

which may also be considered the Laplacian of the scalar field .
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B.3.3 Curvature

In a curved space no linear coordinates can be introduced, at least not globally. Take
for example the 2-dimensional surface of a sphere. It may be described by curvilinear
polar coordinates (6, ) but not with cartesian coordinates (z,y). In a flat space,
however, linear coordinates as well as curvilinear coordinates may be introduced.
Take for example in E3 cartesian coordinates (z,y, z) and polar coordinates (r,8, A).
In general, the components of the metrical tensor in curvilinear coordinates are
functions of the coordinates. Only in linear coordinates, those components are
constants. Suppose now, that we are given a metrical tensor of which the components
are functions of the coordinates. How can we find out if this metric belongs to a
curved space, so that it by no means can be transformed to a coordinate system
in which the components are constants, or that it is just the metrical tensor of flat
space but expressed in curvilinear coordinates? Or stated otherwise: what is the
condition for a space to be flat?.

In order to get an answer to this question we look at the way in which the
components of the metrical tensor change under a differential change of coordinates,
L.e. we compute the derivatives of the metrical tensor. In linear coordinates the
components of the metrical tensor are constants, so their partial derivatives will be
zero. But the partial derivative is not a tensor, so we may not conclude that in that
case the components of the metrical tensor will be constant in every other coordinate
system. We have to look to the covariant derivative. However, this does not help
us since we already saw in the last section that the first covariant derivative of the
metrical tensor is zero in all coordinate systems, independent of the structure of the
space. We may try to look to the Christoffel symbols. They are some function of
the first partial derivatives of the metrical tensor. But they also are no tensors, so
if they are zero in linear coordinates, this does not mean that they are zero in other
coordinate systems.

The answer to the question above has to be found by considering the second
partial derivatives of the metrical tensor. Now the first partial derivatives of the
metrical tensor appear, via the Christoffel symbols, in the expression for the first
covariant derivative of an arbitrary vector v, (in general of arbitrary tensors). For
the second partial derivatives we therefore compute the second covariant derivative

of vs. We find:

Vasbe = (va;b),c - I:;i Vd;p — I?;(: Va;d
= (vap — Ty va).c =~ Tit(vap — By ve) — Tid(va,a — Ly ve)
= Vape — Db va — L vae — T3 vay +
+1e B ve — i va,a + B L ve
We also have, on interchanging the indices b and c:
Vaseb = Va,cb — I:fi,b va—Llvgp ~Td vy, +

d d d
+0y Rave — Lz vaa + G I ve
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Subtraction yields:

Va;be — Vajeb = VUd (Fadc,b - 11¢z(§>,c + I:lec Fb‘: - acb I::t:

where we used v, b = Va,cb and the symmetry of the Christoffel symbols and we also
changed dummy indices. The left hand side of this equation is obviously a tensor,
so is vg, which implies that the term between brackets is also a tensor. This is the
Riemann-Christoffel tensor Rdabc, also called the curvature tensor:

Rdabc = I:ﬁ:,b - I-‘a%,c + I;;(: I::.ec - I:;: I:zeb . (B'16)
Now, in flat space and in linear coordinates, the components of the metrical tensor
are constant. The components of the Christoffel symbols are in this case zero, and
so are all the components of the Riemann-Christoffel tensor, as follows from equa-
tion B.16. Since the latter is a tensor, its components will in this case also be zero
in all other coordinate systems. The vanishing of the Riemann-Christoffel tensor
is therefore a condition for the space to be flat, and vice versa. It can be shown
that this is a necessary and sufficient condition (see for example (Ohanian, 1976)).
The curvature tensor contains all the information about the curvature of the space
in its n* components (where n is the dimension of the space). However, it pos-
sesses a number of symmetries and its components satisfy certain identities, which
reduce the number of independent components to $zn?(n? — 1) (see for example
(Moon and Spencer, 1986)). Nevertheless, it is sometimes useful to consider con-
tractions of the curvature tensor. The Ricci tensor is defined as the contraction of
the curvature tensor on its first and last index:

Rap = Rcabc
and the curvature scalar is defined as
R= gabRab = Raa .

We mention one last contracted form of the curvature tensor, especially valuable in
the general theory of relativity. It is the Einstein tensor, defined as

Gab = Rab _ leab
5 .
It can be shown that this tensor is symmetric and has zero divergence, 1.e.

G*,=0.

218



appendix C |

Inclination functions

In chapter 4 we used, as observation equations, expressions for the local cartesian
second-order potential derivatives in terms of derivatives with respect to the orbital
polar coordinates (r,¢,w,). The latter coordinate system has the satellite’s orbit
as equator. The expressions are derived in section 3.1. We see that in this case we
have to know the expression for Vy, the potential derivative with respect to ¢, for
example for the computation of the gradients V;, and V,,. However, in section 3.2
we had the potential given as function of either (r,8, A) or (r,w,,w.,I) and not of
the coordinates (r,¢,w,). In order to find V;, we proceed as follows.

Let us compare the expressions for V} in terms of 2% and in terms of z4' (cf.
(Betti and Sansd, 1989)):

1
Vy, = — Vi
rsinw,
V, = 1V
v LT
From these expressions we see that obviously
v,= L v (C.1)
¢ sinw, ’

For V] a series expansion exists (see section 3.2) so a similar expansion has to exist
for V; in which the term sin™!w, has already been included. This expansion can
be found in an analogous manner as the expansion of the potential in inclination
functions. The latter expansion is derived in (Kaula, 1966) and we will only briefly
show here the derivation of the series expansion for V.

We start with formula (3.58) from (ibid.) which we write in the following manner

GM [R\'*!
Vim = " (—) Re | {(Cim cosmw, + S sin mw,) +
,
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k
+ 7 (Cimsinmw, — Sy, cosmw,) } Z Timesint ™™ 2t x
t=0
m
X Z 7°cos® Icos™ % w, sint~m2 e,
8=0 S

where j = v/—1, Re means the real part and

(—1)¥(2! — 2t)!
21—t —m—2t)!

Timt =

When differentiating V;,, with respect to I and dividing by sin w, we obtain (compare
equation C.1)

Vim _GM (R\'1 k mlmy o,

where
f(I) =sin' "™ %" Jeos* 1 [ [(l —m — 2t)cos? I — ssin? I]

9(we) = (Cim — 5Sim) €™

l-m—2t+s—1

h{w,) = sin w,cos™ % w, .

Equation C.2 can be compared with formula (3.59) from (Kaula, 1966). Proceeding
in the same way as (ibid.), we arrive at

) l—m:even
aV, GM (R\'\t1 32 | Sim
= w () LA . 05 Yimp+
p=0 m o miodd
l—-m:even
—C
+ m Sin Yymp (C.3)
Sim I-m:odd

where
"»blmp = (l - 2p— l)wa + muw,

tmaz m

m
-Fl:np(I) — Z Tlmtz f(1)22t—l+1(__1)k+t X
t=0 s=0 )
ez [ l-m—-2t+s—1 m-—s
> (-1
c=cmin [4 e t—c¢
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(D as in equation C.2

k = integer part of (I — m)/2
tmaz = min(k,p)
emaz = min(l-m-2t+s—1,m-s)
cmin = max(0,p—1t).

Methods of computing of the inclination functions and their derivatives with
respect to I can be found in e.g. (Wagner, 1983) , (Schrama, 1989) and (Goad, 1987).
The cross-track inclination functions F,.,(I) as derived above can be computed in
a similar manner as will be shown hereafter. For the description of a recursive
algorithm for computation of the inclination functions or the cross—track inclination
functions, we refer to respectively (Sneeuw, 1991a) and (Sneeuw, 1991b).

Following (Wagner, 1983) the method for computation of the inclination func-
tions described in (Schrama, 1989) makes use of a “unit potential function” devel-
oped along a great circle with inclination I. Along this circular unit orbit (defined
by R=1,Q2 =0 = e =0 (s0 also w, = 0) and M +w = w, = u) we evaluate the

function %’3" which can be obtained by applying the chain rule of differentiation

Vim _ Vim 90 3Vim OX

3¢ ~ 39 8¢  AX 3 (C4)

with
Vv, .
alom = P/, (cosmA + sin m\)
oV _
—aj\—m = mPj,(cosmA — sinml)

where we use a unit potential function defined by GM = R=r = C},, = Sim = 1.

Now we have to find the partial derivatives g—g and %. From appendix A we have

on the unit sphere

X =sinfcos A
Y =sinfsin A (C.5)
Z = cosb

and

X' = cos ¢ cosw,
Y' = cos ¢ sinw, (C.6)
Z' =sing .
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The transformation between the coordinate systems z/ and zf ' consists only of a

rotation about the X-axis by an angle I (since w, = 0), or:

X 1 0 0 X'
Y [=]0 cosI —sinl ||V (C.7)
Z 0 sin] cos/ z'
Combination of eq. C.5, C.6 and C.7 leads to:
sinf cos A = cos ¢ cosw, (C.8)
sin @ sin A = cos ¢sinw, cos I — sin ¢sin I (C.9)
(C.10)

cosf = cospsinw,sinl +sin¢gcos .

Differentiating eq. C.10 yields for ¢ = 0:

% __cos I
8¢  sinb
and differentiating the quotient of C.9 and C.8
O\ sinlcosA
3¢ sinf

Now we have from eq. C.3 for the unit potential

Vim -1 _
WVim _ Z Fyp scos(l —2p—1u+
9 5

where the bar over F indicates that the cross-track inclination functions are now
normalized. This series can be regarded as a Fourier-type series. Introducing k =

sin(l — 2p — 1)u
1

1 —2p—1 yields

a‘/l‘m = i * [ *
d¢ - Z { (Flm(l—1+k)/2 T Flm(l—l—k)/2) cos ku-+
k=0,1[2]

_ _ -1
+ (Flm(l—l—k)/Z - th(z—1+k)/2) sin ku

where
0,2,4,...,0—1 [l:odd

1,3,5,...,0 —1 [:even
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Comparison with an ordinary Fourier series

Vim
9¢
yields
Al — ¢
Im(1-1)/2 = 9
% — ¢ d’
Fon-1+r)2 = (a8
AL — ¢ ¢
Flm(l—l—k)/2 = (a) - bf
nk3 —_ ¢ 4
Flm(l—1+k)/2 = (a; — b}
AL _— ¢ ¢
Fo-1-ky2 = (ap + ]

¢

)
)
)
)

/
/
/
/

-1
= Za? cosiu + b?siniu
1=0

2

2
2
2

for odd

for | — m even
for | — m even
for l — m odd
for { — m odd .

The Fourier coefficients aj and bi are derived by computing the unit potential at
discrete points along a great circle. With an FFT routine these potential values
(time domain) are transformed to the coefficients af and bf (frequency domain).
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