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Abstract

The gravitational field of the earth can be determined globally and with high preci-
sion and resolution by means of a combined Satellite Gravity Gradiometry (SGG)
and Satellite-to-Satellite Tlacking (SST) mission. In such a mission a spacecraft
equipped with a GPS receiver and a gradiometer will be flown around the earth in
a low and nearly polar orbit. The GPS receiver is used for the determination of the
long spatial wavelengths of the earth's gravitational field and the gradiometer for
the short wavelengths. As such the two techniques are complementary. This work
focuses on the satellite gradiometry part only.

A gradiometer delivers the second order potential derivatives relative to some
local orthonormal coordinate system. In particular, the gravity gradients are deter-
mined by a technique called differential accelerometry, in which the outputs of any
combination of two out of (ideally) eight accelerometers are differenced. A planar
gradiometer consisting of four accelerometers and working according to this princi-
ple will be on-board the Aristoteles satellite, a mission planned by the European
Space Agency (ESA). The improved knowledge of the earth's gravitational field,
resulting from such a mission, can contribute to many earth related sciences, like
geodesy (levelling with GPS), satellite orbit determination, solid earth physics (con-
tinental lithosphere, polar regions) and oceanography, the latter not only for topics
like ocean circulation but also for study of climate changes.

The earth's gravitational potential, together with its first and second order de-
rivatives, is usually expressed as a series expansion. The coefficients of such a series
(potential coefficients) describe the gravitational potential globally and are to be
determined from SGG. The equations of the gradient series expansions, either in
geocentric polar coordinates or in orbital coordinates (Keplerian elements) , are used
as model equations in the gradiometry analysis process. However, the measured
gradients are delivered relative to a local orthonormal coordinate system connected
to the instrument. We need, therefore, transformation equations for the potential
derivatives between several coordinate systems. By means of a compact, general al-
gorithm, which makes use of certain concepts from tensor analysis, these equations
can be derived.

Using a set of known potential coefficients, the series expansions can be used
to gain some insight in the signals measured by a satellite gradiometer (spherical
harmonic synthesis). Reversely, analyzing a set of gradients to obtain the harmonic
coefficients is called spherical harmonic analysis. Both synthesis and analysis are
time consuming processes, at least if a high degree and order series expansion is used
or a large set of data points is used. Grid computation (making use of FFT routines)
and the use of vector computers (for which the algorithms should be adapted) can
decrease computation at burden. Numerical errors may enter the computations due
to the use of recursive Legendre function computations and numerical quadrature
formulas.

For the estimation of potential coefficients from a set of observed gravity gradi-
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ents we used an analysis technique based on least squares adjustment, as it was, for
the gradiometric case, proposed by O.L. Colombo. Under certain assumptions the
normal matrix attains a block-diagonal structure, making it easy to solve the large
system of linear equations. The a-posteriori error covariance matrix of the estimated
potential coefficients can be computed by means of error propagation without the
availability of actual measurements. We carried out such error analysis for several
mission scenarios, not only for an idealized mission (polar orbit, no band limitation,
full tensor gradiometer), but also more realistic situations like polar gaps, band lim-
itation of the gradiometer and the planar Aristoteles gradiometer measuring only
three tensor components. The latter, non-ideal situations have a rather large impact
on the results. Apart from numerical singularities due to ill-conditioned sub-blocks
of the normal matrix, some blocks may become singular too, which means that
certain coefficients are not estimable any more from the observations. Of course
the system can be stabilized by adding prior information, but this leads to biased
estimates. Furthermore it appears that, even with stabilization, the results with a
band limited gradiometer did not meet the requirements. Additional GPS tracking
information, as it is planned for the Aristoteles mission, is needed to resolve this
problem.

Since we had at our disposal a global set of simulated gravity gradients, we could
perform a global recovery of potential coefficients from this set. The procedure
showed here is an iterative process, but only a first step is really implemented so
far. Two strategies were applied. The space-like method uses the series expansion in
geocentric polar coordinates, and it requires the set ofobservations to be transformed
into a global equi-angular grid ofaveraged values. Such a grid is not required for the
so-called time-like method (which uses the series expansion in orbital coordinates),
but this method is more time consuming. Both methods give promising results.

In our error analysis computations we assumed an instrumental precision of 0.01
E l\/Hz (as foreseen for Aristoteles) . However, superconducting gradiometers are
under development, aiming at a precision of 0.000L Elt/Hz. Also, orbit determi-
nation techniques are gradually improving, aiming at the centimeter level. Such
improvements of precision may, in the future, require a relativistic formulation of
the model. Furthermore, from a theoretical point of view, a relativistic description
of satellite gradiometry emphasizes that a gradiometer measures the curvature of
four-dimensional spacetime. For those reasons, we included a relativistic view on
gradiometry. The equations are derived in the weak field approximation (in par-
ticular the so-called Post-Newtonian approximation), which is sufficient for earth
orbiting satellites. The equations of motion of the satellite appear to be those of
a spacetime geodesic and they show the relativistic contributions to the satellite's
orbit. A relativistic description of the second order potential derivatives appears
to be governed by the so-called equation of geodesic deviation. The latter shows
the relativistic contribution to the observed gravity gradients. It is concluded that
relativistic effects can be modelled although they are not required at present.

vill



1 l

Introduction

In spite of the fact that the concept of satellite gradiometry is more than 30 years
old, no actual gradiometric mission has been undertaken yet. Several instrument
and mission proposals have been done, of which the Aristoteles mission concept of
the European Space Agency (ESA) is the most promising one for the near future.
The main purpose of a Satellite Gravity Gradiometry (SGG) mission is the global
determination of the earth's gravitational field with high precision and spatial reso-
lution. Some central aspects of the process to derive from the actual observations
the required gravitational information will be treated in this work. This explains the
title "Gravity Field Modelling using Satellite Gravity Gradiometry" . In this title,
three topics attract our attention. Obviously, the key issue here is gravitation,
which word is reflected in the word grauily. The word gradiometry reveals that we
have to do with rneasurements. Finally, the word satellite points out that the
measurements are carried out in a spacecraft.

Gravitation

The tale of the falling apple marks one of the great moments in scientific history.
According to it, Isaac Newton (who lived from 1642 to 1726), when sitting in his
garden, watched an apple fall from a tree. The apple fell straight down, along a
line which, if extended inside the earth (considered a homogeneous sphere at the
moment), would go through the center of the earth. While thinking about this
phenomenon, he came up with his famous law about the mutual attraction of two
masses. The attractive force, called grauitation, is directed along the line connecting
the two centers of the objects and is, up to some constant (the gravitational constant
G), proportional to both masses as well as to the squared inverse of the distance
between the two objects. This famous inuerse-square-law thus tells us that on the
one hand the gravitational force increases with increasing mass of one of the objects,
whereas on the other hand the force decreases with increasing distance between the
objects. Objects moving under the influence of a force will be accelerated in the
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same direction as the force acts. Whereas the gravitational force depends on the
mass of the object, the grauitational acceleration does not.

Although Newton lived more than two and a half centuries ago, we still use
the inverse-square-law for all earth related applications. Not only does this law
explain the falling of an apple. By using the same law, the motion of the planets

around the sun and of moons and satellites around the planets or the trajectories
of projectiles can be explained. In the beginning of the 20th century, however,
measurement techniques became more accurate, and some aspects of the motion of
the planets in the solar system which showed up in the measurements, could no
longer be explained by Newton's law. Albert Einstein (1879-1955) came up with a
new theory about gravitation. Einstein's gravitational theory is the famous general
theory of relativity (GTR). The addition "general" refers to the fact that gravitation
is included in the theory, where this was not the case in the so-called special theory
of relativity (STR), which he conceived some years earlier. Einstein's GTR did
not state that Newton was wrong. In fact, Newtonian theory represents a limiting,
approximate case of the GTR. For cosmological applications, the use of the GTR is
inevitable, but for most earth related applications we can stil l confine ourselves to
Newtonian theory. However, with increasing measurement accuracy, as for instance
is the case with many modern satellite related measurement techniques, relativistic
effects might have to be taken into account.

If the earth would have a perfectly spherical shape and if the mass inside the
earth would be distributed homogeneously (i.e. equal mass density throughout the
whole sphere) or rotationally symmetric, the line along which Newton's apple fell
would indeed be a straight line, directed radially and going exactly through the
earth's center. This center point would be the center of mass of the earth. The
gravitational force exerted by the earth onto a proof mass (like the apple) would be
exactly the same as the force exerted by a point mass of infinite small dimension with
equal mass as the earth and located at the center of the earth. At any other point

at the earth's surface the force on the apple would have exactly the same magnitude
and (radial) direction. Moving away from the earth's surface, the force would stil l
be directed radially, although its magnitude would decrease with increasing altitude.

The graaitational field obtained in this way would be perfectly spherically symmetric.

In reality, however, the situation is more complex. Although seen from the moon
or from any other point in space the earth may look much like a perfect sphere, the

deviations from this idealization are significant. Due to the fact that the earth is
deformable and rotates about an axis going approximately through the north and
south pole, it is better represented as an ellipsoid, flattened at the poles. Looking
in more detail we also see mass irregularities at the surface of the earth, like oceans,
mountains, plains, etc. Also the material inside the earth is not distributed homo-
geneously: the dynamics of the earth are more considered a convective system, with

an enormous variation in temperature, resulting in phenomena such as plate tec-
tonics, subduction zones, ocean ridges and a considerable radial and lateral density
differentiation. As a result, the gravitational force at different places on the earth

2



will not be the same: both magnitude and direction of the force will deviate from
one place to the other from that of a homogeneous sphere or spheroid.

The gravitational field of the earth is rather irregular, although the deviations
from a spherical symmetric shape are not very large. In fact, for some applica-
tions a spherical earth may be a sufficient approximation. For other applications
an ellipsoidal earth may be needed, but often higher-order approximations are re-
quired. Therefore, the gravitational field is represented by a series, of which the
spherical part is the first term, the ellipsoidal part the second term, and so on. The
more detailed information or the more accurate information about the gravitational
field we need, the more terms are required in the series expansion for an adequate
representation.

If we would exactly know the (irregular) mass distribution of the earth, we
could compute the gravitational field from it (and thus obtain all terms in the
series expansion) and see how much this field deflects from a perfectly spherically
symmetric one. Unfortunately we still do not know the exact mass distribution. On
the contrary, one of the main objectives of gravitational field determination is to
learn more about the internal mass constitution. Unfortunately an exact inference
is impossible. One speaks of the gravitational inverse problem.

Measurernents

If Newton would have measured the time at which the falling apple would have
passed through imaginary levels of known distance, he could have computed the
gravitational acceleration. Modern instruments sti[ use such free fall technique to
measure gravitation. More precisely, when situated on the rotating earth, not gra-
vitation is measured but grauity. Gravity is the sum of gravitation (attractive force
between two masses) and centrifugal acceleration The latter is due to the rotation
of the earth and its direction is perpendicular to the axis of rotation. Today's in-
struments are very accurate. In the case of an absolute gravity apparatus, a proof
mass is dropped in a vacuum chamber and its path is measured interferometrically
with a laser. In this way one obtains the magnitude (or length) of the gravity vector,
at the specific place where the measurement is done, to lO-e. Such absolute gravity
measurements are difficult and therefore expensive. They are carried out only at a
few points on earth. Since gravity on earth is approximately lOl m/s2 the achieved
precision corresponds to accelerations as small as 10-8 ̂ /"2 .

In order to get an idea about gravity in between absolute stations, one mea-
sures gravity differences at arbitrary measurement points relative to the absolute
stations. Such relotfue gravity measurements are easier to perform than absolute
measurements and are carried out with spring grauirneters. Thereby, the length of
a spring, mounted under a particular angle and suspending a horizontal lever with
a proof mass) is measured. With modern spring gravimeters a precision of 5 to 10 .

lO-E m/s2 can be reached.
The direction of the gravity vector is defined by the astronomical latitude and
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longitude, i.e. the direction of the plumb line as determined by astronomical ob-

servations. Thus the gravity vector in any point is determined by three quantities:

astronomical latitude and longitude (direction) and magnitude (usually referred to as

grauity).In our surrounding three dimensional world any vector can be determined

by three quantities: its components in all three spatial directions. Mathematically

speaking these three components are the gradient of some scalar function, in our case

the grauity potential. They describe how the scalar function changes when moving

in all three directions. But we have seen that gravity itself also varies from place

to place. These changes of gravity can also be described by gradients, and are thus

called grauity gradients. They also can be used to describe the gravitational field of

the earth and are more sensitive to small variations of the earth's mass constitution.

At the beginning of our century, the Hungarian physicist  Eci tvos (1348-1919) de-

veloped an instrument to measure gravity gradients. This instrument was a so-called

torsion balancer. Instead of one proof mass used in a gravimeter, a torsion balance

consists of two proof masses, (asymmetrically) suspended to the arms of a balance.

The gravity gradients produce a torque on the beam of the balance, resulting in a

rotation of the beam. The gravity torque is counterbalanced by a restoring torque

exerted by the fiber with which the beam is suspended. The restoring torque is a

measure for the gravity gradients. Ecjtvcis achieved with his instrument a precision

of  1E ( t  E :  l  Ec i tvc is  un i t :  10*e  /s2) .  Wi th  the  la rges t  g rad ien t  on  ear th  be ing

approximately 3000 E, this means a precision of 10-3. In general instruments which

measure gravity gradients are called gradiometers, and the measurement technique

is called gradiometry (measuring the gradients of gravity), analogous to the word

grauimetry (measuring gravity).

In principle, Newton could have measured gravity gradients if he would have
seen ttuo apples fall simultaneously from the tree and would have closely followed

their adjacent trajectories. Both trajectories, if extended inside the earth, would

converge as to run through the earth's center of mass, so the distance between the

paths would gradually decrease. If the change in the distance between two falling
proof masses would be measured, it would be a measure of the gravity gradient, i.e.

of the variation of gravity in the direction of the line connecting the two masses2. In

a next step, one could think of constraining the motion of the falling proof masses,

r W i t h t h e s a m e t y p e o f  i n s t r u m e n t E 6 t v b s d i d a h i s t o r i c a l t e s t t o l 0 - 8 o f  t h e s o - c a l l e d  p r i n c i p l e

o f  equ iua lence o f  iner t ia l  and grav i ta t iona l  mass  (Eotv6s ,1953) ,  (Jung,1961) .  In  recent  years  h is

tests were reanalyzed in relat ion to a search of the so-cal led f i , t ' th /orce (Fischbach et al. ,  1986).
t ln the language of the GTR, the two proof masses, being in free fal l  in the gravitat ional f ield of

the earth, fol low nearby geodesics ("shortest paths').  In a f lat space, I ike a two dimensional sheet

of paper, geodesics are straight l ines, which, i f  being paral lel ini t ial ly, remain paral lel (constant

distance between the l ines) and never cross. In the GTR, the space under consideration is not f lat

but curved, just l ike the two dimensional surface of a sphere. Fbrthermore i t  is four dimensional,

where three spatial direct ions and t ime merge into one so-cal led spacetime (which is hard to visu-

al ize). Geodesics in curved spacetime are therefore not straight l ines but are curves. The distance

between ini i ial ly paral lel geodesics changes and this distance change is a measure for the curvature

of spacetime. So in terms of the GTR, gravity gradients describe the curvature of spacetime.

4



such that - during their fall - they are held in a fixed position relative to each other
and their distance would remain constant. The force needed to constrain the motion
could be measured and would again be a measure of the gravity gradients. This is
the principle used in spaceborne gradiometry. There, a gradiometer, consisting of
two or more proof masses, arranged in a two or three dimensional orthogonal set-up,
is flown around the earth on board a spacecrBft. Whereas the gravity gradient is
(mathematically) defined in exactly one point of infinitesimal dimension, a real life
gradiometer has some definite size. Practical limitations (i.e. material properties)
prevent us from reducing the size of an apparatus ad infinitum, so the distance of
two proof masses in a gradiometer, although small, is not infinitesimal, but has some
definite value, say 1meter3. This means we are actually measuring Lhe differencein
gravitational acceleration between the locations of the two proof masses. For that
reason the technique is often called differential accelerometry. ESA has planned
a satellite mission called Aristoteles, which should carry a gradiometer measuring
gravitational gradients using the differential accelerometry principle.

Satellites

The Aristoteles project is a so-called dedicated gravity field mission, its main pur-
pose being the determination of the earth's gravitational field. The idea, however,
of using earth orbiting satellites for such a purpose is not very new. Already from
the time of the Iaunch of the first artificial earth orbiting satellite in 1957, people
analyzed their orbits to determine the main characteristics of the earth's gravita-
tional field. As said before, the orbits of satellites around the earth or around any
other planet, as well as the orbit of planets around the sun, are determined pre-
dominantly by the gravitational field of the earth, respectively of other planets or
the sun. In the 17th century) even before Newton, Kepler established three laws
concerning the motion of planets around the sun. Actually Newton used Kepler's
laws when deriving his famous inverse-square-law. According to Kepler, planets
move in elliptic orbits around a spherical body. The earth is nearly spherical, its
gravitational field is nearly spherically symmetric, and thus the orbits of earth or-
biting satellites are nearly elliptical. The main deviation from spherical symmetry,
the earth's flattening, results in a precession of the orbital plane and a precession of
the orbit ellipse in the orbital plane. Other departures from spherical symmetry in
the gravitational field (in general called anomalies) yield other, smaller, deviations
in the satellite's orbit. Precise analysis of satellite orbits thus tells us something
about the gravitational field.

The principle is not so very much different from Newton's falling apple. Also
satellites "fall" in the gravitational field of the earth. The difference is that Newton's
apple started, relative to the earth, from a rest position at the branch of the tree

3Actual ly, according to the principle of equivaience, an inf initesirnal small  gradiometer would not

exist.  Str ict ly speaking this principle holds in exactly one ( inf ini tesimal small) point only, where

one could no longer discriminate between inert ial  and gravitat ional accelerat ions.
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and fell straight down on the earth's surface. Would it have been thrown away

horizontally (i.e. parallel to the earth's surface) with high velocity, it would have

hit the ground some distance away from him. The higher above the earth's surface

a proof mass is ejected ("launched") and the higher its initial velocity, the further

away the point of hitting the ground. Eventually, due to the spherical shape of the

earth, the proof mass never hits the earth's surface, but continues to fall, so to say

not to the earth, but around it. Obviously, as already pointed out by Newton, the

same law which describes the fall of the app.le, describes the motion of satellites

around the earth.
Considerable effort has been invested into the determination of the earth's gravi-

tational field from the analysis of satellite orbits. The same method will, additional

to the gradiometry part, be used with ESA's Aristoteles mission. Especially the

main deviations from a spherically shaped gravitational field can be determined

from orbit analysis. Other, smaller deviations, i.e. the more detailed structure, rep-

resented by higher-order gravitational field parameters, are determined from the

gradiometer measurements.
Nevertheless, the range of detail with which the gravitational field can be deter-

mined from space, is not unlimited. According to the inverse-square-law, gravitation

decreases with increasing distance between the objects. This so-called attenuation

effect is especially noticeable with satellites, since they move at very large distances

from the earth's surface. Even with Aristoteles, which will move at a "very low"

altitude of "only" 200 km, many details of the gravitational field will remain unde-

tectable. Furthermore, at 200 km there is stil l some atmospheric density left, which

disturbs the motion of the satellite and due to which measurements are extremely

difficult. Atmospheric drag causes the satellite to descend, so that it needs to be

kept in a 200 km orbit by maneuvers, using small rockets. These maneuvers also

disturb the measurements, as does e.g. the sloshing and consumption of the fuel in

the tanks needed for the rockets.
A great advantage of using satellites for gravity field determination is that with

one single mission (nearly) the whole earth can be covered with measurements in

short time. Of course, launching a satellite is expensive, but travelling the earth

by conventional means with an instrument and carrying out measurements with

corresponding density as a satel l i te,  is much more expensive. Just think about

high mountains, oceans and polar regions, which may constitute insurmountable

hindrances for doing terrestrial measurements. Even after more than 50 years of

terrestrial measurements Iarge parts of our planet remain unsurveyed. Furthermore,

a set of terrestrial measurements is not Iikely to have comparable precision all over

the world, whereas the satellite mission will deliver us a global data set of homoge-

neous quality.



This study in brief

This study deals with the main subjects of a global determination of the earth's
gravitational field from a satellite gravity gradiometry (SGG) mission, and as such
includes aspects of gravitation, measurements and satellites as discussed above. Be-
sides introductory remarks on the principles of satellite gradiometry and the appli-
cations of a precise and highly detailed gravitational field, this study focuses mainly
on the analysis process of converting the observables (gravity gradients at satellite
altitude) into the gravitational information at z.ero altitude. Furthermore, special
attention is given to the precision of the derived gravitational information, being
a function of measurement precision, mission parameters and chosen mathematical
model.  Final ly,  as a look into the near future, a descr ipt ion of Einstein's GTR is
given, in as far as i t  may concern an SGG mission. Relat iv ist ic correcbions to New-
ton's theory are derived, as may be necessary to account for in future gradiometer
missions.
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S atellite gradiometry :
principles and applications

The purpose of gradiometry is the precise and detailed determination of the earth's

gravitational field. This is done by measuring the second-order derivatives of the

gravitational potential V of the earth. An instrument which measures these second-

order derivatives is called a gradiometer. In satellite gradiometry such a gradiometer

is flown in a satellite around the earth in a low, almost circular and polar orbit. In

this chapter the principle of satellite gradiometry will be illustrated by looking at

the motion of test masses in space. Furthermore a short overview of the possible

applications of gradiometry is given, as well as a short discussion about instrumental

aspects concerning the gradiometer and the satellite in which it is flown, with special

attention to the planned Aristoteles mission.

2.L Principle of satel l i te gradiometry

Consider first two proof masses situated in two nearby points A and B in space, see

figure 2.1.a. The gravitational acceleration in point A due to the attraction of the

earth is U(A).The components are given with respect to a local cartesian coordi-

nate system 
"d. 

See appendix A for the definition ofvarious coordinate systems and

appendix B for some remarks on notation. The gravitational acceleration vector is

directed along the line of force going through point A, perpendicular to the equipo-

tential surface through A. The gravitational acceleration in B is V;(B) Suppose

A and B are situated on the same equipotential surface. Without any support and

without any other forces appearing, the two proof masses will fall towa.rds the earth.

Since the gravitational field of the earth is almost a perfect central force field, the

distance between the proof masses will decrease while falling towa.rds the earth due

to the convergence of the Iines of force. The change in distance between the proof

masses is a measure for the difference in gravitational acceleration in A and B, cf.

(Carrol l  and Savet,  1959) and (Savet,  1969).

8



a. Proof masses on the same

equipotential surface

Figure 2.1 Fall ing proof masses.

2.1. Principle of satellite gradiometry
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b. Proof masses on the same

Iine of force

o
a

A Q
I
I vi@)

O '

Now consider the two points A and B situated on the same line of force but on

different equipotential surfaces, see figure 2.1.b. The proof mass in B is closer to

the earth as the one in ,4 and is therefore pulled harder. If the proof masses are

dropped and are falling towards the earth along the same line of force, the distance

between them will increase. Again, the change in this distance is a measure for the

difference in gravitational acceleration between the proof masses.

In a next step, consider a spacecraft (satellite) carrying out an orbital motion

around the earth. The spacecraft, or more precisely the center of mass O of the

spacecraft, is in free fall in the gravitational field of the earth. In case of a circular

orbit, the gravitational acceleration at O, which is directed towards the earth, is, at

any moment, compensated by the centrifugal acceleration resulting from the orbital

motion, which is directed outwards. In O no resultant forces appear' Suppose that

the center of mass O of the satellite is not a material point, so that we can place

one of the two proof masses from above at O. The proof mass will then also be in

free fall around the earth, carrying out the same orbital motion as the satellite and

it will remain at O (and thus at rest relative to the spacecraft) during the motion'

Suppose now that we place the second proof mass at another point in the interior

of the spacecraft, close to O. The second proof mass will be situated on another

line of foice and/or another equipotential surface of the gravitational field, so it will
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start to move relatively to the first proof mass at O. This relative motion results
in a distance change between the proof masses according to the examples above
( f i g . 2 . 1 ) .

If both proof masses are placed inside the satellite at arbitrary points but not
at O, again a relative motion between the proof masses will appear as a result of
the difference in gravitational acceleration at the two points, cf. (Rummel, 1989a),
but furthermore they will move relatively to O. So they will start drifting inside the
satellite, eventually hitting each other or the satellite skin.

This skin consists of points,  which, together with al l  other (mater ial)  points
of the satellite, form a rigid body. AII points of this body carry out the same
orbital  motion as O, i .e.  they have the same angular veloci ty (disregarding any
deformations). Although they are at any moment situated at other points in the
gravitational field than O they remain, as a result of the material composition, in a
fixed position with respect to O.

Suppose now that the two proof masses are also kept in a fixed position with
respect to O by means of some mechanical or electrostatical suspension. Then also
the proof masses are forced to carry out the same orbital motion as O. Proof
masses constrained in this way can be seen as accelerometers. The outputs of these
accelerometers are the forces needed to keep the proof masses in these fixed positions
with respect to O (and thus with respect to each other). They are measures for the
acceleration differences between the two points and O and can therefore be used as
observations to measure the gravitational field of the earth.

These relative accelerations of the two proof masses can be expressed by expand-
ing the gravitational acceleration ( in a Taylor series with respect to O. For the
points ,4 and B we have:

vi(A) : V;(o) + V;1(o)dr' (o, A)
v;(B) : v;(o) + v;1(o)drj (o, B)

where we only kept the linear term. The dri(O,A) are the coordinate differences
between O and A. The overall motion of the satellite (of the center of mass, i.e.
V;(O)), which is common to both points, can be eliminated by taking the difference
between the acceleration in A and in B. We obtain;

N;(A, B) :  Vi(B) -  V;(A)

: v;i (o)(d"i 1o, a1 - ari (o,'t))
: v;i(o)drt (A, B) . (2 .1 )

If dr'(A,B), the distance between the points A and B, is known, we may compute
from this equation the gravitational gradients V;i(O) since d[ is measured by means
of the accelerometers. An instrument consisting of two or more of such accelerome-
ters and having as output the gravitational gradients is called a gradiometer.

The technique of measuring the second-order potential derivatives in the way de-
scribed above is known as difrerential accelerometry, see for example (Forward, 1974)
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or (Balmino et al., 1985). A gradiometer working according to this principle will

consist of a symmetrically arranged array of accelerometers. The gradiometer will

be built in the satellite in such a way that the center of the instrument coincides
with the center of mass O of the satellite.

The neglect of the terms proportional to the third- and higher-order derivatives

of the potent ial  is of  the order of 10-10 E (t  E :  1 Eotvcis Unit  :  10-e s-2) for a
distance between A and B of about 1 m and at an altitude of the satellite of about

200 km, which is acceptable in view of the present and near future gradiometer

instrument precision, cf. (Paik and Richard, 1986).

So in principle it should be possible to obtain information about the gravitational

field of the earth by observing the gravitational gradients V;i in the way described
above. However, up to now we considered the two proof masses and the satellite

moving through space under the influence of gravitational and rotational forces only.
In reality also other, external and non-conservative, forces may act on the satellite.
Such forces are due to, for example, solar radiation pressure, and, at lower altitudes,
air drag due to the earth's atmosphere. They act on the outer skin of the satellite,
the satellite housing. But if the gradiometer instrument is rigidly attached to this
housing, these forces will also act on the instrument and therefore also on the proof

masses due to the suspension. The measured accelerations are in this case a mixture
of gravitational accelerations and external forces. Since we are only interested in
gravitational forces, such external forces are viewed upon as disturbing forces.

One way to deal with these disturbing forces is to build a so-called drag free satel-
lite. In such a satellite the instrument is not rigidly attached to the satellite housing.
This housing, the "outer part" of the satellite, undergoes the non-gravitational dis-
turbing forces causing a relative motion between the housing and the instrument (or
the "inner part" of the satellite). In order to prevent collision of the two the motion
of the outer satel l i te is cont inuously regulated. The inner satel l i te then carr ies out
a perfect free motion, under the influence of gravitation (besides that of the earth
also of the sun, moon and other planets) only.

On the other hand, since the external forces act on every accelerometer in the
same manner (i.e. same direction and same magnitude) , they are, just like the com-
mon acceleration V;(O), eliminated if we take the difference between two accelero-
meter outputs, as in eq. 2.1. This el iminat ion, however,  only works properly i f  the
accelerometers are exactly identical (in dimensions and in orientation) and if they
are perfectly aligned relatively to one another and relatively to the instrument. The
use of a non drag-free satellite therefore puts more stringent requirements to the
construct ion of the instrument.

A final aspect which we will consider here is the rotation of the gradiometer
instrument.  Suppose the gradiometer is at  rest with respect to the local cartesian
coordinate system r i ,  of  which the or igin coincides with the center of mass O of
the satellite, and thus with the center of the instrument. Suppose furthermore that,
at  a certain moment (e.g. the ini t ia l  point of  the mission),  this local coordinate
system is oriented such, that the z-axis is directed radially outwards, away from the

I 1
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earth, the c-axis points in the direction of the motion of the satellite (along track)
and the gaxis is perpendicular to the orbital plane (cross track) as to complete a
right-handed coordinate system. The satellite (or the instrument) is said to have a
space-fixed orientation if it orbits the earth such that it keeps the same orientation
with respect to the fixed stars, i.e. the local coordinate system remains parallel to the
initial position. This means that the z-axis after the initial point no longer points
in the radial direction, the c-axis no longer along track, only the y-axis remains
pointing in the cross track direction. On the other hand the coordinate system (and
thus the instrument) does not rotate in this case.

If we let the z-axis keep its radial direction and the u-axis its along track direc-
tion, the satellite is said to be earth pointing. In this case the coordinate system does
rotate. In particular it performs one complete rotation during one orbital revolution
of the satellite. Its angular velocity in that case is 2r f T, where ? is the orbital pe-
riod. In our example the rotation takes place about the y-axis. From an earth point
of v iew, such earth point ing motion may be attract ive, but i t  has the disadvantage
that inertial accelerations occur due to the rotational motion. These accelerations
are also present in the output of the accelerometers. Since the accelerometers all
have different positions with respect to O, the effect of the rotation is not cancelled
during the differencing of the accelerometer measurements as in eq. 2.1. But if we
can discriminate between the gravitational and the rotational accelerations by either
some numerical method or some a-priori rotational information (so that the rota-
tional motion can be considered known), cf. e.g. (Rummel, 1986), we have a means of
measuring the earth's gravitational field, called satellite gradiometry. For a compre-
hensive general treatment of satellite gradiometry, see for example (Rummel, 1985a,
1985b, 1986). For related topics on the principles of satellite gradiometry see e.g.
(Forward, 1981, 1982),  or (Mori tz,  1968).

2 .2  App l ica t ions

The aim of a gradiometric satellite mission is the determination of the earth's gra-
vitational field, globally with high precision and high spectral resolution. In the

case of the first planned mission, Aristoteles, one would like to obtain the following
precisions (see also sect ion 4.2)

g e o i d h e i g h t s : o ( 1 0 c m

gravity anomalies : o < 5 mgal ( 1  m g a l  :  1 0 - 5  m  r - 2 )

both with a spat ial  resolut ion of between 50 and 100 km (half*wavelength).  This
corresponds to a spherical harmonic expansion (see section 3.2) complete up to

degree and order 200 to 300.

So far our knowledge of the earth's gravity field relies on the one hand on the
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analysis of the motion of satellites and on the other hand on terrestrial measure-
ments. Several groups collect terrestrial point gravity anomalies and process them
to  equa l 'angu lar  mean grav i ty  anomal ies ,  e .g .  o f  s ize  1o  x  1o ,  6 'x  10 'o r  3 'x  5 '
(corresponding in our Iatitudes to 100 km, 10 km or 5 km side-length). The origi-
nal point anomalies are derived from relative gravity measurements that are tied in
some countries into national first-order networks, containing some absolute stations,
or into the International Gravity Standardization Network. For the computation of
anomalies also heights are necessary. Ideally they should be levelled heights re-
ferring to a well-defined height datum. In practice one has often to sustain with

barometric heights or not well-defined local levelling networks. As a consequence it
must be feared that the mean gravity anomalies in some areas of the world contain
systematic errors. For large areas no gravity anomalies are available at all, either
because of political reasons the data are not made available or because areas are
not easily accessible, e.g. polar regions, high mountain ranges. In particular ocean
areas, where gravity measurements are difficult to do and very costly, large areas
are not covered. A map of the current coverage with 1' x 1o mean anomalies is
given in figure 2.2. Despite large white areas the impression is seemingly not too
bad. However, inspection of a histogram of the precision of these values shows that
only a rather smal l  port ion meets present day requirements, see f igure 2.3.

Figure 2.2 World map of the couerage with loxlo mean anomalies
(Ropp, 1977).

One way to get gravity information in ocean areas is to convert heights, obtained
from satellite altimetry, into mean gravity anomalies. There exist, however, two
principal objections against doing this. First, the altimetric heights, even after
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Figure 2.3 Histograrn showing the precision of the 1"x 1o rnean anomalies

frorn figure 2.2 (Rapp, 1977).

subtraction of our best models of the ocean topography, will not coincide with the
geoid. Hence systematic errors will affect the derived gravity anomalies. These types
of "gravity anomalies" should certainly never be used for geoid determination in the
context of ocean studies. Secondly, the conversion method can theoretically not
be confined to ocean areas and is intrinsically unstable. Also, because of this, the
actually applied numerical methods will introduce uncontrolled biases. However, for
some purposes, e.g. in geophysics, the gravity anomalies determined in this manner
are useful.

Neither with terrestrial (including shipborne) nor with altimetric derived gravity
anomalies a global coverage can be achieved in the foreseeable future. Global gravity
information comes from the analysis of satellite orbits and is expressed in sets of
spherical harmonic coefficients currently up to degree and order 30 to 70. These sets
are called geopotential models. They are derived at a few computing centers in the
world in a complicated estimation process consisting of several phases. In essence,
the tracking data (laser, microwave, etc.) from a Iarge number of stations to a large
number of satellites is analyzed. Their orbits are determined and combined in a least
squares adjustment to yield e.g. spherical harmonic coefficients of the gravity field.
The separability of the individual coefficients and their precision depends largely
on a good distribution of the employed satellites in terms of orbit characteristics
(inclination, altitude, eccentricity). The error standard deviation per degree of some
of the recent geopotential models is shown in figure 2.4. The spatial resolution is
stil l l imited. For some models a signal to noise ratio of one is reached near degree
50.

We conclude that our current knowledge of the gravity field is far from reach-
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ing the level of precision, resolution and completeness aimed for by gradiometry.

This leads to the question why one needs such good knowledge of the gravity field.

Examples in four fields of applications serYe as illustration'

Example One: Geodesy and levelled height

Levelled heights are used in geodesy for mapping, civil constructions, monitoring

of land subsidence, control of tide gauges, etc. The process of levelling is very

time consuming and therefore expensive. In recent years satellite positioning by

GPS (see next section) became available. GPS measurements deliver meanwhile

relative positions between points at a 10-7 to 1O-8 level (depending on the baseline

length). The cartesian coordinate differences AX, LY, LZ between two points in the

global GPS system can be converted into differences in geodetical latitude, longitude

and height. Unfortunately are the height differences conventional, referring in a

purely geometrical sense to an ellipsoid. A height difference, Ah, of this kind could,

however, be converted into a quasi-levelled height difference AI/ were the geoid

height Al[ available:

L , h :  A N  +  A l l  .

The geometric situation is sketched in figure 2.5. The precise computation of AN

requires precise knowledge of the earth's gravity field. The gravity field as obtained

by satellite gradiometry would suffice to determine the "absolute" geoid with a

precision of :E 35 cm or relative with t 52 cm, t 18 cm or * 2 cm over a distance
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Figure 2.5 Relat ion between relerence surlace (el l ipsoid), geoid and topogra-

phy (ESA, 1991).

of respectively 100, 10 and 1 km. In combination with local gravity information,

as available in North-America, Australia or Europe, cm-precision is feasible and

levell ing can in many instances be substituted by a combination of GPS anci a

precise geoid.

Exarnple Two: Precise satellite orbits

The main obstacle on the way to orbit determination with cm-precision is the inac-
curacy in our knowledge of the gravity field. Of course also non-gravitational effects
form a limitation, in particular for bulky spacecraft, but could be eliminated in prin-
ciple by a drag-free set-up or adequate parametrization. A precise gravity field -

in combination with accurate and dense tracking - would result in orbit accuracies
of a few cm. This would not only significantly increase the value of ocean, ice and
land altimetry, but be useful for geo-kinematical applications too.

Exarnple Three: Solid earth physics

The applications of an improved gravity field in solid earth physics were described
in a number of reports.  I t  is referred to (SESAME, 1986),  (NASA, 1987) and
(Lambeck, 1990). In geophysics it is useful to distinguish between studies concerned
with core or core/mantle boundary, mantle convection processes and lithosphere.
Satellite altimetry in combination with bathymetric data brought a much improved
understanding of the oceanic lithosphere. Surprisingly it is the continental litho-
sphere, as well as the polar regions, where currently better insight is desirable.

Due to the inverse character of the problem gravity alone shall never suffice
for a determination of the density structure of the earth's interior. However, pre-
cise gravity and topographic data in combination with regional and global seis-
mic tomography would drastically reduce the uncertainty range of possible solu-
t ions, see e.B. (Hager,  1983) (Dziewonski,  l98a) (Woodhouse and Dziewonski,  1984)
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or  (Spakman,  1988) .

Exarnple Four: Oceanography and clirnate change

The area where the need for an improved gravity field probably is most pressing
is oceanography. Like terrain topography is defined as the deviation .Il of the to-
pographic relief from an equipotential surface (geoid) the sea surface topography
(SST) is the deviation of the actual ocean surface from the geoid. The ocean surface
with no external forces such as t ides, winds, storms, etc.  would.be level,  coinciding
with an equipotential surface. Hence any deviation from a level surface can directly
be attributed to ocean dynamics. Satellite altimetry provides sea surface heights
h relative to a chosen reference surface (ellipsoid). If a precise gravity field were
available precise geoid heights N could be determined and from the relationship

h :  N  +  H

the SST height 11 could be directly derived. Leaving aside the somewhat more
complicated issue of the wind driven Ekman layer (Wunsch, 1992), the slope in the
geoid can be translated into surface ocean circulation. In other words, altimetry
in combination with a known geoid would let us see the ocean surface flow. For
oceanography this would be a milestone.

However, there is more to it. To the present day, ocean circulation is studied on
basis of hydrographic measurements (salinity, temperature, pressure, depth) along
selected ocean sections. In order to derive circulation from the data - employing
equations of motion - an assumption on a level of motion at some depth has to
be introduced (Pond and Pickard, 1983). As one knows, such a layer is purely hy-
pothetical and consequently systematic errors enter the calculations. Altimetry in
combination with the geoid removes this uncertainty. It provides the needed bound-
ary constraint for the equations of motion. Thus the gravity field information also
permits to see the deep ocean in the proper way.

Circulation is the key to many ocean transport processes) whether it is heat
transport, transport of plankton or polluted water. Heat exchange between ocean
and atmosphere is probably the main uncertainty in a better understanding of cli-
mate changes. Oceans are considered a main buffer of atmosphere heat but the
correct mechanism of heat transport in the oceans and exchange of heat between
water and air is not well understood.

With these examples we tried to il lustrate the need for an improved gravity field
knowledge throughout earth sciences. Satellite gradiometry could have a substantial
impact in this respect.

2.3 Aristoteles

At the time of writing the European Space Agency (ESA) is planning a solid earth
mission to be launched in the late nineties. The main purpose of this project (called
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Aristoteles) will be the improvement of our knowledge of the earth's gravitational
field through gradiometer measurements. A second objective will be a global analysis
of the near-earth magnetic field since, besides gravity gradiometry, the satellite
will be equipped with a magnetometer. Furthermore, our knowledge of various
geophysical phenomena such as earth rotation and pole irregularities can be enriched
by means of precise point positioning measurements from space to which extent a
GPS receiver wi l l  be on board the satel l i te (Dornier,  1989).

The Global Posit ioning System (GPS) consists of 24 (21 * 3 spare) satel l i tes,
orbiting the earth at an altitude of 20,240 km with an orbital period of 12 h. They
are evenly distributed over 6 orbit planes with an inc.lination of 55o. The satellites
transmit three different kinds of pseudorandom noise codes at two carrier frequen-
cies. With a GPS receiver on board, t racking at any t ime four of the 24 GPS satel-
I i tes, the posit ion of the receiver antenna can be determined by pseudo-ranging,
and if, in addition, differential carrier phase measurements relative to a network of
ground stations are applied, orbit reconstitution at centimeter level is feasible.

A full tensor gradiometer would consist of eight ultra sensitive three-axis accele-
rometers placed on the corners of a cube (Balmino et al . ,  1985).  However,  due to the
heavy affection of the satellite by air drag in the along-track direction (accelerations
which are more than l0 times as large as the differential gravitational accelerations)
the non drag-free Aristoteles configuration will consist of only four accelerometers
mounted in the corners of a plate perpendicular to the satellite's velocity vector
(Dornier,  1989).  This instrument is cal led GRADIO. The four accelerometers wi l l  be
very sensitive in radial and cross-track direction whereas the along-track component
will be measured with lower accuracy.

The accelerometers which will be used consist of a cubic (or parallelepipedic)
proof-mass which is kept in a fixed position electrostatically by means of electrodes
arranged around it (GRADIO, 1989). The force necessary to maintain the proof-
mass at the center of the accelerometer is measured by means of the output of the
electrodes. The differential measurement of these forces between two accelerometers
is a measure for the gravi tat ional gradient (see sect ion 2.1).

Perturbing forces resulting from air drag, solar radiation pressure, etc., are elim-
inated in the measurement process by differencing the accelerometer outputs (as we
have seen in sect ion 2.1, so-cal led common mode reject ion).  However,  this requires
a very good linearity of the accelerometers, a low coupling between the sensitivity
axes and a good matching of the scale factors and of the alignments of the instru-
ment axes (Dornier, 1989). To this extent a calibration device is provided, situated
in the center of the gradiometer plate. The calibration device is furthermore needed
to scale the accelerometer outputs to proper gravitational units.

The material out of which the satellite is built up also causes a gravitational acce-
Ieration which is measured by the gradiometer (so-called self gravitation). Whereas
the signal coming from the rigid satellite parts (housing, electronics, solar panels) is
constant and can be computed relatively simple, the part coming from the fuel in the

hydrazine tanks causes a problem, because it has time varying components. Firstly,
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there is the fuel  consumption necessary to maintain the satel l i te 's low orbi t .  I t  causes
a gradual decrease of the mass and therefore a change in the sel f  gravi tat ion. This
problem is accounted for by a symmetr ical  organizat ion and emptying of the fuel
tanks, which furthermore have a spherical  shape and are equipped with elastomeric
bladders to keep the fuel centered. In this case the change in self gravitation can be
computed easily.

Secondly, and a more critical problem, is the sloshing of the fuel in the tanks. The
tanks should be of such a size as to make sure that sloshing mode is at a frequency
out of the measurement band of the GRADIO instrument (Dornier,  ib id.) .  This
measurement bandwidth, for which an 0.01 EIJH, white noise error spectrum is
to be expected, is between 0.005 - 0.125 Hz al lowing only a good recovery of the
potential coefficients above degree 27 . In (Schrama, 1990) it is shown that the
on-board GPS receiver can be used in combinat ion with GRADIO to obtain long
wavelength (below degree 27) gravrtational information from the Aristoteles mission.
However,  combinat ion of gradiometr ic and GPS measurements wi l l  not be considered
in this thesis.

In table 2.1 an overview of error sources in satel l i te gradiometry is given. For
a detai led explanat ion and discussion of these errors see e.g. (Touboul et  al . ,  1991),
(Paik and Richard, 1986),  (Schrama, 1990) and (Rummel,  1989b),  in which further
references can be found.

The complete Aristoteles mission wi l l  last for more than four years, of  which
the gravi ty phase, in which the gradiometer measurements with the GRADIO in-
strument wi l l  be carr ied out,  has a durat ion of about 6 months. This 6 months
gravi ty mission wi l l  be performed at a low al t i tude of 200 km, the orbi t  being a
dawn-dusk orbi t  with incl inat ion 95' .3.  Because of the relat ively high air  density at
200 km, drag wi l l  cause an al t i tude decay of 400 m per revolut ion, so that regular
orbit maintenance maneuvers are necessary to keep the satellite in a band of t 3 km
around the nominal altitude of 200 km. After this 6 months period the satellite is
planned to f ly for another two weeks in a near polar orbi t  ( incl inat ion 92' .3).  This
decreases the influence of the relatively large polar gaps of the 6 months period.
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Table 2.1 Error  sources in  sate l l i te  qradiometru

instrument i geometrical I misorientation of accelerometer

scale factor mismatch between sensitivity axes
of accelerometer
non-orthogonality of the sensitivity axes of ac-
celerometer
misalignment of accelerometers in gradiometer
frame
scale errors of instrument axes

other I displacement of instrument from center of mass
of the satel l i te
non-linearity of accelerometers
incorrect cal ibrat ion
non-mechanical instrument noise. due to tem-
perature and electromagnetic fluctuations of the
environment
finite baseline of the instrument

sate l l i te attitude unmodelled rotations

or ientat ion

external forces surface forces due to air drag, solar radiation

pressure,  etc .

envi ronmental  d is turbances such as v ibrat ions,

electromagnetic and thermal irregularit ies

sel f  grav i tat ion time varying components due to fuel consump-

t ion and s loshing

resonating masses (e.g. solar arrays, antennas)

reaction wheels noise

geodet ic anomalies separation of gravitational and rotational parts
integrated observables
orbi t  errors
or ientat ion unknowns

model l rnear lzat ton error

s impl i f icat ions ( t runcat ion,  symmetr ies)

downward

continuation
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The gradient tensor and its
series representation tn

different coordinate
sysf ems

The first-order derivatives (gradient) of bhe gravitational potenbial V with respect

to arb i t rary coordinates x '  areV,  :  # .  I f ,  for  example,  the system ct  is  a car tes ian

c o o r d i n a t e s y s t e m , t h e t h r e e c o m p o n e n t s o f  T r f o r r :  l , 2 , 3 t o g e t h e r f o r m t h e a c c e -

leration vector or gravitational vector. The second-order derivatives of the potential

areVrr .  Wi th respect  to  a car tes ian coordinate system (e.g.  some inst rument  system

with respect to which measurements are taken) they are the first-order derivatives

of the acceleration vector, i.e. the gradients of the gravitation. This is the reason we

call the V,, the graoity gradients (or gravitational gradientsl). It also is the reason

for using the word gradiornetry: "measurement of gravity gradients".

In the sense of tensor analysis the quantity 7r, is a tensor. It is sometimes called

gravity tensor. The two indices r,s result from a differentiation process of the scalar

quantity V, and in arbitrary coordinates (not necessarily l inear coordinates) this

should be the process of covariant differentiation, see appendix B. Only in cartesian

coordinates the covariant derivative equals the usual partial derivative, because in

those coordinates the Christoffel symbols vanish.

A few general remarks about V,, can be made here. First, since the gravitational

potential function V is harmonic outside all masses, it fulf i ls Laplace's equation,

which in  our  arb i t rary coordinates r '  is  wr i t ten as:

g"vr" : o ( 3 . 1 )

where g" is the contravariant (or associated) metric tensor. In cartesian coordinates

th is  equat ion is  wr i t ten out  in  the wel l  known formVrr lVyu lV""  :  0 .  We see that

rGravity :  gravitat ion f centr i fugal accelerat ion. In many texts the terms gravity and gravita-
t ion are not well  dist inguished. I f  the dif ference is essential,  i t  wi l i  be clear from the context.
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the d iagonal  e lements of  the gradient  tensor  in  car tes ian coordinates are l inear ly

dependent ,  leaving only two out  of  three independent  components '

Fur thermore,  s ince the gravi tat ional  f ie ld is  i r rotat ional ,  i t  sat is f ies:

e"tVg = g' (3 .2 )

which impl ies that  V* is  symmetr ic :  {%r}  :  {V, , } ,  leaving only three out  of  s ix

independent off-diagonal components (e"t is the three dimensional permutation

symbol ,  which equals I  i f  the value of  the indices const i tu te an even permutat ion,  -1

if the permutation is odd and 0 in other cases. 0' is the null-tensor, but one usually

wr i tes O,  in  which case,  however,  the index balance no longer holds.) .  According to

both propert ies (eq.  3.1 and 3.2) ,  out  of  the n ine components of  the gradient  tensor

on l y  f i ve  i ndependen t  componen ts  rema in .

A last  general  remark concerns the lensor  character  of  the gradient  tensor .  Being

a tensor ,  V* t ransforms to some other  coordinate system, 
" .g.  

tR,  u '

d t '  d t -

r l  " *  l r
Y R S  -  

n ,  .  q  Y r s
ox "  o r "

/ a  
" \

If one knows the coordinate transformation equations t ' : r '(rR) from which the

transformation matrix # i" computed these equations can easily be evaluated.

This wi l l  be done for  several  coordinate systems in sect ion 3.1.

We have seen in the previous chapter  that ,  in  pr inc ip le,  i t  is  possib le to measure

the second-order derivatives of the earth's gravitational potential using a gradi-

ometer in an earth orbiting satell i te. Actually, the gradiometer wil l deliver the

measurements in a cartesian coordinate system connected to the instrument. The

orientation of this instrument system, or satell i te system, wil l in general differ from

that  of  a local  orb i ta l  system2 due to changes in the sate l l i te 's  at t i tude.  The local

orb i ta l  system, denoted by , '  ,  wi l l  be or ientated wi th the c-ax is  a long t rack,  the

y-axis cross track and the z-axis outwards. We will at this stage assume, however,

that either the differences between the instrument system and the local orbital sys-

tem are negligible, or that it is possible to transform the measurements from the

instrument  system to the local  orb i ta l  system, us ing an equat ion of  the type 3.3.

In this particular case, such transformation wil l consist of a simple rotation matrix

between two cartesian coordinate systems having the same origin but a different ori-

entat ion,  and we wi l l  assume i t  to  be known. Thus we consider  i t  possib le to obta in

from the gradiometer bhe gravitational gradients V;1 in the local orbital system cr.

Furthermore, the orientation of this local orbibal system will, due to the inclina-

tion of the satell i te's orbit, in general deviate from the orientation of a (commonly

used) local, north-oriented coordinate system ri '  with the r'-axis directed north,

the y'-axis west and the z'-axis radially outwards. However, we wil l also assume

that it is possible to transform the components of %i from the local orbital system
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3.1. Potential derivatives in dif ferent coordinate svstems

to the local, north-oriented system by means of a known transformation, again using
an equat ion of the type 3.3, in this case wri t ten as:

(3 4)

,  , 4 r
where the f f i  is  a known rotat ion matr ix ,  c f .  (Rummel and Colombo,  1985).  I f ,

in  an ideal  case,  a l l  n ine components of  the symmetr ic  gradienl  tensor  are mea-

sured,  i t  is ,  in  pr inc ip le,  possib le to solve the at t i tude of  the inst rument  f rom the

measurements, at least if some additional information from star trackers is available

(Rummel, 1985c). For the moment we wil l assume here that we are given the gravity

gradients in  e i ther  a local  orb i ta l  system r '  or  a local  nor th-or iented system r '  .

From the available gradient measurements we like to obtain information about
the ear th 's  grav i tat ional  f ie ld.  This  in format ion is  usual ly  g iven in terms of  a set  of

potential coefficients, cf. section 2.2. One therefore needs a relation between these
spectral coefficients, often denoted e1^ and S;-, and the observabions l{i. This

re lat ionship is  obta ined by expanding the gravi tat ional  potent ia l  V in to a ser ies of
spher ica l  harmonics as funct ion of  the geocentr ic  polar  coordinates vA :  ( r ,0 , \ ) .

This  wi l l  be done in sect ion 3.2.  In  th is  sect ion a lso a ser ies expansion of  the
po ten t i a l  as func t i on  o f  t he  o rb i t a l  coo rd ina tes  ro :  ( r , , r r , ao )  o r  ro '  :  ( r , r o ,1 )  ( see

appendix A for their definit ion) wil l be given, which appears to be better suitable

for problems involving satell i te observations.

Given V as function of e.E. ro, one may compute the second-order derivati-
ves Voo (using couariant differentiation in this case because the ro are curvil inear

coordinates) .  By means of  an equat ion of  the type 3.3,  in  th is  case

I  r  ) x t  0 r l  , ,v i t j t  =  
a c  a i v i j

a r b  a r b  , ,
' t |  -  

d r i  O x , j ' o o  
, ( 3 . 5 )

one obtains the desired relat ionship between potent ial  coeff ic ients,  contained in the
Vo6, and measurements V;i.

In order to gain some insight in the signals to be expected from a gradiometer
mission, the last sect ion of this chapter,  sect ion 3.3, deals with the synthesis problem,
i.e. how to compute from some a-priori given set of potential coefficients a set of
(simulated) gradiometer data. This section furthermore shows a simple analysis
strategy, i.e. the inverse problem of recovering the potential coefficients again from
the simulated gradient data.

3.1 Potent ial  der ivat ives in di f ferent coordinate systems

In the following section 3.2 we will be given two series expansions of the gravitational
potential, one as function ofthe geocentric polar coordinates rA and one as function
ofthe orbi tal  coordinates tro or xo'  (respect ively equat ions 3.14 and 3.17).  Both ser ies
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3. The gradient tensor and its series representation in different coordinate systenrs

are given in terms of the same potential coefficient set er*,Srrn. Taking two times

the covariant derivative of these series yields corresponding series expansions for

the gravi tat ional  gradients in  curv i l inear  coordinates,  respect ive ly  Va6,V66 or  Vot6t .

They have to be related to the observed gradients, expressed in local coordinates ri

or ri ' , respectively V;i and %,j,. So what we need are transformation equations for

second-order potential derivatives.

In this section we derive these transformations, which are all of the general type

where in  our  case we take for  the ot  coordinates e i ther  tA,  ro or  ro '  and for  the

"R 
*e take c i  o ,  , i '  For  the evaluat ion of  the V,"  we need the metr ica l  tensor  and

the Chr is tof fe l  symbols for  the respect ive coordinate systems.  They are g iven in

appendix A.  In  sect ion 3.1.1 the a lgor i thm to der ive the gradient  l ransformat ion

equat ions is  expla ined.  The subsequent  sect ion 3.1.2 g ives a l is t ing of  several  expl ic i t

t ransformat ions.  Compare e.g.  (Reed,  1973) or  (Tscherning,  1976) were some of

these t ransformat ion formulae are a lso der ived.

3.1.1 Algor i thrn

The algorithm for computing the transformation equations for the second-order

potential derivatives may serve as an example for the use of tensor analysis and

index notat ion (see e.g.  sect ions 8.2 and 8.3) .  For  the def in i t ion of  the coordinate

systems used in th is  sect ion,  we refer  to  appendix A.  In  the same apPendix the

elements of  the metr ica l  tensor  and the Chr is tof fe l  symbols for  those coordinate

systems are l is ted.

We assume we have the gravitational potential l/ given as function of the co-

ord inates co.  We could equal ly  wel l  assume here thatV is  g iven as a funct ion of

rA,ro ' , rA ' , "u or  rA,  but  we take ro as example.  Since the equat ions are a l l  tensor

equat ions they a lso hold for  a l l  o ther  coordinate systems.  Given V ,  we may compute

by partial differentiation the first-order derivatives tr{o, which equal the covariant

derivatives V' and which wil l be simply denoted by Vo, so Vo - Vp : V;o.

The second-order  der ivat ives have to be computed by covar iant  d i f ferent ia t ion,

s ince par t ia l  d i f ferent ia t ion of  a tensor  wi th rank )  I  in  general  does not  lead to a

tenso r .  Th i s  y i e l ds :

V o , b : V o , 6 - l f 1 , V "

which we wi l l  s imply denote l>!  Vou,  so Vo6 -  V;ab :  Vo1.  We see that ,  in  order  to

evaluate Vo6,  we need the Chr is tof fe l  symbols I l i .  They are computed using

r ,  0 r '  ) r t  , ,
v R S :  

6 r n  6 r s v "  
'

I
l 'u :  

;s '"(9od,b 
I  gud,a -

For this purpose we need the metr ical  tensor 9o6.
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3.1. Potential derivatives in different coordinate systems

transformat ion ru le,  f rom g77 in geocentr ic  coordinates,  i .e .

arl arJ
9 a b :  6 r a  6 r t 9 t t .

Thereby g;7 equals the unit matrix and the transformation matrix # i, computed
from the coordinate transformation s/ : rI (r"). Thus the coordinate transfor-
mation has to be known. In the present example this transformation equals equa-
tion A.6. The associated metric tensor g"D is computed as the inverse of 9o6. If it
is hard to invert gab o\e can try to compute first the inverse transformation matrix

ffi and calculate goD from

^ob _  Ero  0ro  ^ r *t  - r t S r x c

in which g/J i" again the unit matrix.

The V"6 can now be computed. Since Vo6 is a tensor, its transformation equation
to another coordinate system has the form

t r  0 r o  6 r b  , ,v J K :  
6 1 1  6 r x ' " t '

We already know ffi, so with this transformation equation we easily f ind the second-
order  potent ia l  der ivat ives wi th respect  to  geocentr ic  car tes ian coordinates as func-
t ion of  the f i rs t -  ( ! )  and second-order  potent ia l  der ivat ives wi th respect  to  the
1-orb i ta l  coordinates ro.

tansformat ion to a local  car tes ian coordinate system, for  example the local
orb i ta l  system r ' ,  fo l lows analogously:

t r  0 r "  E r b , ,
v  j k :  

a i l  6 r . k v " b ,

where the transformation matrix # i, most easily computed using the chain rule

Er "  0 ro  ) r J

a r t :  a C  a r t

in which t# ," already known and fi has to be computed from the coordinate
transformation zr : rI (ri). We therefore have to specify the latter transforma-
t ion, or direct ly the matr ix f f i ,  which in the present example equals the matr ix in
equat ion A.3.

Moreover, the transformation equations for the first-order derivatives are simply

A n d
l ,  r f, J :  

a 4  
, , ,

0 r "  E r J  - -
t /  -  _ _ t /' r  -  

a rJ  o r j  " '
(3 .7)

(3 .8 )
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3. The gradient tensor and its series representation in different coordinate systems

I f ,  dur ing the computat ions above (ei ther numerical ly or symbol ical ly),  use is
made of pre-programmed subroutines for matrix manipulations, care has to be taken
with the use of the transpose, inverse'and original form of the matrices, especially
of the transformation matric"" # etc. Strictly following the conventions from sec-
tion 8.1.3, this may not lead to any problems, but it is safer to convert the equations
directly into nested D0-loops, the inner loops representing the summations over the
dummy indices and the outer loops representing the repetition of the computations
for all the values of the free indices. Both methods will be illustrated below.

Let us denote al l  the transformation matr ices with the kernel let ter X, i .e.  XIo:

#, X', : #, etc. Furthermore we choose the following transition from index to
matr ix notat ion:

Vot

vtt

V;j

Xro

X,,

Xro

9ab

The transformation equations from this section then become, in order of appearance:

I

a

r

I

u

I

vo

V7

V;

ro

r I

x,'

gIJ

V

W

U

X

D
I L

T

G

9ab : XoIgttXJt

g"b : x"tgJKxi

VJK : XfVo6Xb6

Vi* - Xi"Vo6Xb1,

Xoj : X"rXti

V1 : XJoVo

vj : Xiovo

with the transformation matrices defined
equations:
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6 - r  _  X - r I X - T

W  :  Y - r Y  Y - t

U  _  T _ T V T - I

T - L  :  X - L  R

a :  X-Tg

' r - T-rg

through the coordinate transformation



3.1. Potential derivatives in different coordinate systems

, I : r t ( r o )  *  l : X r

,I : ,t (ri ') + I -- Ru

a  ;  /  ^ \
r ' = x . t ( r o )  u - T r

As an example of how a tensor equation can easily be converted into pro-

grammable code, consider the equation for the Chrisboffel symbols

I
l 'u  = 

,0"" (9od,b 
*  9bd,o -  9ab,a)  '

W i t h  t h e  a r r a y s  g a m n a ( a , b , c ) ,  g i ( a , b )  a n d  d g ( a , b , c )  r e p r e s e n t i n g  r e s p e c t i v e l y

lf6, g"b and go6,, the looP becomes:

d o  a  =  1 , 3

d o  b  =  1 , 3

d o  c  =  1 , 3

g a m m a ( a , b , c )  =  O

d o  d  =  1 , 3

g a m n a ( a , b , c )  =  g a m m a ( a , b , c )  +  O . 5  *  8 i ( c , d )  x

( d g ( a , d , b )  +  d g ( b , d , a )  -  d g ( a , b , d ) )

end do

end do

end do

end do

The algorithm sketched in this section is shown in table 3.1 as flow chart.
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3. The gradient tensor and its series representation in different coordinate systems

Table 3.1 Computation scherne lor translorrnation of potential d,eriuatiaes

in arb i t rary coordinate systems.

( 1 )  V  = V ( r " )

(2)  , I  :  , I  ( ro)

(3 )  , t  :  , I  ( r i )

( 4 )  { g r i l  =  { g " } :  { 6 " }

i npu t :

ou tpu t : (5) X'o from (2)

(6)  Xor  :  (Xr . ) - l  f rom (5)

(7)  9o6:  XoI  Xr69r t  f rom (a) ,  (5)

(8)  g"b :  (gou)- t  l rom (7)

(9) 9ob,c from (7)

(10) qi from (8), (e)

( 1 1 )  v o : v , o  f r o m  ( 1 )

(12) V1 --  XfVo from (6),  (11)

(13)  Vo,b  f rom (11)

( 1 4 )  v o b : v o ; b  f r o m  ( 1 0 ) ,  ( 1 1 ) '  ( 1 3 )

(15) vlr  :  X,"Xbrvo6 from (6),  ( ta)

(16) X' ,  f rom (3)

(17)  Xo;  f rom (6) ,  ( t6 )

( 1 8 )  v ; :  X ; o v o  f r o m  ( 1 1 ) ,  ( 1 7 )

(19)  v ; i :  X ; " r ' , r *  f rom (14) ,  (17)
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3.1. Potential derivatives in dif ferent coordinate systenrs

3.L.2 lYansforrnation forrnulae for the potential derivatives

We assume the gravitational potential V to be given as function of one of the fol-
low ing  coord ina te  se ts :  ,A  :  ( r ,0 , \ ) , ' r "  :  ( r , ro , r " ) ,  to '  :  ( r , ro r I )  o r  x ,A '  :
(r,Q,ro) (see appendix A). Then we can compute the first- and second-order po-
tential derivatives with respect to these coordinates, respectively Ve,Vo,Vo',V.a., and
VABrVob,Vo,6,rV4,g,.  What we need are the potent ial  der ivat ives with respect to ei-
ther the local north-oriented coordinate system r'' or the local orbital coordinate
system c', i.e. Vyit or %;. They are obtained from the derivatives with respect to
curvilinear coordinates by means of transformation equations of the type 3.7 and 3.6,
and are given in the boxes in the remaining of this section. Notation is abbreviated
to what is commonly used: V, means # : ffi, "t.. 

For reference, also the
transformations of the derivat ives in el l ipsoidal and geodet ic coordinates are given.

I f  we pu t  6  :0  in  equat ions  3 .9  we ob ta in :

v z z  -

V r " :  -

t/' u z  -

1

r -

,  L , ,

r
l  r ,  ,  l t ,

-  
, v 6 - r  

- v 1 6
r

1 , ,
,  '  Qu , ,

T , ,  ,  I , ,
- v r - t  

n v 6 6r  r '

L , ,
- v r  

t
r
1 _ -
, v.,, t /  -

\/.  z z  -

They are obviously

ou r  case )  i s  t he  o rb i t

(3 .10 )

only uaLid on the
of the satellite.

Equat ions 3.10 wi l l  be used in chapter 4
equator of the coordinate system which, in

t t  -  0 r A '  1 7v i  -  -e ; i -vA ' V- : -L-V,,
'  r  cosq t  * ' ,

t r  -  l t t
v . ,  -  - v a

v f Y

t /  - t l
v  z  -  v r

ui: ff!fflro,",

t /  - ! r ,  - t u n Q r . r  ,  r  , ,r X X -  r r  q  ' Q t  t  n  t v U , , a , ,r  r  c o s - I

t /

r2 cos$

s in  /
V6.^ t  n Vu, ,

r  c o s ' Q

V . r :  -
r2 cos $

(3.e)

v u u : l r , * ) 1 6
r , ,  1 , ,

V u " : -  t V 6 + - V r or
T l  - T /v  z z  -  v  r r
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3. The gradient telsor and its series representation in different coordinate systems

V": lV,"
Vu: ffiVr
V" :  V ,

v,1 : !;Sv",o,

Vrr :  ! ' ,  *  \ ' r , r "r r '
1  coSoJo  t r

Vr, : * Vtrn - --;--.--i-v 
I

sln (ro r" sln- u)o

v, , :  Lr , . "  -  \ r ,  (3 .11)
r  r '

vuu : !v, * -]-v.,, + ,| ,-vrr
r T" Lan?o r. stn'  uo

vu": -]-v,t - -]-r,- r  sln aJo r- sln 0,,o

Vr" : V,

l r . .  -  0 r "  7 r b  l /, r J  -  
E r i  1 z i , a o

l . l

V " r : | V r +  ] V . ' r , ,r r -

r l  1
v xu w (cos.lsin @oV.,, -  cos,I costioVr,,r, ,

sln I  cos- a./o
- cosuoVr,,.  -  sin uoVr,,)

l l
V r "  :  :Vr . . ,  -  

,Vn  (3 '12)
r r -
l l l

Vuu : 
;r,  

* 
F*%- 

(sin r, (sin2 1sinz u.,o - 2 sin2 I + t)V.,,

+ cos2 I  cosuoVr. r , ,  -  2cos I  coswoVr, , r , ,  *  cosorrVr , ,cr ,  -  cos ls inc^. , rVr . )

I
Vu" = (r cos lVrr,, - cos IVr,, - rVrr, * Vr,,)

sln I cos aro

V"" : Vt
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3.1. Potential derivatives in different coordinate sysCems

v.
vs
vz

I  r r-  
h + M v p

.  I  r /- - 
(r!+N) cos r; 

Y )

- V h

r . ,  -  1xA  E rD  t rv i j  -  
A x '  A z J  ,  A B

T /v i E  -

1 , f

1,rv i z ,  -

I  , r  I

n a l a v n +  & + M Y v " -
3e2 M2 sin g cos g ,r,

N ( L  -  e z ) ( h +  M ) s ' e
t a n g  r r

, m Y )cos (p[n *  tu  1 '

- l
V.l -

(h + U)(h + lr) cos e e^

l r , ' - 1 ,
h +  M v h e  @ +  u y ' v

1 1 tan <p
vss :  

t ' ,  11rvn+ pn 1r ' )%oJpYrr ( h +

Vnx

V,
M ) ( h  +  N ) ' '

t / , - -  I  , . r . -' l l Z  -  
r t  r ' \ o  I  A-  ( n  +  l v  J ' c o s  P

Vzz : Vnn
(h  +  N)  cos ,p

v.
v,
vz

; V A

I  r r- -- ----- -; v \u c o s p

U T '

^ , . ^ , ,
t l  -  o 2 , "  o r " 1 /
v i j  -  

A z '  a r t ,  a b

t ,  u u z , ,  ,  |  , ,  E 2 s i n  B c o s B , ,v - i :  
L o r " - r V V A B  L n  

, p

_ l  L a n  B  t rvz, = 
uL cos Bvp^ 

- 
ffi'^

r l  u  , ,  u u ,  u E 2  s i n  B  c o s  B ,
, z z -  

L z r " A -  L a r ? -  L q  
, "

r r  u ,  I  r /  t a n B ,
vr ,  :  

Lru"  
*  

, ,  * " ,  Ovxx 
-  

Lz 
v0

r l  u  , ,  I  , ,
' u z -  -  q  ^ r A  .  ^ r u A-  L u ' c o s p  L c o s p

r r  u 2 , ,  u E 2 c o s z B r , ,  E 2 s i n B c o s B ,
Vzz :  

LzV"" 
-  

La 
\ ' "  - f  

,s 
V p
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3, The gradient tensor and i ts series representation in dif ferent coordinate systert ls

v-, - - Lva

vu' - - j 'v^

V"' : V,

v;,i, - ##r"u

V r , " , : - V ,  l - V o o
r r '

,  I  , ,  c o s d  r lvxtut  :  
r r  r ' r "0 '0^ 

-  
12 s. tnz 0 '  

^

Vr,, ,  :  1r,  - ' -r , ,  (3.13)
r

l r ,  I  '  I  t rv u ' r l ' :  
, ' r -  , r t " " 0 ' o  

r  , r - .  2 0 ' A ^

I  . .  I  . .
v g l  : , r  

" . r " 0 ' ^  

- ,  

" . ^ 0 ' r ^V",", - V*

3.2 Series expansion of the potential and its derivatives

3.2.L Spherical harrnonics

The gravi tat ional  potent ia l  V,  being a solut ion of  Laplace 's  equat ion,  is  expanded

into a ser ies of  spher ica l  harmonics as funct ion of  the geocentr ic  polar  coordinates

, A  :  ( r , d ,  ) )  a s :

G M 2  / P \ l . - I - L .
v ( r , 0 , ) )  -  + t ( : )  f  l e , * r o . m ) , * S 1 - s i n  ^ s , ) P 1 ^ ( c o s d )  ( 3 . 1 4 )

t t  a  \ r  /  - ^ L

where

G M gravi tat ional  constant  t imes mass of  the ear th

R reference radius

er* ,Srr , -  normal ized potent ia l  coef f ic ients of  degree /  and order  m

I,m degree and order

Plr  (cos0)  normal ized Legendre funct ions

r ,0 , \  geocen t r i c  po la r  coo rd ina tes  (d  i s  co - l a t i t ude ) .

For  computat ional  purposes i t  is  convenient  to  in terchange the summat ion over  J
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3.2. Series expansion of the potential and its derivatives

and rn leading to the Fourier series, cf. (Colombo, 1981)

V (r,0,I) :  t  lA*(r d) cos m) * B^(r d) sin rn)]
tn=O

Kf,(r,0)

rcf^Q,e)

(3 . r5 )

(3. ! .6)
Ar " ( r ,0 )

Br"(r ,0)

Kf l ( r ,0 )

KB^( r ,0 )

with coefficients

t
I-
I-

I
t :

D
l = m

H 6 ( r , 0 )

Hr,n(r,0) :  ut(r)Pt-(cos d)

/  \  G M
u t \ r ) =  

R

We saw that,  in order to compute the potent ial  der ivat ives in the local north-
or iented system ,; ' ,*eneed the derivat ives VaandVaB ofthe potent ial  with respect
to the polar coordinates rA. These can be derived from equat ion 3.14 or 3.15 by
means of simple partial differentiation. The derivatives, computed in this way, can
also be expressed in series analogous to 3.15, with appropriate expressions for the
factors Kh, KE^ and H1^. In table 3.2 one finds these factors for all the first- and
second-order derivat ives of V with respect to r ,d, . \ .  In this table we abbreviated
P!*:  APt," lA0 and Pl l :02Pt^|002. The local der ivat ives V;, i ,  are expressed in
the same way, the expressions for Kfi, Kf^ and H1^now to be taken from table 3.3.
They are found by using equat ions 3.13.

Already at this point one might f ind out,  by taking a glance at this table, why
satellite gradiometry is especially suitable for the determination of higher degrees
and orders of the gravi tat ional potent ial .  On the one hand, one not ices the factor
(R l4 ' * t ,  wh ich  is  p resent  in  a l l  s ix  g rad ien ts  (s ince  l t :  u t / r2  :  (GMlRl rz ) .
(Rlr) '* t ) .This factor causes an attenuat ion effect with height for the gravi tat ional
potential and related quantities. It means that, since Rf r is smaller than l, the
power contents of the potential signal decreases with increasing altitude above R.
Due to the power of / * I this decrease is stronger for higher degrees /, making them
harder to detect if one goes further away from the earth. The attenuation effect is
inherent to al l  spaceborne gravi ty determinat ion techniques.

v L m

e,p L m

/  R \ ' * '

\ ; /
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3. The gradient tensor and its series representation in different coordinate systems

Table 3.2 Potential i leriuatiues u.r.t. (r,0, \)

differentiation
w. r . t .
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r r
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On the other hand, in the case of the second-order derivatives, this attenuation
effect is to some extent compensated by mult ipl icat ion factors l ike ( /+ l )( l  +2),( l+
2),(l+ 1) and m, which tend to increase the power contents for higher degrees. This
makes satellite gradiometry (the technique of observing gravity gradients at satellite

altitude) an attractive candidate for gravitational recovery with high precision and
resolution compared to other techniques like orbit determination.

Table 3.3 Potential deriuatiues wit l t ,  respect to local north-oriented coordi-

n a t e s  ( r t  , y ' ,  z ' ) .  l t  :  3

n (  )
" l m

Kh KBt*

tr'tr'

r 'y'

tr'z'

y 'y '

v'r '
- t  - l

r t(Pi '*-  ( /+ r)Pt*)

m sin 
- | ef 11P,1.^ - cot 0 P1*)

( + z)r,Pi*

11(cot 0 Pl^ - (/ + t + m2 sin-z 0) P,*)

m( + 2)s in-1 011P1^
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- n[I')e,^
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"  Ln 
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3.2. Series expansion of the potential and its derivatives

3.2.2 Orbitalcoordinates

For the description of the motion of planets around the sun or satellites around the
earth the orbi tal  elements a,e,I ,dl ,w,M can be employed, which are respect ively
the semi-major axis of the elliptical orbit, eccentricity, inclination, right ascension
of the ascending node, argument of perigee and mean anomaly (see figure A.1). It
is convenient to have also an expression of the gravitational potential V in terms
of these orbital elements. Upon keeping the harmonic coefficients e1* and 31*
from eq. 3.14 as coeff ic ients in the potent ial  expansion, but changing from r,0,A to
r, I ,u,Q,M (we assume the orbi t  is (nearly) c ircular,  so e E 0) we obtain:

t - ^ . f  @  z p r l + l
v - u " ' \ - l a l

R  ? \ , )
t = v

,let*

v̂ r m
] ,  :  " . .

I, : .: sint!1^o\ (3.17)

where

FmoU) normalized inclination functions

$t*p : (l - Zp) eo I rnut,

u)o : e * M subscript tto" referring to "orbit" I-  
I  see (Schrama, 1989)

ee:  { l  -  0G subscr ipt  "et '  re ferr ing to "ear th"  
J

06 ear th 's  argument  of  longi tude .

A der ivat ion of  eq.  3.17 can be found in (Kaula,  1966).  In  (Sneeuw, 1991a) the

same expression is derived by means of a group-theoretical approach which makes

use of the so-called representation coefficients (also known as Wigner coefficients) .

In such an approach it becomes obvious that it is, in fact, more fundamental, and
for  sate l l i te  purpbses a lso more convenient ,  to  use in  eq.3.17 the index k instead
o f  p ,  w i t h  k :  l - 2 p .  T h e  i n d e x  k h a s  a s t e p s i z e 2 a n d  r a n g e s f r o m  - l  t o  l .  S o

switching from p to ft and changing the notation accordingly, we make the following
replacements in  eq.  3.17:

a-l
LP=o

Fn r(I)

,bt^p

a'lz-  k= -  t lz)

F,r*(t)

, b k * :  k u o  I  m u ,

From ft  :  I  -2p we see that k and I  always have the same pari ty,  a property we wi l l
use later on. I t  appears convenient to abbreviate eq. 3.17 ( including the replacements

t  t  F'*,(I) '
m=O p=0

I

I st*
cos!,t1^o I I'  l e , ^

L  ' " "
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3. The gradient tensor and its series representation in different coordinate systents

above) as

o o l l

v :  t  D  t  lAn* ( r , I )cos$p^*  Bu* ( r , / )s in r / ; - l  (3 '18)
l_0 rn=o k=-tl2l

with

A1*1" ( r , l  )  
(

l = H m x ( r , I ) l Q t ^
B1*p( r , I )  

)  |  0m

Ht^t (r ,  I )  = ut(r)  Ff*( t)

|  ^  1 l - r n : e v e n
l c m l

a h n =  |  _  |

L 
-f i -  

Jr--,oaa

|  ^  1 l - z n : e v e nr s l _ l
o m : l  -  |

I c,* J r--,oaa

G M  ( f t 1 r + t
u t l r ) :  

,R  \ ; /

Furthermore, we mention the possibility to rearrange the summation order l,m,k

to k,m,l, as a result of which we may rewrite eq. 3.18 (truncated at some maximum

degree .L) in the following manner, cf. (Schrama, 1989):

" 
: f f i lA6lacosrb** * B1*1,sin{p,n)

m=o t=m k=_tlzl

L L L

t  t  t  lAtnkcosrbr ,^*81*ps inr !1 ,* )
rn=O k=- L t=lrninl2l

L L
: t Dllr^cos$1,** B**sintl- '1,*l (3.19)

k=-  L  m=O

where
\ - (

Ar,*  I  .1 lA,*o
l :  z  \

Bo* ) ,=,7,np11 
"t*r

" (:  t  Hm*4
t=t,in[z] | 0n"
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3.2. Series expansion of the potential and its derivatives

and H1^p - utFtk^. In the expression above lmin: mar( lk l ,m) + 5 where 6: O
if & and rnar(lkl, rn) have the same parity and 6 : I if they have opposite par-
ity, cf. (Schrama, ibid.). The Ap,n and Bp* coefficients are the so-called lumped
coeff ic ients,  see (Schrama, ibid.)  or (Wagner, 1983).

From eq. 3.18 we may compute the partial derivatives of V with respect to the co-
ordinates r ,u)o)u)e,1, result ing in di f ferent expressions for the quant i t ies Hunk,Auo*
and B1^p. Those quantities are listed in table 3.4 for all the first- and second-order
part ial  der ivat ives of V with respect to r ,0)o,or,  1.  Fol lowing appendix A. l  we ei ther
consider the set (r , ro, . I )  or the set (r ,  uro,ar) so the mixed derivat ive with respect
to.I and c,.r, is not listed in table 3.4. In this table we abbreviated Fro,o' : AFf*lAI
and F[n" : A2Ftk^/A12. tansformation to loca] derivatives is, fot ii,ir situaiion,
discussed in sect ion 4.2.

Table 3.4 Potent ial  der iaat iues w.r. t .  r ,o)o,t i " , I

differentiation
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r r
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3. The gradient tensor and its series representation in different coordinate systems

3.3 Synthesis and analysis

In the previous sections we have seen that gravity gradients are measurable, in
principle, in an earth orbiting satellite by means of differential accelerometry (sec-

tion 2.1). We have seen how this technique will be realized in practice and what

kinds of problems thereby will occur (section 2.3). We have seen how to express
the observed gradients in several coordinate systems (section 3.1), how they are re-

lated to the desired potential coefficients (section 3.2) and for which applications

we need these potential coefficients, as they are derived from satellite gradiometry

(section 2.2). But what should we expect from gradiometric measurements in terms

of magnitude and spatial or spectral characterisbics of the signal?

Probably the easiest way to get at least a first, rough estimate of the size of the
gravity gradients is to take for the gravitational potential V the central term W

only, representing the potential of a homogeneous spherical mass distribution. ln

terms of a spherical harmonic expansion (eq. 3.14) this means that the only non-zero

potential coefficient ir Coo : 1. Then we can easily compute the gravity gradients in
a local north*oriented coordinate system 

"i'. 
Since in this case V is only a function

of r all the first- and second-order partial derivatives with respect to 0 and ,\ are
zero. Using eq. 3.13 this leaves for the elements of the gradient tensor:

v ; , i , -
G M

a

0

0

V,,

0 r vr

0 0

- 1  0

0  - 1

' l
0 l
, )

At a satellite altitude of 200 km we find in this case for the diagonal elements

Vr,r ,  -  Vr,o, :  -1V"," ,  av -1400 E.
In reality the earth is not a perfectly homogeneous spherical mass. In terms of

the series expansion 3.14 an infinite number of non-zero potential coefficients exists.

The potential V and the gravity gradients are not only a function of r but also of d

and ). A global computation of the gravity gradient signal should therefore include

a full evaluation of the series expansion. Whereas in this equation (and also in

eq. 3.17) the summation over / ranges from zero to infinity, one has to choose some

finite maximum degree L ) 0 when doing practical computations. Such evaluation

can be done in arbitrary points of which the geocentric polar coordinates (r,0, ))

are specified. If we carry out such a computation in individual points, it is called

single point computation.
Very often, however, we like to compute the gravity gradients in the nodes of

an equi-angular world wide grid located on a sphere with radius r. Such a com-

putation, based on the evaluation of eq. 3.14, is called spherical harmonic synthesis
(Colombo, 1981). Besides the polar or orbital coordinates of the (grid) points, gra-

dient synrhesis (using eq.3.14 or 3.17) requires the avai labi l i ty of  some known set of

potential coefficients. Nowadays several potential coefficient sets exist, for example

GEM-T2, complete up to degree and order L :  36 (Marsh et al . ,  1989),  OSU180
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3.3. SyntJresis and ana]vsis

with .L :  180 (R.pp, 1981) and OSU86F with tr  :  360 (R.pp and Cruz, 1986).
The first one is derived purely from orbit analysis of a variety of satellites, the sec-
ond included altimeter data from Seasat and terrestrial data (gravity anomalies),
whereas the third model was computed from altimeter data and land measurements
including geophysically predicted gravity anomalies. A maximum degree tr of 180
corresponds to a smallest recoverable wavelength of 2o thus giving the possibility of
showing gravitational features in a grid of 1o x 1' blocks (half of the smallest wave-
length or the resolut ion). In the same way data in 0.5o x 0.5'blocks corresponds to
,L : 360.

So if some known set of potential coefficients is available, the synthesis problem
may give us some insight into the signals to be expected from a gradiometer mission
by computing a set of gravity gradients. But the reverse reasoning is also of interest
to us: given the values of the gradients in a set of  points,  regular or i r regular
distributed over the whole earth, compute from them the potential coefficients. If
one uses an equat ion of the type 3.14 this problern is cal led spherical  harmonic
analysis (Colombo, 1981).  The set of  gradients could be thought of as obseroed
during a real gradiometer mission, from which we like to recover unknown potential
coefficients.

In general any functional of the gravitational potential may be generated and/or
analyzed by means of, respectively, the synthesis and analysis problems discussed
above. Such potential functionals could include for instance the gravitational po-
tential itself, its first- and second-order derivatives in any coordinate system, geoid
heights, gravi ty anomalies, def lect ions of the vert ical ,  etc.  Let us wri te /(d,))  for
such arbitrary function, defined on the surface of a sphere, and let us expand this
function in a spherical harmonic series as

L I

f (e, \ : t D Pr- (.or 0) l"mcos m) * 61- sin m)l
l=O rn=O

where the a1r, and bpn are the normalized spherical harmonic coefficients. Com-
parison with eq. 3.14 reveals the same structure, so that,  i f  we ident i fy /  with the
gravi tat ional potent ial  V and ala and 61- with respect ively (GMIR)(Rlrf+rey*
a n d ( G M I R ) ( R l r ) t + r 3 1 - , t h e t w o e x p r e s s i o n s c o i n c i d e .  I n a n a l o g y w i t h e q . 3 . 1 5 w e
could wri te 3.21 as

L

f  (0 ,  ̂ )  :  t  [o- cos m\ * 6- sin m.\]
rn=0

with

4-1... a; { 
atm

I a'^
The harmonic coefficients o1-, Dlm constitute the spectrum of / and are therelore
sometimes called spectral coefficients, bhereby referring to the bheory of Fourier anal-
ysis, where one also uses the term synthesfs for the Pourier series or inverse Fourier

::l:r--^

( 3 . 2 1 )

(3.22)

(3.23)
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3. The gradient tensor and its series representation in different coordinate systems

transform of respectively periodic or aperiodic signals and the term analgsls for the

Fourier series coefficients resp. the Fourier transform, e.g. (Oppenheim et al., 1983).

Note, however, that eq. 3.21 does not correspond exactly to a two-dimensional

Fourier transform in the plane, cf. (Schwarz, 1985). Flom the spectral coefficients

one computes  the  (quadra t ic )  power  spec t rum q ,  ( l  :0 , . . . , .L )  as

I
s  /  o  - o  \q: >: l"i^+ bi*)

m=O

The c1 are also called degree variances. The degree-order uarianceschn are computed

from the power spectrum as

c t rn :  
c t  

( 3 .25 )
2 l + t '

the square root of which is referred to as r.m.s. value per coefficient per degree.

Given the /(d, )) in a grid the spectral coefficients a6n and 63- themselves can be
computed using the following numerical quadrature formula:

cos m),
(3 .26)

sin m)i

at these coefficients are
alues at the grid points.

cos rn)

sin rn)
d^ d0

where o represents the unit sphere. This formula is based on the orthogonality
property of spherical harmonics, see for example (Heiskanen and Moritz, 1967). For
the cos m) and sin rn) terms the orthogonality also applies in the case of a discrete

summation, like the summation overy in eq. 3.26. For the f-summation over the
P1- terms the orthogonality property holds only approximately so the d6n and 61-
will contain an error due to this approximation.

The computation of potential functionals in a grid, and the estimation of spectral
coefficients from such grid, involve some equivalent numerical techniques (duality

between synthesis and analysis (Colombo, 1981)).  This can be seen by looking at
the transform pair  3.22 and 3.26. First ly,  both problems require the computat ion
of al l  Legendre funct ions up to degree and order tr .  Secondly,  hal f  of  the problem
can be solved by applying pre-programmed FFT rout ines. For spherical  harmonic
synthesis one f i rst  computes the coeff ic ients o- and b- using eq.3.23. Afterwards
the gr id values are obtained by applying an inverse FFT with those coeff ic ients
(eq. 3.22).  When evaluat ing the spherical  harmonic analysis equat ion 3.26, the j -

summation can also be done by an FFT, after which the r-summation is carried out

separately.

40

(3.24)

a,* I r '-r tkt t
i ,* l= ; I 

A;fl-(cos"' 
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i

where A; :  A)A0sin?; and where "^" indicates the fact th

estimates of the a6y and b1*. The I (0;, Ai) are the function v

Eq. 3.26 is a discrete approximation of

I
I
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3.3. Synthesis and analysis

The value one chooses for tr depends mainly on the specific application, but
it may have a rather large impact on numerical computations. Typical numerical
problems like underflow, numerical stability, but also problems with computation
time and data storage may occur when simulating gravity gradients (or in general

any potential functional) up to high maximum degree, for example L : 360, and
at a large number of points. Therefore, we will pay here some attention to a few
numerical aspects of gradient synthesis, in particular to the recursive computation
of Legendre functions, single point versus grid computation and vectorization.

Legendre functions

In the process of evaluating a series expansion of the potential and its derivatives
up to high degree and order the computation of the Legendre functions plays an
important role. Since the computation of the Legendre functions by means of explicit

formulas (for example (Heiskanen and Moritz, 1967), eq. l-60 or 1-62) is too time

consuming, one uses recurrent relations. For the normalized Legendre functions we

use the relations:

Pt, t :  f is in0P1-1,1-1

h , t_ r :  f2cos0P1_1,1_1
Pt , * :  f s ( fecos0Pt - r , ^  -  I sPt -2 , * )

with the starting values
P o , 0 :  1

P r , r :  1 6 s i n d

where

(3.27)

(3.28)

(3.2e)

t _
t l  -

f2: J2t + |

f s :

14:  t /2 t  -  |

,  _  l ( t - ^ - l ) ( l + m - I ), r _ V  2 r _ B

We may visualize these recurrent relations by means of arrows in an /, m-scheme

with degree J on the horizontal axis and order rn on the vertical axis (see figure 3.1).
Equation 3.27 is the diagonal recurrence upwards on the main diagonal, eq. 3.28

the first step in horizontal direction for fixed order rn, arriving at the first sub-

diagonal and eq. 3.29 expresses all the further steps in horizontal direction for in-

creasing degree l. There also exists a vertical downward recurrent relation (for fixed

( t - m ) ( t + r n )
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3. The gradient tensor and its series representation in different coordinate systems

eq.  3 .29

Figure 3.1 Recurrence

degree l), namely

degree /

relations for Legendre t 'unctions

o
r
d
e
r

m

h,^-z l-rr^-')#n,--,
_ t

a fzh,^l
I

fa

t l

if

with

t _
J 6 -

f z =

m : 2

r n * 2

This recurrence, however, is not used here since it becomes numerically singular
for small 0 due to the factor fr. Furthermore, a downward recurrence is not
recommendable when, during the computational process, an underflow occurs on
the main diagonal. An overview of all possible recurrence relations can be found in
(I lk,  1983).  Compare also (Gerst l ,  1980).

Starting the diagonal recurrence with Poo = I the value of Lhe Pa for increasing /
will decrease rapidly. The degree at which a numerical underflow will occur depends
on the value of the maximum exponent of the used computer and on the latitude
0 (see fig. 3.2). The underflow results in a zero value for the P11. In that case all
subsequent fi- will also be zero. If a downward recurrence would have been used
a much larger part of all the fl- would be zero due to the underflow on the main
diagonal as in the case of horizontal recurrences, cf. (Koop and Stelpstra, 1989).

42

( l + r n ) ( l - m i



3.3. Syntlresis and analysis

d (co-Iatitude)

Figure 3.2 Degree I at which the P]1 (during the d.iagonal recurrence) be-

come srnaller than 10-s08 (and is therefore set to zero on the

CONVEX) as function of 0.

Whereas the value of the fi1 for increasing J on the main diagonal decreases,

the value of the Ptrn for fixed rn and increasing I during a horizontal recurrence

slightly increases. An underflow may therefore cause information to be lost for high

degrees. This is even more the case for the second-order derivatives of the Legendre

functions P/l which can reach values up to 106. This problem of underflows can

be dealt with by scaling techniques, as described in (Koop and Stelpstra, ibid.)

for recursive Legendre function computations or in (Sneeuw, 1991a) for recursive

inclination function computations.
The recurrent relations for the first- and second-order derivatives of the Legendre

functions may be derived from equations 3.27 - 3.29 by means of differentiation with

respect to d, obtaining:

P! , r :  /1 (cos  0k- t , t - t  +  s indP/ - r , , - r )

P l . t - r :  /2 ( -s in  0Pt - t , t - r  +  cosdP/ - t , , - t )

Pl 'n:  fs(-  fqsin0Pl-1,,o* /n cos 0P!-r ,*  -  fsP!-r ,*)

with the starting values
P6,o : o

Pl"' = rA cos d

and

o
o
lJ)

o
o
o
$

o
- o' o

o (7)
q)
h

P o; o' o
ol

o
o
o

P!'.t  : . fr(- sin 0 Pt-r,t-,  * 2 cos 0 Pl-r,,-r+ sin 0Pl1t,1-t)
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3. The gradient tensor and its series representation in different coordinate systems

Pl ' , r - r :  /2( -cos 0Pt- t , t - t  -  2s in  0Pl - r , , - r+ cos0P/11,1-1)

P{,* = f e(- I + cos 0 P1 - 1,* - 2 f a sin 0 P! -r,,, * /a cos 0 P!\,^ - f s P/-r,,*)

with
P61o: o

P| t :  - r , /$s ind .

Single point versus grid cornputation

Gradient computation, using high degree potential models, is a time consuming
process. Especially if one wishes to compute the gradients in a large number of
points. Depending on further applications, one may proceed in different ways. Either
one evaluates the full spherical harmonic expansion 3.14 in each point separately
(single point computation) or one applies spherical harmonic synthesis using FFT
techniques as described above, resulting in a grid of gradient values, having constant
step size in d and ,\ direction (grid computation).

Grid computation is especially useful if one, for example, has to compute world
wide representations of gravity gradients using different coefficient sets as input,
aiming at, for instance, comparison of potential models or comparison with gradients
obtained from other techniques. The main advantage of this method is of course the
use of the FFT, decreasing computation time drastically. The step size in ) direction
depends on the degree of the FFT, which in turn depends on the maximum degree
,L of the potential model which is used as input. For example, using a potential
coefficient set with .L : 180 allows to compute independent gradient values in points
with A) : 1" (Nyquist frequency). The degree of the (one-dimensional) FFT in
that case will be 360. As for the d direction, one may arbitrarily choose the value
of d (Colombo, 1981) with the limitation that the smallest possible wavelength to
be present in the grid is determined by I (the maximum degree of the potential
model), even if one chooses more d's than .L.

For e.g. satellite applications the grid computation may not be well suited, since
the points along a satellite orbit where one wishes to compute the gradients usually
do not coincide with the nodes of a grid. Using, however, a series expansion of the
type 3.1.9, we may still apply an FFT, in this case not along a parallel but along
the satellite orbit. Another possibility is to compute a grid at satellite altitude
and interpolate between the grid points. Both latter methods, however, fail if the
satellite orbit is elliptical so that r is no longer constant. The interpolation method
could be extended to three dimensjons (Schrama, 1984) or (Wichiencharoen, 1985),
for which grids at different altitudes have to be computed first. A final possibility
is to compute gradients at each point of the orbit individually, bringing us back to
single point computation.

The choice between single point and grid computation depends, however, not
only on the specific application, but also on the available computer hardwa^re and
software. As for the machine characteristics. we mention the maximum value of
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3.3. Synthesis and analysis

the exponent, optimization properties (Koop and Stelpstra, 1989), CPU speed and

available memory. Concerning the software, accurate and fast interpolation and

FFT routines are nowadays widely available. Other aspects are handling of under-

flows, speed, portability, memory usage, handling of various types of coordinates

and potential models, accuracy of the input (coordinates and coefficients) , use of

single or double precision numbers, vectorization and parallelization capabilities,

etc. In (Balmino et al., 1990) several software packages for computation of poten-

tial functionals are compared on (some of) these aspects. The influence of machine

characteristics and softwa.re capabilities on computation time and accuracy of the

results increases with increasing maximum degree -L. In general, single point com-
putation will be the most time consuming method, but it does not require much

memory. Interpolation methods introduce some loss of accuracy and they require

more memory capacity. Methods using FFT are very fast, but have the restrictton

of computing the gradient values at regularly distributed points.

Due to the wide availability of ever larger and faster computers the machine

influence will become less and Iess important in the future. Nevertheless, it is to

be expected at this moment that for future gradiometer missions the use of vector

computers or even parallel computers will be indispensable. Therefore, some remarks
about vectorization will be made in the following.

Vectorization

Vectorization is, in fact, only one aspect of what is called more generally optirniza-

tion. When talking about optimization we have to discriminate between time and

space optimization. In particular time optimization plays an important role when

dealing with very large computational problems like gradient synthesis up to high
degree. First of all it must be stated that optimization is not only a matter of hard-

ware and system software. If one likes to fully benefit the optimization capabilities

of the hardware configuration, also the users software should be optimally adapted

to it. In spite of the fact that there are some general techniques of optimization, the

specific computer which is used eventually determines the way in which the software

should be set up.

Already in the case of "conventional" computers (scalar processor or so called

"single Instruction Single Data" (SISD) machines) the impact of the algorithm set-

up can be significant. Just look at the difference in execution speed between linear

and binary search. Compilers running on machines equipped with a vector processor

(so called "single Instruction Multiple Data" (SIMD) machines) modify the code in

order to fully benefit the use of the vectorization capabilities. But the programmer

still has to design the algorithm in such a way as to fit optimally the compiler.

Whereas vectorization intends to decrease CPU time, parallelization tries to reduce

"time to solution" by spreading work across multiple CPU's. The development

of parallel computers ("Multiple Instruction Multiple Data" (MIMD) machines),

equipped with a large number of parallel connected processors, is stil l going on, and

45



3, The gradient tensor and its series representation in different coordinate systems

they are not yet very common in use.
In (Koop and Stelpstra, 1989) it is described how the algorithms for the recursive

computation of the Legendre functions as well as the final evaluation of the potential
functionals have to be organized as to perform optimally on a CONVEX C240 vector
computer. It appeared that, in the case of single-point potential synthesis, the
best way to go through the l, rn-scheme was diagonally, i.e. first the main diagonal
(m :  l ,  Y  m 1 .L) ,  then the  f i rs t  sub-d iagona l  (m :J  -  1 ,  Vm I  L -  l ) ,  then  the
second sub-diagonal (rn - I - 2, V m 1 L - 2), etc. For grid computation, the same
order is used, evaluating in each call the Legendre functions or potential values for
all 0's.

Nurnerical tests

We did some numerical tests concerning spherical harmonic synthesis and analysis.
The tests were carried out on the CONVEX C240 vector computer. We used the
OSU86F (Rupp and Cruz, 1986) set of potential coefficients, however GRS80 refer-
ence values for the first four zonal coefficients were subtracted and Czr and ,S21 were
assigned special values, see table 3.5. Furthermore, a maximum degree L :240 wa.s
chosen for the computations.

Table 3.5 Specifications of the numerical tests

OSU86F with J2, J4, Ja,J3 from GRS80 subtracted

C o o : o

er ,  :  -0 . f  0 .  lo-e ,Sr ,  :  0 .102 .  10-8

GM :3.986004404. IOL4 m3s-2

B :  6378137  m

First we examined the approximation error introduced by the numerical quadra-
ture formula 3.26. We have seen that this error is caused by the l-summation
only, so we inserted eq. 3.21 into 3.26. In the resulting equation, from which the
jr-summation is eliminated due to the orthogonality of Fourier series, we inserted
on the right hand side the OSU86F coefficients. After numerical evaluation of this
equation, we obtain the estimat es dpn and 61-, which can then be compared with the
original OSU86F set. Figure 3.3 shows the logarithm of the degree variances of the
relative differences between the estimated and the original coefficients for two cases:
a step size in 0 direction of Ad : Oo.5 (i.e. 360 parallels) and a step size L0 : 0".25
(720 parallels). Since the f-summation is in fact nothing more than a numerical
integration, the error should decrease with decreasing step size, as indeed can be
seen in the figure. Furthermore we see that the error slowly increases with increasing
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3.3. Syntfiesis and analyns

degree /, reaching about 10-6 at I : 240 in the case of 360 parallels. We have to

bear in mind, however, that part of this error may be caused by underflows in the

Legendre recursions, compare figure 3.2 and the paragraph on Legendre functions.

120

degree

Figure 3.3 Relatiae error mad,e by using the numerical quadrature formula

Secondly, a program was made for grid computation of potential functionals.
The program is an adapted version of the single point program EVLPOT described
in (Koop and Stelpstra, 1989), which is especially tailored for use on the CONVEX
C240 vector computer. It computes a grid of nine potential functionals in one run
(potential and first- and second-order derivatives), both in geocentric cartesian and
local north-oriented coordinates. Due to the vectorized set-up is does not make use
of an FFT routine. Comparison with a spherical harmonic synthesis version (which

uses FFT) did not show any significant differences in computation time (!), at least
up to ,L : 24O on the CONVEX. With the program we computed a world wide grid

of gravity gradients in a local north-oriented coordinate system at an altitude of
200 km. This grid was then analyzed for each of the six gradients using Colombo's

HARMIN program for spherical harmonic analysis (Colombo, 1981). We slightly
adapted the program in order to perform better on the vector computer. HARMIN

makes use of the numerical quadrature formula 3.26 so it yields estimates d.pn,b6o of
the spectral coefficients etm,hrn (eq,.3.21) for some function /, in our case gravity
gradients. From these estimates we computed power spectra using 3.24, which are
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3. The gradient tensor and its series representation in different coordinate systems

shown in figure 3.4.
From this figure (and confirmed by degree-wise comparison of the power spectra)

we see that the power of the various gradients approximately obey the relations (cf.
(Rummel and v. Gelderen))

"7@'l) 
x lo!(z'z')

o! (r'r') x 
"? (v'v) x lo! (z' z')

o! (r' z') x o? (y' 
"') 

x |ol (z' z')

Note that the spectral coefficients etm,b1^ are in general not in a simple way

related to the potent ia l  coef f ic ients er* ,Sr^.Only for  V" , r ,  sygl1 re lat ion is  easy:

This relation gives us an easy way to compare the results, obtained via synthesis and
analysis, with the original coefficients. The absolute relative differences between the
left-hand side and the right-hand side of the above equation are shown in figure 3.5.
It can be seen the error remains below the level of 10-2 over the whole spectrum.

"! i : : , , \ :ry(r), . ' ( /+ r)(/  *rt{  r :^
b!1')  )  

* '  \ ' /  \  - / \  '  - /  
[  O-
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Figure 3.5 Relatiue difference between original potential coefficients and co'

efficients computed. uia synth.esis and analysis of aV",",-grid.
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4 l

Global gradiometric
analysis

In chapter 2 we have seen that our main interest in satellite gradiometry is the preclse

and detailed determination of the earth's gravitational field. The gravitational infor-

mation derived from the observed gravity gradients is presented by means of a set of

potential coefficients e Un,St^ up to some maximum degree and order, together with

an indication of their precision. The relations between the measurements and the

unknown parameters (potential coefficients or potential coefficient corrections) are

derived in chapter 3. In the present chapter attention shall be paid to the method of

solving the potential coefficients from the measurements (analysis) . We restrict our-

selves to a global analysis, which means each spherical harmonic coefficient reflects

a feature of the global field, corresponding to some spatial wavelength. Investiga-

tions into regional (local) approaches can be found in e.g. (Tscherning et al', 1990),

(Robbins, 1985),  (Arabelos and Tscherning, 1990),  ( I lk,  1987) or ( I Ik et al . ,  1990).

Furthermore, emphasis will be laid on error analysis, which means that we study

the error propagation during the adjustment process. This will be done for several

kinds of possible mission scenarios.
The method we use here is based on least squares adjustment and was proposed

by O.L. Colombo (1987, 1989). One of the main characteristics of this method is

that, under certain assumptions (see section 4.2), the normal matrix in the least

squares estimation process attains a block-diagonal structure which can be inverted

without much (computational) effort. Without the block-diagonal structure it will

be a tough job to invert the normal matrix, especially for high degree solutions

(Balmino and Barriot, 1990). After a description of the Ieast squares adjustment

method in the first section of this chapter, the second section deals with the error

analysis. Finally the third section deals with methods of global recovery (i.e. solving

the potential coefficients) , again based on a least squares adjustment.
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4. Global gradiontetric analysis

4.L Least squares analysis

We will show here how the problem of solving the potential coefficients from gradi-

ometer measurements is set up in terms of a least squares adjustment model. For

the measurements we take a set of observed second-order radial derivatives. This
is just an example. Equivalent derivations hold for other gradients, as well as for

combinations of gradients. For the moment, orbit and orientation uncertainties are
neglected.

Observations are given along a satellite orbit and it is therefore appropriate

to use an expansion of the gravitational potential in inclination functions, as was
given in section 3.2. We assume the measurements are given with respect to a local
orbital coordinate system ci. In appendix A this local orbital system is defined.
From sect ion 3.1.2 we f ind thatV"":Vrr.  Using equat ion 3.18 and table 3.4 from

section 3.2.2 we have for the second-order radial derivative:

L t l

v". :t t t fdfff)r"rr/t ^ -r a!ff) sin,1,p*l
t=o n=o k=_t l2 l

H[ f f ) : f r ( /+ r ) ( t+2)F f^

N  G M
L I :  

R 3

( 4 . 1 )

with

o l ; ) l  . t " a [  o m

"t:) l: 
ni*i 

\ u,*

f  _  
' 1  l -m :even

l c t * l
Q l r n =  |  |

L 
-&- 

l , -- ,ooo

l u - l
l e t *1 , - - , ooo

a.
P l m  -

, l r*rn: kwo * mw"

For practical computations we have to truncate the infinite summation over I at

some maximum degree tr. In equation 4.1 the potential coefficien|'s e7^ and ,S1- are

52



4.1. Least squares analysis

the unknowns. Now consider a large set of measurements V", given for all kinds of
values of the coordinates @o>@e (we assume the inclination 1 of the orbit remains
constant during the mission). For each measurement we have an equation of the
type above, each as a function of the same potential coefficients Qrr., S1-. Now let
us arrange all these measurements V"" in one vector, denoted I (the tt-" denotes
stochastic quantities) . We may also order the unknown coefficients, for each value
of degree / and order rn successively, in one vector, denoted c, merging the double
summation over / and rn into one. In this way we obtain the following system of
equations:

i : A c + 6 (4 .2)

in which 6 are the residuals between the observations and the model. This model is
represented by the design matrix A of which each element is of the type

I
s -  , . (zz )
)_ nink cosl4km

k=-tlz|

I
\ - -  - , (zz)
2_ n imi srn r?kn ,

k=-tl2)

depending on whether we are dealing with a Cpn or S1* coefficient and whether
I - rn is even or odd. The a-priori variances and covariances of the observations are
collected in the variance-covariance matrix Qrr. Solving the model 4.2 in a least
squares sense (i.e. minimizing {Q;"t4, we find for the estimates6 of the potential
coefficients:

6 : 1J -r 4,r e;"1 t

(4 .3)

(4.4)

(4.5)

with the normal matrix N
u :  e re ; )A .

The inverse of the normal matrix, .|y'-r, represents the a-posteriori variances and
covariances of the estimated potential coefficients. It can be calculated without
having to perform a complete adjustment. This offers the possibility of carrying out
an error analysis without the availability of a real set of observations. This fact will
be used in the next section.

Since a gradiometer not only measures the second-order radial derivative but
also, as in the case of Aristoteles, the gradients Vuu and Vy", and in the future
hopefully all six gradients, we will need observation equations for these gradients
too.

The relation between the local gradients V;i and the potential derivatives with
respect to rr l ,eotu)e are given in sect ion 3.1.2. There we see that we have two
possibi l i t ies. Ei ther we choose the set { f la:1,2,3} :  (r ,uo,u. ' r)  (equat ions 3.12)
or  the  se t  { ro ' la '  :  L ,2 ,9 } :  ( r , ro , / )  (equat ions  3 .11) .  I t  can  be  shown tha t  bo th
sets of expressions give the same result if used for gradient synthesis. Just for the
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4. GIobaI gradiontet'ric analysis

sake of convenience we choose equations 3.11. For all six gradients an expression of

the type 4.1 can be derived, using equations 3.11 and table 3.4, resulting in again

different expressions for the quantities Atrok, Bt^k and H1*p. For all six gradients,

those quantit ies are l isted in table 4.1.

Table 4.1 Etpressions for local gradients in terrns of deriuatiues ol the po-

tential with respect to (rrwor l).

H[)o Alro* Bl**

tg

sy

tz

vv
yz

z z

- ( /+ r+kz)t  ; ! *
- sin-l wol1Fl\ '

-(  + z)rpF,k*
- ( ( t + t ) 2 - k z ) r { ! ^

- ( t  +  2 )s in -1  w" l1F[ , .

( t+  t ) ( t  +z) t tF tk^

( --\
on"Hliii

(cotwoc,1* - nP,in[7)

B,*n[i,])
o,^H[#)

o,*u{ll)

",*n[ii)

( --\
0mHi#i

(ko,* | cotwoBp,.)H!7)

-",^u[ff)

B,^n[ll)
B,*u[i"])
B,*n{ff)

In this table we computed the expression for V* using the Laplace equation:

Vcy : -(Vrr*V""), thereby avoiding the second-order derivatives of the inclination

functions and obtaining a simpler equation. As an example we derive here the

expression for Vr, From equation 3.ll we have

1  |  , ,V r " : l V r r ^ -  , v u , ,

From table 3.4 we have for tn" qru.rtitl u" or,oo','"r*,* and Ht*kfor the roro-derivative

AIXP : F,^Hliif)
BIX;) : -o,*H[#t)

HlxP: -(-F-1) ulkF!*

and for the aro-derivative

A[Y): B,*n[i,l
B!#) : -o,^u[1:u)
H[1] : u1kFf,*.

This yields for Vr":
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v," : ! > lotXP .o*f,p,o + B[f1)sin,/6]
'  

l , r o , k '

- 
) ,L,rlolX) 

cosr!p* + B[Xl sin '/p-]

-  r /  l + 1 1  1 \  .  : L: ) . l ( - 
- : - - l B6ku1Fi^cosrbn^t

l - * k L \  r  r  r - /

, ( / + 1 1  l \  I- f  t - - _  -  , )  a6nku1  F f *s in r l t l r r , - l
\  r  r  r - /  J

:  t  f f - t r*  2))Bt^kl tFtk-cos{1"*-r
l , m , k

+ ( - (/ + 2)) c,6kt 1 Ff*sin rl' 1,^)

:  t  IAIT)cosrh*^-t Bff isinrbr*l ,
l , n , k

with A!ff), B[ff) and H[f) as in table 4.1.
If we take a closer look at the expressions of this table we see that the Vro and

Vs" gradients contain a sinrr.ro term in the denominator. Apparently those expres-

sions are singular for c, . , ,  :  0 * wr)n :  0, Ir2, . . . .  Al though this is not a very

strange phenomenon fiust take a look at all other transformation equations of the
potential derivatives in section 3.1.2), it will appear to be inconvenient (see sec-
tion 4.2.1). In order to avoid these kinds of singularities, we proceed following
(Bett i  and Sansd, 1989).

In section 3.1.2 also the transformation equations for the second-order potential

der ivat ives from the {rA' lAt :  ! ,2,3}:  (r , / ,<, .ro) coordinates to the local orbi tal
coordinates ri are given (equation 3.9) . Confining ourselves to points along the

satel l i te orbi t ,  where 4:0, we obtain the simpler equat ions 3.10. These equat ions
obviously do not contain a singulariby (except of course for r : 0), but the restriction

to points along the satellite's orbit limits their use. Furthermore, we face the problem

that the potential is not given as function of {. In appendix C it is explained,

however,  how to f ind the potent ial  der ivat ive with respect to $,V6, as funct ion of

the derivative with respect to the inclination I , Vt. This results in a new kind of

inclination function, Frr^-(t). In this appendix it is also shown how to compute these

cross-track inclination functions.
Comparing equations 3.10 and 3.11 we see that the expressions for Vrr,V* and

V"" are the same in both coordinate systems whereas the expressions for the other
gradients differ. If we derive the expression for Vr, (using the Laplace equation)

as -(V"raV""),  then only the expressions forV* andVy" remain di f ferent.  These

are exactly the expressions with the singularities. The sinaro terms in the denomi-

nators are accounted for in the cross-track inclination functions 4f;'. fne relation

J J



4. GIobaI gradiontetric analysis

between 3.10 and 3.11 for these two gradients is easy if we use equation C.l from

appendix C:

- c o s o . r o  
r ,  I  t l

v ru : n vI -T --;------v Juo- 
r' sln- (,o r sln o.,o

I  a  /  r  , , \:  . - ; - 1 .  , t i
r o  d ( t o  \ s l n@o /

_  1 , ,
-  q v d w "

and

- 1  1
V u r :  *  V l l  .  V r t

sln (,o r sln @o

=9(- lu,)
dr  \ r s i na , ro  

' /

_ 1  1 - .: 
FV, 

n 
--V,Q 

.

In terms of the cross-track inclination functions Frk^- we now find for the gradients

Vro andVr" the expressions l isted in table 4.2. The other gradients are the same as

in table 4.1.

Table 4.2 New erpressions forV, andVr" in terms of the deriaatiues of

the potent ia l  wi th respect  to  ( r r$ruo) .

H[)r Al*k Bt**

ry

yz

-kt1F!^-

-( l  + z)r1F!*.

I  - . , \

omHi#i

B,*n[i"i)

gt*u!7)
-",*n[#)

In table 4.2the A1*p and 81,,,1, are now the coefficients of respectively the cosine

and sine of the argument ,lrkn: kwo* rnrr.r" where now k : I - 2p - 1 (compare

appendix C). The summation over ,t runs for these gradients from -(, - 1) to I - 1.

In the sequel we will use the expressions from table 4.2 for the gradients 7r, and

Vy" and for the other gradients the expressions from table 4.1.

4.2 Colombo's method of error analysis

The idea of a gradiometric error analysis as it is presented here originated from

(Colombo, 1987). As described in the previous section, it consists of the computa-

tion of the inverse of the normal matrix in the sense of a least squares adjustment,

thereby using an expression for the gradients in terms of inclination functions. The
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4.2. Colontbo's method of error analvsis

diagonal elements of this inverse represent the a-posteriori variances of the estimated
potential coefficients. As we have seen, they can be computed without the use of
actual observations. The latter implies that we are not restricted to some specified
orbit and instrument characteristics. Given some mission goals in terms of resolu-
tion and accuracy requirements of derived gravity anomalies or geoid heights (as
were given in section 2.2) one can search for the specific orbit and instrument char-
acteristics matching these requirements. In turn, given some orbit and instrument
characteristics (e.g. mission duration limitations, instrument accuracy limitations
etc. imposed by technical or practical considerations) one can derive the resulting
accuracy and resolution of the estimated potential coefficients or of certain derived
quantities like gravity anomalies or geoid heights. Of course, the value of such com-
putations is limited by the underlying assumptions of the method of analysis. For
example, as already stated before, the present method does not include orbit or ori-
entation uncertainties. We simply assume to be given a global, regularly distributed
set of gradient observations relative to some known local coordinate system. For the
sake of simplicity, however, we make several other assumptions. These will be listed
below, see also (Colombo, 1987) and (Colombo, 1989).

1. We assume the orbit of the satellite to be circular. In reality the orbit will
have an eccentricity different from zero, although very small. Furthermore, by
assuming the orbit to be circular we neglect the orbital decay as a result of air
drag. For non-circular orbi ts (" lO),  we would have to include in the model
the so-called eccentricitg functions GUok) (Kaula, 1966) which in general are
to be summed for -oo < g < oo. However, it appears that for nearly circular
orbits the index g can be restricted, with sufficient accuracy, to three values:
-1 < I 1 l, cf. (Schrama, 1989) or (Wagner, 1989). In spite of the fact
that inclusion of these eccentricity functions would not influence our analysis
method fundamentally, we leave them out for simplicity. If required, the error
analysis can be carried out at different values of r to reveal the influence of
varying satellite altitude.

2. We consider the data to be distributed regularly along the orbit. During
the measurement periods this assumption is very well met, but gaps occur
during e.g. instrument failures and orbit maintenance maneuvers, since in those
periods data is not useful or not even present. Also in a real mission gaps near
the poles and, to a smaller extent, at the equator may occur as a result of
excessive drag variations (Touboul et al., 1991). However, if the mission is
long enough the overall data set may yield a very regular data distribution.

3. Regarding the mission length we assume that it consists of an integer number
of complete revolutions and an integer number of nodal days. Furthermore
we will assume that the mission duration equals that of one repeat period ?r,
so that no ground-track repeat will occur during the mission. To this extent,
the number of orbit revolutions N, during the mission period and the number
of (nodal) days Na contained in it have to be relative prime integers. This
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4. GIobaI gradiometric analysis

can be seen as follows. Consider equation 3.18, which constitutes a Fourier
series as function of the argument ry'1-. This series can be regarded a time
series if successive measurement points along the orbit are considered. The
time parameter t enters the argument 4t*ro if we write wo : u2 + 6"(t - ts)
and o" : u2 + ,;"(t - t6) where the dot denotes differentiation with respect to
t and where ar! and u! are evaluations of respectively uo andu" at t6. Thus:

, b k o :  k w o  I  r n w "

:  t '  ( r? + b"( t  -  to))  + m(w! + 6"( t  -  to))
: krf; -t rnu! + (kd)" + mb")(t - ts)
= ,b2* + ,lt*^(t - ro) . (4.6)

Whereas the term ,/tlr^ only represents a phase shift, the term tftlr* represents
the actual measurement frequency. However, the frequency in terms of. cycles
per reuolutfon (c.p.r.) is denoted 0**(: rb*r.lr") and may be written as (cf.
(Schrama, 1989) or (Schrama, 1990)):

9k* :  t '  +  ̂ ?
(ro

so that tltk^: t! 'r*+ 0*^6o(t - ts). Now one nodal day is 2rf 6" seconds and
one revolutionis2rf wo seconds. If the mission (?,. seconds) takes exactly lfa
nodal days and N" orbit revolutions, there exists an integer ratio between ur,
and aro, i .e.

Y t : Y !
Q o  N t '

This means that after Na nodal days and N" orbit revolutions the ground track
will exactly repeat. However, if Na and N, would have some common divisor
d, this repeat would already occur after Naf d days and Nrf d revolutions.
Requiring Na and N" to be relative primes therefore ensures no orbit repeat
during the mission period ?r. This also means that during this mission period
the finest possible coverage of the earth's surface is obtained. More repeat
periods, being nothing more than a "repetition of experiments", would, on the
other hand, only result in a re-scaling of the variances.

4. The measurements which the instrument delivers are in general the result of
an averaging process over some time interval At', which has to be less or equal
to the sample interval At. This averaging can be accounted for in the following
manner.

Consider equation 4.6. Let us, for the sake of simplicity, assume to : 0 and
the initial value rllrrn to be zero. We then have $1"^: ,lr*^t. Being a function
of time t, the expression for the gradients can be integrated in order to ac-
count for the time-averaging mentioned above. The integration only applies
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1.2. Colontbo's method of error analysis

to the cosine and sine terms and takes place over the time interval Atf . Upon
introducing the integration variable r, this integration becomes:

I  f++_ t
A t ' l t - {

I St+{
N J,-+

cosrlprrrdr :

:

s in$p*rdr:

1  1  f  .  ;  , ,  A t ' .  i  t ,  A t ' r l

At, il;fstn 
ptrz(t + 

z ) - srnrlp,"lt - 
2 ))

2 . ,rlrorn\t'\

i r^, 
sin(f )cost!**t

2 . ,r l tr^Lt ' \
6;Lr,sin( 

-t- ) sin $ P'nt'

The factor Jk,n=zsin(f f) l \ !**L/)  may be incorporated in the incl ina-
tion function to obtain a kind of smoothed function J*^Ff^. In the sequel we
will assume all inclination functions to be multiplied by J**. We furthermore
take  At ' :  A t .

Non-gravitational effects will not be included in the present error analysis.

We assume that, to first order, these effects are eliminated through common
mode rejection (see chapter 2). Only second-order effects, due to e.g. non-

symmetry in the instrument, remain. Following (Colombo, 1987) we assume
a large part of these effects, as well as some instrument errors Iike thermal
noise, to be present in a low frequency band, mainly below /nin : 4 c.p.r.
(Schrama, 1990). Removing from the analysis the low frequencies l9**l <
gnin may be considered appropriate to account for these non-gravitational
effects. Other high-pass filters may also be used, but are not considered here.

For the moment the covariance matrix of the measurements, Q, will be con-
sidered to be a scaled unit  matr ix, i .e.Q: o2 I .  This means that consecut ive

measurements are considered to be uncorrelated and of equal variance. The
variance factor o2 rnay, however, have arbitrary values for different gradients.

Spatial differences in the precision of the data due to phenomena like e.g. drag
variations are therefore not included in the present analysis.

One of the most important consequences of the assumptions above is that the

normal matrix (which is to be inverted) attains a block-diagonal structure. This
will be explained in the next section. Each block of the normal matrix can be

inverted separately, which means an enormous reduction of computation time. In

this way it becomes possible to carry out the error analysis several times with only
limited (computational) effort. Each time we may change the orbit and instrument

characteristics (like the inclination or instrument noise level) thereby allowing the

investigation of several different mission scenarios. These mission scenarios depend

on the value of the following mission parameters:

5 .

6 .
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4. Clobal gradiontetric analysis

h satellite height above reference radius R, i.e. r : R + h

1 inclination of the orbit

Lt sample interval, i.e. time between two successive measurements

T, mission duration (one repeat period)

o measurement precision

9*;n lowest measurement frequency included in the analysis

9^o" highest measurement frequency included in the analysis

It will be shown later (section 4.2.3) that only for a change in some of these
parameters a new run of the error analysis program is needed (e.g. for the inclination
1), but that a change in the other parameters (e.g. the height h) can be accounted
for by simply scaling the inuerted normal matrix.

4.2.1 Norrnal rnatrix

The normal matrix N of the least squares adjustment problem 4.2 is given by
ArQ-rl. In this section we will derive the expressions for the elements of this
matrix, under the assumptions given in the last section.

Inserting for the covariance matrix Q the expression o21 leaves for the normal
matrix

N  =  \ A r  A .

We see that the elements of the normal matrix are computed by taking the inner
product of columns of the design matrix A. Each column of A contains, for one
specific combination of I and m, terms of the form 4.3 or 4.4, the argument **ro
(being a function of time t) indicating consecutive observation points (epochs). If
we, for s impl ic i ty,  assume to:0 and r/ . , f ;* :0,  we have from equat ion 4.6 r !** -

k6ot + mw"t f .or al l  ,  :  0, . . . ,7, .  where ?" is one repeat period, in our case equal
to the mission duration. Now we only have measurements in discrete points along
the orbi t  with interval  At,  so we may wri te , l r**:  kuoj\ t*  mb"jAt with j r  -

0 , . ' . , N r - l a n d N r : T r f  L , t , t h e t o t a l n u m b e r o f m e a s u r e m e n t s d u r i n g t h e m i s s i o n .
In the previous section we have seen that Na is the number of nodal days during
the mission period ?, and N" is the number of orbit revolutions. So we have:

,:, - AL2r - Nt1 2r
we  -  ! ' ( t T ,  -  

L t  Np

-  t r  2 r  -  N , 2 rw o - t t r T l - I ? &

q . - t r 2 t
t r  -  t f  d ;

, n  -  n r ? rt r  -  t r r i ) o
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4.2. Colontbo's method of error analysis

which yields for rf.,p,o

,l,r^ :2f,@r^N,) j : 0 , . . . , N o - l

with 81,,o 
- k +-ff. Not" that, since -L < k I L, \r^may take negative values

too.
Taking the inner product of two columns 1 and 2 of A means a summation over

the index J over al l  measurement points j  :0, .  .  .  ,  No- I  for di f ferent values 11,12,m1
and m2. Let us take as an example the gradientV"" and the case I - m even. For a
e1ro coeffi.cient (indicated by an upper index cc) the element of the normal matrix
now becomes ( leaving out,  for the moment,  the factor ( /+ t)( /+ 2)f ;) :

r N p - l l  , - ,  \ /  , - :hl:2:i,^": * k l? 
utt, ,o,'ft{0r,*,*r) 

lL 
u,r:,-,.o,'fi{gr,,,,N,) 

1
: 1 t Ff,;,Ff,"*,"!t.o, '#@r,*,N,.)cos 2#@r,, 

"r,t,) 
.

o' ru,t, j=o NP ' '  '  NP

According to the orthogonality properties of trigonometric series, the summation

overy in this equation reduces to:

i f  l0* ,^ ,1* l0* ,*"1
i f  l0* ,* ,1:  l9*"*r l  + o
i f  /kr r , r  :  9*2^"  :0 .

In case .ly'o is even the result of the 7-summation may also be equal to Npl2 it

l1 * r * r l :  lg t r * r l  +  +  and equa l  to  N,  i f  gnr * , :  gk" * r :  + ,  bu t  in  a  rea l i s t i c
mission with millions of measurement points this situation will never occur. The
frequency Bp- equals k + rn# where k may take values between - L and, L and m
may take values from 0 to .L. This means that there may be several ft, rn combi-
nations corresponding to the same frequency Bpr". This also implies that we may
have

l9*r^rl :  l9*r*"1 for h * kz and rnt * rnz (4.7)

cf. (Schrama, 1990). This situation will not lead to a block-diagonal structure of
the normal matrix, as will be explained later. Now the situation /kr*, : 9*",o"
implies:

N o _  _ l q - k z
N,. rmt - rnz

where (as explained before) the numbers N4 and N" are relative primes (i.e. they
have no common divisor, so their fraction cannot be simplified any more). The

0

&,
N.
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4. GIobaI gradiometric analysis

denominator on the right hand side wil l never be greater than .L. If we now ensure

that N, is always greater than .L there is no possible combination of the numbers

kt,kz,fftL,trr2 for which 4.7 holds.

Furthermore, we have to avoid the situation where for certain k, rn combinations

f requenc ies  B l r l noccu r  wh i cha re l80oou to f  phase , i . e -9 * r ro r : -9k " ^ " .  As im i l a ' r

reasoning as above wil l, for this case, lead to the requirement that N" be greater than

2L.  I f  now N'  > 2L we only have gkr^t :  9k"^"  i f  m1 :  m2 :  m and k1 :  kz = k,

at least for m I 0. Furthermore, in this case we never have Fr* : O. If rn1 : rn2 =

m :  Owe have a specia l  s i tuat ion s ince in  that  case gkro :  -0*"oVkr -  - f t2 .  Also,

for  rn:0 we have Blr ro:0 for  k t :  kZ:  k :  O.  The expression for  an e lement  of

the normal matrix can now be simplif ied to:

,  ( z z ) c c
hi,ti* :

2o2Ll

T,
rnin(l 1

t
la= -min( l

, . 2  )

t Jz)lz\

F+_

w h e r e  f . o r  m l O
F1- - F!,*F!"*

and for  rn:  O

F+-: Ff;*Ff"^+ Ft; lFl*

The notation min(11,12) means the minimum of the two numbers /1, 12, where 11

and lz have the same parity as a result of k1 : kz -- k.

For an ,51- coefficient, nfii)ff, the same result appears except that the case

m: O is not present. The cross products for one e 6 and,one ,S1- coefficient, h[:l;

""d 
hl:l|, are always zero due to the orthogonality properties of trigonometric

functions. In an analogous manner the situation J - rn odd is treated. For the other

gradients similar derivations hold, using the expressions from tables 4.I and 4-2-

Now it also becomes clear why we had to derive new expressions for the ry and yz

derivatives. The sinaro term in the denominator of the old expressions of those two

gradients would have destroyed the orthogonality properties of the trigonometric

functions. In general, the expressions for the elements of the normal matrix are:

h.r" ,  -  l t , l -hT, 
nin(tr ' t )  

ztr t"*x'o l l2m - 
2oz A,t 

*=_min(tr, tz) l l l

hiir*: ht"l"^ (excePt for rn : o)

htirr*: h't"rt"* :  O

(4 .8 )

with 211116 taken from table 4.3 (with factors like (t + 1)(, + 2)ft restored).
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4.2. Colontbo's ntethod of error analysis

Table 4.3 Expressions used for the elem.ents of the norrnal matr ir , .

Z l r l " ^k

tr

ry

vv
yz

(/r + t + k2)(12+ 1 + k')P*-

k2  F i
T _

(h  + 2)( tz  + 2)k2 F+-

((/t  + \2 - kz)((tz+ r)2 - k')P*-

( h + 2 ) ( t z + 2 ) F i -

( l r  +  1 ) ( / r  +2 ) ( t2  +  1 ) ( /2  +2 )F+-

In this table it is for rzr I O
ri- : Ff,,iF,r,,i

and for  rn:  O

ri_ : F,*,;F!"; + F;,h* F,o,,i,
Note that the summation over /c for the ry and gz gradient runs from -min(l1 -

L , l z  -  l )  t o  m i n ( l 1  -  1 , 1 2  -  1 ) .
If several gradients are measured simultaneously at each observation point with

equal variance and if they are used as independent measurements in the adjustment,
the elements of the normal matrix can be found by summing expressions like 4.8
for each individual gradient. For example, if the gradients Vyy,Vy" and V"" are
measured, the expression for the elements of the normal matrix is equation 4.8 with
in this case

(. , .
z, '1, ' " ' ! i ; ' " ' :  {  [ ( / r  + 1) ' -  k ' ] l ( t r+ t )2 -  /c2l+

(/r  + 1)( / r  + 2)( t2 + 1)(12 + 2))r '+-  +
( h + 2 ) ( t z + 2 ) F ; -  '

If some combination of gradients is used as a single observation, for example 2Vr, *
Vr", the expression for the elements of the normal matrix is found by using equa-
t ion 4.8 with

z[ ' , , ' "u i ia:  I t1( /1 + 1) -  2k2)Ltz( tz+ 1) -  2k2]F+- .

We see that with this method we can easily investigate various situations with respect
to available measurement configurations.

But a much more interesting consequence of the derivations above is that, as a
result of the orthogonality relations of the trigonometric series, through a suitable
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4. GIobaI gradiometric analysis

choice of the ordering of the unknown potential coefficients, the normal matrix
will attain a block-diagonal structure (Colombo, 1987) which is much more easy
to invert. First of all, we have seen that the normal matrix elements connecting
an arbitrary e m and an arbitrary $- coefficient are all zero. This means that
if we order the coefficients in such a way that ail e6 coefficients come first, the
normal matrix is divided into four blocks, the upper right and lower left one (the
off-diagonal blocks) contain only zero's. Furthermore the two diagonal blocks are
exactly the same. Also, since only elements for equal rn differ from zero (at least
if If" > 2.L), ordering the unknowns according to m causes the two main diagonal
blocks to be divided into smaller blocks, one for each rn. The size of these smaller
blocks decreases from,L* 1 for m : O to I for m : L. Finally, as a consequence
of the vanishing of the summation terms for which h * kz (again only if N, > 2L)
only elements for which k is the same remain, which in turn implies that 11 and /2
have to have the same parity. So, the rn-blocks are again divided into four smaller
blocks if for each m the / are ordered according to their parity, first all even / and
then all odd l. Of those four blocks only the diagonal blocks differ from zero, see
figure 4.1. The size of these blocks is half the size of the m-blocks. The inversion
problem is now reduced from that of a matrix of size L2 to one of 2.L times a matrix
with a size of at most |2, which means an enormous reduction of computation time.
The block-diagonal structure also implies that the error analysis can be carried out
for certain groups of coefficients independently.

4.2.2 Presentat ion

With the expressions for the elements of the normal matrix N which are derived in
the last section, we are now in a position to compute in an easy way the a-posteriori
variances of the estimated potential coefficients. The assumptions stated in the
beginning of section 4.2 may, to some extent, put limitations on the usefulness of the
method. Nevertheless, the method is stil l very useful to gain a better understanding
of the gradiometric analysis problem and at the same time shows possible problem
areas.

The required a-posteriori variances are found to be the diagonal elements of
the inverse normal matrix N-1. A very common way of representation of these
variances is by means of degree variances. The error degree uariance (of the formally
propagated error) is

a

o?:"?o(e) + I  "?^Q)+07,,6)
m=l

I
t ^ s - ,: o i o l Z  L o i r n , (4.e)

m = l

where use is made of the equality of the error variances for the epn and S;- co-
efficients and where or2^ it a diagonal element of the inverse normal matrix .l[-l
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4.2. Colombo's method of error analysis
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Figure 4.1 Block-d iagonal  s t ructure o l  the normal  matr iz .  Th,e notat ion oe"

n 'Leo,ns euen I  and "o"  odd l .
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4. Global gradiometric analysis

for a specific value of J and rn. From

coefficient per degree as

equation 4.9 we compute the error r.m.s. per

(4 .10)

the square of which is called error degree-order uariance. Degree variances and

degree-order variances can also be computed for the potential coefficients them-

selves, in which case they are called respectively signal degree uariances and signal

degree-order uariances. Ttey are defined as

l- "76t*: \,lrl +1 ,

and

( 4 . 1 1 )

(4.r2)

I

ct: e?o+ t {el^ + St'z*)
rn=1

c l
c t * : 2 r + r '

For computational purposes, the potential coefficients C1* and ,S1- in eq. 4.11
may be taken from some a-priori known potential coefficient model, e.g. OSU86F
(R.pp and Cruz, 1986). Another possibility is to compute the c1 directly using some
degree variance model, like Kaula's rule (Kaula, 1966) or the Tscherning/Rapp
model (Tscherning and Rapp, 1974). Note that, since the potential coefficients
et^rSun are dimensionless, so are o!, oun, c1 and c1^.

Whereas the degree variance of some function (either signal or error) represents
the power of the function per degree, one is also often interested in the total power
of the function over all degrees. For example, the total signal power for potential
coefficients i" DEocl with the c1 taken from equation 4.11. This total power also
represents the average square value (or norm) of the signal over the unit sphere,
cf .  (Heiskanen and Mori tz,  1967).  The global r .m.s. is the square root of  the total
power. In the same way we may compute from the error degree variances (equa-
tion 4.9) the global error r.m.s. for potential coefficients by summing the of over all
degrees. The mission goals for gradiometry are expressed in terms of global error
r.m.s. values for gravity anomalies or geoid undulations. They can easily be com-
puted from the global error r.m.s. for potential coefficients by multiplying the latter
with the eigenvalues )1 of the linear operator connecting the respective quantity
with the potential coefficients (Rummel, 1991). The global error r.m.s. becomes

with for gravi ty anomalies S":  f f ( l  
-  1) and for geoid undulat ions )3: R. The

global r.m.s. of each arbitrary other gravitational quantity can be computed in a
similar manner, as long as it is linearly related to the potential. Here we will only
show the two mentioned quantities, namely the surface gravity anomalies and the
geoid heights.
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4.2. Colontbo's method of error analvsis

We see that the summation above includes all degrees from zero to infinity. The

reason for this is that the gravitational potential is considered an element of an

infinite dimensional Hilbert space of functions defined outside a convergence sphere
which is approximately the surface of the earth. The spectrum of such functions

includes all frequencies from zero up to infinity. In our error analysis, based on the

availability of a finite number of measured samples, we can only estimate a limited
part of this spectrum, e.B. up to some maximum degree -L. As a consequence, the

gravitational field can never be perfectly reproduced from the measurements, even

in case of perfect measurements. There always remains a part of the spectrum

which is neglected in the analysis. This neglected signal is called omission error.

In case of regular sampling, it contains primarily the high frequency signal part

for degrees I  > L. As a result ,  the global error r .m.s. should consist  of  two parts:

the propagated error from the analysis for degrees I < L (called the commission

error) and the omission error (neglected signal for degrees / > .L). Since we do

not know the true spectrum of the gravitational field, and since it is impossible in

practice to really include all degrees up to infinity, the omission part is computed

only up to some limited maximum degree /rncs using a model representing the true

spectrum. Thus, the global error r.m.s. values for gravity anomalies or geoid heights

are computed as

(4 .13)

where the first summation indicates the commission error and the second the omts-
sion error. and where

re
l s - .  o ^ o , o  r \

rl)-'?B?t? * t ",0?^?
\  l = 0  l = L t + r

9t

,h"

,\1

L t

lmrs

F** #ln-t(cosr/ .)  
-  Pr+r(.orry '") ]  smoothing operator

radius of a spherical cap with equal area as an equiangular block
of size d" at the equator

I  ^ -  -

I  W(t 
-  t )  for gravi ty anomalies

I

[  f t  for  geoid undulat ions

degree of truncation of the commission error which is less or

equal to the maximum degree .L of the performed error analysis

truncation degree for the omission error

The reason for including the smoothing operator 81, see e.g. (Meissl, 1971), will

be explained in section 4.2.7. A truncation degree for the commission error L1

smaller than ,L may be chosen, for example, if the error in the estimated coefficients

for degrees I > Lt exceeds IOO % of the signal, i.e. if for those degrees the signal to

noise ratio o? l"t > 1, cf. (Colombo, 1989) or (Rapp, 1989). Choosing .L1 in this way

is in fact comparable to "ideal" low-pass filtering. However, a more optimal way for
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4. Global gradiometric analysis

computing the global r.m.s. is using a minimum variance filter, like a Wiener filter,
e.g. (Papoul is,  1965).  In that case the expression becomes:

(4.r4)

with
Wiener filter: Wt - --:!- .

c t + o [

The Wiener filter is derived as to ensure a minimum total error (cornmission *
omission). For degrees where the signal power largely exceeds the noise power, the
filter will approximately attain the value l. In the estimation procedure this would
imply that the data at these degrees are almost completely used. For the global
error computation it therefore means that the error for those degrees comes almost
exclusively from the propagated error ol from the gradiometric analysis. If the
noise power, however, is larger than the signal power, the filter tends to zero. For
the global error this means that for those degrees the contribution comes largely
from a-priori available gravity information, in our case the signal degree variances
c1, which can be seen from equation 4.L4. In this equation, the term including o!
represents the commission part and both other terms the omission part. This means
that, if one uses a Wiener filter, one may also have an omission error part for degrees
below ,L, which in fact results from the imperfection of the measurements. We will,
in our computat ions, exclusively use the lat ter equat ion 4.14.

The above derivations shall now be used to study the error behaviour of gra-
diometric experiments. Thereby we shall start with the most ideal situation. It is
characterized by a gradiometer instrument which measures all six components of the
gradient tensor (a so-called full tensor gradiometer). The full measurement signal
(the complete spectrum of measurement frequencies, here indicated by the index
ft) is used with equal variances for all frequencies. Considering the orbit, an ideal
situation is a polar orbit (1 : 90') in order to obtain complete global coverage. Af-
terwards we shall consider a number of restrictions (band limitation and non-polar
orbits) and finally we discuss a scenario that resembles as closely as possible the
current plans of the Aristoteles mission.

4.2.3 Ideal case

We consider here a full tensor gradiometer, which measures all six components of
the gradient tensor. To obtain complete global coverage we assume the inclination of
the orbit to be 90'. Finally we consider the instrument not to be band-limited. The
latter implies that we include all measurement frequencies, low and high enough to
recover the potential up to some specified maximum degree, in the analysis, and that
we assume them to have equal accuracy. A discussion on a band-limited instrument
will be given in the next section. For the moment we simply take B*;n to be zero and
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4.2. Colombo's method of error analvsis

Frro, ) 254, which is high enough to recover potential coefficients up to ,L : 240, see
section 4.2.4. These, and other characteristics of the ideal case gradiometer mission
are listed in table 4.4.

Table 4.4 Characteristics oJ the id,eal case gradiorneter rnission.

inclination

components

no band Iimitation

satellite height

sampling interval

mission duration

error spectrum

/ : 9 0 o

v",  ,vru rvr" ,vgg ,vg " rv""

9 * ; n :  O

h : 2 0 0 k m

A l : 4 s

T, :6 months

O.OL El\ /Hz white noise

In figure 4.2 the (dimensionless) error r.m.s. values for potential coefficients com-
puted with equation 4.10 are shown for 10 different cases: for each of the six tensor
components individually, for several combinations of components (namely all six to-
gether,  {Vsy,Vy,,V""} and {Vsy,V""})  and for the quant i ty 2Vuu 1V"".  The lat ter
quantity is chosen because it will be used in the potential coefficient recovery in
section 4.3. The ordinates in these figures have a logarithmic scale. For all sit-
uations the overall pattern of the graphs is the same: after an initial decrease of
the r.m.s. value (i.e. an increase of the a-posteriori accuracy) the lowest point is
reached around degree I = 60, after which a steady increase occurs. This overall
pattern can be explained by remembering the expressions for the elements of the
normal matrix from table 4.3. As the result of two differentiations all the gradients
are multiplied by a factor proportional to at least /2. For the signal this means a
higher contribution for higher degrees, as to be expected for second-order derivati-
ves. For the a-posteriori error (inverse of the normal matrix) this means a decrease
with increasing degree J. However, as already indicated in section 3.2.1, the natural
attenuation effect of the gravitational potential with height is also present. For the
gradients this factor is (Rlr)t+3. For the elements of the normal matrix this factor
is again squared. For higher degrees, the signal will decrease, and the error r.m.s.
will therefore increase. On a logarithmic scale this attenuation factor will result in a
straight line, starting left below and reaching for the upper right side (see figure 4.3).
Eventually this effect will be dominant, so the r.m.s. plots are likely to approximate
this straight line for higher degrees, as can be seen in the figure.

Combination of the effects described above results in the lowest error for the
part of the spectrum somewhere between degrees 30 and 100, slightly dependent on
the observation type, making gradiometry especially suitable for determination of
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RMS with attenuation term

RMS without attenuation term

attenuation term (r73;2(t+s)
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degree I

F igure 4.3 Inf l .uence of  at tenuat ion factor  on error  r .m.s.  p lots .  The f ig-
ure shows error  r . tn .s .  f romV"" .  k f t  aer t ica l  scale is  for  r .m.s

aalues, right aertical scale lor attenuation factor. Both scales
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4. Globa| gradiontetric anilysis

these degrees.
From figure 4.2 we see that the largest error is obtained for the V* and Vuu

components, fol lowed by that f rom respect ively 2V* IV""rVrrrV"" and Vrr.  Out
of the seven individual observations shown in the figure, V"" gives the best result.
Redundancy, however, ensures even better results for combinations of observations,
the combination {Vor,Vrr} being slightly better than V"" alone, followed by the
combination {Vuu,Vs",V"") and the best results for the full tensor combination

{Vrr,Vry,Vr",Vvv,Vy",Vr") .  Note that for the six individual gradients, the level
of the a-posteriori error relative to one another is not necessarily the inverse of the
signal power level, cf. figure 3.4.

Once we have computed the r.m.s. values for a specific inclination and 0*;n, it
is very easy to derive from them equivalent values for various altitudes, with various
mission durations, sampling intervals and measurement precisions. We do not need
to invert a new normal matrix in these cases. This can be understood as follows.
Columns of the design matrix A are multiplied by the downward continuation factor
(R l i ' * " ,c f .  eq .  4 .1 ,  where  r  :  R*  h .  So A canbe wr i t ten  as  A :  A '  D ,  where  D
is a diagonal matr ix containing only the factors (Rlr) t*"  and Atequals A without
these factors. Then, since N - ATQ-|A, we have

N :  DT A ' re - r  A '  D  :  DNt  D

with N' : { tTg-r4' .  Computing N'-1 f i rst ,  i t  can be scaled by pre and post
mult ipl icat ion with D-r to obtain the results at satel l i te al t i tude, since y ' f - l  :
D-L N'-r  D-1. Furthermore, f rom eq. 4.8 we see that each element of l {  is mult ip l ied
by a factor Trf o2Lt. The square root of this factor can be included in D, and can
thus be left out of the matrix inversion. If we now like to compute error r.m.s. values
for other, arbitrary values of h,Lt,T, or o2, we do not need to carry out a new
normal matrix inversion. The inverse y'y''-1, computed only once, is simply scaled
with an appropriate diagonal matrix D. Note that for combinations of gradients,
like {7rr,V""}, the scaling with o2 does not always work. If different gradients are
given different o's, a new inversion has to be established.

For the graphs of figure 4.2 scaling with ?r, oz or L,t means a uniform shift of
the complete curve. A different altitude means that the straight line representing
the attenuation factor (see above) obtains another slope with subsequent effect on
the r.m.s. curve. In figure 4.4 the effects mentioned above are illustrated for the
error r.m.s . from V"..

As described in the previous section the error degree variances can be used to
compute global error r.m.s. values for gravity anomalies and geoid undulations. The
influence of the individual mission parameters Tr,A't,h and o on this global r.m.s.
is not so obvious any more. For a full tensor gradiometer, measuring all six tensor
components, and for the case that all these six components are used in the error
analysis with equal weights, this global r.m.s. is shown in figures 4.5 and 4.6.

Figure 4.5 shows the global r.m.s. for three different mission durations as a
function of height. (Note that the straight lines are just added for clearness. They
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4. Global gradiometric analysis

do not represent functional values since only the nodes (5 different altitudes) were
really computed.) The numbers in this and the following figures of this type were all
computed using equation 4.14, including the Wiener filter, where for the omission
error (computed using the Tscherning/Rupp degree variance model) a maximum
summation value /mcs : 1000 was taken. The numbers furthermore represent
1o x 1o block averages since the smoothing operator B1 was included with 0, :
1o. The inf luence of lmrs and d" on the results wi l l  be discussed in sect ion 4.2.7.
The most remarkable fact from this figure is that at the lowest altitude (160 km)
tripling the mission duration gives no substantial improvement of the total r.m.s.,
cf .  (Rapp, 1989).

Figure 4.6 is of the same kind as the previous one, but now results are shown
for three di f ferent measurement precisions. The case o:0.0001 E/JH, refers to
the anticipated measurement precision of the superconducting gradiometer under
development at NASA (Paik and Richard, 1986). What can be seen from this figure
is that with this kind of high measurement accuracy, satellite altitude becomes of
less importance, whereas for the lower accuracies it stil l plays an important role. At
160 km, however, all o's give nearly the same result, cf. (Rapp, 1989). Apparently
there is some lower limit for the total r.m.s. To understand this, we have to bear
in mind that the r.m.s. values represent the total error) commission and omission
error (see the previous section). Increasing the measurement precision changes the
commission error part. For example, the commission error for gravity anomalies
for the three increasing measurement precisions (0.02, O.Ol and 0.0001 nlt/nz) at
160 km alt i tude is respect ively 0.28 mgal,0.14 mgal and 0.0014 mgal.  As for the
omission error) only the contribution for degrees below tr is changed (due to the
Wiener filter) when increasing the measurement precision, whereas the part above
.L is not changed at all. The total error therefore has some constant base level
determined by the omission error, especially the part above Z. This part has to
be decreased in order to fully benefit the improved measurement accuracy, which
implies that we have to increase .L. The maximum value for .L is determined by
the sampling density of the measurements, which is represented in our case by the
combination of mission duration ?" and sampling interval At. So we see that in
the end improving the measurement accuracy will not give better results if at the
same time not also the sampling density is increased. A same reasoning explains the
limited influence of the mission duration at 160 km altitude in figure 4.5.

In any case, both figures show that in the present ideal case the goals described
in chapter 2 (5 mgal accuracy for gravity anomalies and 10 cm for geoid undulations
with a resolution of better than 100 km) can easily be met, at least for a full
tensor gradiometer. This conclusion is, however, a theoretical one since in reality
the situation may and probably will not be so ideal. Nevertheless, the previous
discussion gives more insight in the way in which various parameters influence the
process and it shows the maximum obtainable result from gradiometry, of course
under the present assumptions.
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4.2. Colombo's method of error analysis

Singular norrnal matrix sub-blocks

When trying to invert the sub-blocks (m-blocks) of the normal matrix, it appears
(and it will appear for other cases in subsequent sections) that some blocks are
singular and can therefore not be inverted. The reason for this might be either a
physical one or a numerical one. An example of a physical cause underlying such
singularities can be found for the componentsVru and Vr" (both of which contain one
differentiation in the cross-track direction). For a perfect polar orbit (1: 90") zonal
coefficients cannot be estimated from these components, the cross-track direction
being always orthogonal to the direction of variation of the zonal coefficients (along
the meridians). This is reflected in the model by means of vanishing of the cross-
track incl inat ion funct ions ,Ql-  for m:0. Consequent ly,  the m: O blocks for these
components are singular.

We may also encounter numerical singularities. Especially for low orders (which
constitute the largest sub-blocks, since the degrees / contained in them run from rn
to .L) the difference between the largest and smallest eigenvalue may become very
large, so the block wi l l  be i l l -condit ioned (see also sect ion 4.2.6).

In either case, we do not obtain propagated error variances for the potential
coefficients belonging to those blocks. Or stated otherwise, the potential coefficients
belonging to the singular blocks apparently cannot be estimated from the obser-
vations. However, when computing error degree variances using equation 4.9, a
summation is done over all orders m. Leaving out certain orders, due to the sin-
gularities described above, would therefore result in incorrect values for the degree
variances. We would have, so to say, assumed zero error for those orders, where per-
haps an infinite error would have been more appropriate. Therefore, the error r.m.s.
plots included in this work have to be interpreted very carefully, always bearing in
mind which rn-blocks are left out. To this extent, table 4.5 shows which blocks
appeared to be singular and were omitted from the analysis. For later reference, we
included in this table all the cases yet to follow in subsequent sections.

What can we do about this? Probably the best (but certainly not the most
pleasant) answer would be not to compute degree variances at all. The problems
above first arise when computing the degree variances, whereas there is, of course,
nothing wrong with the propagated error variances for each individual coefficient
themselves, at least as far as they canbe estimated (i.e. the non-singular blocks).
There are, however, some reasons for using degree variances. First of all, they are
generally found to be very illustrative, giving a good picture of the gravitational
field and its main spectral characteristics. Secondly, if we do not compute degree
variances, we are left with a very large amount of individual error variances to be
compared for several cases. Whereas the number of degree variances ttonly" amounts
to.L (the maximum degree of the analysis), the number of individual coefficients is
(L + l)(L * 2) minus the non-estimable ones. It is hard to make good pictorial
or graphical representations for so much coefficients, at least for high maximum
degrees, like .L : 240 in our case.
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4. GIobaI gradiontetric analysis

An alternative would be to compute order uariances. Then orders for which the
sub-blocks of the normal matrix are singular appear in the graphs simply as gaps,

but at least they would not interfere with other orders. But from table 4.5 we see
that often only the even or odd degrees for a certain rn appear to be singular. Then
we are faced again with a similar problem as above. Furthermore, one is not used
to interpret order variances, so we will not show this alternative here.

We already suggested above that instead of zero error, an infinite error for the

coefficients of the singular blocks would perhaps be realistic. So we could try, in
some way, to fil l in the shortages occurring due to the singular blocks. For example,

one could regard the non-estimable coefficients as contributing to the omission error
and thus insert for them the signal degree-order variances from some degree variance

model or the value of the coefficients from a potential coefficient model. But since
for large parts of the spectrum the signal is much higher (partly by several orders)
than the error) the results would become extremely bad (very high error r.m.s.
values) . Another possibility would be to insert the error variances from some existing
potential coefficient model. But especially for the Iow degrees (where the influence

of the singular blocks is relatively large) the error of the existing models is much

smaller than that from gradiometry. Our results would therefore hardly change.

Even a multiplication of the model error variances with a factor 3 before adding
them to the degree variances did not have much influence.

Furthermore, both methods, inserting model signal or error variances for the

singular blocks, lead to the problem of how to interpret the corresponding obser-
vational model belonging to such a strange combination of (error) variances. Con-
cerning the additional error variances from some model, one could view upon them
as a-priori information added to the estimation procedure. But those model error
variances themselves are the result of another, former, estimation process, leading
to a strange mixture of data, models and methods.

In the remaining of this chapber, we will bherefore not pay any special attention
to the phenomenon of the singular sub-blocks. For reference, the singular blocks are

listed in table 4.5. In any case, the influence of the singular blocks on the computed

degree variances is not so large, as might be illustrated by the following test. We

computed the error r .m.s. values for the case 1:90o and B^;n:0 for the six tensor

components leaving out exactly the same orders for all components. From table 4.5

one can see that this means leaving out m : 0 (both even and odd degrees) . Apart

from a slight change in the individual r.m.s. curves, the ratios between the error

r.m.s. curves, as compared to f igure. 4.2, did not al ter.  The error f . romV* andV*
remains largest, followed by that from Vr, , lhen V* and Vy" and finally Vr, .

4.2.4 Band lirnitation

In the previous section we assumed for the gradiometric measurements a O.OlEl\/Hz
white noise error spectrum over the full measurement bandwidth 0 < lgrr"l ( oo. In

that case all measurements %1(t) in the time domain will have equal precision, i.e.
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4.2. Colombo's method of error analysis

Table 4.5 Singular sub-bloclcs of th,e norrnal rnatrir. ne" rneans euen de-
grees, oott means od,d, degrees, * means both eaen and od,d

degrees.  For  the combinat iont  {Vrr ,V" ! rV""rVsyrVy"rVr"} ,

{Vys,Vy",Vr"}  and.  {Vru,Vrr}  neuer s ingular  m-blocks appear.
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4. GIobaI gradiontetric analysis

the covariance matrix Q is a scaled unit matrix. As a result of Parseval's relation

this measurement precision will in our case be 0.01 E. In reality the error spectrum

of a gradiometer will only be white in a limited band, between some lower band limit

Brn;n and an upper lirrrit p^o, The measurement frequencies lB6 l below B^;n and

above Brno, wlll either not be present in the signal at all due to the sampling rate

or will be distorted too much due to instrumental and environmental error sources

(coloured noise).
An upper band limit 9*o, is caused by the sampling rate with which the mea-

surements are taken along the satellite's orbit. For Aristoteles this sampling rate is

foreseen at 4 s, so that the highest measurement frequency present is 0.125 Hz (twice

the sampling rate or Nyquist rate). At an altitude of 200 km, the orbital period of

the satel l i te is approximately 5310 s, so that 0*or:5310 x 0.125 a: 664 c.p.r .  We

limit our error analysis to .L - 240, so also l,tl and m are limited to.L. As a result,

the highest measurement frequency included in the analysis i"  l0** l :254 c.p.r .

which is well below g^or. An upper band limit as discussed here will therefore not

cause any problems. Note that the choice of L :240 means that frequencies above

254c.p.r . ,  al though present in the signal,  are not used in the analysis.

A lower band limit is the result of instrumental and environmental influences.

For Aristoteles instrument stability (especially thermal stability) can only be main-

tained over a maximum period of 200 s. This limits the white noise error band to

measurement frequencies with a period not exceeding 200 s, i.e. the lowest measure-

mentfrequency is 0.005 Hz, or 0^;nx27 c.p.r .  Frequencies with aperiod exceeding

2 O O s ( 1 8 1 , , . 1  < 2 7 ) w i l l b e p r e s e n t i n t h e s i g n a l , b u t w i t h d e g r a d e d a c c u r a c y .  A l l B

error behaviour for these frequencies can be assumed for such coloured noise situa-

t ion (Schrama, 1990).  Therefore, an absolute lower band l imit  of  27 c.p.r .  (with al l

frequencies below this Iimit removed from the analysis) will not be discussed here.

Finally, non-gravitational orbital effects disturb the spectrum, mainly below 4 c.p.r.

(see section 4.2). Removing these frequencies from the analysis can be considered

appropriate to account for these effects. One could think of this as assuming an

infinite error for these frequencies. A 0^;n of 4 c.p.r. should be considered as a

minimum, also for the coloured noise situation.

In this section we will investigate the consequences of a lower band limit of 4

c.p.r . ,  thereby assuming white noise for the ful l  error spectrum above this l imit .  A

coloured noise si tuat ion, with 
"  

LIB error behaviour between 4 and 27 c.p.r .  and

white noise above 27, wi l l  be discussed in sect ion 4.2.8.

One of the consequences of lhe band limitation described above is that the covari-

ance matrix of the measurements is no longer a scaled unit matrix. In particular, the

covariance matrix will be a full matrix, however, with a certain favourable structure.

It will have constant diagonals (so-called Toeplitz rnatrir) and it can be shown that,

with such covariance matrix, orthogonality properties of the trigonometric func-

tions are preserved, so that the normal matrix will stil l be block-diagonal (compare

sec t ion  4 .2 .1 ) .
Another consequence of (lower) band limitation is that some degrees I below the
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4.2. Colombo's method of error analvsis

value of Bp;n cannot be estimated from the measurements any more, since for those

degrees the total power content mainly (or solely) comes from the measurement

frequencies below Brn;n. This can be seen as follows. Removing from the analysis

the frequencies below Bro;n means that only the Bp* for which l0**l 2 Ba;n are

included. Let us first consider the case Bpro ) 0, so that we have Bp^ ) Br";n. With
gk^ :  k+ ma (where a :  NalN,)  and k -  I  -  2p,  o I  p  < I  we f ind that  only
those degrees / are present for which I ) 0*;r. The other case, Bp,o < 0 leads to

/  > (1 -a)-10^;n.  I f  we take N" :727 and N4 :  -45 (Schrama, 1990),whichfu l f i l

the conditions stated in section 4.2.1 and which refer to the Aristoteles mission, we

f ind that  e.g.  for  /min:4 degrees I  < 4 are not  present  and for  /min:27 degrees

I  < 2 6 .
Figure 4.7 shows the a-posteriori error r.m.s. values for the case that 0^;n -- 4.

Frequencies below 4 c.p.r. were removed from the analysis and for the remaining
frequencies a white noise error spectrum was assumed. A remarkable difference
with figure 4.2 is the zig-zag pattern which occurs for certain components and
combinations. This has to do with the step size of 2 for the index /c, cf. equation 4.8.
Given a certain value of m a B-Iimitation also implies a k-limitation, since 0k^ :
k+ma. This is especial ly c lear for low orders m (since o is smal i) ,  where a relat ively
large part of the total signal content is concentrated. The consequences of limiting
ft are different for even and odd degrees, due to the step size of 2. For example,
consider the case m: O. This is the easiest case since for m = 0 we have 0r*:  k.  I f
we choose 0*in: 1 this means all k-contributions for k : 0 are removed. But only
the even degrees include a k :0 part ,  so that the odd degrees remain unaffected.
For other values of /rn;n a same reasoning can be applied. For higher values of m,
limiting the 9n^ results in a difficult pattern of dropped &, rn contributions. It is
not so clear any more how this limits the /c-summation for a certain degree I and
how this is related to the parity of /. But since the contribution to the total signal
content for higher orders is relatively small, the main effect of B-limitation is to be
expected to come from the low orders.

It can be seen from the figure that, for certain observation types, the zig-zag
pattern damps out with increasing degree. Two explanations can be given for this.
As we have seen above, the main effect of a Iower band limitation comes from the low
orders. Low degrees are therefore more affected than high degrees since a relatively
larger part of the total signal content comes from the low orders. Furthermore, as
explained in the previous section, for higher degrees the r.m.s. curves approximate
more and more a straight line induced by the attenuation factor (Rlr)'n". It should
be noted that (part of) the zig-zag pattern could be caused by the occurrence
of singular rn-blocks, as discussed in the previous section. Compared to the case

1min : O significantly more rn-blocks are singular, however often only the even or
the odd degrees, see table 4.5.

The singular m-blocks make it furthermore difficult to compare the overall level
of the r.m.s. curves in the case B*;n : 0 with that of 0*in : 4, especially if the
cause of the singularities is numerical instability. That the situation becomes worse
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4.2. Colombo's method of error analvsis

in the latter case (i.e. larger propagated error) is not very surprising, but only a

comparison for each coefficient individually would give a clear picture of the exact

amount of distortion. If we, nevertheless, try to compare figures 4.2 and 4.7 we
see that indeed mainly the lower degrees are affected. R.m.s. values reach up to

two orders of magnitude higher values in the case B^;n: 4. As a consequence, the
minima of the curves are moved in the direction of increasing degree, around I : 60
for Brn;n: 0 but around I -- l2o for B^;n : 4.

A last remark concerns the discontinuous behaviour for some components for
low degrees (l < 20, e.g.Vs"). This is a direct consequence of the singular rn-blocks.

As discussed in the previous section, the singular rn-blocks are removed from the

analysis so no contribution for those orders is included in the r.m.s. values, resulting

in too optimistic error estimates. From table 4.5 we see that singular m-blocks

mainly appear for low orders. Since low degrees are relatively more affected by Iow

orders, this explains the bumpiness for low degrees.

Figures 4.8 and 4.9 present global r.m.s. values for surface gravity anomalies
and geoid undulations for the present case B*;n: 4, figure 4.8 for several mission

durations and figure 4.9 for several measurement precisions. Both figures give the
results for a full tensor gradiometer (i.e. the combination of all six gradients), the

r.m.s. being computed with a maximum degree for the omission error of 1000 and a
smoothing factor B1 representing 1' x 1' block averages. Comparison of these figures
with figures 4.5 and 4.6 reveals that the r.m.s. for gravity anomalies is hardly affected
by this value of Bro;n, whereas the geoid undulations show clear differences. These

differences not only concern the overall higher level of r.m.s. Also the influence of

both the mission duration and the measurement precision is noticeable now, even
for lower altitudes, where it was not in the previous section (see the differences at

h : 160 km). Geoid undulations constitute a smoother signal than gravity anoma-
lies. The latter are first-order derivatives of the gravitational potential, resulting in

multiplication factors (/ + t) etc., see chapter 3. It is therefore to be expected that

the geoid undulations are more affected by changes in the lower degrees (as is the

case if we choose 9^;n * 0) than gravity anomalies. Note that the high precision

gradiometer (o :0.0001 EIJH, )  no* shows i ts value, the r .m.s. of  the geoid un-

dulations being for this o nearly the same for both gmin :0 as well as Brn;n : 4,

for all altitudes.
We have to bear in mind, however, that the figures present the results for a full

tensor gradiometer. For the combinations {Vyy,Vy",V".} or {Vyy,V""} (as for Aris-

toteles) the results are somewhat worse, especially for the geoid undulations. Global

r.m.s. values from those combinations are respectively 15.6 cm and 97.0 cm for geoid

undulat ions (at 200 km,6 months mission and o:0.01 EIJH, ) ,  whereas the val-

ues for the gravity anomalies are hardly changing. Individual components give even
worse results. This shows the importance of combinations of components, i.e. the

need for additional observations, in the band Iimited case. If other components are

not available, Iike for Aristoteles (planar gradiometer, band limited, degraded lower

spectrum), additional information from other measurement techniques (like GPS) is
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4. Global gradiontetric analysis

necessary, see section 4.2.8. Furthermore, in section 4.2.6we will discuss the possibil-

ity of improving the solution by adding prior information, i.e. stabilizing the solutton

by adding constraints in the sense of least squares collocation (Rummel et al., 1979).

4.2.5 Polar gaps

A realistic gradiometric mission not only differs from the ideal case sketched in

section 4.2.3 through band limitation. In reality the satellite is also not likely to

fly in a perfect polar orbit. For Aristoteles two different inclinations are considered:

92".3 and 95o.3. Aristoteles is planned to fly for approximately six months in an

orbit with inclination 95'.3 and another two weeks in an orbit with inclination 92".3.

A non-polar orbit gives rise to polar regions where no measurements are available.

If the inclination of the orbit is .I, polar caps, of size2x (1-90)', will arise which are

not covered by ground tracks of the satellite's orbit. As a consequence an incomplete

global coverage is obtained which is expected to influence a global recovery method

as it is performed here. At first sight, one expects a polar gap, with size larger

than half of the smallest wavelength to be recovered, to disturb the solution, at

least for those short wavelengths (i.e. high degrees). For recovery, on a global scale,

of gravitational features with very short wavelengths there are simply not enough

(well distributed) data points. On the other hand, it is very difficult to exactly

translate the missing of data in certain spatial regions to a possible distortion of

recovered potential coefficients. This may become clear from figure 4.10, in which

the propagated error for the case / :92o.3 is shown.

Remarkably no substantial deterioration occurs compared to the case 1- 90o,

except for Voo. Whereas the result for some components becomes only slightly

worse, other components seem to become even better. In spite of the fact that this

outcome is confirmed by other investigations (Schrama, 1990), it is difficult to give

a clear explanation for it. Several aspects may play a role here. First consider

the data distribution. In both cases, .I : 90o and I : 92o.3 we have the same

amount of observations (namely a total ol Trf A,t observations). Although for a

92o.3 inclination the polar gaps occur, the data density in the remaining part (the

band 2'.3 < 0 < 177".7) becomes higher. Whereas the polar SaPS may distort the

recovery of some coefficients, the higher data density may improve the recovery of

others. On the whole, a small improvement may occur if the inclination differs not

too much from 90". If the deviation from 90" becomes too large, the influence of

the polar gaps will ultimately surpass that of the higher data density'

A second aspect which may play a role is the behaviour of the inclination func-

tions. Besides on factors like f1, (/ + t), k, etc. the total signal power contained in

a specific degree depends on the inclination functions Ftk* (or the cross-track incli-

na t ion func t ions  F f * *  fo rVroandVy" ) .They  makepar to f  theso-ca l led  sens i t iu i t y
r . - \

coeffi.cients H!,1, from tables 4.1 and 4.2. Let us focus here on one specific degree

and order (i.e. fixed I and rn). What remains is a summation over k of inclination

functions and a possible factor k or lcz (cf. tables 4.1 and 4.2). If we compute the
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4. Global gradiontetric analysis

inclination functions for a specified I, rn and /c as function of 1, not necessarily a

maximum value is obtained for the F!r, at 1 : 90o. The value of some inclination

functions will increase if ,I > 9Oo, some will perhaps decrease for higher inclinations.

We did some test computations which confirmed this behaviour. If a// inclination

functions would obtain a maximum value at 1 : 90o, one would expect the signal

amount to decrease for -I > 90", so that the propagated error would increase. Since

this is not the case, the signal amount may also increase for higher inclinations (so

that the propagated error decreases) . Carrying out the k-summation for one specific

l,m over all corresponding F,f, (some of which have a larger value, others a smaller)

the result for / : 92".3 might either be Iarger or smaller than the same sum for

/ :90o, depending on the specif ic sensit iv i ty coeff ic ient ( i .e.  on the gradient).

A third aspect applies only to the V"u and Vy" components. As mentioned in

section 4.2.3 the cross-track inclination functions are all zero for I : 90o and rn : 0.

This resulted in two singular m-blocks, cf. table 4.5. For I -- 92".3 this does not

happen any more, i.e. the potential coefficients for m: 0 are now estimable from

the observat ions. This means that the m: O contr ibut ion is included in the r .m.s.

values shown in figure 4.10, whereas it was not in figure 4.2. This troubles a direct

comparison of the two figures.

An inclination of 95'.3 has a very strong impact on the results, as can be seen

in figure 4.11. Not only does the level of the r.m.s. increase, also the shape of the

curves changes drastically. Whereas it is expected that for this case the exchange

between positive and negative influence of respectively data density and polar gaps

will result in the negative, inclination function behaviour and singular rn-blocks

may play an important role here. In any way, without any stabilization method or

without any additional information to account for the data gaps at the poles, these

results are not acceptable.

4.2.6 Stabi l izat ion

The problem of solving gravitational information at the surface of the earth from

observed data at satellite altitude is known to be improperly posed (also called ill-

posed or il l-conditioned). A problem is called improperly posed if it does not meet

at least one of the following three requirements: 1.) existence of the solution, 2.)

uniqueness of the solution and 3.) stability of the solution (Rummel et al., 1979),

(Moritz, 1980) or (Neyman, 1985). In our case, where we try to derive detailed gra-

vitational information at the surface of the earth from a relatively smooth (atten-

uated) signal at satellite altitude (downward continuation), we encounter problems

with the uniqueness and with the stability of the solution. The former case applies

when some eigenvalues of a normal matrix sub-block become zero so that the block

becomes singular, as we have seen e.g. for the V", and Vv, gradients for rn : 0 at

1:90o (cf. table 4.5). In the latter case, eigenvalues may become extremely small,

so that the matrix is il l--conditioned and errors in the data, but also round-off errors

of the computer, are greatly amplified during the inversion process. The block may
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4. Global gradiontetric ana.lysis

even become numerically singular in this case. We have already seen clear examples
of such improperly posed problems in the foregoing sections, e.g. the case B^;n = {
or the case f :  95o.3.

For both cases the instability is again illustrated by means of the condition
number of the individual blocks of the normal matrix. As we know, the normal
matrix consists of blocks on the diagonal, decreasing in size. There is one block for
each order rn and degrees / of equal parity. Figures 4.12 and 4.13 show the condition
number for the even degree blocks for the case Bro;n:4 and 1:95o.3 respect ively.
The odd degree blocks give similar results. The condition number rc is defined here
as the largest eigenvalue )-o, divided by the smallest eigenvalue ,\-;,r:

. -  -  
\ *o ,

^ -  
^ ^ r ^ '

The blocks which are expected to be numerically unstable can be traced by compar-
ing the inverse of the condition number rc-1 for each block with the internal accuracy
of the computer. In our case, all the computations are done using FORTRAN REAL*8
(double precision) numbers, i .e.  some 15 or 16 signi f icant digi ts.  Relat ive errors of
the order 10-15 or 10-16 are l ikely to occur.  Blocks for which the condit ion number
approaches (" .g.n-t  > 10-12) or exceeds this value are very i l l -condit ioned. In-
spection of figure 4.13 leads to the conclusion that for almost all components and
combination of components the blocks belonging to orders approximately below 20
tend to be ill-conditioned. Hence, also degrees below 20 are likely to give bad re-
sults. Also higher degrees are influenced by those ill--conditioned low orders. For
the case 1nin:4, condition numbers for low-order blocks (approximately m < l0)
reach even higher values, up to 1018 or higher, as can be seen from figure 4.12.

One of the possibilities to stabilize the solution is to make use of additional prior
inforrnation about the unknowns. In terms of least squares collocation one adds
the prior expectations of the unknowns together with their covariance matrix. The
solution then becomes (compare equation 4.5);

6 :  N - 1 ( A ' Q - t  t - f  P - r c ' )

with the matrix N now defined as

N :  A T Q - r A +  P - l ( 4 . 1 5 )

where c' are the prior expectations of the potential coefficients and P is their co-
variance matrix. In our case c' could contain the coefficients of one of the existing
geopotential models, such as OSU86F, with P the corresponding covariance matrix.
For the purpose of a global error analysis, as discussed here, a more common choice
for c' is zero with P one of the existing signal degree variance models, e.g. Kaula's
rule (Kaula, 1966). Here we take the degree variances from a Tscherning/R.pp
(TR) model (Tscherning and Rupp, 1974). Such a choice implies that we consider
the prior value of the potential coefficients to be zero and their variances to follow

90



4.2. Colontbo's ntethod of error analysis

- y z

- xx,xy,xz,
w'yz'zz
w,yz,zz

- x y

-  -  -  - x z

- x x

-  -  -  - z z

- w,zz

Zyy+zz

I : 9 0  F ^ ; ^ : 4

even degrees

Figure 4.12 Condition nurnber lor blocks ol t lt,e norrnal matrit for euen d.e'

grees. Specifications as in figure 1.2 ezcept p*in : 4'

91



4. Global gradiometric ana,lysis

- xx,xy,xz,
w'w'zz
w,yz'zz

-  -  -  _ x z

- x x

-  _  _  _ z z

- w,zz

Zyy+zz

I : 95.3 F-i. : 0

even degrees

Figure 4.13 Condition number for blocks of the normal matrix for eaen de-

grees. Specifications as in figure 1.2 ercept I : 95".3.

rO

;
4

t r s

{ l o

lO

;

t r g r

o
C)

u r l )

92



4.2. Colontbo's ntethod of error ana/ysis

the TR model. The solution is in this case again given by equation 4.5, but now
with the normal matrix as in equation 4.15. This means that the solution is a kind
of weighted mean of a-priori information and gradiometry results.

Figure 4.14 shows the error r.m.s. for the case B*;n:4 where the solution was
stabilized by adding to the normal matrix a diagonal matrix containing the TR
degree variances. This figure should be compared with figure 4.7. For completeness
the curve for the TR model is added. We see that the zig-zag pattern is damped
for most solutions (clearly visible for Vy"). On the other hand, the curves tend
to approximate the TR curve. Questions can be asked about the value of the, in
this way, estimated coefficients, especially for higher degrees, since they obviously
do not add much information to the a-priori known model degree variances. Above
degree 240 all curves will follow almost exactly the TR model curve. This is a reason
why we choose a maximum degree of 240 for our computations. Above this degree,
potential recovery is not likely to give any new information, at least not for more
realistic (and thus ill-conditioned) situations, like the one in figure 4.14.

The stabi l ized solut ion for, I :95o.3 is shown in f igure 4.15. Compared with
figure 4.11the stabilization certainly has much influence, since for lower degrees the
error r.m.s. curves now show a behaviour comparable to figure 4.2, though a little
disturbed. For higher degrees the curves tend to follow that of the TR model.

Following (Xu and Rummel, 1991) one may view upon stabilization as biased
estimation. As a purely mathematical technique, one of the purposes of biased
estimation is to control instabilitv. It is defined as:

6b :  ( f  e-r  A + K)-r  nr  q- t  ,

where the index D means "biased estimate" and K is some arbitrary but positive def-
inite matrix. This way of looking upon stabilization becomes important if the prior
information added to the problem is not correct (Xu, 1991). In fact, this is exactly
the situation in our stabilization method (where we take for K-r the covariance
matrix P of the prior expectations of the coefficients) , since the degree variances of
the TR model do not describe error variances of the potential coefficients, but are
possible magnitudes of the coefficients themselves (signal variances).

Following (Xu and Rummel, 1991) the magnitude of the expected bias in this
case can be computed as

B;a(6) :  -(Ar Q-t,q + P-r)-r  P-r c

where we should insert for c, in principle, the true potential coefficients. In general
one does not have the real coefficients, so the bias is approximated by replacing
the real coefficients with either the biased estimates themselves, or some model
coefficients. In (Xu and Rummel, l99l) it appeared that the former choice (biased
estimates themselves) leads to too optimistic conclusions about the bias. Choosing
coefficients computed from the model which was used for the K matrix appeared to
give more conservative results.
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4. Global gradiometric analysis

For both stabilized solutions presented above (9^;n : 4 and 1 : 95".3) we

computed the bias using the equation above. We chose as coefficients c the same

values from the TR model which were used in the P matrix, but with the sign taken

from the OSU86F potential coefficient set. Since we) at this moment, do not have
tttruett coefficients estimated from gradiometer measurements, we cannot comPare

the biases with such coefficients. But since using TR coefficients may give the most

conservative result, cf. (Xu and Rummel, 1991), we may compare them to e.g. the

OSU86F model. To this extent, the percentages of the degree variances of the biases

with respect to those of the OSU86F model are computed and shown in figures 4.16

and 4.17. Depending on which component or combination of components is used

for the analysis, large parts of the spectrum show biases which exceed 20 To, even

rcO% of the model var iances. However,  for the case 1:95o.3 this only happens for

higher degrees. Note that the results for all six components together, for V"" and

for the combinations {Vor,Vy",V""} and {Vrr,V""} are not so bad at all, the degree

variances of the bias in these cases reaching approximately 25 Toof the model values

only for very high degrees (l > 22a).

The accuracy of biased estimates is no longer given by the inverse of the normal

matrix only. The bias term needs to be added to the a-posteriori error. The so-

called mean squared error of 66, MSE(66), obtained in this way is given by:

MSE(6il: N-l - N-lP-llr-t + aiolao)@;a(6))r (4 .16)

with N from eq.4.15, see (Xu and Rummel,  l99l) .  Figures 4.18 and 4.19 show the

percentages of this MSE with respect to the propagated error (as coming from the

inverse of the normal matrix only) from figures 4.14 and 4.15, for the cases p^in: 4

and f : 95o.3 respectively. In these figures the straight horizontal line indicates

the 100 Vo Iine. If the bias would not have any effect, all percentages would have

to lie on this 1OO Vo line. Percentages smaller than 100 indicate degrees for which

the propagated error (no bias term included) is larger than the MSE. It means

that, for those degrees, the previously shown results (without the bias) were in fact

too pessimistic. In this case we don't have to worry that stabilization leads to too

optimistic error estimates. Higher percentages indicate degrees for which inclusion

of the bias causes a higher a-posteriori error, so for those degrees the results from

figures 4.14 and 4.15 were too optimistic.

Whereas in figure 4.18 some percentages reach high values of nearly 160, they

show no substantial degree dependent systematic deviation from 100 %. On the

average, the componentsVy"rV* and V* seem to give less favourable results due to

the stabilization (if the bias is included in the error), whereas the other components

seem to become slightly better. For .I : 95o.3, on the average, for most compo-

nents the percentage is smaller than 100 (at least for large parts of the spectrum),

indicating that if one accounts for the bias, estimates will become better.

So, although the estimates become biased, this bias stays limited, the a-posteriori

error (which has to include the bias, so it is rhe MSE) being positively affected by
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4.2. Colombo's method of error analysis

it on the average, especially for the case I : 95o.3. Thus, stabilization seems to be

a satisfactory means of obtaining a stable and meaningful solution.

4.2.7 Ornission, cornrnission and smoothing

In sections 4.2.3 and 4.2.4 global r.m.s. values for gravity anomalies and geoid un-

dulations were presented. They were computed using equation 4.14 and therefore

included commission error and omission error. The commission error represents the

propagated measurement error. It only concerns that part of the spectrum for which

the potential coefficients can be estimated from the measurements, i.e. for degrees

/ < .L (see section 4.2.2). The omission error includes the neglected part of the spec-

trum above ,L, in principle up to infinity, but in practical computations truncated at

some maximum degree lmrs. Furthermore, due to the Wiener filter, the omission

error includes that contribution from degrees below .L for which the signal to noise

ratio is smaller than one. This part, in fact, stems from the imperfection of the

measurement process. For the omission part we used the TR degree variance model.

In the results presented above we truncated the summation for the omission part at

Jrncs : 1000.

The magnitudes of the degree variances computed with the TR model gradually

decrease with increasing degree. The signal power contained in the upper parts of

the spectrum therefore will be small. In order to see whether a maximum degree

of 1000 is reasonable or not (i.e. the power above degree 1000 is negligible) we

compute here the total error once again, but choose a maximum degree of 10,000.

Thereby one should keep in mind that such a model is only based upon observational

information up to a certain maximum degree, typically somewhere between 300 and

1000, above which it is speculation. This may become evident by comparing the

high spectral part of various existing models, such as Kaula's rule (Kaula, 1966) , TR

(Tscherning and Rapp, 1974) or Jekel i /Mori tz (Mori tz,  1980) and (Jekel i ,  1978).

Table 4.6 shows the global (commission, omission and total) error for surface

gravity anomalies and geoid undulations in three different situations for the cases

lmrs :1000 and lmrs :10 ,000.  For  re fe rence a lso  the  case lmrs :240 is  added

(i.e. omission error only due to Wiener filtering) . It can be seen that the error for

geoid undulations does not change if the omission error is summed up to degree

10,000 compared to the case where it is summed "only" up to degree 1000. Only if

the numbers would have been presented with more decimal digits, differences could

be detected, but then the numbers would pretend to be very accurate, which is not

the case. Since the geoid signal is relatively smooth, this result is not surprising.

The error for gravity anomalies only increases slightly (0.0t mgal), the gravity field

being a little rougher than the geoid. In view of the present accuracy, this test

confirms our procedure to carry out the omission error summation only up to a

maximum degree /rncs: 1000.

The part of the omission error for degrees below 240 is relatively small, at least

for the case Brr;n:  O,/  :  9Oo and B^;n :  4,1 :  9Oo. For the other case (1 :  95".3)
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4. Global gradiontetric ana.lysis

Table 4.6 Comrnission, om.ission and, total error t 'or the obseraation com-

binat ion {V"rrV"orVr" ,Vyy,Vu"rV?) and h :  200 krn,  At  :

4  t , 7 ,  :  6  mon ths ,  o  :  0 .01  E / t /Hz ,  L  :  210  and  0 " :  1 " .

gravity anomalies (mgal) geoid undulations (cm)

commission omission total commrssron omlssron total

1 = 90o and B^;n = 0

l m r s : 2 4 0

/rncs : 1000

lmrs :  10,000

0 .73  0 .14  0 .75

0 .73  3 .63  3 .70

0.73 3.64 3.72

2.34 0.39 2.37

2.34 8.32 8.64

2.34 8.32 8.64

/  :  90o and B^;n:  4

I rnx,s :24O

kncs : 1000

lrnrs :  10,000

0.74 0.14 0.76

0.74 3.63 3.7r

o.74 3.64 3.72

8.38  0 .40  8 .39

8 . 3 8  8 . 3 2  1 1 . 8 1

8 . 3 8  8 . 3 2  1 1 . 8 1

.I : 95o.3 and B*;n = 0

lmxs :240

lrncs : 1000

lmrs :  10,000

5 . 9 0  5 . 5 5  8 . 1 0

5.90  6 .63  8 .87

5.90  6 .64  8 .88

29.78 24.49 38.56

29.78 25.86 39.44

29.78 25.87 39.44
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Table 4.7 Cornrnission, omission anil total error for the obseruation corn-

bination {vrr,vrr,vr",vyyrvu"rv":) and h : 200 krn, L,t :

4  s , T ,  : 6  r n o n t h s ,  o  : 0 - 0 1  E / 1 / H z ,  L  : 2 f 0 , 0 " : 1 "  a n d "

a stabil ized, solution'

gravity anomalies (mgal) geoid undulations (cm)

commlssron omlsslon total commission omission total

1 :  90o  and  p^ ;n :  O

lmrs  :240

Jrncs : 1000

lmrs  :  10 ,000

0 . 7 2  0 . 1 3  0 . 7 3

0.72  3 .63  3 .70

0.72  3 .64  3 .7 r

2 .3 r  0 .37  2 .34

2 .31  8 .32  8 .63

2 .3 r  8 .32  8 .63

.I : 90" and Brn;n: 4

lmrs:240

lrncs : 1000

lmrs :10 ,000

0.73 0.13 0.74

0.73 3.63 3.70

0.73 3.64 3.72

8.37  0 .38  8 .38

8.37  8 .32  11 .80

8 . 3 7  8 . 3 2  1 1 . 8 0

. I :  9 5 ' . 3  a n d  B ^ ; n : 0

Imrs :240

lrnrs : 1000

lmxs :  10,000

0.84 0.14 0.85

0.84 3.63 3.73

0.84 3.64 3.74

3 .08  0 .39  3 .11

3.08 8.32 8.87

3.08 8.32 8.87

103
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the propagated error is so high that a large part of the omission error comes from
degrees below 240. Obviously, for this case, the gradiometer contributes little to the
outcome.

The large errors in the case 1:95o.3 are due to the instability of the solution,
as pointed out in the previous sections. For comparison we therefore also give a
similar table (table 4.7), now computed from the stabilized solutions. The cases
grnin : 0, f : 90' and 0*in : 4,1 - 90o are hardly affected. Compare this to
the figures 4.14 and 4.15. For all cases, the difference between lrnss : 1000 and
lmxs:10 ,000 is  s t i l l  very  smal l .  On the  o ther  hand,  fo r  the  case 1 :95" .3 ,  the

contribution to the omission error from degrees below 240 decreases substantially,
as does of course the commission part.

Another point which is important in this context, is the smoothing of the total
error. If we look at equation 4.14, we see a smoothing operator B1 is included. This
is done, because a global recovery of the gravitational potential always has some
limited resolution as a result of the finite sampling distance of the measurements.
This sampling distance limits the maximum obtainable degree, thereby introducing
an error to the potential solution. In terms of equal angular blocks, the resolution to
be obtained from a gradiometric analysis up to some maximum degree .L is typically
I8O" f L. If no smoothing is carried out, the global r.m.s. for gravity anomalies or
any other quantity computed from a potential coefficient set which is derived from
a global analysis, represents the error in discrete points in which all frequencies are
present. This error would be very large, mainly due to the relatively poor determined
higher frequencies and the frequencies in the omission part. This is not realistic,
as we know that the analysis aims for, and has, a limited resolution. For certain
applications (especially global gravity field investigations for the purpose of e.g.

oceanography), the r.m.s. values should therefore be considered as block-averages
over blocks with size induced by the maximum degree of the analysis. For other
applications, e.g. regional geophysical investigations, the high frequency part should
be obtained from a dense network of local gravity measurements. In order to obtain
block-averages, a smoothing operator B1 is used which in fact damps out the high
frequencies, aiming at a decrease of the sampling error.

In our analysis, we used a maximum degree L : 240 for the potential recovery,
corresponding to a resolution of 0o.75 x 0'.75. But as we have seen that the higher
degrees are only poorly determined and since the goal for gradiometry is a resolution
of 100 km (corresponding to 1o x 1')  we introduced a block-size of 0":  Lo for the

smoothing operator. Nevertheless, in table 4.8 the influence of the smoothing is

shown. There we computed the global r.m.s. for three cases: 0" : 0o (i.e. no
smooth ing) ,0" :0" .75  and 0" :  lo ,  c f .  (Rapp,  1989) .  F rom th is  tab le  we see tha t
the influence of smoothing is much larger than that of the maximum degree of the
omission error. No smoothing gives unsatisfactorily error estimates. Again, geoid

undulations are much less affected by both aspects than gravity anomalies. It can
also be seen that the two aspects (inclusion of omission error above ,L on the one hand

and smoothing on the other) have opposite effects on the global r.m.s. Inclusion of
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Table 4.8 Global r.m.s. t 'or
b l e 4 . 6 .  I : 9 0 o

4.2. Colombo's ntethod of error analysis

seueral bloclc-sizes. Specifications as in ta-

and B*;n : 0.

gravity anomalies (mgal) geoid undulations (cm)

commission omission total commission omission total

0 c :  O "

lmrs  :240

lrncs : 1000

lmrs  :  10 ,000

1.43 0.29 r .46

t .43 2t .7 t  21.75

1.43 27 .86 27 .90

4.32 0.81 4.40

4.32 34.56 34.83

4.32 35.23 35.49

0, : 0" '75

lmrs  :240

I m c s :  1 0 0 0

l m r s : 1 0 , 0 0 0

1 . 0 0  0 . 1 9  l . o 2

1.00  6 .66  6 .73

1.00  6 .68  6 .75

3.09  0 .55  3 .L4

3.09 14.90 15.22

3.09 14.90 15.22

0 " :  I "

l m r s  : 2 4 0

lrncs : 1000

l m r s : 1 0 , 0 0 0

0 .73  0 .14  0 .75

0.73 3.63 3.70

0.73 3.64 3.72

2 .34  0 .39  2 .37

2.34 8.32 8.64

2.34 8.32 8.64

omission error above tr increases the global r.m.s. because we have to account for

the neglect of the higher spectrum parts. But smoothing decreases the global r.m.s.

by gradually removing the influence of these higher degrees, which, nevertheless,

remain present.

4.2.8 Aristoteles

In previous sections deviations from an ideal case were investigated by considering

either a band limitation or a non-polar orbit. A combination of both effects will be

investigated in this section, aiming at the situation of ESA's Aristoteles mission (see

section 2.3). We do, however, not include in our analysis the possible contribution

from GPS observations, we only give "gradiometry only" results. An error analysis

for the combination "GPS * gradiometry" can be found in (Schrama, 1990) or

(Visser,  1992).
Concerning the band limitation we refer to section 4.2.4. First of all we choose

B*;n equal to 4 in order to account for the non-gravitational effects. Secondly,

Aristoteles will have a lower band limit of 0.005 Hz, corresponding approximately to
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4. GIobaI gradiometric analysis

9 : 27 . Below 27 , the frequencies will be available but with degraded accuracy. The
0.01 E/y'Hz white noise error spectrum applies to the frequency band between 0.005
and 0.125 Hz (the latter approximately corresponding to 0*o, : 664). Following
(Schrama, 1990) a LIB behaviour is assumed for the frequencies between 4 and 27.
Between 4 and 27 the precision per frequency then becomes (2719*^). o6 with
oo:0.01 El\ /Hz. Such a coloured noise si tuat ion wi l l  be assumed in the present
section.

As for the inclination, we choose here I : 92".3, despite the fact that Aristoteles
will fly for 6 months in an orbit with inclination I : 95o.3. The reason is that in the
two weeks after this 6 months phase, in which the orbit of the satellite will have an
inclination of 92o.3, a so dense coverage of the polar regions is achieved (of course
a small cap of 4o.6 excluded) that the complete mission may safely be assumed
to be flown in this 92o.3 inclination orbit. The important mission parameters and
specifications are listed in table 4.9.

Table 4.9 Characteristics of the Aristoteles oradiometer rnission.

inclination

components

band limitation

satellite height

sampling interval

mission duration

error spectrum

I  : 92 " .3

Vyy,V".

0 ^ i n :  4

h : 2 0 0 k m

A t : 4  s

T, :6 months

O.Ol El\ /Hz white noise above 27 c.p.r .

lf B behaviour between 4 and 27 c.p.r.

Figure 4.20 shows the error r.m.s. values for the present specifications. In this
figure again the results for all l0 components and combinations are given. Since
Aristoteles only measures Vro and V"" with sufficient accuracy the lowest of the
three graphs is of special interest here. The others are included for reference and for
preserving a uniform presentation. Comparing with figure 4.7 (in which p*in : 4
and .I : 90") it appears that the latter is little worse, despite the fact of complete
global coverage when I : 9Oo. This fact was already observed and discussed in
section 4.2.5. As a result of the lower band limit and the coloured noise the results

for low degrees (approximately below 30) are not satisfactory.

For this reason also a stabilized solution was computed for the present case
(shown in figure 4.21), which, however, appears to have mainly effect on high de-
grees. Comparing the unstabilized with the stabilized solution one can see that some
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4.2. Colontbo's ntethod of error analysis

Table 4.10 Global r.m.s. for seaeral obseraation types. Specifications as in

figure 1.20.

gravity anomalies (mgal) geoid undulations (cm)

commrsslon omlsslon total commission omission total

unstabilized solution

vuu

ZVyy *Vzz

V""

{Vuu,Vu}

5.53  7 .54  9 .35

4.L4  5 .18  6 .63

2.97  4 .6 t  5 .48

1 . 1 5  3 . 6 4  3 . 8 2

613.67 396.20 730.46

211.89  89 .89  230.18

388.86 453.81 597.62

44.L1  8 .49  44 .92

stabi l ized solut ion

V,,

zvss + Vzz

vr"

{vuu,v"r}

4.49 4.07 6.06

3.52 4.00 5.33

2.27 3.70 4.34

r . r2  3 .64  3 .81

443.92 163.34 473.01

162.47 32.61 165.71

283.53 103.16 30r .71

43.92 8.48 44.73

components become worse for lower degrees in the latter case (".g.Vur).However,
this conclusion may be misleading, since contributions from singular blocks are ex-
cluded in the unstabilized case (compare table 4.5) and since we saw in section 4.2.6
that for a proper description of the error of a stabilized solution we should compute
the MSE, equation 4.16, which includes the bias term.

Finally, table 4.10 gives global r.m.s. values for surface gravity anomalies and
geoid undulations for the observation types Voo,2Vau 1V"", V"" and {VrurV"").
Also the results of the stabilized solution are included. The numbers in this table
represent 1o x 1" block averages (i.e. smoothing operator included). The maximum
degree for the omission error is 1000.

The most important conclusion from this table is that if geoid undulations have
to be derived from the present mission scenario, additional information is necessary

since the results do not meet the goals from section 2.2. Even the stabilized solution
gives too large errors for geoid undulations. The cause of this is the lower band limit
of 4 c.p.r. and the coloured noise of the lower part of the measurement spectrum,
which influence the geoid undulations rather heavily due to the relative smoothness
of the signal. Gravity anomalies, on the other hand, already give satisfactory results,
at least for the stabilized solution (although of course biased in this case). They are
more sensitive to higher degrees than geoid undulations. Obviously, the higher part
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4. Global gradiontetric analysis

of the spectrum is determined well enough by the gradiometer. In (Schrama, 1990)

or (Visser, 1992) it is shown that additional GPS tracking information can be used

to obtain long wavelength gravitational information, in which case also geoid undu-

lations will be derived with the desired precision. The two techniques, GPS for the

lower part of the spectrum and gradiometry for the higher part, are thus comple-

mentary, and the combination of the two on Aristoteles will meet the requirements

of sect ion 2.2.

Finally, is can also be seen from table 4.10 that stabilization in the present case

mainly influences the omission part of the total error. This can be explained as

follows. In the unstabilized case, the propagated error is relatively large, but the

Wiener filter decreases its contribution to the commission part of the total error'

thereby at the same time increasing the omission part. Since we have seen that the

omission part, due to neglecting the degrees above .L, is small, the Iarge value of the

omission part in the unstabilized case must be mainly due to the mentioned filter. In

the stabilized situation, the propagated error gives significantly better results (com-

pare figures 4.20 and 4.21), causing the filter to letting pass more commission error

(however with less power) . As a result the omission part decreases substantially.

4.2.9 Sorne cornputational aspects

The software for the error analysis runs on a CONVEX vector computer. This is

a so-called SIMD machine (see section 3.3), nevertheless equipped with 4 CPU's

which offer some possibilities of parallelization. Despite the fact that the optimal-

ization capabilities of this computer (and especially the vectorization techniques) in

general greatly reduce execution time, a single run of the error analysis program

takes as much as 500 CPU seconds (for all 10 observation types). This, of course,

depends mainly on the maximum degree -L (and minimum degree) of the analysis,

the mentioned time referring to an analysis up to degree 240. The number of degrees

up to tr determines the size of the blocks of the normal matrix, the range of the

orders rn between mmin and mmar determines the number of blocks in the normal

matrix, though one usually takes mmin equal to 0 mmat equal to .L.

Whereas one often expects matrix inversion to account for the major part of

CPU time, it appeared here that setting up the normal matrix blocks is more costly.

This is mainly due to the computation of the inclination functio"" 4f. and F,l-,

which is responsible for approximately 46 Yo of the total CPU time. One could

suggest to compute the inclination functions only once and store them for future

reference. This costs, however, much memory space. Storing all inclination func-

tions and cross-track inclination functions up to degree .L requires the storage of

t tt, + \ (L + 2) (4 L + 3) numbers (Sneeuw, 1991a). If represented by

double precision numbers this corresponds, for L:240, to over 71 Mbyte, for one

inclination only. For many inclinations, the memory costs may be too much.

We tried two methods for the computation of these inclination functions. The

first one is described in appendix C and is based on an algorithm used by Wagner
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4.2. Colombo's ntethod of error analysis

(1983). It evaluates a kind of unit potential function at equidistant points along

a great circle (which represents the satellite's orbit). With an FFT routine one

obtains the Fourier coefficients of this function from which the inclination functions

can be derived. For the evaluation of the unit potential we need to compute the

Legendre functions. Even if one makes optimal use of the symmetry properties

of these functions, cf. (Schrama, 1989), the largest part of CPU time goes to the

recursive computation of the Legendre functions. The FFT is relatively fast (as it

should be, considering its name).
The second method for computation of the inclination functions is by using re-

current relations. A subroutine package programmed by N. Sneeuw (Sneeuw, 1991a)

and based on an algorithm by Emeljanov and Kanter (1989) was used for this pur-

pose, with a supplementary routine for the cross-track inclination functions F,l-

(Sneeuw, 1991b). Since some of the recurrences for the inclination functions are un-

stable and overflows are likely to occur, extensive use is made of scaling techniques,

which become especially important if the inclination functions are required for high

degrees.
A few differences between the two methods are to be mentioned. First of all, the

second (recurrent) method appeared to be slower. One of the main reasons for this

is that recurrent relations are (almost) not suitable for vectorization. Furthermore,

the method of scaling makes extensively use of conditional statements, which, espe-

cially if used inside inner D0-loops, prevent vectorization. For the FFT in the "unit
potential" method a FORTRAN programmed subroutine from a CONVEX math-

ematical library was used, which is especially tailored for vectorization. A more

conventional FFT routine, made for use on scalar computers, proved to be up to 6

times slower for FFT's of the order 1024 if run on the CONVEX.
Whereas the two methods give identical results in nearly all cases, small differ-

ences may occur in special situations. The latter are mainly the situations when

the inclinations functions ought to be zero. The first method will almost always

give zero values in these cases, but the second method may give small values of the

order l0-15 or l0-ro due to numerical round-off errors during the recursions. For

example, if I : 9Oo and n1 : O, all Ff*- are identically zero, resulting in singular

blocks of the normal matrix for the componentsVru andVs". The recursive method,

however, would result in F!*- values of the order of 10-15, so that not all elements

of the rn : O blocks will be equal to zero. If none of the diagonal elements of such

block is exactly zero, the block may not be singular, so that, after inversion, very

large values for the a-posteriori variances appear. Therefore, care has to be taken

with the recursive method.
Since we do not need the complete inverse normal matrix, but only the diagonal

elements, in reality the inverse is not computed at all. A Cholesky factorization is

carried out on the normal matrix N, resulting in an upper triangular matrix R, such

that .lf = Rr R. The r-th diagonal element of the inverse normal matrix, N;1, is

then computed in the following way:
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r z - l
l Y i i  :

in which the expression on the right hand side is the inner product of the vector sr'

with itself. This vector s; is computed by solving the triangular system

R r  s 1 :  e ;

where e; is a vector containing only zero's except the r-th element, which equals 1.

The computation of the diagonal elements of the inverse normal matrix in this way

costs about 7 % of the total CPU time of the error analysis.

4.2.LO Conclusions

Due to the assumptions stated in section 4.2 the error analysis carried out here refers

to a somewhat idealized situation. Of the six assumptions given there (circular orbit,

regular data distribution, no ground-track repeat during mission period, measure-

ments are considered to be averaged over sampling period, non-gravitational effects

excluded, measurements are uncorrelated and of equal variance), the second one is

probably the most critical one. As already mentioned, data gaps are likely to occur.

A non-continuous data stream destroys the orthogonality properties on which in

fact the whole analysis is based. Without orthogonality, the normal matrix becomes

a full matrix, leading to an enormous amount of extra work for the inversion.

In an idealized situation (polar orbit and no band limitation) the mission goals

in terms of r.m.s. values for derived gravimetric quantities like gravity anomalies

and geoid undulations can be met in terms of accuracy level as well as resolution,

at least for a full tensor gradiometer. Nevertheless, figure 4.2 suggests that also a

planar gradiometer (of the type as will be used in the Aristoteles mission) may give

satisfactory results in such an idealized situation, as numerical verification showed

(although these results are not given here). Whereas satellite altitudes lower than

200 km seem to improve the results not very much, higher altitudes are certainly

not desirable. The same applies for the mission duration. Finally, the measurement

precision has somewhat more influence, although mainly for higher altitudes than

200 km.
We considered two major deviations from an idealized situation: (lower) band

limitation and non-polar orbits. Of these two, lower band limitation has the largest

impact on the results. The influence of a non-polar orbit can be greatly reduced by

stabilization. A negative consequence of stabilization, biasedness of the estimates,

appeared to have not so much influence, although it remains of course present and

one has to bear that in mind.
Whereas stabilization may help for non-polar orbits, it is no remedy against

band limitation, as can be concluded from section 4.2.6. Lower band limitation

significantly degrades the lower degrees of the spectrum, whereas stabilization seems
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to improve primarily the higher degrees. As a result too large biases occur for the

lower degrees. For this problem, only the addition of supplementary observations,

such as GPS tracking, can be of any real help (Schrama, 1990), (Visser, 1992).

For Aristoteles we assumed the total 6 months mission to be flown in a 92".3

inclination orbit. Whereas this is not actually the case (only for an additional two

weeks) , the conclusions above indicate this assumption not to be very critical. As

for the lower band limitation, this may really jeopardize the success of the mission,

especially if we take a look to the r.m.s. values of geoid undulations (table 4.10).

Additional GPS observations really become very important to obtain the long wave-

length part of the spectrum with high enough precision. Two complementary tech-

niques are necessary, GPS for the low degrees and gradiometry for higher degrees.

Indeed, a GPS receiver is planned to be on board the Aristoteles satellite.

Inclusion of omission error and smoothing have a major influence on the pre-

sented global r.m.s. results. As for the omission error) neglecting the degrees above

1000 does not make much of a difference, but, especially in non-ideal cases, omission

parts for degrees below .L do have some influence. In fact, the omission error part

determines some lower l imit  for the global r .m.s.)  see sect ion 4.2.3.

Much more influence than the inclusion of the omission error has the introduction

of a smoothing operator into the global r.m.s. computations. Without such an opera-

tor, r.m.s. values become extremely high. However, for our purposes, representation

of the results in terms of block-averages is justified by taking into consideration the

difficulty of deriving high degrees (although present in the true signal) globally from

any measurement technique due to the inevitable limited sampling distance and mis-

sion altitude. If the goal of a gradiometric mission is a resolution of approximately

100 km, block-averages for 1o x 1o blocks are appropriate.

4.2.LL Other error analysis methods

The error analysis presented so far was first used by O.L. Colombo (Colombo, 1987).

It uses the actual gradiometric measurements as observations, r6lated to the un-

known potential coefficients by a linear model of the type 4.2. Another possibility

is described in (Schrama, 1990). There, Iumped coefficients Ak*, Bk,n (in eq. 3.19)

are used as observations. Equations of the type 3.20 are used as model equation,

with for each gradient a different expression for H1^p.

The lumped coefficients are determined from the observed gradients by means of

a Fourier transformation. They serve so-to-say as pseudo observables for the next

step, in which the potential coefficients are derived from them using equation 3.20

as observational model.

Both methods of error analysis, the one in which the observed gradients or

the one in which lumped coefficients aie taken as observations, agree in the sense

that they both treat the gradient measurements, given in subsequent points along

a satellite orbit, as a time series. The methods will therefore be called time-like

(Koop et al., 1989). Furthermore, since the method used in this work takes the
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gradient measurements themselves as observations, it is referred to as tirne-Iike in
the time d,ornain. The method which uses the lumped coefficients as observations
may then be referred to as time-like in the frequency d,omain.

In (Koop et al., ibid.) also a different approach is mentioned. Instead of consid-
ering the measurements as being functions of time, one may also consider them as
functions of space. One then assumes the measurements to be given on a sphere or
in a spherical shell at satellite altitude. Such an approach is referred to as space-
liker. It is equivalent to solving a geodetic boundary value problem. Depending on
assumptions about the spatial distribution of the measurements and the a-priori
variances, different strategies are possible.

First one may assume to have a complete, continuous global coverage of the
earth with measurements. In this case an analytical solution for the inverse of
the normal matrix exists (Rummel et al., 1989), at least for V"", {V"",Vu"} and

{2V"u,Vrr-Vau}.In reality, of course no continuous coverage is available. This fact
is taken into account by weighting the a-priori covariance matrix in such a way that
some assumed finite spatial resolution enters the solution. This method is referred
to as space-like continuous.

The idea can be modified by assuming we are given a finite number of mea-
surements randomly distributed inside some global spherical shell containing the
satellite's orbit. This spherical shell is divided into equal-angular cells, inside of
which the measurements are averaged per cell. Observations are now assumed to
be regularly distributed point values (or block mean values), the observational noise
being adapted accordingly, see e.g. (Rapp, 1989). Using a spherical harmonic ex-
pansion for the gradients, the normal matrix takes on a block-diagonal structure,
due to the orthogonality of the sine and cosine series, and can be easily inverted.
This method is referred to as space-like discrete. In (Koop et al., 1989) it is shown
that all four mentioned methods (tirne-like in the frequencg domain, time-like in the
time domain, space-like continuous and space-like discrete) yield the same results.

4.3 Global recovery

Whereas the previous section (section 4.2) "only" discussed the quality of the poten-
tial coefficients to be derived from space-borne gradiometry (in terms of a-posteriori
error r.m.s. values) , we are n fact primarily interested in those estimated potential
coefficients (em,Sm) themselves. As already explained in section 4.1 we try to
solve potential coefficients from globally distributed gradiometric data. This pro-
cess is indicated with the term global recouerg. There are several methods of global
recovery, one of them will be discussed in the present section. In order to carry
out a global recovery of potential coefficients, we need a data set of measured gra-
vity gradients. Such a set is not yet available, the first set has to be generated by

rThe terms space-l ike and t ime-l ike used in this context have nothing to do with the same terms
known from the theory of relativity.
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the Aristoteles mission. Therefore, in this section, a simulated set of gradient data

is used, computed at the Center for Space Research of the University of Texas at

Austin, (Schutz et al., 1987) and (Schutz et al., 1988). A description of thissimula-

tion will be given in section 4.3.4. We will, for convenience, denote in the sequel the

poten t ia l  coe f f i c ien ts  by  {euno lo :0 ,1 } ,  mean ing  e6 i f  o :0  and ,S t -  i f  o :  1 .

4.3.1 Linear rnodel

The observed gravity gradients are functions of the location of measurements and of

the gravity field. In general, the location (e.g. the coordinates of the measurement

point in some coordinate system) as well as the gravity field (e.g. expressed by means

of a series expansion in terms of potential coefficients) are unknown. These are

exactly the unknowns which we like to derive from the measurements. To this extent,

the measurements are linked to a mathematical model, describing (approximately)

the physical reality. In section 4.1 such a mathematical model (e.g. equation 4.1 for

second-order radial derivatives) was the starting point for our discussion on (least

squares) error analysis. In that section, we simply assumed to be given a global,

regularly distributed set of gradient observations with some known measurement

error. The given model equation was assumed to properly describe the physical

reality and the unknown potential coefficients were assumed to be obtainable from

the measurements by means of a least squares adjustment. All this meant that

we implicitly assumed that the location of the measurement points was known, i.e.

circular orbit with known radius and equal spaced measurements along the orbit to

invoke orthogonality of the trigonometric series. Also the orientation of the local

coordinate system in which the measurements are given was assumed to be known.

In reality, the coordinates of the measurement points are not exactly known,

only approximately. Then the model equation which we used becomes non-linear.

In this section we will show one possibility of dealing with the non-linear problem, a

linearization procedure following (Rummel and Colombo, 1985) for gradiometry or

in general following (Rummel, 1985a).

Consider an observation point P on the true (or actual) satellite orbit. Initially,

the gradiometer output (i.e. the gradient observations) is given in an instrument

or satellite coordinate system which has its origin in P. But as already mentioned

in chapter 3 we assume that the gradients can be transformed to a local orbital or

Iocal north-oriented coordinate system (with origin also in P) by means of a known

rotation matrix. However, since the actual orbit is unknown, the orientation of such

local system in P is also unknown. Suppose now that we are given the coordinates

of a nearby point P' on a known approximate (or nominal) orbit. Then we may take

for the orientation of the local system the orientation of such a system in P', see

figure 4.22. We will denote the local coordinate system situated in P but with the

orientation of the system in P', with ci, and assume we are given the components of

the gradient tensor, V;i@), in this system (the coordinates of P of course remaining

unknown).
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4. Global gradiometric analysis

If we were given an initial state vector, the nominal orbit could be computed by
means of integrating the dynamic equations of motion of the satellite, using as force
model a gravitational field represented by some known set of potential coefficients
(up to some maximum degree and order) , and using the measurements from some
satellite tracking system. The initial state vector is usually given in terms of the
three location coordinates in a geocentric cartesian coordinate system (X,Y,Z) and
the three components of the velocity vector (X,Y,2) at ttte initial time ts. The
differences between the true orbit and the nominal orbit are the orbit errors. The
orbit errors contain a geometrically induced part (due to errors in the initial state
vector) and a gravitationally induced part (due to the imperfect choice of a potential
coefficient set for the orbit integration). This means that the observations are doubly
dependent on the gravitational parameters, directly through the measurement type
itself and indirectly by means of the dynamics of the satellite orbit, the latter being
reflected in the orbit errors (Betti and Sansb, 1989). Furthermore, the orbit errors
contain contributions from various other sources, of which atmospheric drag will be
the most important. The latter error parts will, however, at the moment not be
considered.

al orbit

--.---t-. 

.

\<

nominal orbit

Figure 4.22 Location of actual and approximate potnts P and' P' and' the local

coordinate systems in those points.

What follows is the introduction of a mathematical model to which the obser-

vations are linked, e.g. equations like the ones derived in section 4.1. In general we

write: 
i1r,v1 : l(P,v) + €

where i1e,V1are the observables as function of the point P and the gravitational

potential V, I represents the mathematical model and 6 the (small) residuals be-

tween the observables Z and the model L The u-" denotes stochastic quantities.

In general, the residuals not only contain measurement noise but also model errors.
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4.3. Global recovery

For our purpose, however, we assume that the stochastic behaviour of the residuals
d after linearization is properly described by their first moment (expectation) to be
zero, i .e.  E{;}  :0 (zero mean) so that E{7} :  I  (unbiasedness),  and i ts second
moment (error var iance) tobe E{€{}:  Q, with Q the error covariance matr ix of
the observations. In general, the mathematical model t(P,V) will be non-linear in
P and V. The linearization procedure therefore consists of two parts, a linearization
with respect to the gravitational potential T and one with respect to the coordinates
,; (P) of the point P.

The former is done by splitting the gravitational potential V into a known normal
(or reference) part U and an unknown disturbing part 7:

v ( P ) : u ( P ) + r ( P ) .

Hence for the second-order derivatives we have

v;i@) : u;i(P) -r T;1(P) ,

where i j  may take any of  the values t r r , t ry , rz ,AAryz or  zz.  The observat ion equat ion

thus becomes:

v;i@) : U;i(P) + T;j(P) * e;i . (4.r7)

The second step of the linearization process is the linearization with respect to the
Iocation P, for which we expand U;i@) into a Taylor series with respect to the
coordinates of the known approximate point P', truncated after the linear term:

U; iP)  x  U;1  (P ' )  +  U;1  p(P ' )  L , rk

where (J; j* :  
f f i  ""a 

L. i  = 
" ' (P) 

-  r i (P')  -  (Ar,  L,y,a,z) rhe coordinate cor-
rections between P and P' , i.e. the orbit corrections between the actual and the
nominal orbit. It is convenient (although not necessary) to compute the nominal
orbit using the same potential [/ as is used above for the potential linearization.

Since the disturbing potential ? is a small quantity of first order we assume
T;i(P')  xT; i(P).  Inserted into equat ion 4.I7 this yields:

Ui@) :  u ; i (P ' )  *  u ;11, (P ' )Lrk  + T; i (P ' )  *  E, i  ,

6 i , r : V i @ ) - U ; i ( P ' )
: u; ir(P')Lrk + T;1(P') + 6ri (4 .18)

with Al;; the gradient anomaly. In the simplest case the normal potential [/ is the
potential of a spherically symmetric gravitational field (i.e. U : Y), but it may
also be the potential of an ellipsoidal field or any other higher order approximation
of the actual gravitational field. In general, the normal potential [/ is expanded into
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4. Global gradiometric anilysis

a spherical harmonic series (or a series of inclination functions) represented by some

(limited) set of harmonic coefficients ej^". With the actual potential V expanded

into a similar series with coefficients C1^o we find for the disturbing potential ?

an expansion in terms of the coefficient corrections Le t^o, where e kno : e't*o *
Aeuoo. In equation 4.18 the unknowns are the potential coefficient corrections
Le uro in Ti1(P'), and the coordinate corrections Art.

It is known from the theory of adjustment that, although the choice of approxi-

mate values does not influence the results (as long as they are inside the bounds of

convergence so that the iterative estimation process will converge) , it is important

to compute these approximate values (in our case the normal potential U in the

approximate point P') accurately, in order to obtain small anomalies and thus ac-

celerating the iteration process. On the other hand, the coordinate corrections Acd
will, in general, also be small so that the elements of the coefficient matrix U;ix(P')

can be computed with less accuracy. Whereas one usually takes for [/ a series ex-
pansion up to some (high) maximum degree if it concerns the computation of the

anomalies (i.e. for U;i(P')), a spherical or ellipsoidal [/ suffices for computation of

the coeff ic ient matr ix ( i .e.  for Urir(P')) .

Let us take, for example, the potential of a homogeneous spherical mass distribu-

tion as simplified normal potential for the computation of the coefficient matrix [1i3.

This matrix can then be computed very easily, and if inserted into equation 4.18, it

yields (for all six gradient tensor components separately):

Af*

6i,,

A-i,"

Ai, ,

A L  y z

Li 
""

3GM

0 0

U U

1 0

0 0

0 l

0 0

7,,

T-,,

Tr"

Tru

Tr"

7""

^"1
o ' l *
L r l

I

0

0

I

0

- ,

,b,

e,,

Er"
(4 .1e )

eoo

c u z

6""

An equation like 4.19 can be set up in each observation point. If we have N,

observation points, we have 3No coordinate unknowns and 6No unknown ?;i's. But

the gravitational potential is common to all measurement points, so, expressing

the potential by a series expansion up to some maximum degree L, the potential

coefficient corrections Aeuno are the same for all points, leaving us with (r+ 1)2 - 3

potential unknowns (which is the total number of unknown coefficients in a series

expansion up to degree ,L minus the three first-degree coefficients (l : 1) which are

identically zero if the origin r : O of our geocentric coordinate system is the center

of gravity of the earth). A system of observation equations arises if one joins the

model equation 4.19 for all observation points together as function of the same set

of potential coefficients.
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Now one may proceed in different ways. Either one solves the system of equations

for all unknowns simultaneously (i.e. position as well as potential unknowns). This

method is used in the so-called theory of integrated geodesy, see e.g. (Hein, 1986)

or (Moritz, 1980). Or one eliminates certain coordinate unknowns by forming ap-
propriate linear combinations of anomalies, a method often used in the theory of
the geodetic boundary value problem. One is then left with an adjustment problem
with only potential coefficient corrections as unknowns. After they have been esti-

mated, back substitution into the model equation gives estimates for the coordinate
unknowns. Iteration of this procedure should converge to the right results. The

next section will discuss such a procedure.

4.3.2 f terat ion

In this section a possible iteration procedure will be sketched which can be used to

solve potential coefficients (and coordinate unknowns) from gradiometric observa-
tions. The procedure used here was first presented in (Rummel and Colombo, 1985).

The first step in this method is to carry out a pre-adjustment of the diagonal com-
ponents of the gradient tensor using as model equation the Laplace equation (zero

trace of the gradient tensor). In the case of Aristoteles this pre-adjustment cannot

be carried out since not all diagonal tensor components are measured.

As starting point for the adjustment to follow we use the linearized model 4.19

derived in the previous section. The idea is to separate the solution of the potential

coefficients from that of the coordinate unknowns. If we take a look at equation 4.19

we see that, in the present-spherical approximation, only Af', depends on the

coordinate correction L,r, Lls" only on Ay but that the three diagonal components

all depend on Az. These three can therefore be used to eliminate the radial orbit
correction Az from the model equation. If we assume only Ai* and Ai', to be

available (like with Aristoteles) then the linear combination

z\lua * Ll 
""

(4.20)

eliminates A,z. If we take this linear combination in each observation point as new

observables, there remains a system of linear equations with only the potential coef-

ficient corrections as unknowns. Note that this is the reason we took this particular

combination of gradients 2Vo, lV"" as one of the combinations in the previous sec-

tion on error analysis, section 4.2. Now we have separated the determination of the
gravitational field from that of the orbit. This is only true up to the order of the

earth's flattening, since we took the coefficient matrix of the coordinate corrections

in equation 4.19 in spherical approximation.

On the left hand side of the resulting model equation we now have the linear

combination 2Airr+A i 
", 

and on the right hand side the corresponding combination

of the disturbing potential 2Tuu + ?"r. This equation can be used to estimate the

potential coefficient corrections Let*o.
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4. Global gradiontetric analysis

Also, from equation 4.19 we see that the tensor component Ai* does (in spheri-
cal approximation) not depend on any coordinate correction at all. This equation can
therefore be used for the estimation of the potential coefficient corrections together
with the linear combination above (at least if this tensor component is measured,
which is not the case in the Aristoteles mission).

The linear model is now of the same form as equation 4.2,and can be solved by
means of a least squares estimation procedure, as described in section 4.1. This re-

sults in a set of potential coefficient correction estimates Le t*o, from which we may
compute an up-dated set of potential coefficients by adding them to the coefficients

e'rroo of the normal potential U: e'rl" : e't*o * Le mo.
What should follow is the computation of the coordinate corrections A,z by

means of backward substitution of the solved potential coefficient corrections into
the l inear model eq.4.19. We saw already that these coordinate correct ions are in
fact the radial orbit errors, the differences between the true and the nominal orbit
in radial direction, and that they contain gravitationally and geometrically induced
parts. The orbit errors reflect the unmodelled part of the motion of the satellite.
This motion (being the time evolution of the state vector (Betti and Sansd, 1989))
can be described by an initial state vector (ri and ii at the initial time t6) and some
system of dynamical equat ions (equat ions of motion),  e.g.:  i ; ( t )  :  V;(r t( t ))  + P;,
where P; are perturbing terms, which are neglected here for convenience, and t is
time. In order to include the satellite motion (through the dynamical equation)
into the estimation procedure, the determination of the coordinate corrections is
divided into two parts. Assuming that the corrected set of potential coefficients
Cjf* constitutes a better gravitational field representation than the set e'1^o, *.
first compute an up-dated nominal orbit with these new coefficients Cfl, but with
the old initial state vector. In this way we obtain a new set of up-dated approximate
points P" in which we compute new anomalies: Ai l i :  i i i (P) -U; i(P"). Insert ing

these new, smaller, anomalies and the estimated potential coefficient corrections

Le uoo into equat ion 4.19 and assumingT;1(Pt ' )  x T;1(Pt) x T;1(P),  we obtain

6r l i  -  T ; i (P" ) :  U ; j * (P" )Lrk (4.2r)

where the U;ip is stil l in spherical approximation and where the (also smaller) co-
ordinate corrections Axk : ,ke) - *o(P") are now the orbit errors between the
true orbit and the up-dated nominal orbit. They are therefore free from the influ-

ence of the A6's-o and are only due to uncertainties in the initial state vector, cf.
(Rummel and Colombo, 1985). From this equation coordinate correction estimates
L,2 can be obtained.

With the resulting set of coordinate corrections A2 we may compute an up-
dated initial state vector using some linear model. An example of such a linear
model is the solution to the homogenous Hill equations (ibid.). The Hill equations
are derived from Iinearizing the equations of motion of the satellite relative to some
reference motion (u.g.u circular motion in a spherical gravitational field). For an
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4.3. Global recovery

exact derivation of the Hill equations and their solution see e.g. (Kaplan, 1976) or

(Colombo, 1986). For example, for the radial direction, the homogeneous solution

of the Hill equations is given by:

/rz(t): -(3Azs + ?rco)cosnt + !:9sin nt * 4L'zo t lor"

where the ini t ia l  condit ions Azs,L, is,Aig are considered at t :0 and n :

^ 2\ io
A r o - -

n

Ai(t) : Ayo cos nt + 
Aio 

,in ,,t
n

(4.22)

is the mean motion of the satellite. For each measurement epoch t an equation

like 4.22 can be set up. All these equations are function of the same initial conditions

Azs, L,2s,Ai6. Merging these equations into one system, estimates of Lzs, A2s, Ais

can be obtained by solving the system of equations by least squares adjustment.

Now we have improved the two error parts contributing to the orbit errors: the

gravitational part by improving the potential coefficient set and the geometrical part

by improving the initial state vector. As a consequence we may again compute an

up-dated nominal orbit with the coeffici ents e'1'*o and the improved initial state

vector. In fact, from here on, the whole process described above repeats itself, since

with this new nominal orbit, up-dated gradient anomalies are derived, the linear

combination is formed, potential coefficient corrections are estimated, etc. Assuming

the process to converge to the right solution (cf. (Rummel and Colombo, 1985)), one

repeats the above procedure until satisfactory accuracy is obtained.

In the case of Aristoteles the procedure ends here. If also the gradients Vr" and

Vs" are measured the procedure may be continued by estimating the other two coor-

dinate corrections As and Ay. The coordinate correction Ar can be obtained from

Ai,, (which is computed along the final nominal orbit) by inserting the final poten-

tial coefficient set resulting from the repetition process above into equation 4.19. In

the same way Ay is obtained from Alyr. The corresponding two solutions (cross-

track and along-track directions) of the homogeneous Hill equations are:

at( t)  -  2L' io 
cos nt f  (6Azo + 

nAio 
)  s in nl  -  (6na,zs+ SAio)t  +' n - n

(4.23)

(4.24)

which, together with the radial solution, may be used to estimate a last improvement

of the initial conditions and to compute a last nominal orbit. This best estimate of

the orbit could be used to carry out a final potential coefficient estimation.

The whole estimation procedure is listed in table 4'11.

4.3.3 Space-like v. tirne-like

Whereas the iteration method described above may seem a nice example of gradi-

ometric data analysis (since it separates the determination of the orbit from that
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4. Global gradiontetric analysis

of the gravity parameters e m.-) there remains one big problem, namely that of the
enormous amount of data to be handled by the software. Two aspects have to be
considered in this context.

First the number of observations. During a six months mission and with a data
sampling rate of 4 seconds, almost 4 million measurement epochs become available.
If we confine ourselves to the case of Aristoteles this means that at each epoch two
observations are given, Vru andV"",fromwhich the linear combinatior,2Lluu+Llzz
is derived. In terms of the model equation 4.2 this therefore means that the vector of
observations I has over 4 million elements. In the least squares estimation procedure,
eq. 4.5, we have to carry out the multiplication 6 : ,+r t (if. we assume the covariance
matrix Q to be a scaled unit matrix) which involves inner products of the columns
of A with the observation vector l. One such inner product thus consists of a
summation over 4 million elements. Each column of A belongs to a certain l, rn-
combination and each row of A belongs to one individual observation. Each element
of A is therefore of the type 4.3 or 4.4for a unique set of  (ro,rr ,r) .  For each of the 4
million inner product elements the trigonometric functions cosrfilrr,- er sin rftprrhave
to be evaluated for all necessary values of the index fr. Even when using recursive
type methods for the computation of these trigonometric functions, this part of the
estimation process, i.e. computing 6, remains very time consuming.

Another aspect concerns the number of unknowns. Given some specified max-
imum degree ,L up to which one likes to estimate the potential coefficients, a total
number of (I + 1)(, + 2) unknown e1*o coeffi,cients appear. E.g. if L : 240 (like it
is usually the case in this thesis) we have over 58,000 unknowns. This means that
the design matrix A has more than 58,000 columns and, as we have seen, almost
4 million rows. The normal matrix N has a size of (sa,ooo)2, but it is symmetric.
Solving such a linear system is stil l an enormous effort, which under certain assump-
tions, however, can be drastically reduced by invoking a block-diagonal structure,
as was done in section 4.2 with the error analysis.

If we are willing to accept some assumptions and approximations as far as it
concerns the observation distribution, something can be done to reduce the compu-
tational efforts. Two methods are mentioned here: the space-like and the tirne-Iike
method. The terms space-like and time-like are those used in section 4.2.11. The
difference between the two is the way in which we look upon the data distribution.
Both methods will be illustrated below.

Space-like

In the space-like approach we view upon the data set as being a set of observations
distributed in some way (regular or irregular) in three dimensional space. The mu-
tual relationship between the observations (they are all taken along one common
satellite orbit) is not taken into consideration. The latter point is only reflected by
the fact that during the iteration process (table 4.11) the initial state vector com-
ponents are updated using some dynamical model for the satellite motion (i.e. Hill
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equations), and by the fact that all rneasurements are considered to be located inside

a spherical shell around the earth. This shell, concentric with the earth's center of

mass, is just thick enough to contain all measurements. An observation is considered

a function of its position coordinates r,0, .\. An easy way of expressing the gradients

in this case is by means of a spherical harmonic expansion, equation 3.16. When

using this formulation, a block-diagonal structure of the normal matrix is achieved

if the data, assumed to be situated on a sphere (i.e. constant radius approximation),

is distributed regularly in d-direction (observations along parallels) as well as in

,\-direction (observations at equal intervals At). Along each parallel the observa-

tions constitute a set of equally spaced samples. On such a set, the trigonometric

functions sin rnl and cos rn\ arc orthogonal. This causes the elements of the normal

matrix belonging to the coefficients etr*ro, and e6^ro, to be only different from

zero if dr : a2 and rn1 : trt2 (Rummel and Colombo, 1985). Compare this with

the orthogonality in section 4.2.1.

Thus a regular, global grid of observations is needed in this case. But we

do not have such a grid. If the actual data distribution shows some particular

pattern at all, it will certainly not be of the type described above. However, in

(Rummel and Colombo, 1985) it is suggested that such a grid structure can be ob-

tained in the following way. The spherical shell in which all observations are con-

tained, is divided into equal angular cells of thickness Ar (the thickness of the shell)

and with size L,0 - Al, the latter chosen at most half of the smallest gravitational

wavelength to be recovered. AII the gradient observations inside each cell are aver-

aged. All equi-angular cells with their average gradient values formed in this way,

together constitute a global grid of gradient observations.

A block-diagonal structure of the normal matrix is now obtained which means

an enormous reduction of computation time. But also the number of "observations"
(i.e. cell averages) has become less. If we, for example, like to recover the potential

coefficients up to a maximum degree and order L : 240, the grid size L,0 = A)

has to be at most 0'.75. The number of cells contained in a grid of this size is

115,200, which is much less than 4 million. So also the amount of time needed for

the computation of D has been decreased.

The drastic decrease of computation time is a big advantage of gridding the

data. On the other hand, averaging means a loss of precision due to the smoothing

of the signal. Furthermore, we may put some questions about how to carry out

the averaging process. A first problem is that in reality, we do not know the exact

coordinates of the measurement points P. The decision in which cell an observation

lies and where it is located inside the cell, can only be made on the basis of the

coordinates of the approximate points P' along the nominal orbit. Due to orbit

uncertainties in cross-track or along-track direction, an observation may therefore

contribute to the cell average of the wrong cell (the radial orbit error will not lead to

such problems). Since we have seen that the second-order derivatives have a large

power content in higher degrees, these kinds of mistakes may have considerable

influence. Furthermore, since the error variance of cell averages is computed from
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the measurement error propagation through the averaging process, the resulting set
of grid values will not have equal variances any more. Unfortunately, as long as we
do not have the true coordinates, nothing can be done about the former problem,
unless we could determine the true orbit with enough precision independently, e.g.
by using GPS, which would imply that we are back at the earlier situation, where
we don't have to estimate the orbit from the gradient measurements.

A related question is how to interpret the average values. One possibility is to
first average the original gradient observations, and to attribute the average values
to the center points of the equi-angular cells. The coordinates of those center points
are known. The problem is reduced to that of just estimating potential coefficients,
since the "orbit problem" is suppressed, compare (Vermeer, 1991). No linearization
with respect to the coordinate unknowns is possible any more. Another possibility
is to attribute the average gradient value to some imaginary average location inside
the cell, not coinciding with the cell center. This average measurement point could
be thought of as being computed by means of averaging the (unknown) coordinates
of all the actual measurement points inside the cell. The cell center could then be
chosen as approximate point P'. In this case there remains the problem of which
kind of relation there is between on the one hand the averaged measurement points
and the true orbit and on the other hand the cell centers and the nominal orbit.

Probably the best choice is to first linearize the problem and compute the gradi-
ent anomalies (eq. 4.18) and the linear combinations (eq. 4.20) f.or all observations
individually. AII observations inside the same cell are linearized with respect to the
same approximate point P', namely the cell center, and for the normal gradient U;i
the value at the cell center P' is taken. The resulting set of linear combinations of
gradient anomalies are now averaged on the basis of their approximate locations P'.
In the estimation procedure from table 4.11 this means that the cell averages are
formed between step 6 and 7, and that they only apply to step 7. Back substitution
(step 10) is done with the original system of equations (one equation per observation,
not the averages) . Furthermore, one could use the cell averages only for computing
and inverting the normal matrix w : #A'A, whereas the multiplication AT lis
carried out for all observations individually. In that case it is not even necessary
to actually compute the cell averages. One simply chooses a global grid at a cer-
tain mean radius and with a certain step size in d-direction. The ,\-dependence
is cancelled due to the trigonometric orthogonality relations. In this way however,
we have to compute D again for almost 4 million observations. Note furthermore
that, if we want to use the inverse of the present normal matrix (where cell averages
are assumed) to describe the a-posteriori precision of the estimated potential coeffi-
cients, we have to adapt the scale factor o2 of the variance matrix of the observations

Q to represent the variance of cell averages. In fact, in general the variance of a
cell average becomes a function of the number of observations inside the cell and
their location relative to the cell center. This results also in a d-dependence of the
variances.

Nevertheless, if one likes to compute cell averages, there remains the question
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of the validity of the averaging process. Inside each cell the observations might be
distributed rather irregularly. It should therefore be preferred to reduce the obser-
vations to the cell center using some higher order model, at least one which includes
a dependency on the relative location of the measurement points with respect to
the cell center. This becomes extremely important if the actual observations V;y are
averaged, since these numbers are relatively large and vary considerably throughout
a cell. E.g. at 200 km altitude differences in the value of the gradients inside a cell
with size Ar:  10 km and A,0 :0o.5 mav be of the order of 10-10s-2 due to the
C2s contribution only.

It should be mentioned that a possible negative influence on the results of the
averaging process may be overcome during the iteration procedure (see table 4.11,
step 14), at least ifthe cell averages are formed between step 6 and 7 (as suggested
above).

Time-like

As pointed out in section 4.2.LL, the time-like approach considers the data set a
time series, the observations given in subsequent points along a satellite orbit. The
usual way of expressing the gradients in this case is by means of an expansion into
a ser ies of incl inat ion funct ions, l ike eq.3.18. The t ime dependency is expressed by
the argument th**:  ! t l*  *  rb**t ,  compare eq. 4.6.

In order to achieve a block-diagonal structure for the normal matrix in this
case, we do not need an equi-angular global grid of observations. In section 4.2.1
we saw that such a structure is already obtained if the data is distributed regularly
only along the orbit, under the condition that the number of nodal days .l[a and
the number of orbit revolutions N" contained in the mission are relative primes and
that .l/" > 2L. For .L -- 240 the latter condition is fulfilled in a 6 months mission,
like with Aristoteles. Also, with the foreseen constant sampling rate (4 seconds for
Aristoteles) with which the measurements are taken, the requirement of a regular
data distribution along the orbit is very well met. What remains as an assumption
is the absence of data gaps. Unfortunately, data gaps will occur in a real mission
(due to orbit maintenance manoeuvres and excessive drag variations at the poles) .
Note that in the space-like situation along-track data gaps play no role as far as
it concerns the orthogonality requirements. Another problem that remains is the
fact that not one reference orbit is computed for the full mission period. Instead,
reference trajectories are integrated for some limited amount of time, e.g. every three
or six days.

In the time-like approach there are no problems concerning the true orbit, nom-
inal orbit and average values, because no averaging of the data is needed to invoke
orthogonality. Except for the data gaps assumption, the time-like approach there-
fore seems more suitable for the gradiometric analysis (in the way described in
section 4.3.2 above) than the space-like approach.
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4. Global gradiometric analysis

4.3,4 Simulated data

Whereas an error analysis can be carried out without the availability of a set of real

measured quantities (like it was done in section 4.2), potential coefficient estimates

can only be obtained if one has at ones disposal some set of observations. Up to

now, however, no gradiometric satellite mission has been carried out, so no true data

is available yet. In order to be able to investigate the gradiometric analysis process

and to carry out test computations one depends on simulated data. The Center

for Space Research (CSR) of the University of Texas at Austin computed a set of

gravity gradient data along a simulated satellite orbit. Detailed information about

this simulation can be found in (Schutz et al., 1987) and (Schutz et al., 1988). In

this section we will only briefly discuss the main characteristics of this simulation.

In order to obtain a good global coverage, the CSR simulation spans 32 sidereal

days after which the ground track of the satellite's orbit will repeat to within 10 km

( i . " . " " :32  days) .  For  a  sa te l l i te ,  mov ing  a long a  po la r  o rb i t  ( / :90" )  a t  a  mean

radius of approximately 6527 km, this results in 525 orbital revolutions. The force

model used for the orbit computation consisted of the complete 360 x 360 OSU86F

potential coefficient field (Rapp and Cruz, 1986) and the following values for the

gravitational parameter GM and the reference radius .B:

GM :3 .986004404 '  1014,n3  
" -2

.R :  6378137m .

Furthermore, the C21 and ,521 coefficients were assigned the values ezt : -0.10'10-9

and ,S21 : 0.102 . 10-8. The force model did not include non-gravitational forces,

luni-solar effects or temporal variations in the gravity field (Schutz et aL.,1983).

The computed data set contains the ephemeris of a low-orbiting GRM (Geopotential

Research Mission) satellite at 4 second intervals. This resulted in a total amount of

691,210 measurement epochs.
At each epoch the elements of the gravity gradient tensor V;i are evaluated. De-

spite the fact that only five elements of the gradient tensor are independent (V;; is

symmetric and traceless) , all six elements comprising the upper (or lower) triangular

part of Vi are provided. The gradients were computed as the second-order partial

derivatives of the gravitational potential in a geocentric cartesian coordinate system

using a spherical harmonic expansion up to degree and order 360. The potential

coefficients for this expansion were also taken from the OSU86F field, but the con-

tribution from the zeroth order term (ff) was not included (i.e. Coo :0). All

measurement errors were excluded from the simulation. For the purpose of the com-

putations the observations were assumed to be uncorrelated, having a 0.01 F l\/Hz
white noise error spectrum.

At this point already some remarks can be made about this simulation, as far as

they concern our intended use. Referring to section 4.2.lit is reminded here that for

a good recovery of potential coefficients from satellite data up to a maximum degree

,L (avoiding a situation where different orbital frequencies, represented by some fr, rn
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4.3. Global recoverv

combination, are projected onto the same gravitational frequency, represented by an
l,m combination) , the number of orbital revolutions N, in one repeat period has to
be larger than2L. This in turn implies that for the present simulation (525 orbital
revolutions) we can expect only a good recovery up to approximately L:262.

The choice for repeating ground tracks after 32 days ensures a finest possible
global coverage within this period. As a result the ground track nodes (cross over
points between descending and ascending tracks) for the 525 orbital revolutions
included in this repeat period have, at the equator, a spacing in )-direction of
approximately 0".68. Simple reasoning tells us not to expect recovery of potential
coefficients above degree I : 262 in this case, despite the fact that, due to the 4
second sampling interval in along-track direction, the spacing in d-direction will
be approximately 0".27 . Figure 4.23 shows for a small area (50o S ) < 60" and
Oo I g < 10') the ground tracks (continuous lines) of the simulated orbit, as well
as the grid lines of a 0o.5 x 0".5 grid (broken lines). It can be seen from this figure
that several blocks of the grid are not covered by ground tracks. An attempt to
derive from the simulation potential coefficients up to degree 360 with the space-
like method (for which such a 0o.5 x 0'.5 grid is needed) is therefore not likely to
succeed, at least if the empty blocks are not accounted for in some manner.

L o n g i t u d e

Figure 4.23 Grounil tracks (continuous lines) of the sirnulated. CSR orbit for
a small area. The brolcen lines are the grid l ines of o 0" .5x 0" .5

grid..

o
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4. GIobaI gradiometric analysis

4.3.5 Space-l ikeresults

A computer program was written by D. Stelpstra (Stelpstra, 1990) to estimate po-

tential coefficients from gradiometer measurements following the linearization pro-

cedure in the space-like approach, which was described in previous sections. As

input data the satellite ephemeris and gravity gradients from the CSR simulation,

described in the last section, was used. Test computations were done to demonstrate

the possibilities of the present recovery method (Koop and Stelpstra, 1991).

To this extent, a global 1o x 1o grid, being a commonly used and easily man-

ageable grid type, was established from the gradient data set. Such a grid consists

of 64,800 equi-angular blocks. For each measurement epoch, the given geocentric

cartesian coordinates were transformed into curvilinear coordinates 0, ). The latter

coordinates determined in which block the measurement was assumed to be situ-

ated. Since there were 691,210 measurement epochs in the simulation, the result

was an average number of N, - l0 measurements per block. To simulate the elim-

ination of the coordinate unknowns (i.e. the orbit errors), as is done in the linear

model approach, at each measurement epoch the linear combination of observations

z\f * I Al", was computed. The resulting numbers were then averaged inside

each grid block. For convenience we assumed all those block averages to have the

same measurement precision (namely 
"Jffi 

with o the precision of one gradient),

which of course is not really true, since not each block contains the same number

of measurements. At this stage we are only interested in estimates for the potential

coefficients. Their a-posteriori error behaviour was already discussed in section 4.2.

This means that the one important item concerning the error variances is the as-

sumption of equal variance for block averages. This leads to a simple variance

matrix, namely a scaled unit matrix. The value which we choose for the variance

factor a2 is not important here. As can be seen from eq. 4.5 it will, in case that Q
is a scaled unit matrix, drop out when computing 6.

From the 1o x 1" grid one may estimate potential coefficients up to degree and

order 180. We expected a good recovery of potential coefficients from the simulated

525 orbit revolutions only up to degree 262, so with .L : 180 we are on the safe

side. The estimated potential coefficients were used to compute signal degree vari-

ances. They are shown in figure 4.24, together with the degree variances from the

original OSU86F model. Up to degree 140 the signal power seems to be recovered

very well. Above degree 140 the estimated power is higher than the original one.

This fact may be due to an aliasing effect, where the power of higher degrees, con-

tained in the measurement signal but not solved for, is reflected in the lower ones

(Jenkins and Watts, 1968). In time series analysis, this effect always appears when

the chosen sampling interval is not small enough to detect the highest frequency

which is present in the signal. The highest frequency which can be detected given

some sampling interval A is the so-called Nyquist frequency Ix : Il(2L). If fv is

smaller than the highest frequency present in the signal, aliasing occurs. When us-

ing spherical harmonics the aliasing effect cannot be expressed in a simple manner,
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4.3. Global recoverv

but it will be present. In our case, the OSU86F field contains potential coefficients
up to degree and order 360, which were all used to simulate the gradient data. But
we only solve for coefficients up to degree 180, so the power content for the degrees
181 < I < 360 will be reflected in the spectrum between 0 and 180. Since in reality
the gravitational field contains degrees up to infinity, an aliasing effect will always
be present, even for higher degree solutions, although block-averaging of the data
will decrease its influence to a large extent.

-  - osu86 f

-solved -

a.a/t11^-.^-\. _ _ \

90

degree

Figure 4.24 Degree aariances from. solaed potential coefi.cients frorn sirnulated
gradient data using the space-like approach, as well as those frorn
OSU86F.

Nevertheless, the solution seems not bad at all. Especially if we remember that
this estimation is in fact only one step of an iteration process in which one simul-
taneously solves for the gravitational field as well as the orbit. Furthermore, since
we did not remove from the simulated data any other potential contribution apart
from the central (zeroth order) term, the anomalies are relatively large.

The degree variances, however, show the spectral behaviour of the signal in
terms of the power per degree. If this signal power per degree is well solved for, it
does not necessarily mean that the distribution of the power over all orders inside
this degree is properly solved for. One has to look into the individual potential
coefficients themselves. To this extent the absolute values of the relative differences
between the solved coefficients e 1*o and the original OSU86F coefficients e 1*o *"r.

: _
computed, i .e. l (Cp""-Cu.") lCt-ol .  I f  the result ing value is,  for example, 10u: 1
this means the relat ive error is IOO%. A value of 10-2 means 1 % relat ive error.  We
counted how much of these numbers were present in each 100 l-class between 10-5

L
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4. Global gradiontetric ana/ysis

and 105. A cumulative graph of these numbers, in percentages of the total amount
of solved coefficients, is shown in figure 4.25. From this figure we see that over 80 %
of the coefficients is solved with an error less than 100 %, however only about 20 %
with an error less than l0 To. In order to see whether some particular pattern exists
in the error or not, a grey-scale map of the same numbers in an f , rn-scheme was
created. This map showed no particular pattern, except for a slight increase with
increasing degree.

0

l og  abs  re l  d i f

Figure 4.25 Cumulatiue graph of the number of errors between sohed and.
OSU86F coefficients in percentages of the total arnount of solaed
coefficients, Horizontal atis: ord.er ol rnagnitude of the relatiae

diff e r e nce s, Iog arithmical.

It should be mentioned that the differences between the solved and original
coefficients, as they are computed here, do not contain measurement errors, since
we adopted a scaled unit matrix for the covariance matrix of the observations. The
remaining error therefore consists of model errors and numerical errors. The latter
are inevitable in each computational process.

4.3.6 Ti rne- l ikeresul ts

In the time-like approach the observations are treated (as they are in reality) as
measurements done in successive points along the satell i te orbit. The parameters
to indicate those measurement points are the orbital elements a,e,I,u)o,tt)". For
the CSR simulation we have 1 : 90o and for our convenience we assume e : 0.
Furthermore, we assume all measurements to be situated on a sphere with radius
equal to the mean radius of the simulated orbit. This leaves us with c.ro and <,r" as
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4.3. Global recovery

variables to indicate the successive measurements. They are to be computed from
the given geocentric cartesian coordinates rI and the time t of the epoch. Care

has to be taken with this transformation from ,I ,t to u)o,u)e, especially with the
identification of the correct quadrants.

No averaging of the measurements has to be done, so we are left with a data

set of 691,210 records, each containing the measurement (or the linear combination
z\laz+ Afrr) as well as the two coordinates r^,ro and <.,r, at the measurement time t,

in double precision a storage requirement of a little more than 16 Mbyte. A computer
program was written to estimate from this data set potential coefficients following
the method described in sections 4.3.1 and 4.3.2. This estimation program is in fact
an extended version of the error analysis program from section 4.2, now including
the computation of b : Ar I and the solution of the normal equations. Due to

the enormous CPU time requirements for bhis program, we decided for the first
run to average every two successive measurements, thereby halving the number of

observations to be used in the estimation process. Since we only attempt to estimate
coefficients up to a maximum degree .L : 180 (like in the space-like approach) the

data interval in d-direction after this averaging (approximately 0'.54) will stil l be
sufficient.

Whereas in a real mission like Aristoteles the lower part of the measurement
spectrum will be too much distorted or not available with enough precision (band

limitation, see section 4.2.4) we included in the present estimation the complete

measurement spectrum (aIl B6for 0 ( m 4 L and -L < fr < I). No stabilization
technique was used (see sect ion 4.2.6).

Degree variances, computed from the potential coefficients solved with the pre-

sent time-like program, are shown in figure 4.26, together with the original OSU86F
degree variances. Above degree 120 the solved spectrum diverges from the original

one. However, the differences are larger than in the space-like approach (compare

figure 4.24). Since, in both cases) we did not remove the contribution from the

degrees above 180 from the measurements, the differences are due to an aliasing

effect. In the space-like approach, where we first computed cell averages, this aver-

aging acts as a smoothing process, decreasing the power content of the high degrees.
Therefore the aliasing effect is expected to be less than here.

Also for the present solution we show (figure 4.27) the cumulative percentages

of the relative errors in each coefficient. Somewhat less than 80 % of the coefficients

is solved now with an error less than IOO%, but st i l l  about 20Yowith an error less

than 10 %.
It should be re-emphasized that, for both the space-like as well as the time-

like approach, the results shown here are "only" a first step of what should be

an iterative process in which at the same time the orbit is improved and the co-
efficients are estimated. A simplified simulation, based on zonal coefficients only
(Rummel and Colombo, 1985), indicated that only afew steps are necessary for the

iteration process to converge. A final judgement of the results and the estimation

method can thus only be given if a complete iterative solution is computed. Nev-
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osuB6f

solved

degree

Figure 4.26 Degree aariances lrom solued potential coefficients frorn sirnulated,

grad.ient data using tlt,e tirne-like approach, as well as those from
OSU86F.

ertheless, the present results are promising, especially considering the fact that in

both cases no stabil ization technique was used.

4.3.7 Sorne cornputational aspects

From a computational point of view, the programs for the space-like and the time-
like methods are very much alike, at least in broad outlines. Both programs do, in
principle, nothing more than solving a system of the type I -- Ac by means of a
least squares adjustment for the same vector of unknowns c (which are the potential

coefficients). The differences between the two approaches are found in the vector of
observations I and the expression for the elements of the design matrix A. In case
of the space-like method, the vector of observations I consists of block averages,

a total of 64,800 elements in the case of a 1" x 1' grid. In the time-like approach
this vector consists of the original observations along the satellite orbit which are

691,210 elements in case of the one month CSR simulation.
Concerning the design matrix A, the difference between the two methods is that

the space-like method uses spherical harmonics as base functions (for which we need

to compute the Legendre functions Pt* and their derivatives), whereas the time-

like method is set up in the rotated orbital system and is therefore based upon the
inclinations functions F!* and Frk*-.

Both differences have far-reaching consequences as far as it concerns computa-
tion time. Before we illustrate this, we have to remind ourselves that the required
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0

log abs re l  d i f

Figure 4.27 Cumulatiue graph ol the number of errors between solued' and

OSU86F coefi,cients in percentages oJ the total amount of sohted

coefficients. Horizontal aris: order of rnagnitud,e ol the relatiae

diff e r e nce s, I og arithmic al.

computational effort strongly depends on
hardware. All CPU results given in this
CONVEX C240.

First of all, computing the inclination functions for all valid /, rn,k wp to some
maximum degree .L is much more time consuming than computation of the Legendre

functions for all l, m up to the same degree. If the space-like program is used
only for error analysis (i.e. setting up and inverting the normal matrix) it requires
only 40 CPU seconds (for one observation type), against the time-like program

approximately 800 seconds (for 10 observat ions types),  both up to L:180 and
both on the same computer.

Secondly, and what is more important, the product D : A" I puts a heavy
burden on the computations. Compared to the computations involved in b the error
analysis contributes only little to the total CPU time for the adjustment process. For

the space-like program the coefficient estimation up to L -- 180 requires 370 CPU

seconds (Stelpstra, 1990). For each of the 64,800 cell-averages we have to evaluate
the sine and cosine of rnA, multiply them with the Legendre functions, some other
factors and with the observation. But since the observations are regularly spaced

on a grid, the amount of extra effort can be kept limited.

For the time-like program the discrepancy between "only" error analysis and

adjustment is much larger. This is due to the fact that we have much more ob-

the maximum degree ,L and the available

section refer to software running on the
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servations than in the space-like method. For each observation an element of A

consists of a summation over k. For all l,m combinations we have to evaluate the

sine and cosine of the argument ,lr*^: kro + rn<r", multiply them with the incli-

nation functions and some other factors, add them for all k and multiply them with

the observation. As an example, consider the estimation of the zonal coefficients up

to L :100, which requires TI7 CPIJ seconds, of which 95 % (681 sec.) is needed for

setting up D. Bearing in mind the total run-time for the error analysis for a// orders

and degrees up to ,L : 240 (500 CPU seconds, see section 4.2.9), one can imagine the

computational effort to be delivered for a complete estimation up to such maximum

degree. Indeed, the estimation of all potential coefficients up to degree and order

180 from the halved data set of 345,605 observations (as described in the previous

section) required approximately 69 hours CPU time on the CONVEX. The time

needed for setting up and inverting the normal matrix in this case becomes almost

negligible.
A last remark concerns the system of normal equations. The solution of the

system of normal equations, N c : 6 is obtained in an equivalent manner as were

the diagonal elements of the inverse normal matrix in the error analysis. With

the upper triangular matrix .R, resulting from a Cholesky factorization of N, the

triangular system
R T w : b

is solved for tl by forward substitution. Afterwards, backward substitution of the

system
R c :  w

gives the required vector c.

4.3.8 Conclusions

On basis of the presented results we cannot yet decide in favour of either the space-

like or the time-like approach to estimate potential coefficients from gradiometer

observations. However, the results shown in figures 4.24 to 4.27, make us believe

that both methods bear the potential of converging to the right solution, if the

iteration procedure is continued. At this moment we have to keep in mind that we

only carried out the first step of this iteration process. Furthermore, in an actual

mission one shall be faced with the presence of data gaps and non-polar orbits.

The space-like method is very attractive because it reduces computation time

drastically, not only because of the block-diagonal structure of the normal matrix,

but much more because of limitation of the length of the vector b : AT l. On the

other hand, the required averaging process in this case (to obtain cell averages) acts

as a kind of smoothing operator, which may not be attractive if higher degrees are

to be obtained from the measurements. Another point is that the space-like method

does not offer the possibility of including the band limitation of the gradiometer into

the procedure in a proper manner, whereas this band limitation is very likely to be

present in a real mission.
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The time-like method does not have those disadvantages due to its set-up in

terms of measurement frequencies in c.p.r. (by using inclination functions) . Fur-

thermore, no averaging of the observations has to be done in this method to create

a block-diagonal structure of the normal matrix. On the other hand, the influence

of along-track data gaps may have more influence than in the space-like approach.

A big disadvantage of this method is furthermore the required CPU time, which, in

case of a real 6 months mission, will be large.
Both methods suffer from aliasing effects. Since in our simulation we know where

and with which potential coefficients the observations were calculated, we could

remove the contribution for degrees which we do not solve for from the observations.

In reality, however, this can never be exactly done since we do not know these

contributions, especially not the high degrees. A better test might be to set up and

invert the m-blocks of the normal matrix (the step in the computations where the

coefficients become correlated and aliasing finds its origin) for as much degrees as

possible, but compute the vector D and solve the system only for the required degrees.

For example, in our case we could have constructed and inverted the normal matrix

for all degrees up to 360 (the maximum degree of the simulation) and solve only

for degrees up to 180. In that case, at least theoretically, the aliasing effect must

vanish.
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Table 4.11 Gradiornetric potential coefi,cient estirnation proced,ure, follow-
ing (Rumrnel and Colornbo, 1985).

1

,

,

4

Pre-adjustment of the diagonal tensor components (if available) using
Laplace' equation, including error propagation.

Choice of the normal potential field I/.

Given (/, tracking data and some first estimate of the initial state vector,
compute a first nominal orbit.

Compute at approximate points P' the normal gradients U;i, with which
the gradient anomalies Ai;, are derived.

5

6

I

10

1 1

L2

13

T4

8

9

Evaluation of the coefficient matrix of the coordinate corrections U;ip at
the approximate points P' in spherical approximation.

Forming a linear combinatioD, €.8. eq. 4.20 which means elimination of the
coordinate corrections. The a-priori variance of the linear combination
should be computed by error propagation.

Least squares adjustment to determine estimates of the potential coefficient

corrections LCt^o, based on the linear combination 4.20 and Air, (if
available).

Up-date of the nominal orbit with the old initial state vector and the up-
dated potential coefficients e'r;".

Compute at new approximate points P" the normal gradients 4;, with

which up-dated gradient anomalies Ai;i are derived.

Back substitution to obtain coordinate corrections A,2, eq. 4.21.

Improvement of the ini t ia l  state vector elements L,zs,A,2g,L, is,  eq. 4.22.

Up-date the nominal orbit again with improved initial state vector and
improved potential coefficients e!;".

Again up-date the gradient anomalies with new nominal orbit.

Repeat the process from step 5 on until it converges.

I f t re gradients Vr" and Vs" are available:

t 5

16

t 7

18

Back subst i tut ion into eq.4.19 to obtain coordinate correct ions Ai and
Ly.

Final improvement of the initial state vector with equations 4.22, 4.23
and 4.24.

Compute final best estimate of the nominal orbit with this improved initial
state vector and the final potential coefficient set.

Final potential coefficient estimation based on this best nominal orbit.
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Relativistic vrew on
gradiometry

As we have seen, a gradiometer measures the second-order partial derivatives of the
gravitational potential. The nine elementt {%rli, j : L,2,3} (of which only 5 are
independent) together built up the gradient tensor, also called tidal tensor or Etitvcis
tensor. The latter names point at a geometrical interpretation of the gradients in
terms of curvature. Indeed, the elements of V;i are related to the curvature of the
equipotential surfaces and the lines of force in the following manner:

{v ; i } :  -g
K 1  t

t r c z

ft fz

cf. (Hotine, 1969), (Marussi, 1982) or (Rummel, 1986), where /{1 and rc2 are the
normal curvatures of the equipotential surface in 11, respectively 12 direction, t is
the geodetic torsion, /1 and f2 are the components of the curvature vector of the
line of force in cl, respectively c2 direction and I{* is the mean curvature of the
equipotential surface. In this sense, gradiometry gives us insight in the geometrical
structure of the space around the earth, being the result of the earth's gravitatio-
nal field. However, these curvatures refer to either a two dimensional space (an
equipotential surface) or a one dimensional space (the line of force). The embedding
three dimensional space is just flat. This geometrical picture is appropriate in the
Newtonian theory of gravitation. In Einstein's theory of gravitation, better known
as the general theory of relativity, the viewpoint is different. The embedding space
is no longer a three dimensional flat space (which of course is simply the space sur-
rounding us, where we live in) but a four dimensional space, called spacetime, built
from the usual three dimensional spatial part and the time as fourth dimension.
This spacetime can hardly be visualised any more, but it has proven to be a useful
mathematical concept in order to accurately describe physical features.

ft

fz

H *
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5. Relativistic view on gradiometry

There are several reasons why a relativistic description of gradiometry may be
of interest. We will see later, that Einstein's general theory of relativity is in fact a
geometrical theory of gravitation. Geometry and gravitation become two indistin-
guishable concepts. Geometry plays an essential part in the theory of relativity and,
since gradiometry is so closely related to Newtonian geometry, it may be interesting
to find out how gradiometry looks like in relativistic terms.

One of Einstein's conditions in the development of his gravitational theory was
that, in the limit, it should reduce to Newton's theory. Indeed it can be shown
that, after specifying this limit, Einstein's equations yield the Newtonian equations
as an approximation. Conversely, we may expect that Newtonian concepts have a
generalization in relativistic terms which, at least conceptually, must be very similar.
So we may expect that in some way a relativistic description of gradiometry will
include the geometrical structure, especially the curvature, of spacetime. This indeed
will appear to be the case. The general relativistic counterpart of the gradiometric
model equation is the so-called equation of geodesic deviation, in which relative
accelerations are related to the curvature of spacetime. This curvature is fully
described by the elements of the Riemann-Christoffel tensor and it appears that
the non-vanishing elements of this Riemann tensor in the Newtonian limit, appear
to be elements of the tidal tensor, the one shown above.

In this way relativity contributes to the gradiometric measurements themselves
since the Vi are part of the Riemann tensor. A second aspect which should be
included in a relativistic description of satellite gradiometry, is the orbit of the
satellite. One may be familiar with the ideas from special relativity (valid in the
absence of gravitation) that features like time dilation or length contraction may
play a role, at least if we consider particles moving with high velocities, such as
earth orbiting satellites. However, satellites are in free fall in the gravitational field
of the earth. In the general theory of relativity (with gravitation included) such
motion is governed by the geodesic equation. Gravitation is not looked upon as
some external force, but it is part of the geometry of spacetime. In fact, gravitation

"curves" spacetime. Hence a satellite falling around the earth is regarded as a free
particle, on which no forces act (disregarding disturbing forces like air drag etc.). Its
path through spacetime is the "straightest" possible line, a geodesic, but spacetime,
and thus the geodesic, are curved due to gravitation.

So, the equations of motion of a particle moving under the influence of gravita-
tion, constitute a second object of study in which relativistic influences may play a
role. A third point worth mentioning concerns the local reference system with re-
spect to which the gradiometer measurements are taken. In the Newtonian case, as
described in the foregoing chapters, we use a local cartesian (or orbital) coordinate
system with its origin in the center of mass of the gradiometer and one axis always
pointing radially outwards. Another possibility would be to keep the gradiometer

"inertially" fixed (with respect to far stars), so that the coordinate system would
not rotate. In both cases, the formulation implies the possibility of using some pref-

erential coordinate system (in the latter case an inertial system). Newtonian theory
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5.1. Some aspects of the general theory of relativity

is based upon the existence of such inertial system(s). But in the general theory of

relativity, no (global) inertial systems exist, only local ones, valid over some small

spacetime region. Furthermore, each coordinate system should be equally well suit-
able for the formulation of physical features, there is no system to be preferred. It

is therefore common to work with four dimensional local inertial systems, defined

in the framework of relativity as moving with the particle along its worldline (its

trajectory in spacetime). Their motion is determined by parallel transport of the

system axes along the trajectory. Due to the curvature of the space, the local system

may therefore move somewhat different than it would do in Newtonian physics.

In this chapter, we will pay some attention to the relativistic description of gra-

diometry. The first two aspects, (the relativistic contribution to the gradiometric

measurements in terms of the Riemann tensor and the satellite's equations of mo-
tion) will be illustrated, the third aspect (parallel transport of the local inertial

system) will not be treated separately. The reader is not supposed to be acquainted
with the general theory of relativity. To this end, the chapter contains introduc-

tory sections on the theory of relativity, as far as needed for our purposes. The

intention is to sketch the outlines of general relativity and the way in which it

may play a role in gradiometry. However, this thesis is certainly not a textbook

on relativity, and we do not try to give a complete treatment of all aspects of

the theory. Therefore, only a few of them are treated, some of which only briefly.

Many textbooks are written on the theory of relativity. As for the general theory

of relativity, we mention (Bergmann, 1942), (Misner et al., 1973), (Ohanian, 1976)

or (Foster and Nightingale, 1979). Extensive reference can be made everywhere to

the literature mentioned above, as well as to others. Furthermore, recently sev-

eral authors have published on the relativistic description of gradiometry. As for

the three aspects mentioned above, we refer to (Thei8, 1984), (Soffel et al., 1987),
(Soffel, 1989), (Ries et al., 1990), (Kopejkin, 1991) and (Gill et al., 1992). Further-

more, as gradiometry is expected to be a very sensitive technique (especially the su-
perconducting gradiometer of Paik and Richard (1986)), gradiometric measurements

could be used to test certain effects predicted by the general theory of relativity. See

e.g. (Paik, 1989) or (Mashhoon et al., 1989).

5.1 Some aspects of the general theory of relativity

It is very customary to distinguish between the special and the general theory of rel-

ativity, abbreviated respectively by STR and GTR. The essential difference between

the two is that the latter is capable of incorporating gravitation into the theory,

whereas the former is only valid in the absence of gravitation. Despite this differ-

ence, and despite the fact that the special theory was developed first, the indication

"general" and "special" suggest that the latter can be derived from the former by

considering a special case (namely no gravitation), which indeed is true. We will

therefore, in this chapter, focus on the GTR. Furthermore, since gravitation is the
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5. Relativistic view on gradiometry

major subject of this thesis, we will not specialize to the STR. Moreover, only those
aspects of the GTR, which are either of special interest to us or are indispensable
to a good understanding of the theory, are treated.

5.1.1 The spacetirne of relativity

In Newtonian theory, any event (or happening) can be described by stating where
(space) and when (time) it took place. "Where" is usually indicated by three coor-
dinates, {cilr : 1,2,3} (for example r,y,z). The chosen coordinate system thereby
spans a three dimensional space. Analogously, we may look upon the time t as a
coordinate spanning a one dimensional space, indicating the "when". In the theory
of relativity, the three dimensional space and the one dimensional time are merged
into a new, four dimensional space, called spacetime (Minkowski, 1952). Plotting the
position of an event in an, in general, four dimensional diagram, gives its trajectory
in spacetime, called the worldline. Usually a two dimensional subspace is plotted,
one axis of which is always the time coordinate.

In order to put a geometry onto the space, we introduce a quadratic form ds2,
called the line element (see appendix B.1.3). This quadratic form is set up in terms of
dr,dy,dz and dt, describing in a way the infinitesimal distance between two events.
In the Newtonian case we have in fact two such "distances" (Ohanian, 1976) :

dP -- d* * dyz + dzz

and dt

but in relativistic spacetime there is only one:

ds2 : 
"2 

dt2 - ds,2 - dyz - dz2 (5 .1)

where the scalar c is the velocity of light in vacuum (multiplication of dt with c
matches the dimensions of the separate terms; with c included, the unit of time
is chosen such, that the velocity of light in vacuum is equal to unity). The "dis-
tance" between two events, expressed by the line element ds is an invariant, i.e. it
is independent of the coordinate system used to express it. The specific form of
equation 5.1 can be understood by recalling one of the fundamental postulates of
relativity, which says that the speed of light c is the same in all inertial coordinate
frames. Consider the motion of a light photon. If we have two coordinate systems cd
and c r  (w i th  { rd l r  :  L ,2 ,3 } :  ( r ,  y ,z )  and { r I l I  =  1 ,2 ,3 }  =  (X ,Y,Z) ) ,  i t s  ve loc i ty
is c : dr/dt in the first coordinate system, and c : dR/ilT in the other, where
dr2 : drz + dy2 + dzz and dR2 : dX2 + dY2 + dzz. The constantness of c can then
be expressed as:

c2dtz  -  dxz  -  dy ' -  dzz :  
"2dr2  

-  dx2  -  dy2  -  dz2  :o

which is consistent with the assumption of the invariance of the line element ds in
eq. 5.1, cf. (Foster and Nightingale, 1979). Eq. 5.1 shows that, for objects, other
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5.1. Some aspecf s of the general theory of relativity

than photons, the line element (also called sometimes spacetime interaat) can be
positive or negative . lf ds2 is positive, the line element is called tirnelike, if it is
negative spacelike, and if it is zero (like for a photon) it is called lightlike.

It is convenient, and very customary in relativity, to introduce the following
notation:

{"ulP: o' 1' '' tt 
: l;i,i;1i, ,' ;{ru=' 

'"u=3)

:i::;:::"]'t"i";'(5.2)

where we adopt the convention to use Greek indices to denote the four relativistic
spacetime coordinates and Latin indices to denote the three "usual" space coordi-
nates. It is, furthermore, convenient to write

ds2 : eprdrPd.su (5.3)

where

{nu") :

is the so-called Minkowski tensor. Comparing equation 5.3 with equation B.12 from
appendix 8.3.1 we see that the Minkowski tensor corresponds to the metrical tensor,
describing the metrical properties of the space. Furthermore, since it is diagonal and
has constant elements, we learn from this appendix that it is the metrical tensor for
flat space expressed in "cartesian" coordinates. This space is the spacetime from
STR. The Minkowski metric replaces the three dimensional cartesian metric if we
switch to four dimensions.

In the Newtonian formalism, in three dimensions, it is possible to introduce a
cartesian coordinate system covering the entire space. Such a coordinate system is
called (globally) inertial. All other coordinate systems, connected to such an in-
ertial system by means of linear coordinate transformations (not involving time),
so-called Galilean transformations, are also inertial systems. In relativistic space-
time, the coordinate system (ct,x,y,z)rfor which the line element 5.1 holds, is the
generalization of a Newtonian inertial system. Different inertial systems are con-
nected via the well-known Lorentz transformations, which are still linear coordinate
transformations, but now the time t is transformed too.

Accelerated coordinate systems are not inertial. In the presence of a gravitational
field, all coordinate systems are accelerated, so there is no privileged system (inertial

1 0

0  - 1

0 0

0 0

0 0

0 0

- 1  0

0  - 1
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5. Relativistic view on gradiometry

system) in which the metrical tensor takes on the simple Minkowski form. Therefore,

gravitation cannot be included in the STR. Einstein solved this problem when setting

up his GTR. We will see later that, in the GTR, we are no longer restricted to

linear Lorentz coordinate transformations, but more general non-linear coordinate

transformations are involved. The metrical tensor is no longer diagonal and its

elements are in general functions of the coordinates, instead of constants. We will,

furthermore, see that in this case the space is no longer flat, but curved, so that

it is no longer possible to introduce into the space a cartesian (inertial) coordinate

system which is "global in the sense that its coordinate neighbourhood is the whole

of spacetime" (Foster and Nightingale, 1979). In a curved space such a coordinate

system is only valid in an infinitesimal region of the space ("locally").

5.L.2 Equations of rnotion

Consider a particle freely moving in space. Since no forces act on the particle, it will

move along a geodesic. A geodesic is the generalization of the concept of a straight

line in three dimensional Euclidean space (Es) to more general curved spaces of

arbitrary dimension. This generalization is done by requiring that there exists a

parametrization u of the geodesic, such, that the tangent vectors 4rttf du along the

curve constitute a parallel vector field. The concept of parallelism is generalized by

means of the absolute deriuatiue Dup(: ap.rdr', see appendix B'2'3)' The parameter

u is called an affine parameter.
In the space under consideration the geodesic gives the shortest path between

two points. Newton already stated (in his first law) that each particle at rest or in

uniform motion along a straight line preserves its state if no forces are exerted on

it. Considering a free particle to move along a geodesic is therefore nothing more

than a generalization of this Newtonian law to arbitrary spaces. The equations of

motion of the particle may thus be represented by the equation of a geodesic:

i lP  + l f ;o i " i "  =o (5.4)

(see appendix 8.2.3). In equation 5.4 the dot denotes differentiation with respect to

the affine parameter u, i.e. i" : dr" ldu, and thetfi are the Christoffel symbols (of

the second kind), which may be computed from the metrical tensor I pv as

r3 : 
Lrtee 

(g,p,o t 9op,, - 9ro,p) (5 .5)

(compare eq. B.15). Note that, if we would like to insert for the parameter u time

f, we should bear in mind that, since time is in four dimensional spacetime one

of the coordinates, it is no longer universal for the whole of space, so it is not

an affine parameter. Therefore, we introduce the so-called proper tirne r, which

is measured by a clock, co-moving with the particle, and not by some kind of

"inertial ticking" clock. This has also consequences for the velocity of the particle.

In three dimensional non-relativistic space, the components of the velocity vector
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5.1. Some aspects of the general theory of relativity

are ud : doildt. In four dimensional relativistic spacetime, we have to take the
derivative with respect to the proper time r. We obtain the so-called 4-velocity
ur' : d* /dr, also called world velocity. We may of course also differentiate the
coordinates with respect to the coordinate time t. Then we obtain the coordinate
velocity utt - 4su f dt - up ll. The quantity "y is given by I : Ll ,/T=777 : dt/dr
(with u2 - uiui), which appears in the four dimensional Lorentz transformation of
STR. With eq. 5.2 we may write the coordinate velocity as ur: (",rt).

Thus, if the elements of the metrical tensor are given we may compute the
equations of motion of the particle by means of equation 5.4. Often, however, the
metric has a complicated form, and one would have a hard time computing the
equations of motion in this way.

One may therefore proceed in another manner (Foster and Nightingale, 1979).
The equations of motion can also be obtained by using the Euler-Lagrange equations:

! ( e ! \ _ ? L : o
du \) ir ')  1ru

(5.6)

which can be found in many textbooks on classical mechanics, tensor analysis or
relativity, e.g. (Goldstein, 1980), (Sokolnikoff, 1951) or (Ohanian, 1976). In this
equation "L is the Lagrangian, which is a function of the independent variables ip
and rp. Let us consider the following Lagrangian:

[,2 : grriryi' (5.7)

As we will show now, with this .L the Euler-Lagrange equations reduce to the
geodesic equation 5.4. (Note the resemblance of this .t with the infinitesimal length
(or line element) ds (equation B.12) from appendix B.3.1, which will appear to be
more than just a coincidence.) From equation 5.7 we obtain:

a L  t a
U * =  * t * ( g ' o i " i " )

: fi(n,,uii" + s,,i"6fl)
IL  . v:  
79P"x '

A L  L A
u* 

:  
n a" ' (g 'o i" i " )
I

:  
Ug'o'ui"  

i "

Inserting these in equation 5.6 yields:

ft(o r,r') 
- 

f,i,",ut' to = o <+

gpui' * g pr,oi' io - 
f,1,",ui" 

io : o +

su,tr' + (0r,,, - f,t,",r) i'io : o
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5. Relativistic view on gradiometry

and on multiplying with the inverse (or associate) metrical tensor gop and using
eq. 5.5 together with the identity

l 1
g  p r ,o iv  id  =  

|g  u r ,o i "  i "  + ' rg  uo , r i '  i o

we obtain the geodesic equation 5.4. This means that the Euler-Lagrange equa-
tions 5.6 are equivalent to the geodesic equations 5.4, at least if one uses a La-
grangian ^L of the form eq. 5.7. Evaluating equations 5.6 for deriving the equations
of motion is often more convenient than straightforward application of the geodesic

equation.

The variational principle and the equations of rnotion

Geodesics are the "shortest" paths between two points in the space under considera-
tion (e.g. in Euclidean space a straight line). Consider a particle moving along such a
geodesic and suppose we have parametrized the curve with the arc-length s, instead
of some arbitrary parameter u. It can be shown (Foster and Nightingale, 1979) that
the arc-length s is an affine parameter. The parameter s can be used as a measure
of the length of the curve. It appears in the expression of the invariant line element
ds:

ds2 : gprdrpdr,

With the help of this line element ds, the distance S between two points on the curve
P1, with coordinates 

"p(sr), 
and P2, with coordinates rp(s2), can be expressed as:

f s z
S :  I  d s,y  S t

: 
Iu','{%rt",'d*

_ [ " '- 
J,,

(5.s)

where tt' : drpf ds. Since we are dealing with a geodesic we look for the "shortest"
distance between the points P1 and P2. The integral in equation 5.8 therefore has
to have a stationary (in our case minimal) value. This value can be found with the
help of the so-called calculus of oariations.

If the geodesic S has a minimal value, it will grow if we replace rp(s) with an
arbitrary function

cP(s)  *  6cP(s) (5.e)

in which the 6cp(s) are small in the interval sl < s ( s2 (we call 6cp(s) the aariation
of rP(s)). So eq. 5.9 would represent another curve through the end points P1 and
P2 in the neighbourhood of the geodesic. Since this other curve also passes through
P1 and P2 it is

g uritt iv ds
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5.1. Some aspects of the general theory of relativity

If we now put Jg;EW: f (rP,it') we may write the change in distance between
P1 and P2, being the result of replacing cp with xt'+ 6rp, as

f ( * , i 4 ) d s .ut : 
1",' f(ru * 6rp,ip * 6ip)d,s - 

I, ', '

In linear approximation we have

f (ru * LrP,iP + 6it'): f (rP,e,\ + ffitr' + ffit#
thus

65 :6  [ " "  f ( ru , i p )d . sJ, ,  '  \

f " " ( A f  " . .  
a f  . . \: 

J", lihu'r + 6*6;:P ) as

= I,:,' (#'*. #fra,-) a"
and upon integrating by parts the second term:

ut:l#u*f',",* I,:,' (# - *(#))u,,0,
in which, with eq. 5.10, the first term disappears. For the geodesic 6,5 should be
equal to zero for arbitrary 6rP, so

(5 .11 )

is the equation determining the geodesic. This equation has exactly the same form
as the Euler-Lagrange equations 5.6 if we put f : L, so that the Lagrangian from
eq. 5.7 is indeed identified as the line element.

Already at this point we may suspect an important concept which is used in
the GTR. In classical mechanics, the Lagrangian L is related to the energy of the
particle. If a Lagrangian of the form as in equation 5.7 properly describes the motion
of the particle, then the expression for the line element ds must contain in some way
the particle's energy. As the drp are nothing but infinitesimal coordinate differences,
the energy must be present in the elements of the metrical tensor! This notion is
very important and we will come back to it in the next section.

5.1.3 The principle of equivalence

According to the principle of equiualence it is not possible to distinguish between
gravitational and inertial accelerations. Consider for example an observer (astro-
naut) in a freely falling spacecraft. Suppose the spacecraft has no windours and the
astronaut awakens after a long sleep. He does not know whether he is still in orbit

! ( eL \  _  ? f  : o
ds \ } i t ' J  ) rp
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5. Relativistic view on gradiometry

around the earth or has drifted away from the earth and from all other attracting

masses. In order to find out he releases an object (proof-mass) and observes its

motion. In both cases, the proof-mass will stay floating in front of him. If no forces
act on either the astronaut or the proof-mass, this can be understood very easily.

Newton already stated it in his first law (law of inertia). The spacecraft, astronaut
and the proof-mass are in rest or in straight-line, uniform motion and will persist

in doing so, as long as no forces are exerted on them. If ad is the acceleration of the

body with respect to some inertial coordinate system ud, the equations of motion of

the body can be described by:
o d : O

i.e. the motion is unaccelerated. If we would describe the motion of the spacecraft
with respect to some other coordinate system tr', which rotates with a constant

angular velocity with respect to x,i, the acceleration a' is no longer zero. Multiplying
these accelerations by the masses of the bodies, rna',we obtain so-called apparent or

inertial forces, which seernto act on the bodies (centrifugal and/or Coriolis forces).
These are in fact no real forces, since with a linear coordinate transformation c' :

,i(r') we can always "transform them away". Let us call the mass rn mentioned

above the inertial mass. If there exists a coordinate system with respect to which
all bodies not subjected to (real) forces are in rest or in uniform motion, it is called
an inertial system. The cd would be such inertial system, the c' not, because of its
rotation. However, all coordinate systems which are at rest or in uniform motion

with respect to each other, are inertial systems.
If now the astronaut would find himself in free fall in a gravitational field, a force

does act on him and the proof-mass. This gravitational force is proportional to the

mass of the object it acts on:

fi : Mgi

with M the graaitational mass and gi the gravitational acceleration. So if the motion

of the astronaut is due to a gravitational force, it undergoes an acceleration

, M ,
o . : i g

Currently we know that for all objects the ratio Mf mis equal to I (accurately to

lo-tt), i.e. the gravitational force results in the same acceleration for all objects,

independent of their mass. This is exactly what the principle of equivalence says:

there is no difference between inertial and gravitational mass. So also in this case

the proof-mass will remain floating in front of the astronaut. Obviously, there is a

coordinate system, co-moving with the spacecraft, relative to which the gravitational

force can be "transformed away", as if it was an inertial force.
However, there is a solution to the astronaut's problem. Due to the convergence

of the lines of force of the gravitational field of a spherical body, the proof-mass

will very slowly move relative to the astronaut (often referred to as moving under

the influence of tidal forces). Note that this is exactly the reason why satellite
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5.1. Some aspects of the general theory of relativity

gradiometry is possible. The relative motion as a result of the radial force field
does not really violate the principle of equivalence, provided we limit the validity
of the principle to infinitesimal small regions of space, where the tidal forces can be
considered negligible. The co-moving coordinate system, extended over this small

region (often referred to as local coordinate system) looks very much like a real
inertial system, of which the metric is described by the Minkowski tensor.

In the STR (valid in the absence of gravitation) the laws of physics apply with
respect to inertial coordinate systems. Non-inertial systems can always be trans-
formed to inertial systems by suitable Lorentz transformations. According to the
principle of equivalence, all frames of reference, including those in which a gravi-

tational field is present, are equally well suited for formulating the laws of nature,
since we have seen that gravitational fields can (at least locally) be transformed
away by a suitable coordinate transformation. In this sense, the difference between
the STR and the GTR is that in the latter all continuous, differentiable coordinate
transformations are considered, whereas the STR "only" involves linear Lorentz
transformations. In the literature one finds many different formulations of the prin-

ciple of equivalence, in terms of mass, accelerations, coordinate systems, coordinate

transformations, STR or GTR, validity of the laws of nature or physics, etc. etc.
See e.g. (Bergmann,1942),  (Foster and Night ingale, 1979),  (Ohanian, 1976).

We have seen that a free particle moves along a geodesic of which the equations
are given by 5.4. This equation is a tensor equation, that is, it has the same form in
all possible coordinate systems. If a gravitational field is present, the particle will no
longer be a free particle since it moves under the influence of gravitation. However,
according to the principle of equivalence, the gravitational field may be "transformed
away" (at least locally) by a suitable coordinate transformation. Indeed, an observer
moving along with the particle and carrying a coordinate frame with him, will
consider the particle to be a free particle with respect to his coordinate frame, just

like the astronaut in the example above. For this observer, equation 5.4 stil l holds
for the motion of the particle. Then this equation should also hold in all other

coordinate systems, including those not co-moving with the particle (in which the
particle d,oes accelerate). In that case it must be so that the gravitational effects are
already present in equation 5.4. They must be included in the Christoffel symbols

th. The Christoffel symbols in turn, are related to the metrical tensor gp, (see

equation 5.6), so that we conclude that the gravitational field must be present in

the elements of gpv, or as Bergmann (toaZ) writes: "t'he g* are the potentials of
the gravitational field".

Since the gravitational potential is in general a function of the coordinates, the

elements of the metrical tensor will also be functions of the coordinates. They

describe the geometrical structure of the space. In flat space, in global cartesian
coordinatesr gprhas a diagonal form with constant elements. In such a coordinate

system the I;[ are zero and equation 5.4 reduces to

' i F  
: 0  .
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If a gravitational field would be present it would appear as if we could transform
away the effects of gravitation globally by a coordinate transformation to global

cartesian coordinates. We know, however, that the principle of equivalence only
holds locally (in an infinitesimal region of space). Apparently we are not able to
introduce a global cartesian coordinate system. In such a situation we infer from
geometry (see appendix 8.1.3) that the space is curved. The conclusion must be
that gravitation curves the space. Note that mathematically the correct formulation

for a curved space is a non-vanishing Riemann-Christoffel tensor.
The above conclusion implies that, in the GTR (i.e. in the presence of gravitation)

gravitation is no longer considered a force, but a part of the geometry of the space.
A free particle is now meant to move under the influence of gravitation alone, and
it will still move along a geodesic, the geodesic, however, now being some curved
trajectory, but still the "shortest" distance between two points, but in a curved
space. This notion is the most important concept in the GTR. Gravitation and
geometry are no longer two different concepts. The theory of gravitation becomes a
geometrical theory in which the usual geometrical formalism can be applied. This is
also one of the reasons that index notation and tensor analysis are much used in the

GTR, since they are both especially suitable to geometrical problems. Note that in
the above reasoning the crucial point was the validity of the geodesic equation in
all coordinate systems. Since this is a natural result of the tensor formalism, one
can understand Einstein's choice to use tensor analysis as mathematical tool in the

development of the GTR.

5.1.4 The Einstein field equations

In the foregoing, we have seen that, in the GTR, based on the principle of equiva-
lence, the gravitational potential is present in the elements of the metrical tensor. In
Newtonian theory, the gravitational force field, being the gradient of a gravitational
potential, finds its origin in the presence of matter. Poisson's equation

TP'Vrr:  -4rPG

(orin index free notation Y2V = -atrpG) where p is the mass density, V the gravi-

tational potential and G the gravitational constant, describes the relation between

this gravitational field and the matter distribution. This equation is referred to as

field equation. When developing his GTR, Einstein was searching for an equivalent
relation, with on one side the gravitational potential (in terms of (functions of) the

metrical tensor g pr) and on the other side some quantity expressing the matter (or

in general: energy) distribution. Naturally, the equation had to be a tensor equa-

tion (since it must be invariant with respect to coordinate transformations), so the
quantity expressing the energy distribution had also to be a symmetric, second-order
tensor. It is called the energy tensor (also called: energy-momentum-stress tensor,

stress tensor, stress-energy tensor, etc.), and it is denotedby Tuu. [t may contain

the matter density, momentum, as well as other kinds of energy, like electromagnetic

146



5.2. Weak field approximation

radiation. The energy tensor must satisfy

TP'., -- O (5 .12)

(i.e. vanishing divergence) which merely expresses conservation of energy. A last
condition for the relativistic field equations is, that they have to reduce to Pois-
son's equation in the Newtonian limit. After a long search, Einstein came up with
equations fulfilling all conditions, the famous Einstein field equations:

where Rp' is the contravariant Ricci tensor, R the curvature scalar, equal to a
contraction, R,u, of the Ricci tensor (the trace) , and rc some constant, equal to
-8rGf ca. Equivalently one may write this equation in covariant form, with lower
indices, or, after some manipulations, in the following form:

I
R t t u _ l R o p r : K T F U

2 "

Rtu : n(71r, - lTnrr) ,

(5 .13)

(5 .14)

with 7 - Tuu. The left-hand side of equation 5.13 is called the Einstein tensor
Gpv. Since the Ricci tensor is a contraction of the Riemann-Christoffel curvature
tensor, i.e. Rpr: Ropvot and since the latter contains the second-order derivatives
of the metrical tensor, the field equation is indeed very analogous to the Newtonian
situation, where we have also on the left hand side some function of the second-order
derivatives of the gravitational potential, and on the right hand side the source term.

ln general, the Einstein field equations are non-linear. Furthermore, since the
Ricci tensor has 10 independent components, equation 5.14 is in fact a system of
10 non-linear equations. Solving these equations for gp, if some information or
assumptions on the energy tensor are given , is therefore a very tedious j ob. Whereas
the field equation is a tensor equation and therefore valid in all coordinate systems,
one coordinate system may appear more convenient for finding a solution of the
field equations than another. In order to simplify the search for a solution, one may,
under certain assumptions, linearize the field equations and put some constraints on

the matter distribution. This will be done in subsequent sections.

5.2 
'Weak 

field approximation

Suppose we have a coordinate system in which the metric tensor may be written as

9 p r :  \ p ,  I  h p , (5 .15)

where 4p, is the Minkowski metric and the hu, are small quantities, such that
products of them may be neglected. Since the elements of the metrical tensor include
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the gravitational potential, the latter must now be present in the hpr. Scaling with
the velocity of light c to obtain dimensionless quantities, we have the condition

If this condition is fulfil led (which, in many applications, e.B. computations in our
solar system, is usually the case) one often calls the linearization 5.15 the weak field
approrimatioz. But it is in fact not the above condition that makes the field weak.
A weak field is obtained only if we assume the derivatives of h* to be small too!

The value of the gravitational potential itself does not tell us anything about the
weakness or strongness of the field. We have to look at the amount in which the
potential varies throughout space, since it is the potential difference which produce
the gravitational force, i.e. the potential derivatives.

In general the metrical tensor can be used to raise and lower indices (see ap-
pendix B.3.2).  In the l inearized case of eq.5.15, however,  we shal l ,  s ince the h* are
small, raise and lower indices using 4rr.

5.2.1 Newtonian lirnit

In the development of the GTR one of the conditions was, that, in the limit, the
theory reduces to the Newtonian case. This limit is partly characterized by the weak
field approximation, as described above. But, to arrive at Newton, some additional
assumptions have to be taken. One of them is the assumption of a quasi-static
gravitational field. For a quasi-static field, the time derivatives of lhe hp, are small
compared to the space derivatives, i.e.

. G M
l h " " l -  "  

( l
t c '

#n , , : ! *n *u*ou ,

(5.16)

( 5 . 1 7 )

and are therefore neglected. Furthermore, we only consider particles which move
with low veloci ty u, i .e.  v 11 c.  For such a part ic le l :  Ll \n- uzJA ry 1 so that
uts x r.tP. Using these assumptions in the geodesic equation 5.4 and neglecting terms
quadratic in u, we obtain:

d'ru ,  nrdro dro

d r ,  + L d o E E : o '

For the Christoffel symbols we find with eq. 5.5

f f i : - | ou "ooo , "

: -lrn,'hoo,"

: -f,nui hoo,i
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5.2. Weak field approximatton

where we used the stationarity condition 5.17. The equation of motion for the p : O

component will in this case read

p : o  ,  " #  
:  o ,

which exactly expresses our assumption'y : dtldr: 1, and furthermore implies
that i0 : c. Therefore, switching from r to t, the spatial part of the equations of

motion become
Lrr'q'i hoo,i

Using well-known symbolic notation, the right hand side of this equation can be
wri t ten..  - f ,Vnos, where we used ni i  :  -6i i  (Kronecker delta) and 6i j  # -V.

From Newtonian theorv we know

d2r;

orz 
: 6'1vi

with V the Newtonian gravitational potential, so that, in the present approximation,
the relativistic theory will reduce to Newton if we identify:

.  ) 2 - a
F : t  :  i f r  :

.r l f

hoo:  - ' *  ,

with which the 966 component becomes:

2V
9 o o : 1 -  , (5 . le)

Note that this expression for 9oo (Newtonian limit) is derived by comparing the

relativistic equations of motion in the weak field, slow motion approximation, with

the Newtonian equations. Nothing can be said at this point about the other ele-

ments of the metrical tensor (gfi and 9;l), cf.. (Misner et al., 1973). In fact, it does

not matter how those other components look like, because, to the present level of

approximation, they will not contribute to the equations of motion, because they

are multiplied with small quantities u or v2.
In the non-relativistic limit, the dominant component of the energy tensor is

Too: pcz (Ohanian, 1976) where p is the mass density. For this OO-component, the

Einstein field equations 5.14 are:

Since ?66 : T : pc2 and, to the present level of approximation,

& o : " ( t *  - t r n * )

(5 .18)

Roo ^, -#ot = 
f;n'i noo,,i ---+ -to'ooo
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5. Relativisbic view on gradiometry

this field equation reduces to

- ! v ' t  I  o
2 

'oo 
ioP"-

or with hoo: -2Vf c2 and rc : -SrGlca:

yzv : -4trpG

(5.20)

which is the familia,r Poisson equation. We see that, indeed, with the present as-

sumptions and level of approximation, the relativistic theory reduces to Newtonian

theory.

5.2.2 Linear approximation in relativistic terms

When working in terms of relativity, we no longer assume that we have a quasi-static

field. Furthermore, we no longer deal with small velocities. We proceed, in this
case, by inserting the metric 5.15 into the field equations 5.13. It can be shown, e.g.
(Foster and Nightingale, 1979) or (Ohanian, 1976), that the field equations reduce
to

hpr,oo + ( r1urh"p,oo -  hor ,uo -  h1n,vo)  :2nTp,

where

(5 .23)

(5 .21)

(5.22)hu, : hr, - 'rnru,

h :  h q p  .

If we would carry out a small coordinate transformation, rt'' -"+ rp * (e, a straight-

forward calculation shows (Foster and Nightingale, 1979) that

htt'r' ---* htt" - 
4ro €p,o - npo €r,o * rlp, €o,o

so that
l r ' 'o ' ,o, '  h4o,o - €u,oo .

If we choose the small quantities €p to be a solution of

€r,oo : hro,o

it results (in the new coordinates) in

1lt'o'n, : O . (5.24)

This is called the gauge condition. The quantilies hp, are the potentials of the

field. The field equations will not determine these potentials uniquely. We are

free to replace h* with the expression from eq.5.23, because it will leave the field

equations intact. Since we are free to choose the coordinates we like (because all

equations are tensor equations), it is always possible to transform to a coordinate
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5.2. Weak field approximation

system such that the gauge condition is fulfilled. This particular choice for (p, will
simplify eq. 5.21 a great deal, because all three terms between brackets are zero. We
obtain (we drop the primes) :

hpr ,oo  :ZnTp ,  '

One often introduces the d,'Alembert operator !, defined by

(5.25)

a n e-  O  _ a 7 Z _  I  O -
J :  -e " '  

a " "  a " r :  v -  -  
, ,  a t ,  ,

which is the extension of the Laplace operator to four dimensional spacetime. With
this operator, the simplified field equations 5.25 (in contravariant form) may be
written as

aht '"  -  -2rcTp' (5.26)

which holds provided the quantities hr'" satisfy the gauge condition (cf. eq. 5.2a):

hr ' , :  o  .

Equation 5.26 is the extension to four dimensional relativistic spacetime of the Pois-
son equation in non-relativistic three dimensional space. The generalization to rel-
ativity of the Laplace equation would be

'htt '  :  O

which is valid in empty space.
The d'Alembertian is known from the theory of electromagnetism. It is some-

times called the "wave operator", and an equation like 5.26 is referred to as a wave
equation. Analogously to electromagnetism, one therefore assumes the existence of
gravitational waves, generated by a source term -2nTt"', and propagating through
space like radiation.

We will solve the field equation 5.26 for some special (simplified) situations. To
do this, consider an isolated gravitating mass. We will (as we did in the Newtonian
limit) assume this mass to be stationary, so that both ht" and TY' are only functions
of the space coordinates cd. With this assumption the d'Alembertian reduces to the
Laplacian V2 so that we have to solve the equations:

Vzhp" (x) :  -ZnTpu (x)

where x denotes the position vector in spatial coordinates. The general solution to
this equation is

hp,k\: L I Tu"(*'),4,\  '  2 r J x  l x - x ' l

cf. (Ohanian, 1976), where the integral is taken over the region E containing the
mass, and the prime denotes the integration variable. Expanding tll* - x'l into
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5. Relativistic view on gradiometry

a Taylor series and truncating after the second term (i.e. we neglect higher-order
multipoles of the mass), we obtain:

(5.27)

With a few manipulations, one can show that, in this expression, the integrals

f f t

I rira> , I x,rToodD and I x,rTii dE
Jx, lx, - Jx, '

vanish. The vanishing of the first and last of these three integrals is a consequence
of the conservation of energy (since the energy tensor satisfies the conservation law
eq. 5.12), whereas the vanishing of the second integral expresses the choice for the
origin of the coordinates to be in the center of mass.

In the following we shall give, for a few simple masses, the components of the
energy tensor and derive, by means of the linearized field equations, the expression
for the metrical tensor.

The field of a spherical, stationary mass

The elements of the energy tensor Tp' for a spherical, stationary and non-rotating
mass, are:

Too : pc2

? 0 d  : 0

T i i : O

where p is the mass density, which can be obtained by comparing the energy content
of spacetime with that of a perfect fluid without internal stress and pressure, of which
the particles are motionless. Using these expressions in equation 5.27,we obtain for
the hr'":

E o o =  
n " '  

I  o d E : n c 2 M  = - n G Y
2rr Jx, ' ' -  Ztrr  rc2 )

while all other components vanish. From hp' = ht" - 
ihnu" (which follows from

eq. 5.22) we obtain

ht": -'4#uu' '
rc-

With these disturbances. the elements of the metric tensor become:

hp, (x) : * frru, 1*,1a * # lr,'rr,, t*\dE .

2U
g o o : 1 -  o

9 u :  O
,fr

9 ; i  :  -U '  , l  +  ; )

(5 .28)

where [ / :
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5.3. Post-Newtonian approximation

The field of a rotating, stationary rnass

Consider now a rotating mass, however stil l stationary (i.e. negligible time derivati-
ves). The mass particles, out of which the body is built up, have, in this case, some
spatial velocity, ,d. The elements of the energy tensor are:

Too : pc2

Toi - pcvi

Tii : pviuj

Inserting these values into eq. 5.27 yields:

roo _ 4GM
, a  -  -  

,
rc'

ho' : 
#rj lror'1u;ar: #r,'or,ro

h i j : o

where

Sr: I  err1,r ' iTkodE
J D

is the spin angular momentum (sometimes denoted J). Proceeding in the same way

as before, the elements of the metrical tensor become:

9oo :  I  - r y
2 G  ; ^ k

ooi: f iei;*xr 
s* (5.29)

, l l

9 ; i  =  - U " ' l  + ; )

Assume that the mass rotates around the c3-axis with constant angular velocity or.
Then the elements 96 become:

g o i : u"€ i ;3tt  > (5.30)

where R is the radius of the sphere.

5.3 Post-Newtonian approximation

Let us compare the metrical elements for the Newtonian limit, a spherically symmet-
ric, stationary mass and a rotating mass, respectively eq. 5.19, 5.28 and 5.29. We

see that the term proportional to c-2 in the goo component is not a relativistic one.
The factor c2 arises from the fact that the gs6 corresponds to the time coordinate,

4 u  /  R \ 2
sr t  \ ; /
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5. Relativistic view on gradiometry

which is c0: ct. All other terms in the three metrics that contain c, ate relativis-
tic contributions. These metrics were obtained by considering simplified situations.
In general we have to do with more complicated forms of the energy tensor ?p/,
with more types of energy included (e.g. internal stress and pressure) and with a
non-spherical and non-homogeneous mass distribution. This may make it difficult
to obtain an analytical solution of the field equations.

Following the line of construction of the metrics above, it seems a good approxi-
mation to expand the elements of the metrical tensor in terms of the small parameter
tJ f c2. The smallness of this quantity was one of the conditions for the weak field
approximation, equation 5.16. Starting from the Newtonian limit, equation 5.19, the
first step would b" 9oo up to 0("-n),9ii up to 0(c-2), and 96 up to 0(c-3). Fol-
lowing steps would include terms of respectively O(c-6), 0("-o) and 0(c-5). this
way of approximating the metric is called the Post-Ifewtonian approrirnatioa (PN
approximation), and the metric is called PN-metric, see e.g. (Misner et al., 1973).
Including, for all elements, only the first relativistic contribution, we obtain the
so-called 1PN-metric, given by :

e o o : 1  - 4  * T . o ( " - u )

soi :  + + o(c-s)

p(*'). 
o,

lx -  x ' l
p(*') ! ,a>.
l x  -  x ' l

(5 .31)

e;1 :  _ .6 ; i ( t  +241+ O(c-a)
c t '

cf. (Soffel, 1990), (Mashhoon et al., 1989), or (Gill et al., 1992), where [/ is the gra-
vitational potential of the mass and V; is a vector potentiall describing the field
contributions of magnetic type, arising from moving masses (compare the go in met-
r ic 5.29).  Note that,  whereas in the metr ics 5.28 and 5.29 the potent ial  U :GM/r

comes from a spherical mass distribution, the potential [/ and I in 5.31 (and also
in 5.19) are generated by arbitrary masses and are determined respectively by the
equations:

v2u -- 4rGp

Y z V : 4 r G p r t ;

cf. e.g. (Chandrasekhar, 1965), where ui are the spatial velocity components of the
mass points. So in general

U:"  I ,
U: "  I ,

rA note on notation: The use of the notation U for the Newtonian (scalar) gravitational potential

and %' for the vector potential is customary in PN theory. For this reason we adopt this notation

here, in apite of the fact that we, in previous chapters, used V for the Newtonian potential and %
for the first derivative (gradient) of the potential.
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5.4. Equations of motion revisited

Expanding tll*- x'l into a Taylor series, we obtain, for a nearly spherical body,
metric 5.29 as a first approximation, i.e. U x GMlr and V; x ffieprisk (cf.
(Soffel, 1990)). It must be noted that the expansion of the metrical elements in this
way does in general not constitute an exact analytical solution of the Iinearized field
equations. The PN formalism simply assumes the existence of a coordinate system
where the metriial tensor has the form 5.31, cf. (Soffel, 1989).

5.4 Equat ions of motion revisi ted

If we are given some expression for the elements of the metrical tensor, we may com-
pute the equations of motion, either by means of a direct evaluation of the geodesic
equation 5.4 or using the Euler-Lagrange equations 5.6. In relativistic terms, the
gravitational potential is included in the metric, so these equations describe the mo-
tion of afree particle (i.e. moving under the influence of gravitation alone), e.g. an
earth orbiting satellite (if we neglect disturbing forces like drag or solar pressure).

The geodesic described by equation 5.4 is parametrized with an affine parameter
u, in our case the proper time r. For practical computations, one likes to obtain the
equations of motion with respect to the coordinate time t. These can be obtained
in the following way. We replace the differentiation f, UV #jf . fnen we obtain:

dx,P dt

dt dr

drP

dr

dzrq dzrq / dt\z dzt / dt\ 
-1 

dzr
d , r : - l r r \ a )  * a , r \ a )  E

which, if inserted in the geodesic equation, gives

drru *  ar t  (  ! \_2 drr
d t ,  ' d r r \ E )  d t  *

From the time component (p : 0) we obtain:

rh#ff:o

dzxo _ ns dr 'dro

dt,  
-  - ' "oEE

d2 ct:  
d , t r : o

dzt ( dt\-' _ _r,o dru dro ._r
d r z \ d r )  " o  d t  d t "  '

this in the equations of motion for the spatial componentr (p : r),

dr r ,  *y ;  d rv  dx ,o  _ f_ ! ! : ! !  4 ! "_ r :g
d t ,  - ' r o E E  - \ I E E E "

dzt dro

ar' at (#)-'

+

so that, if we use
we obtain:
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5. Relativistic view on gradiometry

or

' )#.(,,-r:"#" dr' dro
- -  -  t l

dt dt
(5 .32)

as the spatial equations of motion in coordinate time.
For the computation of the equations of motion one needs the Christoffel symbols.

They are computed using equation 5.5. In the following we will neglect the time

derivatives of the metrical elements, since we assume they will be small compared
to the spatial derivatives. Furthermore, we will put c = 1. Since c is constant,

it acts as a kind of scaling parameter, so that putting it equal to 1 merely means
a change of units. When numerical values have to be computed, one inserts in

every term as many c's as needed, in order to match the dimensions of all terms, cf.
(Ohanian, 1976). The PN-metric for which we will give the equations of motion is

9 o o : 1 - 2 u + z B U z
go; :2 ( t  +  l )V i

9 ; i : - 6 ; 1 ( l + 2 1 U )

(5 .33)

where the parameters B and 1 are added for convenience. If B :1 and ? : 1,
we obtain the lPN-metr ic 5.31. I f .  P :0 we obtain eq. 5.29, the metr ic of a
rotating, stationary mass, and if Vi : O, we obtain 5.28, the metric of a non-
rotating mass. In the so-called Parametrized Post*Newtonian (PPN) theory, valid

for more general mass (or in general energy) distributions, other types of potential

functions are included in the metric, each with its own parameter as factor, see e.g.

(Misner et al., 1973) or (Will, 1981). Nowadays it is common to include 10 such
parameters in the PPN metric, two of which are B and'y, as above. Depending on

the value of these parameters, different relativistic theories are obtained (also called
metrical theories of gravitation). Einstein's theory of gravitation does not include

all these extra PPN terms (i.e. they do not appear in the solution of the Einstein
field equations). However, if we choose all PPN parameters to be zero except for B
and 7 which we choose to be 1, Einstein's theory is included in the PPN formalism.

The latter is what we will do here, so we insert I : 1. The parameter B is retained
and will be propagated into the results so that the influence of the term containing

it will be clear. For the lPN-metric 5.33 the non-vanishing Christoffel symbols
become:

[ b : - u , ; ( r - z ( B + 1 ) u )
Ib? : -u , i ( r - z (B -1 )u )

l,! -- O;eU,t * 6i*U,; - 6;iU,*

rii -- z(vi,j - Vi,t)

\ l  :2(v;,, +v1,;)

(5.34)
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5.4. Equations of motion revisited

where the comma, as usual, denotes partial differentiation. In order to agree with
much used (index free) notation, we introduce:

VU

v
u2

( r , y ,  
" )

@ , ! , t )

(Ur ,Uu,U")

(Vr ,Vu,V")
. t  . q  ' ,
x ' + y ' + z '

particle's spatial position vector

particle's spatial velocity vector (the dot means
differentiation with respect to t)

potential gradient vector

vector potential V;

squared magnitude of velocity

cartesian outer product

cartesian inner product .

With this notation, the equations of motion will become (cf. (Soffel, 1989),
(Mashhoon et al . ,  1989) or (Ries et al . ,  1990)):

d t r l r- : o u  *  A [ - r t B + t u v u  
-  4 ( v u . v ) v *  , z v u  -  4 v  x  ( v  x  v ) ]  ,  ( b . 3 5 )

where clearly the term between square brackets is the 1PN relativistic contribution
to the equations of motion. The dominant relativistic contribution will come from
a spherical, non-rotating mass, eq. 5.28. If we, therefore, insert V :0, I : L and
U : Y- (so that YU :  -#*),  equat ion 5.35 wi l l  reduce to

d v  G M  G M I  G M  , I
1 3  

x +  
r % ,  L n ; * * a ( x ' v ) v - t ' " x . J

(5.36)

These equations may be solved for x to reveal the relativistic effects in the particle's
motion, see e.g. (Soffel, 1989). Here, we are interested in the relativistic contri-
butions to the motion of an earth orbiting satellite, in particular the Aristoteles
satel l i te.  So we take for M the mass of the earth and for {r i1; :1,2,3}:  (r ,y,z)
a geocentric coordinate system. It should be noted that this coordinate system, de-
spite the commonly used notation (c, y, z), is not a rectilinear (cartesian) coordinate
system. In fact, the three coordinates are the spatial part of the four dimensional
coordinatesystem (t,r,y,z) which labels points (events) in spacetime. And we have
seen that spacetime is curved, compare the metric 5.33, so that no rectilinear co-
ordinate system can be introduced on a global scale, only locally. In particular,
for a spherical symmetric mass distribution, the curvature of spacetime manifests
itself in the radial direction and in the time coordinate. This feature was already
used by K. Schwarzschild in 1916 who found the first exact solution of the (non-
linearized) Einstein field equations. His famous solution for a static spherically
symmetric gravitational field (nowadays known as The Schwarzschild solution) was
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5. Relativistic view on gradiometry

put in terms of polar coordinates (t,r,0,,\). In this case spacetime is curved in the

two coordinates (t,r) . As a consequence r does not measure the usual radial dis-

tance. However, the geometry for those parts of space which have fixed t and r is
just that of a usual sphere. It can be shown that, by a proper choice of coordinates,

the Schwarzschild solution gives the lPN metric as a first approximation, at least

the lPN for a static (i.e. non-rotating) spherical symmetric mass. This means for

the coordinates {rdlr  :  1,2,3} :  (r ,  y,z),  i f  one would relate them to some kind

of polar coordinates {r" la:1,2,3} :  (r ,0,))  by means of a coordinate transfor-

mat ion  t i  - -  ' i ( r " )  w i th  c :  rs in0cos) ,  ! :  rs inds in )  and z :  rcoso tha t  r  i s

not the usual radial distance. In order to deal with this problem, one sometimes

introduces a new radial coordinate r', defined by r' : r + aff where c acts as a

gauge parameter for the choice of a definite coordinate system (Soffel, 1989). As a

consequence all orbital parameters used to describe the satellite motion depend in

this sense on the choice of the coordinate system.

Nevertheless, we will solve the equations of motion 5.36 by interpreting the

satellite motion to be the solution of a perturbed Keplerian problem, where the

second term on the right hand side (the one with the square brackets) is regarded as

the perturbing force. If, in our simulation, one subtracts from the solution obtained

in this way, that of a simple Keplerian problem with the same initial state vector but

without the relativistic term, one obtains the relativistic contribution to the orbit of

the satellite. We used a computer program developed by E. Schrama (1SSZ) to carry

out such computations. In reality, when working with real data, one solves, among

other parameters, the elements of the initial state vector from the observations

in the orbit determination process. In that case the relativistic effect cannot be

determined in the way described above, since both orbits (with and without the

relativistic perturbation) would have different initial state vectors and can thus not

simply be subtracted. Furthermore we have, in that case, to bear in mind that

existing values of parameters, which are used in the computations, could originally

have been determined without relativistic models, so that possible relativistic effects

are implied in those parameters.

It is well known that the dominant relativistic contribution in the motion of

a particle in orbit around a spherical symmetric mass (whether it is an artificial

satellite around the earth or a planet around the sun) is an advance of the periapse.

This can be seen in figure 5.1. In this figure the relativistic orbit contributions for

the Aristoteles satellite are shown, expressed in terms of radial, cross track and along

track components. This figure was computed in the way described above, namely

by solving equation 5.36 for x and subtracting the solution of the same equation

without the relativistic term.

The figure reveals the dominant relativistic orbit contribution as a linearly Srow-
ing along track effect to be interpreted as the perigeum advance mentioned above.

It reaches over 38 m after two weeks. The figure also shows a periodic effect with a

frequency of once per orbital revolution. This can be clearly seen if one removes the

linear trend and computes the power density spectrum, as is done in figure 5.2 for
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radial (cm)

along track (m)

cross track (cm)

744 t9?

t ime (h)

Figurc 5.1 Relatiuisiic orbit contribu,tions for tlte Aristoteles satellite where
only tlte cen"tral terrn of the potential of the earth was included,
(so-called Schwarzschild effect). Satellite height was taken to be
200 km and orbit inclination 95".3. The along track perturbotion
is plotted in m, the other perturbations in cm.

the along track effect. For the radial perturbation this periodic effect, with a linearly
growing envelope, can be seen in figure 5.1. Nevertheless the radial perturbation is
much smaller then the along track effect, being of the order of a few cm after two
weeks. The cross track contribution remains below the level of lO-a m.

The along track relativistic effect can not be separated from a change in the value
of the gravitational parameter G M , which relates the satellite's mean motion to the
semi-major axis a and therefore merely acts as a scaling factor. Estimating the value
of G M in the orbit determination process will therefore yield a value in which the
dominant relativistic orbit effect is absorbed, cf. (Tapley, 1989) or (Schrama, 1992).

One of the most remarkable differences between the classical Newtonian gravita-
tional theory and Einstein's relativistic theory of gravitation is the fact that in rela-
tivity not only a static mass distribution causes a gravitational field (generated by a
scalar potential function) , but also the motion of a mass causes a gravitational field
(generated by a vector potential function). In analogy with electromagnetic theory
the former gravitational field is said to be of electric type (sometimes called gravito-
electric field), whereas the latter is of magnetic type (gravito-magnetic field). The
vector potential for moving masses (for example rotating objects) appears in the
metric in the ps; components, the ones describing the interaction between time and
space. In the lPN metric it was included as the vector potential function % (or V
in index free notation). The equations of motion 5.35 in their general form (with
V; included) allow us an easy check of the relativistic contribution to the satellite

I 0

161



Figure 5.2 p":,":;,'*",,',i,;';;," for ttte atons track retatiaistic orbit efiect

for the .tlristotele:; satellite, rern'aining after rernoual of a lineat
trcn.LI.

motion caused by moving masses. This gravito-magnetic effect on satellite orbits is

also called the Lense-Thirring effect, first described by Lense and Thirring in 1918

(Thirring and Lense, 1918).
From eq. 5.35 we see that, leaving the vector potential V in, an additional

relativistic term
4-  
" v  

x  ( V  x  V )

enters the disturbing acceleration. Let us evaluate this term for our spherical sym-

metric mass, which we now assume to rotate around the z-axis with angular velocity

<r". Comparing eq. 5.30 with the 1PN metric 5.33 (with 'y : 1) we find for V:

or in vector notation

n: : ry  ( : ) '  w"e i ;s r i

r G M  / n \ 2
Y : ; - [ - l  u e

D  r  \ r , /

- v

g

0
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- ' \ r -  ' r  Y-  -  'z -  )  -  o  
I

I s"@i - vn) I
cf. (Soffel, 1989). The effect of this term on the orbit of the earth orbiting Aristoteles
satellite is shown in figure 5.3. Ib is compubed in the same manner as figure 5.1 but
now for the Lense-Thirring terrn only.

5.5. Equation of geodesic deviation

With this expression for V the Lense-Thirring part in the relativistic acceleration
becomes

cross t rack (cm)

along track (rnm)

radia l  (cm)

t ime (h)

Figure 5.3 Relt"t iaistic Lense-Tldr', ing effect on tlte orbit ctf Aristoteles. ' lhe

{:'x::::",' jilitl;i::ii,i!;!,'i{,':i:,,:':;:!"'i'1"!"!'uiil!'
The figure mainly shows a once per revolution periodic effect due to this term,

being largest in the cro'ss track direction with a linearly growing envelope. In the
along track direction the effect is smaller showing a secular trend. The radial effect
remains below the level of 10-a m.The cross track effect is caused by a drift of the
right ascension of the ascending node O at a rate of approximately 3.8 . t0-tl /s.
Such a drift rate is well within the observable limits of modern tracking systems
(Schrama, 1992).

5.5 Equation of geodesic deviation

As mentioned in the beginning of this chapter, the gradiometric model can be
interpreted in relativistic terms by considering the so-called equation of geod,esic

t

6

o
k
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5. Relativistic view on gradiometry

deuiation. This equation describes the relative motion of two neighbouring parti-

cles moving on geodesics. We will derive and discuss it in this section. Consider

to this extent the two geodesics, both affinely parametrized, e.g. with the Proper
time r. The geodesics are close, and the particles move along them close together,

such that, at any value of the parameter r the coordinates of the first particle are

rp(r) and of the second ru(r) * €'("), where €p is a small vector of coordinate

differences. We will assume these coordinate differences to be infinitesimal, as well

as their derivatives d(P /dr, which means that not only are the particles close to-
gether, but they remain so for a long time. Higher-order terms in, or products of

these quantities will therefore be neglected in the derivations. Note that, in gen-

eral, the coordinates rP do not constitute a vector (rank 1 tensor). A tensor Ap

should transform to another coordinate system rp' with the transformation matrix

Xur:  6rt ' '  1Arr, i .e.  AP' :  Xp;H". But coordinates transform via the coordinate

transformation equations rP' - ,u'7ru1 , from which the transformation matrix is

derived by means of partial differentiation. However, if differences between coordi-

nates are small (like we assume for the {p) they may be considered the elements of

a vector (Foster and Nightingale, 1979), such that they transform as qu' : yy' g''

The equations of motion for the two particles become:

dzr\  dx'dxo
- r [ - l , ' r l - - - n
drz 

|  'vo\* t  
4 ,  dr

tk#32 + rft(r * oW+9M#9 : o,
where the Christoffel symbols are evaluated respectively in a point of the first

geodesic (with coordinates cp) and a point of the second geodesic (with coordinates

rp * €p).The latter is approximated as

r f l ( r+ )x r f t ( r )+ r f t , '@)(

so that, if we take the difference between the two geodesic equations, we obtain

(neglecting terms quadratic in (r ' 3n4 ir ') '

€P + zrlg" i" + tf i,r(Pi' io : o (5.37)

where the dot denotes differentiation with respect to r. The first absolute derivative

(see appendix B.2.3,  eq.  B.10)  of  gr '  1 .

D€ t '  
:  

d€P  
+ lu  Fod"

dr dr 
' 'vo\ 

dr

from which the second absolute derivative is computed as

D2 €u
drz
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5.5. Equation of geodesic deviation

€u + 2121'0, : o# - F:",u + rt r:,
where we made use of the geodesic equation and relabelled dummy indices whenever
convenient. Inserting this result in eq. 5.37, yields

D2 €u
dr2

- F:",u +rt r:'

D2 €t' : (r:,,u - t!8," + rt,t:" - V,r,ip) €" io iP

:  -Rqooa€o;a ;9
dr2

with Rp,,1o the Riemann-Christoffel curvature tensor. This is the equation of
geodesic deviation, sometimes called Jacobi equation. It shows how two neighbour-
ing geodesics deviate relative to each other. It is interesting, though not surprisingly,
that the Riemann tensor enters this equation. The Riemann tensor describes the
curvature of the space under consideration. If a global (i.e. covering the whole of
space) coordinate system can be introduced, in which all components of the Rie-
mann tensor vanish, the space is flat. In a flat space, in cartesian coordinates, the
absolute derivative D{P/dr reduces to the ordinary total derivative d{pf dr. So,
with Rqouo: 0, the equation of geodesic deviation would reduce to

dz€t,

7 7 : o
of which the solution for (e It

€ ' ( " )  : c q r a P u

where Cp and DP are constants. We see that in this case, the separation between the
geodesics grows linearly, as it should, since in a flat space we know that geodesics are
straight lines. In a curved space, some components of the Riemann tensor will always
be different from zero, whatever coordinate system we choose. The separation vector
between the two geodesics will not change linearly as function of r, but accelerated
(the quantity D2Eufdrz is the "relative acceleration" vector), depending on the
curvature of the space.

So the curvature of a space determines the relative acceleration between two
free particles. On the other hand, measurement of this relative acceleration, tells
us about the curvature of the space. Since in satellite gradiometry we measure
such relative accelerations, this technique should give us the curvature of spacetime,
which is curved due to the earth's gravitational field. If this is so, then the equation
of geodesic deviation should reduce to the basic gradiometric model equation 2.1in
the Newtonian limit. This will be shown in the sequel.

- v,r,ip) €" i"iP

- v,r,iB) €o i" ip * t!p,"(" i" iB - o

(5.38)
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5. Relativistic view on gradiometry

First we will repeat the assumptions needed to arrive at Newton. The Newtonian

limit is derived from the linearized (weak field) approximation. In this approxima-

tion we take for the metrical tensor g p, the expression \py * hpv, with small hp, and

small derivatives hu,,o. The latter also implies that the Christoffel symbols Tf,, are

small. Another assumption we made in order to arrive at Newton was u << c, so

that 7 = 1, thus dldr x dldt. This expresses the Newtonian situation of universal

time t, i.e. all clocks read the same time. Furthermore, derivatives with respect to

time are assumed small in comparison to spatial derivatives. [n section 5.2.1 we

compared the geodesic equation 5.4, under the above assumptions, with the Newto-

nian equations of motion, in order to show that the former will reduce to the latter.

This appeared to be so if the only non-vanishing Christoffel symbols are

lob : 16t'noo,r'

Since all clocks measure the same universal time t, so will the two clocks moving along

with the two particles on the neighbouring geodesics, so that the first component

of the separation vector €p will be zero, i.". €o : 0. This simply means that the

particle's accelerations are compared at equal times (Ohanian, 1976). With this

result, and with eq. 5.39, the equation for the absolute derivative of the separation

vector will become:

D€t '  :  
d€ '  

+ fu  Fod 'udr 
: +.**#+ #€' #.\6t# +rl€i#

d€t'

dr

In the same way, we find for the second absolute derivative D2 €p f dr2 : 6z Eu f drz .

The lat ter is equal b d2€pf d* since,y:1. Thus, in the Newtonian l imit ,  the lef t

hand side of the equation of geodesic deviation 5.38 reduces to d2 {'fdt2. In order

to find the Newtonian limit of the right hand side, we look at the expression for the

Riemann-Christoffel tensor B.16. Products of the Christoffel symbols are neglected,

and we are left wittr
RPooF : *B,o 

- t!",8 '

With eq. 5.39, the only non-vanishing components of this tensor are r?oro :
-Btooo : Iiio,r = l6ii hss,ip. For P: O the equation of geodesic deviation becomes

d2 fo

f i : o
which indeed agrees with (0 : O. The spatial components yield

(5.3e)
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5.5. Equation of geodesic deviation

:  -Rio*o€k"z

: -l,t ' i  t oo,i*"z €k

a2tr: o ; i f f i ; € k .

In the latter equation we inserted the hss from eq. 5.18. Comparing the above
equation with 2.1, we see that, indeed, the equation of geodesic deviation is the
relativistic generalization of the gradiometric equation, at least if we take (l as the
coordinate differences between the two proof masses and d2 €i I dtz as their accelera-
tion difference. In relativistic terms, a gradiometer measures the curvature of the
space, cf .  (Misner et al . ,  1973),  (Ohanian, 1976) or (Gi l l  et  al . ,  1992).

This curvature is completely determined by the elements of the Riemann-Chris-
toffel tensor. Therefore, we will give those elements (or rather those of the covariant
form of the curvature tensor, Rr,.og) for the 1PN metric 5.33. Inserting the Christof-
fel symbols from eq. 5.34 into the expression for the Riemann tensor B.16, we obtain
for the non-vanishing elements of Rroog:

&;oi : uli0 - zBU)- (l + 2B)ulu,i + 6ii6kt(J,2u,7
R;i*t: 6;pUg - 6;1U,i* * 6itU,;r - 6i*U,;t (5 .41)

Ro;ir, : 2(Vx,i; - V1,r;)

from which the non-vanishing elements of the Ricci tensor may be computed as:

&o : d* '{(1 - 2(B + r)u)u,kt+ 2(1 - 0u,*u,}
&; : 6kt IJ,*t

& i : 2 V x ( V x V )

and the curvature scalar

R: -26kt{(1 -  (8 -  z i lu)u,kr  -  (b -  2\u,ku, t }  .

The elements of the Riemann tensor in eq. 5.41 are given with respect to the
global (and curvi l inear!)  4-dimensional coordinate system (t ,r ,y,z) spanning the
whole of curved spacetime. They are not exactly the quantities which an actual
satellite gradiometer directly measures. In order to find out what the relativistic
contributions to the gradiometric measurements are we have to switch from the
general expression 5.38 to some, more operational, equation in three dimensional
space. To do this, some additional steps have to be taken, the most important of
which is the definition of the so-called proper reference frame.

This is a local reference frame, moving with the observer along its worldline, and
consisting of four orthonormal base vectors (also called an orthonormal tetrad) , see
e.g. (Synge, 1960) or (Misner et al., 1973). The base vectors may be chosen such as

(5.40)
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5. Relativistic view on gradiontetry

to coincide in every point of the observer's worldline with the tangent vectors to the
coordinate lines of some global coordinate grid. Such a frame is sometimes called
a coordinate induced frame (Soffel, 1989). In this case we have, denoting the base
vectors by e1a) (sometimes e6)

a
e(o) : 

6ts" 
.

The fact that these base vectors are orthonormal is expressed by

gqu  ep l re lB )v  :  I ( aB ) (5.42)

In the notation e1a1u the index (o) indicates which base vector it is and the in-
dex pt indicates the component of this base vector with respect to the coordinate
system xp. In the sequel, the "indices between parentheses" (which in fact are la-
bels to distinguish the base vectors) are treated as normal indices, which can be
raised or lowered and summed over, cf. (Synge, 1960) . This means we may define

"contravariant" base vectors in the following way:

"(")  
-  n@o)"(O .

Note that for the components of these base vectors with respect to some coordinate
system the usual relations for raising and lowering of indices applies, i.e.

e(o )p :  gu re (o1  .

If the observer moves along a geodesic (i.e. he is not accelerated due to some external

force or rotation) this proper reference frame is a local Lorentz frame, in which

g@o:  n@p)

Along a geodesic the base vectors of such
f ield,  i .e.

Constructing an
vector or tensor

':'tq : o '
au

orthonormal tetrad in the way described above, we may
into components along this tetrad, e.g.

, ( " )  -  r r " ! i ) - v r e @ ) u

u ( o ) :  u P e 6 1 u :  v u e l o l

1@0) -  y" 
"(")  "(9) 

-  t*e@)ur(A),

t(oB) :  tPY ep1ue61, :  t rr"(q"(B)

orthonormal tetrad form a parallel vector

(5.44)

resolve any

and l!"/l : o (5.43)
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5.5. Equation of geodesic deviation

and the inverse relations

up :  ,u@)e(o)u :  u@) e7o,

0t,  :  u@)ef) -  u@) rroru

y'" - 1@9) 
"b)"6 

- t6B1e@)re@)"

t u, : t@9) e@)t e(p), : t@0"1;f) rlf)

and analogously for higher-order tensors. These kinds of components are invariants
in the sense of tensor analysis (because they are not the components with respect
to some coordinate system) but they obviously depend on the chosen orthonormal
tetrad (Synge, 1960). We will now transform the equation of geodesic deviation
from the tensorial expression 5.38 into an invariant expression with respect to a local
orthonormal tetrad. Since the actual gradiometric measurements are performed with
respect to such a local tetrad (namely a frame "bolted into the floor and walls of the
satellite", (Misner et al., 1973, p. 327)), the resulting invariant deuiation equation
should reveal the relativistic contributions to the measured gradients. In this way
we have constructed an operational description of relativistic gradiometry.

First, we have from equation 5.44

"+ :++ r f i e ( ' v f f : o

*:_r,*"Gt#
For the infinitesimal displacement vector (p between the two neighbouring geodesics
from eq. 5.38 we have

D€t '  :  d€u  
+ l t "  f ,4x"

du du 
'  -vo> 

du

and if we write qr : q@) e(,, this yields

o# : "f,,#* 6(") +.rk€@)"(.) duL
which becomes if we insert eq. 5.45:

D€t '  - . , :  .d€@)
du 

- "(")  du

For the second absolute derivative we then find

(5.45)

D2 €' D
dudu2 (#):#'("r.,#)
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_ Del.y aq@) , ^F D d,q@)-  
d"  du  - "@)a"  a"

u D dg@): 
"Lq d"=d" 

(with eq. 5.a )

- ^rt ( a agt"l  ,  ,-,(o) d€(r) ;"(r)\: ' ( o )  
\ a  ,  

+ ' ( p i )  
^  ^  )

: 
"(o)# 

(with eq. 5.43)

Insertion into eq. 5.38 gives

, t . r #  t  Ru ,op€o i ' iP :0 .

Multiplication of this equation with ejf) yields

"lf) "l-,t* 
+ ela Rp,oo..o i ' ip : o-P - la) 

du2 
'  ' tJ

az r@)

# 
+ e@)F Rt",o p€" i"  iP :  Q .

If we now insert for the vectors i' , ic and (" their transformations to the invariant
components relative to the orthonormal tetrad (respectively i@)"(il, i(d)r[o) u.d

€(")t["]) we obtain
s2 c@)

# + ,7@') Rpp.,61qb) i@);(6) : o

where we defined the invariant components

R(o B^, u) : R p,o p e(ol"(n"?,l"bl .

As a final step we define
K(".,) = RpB.,6p@) i(6)

with which the invariant deviation equation becomes, cf. (Synge, 1960):

t* * 4@e) K1p.,1(h) = o
du2 

' ' '

or in "covariant" form (obtained after multiplication with n6o)

# + K p B 1 6 ( e )  
: o

of which the spatial part is

(5.46)
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5.5. Equation of geodesic deviation

which closely resembles the Newtonian form of the gradiometric equation. The

quantity K1;i1 takes the place of the gradient tensor and is therefore sometimes

referred to as tidal matrix. Its components are found as

K(ri) : R6p161iB i6

which approximately equals (at least for low spatial velocities)

K(ri) : c2 R6oio1

: c2 Rpvopelrl"6l"'ti l"otol .

The dominant relativistic contributions to the gradients are again expected to
result from a static spherical symmetric mass distribution. For such a mass distribu-
t ion i t  is convenient to use the 4-dimensional polar coordinates {ru' l t t '  :  0,  1,  2,3} :

(ct ,r ,0, , \ )  with the pr imes dropped in the sequel.  In these coordinates, the non-
vanishing components of the Riemann tensor, computed from eq. 5.41 with c's re-
stored, are (up to lPN order in c-2)

&ror = ':+ (t - tg4.1
r"c '  \  rc '  /

Rozoz: -94 (t - t94\
rc '  \  rc '  /

ftosos = - sin2 og+ (, - t94\
rc '  \  rc '  /

D  G M
r t t z t 2 :  ^

rc '
.1 M

f t tgtg :  s in2 d" ;rc'

Rzszs :2 rs inz09+

where we have put p : 1. Finally we need, in order to evaluate eq. 5.48, expressions
for the components of the base vectors of the orthonormal tetrad. The tangent
vectors to the coordinate lines of the coordinate grid (ct,r,0,,\) are respectively
0f c)t ,0f  0r,  0100 and AIA^. In order to ful f i l  eq. 5.42 (so that the base vectors

are orthonormal) we have (up to first order in U f cz)

(5.48)

(5.4e)

e(0)  :

e ( r )  :

e(2)  :

e(3)  :

/  G M \  A

\ ' *  *  )  "a ,/  G M \  A
\ t -  *  ) u
I l  G M \  A
; [ ' -  * ) u

I  /  G M \ A
t 1 _ _ t _

rs ind  \ -  rcz  /  0 ) ,
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5. Relativistic view on gradiometry

This system of base vectors can be constructed in every point of the observer's
worldline. But each of those frames is at rest with respect to the spatial part of
spacetime. The proper reference frame of an observer co-moving with a satellite
is moving through space, and if it is earth pointing, it also undergoes a spatial
rotation. Without any loss of generality (as a result of the spherical symmetry of
the mass) we will, for convenience, consider here an equatorial satellite orbit, i.e.
0 = rl2. The motion of the proper reference frame then takes place in the e1s;
direction, and we Eursume it to be circular. In order to obtain the co-moving tetrad
e(d), we apply a Lorentz transformation to the e(a) frame where we take for the

velocity the satellite's mean orbital motion ns. Thus u(i) - nork$) where k(d) is a
spatial unit vector pointing in the along track direction, which in our case is the e1s1
direct ion, so {k( i )} :  (0,0,1).  Such a transformation is also cal led a Lorentz boost
in elsy direct ion. So 

(nl
e(d,)  = 41") i 'e1B;

where ,f1"!f) ir the Lorentz transformation matrix (e.g. (Misner et al., 1973) or
(SoffeI,1989)) given (up to 1PN order) by

{^("!f)}:

l ++94  o  o  tL r r
'  t t c -  c

0  1 0  0

0  0 1  0
n( \ f

( -  3 c M \  0  n o 0
( t * t ; F ) , a t + ; a ^
/  G M \  A

\ t - ; t ) u
I /  G M \ A

; l . t -  * ) m
n o r 0  l /  l G M \  A
- - : - - r - 1 1 _ _ - l -

c c ) t  
' r \ -  

2 r c 2 / 0 ) ,

Klrr) :29+-t '1#'

Kpz): -ry
Klss) : -ry+u%-

0  o  r + + 4 4
L  r c '

With this matrix the base vectors of the co-moving frame e1a,; become

e(0,)  :

e(1, )  :

e i / 9 r \  :

e(s,) :

Now we are in a position to compute the components of the tidal matrix Klii;
(omitting the primes). We obtain from eq. 5.48:
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of which the terms with c-2 are obviously the first relativistic contributions to the
gradients. The first terms on the right hand side coincide with the Newtonian ex-
pressions for the gradients of a spherical symmetric mass distribution. For example,
since the s(o)=r component points in the radial direction, Klrr; is equivalent toV* in
the local orbital (cartesian) coordinate system which we used in the non-relativistic
approach. In the same way Klss; coincides with V* and K1zz1 with Vrr. Estimating
the size of the relativistic contributions, we see that they are of the order of 3.10-o E
for a satellite at 200 km altitude, cf. (Soffel et al., 1987) or (Gill et al., 1992). For the
present Aristoteles mission scenario (ZOO km, O.Ol El\/Hz measurement precision)
such small contribution can be neglected. Other relativistic effects on the gradients
due to e.g. the gravito-magnetic field or higher-order multipole expansions are not
discussed here. The reader is referred to (Thei8, 1984) and (Gill et al., 1992).
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Conclusions

By means of a technique called diferential accelerometry it is possible to measure

the second-order partial derivatives of the earth's gravitational potential. An in-

strument which measures these so-called gravity gradients is called a gradiometer.

If a gradiometer is on board an earth orbiting satellite, a global set of gravity gra-

dients can be obtained in a few months time. Flom this set of observations the
gravitational potential (represented by a set of potential coefficients) can be derived

by means of an iterative least squares adjustment, with which at the same time the

satellite's trajectory can be estimated. The linear model used for the adjustment is

usually obtained from partial differentiation of a series expansion of the gravitatio-

nal potential. If, in the future, more accurate gradiometers and/or satellite tracking
systems become available, it might be necessary to include relativistic effects in the

model both for the satellite orbit and the gradients.

It is customary, and for our purposes also appropriate, to expand the gravitatio-

nal potential function, using geocentric polar coordinates ,^ -- (r,0, )), into a series
of spherical harmonic functions. In such a series the Legendre functions appear. For

satellite applications, however, it is more suitable to use a coordinate system related
to the satellite orbit. In that case, the gravitational potential is written as function

of orbital coordinates ro - (r,wo,w") or 7@' : (r,wo, 1) . Due to the rotation of an

equatorial coordinate system to an orbital system, so-called inclination functions
appear in the series. Expressions of the first- and second-order derivatives of the

potential can be easily derived by differentiating the series expansion with respect

to the coordinates. In the case of satellite gradiometry, expressions for the second-

order derivatives are needed with respect to a local cartesian coordinate system.

Therefore, the partial derivatives of the potential series expansion have to be trans-

formed from any of the geocentric curvilinear coordinate systems rArto or ro' to

this local cartesian system. With the help of inder notation and tensor analgsis a

compact, general algorithm can be formulated for the transformation of potential

derivatives between arbitrary coordinate systems.

The transformation equations, in which series expressions for the potential deri-

vatives are inserted, then serve as observation equations in a gradiometric analysis

procedure. By means of a least squares adjustment approach, the unknown parame-

ters (in our case the potential coefficients) can be estimated. An advantage of such

least squares estimation is that an error analysis can be carried out prior to an actual
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experiment. The inverse of the normal matrix provides the formal variances and co-
variances of the unknown parameters. Thus, given some mission scenario (in terms
of satellite altitude, orbital inclination, mission duration, sampling interval and mea-
sured tensor components) and some a-priori error model for the observations, the
precision of the estimated potential coefficients can be computed and compared with
the requirements. Revqrsely, given such requirements, the error analysis can be used
to put demands on the mission scenario as to meet these requirements.

The requirements for a gradiometer mission typically are less than 100 km spatial
resolution (half-wavelength) and a precision of less than 10 cm global r.m.s. for geoid
heights or 5 mgal for gravity anomalies. The mentioned resolution corresponds to a
spherical harmonic expansion up to at least 180 or more (somewhere between 200 or
300) . From the error analysis appeared that, for most mission scenarios, a signal to
noise ratio of 1 was reached near degree 240, which will be sufficient for the required
resolution.

If global r.n1.s. values for geoid heights or gravity anomalies have to be computed
from the a-posteriori error estimates of the potential coefficients (as they result from
the error analysis), we have to bear in mind that in reality the gravitational potential
is a continuous function and should be represented by an infinite series (including
all frequencies from zero to infinity). The error analysis, however, is limited to
some maximum degree and order, in our case 240. The error resulting from this
part is called comrnission error. The neglected part of the spectrum, above degree
240, also contributes to the global mean error, and should in fact be taken into
account. This neglected part, is called omission error. Since we do not know the
true gravitational spectrum, the omission part can only be approximated by using
some prior knowledge of the average behaviour of the gravity field. The global error
r.m.s. values presented in this work always represent the sum of commission and
omission error. The omission part is taken into account up to a maximum degree
of 1000. Above this degree no substantial contribution was found. Furthermore,
we always show srzoothed global error values, representing 1" x 1o block averages.
Due to the mission altitude and the sampling distance it is difficult to estimate
higher degrees so that smoothing is justified for our purposes. Depending on further
applications, un-smoothed values (representing point values) can be used too.

A spherical harmonic expansion up to a maximum degree and order L of. 24O
contains more than 58,0m potential coefficients. If these are to be estimated in a
least squares adjustment, the normal matrix will have a size of (58,000)2. Even with
large computers, the solution of a system of linear equations of this size will be a
major task. Under certain assumptions, and by ordering the unknowns in a specific
manner, the normal matrix attains a block-diagonal strtcture. The largest block to
be inverted will have a size of (24012 + 1)', so that computation time is drastically
decreased.

The assumptions to arrive at the block-diagonal stnrcture are: 1.) circular
orbit; 2.) regularly distributed data along the orbit (i.e. no data gaps); and 3.)
the number of orbital revolutions and the number of nodal days contained in one
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repeat period are relative prime integers, where the number of revolutions should be
larger than 2L. The second of these assumptions seems to be the most critical one.
Doto gaps are likely to occur, not only due to instrumental failures, but also due to
orbit maintenance maneuvers and as a result of excessive drag variations near the
poles and the equator. A non-continuous data stream destroys the orthogonality
properties on which the block-diagonal structure is based.

In an ideal situation, an SGG mission will be flown with a full tensor gradiometer,
measuring at a sampling rate of 4 seconds all nine gradients with a 0.01 E//Hz white
noise error spectrum. The satellite will fly in a circular, polar orbit at e.g. 200 km
altitude for at least 6 months. Global error r.m.s. values derived from such an ideal
mission will be approximately 8.6 cm for geoid undulations and 3.6 mgal for gravity
anomalies at a resolution of 0."75 half-wavelength. These results easily fulfil the
requirements given above, even without having additional information, either from
a GPS receiver on board the satellite or in terms of a-priori information in a kind
of least squares collocation set-up.

However, a more realistic mission like Aristoteles differs from the ideal situation
on several aspects. The three most important differences are: 1.) band limitation
and coloured noise measurement error spectrum; 2.) non-polar orbit; and 3.) planar
gradiometer measuring only the out of plane tensor components with high enough
precision. All three limitations have a rather large effect on the results. Apart from
numerical singularities (resulting from ill-conditioned normal matrix sub-blocks)
other normal matrix sub-blocks will be singular too as a result of the limitations.
The occurrence of such singularities shows that certain unknown parameters are not
estimable from the observations any more.

The planar gradiometer is a penalty resulting from the non drag free concept of
Aristoteles. The along track disturbance accelerations due to air drag are too large
to allow for very sensitive accelerometer axes in this direction.

Aristoteles is planned to fly for approximately six months in an orbit with incli-
nation 95."3. During additional two weeks the orbit will have an inclination of 92."3.
In both cases, polar gaps occur) i.e. polar areas which are not covered by ground
tracks of the satellite. If a global recovery of potential coefficients is intended, prob-
lems might occur due to these gaps. Small deviations from a 90o inclination do not
deteriorate the results significantly. Remarkably, the results slightly improve for a
92."3 inclination. It is very likely that this phenomenon results from a higher data
density in the remaining part of the earth. Furthermore, the behaviour of the incli-
nation functions may play a role, as well as the fact that with a polar orbit, zonal
coefficients are not estimable from gradients involving one cross-track derivative.
For a 95.o3 inclination large polar gaps occur and the problem to derive a complete
global set of potential coefficients from the data becomes improperly posed. The
solution can be stabilized by adding prior information (e.g. prior expectations of the
potential coefficients and their covariance matrix) and solve the system in the sense
of least squares collocation. The solution becomes stable, but the estimates will
be biased. However, investigations showed that, for large parts of the spectrum, a
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stabilized solution does not lead to too optimistic error estimates.
More than the polar gaps, the band limitation of the Aristoteles gradiometer will

be a problem. Only in a frequency band between 0.005 Hz and 0.125 Hz a 0.01
Dl\/Hz error level can be achieved. The upper limit (resulting from the sampling
rate of 4 seconds) will not cause any problems if the maximum degree and order of
the analysis is 240. However, a lower limit (resulting from instrumental instability
and non-gravitational orbital effects), has influence on all degrees in the solution.
Whereas a frequency of 0.005 Hz would correspond to approximately 27 cycles per
revolution (".p.t.), we took an absolute lower band limit of 4 c.p.r. (to account for
non-gravitational. orbital effects). Furthermore, we investigated, apart from a flat
error spectrum above 4 c.p.r., a l/B coloured noise enor behaviour between 4 and
27 c.p.r .

With a band limited gradiometer, certain potential coefficients are no longer
estimable from the measurements due to a lack of information, resulting in singular
normal matrix sub-blocks. Especially the lower part of the spectrum, where the
contribution of the low orbital frequencies is relatively large, will cause problems.
The requirements for an SGG mission are no longer met. Additional information
is necessary. Given the present Aristoteles-gradiometry specifications, a combined
SGG/SST mission seems to be the best alternative. For an SGG-only mission one
has to use a gradiometer with either a much better precision (e.g.0.0001 E l\/Hr)
or one which measures more components of the gradient tensor.

The results of the error analysis are presented in terms of error degree uariances.
The degree variance is the sum over all orders of a degree of the individual error
estimates per coefficient. In some of the above situations, however, we do not obtain
error estimates for all coefficients, viz. those cases where singular normal matrix
sub-blocks appear. The degree variances computed in such cases thus do not rep-
resent the whole spectrum. Adding prior information in the sense of a stabilized
solution overcomes this problem, but it is difficult to interpret the resulting "mixed"
degree variances. In fact, the problem of singularities on certain degrees or orders is
inherent to satellite methods. Degree variances are not the appropriate representa-
tion of the error situation in such cases. "Order variances" might be an alternative.
Perhaps it gives more insight to plot all individual error estimates per coefficient in
a perspectively plotted l, rn-scheme, and find ways to identify the contribution of
the prior information.

Whereas an error analysis learns us much about the influence of mission scenarios
on the precision of the estimated unknowns, the final goal of a SGG mission is a set
of estimated potential coefficients, together with the precision of all coefficients. The
recooer! of potential coefficients can be done in an iterative least squares adjustment
scheme, in which at the same time the satellite's trajectory is determined. Depending
on the way in which the data is handled there are, in the present set-up, two
possible methods for the recovery. In the space-like method one transforms the data
along the orbit into a global equi-angular grid of mean values. The observation
equations are based on a series expansion of the gravitational potential in geocentric

177



Conclusions

polar coordinates. Equal step size in .\-direction and orthogonality of trigonometric

series give rise to the block-diagonal structure of the normal matrix. The number

of "observations" in the least squares estimation process is limited (it equals the

number of blocks in the grid) so computation time is relatively short. The averaging

process, required to obtain the gridded data, on the one hand acts as a smoothing

operator so that high frequencies are lost, but on the other hand aliasing is reduced.

A disadvantage of this method is the impossibility to include band limitation of the

gradiometer in an easy manner.

In the time-tike method the data does not need to be transformed into an equi-

angular grid. A series expansion of the potential in orbital coordinates is used

and with equal data step size along the orbit a block-diagonal normal matrix is

obtained. Data is not averaged, so higher degrees are preserved, as a result of which

however aliasing will play a larger role. Due to the very large number of observations

the computation time will be rather large. Since possible data gaps may destroy

orthogonality they have to be accounted for. With this method it is easy to include

the effect of band limitation of the gradiometer. A test was done with both methods.

We used a set of simulated gradients, computed along a circular, polar orbit for a 32

days mission. Only a first step of the iteration process was implemented, without

updating the orbit. Potential coefficients were estimated up to degree and order 180

(approx. 33,000 unknowns). Although the.test should be considered preliminary,

the results look promising.

The requirements for an SGG mission are very high. Already a mission like

Aristoteles puts high demands on the technology of the instrument and the space-

craft. Nevertheless, with ever improving technological developments gradiometers

with much higher precision may become available, e.g. superconducting gradiome-

ters. Also satellite orbit determination techniques are stil l improving. In order to

fully benefit from such future perspectives it shall be necessary to improve the math-

ematical models as to include relativistic effects. Even better, gradiometry might

become a technique such accurate, that aspects of the theory of relativity can be

tested. Finally, from a theoretical (geometrical) point of view, gradiometry perfectly

lends itself to be formulated in terms of curvature of spacetime.

We mention three aspects of an SGG mission where relatiuistic theory may play

a role: f.) the satellite orbit; 2.) the observed gradient tensor; and 3.) the mov-

ing local reference frame. The third one is important for the orientation of the

instrumental frame with respect to which measurements are taken, but this aspect

is not treated here. In the general theory of relativity a satellite can be considered

a freely falling particle, moving along a four dimensional spacetime geodesic. Gra-

vitation is not considered an external force, but is translated into the geometry of

the space. Due to gravitation, four dimensional spacetime is curued and so are the

geodesics. The equation of the geodesic therefore constitute the equations of motion

of the satellite. Extracting the spatial part of these equations reveals the relativistic

contribution to the satellite motion.

Viewing upon gradiometry as the relative movement of two or more proof masses,
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we find the relativistic correspondence in the so-called equation of geodesic deuio-
tion. This equation is governed by the Riemann tensor, in which the second-order
derivatives of the gravitational potential appear. Thus relativistic effects are also
present in the observed gradients, and in this sense, a gradiometer measures the
curvature of four dimensional spacetime.

In relativistic terms, the gravitational field of the earth can be considered a weak
field. The equations of the satellite motion and the gradients are therefore derived
in the so-called weak field approrimation. ln particular, we use the so-called first
Post-Newtonian (1PN) approximation of the spacetime metric, keeping only the
first-order relativistic contributions. The dominant relativistic orbit contribution is
an effect in along track direction, which, however, in reality cannot be separated
from a change in the value of the gravitational pararneter GM. For a spherical,
non-rotating earth and for a satellite like Aristoteles, other relativistic orbit effects
are, at the moment, small enough to be neglected. Effects due to the rotation of
the earth are even smaller. Furthermore, in the case of a spherical, non-rotating
earth, relativistic contributions to the gradients at 2OO km are of the order of 10-6
E. Although this is much smaller than the Aristoteles measurement precision, the
question whether the relativistic effects in the gradients can be determined from such
satellite missions is a difficult one, depending not only on the measurement precision
but also on the mission duration and the principle character of the instrument.

179



appendix A I

Coordinate systems

Several coordinate systems are used in this thesis, curvilinear as well as rectilinear,

with different orientations and located with the origin in different points. Further-

more, the derivatives of the gravitational potential function with respect to most of

these coordinate systems are needed at different stages during the derivations' The

choice for a particular coordinate system often depends on the specific application,

either because the coordinate system is particularly well suitable for the geome-

try of the problem, or because the practical or instrumental implementation of the

problem prescribes the use of a specific coordinate system. In principle one could

choose any coordinate system one likes, in practice only a few coordinate systems

will have favourable characteristics for that specific problem. On the other hand,

the introduction of a coordinate system is only artificial, it has in fact nothing to do

with the physical reality of the problem itself. .

In this appendix we introduce some special, much used, coordinate systems'

Some of them are applied in this thesis, others are just given for illustration. Refer-

ring to section 8.3.1, we will only consider metrical spaces, in most cases also linear,

i.e. Euclidean spaces En, in particular for n : 3'

In the first section the coordinate systems will be defined, in most cases relative

to a cartesian geocentric coordinate system, by giving the coordinate transformation

equations between the geocentric cartesian and the new coordinates. Each coordi-

nate system will be addressed by a special set of indices which indicate the particular

system. Note that in appendix B the choice of indices was arbitrary, since at that

stage no connection to some particular coordinate systems was given.

In the second section the metric tensor and the Christoffel symbols for some of

these coordinate systems will be listed. They are needed when deriving expressions

for the transformation of potential derivatives by using tensor analysis, as is done

in sect ion 3.1.

180



4.1. Definit ion

A.1 Def ini t ion

Possibly the most familiar coordinate system is the cartesian coordinate system.
This is a rectilinear coordinate system of which the coordinate axes intersect in one
point (the origin), are mutually orthogonal and along which the scale is the same in
all directions. If the origin of such a cartesian coordinate system is in the geocenter,
the coordinates are denoted with cr,  the indices cbming from the set {1,  J,K,L}.
This system is called the geocentric cartesian coordinate sgstem. As we will do for all
coordinate systems, the separate coordinates are given special names (kernel letters) ,
which, in this case, are

{ r I l I  :  1 , 2 , 8 }  :  ( r l - t , r I = 2 , r 1 = 3 )  =  ( x , y ,  z )  .

The X-axis points to the Greenwich meridian, the Z-axis to the North-Pole and
the Y-axis completes the set to a right handed coordinate system, see figure A.1.

Figure A.1 Geocentric cartesian and orbital coordinate systems.

In cartesian coordinates, the metrical tensor takes on the diagonal form with all
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appendix A. Coordinate systems

diagonal elements having the value

1 0 0

0 1 0

0 0 1

| .or r, - sin <,.r, cos 1 sin 4.,, sin /
I: 
I 

sinc^,,, coso.r, cos 1 - coso.r" sin 1

L  0  s in l  cos /

1,  so :: l{cr t }

In this case we also have {gIJ} :  {St i l .Also in every other cartesian system (with

a different origin and/or a different orientation) the metrical tensor has this form.

For example, if we rotate the rr system in such a way that the XY-plane coincides

with the orbital plane of a satellite in orbit around the Earth, we obtain a new

geocentr ic cartesian coordinate system, denoted by {r t '  l1 ' :  1,2,3):  (X' ,Y' ,2 ') ,

which has the same origin but a different orientation, see figure A.1. The X'-axis

of this system is directed towards the ascending node. This system is called the

orbital cartesian coordinate system. The coordinate transformation between the two

systems, ,I : ,I(rI' ), is as follows:

f x '

1",
x
Y

z

(A.1)

(A.2)

and .I. The

r

v
z * r

which is obtained through successive rotations about the angles u.r,

matrix in this equation is the transformation matrix ffi.
A third cartesian coordinate system we will frequently use is a local cartesian

system, denoted {r i l ;  :  1,2,3) = (r ,y,  z),  which has i ts or igin in a point on a

satellite's orbit and which is oriented with the z-axis radially outwards, the c-axis

directed along track and the y-axis cross track such that it is a right-handed system

(see also figure A.1). This system is called the local orbital coordinate systern. The

transformation between the geocentric cartesian system and the local orbital system,

,I : ,I (ri), can be obtained through successive rotations about the angles w",I and

aro and a translation in radial direction by r. This will yield:

x
Y

z

- cos oc sin aro- sin or, sin I cosw" cos (ro -

sin c,.r, cos a,ro cos -f sin r.r, sin <r'to cos f

- sin c,.r, sin oro* - cos u,r, sin 1 sin a.r, cos u,ro*

cOS (re cos c.ro cos 1 cOS &.re sin c,.ro cos 1

cosar, sin 1 cos 1 sin oo sin 1
(A.3)

Another cartesian coordinate system to be used is a local north-oriented carte-

s ian  sys tem,  denoted  by  { " t ' l f ' :  1 ,2 ,3 } :  ( r ' , y ' ,2 ' ) ,  wh ich  has  i t s  o r ig in  in  some

terrestrial or space point and is oriented with the z'-axis radially outwards, the ct-

axis directed north and the y'-axis directed west. This system is called local north-

oriented. coordinate system. The transformation ,I : ,I (ri ') is obtained through
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successlve

(see figure

rotations about
A . 2 ) :

the angles d and ,\ and a

A.1. Definit ion

translation in radial direction

- cos ,\ cos d sin ) cos .\ sin d

- s i n l c o s d  - c o s )  s i n ) s i n d

s i n d  0  c o s d

(A.4)

Figure A.2 Geocentr ic  car tes ian,  local  nor th-or iented and geocentr ic  spher i -

ca l  coordinate systems.

Whereas in the transformation equations above the quantit ies Irw",worrr0, \ act

as parameters to fix the orientation of the ,I '  ,si '  and cd coordinate systems with

respect to the r/ system, they themselves can also be used as coordinates. From the

mentioned quantit ies we select the following coordinate sets:

{ "o lA :  1 ,2 ,3 }  :  ( r ,  d , , \ )  geocent r i c  po la r  coord ina tes

{ r " la :  I ,2 ,3 }  :  ( r ,uo ,u" )  I -o rb i ta l  coord ina tes

{ r " ' lo '  :1 ,2 ,3 } :  ( r ,wo, I )  a r r -o rb i ta l  coord ina tes  .

tr'

v'
z ' + r

X

Y

z
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The transformation equations ,I : ,I (rA) are given by:

X : r s i n d c o s )

Y : r s i n 0 s i n )

Z : r c o s d .

The c" and co' systems both have the same transformation equations:

(A.5)

X : r(cos (te coso)o - sin or, sin alo cos 1)

Y : r(sin u)ecos"io f cosrr.r, sin<r.ro cos 1)

Z : r sin o,ro sin 1

where in the case of the ro system <,.r, is the third coordinate (r"=3) and / acts as a
parameter fixing the orientation of cd and vice versa for the ro' system. Note that
equation A.5 can be obtained from equation A.4 if we put r' : y' : zt : 0 and
that equation A.6 can be obtained from equation A.3 by putting r : y : z : 0.
Note furthermore that the ra system is not an orthogonal coordinate system so we
expect some off-diagonal components of the metrical tensor in these coordinates to
be unequal to zero.

All of the above coordinate systems, except one, can be used to label all points
of the 3-dimensional space under consideration, regardless of the arbitrary values
of the possible parameters. The exception is the ca system. This system has the
inclination I as parameter. If I + 90" parts of the space are not "covered" by the
coordinate system. These parts are cones with the top in the geocenter and with the
Z-axis as symmetry axis and with the top angle with respect to the Z-axis equal to
.f. However, this system will only be used to describe points along a satellite orbit
with inclination .I and for that purpose the system can be used very well.

A fourth curvilinear coordinate system which will be used is also a polar co-
ordinate system but not relative to the geocentric cartesian coordinate system cr
(like ra), but relative to the orbital cartesian system ,I'. It is called orbital polar
coord ina te  sys tem and is  denoted  by  { "o ' lA '  :1 ,2 ,3 } :  ( r ,6 , ro ) .  We have the

following relations (see figure A.1):

X '  :  r  cos / cosa ro

Y'  :  r  cos/s inc. ro

Z ' : r s i n / .

The transformation rI : ,I (rA') .un be found by inserting equation A.7 into equa-
t ion A.2.

The final two coordinate systems to be introduced are two ellipsoidal systems
(see figure A.3):

{ "A IA:  1 ,2 ,3 }  :  (h ,9 , \ )  geodet ic  coord ina tes

{rala :  1,2,3} :  (u,  9,  \ )  el l ipsoidal coordinates ,
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of which the transformation equations to geocentric cartesian coordinates are:
, I  :  r I (rA) t

X :  v  c o s B c o s )

Y  :  u  c o s B s i n )

Z  :  us in9

(A.8)

r I  :  r l ( ru)  :

X : ( N * h ) c o s r p c o s )

Y : ( N * h ) c o s r p s i n )

2  :  ( N ( r  -  
" 2 )  

+  h ) s i n , p  ,

w i th  u  :  \ /u \  E i2 ,E2 :  o2  -b2 ,N :  o (1  -  ezs inzg) - r12 , " ,  :  (o ,  -b2) fa2 ,  a
is the semi-major axis of the ellipsoid and 6 the semi-minor axis. For problems
expressed in ellipsoidal coordinates it is often convenient to have a local cartesian
coordinate system directed along the normal to the ellipsoidal surface. This cartesian
system is called local ellipsoidal coordinate system and it is denoted by {rtll :

1,2,3\:  ( i ,y,z).  The Z-axis is directed outwards, normal to the el l ipsoid, the
f-axis directed north, tangent to the ellipsoidal surface and the graxis is directed
west (see figure A.3). We will not actually use these ellipsoidal coordinate systems
in this work, but they are given here just for reference.

In table A.1 all mentioned coordinate systems are listed.

A.2 Metric and Christoffel symbols

As already mentioned, the metrical tensor in all cartesian coordinate systems is the
same. so:

{g r t }  :  {g r t , )  :  {g ; i }  :  {e ; , i , }  :

The Christoffel symbols are therefore zero in all these coordinates. This is not
true in curvilinear coordinates. From equations A.5 - A.9 we may compute the
transformation matric es 6rtd,etc. These can be used in equation B.13 to compute the

metrical tensor in the systems rA,xorro'rrA',rA and sa from the one given above.
For each of the coordinate systems the Christoffel symbols are then computed using
equation B.15. In the sequel all the metrical tensors (table A.2) and the Christoffel
symbols (tables A.3 to A.8) are listed.

(A.e)

1 0

I

0
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Figure A.3 Ell ipsoid.al and, geod.etic coordinate systems.

Table A.1 List of coord,inate systerns ond their notation

rl (x,Y, z)

rA  ( r , 0 , \ )

, I '  (x t  ,Y '  ,  z ' )

, A '  ( r , 6 , r o )

, i '  ( r ' , y t , " ' )

t r '  ( ' ,Y ,  
" )

ro  ( r rwo ru " )

xo '  ( r ,wor I )

r A  ( h , p ,  \ )

r d  ( " ,  F ,  \ )

x i i  ( n , ! , 2 )

geocentric cartesian coordinates

geocentric polar coordinates

orbital cartesian coordinates

orbital polar coordinates

Iocal north-oriented coordinates

local orbital coordinates

^I-orbit al coordinates

c,.r, -orbital coordinates

geodetic coordinates

ellipsoidal coordinates

local ellipsoidal coordinates
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Table A.2 Elements of the rnetrical tensor for seaeral coordinate systems.

(M = (t - e2)N3la2 anit L2 : u2 + E2 sin2 91

geocentric polar

( r , 0 ,  \ )

1 0 0

0 r - 0

0 0 r2 sinz 0

orbital polar

( r ,  d , ro )

I 0 t l

0 ,r ' 0

0 0 rz cos2 6

.I-orbital

( r r w o r w " )

I n 0

0 r - rz cos I

0 r2 cos I - r2(s in2 l  s in2 aro -  1)

t.rr-orbital

( r rwo r  l )

1 n 0

0 r ' 0

0 0 12 sinz wo

geodetic

( h , p , \ )

1 0 U

0 (n+  u)2 0

0 0 (n + lr)2 cosz 9

ellipsoidal

(u ,9 ,  \ )

L2 0 0

0 trz 0

0 0 v2 cosz B
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Table A.3 Christoffel symbols in geocentric polar coord,inotes (rr0,\)

r)."
0 0 0

0 - r 0

0 0 -r sinz 0

r],"
0 I

?
0

I

; 0 0

0 0 - s i n d c o s d

!i'
0 0 I

f

0 0 cot 0

I
r cot 0 0

Table A.4 Christoffel symbols in orbital polar coordinates (r,d,uo)

ry,8'
0 0 0

0 - r 0

0 0 -r cosz S

ry,8'
0 r

7
0

f
0 0

n 0 - s i n / c o s /

n3LA'  B '

0 0 I

;

0 0 tan /

t
r tan Q 0
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Table A.5 Christoffel symbols in I-orbital coord,inates (rruo,w")

ql
0 0 0

0 - r -r cos .r

0 -r 'cos 1 r(sin2 o.ro sin2 I - l)

l"'u

0 I
r 0

I
f

0 cos .I tan c,ro

0 cos -f tan c,.ro - tan r.ro (sinz uo sin2 / - 1)

qt,

0 0 I
r

0 0 -  tanwo

t
7

- tan aro -  cos. I  tanwo

Table ,4'.6 Christoffel symbols in wr-orbital coordinates (r,wo,I)

I)10,

U 0 0

0 - r 0

0 U -r sin2 aro

tlu'

0
t

; 0

I
r 0 0

0 0 - sln u,ro cos(ro

I)90,

0 U T
r

0 0 cot uo

I
f

cotwo 0
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Table A.7 Christoffel symbols in geod,etic coordinates (h,p,\)

!iu

0 0 0

0 - (h  +  M) 0

0 0 - (h  +  N)  cos2,p

ri,a
0 i+Ff 0

I
h+M

"ffi-Asin 
pcos rp 0

0 0 ffi si" pcosp

riu
U 0 1

h+N

0 0 -ffi tun'P
I

[+lv
- f f i  tune n

Table A.8 Christoffel symbols in ell ipsoidal coordinates (u,0,\)

qi
'F="o ao"z 0
u ' L ' f is inBcosB 0

f is inBcosB
uu2-2 , t l

0 n -S.or2 B

tl"i

-Shs inBcosB
L2

U

F f is inBcosB 0

0 0 f i s i nBcosB

+1
n 0 u

t l 0 - t a n B

u - t a n B U
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Index notation and tensor
analysis

A large part of the time spent on the solution to problems is often devoted to,
on the one hand, the language in which the problem and its solution are written
(i.e. notation) and on the other hand the mathematical formalism or tools used for
solving the problem. It is said that without the use of index notation and tensor
analysis Einstein could not have made his general theory of relativity to become such
a success, or even that this theory would never have been developed at all without
its use. This may illustrate the influence which the choice of a proper notation and
formalismmay have on the theory and it therefore justifies the amount of effort put
into the question of notation and mathematical formalism.

This appendix will therefore contain a short treatise on the two mentioned sub-
jects: notation and mathematical tools. However, not all possibilities will be treated
here. For the notation we choose here the (kernel-) index notation and as mathe-
matical tool the tensor analysis. Of course there are other possibilities, which are
perhaps more modern or more commonly used. There are, however, two reasons
that we choose here for index notation and tensor analysis. At first index notation
and tensor analysis are very elegant tools and easy to work with. Of course it re-
quires, as always, some experience to work efficiently with them, but as soon as one
is getting acquainted with it, one discovers that they are very suitable for almost
all our problems and that they therefore create a single general framework in which
all parts of the subject fit, that formulas become very short and easy to read and
write and (last but not least) that these formulas can be very easy converted into
programmable code for computational purposes. The second reason is that this the-
sis contains a chapter on relativistic aspects. At present index notation and tensor
analysis are stil l very commonly used for relativistic purposes.

Nevertheless, the use of vectors and matrices and their corresponding notation
is perhaps even more widespread. AIso in this thesis it is used, since it is often
convenient and it suffices our needs. However, sometimes people like to switch
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between index notation and matrix notation. To this extent, the present appendix

will also contain a section on the relation between them.

E}.1 Index notation

The terms index notation and tensor analysis are often mentioned in one breath.

One has to bear in mind, however, that they are two distinct topics. As already

illustrated above, index notation is only a kind of language for writing something

down. It can be used for all kinds of quantities, including the ones which are

not tensors (Moon and Spencer, 1986). Tensor analysis is a kind of mathematical

tool which can be used to solve certain problems. It can be expressed using index

notation but also other notations may be used. The two topics will therefore be

treated separately. In this section some fundamental concepts of index notation will

be pointed out, in the next section some concepts of tensor analysis.

8.f.1 Kernel letters

In index notation an object (or entity) is a set (or system or array) of numbers which

are in some sense related to each other. The relationship between the numbers may

be based on geometrical or physical properties or may be a purely mathematical

one. In the latter case we may also use the word holor (Moon and Spencer, 1986),

in the former case the word quantfty is often used. Since in this work almost all

objects have some physical or geometrical background, we will use the word quantity

throughout the work. The numbers may also be called elements or merates. Usually

the numbers out of which a quantity is built up are taken relative to some coordinate

system. Then they may be called coordinates or cornponents. We will use the word

components throughout this work. The meaning of the word component used in this

sense must not be confused with the meaning of the same word customary in vector

analysis, although the two may in special cases coincide (Moon and Spencer, 1986)'

A quantity is represented by a letter. For example, the gravitational potential

is denoted by V, the metric of a space by g, the Christoffel symbols are f , a base

vector is e, coordinates are x, etc. As one can see, letters to indicate quantities may

be roman or greek, small or capital, even boldfaced. It is not recommendable to

add other symbols or characters, like bars, accents, numbers or tildes, to the kernel

letter. This is to avoid confusion with indices and to keep formulas visually as clear

as possible. One should, furthermore, never assume that the reader is familiar with

what the writer thinks is a commonly accepted notation. It is better to state always

explicitly the meaning of all kernel Ietters and the quantities they represent.

In the kernel-index notation of Schouten (Schouten, 1954) a quantity is always

denoted by the same letter, independent of the coordinate system with respect to

which the components of the quantity are expressed. In this case we call the letter the

kernel letter. Not all authors using index notation follow this convention, so one often
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sees that if the same quantity is expressed with respect to another coordinate system,
another kernel letter is used, or that a bar or some other symbol is added to the kernel
letter (".g.g ---+ t or V --V'). In the kernel-index notation a change of coordinates
is indicated by a change of the type of indices (see next section). So the word
"kernel letter" not only has the visual meaning of the central character representing
a quantity but it also has the fundamental implication that the introduction of
an arbitrary coordinate system is only artificial and does not change anything of
the physical or geometrical nature of the quantity. The numerical value of the
components of the quantity may change when transforming to another coordinate
system, but the physical or geometrical characteristics remain, of course, the same.

Furthermore, we will try to leave the kernel Ietter intact as much as possible,
also when performing other operations on it then coordinate transformations. So if
the effect ofany operation can be indicated by a change in the type, number or place
of the indices, the kernel letter will remain the same. These kinds of operations are,
for example, raising and lowering of indices, contraction, covariant differentiation,
transpose.

8.1.2 Indices

A quantity which consists of more than one component (so it is not a scalar) is
indicated by a kernel letter with one or more subscripts or superscripts, also called
(lower or upper) indices, attached to it. For example, the components of the gra-
vitational acceleration vector are indicated by Va, the components of the metrical
tensor by g;i, the components of the christoffel symbols by Ifi, etc. Indices may
be roman or greek letters and small letters or capitals. The index is in fact a short
hand notation for the separate components, for example in S-dimensional space we
have

{ V e l A : 1 , 2 , 3 }  :  ( 7 a = 1  , V A = z , V , c = s )  .

If this is simply abbreviated by Ve we have to state explicitly the range (dimen-
sion) and the meaning of the index 1., for example: the index A represents polar
coordinates in 3-dimensional space:

{ r o l A :  1 , 2 , 3 }  :  ( z A = r  , r A = '  , r A = 3 )  ,

the index I represents cartesian coordinates

{ c d l r  :  L , 2 , 9 } :  ( " i = t ,  , i = 2 , r i = s )  .

lt is often convenient to give the various components special symbols like

{ " o l A :  1 , 2 , 3 }  :  ( r , d ,  ) )

{ x i 1 i  :  L , 2 , 2 } :  ( r , y , z )  ,

and
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so that we also have

{ V n l A :  t , 2 , 8 }  =  ( % , V e , V t )

and

{ V i l ;  :  1 , 2 , 3 }  =  ( V " , V y , V " )  .

The latter notation is ofcourse not according to the conventions in the last paragraph
but in most cases this kind of notation will not lead to any confusion and the meaning
of the symbols will always have to be evident from the context. The following
notation, however, is ambiguous:

(v1,v2,vs)

because this notation does not show with respect to which coordinate system the
components are given.

From now on we will adopt a much used convention which is to confuse a quan-
tity with its components (Foster and Nightingale, lgzg). For example, we refer to a
quantity Va rather than a quantity V with components 7a. Note that this conven-
tion becomes important if we follow the rule given in the last section to leave the
kernel letter intact as much as possible, even under operations changing the number
of indices such as contraction or covariant differentiation. When referring explicitly
to the quantity and not to its components, the kernel letter is often printed boldface,
like in the example above: quantity V with components V4.

So the type of the indices indicates the coordinate system. In the kernel-index
notation we address to each coordinate system a special (limited) set of succes-
sive letters from the alphabet to be used as indices. For example, the set of in-
dices {r , i ,k, / }  can be used for alocal cartesian coordinate system, {A,B,c,D} f .or
curvilinear polar geocentric coordinates, etc. We allow for indices the use of other
symbols  a t tached to  the  le t te rs ,  l i ke  { r , ,  j t , k , , l , } , {A ,B,e  ,D} . In  combina t ionwi th
the kernel letter we then have for exampleVa the components of the gravitational
acceleration vector with respect to the polar coordinates ,A , Vi the same quantity
but expressed with respect to local cartesian coordinates x,i , etc.

As one can see, indices may be placed high or low. Upper indices represent
contravariant components and lower indices represent covariant components, at least
if we are dealing with tensors. In section 8.2.2 the meaning of these terms will be
discussed.

Any index appearing twice (one upper and one lower index) in a quantity or
in a product (in general in a term of an expression) is, according to Einstein's
summation convention, summed over all values the index can take (i.e. over its
range or dimension), for example

D R"uTu ,
9 = L

where n is the dimension. Such indices are called dummy or summation indices
because after evaluating the expression they are cancelled. Summing over equal
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indices in a quantity or in a product is also called contraction Indices which are
not dummy indices are called /ree indices. After summation over dummy indices in
an equation the remaining (free) indices on the left hand side and on the right hand
side should be the same and in the same place (upper or lower), for example

ai rbi  
-  c i

a i b J 1 ,  1 - c k : d k

are correct expressions, but
oi  ibk :  ' i

is not. We will call this rule here (weak) inder balance.
Since dummy indices are summed over, we may always replace them by other

letters, as long as they belong to the same coordinate system and as long as they
are not already in use as free indices.

The number of indices attached to a kernel letter indicates the rank (or valence
or order) of the quantity. If a quantity is of second rank it is represented by a kernel
letter with 2 indices, for example o;i. If the i-index is raised we could write the
result as a'i, ai, or a;.r. When working only with index notation, the first form is
always clear. The indices may always be placed as near as possible to the kernel
letter. If one likes to convert certain equations at the end of a derivation to matrix
notation, the second (or third) form is to be preferred. In this case not only the place
of an index upper or lower matters bub also the place right or left: when raising or
lowering an index it must keep its place in horizontal direction relative to the kernel
letter (see next section). It may help to place a dot under each upper index if other
indices follow (thira form), but this makes the expression visually unattractive.

8.1.3 Matr ices

Despite the fact that the language of index notation is sufficient for writing down
all kinds of problems, many people stil l l ike to work with matrices because matri-
ces and matrix notation (including vector notation, sometimes called symbolic or
abstract notation) are found to be more illustrative than index notation. Now the
conversion between the two is not always clear. Problems occur with the ordering
of the quantities in a term, with the transpose and with the inverse of a matrix.
In this section we will discuss these problems. Furthermore, additional conventions
will be given, which, if strictly followed, will prevent these problems to occur.

One of the most important differences between the two languages is that in
matrix notation only quantities up to rank 2 can be expressed adequately, whereas
in index notation there is no limitation on the rank of quantities. So in this section
we will restrict ourselves to scalars (rank 0), vectors (rank 1) and matrices (rank 2).

In index notation the ordering of the quantities in a term is of no importance:

o' jbt r
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is the same as

bj ro ' i

(i.e. multiplication is commutative). But in matrix notation it is known that AB I
BA (where A and B are matrices). So if we derive in index notation an expression

and we like to convert it later to matrix notation, we have to find a way to discover

the ordering of the quantities in a term. Furthermore we have to find out if we are

dealing with the original quantity, its transpose or its inverse. In index notation the

latter two play no explicit role. An expression can always be evaluated correctly if

one strictly follows the rules for dummy and free indices, without having to know

anything about the transpose or the inverse. It is not even necessary to define

these forms (although this is possible). Since in matrix notation the two are very

important, we have to find a way to see whether the quantity is a transpose, inverse

or the original one.
The problems mentioned can be dealt with by following some additional conven-

tions than the ones mentioned already earlier.

1. First of all we connect to the first index (when reading from left to right) the

rows of the matrix and to the second index the columns, for example in A;i,
r indicates rows and 3 columns. AIso ci is a one column ("standing") vector,

the index i indicating the rows. A "lying" vector has, in this sense, to be

written as r'd, r denoting the columns now, the dot (in the place of the rows)

being added for clearness. This implies that indices should always maintain

their place in horizontal direction. This is especially important during the
processes of raising and lowering the indices. A quantity with one upper and

one lower index belonging to the same set, should therefore always be written

with shifted indices: Art and nor A!r. In an equation the free indices on the

left and right hand side should now also be in the same place left or right, not

only upper and lower. For example

ro :  Rio tr i

should be written as

ro :  Roir i

We call this strong index balance. In terms of a matrix product this is easy to

understand: ri and ro are "standing" vectors (the indices indicating rows) of

which the lengths have to agree with respectively the number of columns and

the number of rows of the matrix ,R. This also means that in a product equal

indices always appear twice: once as row and once as column index.

2. Secondly, when reading the indices from left to right, the alphabetical order

indicates which form of the quantity we have: alphabetical order indicates the

original form and reverse order the transpose, for example A;i is the original
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quantity and Aii the transpose. Also: Drft original, bt, transpose or di r orig-
inal, df transpose. This rule only applies if the indices belong to the same
coordinate system.

In the case of coordinate transformation matrices we are dealing with quan-
tities of which the indices belong to different coordinate systems, for example
8do. In that case we have to look into the definition of n. tr r? (o, arry other
kernel letter used for the coordinate transformation) is defined (or introduced)
by means of an equation like

r i  :  Ri . 'x,o

the normal order of the indices is {r,cr} and if it is defined using

ro : Roiri

the order is {a,r}. So the indices indicating the "new" coordinates (left hand
side of the transformation equation) come first.

Strictly speaking the transpose should be expressed by a different kernel letter.
But since the two are very strongly related (they are built up out of the same
(numerical) values only in a different ordering), since the difference between
the transpose and the original quantity can be shown without ambiguity by
means of the indices and since it is commonly accepted, we will use the same
kernel letter for the original quantity and the transpose. This is also common
in matrix notation.

3. In matrix notation the inverse A-r of a matrix A is define d, as A-r A : I
where.I is the unit matrix. In index notation the inverse a,, of a quantity Are
is defined through

A'" ail - 6', .

where 611 is the Kronecker delta whose value is 1 if r : I and zero if r I t.
We see another kernel letter has to be used for the inverse, since the inverse is
in fact another quantity. The definition equation relates the inverse with the
original quantity. We try to pronounce this relationship a little bit more by
using for the original quantity and the inverse the capital and small version
of the same letter (or vice versa) but this is not strictly necessary. Using
a different kernel letter becomes extremely important if we are dealing with
mixed quantities (quantities having both upper and lower indices) like Rdr.
Its inverse rd, would be defined by Ri r/ r 

- 6'o. If we would have used
the same kernel letter here the notation would have been very ambiguously:
R'iBir - 6'r. one has to customize oneself to take for the inverse always a

different kernel letter and state explicitly the definition equation. So if rBi;
is in matrix notation .B and rd, is its inverse r?-r we have the following four
possibilities:
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original quantity

transpose

inverse

transpose of inverse

index notation

R r i

R;

, ' j

,i'

- ' matrix notation

--+ R

--- RT

--- ft-l

-. R-T

There are however two situations in which we may use the same kernel letter

for the inverse and the original quantity. That is if the quantity has either

two upper or two lower indices or if the indices do not belong to the same

coordinate system:

original quantity A'r , B;i

transpose Aii , Bi;

inverse A,i , B'i

transpose of inverse Ai; , Bii

, C t o t  A  , B  , C

, c o i ' A T  , B T  , C T

, Coi t A-l , B-l , g-L

, c i o  -  A - T  , 3 - T  , g - T

It is repeated here once again that for mixed quantities the latter does not

apply so a different kernel letter lras to be used.

4. The last new convention concerns the ordering of the quantities in a prod-

uct. From convention 1 it follows that this ordering is such that equal indices

(dummy indices) are as close as possible together. So if a derivation in index

notation leads to a Product like

attb*

it has to be written as
brra"t ,

the dummy index s appearing in both terms close together..In the same way:

Vo6R;"Rb1has to be wri t ten as RroVo6R0, and 9; i r ' tyt  as t ' tg; iy l  '

Example

To illustrate the use and consequences of the new conventions we show an example.

Imagine two coordinate systems of which the base vectors are respectively ei and

e". we assume the dimensions of i and a are equal. The components of a vector x

in the two systems are respectively cd and ro:
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Suppose the two systems are connected by a transformation:

e i :  R ; o e "  '

Then we have

x :  r ' ie i  -  , ' i  R;oe" = r 'oe^ .

Inspection of the last equation shows that the transformation of the components is

x,o : Roixi ,

where we have interchanged the indices r and a of R based on convention 1 and
reversed the order of c and R based on convention 4. The inverse of the last equation
is

r j : f o r o

with

R;"rJ -  6rt

So if, in matrix notation, we substitute.R for ,Rra we see that if the base vectors
transform with R, the coordinates transform with R-T, based on convention 3. If a
vector uo transforms like v; : A;auo, a matrix I/16 will transform like

v;j : A;ovotAb j

(see section B.2.1). In matrix notation this becomes (if we substitute Vj - l,
Vot -  V):

I :  A V A T

a familiar result.
There remains one thing to be explained. Sometimes we have the situation where

the numerical values of two sets of components (of the same rank and dimension)
are the same, but the two sets are not represented by kernel letters with the same
indices in the same places. According to the new conventions above we may only
equate quantities if free indices are of the same type and in the same place (upper
and lower as well as right and left). For example, in "ordinary" index notation,
the symmetry of a matrix is expressed as adt : aii. This would not be correct
based on the strong index balance. Another situation where this occurs is with
orthogonal rotation matrices, where the transpose equals the inverse. Expressing
this as Rxi:  r i l  is not correct.

These kinds of equalities will be expressed with bracketsl:

{ a t t }  :  { a t t }

rThis notat ion is chosen fol lowing (Moon and Spencer, 1986). In this book a very beauti ful and
extensive treatment on index notat ion and tensor theory is given, which, however, does not ful ly
coincide with the conventions presented here.
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and

{R t , }  =  { " t ' }  .

The number and type of the indices on the left and right hand side are sti l l  the same,

but the place may be different. This indicates numerical equality for all values the

ind i cescanassume,so {o i i }  - -  
{ " i t }  means  a r r :  a r r ra r2 :  a2 r raLS :  a3 r ,Q .23 :  Q32 ,

etc.

Example

Suppose that, in the previous example, the matrix V is symmetric: {Vo6} : {Vaol,..
Now let us derive the transpose of l, which is in index notation Vii:

1V1;\  :  {Ri"V"bRbi \ {R,bV6oR"r}  (dummyindices)

{RjbV"bR";} (symmetry of V)

{R"rV"rR1b} (convention 4)

{R:V"bRb j }  (convent ion 1)

{V;i} (expression for V;1) ,

so we see I is also symmetric.
As already said, the additional conventions given in this section are only needed

if one likes to convert from index notation to matrix notation. If this is not

the case (what is to be recommended) "ordinary" index notation can be used

(Moon and Spencer,  1986).

8.2 Tensor analysis

We use tensor analysis in some chapters of this work because it is a suitable math-

ematical tool, as stated in section B.l. Another reason we use it, follows from the

fact that this work deals with some aspects of gravitation. And since Einstein we

know that gravitation is closely connected to geometry, in particular the geometry

of curved spaces. Especially in the latter case, the tensor analysis, as it is based

on the absolute differential calculus of Ricci and Levi-Civita, is found to be a very

suitable mathematical concept.
In the same sense as index notation and tensor analysis are two different topics,

though strongly connected in practice, also geometry and tensor analysis are not the

same. If we, in this work, talk about geometry, we are dealing with metrical spaces,

curvature, surfaces, metric, curves, etc., all in a more or less concrete sense. The

geometrical objects are the objects of study themselves. If we look upon geometry

in this way, tensor analysis is again (only) a mathematical tool to help us solve

our geometrical problems. The two topics, being distinct, are therefore treated
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here separately. First we deal, in the present section, with tensor analysis. We
discuss the tensor concept, the terms contravariant and covariant and the process of
differentiation. In the next section, some geometrical aspects are discussed: spaces,
metric and curvature.

The division of the topics, treated in this appendix, into three parts (i.e. index
notation, tensor analysis and geometry) based on the considerations given above
and in the last section, may seem artificial to some readers, but it is just a way
of ordering the broad range of topics related to the theory and it suits the present
work.

8.2.1 Tensor

A quantity is defined as a set of elements which are in some sense mutual connected.
This connection depends in its turn on the definition of the quantity and it will
in most cases be a physical or a geometrical one. Such a relationship between the
elements of a quantity is one of the characteristics of tensors. But a more important
aspect of a tensor is that its elements are the components of the quantity with
respect to some coordinate system. This does not mean that all sets of components
are tensors. To be a tensor, the set needs to have some additional, special properties,
which will be explained in this section. The important point here is that there is
a distinction between on the one hand the quantity itself, which has some physical
meaning, and on the other hand its representation by a set of numbers with which we
can carry out computations. These numbers maybe the components of the quantity
relative to a coordinate system and this has to be so as one of the conditions for the
set to be a tensor. One can imagine that the value of the numbers changes if another
coordinate system is chosen to represent the same quantity. Consider for example
the components of a displacement vector in E3 in two different cartesian coordinate
systems having the same origin but a different orientation. Since the introduction of
a coordinate system is only artificial and has nothing to do with the quantity itself,
we like to have a mathematical framework underlying our computations which is
independent of this arbitrary choice of coordinates. This is exactly the essential
characteristic of tensor analysis and it is captured in the word "absolute" in the
absolute differential calculus of Ricci and Levi-Civita: "The tensor calculus is said
to be absolute because it is independent of the details of the choice of coordinates,
that is, the equations have the same form in all coordinate frames" (Ohanian, 1976,
p.22L).

To see what this means mathematically we discuss the transformation between
two coordinate systems. Let us denote the "old" coordinate system with zo and the
"new" with cd and let the two be connected by the relationship

r t  :  r ' ( ro )  , (8 .1 )

expressing the fact that the new coordinates are some functions of the old. The
coordinate transformation B.1 may be chosen at will, but for convenience we will
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impose some limitations on it, namely that the transformation function is single-

valued (which means that there is a one-to-one correspondence between r' and ro),

that it is analytic (i.e. its derivatives up to a sufficient order exist and are continuous)

and the Jacobian of the transformation is different from zero in every point, cf.

(Moon and Spencer, 1986). In this case also the inverse of the transformation exists:

r "  :  x " (x i )  .

For the rest the transformation may be completely arbitrary, non-linear as well as

linear. Manipulations of equation B.1 tend to be complicated if the transformation

is non-linear. But if we are willing to deal with infinitesimal coordinate changes
(which is the case in tensor analysis), we may linearize the transformation B.1.

Differential changes in the coordinates are then transformed as

or lnverse

4,; - 9!d,o
or,'

d,xo : 
#O} ,

where the partial derivatives ffi ur" computed from 8.1. These partial derivatives

are in general functions of the coordinates. Only in the case of linear coordinate
transformations they are constants.

Now we define a contravariant tensor (under general coordinate transformations)
as a quantity which transforms according to

fij...p _ 6ri )ri
-  

6 r d  E r F  0 r B ' -  '

a covariant tensor as a quantity which transforms according to

0ro Tso |xo
A; i . "p  :  

a i  aJ  
' ' '  

a ro  
A"p  o

and a mixed tensor as a quantity transforming according to

A ; . . . r  : o r '  . . . o r l  o r '  . . . o r o  a o . . . 6' t . r  rn"  p -  
a""  

" '  
5"0- f f i  

" '  
aron e t l  I

where the partial derivatives ffi and
another according to

(defined above) are the inverses of one

0r' 0ro _ ,;
a * a i l - " j '

Tensors of rank 0 are called scalars, tensors of rank 1 are called vectors. We will

in general not call tensors of rank 2 matrices, because not each set of numbers which

can be written as a system with rows and columns (a matrix) has to be a tensor. A
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quantity is a tensor only if it fulfils one of the transformation laws B.2, 8.3 or 8.4. A
tensor of rank 2, however, can always be represented as a matrix, but that does not
make the two identical. As a concession to matrix notation we will, in the sequel,
refer to # u" the transformation matrix and to # u" the inverse transformation
matrix, thereby keeping in mind the remark about second-rank tensors made above.

We see that the tensor character of a quantity is only of interest if we are dealing
with different coordinate systems or with coordinate transformations. This does
not always necessarily have to be the case. But f different coordinate systems are
involved and a quantity is a tensor, its representation in each coordinate system is
the same except for the type of the indices, for example Ad versus Ao, Bob" versus
B;,it1r,, etc. tansforming from one coordinate system to another may never cause
the tensor representation to change from, for example, Ai to ao, A; to Ao6 or Ad to
Ao + Bo, etc. This means that, if an equation consists only of tensors, its form is
the same in any coordinate system, except for the type of the indices. This fact is
one of the most important and most powerful concepts of tensor analysis. We have
for example

in one coordinate system, which is writ ten as

uob : lro"z"l * Yo r.t

S : gobx"Ab

in another. But also if all components of a tensor A;i are zero in one coordinate
sys tem,  i .e .  A ; i :0  (o r  A ; j :0 ; i ,  the  r igh t  hand s ide  be ing  the  "nu l l  tensor " ) then
they are zero in any other coordinate system.

In the examples above, we see that tensors may be added or multiplied with
other tensors. Addition of tensors in only possible with tensors of the same rank
and the same type (remember: dummy indices are to be considered cancelled after
evaluation). The result is again an tensor of the same rank and the same type.
Multiplication of tensors will result in a new tensor of which (c) the rank is the sum
of the rank of the multiplied tensors minus the number of dummy indices, and (6)
the type of the indices is the type of the remaining free indices in the product. It
can be shown (cf. (Hotine, 1969), (Moon and Spencer, 1986)) that these operations
indeed result in new tensors. Reversely, each tensor can be written as the product
or sum of other tensors, with or without contraction, as long as they obey the rules
above.

8.2.2 Co- and contravariant

In the previous section covariant and contravariant tensors were defined as quantities
of which the components transform in a certain manner. This way of introducing

u i  j :  w i  * zk j  +  Y ; r ' j

S :  g ; i r ia i
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tensors is based on the classical approach to tensor algebra and tensor analysis (cf.
(Ohanian, 1976), (Sokolnikoff, 1951), (McConnell, 1957), (Hotine, 1969) and many
other textbooks). This classical way of introducing tensors is a geometrical one
and it in fact goes back to Euclides. H", for the first time, gave a meaning to
the concept of a geometrical space when trying to describe the world (or space)
surrounding us. Later the connection to some specific geometrical structure was
abandoned and a space was considered just a set of points with some arbitrary
structure. Whereas the space considered by Euclides was a linear, 3-dimensional,
geometrical space (Euclidean space or Et), u space in a purely mathematical sense
may be of any dimension, linear or non-linear and with or without any special
geometrical structure.

Later, when Descartes suggested to project the collection of real-numbers onto
a straight line, the concept of coordinates was introduced into the space. The ele-
ments, out of which a space was built up (i.e. points) could now be represented by
a set of  numbers ({cdl ;  :  1, . . . ,  n},n being the dimension of the space).  The points
are said to be labelled by n real coordinates. If the structure of the space is reduced
to zero, we are merely considering a set of labelled points and the space is said to
be arithmetfc, denoted by X'. Whereas Descartes used linear coordinates to label
the points of E3, in general also non-linear coordinates may be introduced. A lin-
ear space (a space in which linear coordinates can be introduced) without metrical
structure (see section B.3.1) is called an affine space: A'. In such a space, various
coordinate systems are connected through linear (or affine) coordinate transforma-
tions. A next step is the introduction of an orthonormal coordinate system into an
affine space (i.e. a system of which the coordinate axes have the same origin, are
mutual orthogonal (independent) and have the same scale). In doing so, we endow
the space with a specific metric and the space is called Euclidean.

As already mentioned before, the tensor character is in fact only of importance if
different coordinate systems and the transformations between them are concerned.
A tensor is a quantity which behaves as an invariant under such coordinate trans-
fortnations. In this sense, a tensor is an extension of a uector, a concept originally
coming from physics. Gibbs introduced a geometrical visualization of a vector,
namely an arrow, characterized by its direction and its length. A point, having
a fixed location, is the most elementary (geometrical) invariant under coordinate
transformations. A vector, fixed by means of its begin and end points, is also an in-
variant. Of course the numerical values of the components of the vector may change
if we carry out a coordinate transformation, but the vector itself, having some defi-
nite physical or geometrical meaning, remains unchanged. Its components express,
however, the connection between the invariant vector and the arbitra.rily introduced
coordinate system.

The components of a vector I are the scalars )o relative to a basis {e"lo :

1, .  . . ,  n) such that )  :  , \oea. The set of  vectors €s c&n be considered a basis of
the space if it spans the space (i.e. every vector in the space may be written as a

linear combination of the members of the set eg) and if its members are linearly
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€a= l

; c = l

Figure B.1 Contravariant components.

independent. The base vectors may also be visualized by arrows, however of unit
length, lying along the coordinate axes, pointing in the positive coordinate direction
and with the begin points in the origin of the coordinate system. In a linear space
(affine space) the components of an arbitrary vector with begin point not in the
origin of the coordinate system, may be obtained by parallel transport of the basis
from the origin to the begin point of the vector. If we now consider a vector field,
defined throughout the whole space) such transport of the basis will result in a
basis-field, i.e. in each point of the space we have a set of base vectors.

If we use curvilinear coordinates in a linear space, or if the space is not linear
itself, we generalize the concept of a basis to the set of tangent vectors to the coor-
dinate curves in each point. The tangent vectors now span in each point the (local)
tangent space. The basis now depends on the coordinates, just as the vectors of a
vector field may depend on the coordinates. (In tensor algebra we deal with problems
either restricted to the local tangent space in a point or concerning the whole space
in which case the space has to be linear (so that all tangent spaces coincide with
it). Tensor analysis studies problems either dealing with the connection of different
tangent sPaces in a non-linear space or dealing with curvilinear coordinates in linear
space, in both cases forcing us to linearize and to consider infinitesimal coordinate
changes.)

The components of a vector relative to a basis in the sense described above (i.e.
in general the tangent vectors to the coordinate curves in a point) are now called
contrauariant components, denoted with upper indices as in l : )oea. This defini-
tion is, at this point, completely arbitrary, but we have to make a start somewhere.
The geometrical interpretation of these contravariant components is probably well
known to everybody, at least in Euclidean 2 or 3-dimensional space. There, those
components are the parallel projections of the end point of the vector onto the co-
ordinate lines, see figure B.1. In the case of non-linear coordinates the picture is
essentially the same being only differential now.

Sets of coordinate lines in an n-dimensional space, along each of which one
particular coordinate varies and the other n- 1 coordinates are constant, are not the
only way in which a coordinate system reflects the geometrical structure of a space.
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appendix B. lndex notation and tensor analysis

A coordinate system provides us also with a dual structure of sets of coordinates

planes on each of which one particular coordinate is constant and the other n - I

coordinates vary. In the former structure (sets of coordinate lines) we may find

the base vector in the rD-direction by taking the derivatives of all the coordinates

x 4  r a  :  1 , .  . . , n  w i t h  r e s p e c t  t o  r b :

0ro

o{"u)

for o : 1,.. . , n and fixed D. This gives a unit vector (tangent vector) in cb-direction.

The complete basis is found by repeating this for all values b can take (i.e. b -

l r ' "  r n ) '

In the case of sets of coordinate planes (dual structure) we take the derivative

of one part icular c" with respect to al l  coordinates rb ,b :  l r .  .  .  ,n:

for b : 1, . . . , n and fixed a. This also gives a unit vector which is to be regarded as

the gradient vector of the scalar field co. Rep eating this for all values of a we obtain

the so-calle d dual Dosr's ee. Gradient vectors of arbitrary scalar fields rp - 9(r") may

now be written with their components relative to this dual basis. So if the vector p

is the gradient of gr then F : poea. The components with respect to the dual basis

are called couariant components and they are written with lower indices2. In the

same sense as the gradient of a scalar field reflects the rate of change of it in a certain

direction (i.e. the density of the g : constant surfaces) the covariant components

are related to the density of the coordinate planes in the direction perpendicular to

those planes. Only in an Euclidean space (with a metric defined) we may visualize

these components as the orthogonal projections of the end point of a vector onto the

coordinate lines, see figure B.2 (Hotine, 1969). Note that in this figure the vectors

are not of the same type as in figure B.1, which fact we tried to indicate by using

dashed lines in figure 8.2. In other spaces no satisfactory visualization is possible.

So we have at this moment two types of vectors. At first we have ordinary vectors

(contravariant vectors) with (contravariant) components relative to the basis. Exam-

ples of this type of vectors are displacement vectors, velocity vectors, etc. These are

the vectors everybody is customary to work with. Secondly we have coaectors with

covariant components relative to the dual basis. These are, for example, gradient

vectors. Only if in the space a metric is defined the two sets of components are re-

lated by means of the metrical tensor (see section B.3). In this case each vector may

be written with covariant or contravariant components. The distinction "vector"

and "covector" looses its usefulness and we will simply talk about vectors. For the

components, however, the distinction between covariant and contravariant remains.

2Sometimes quanti t ies which can be writ ten with covariant components relat ive to the dual basis

are cal led l- forms, cf.  (Misner et al. ,  1973).
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8.2. Tensor analysis

Pa=2

/:
" a= l

Figure B.2 Coaariont components.

Tensors, being an extension of vectors, may also have covariant or contravariant com-
ponents. For tensors of rank 2 or higher these components are, however, difficult to
visualize geometrically, the extension being a purely mathematical one.

Now consider a general coordinate transformation ct : r;(r").From this trans-
formation we may compute the transformation matrix ffi and the inverse transfor-

mation matrix ffi such that u*Uffi: 6r{. In a point P we now have two sets of
coordinate lines, one set for the cd-coordinates and one for the co-coordinates. The
tangent vectors along all the coordinate lines u" (together forming the basis e") were
found above through 

ffi,a 
: 1,. . . , n for each b. In the same manner we may find

a set of tangent vectors along the cd coordinate lines through 
ffi, " 

- 1, . . . , n for
each r. This set forms a new basis ei in P, spanning the same tangent space as does
ea. The quantities # ^", be interpreted as the components of the base vectors ei
relative to the basis eg, just as the quantities ffi: 6Do are the components of the
base vectors e" relative to this basis itself:

., : $""ox,'

and
0rbe^: treu : dieu .

We see that under a coordinate transformation cd : ri (r") the contravariant base
vectors es transform with the inverse transformation matrix ffi. fn"" we have also
the inverse relation: 

,ri
e" : 

drtro 
ei '

For the dual basis we have in a similar manner

" i  :  f f i . "
"" : ff",
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In order to see how the contravariant components of a vector transform, we proceed

as follows: 
Ani

, \ :  ) o e a  :  A " f t " i  -  ) ' n i

=+ ,\i : 9^t
d to

so the contravariant components transform with the transformation matrix ffi.
In a similar manner we may show that covariant components transform with the

inverse transformation matrix ff. Wtureas we already defined the contravariant

and covariant components at the moment of introduction of the two sets of base

vectors (basis and dual basis) we could have equally well defined them at this stage as

the components transforming under a general coordinate transformation ci : ri(*)

with respectively the transformation matrix # ", 
the inverse transformation matrix

ffi. n*t"nsion of this reasoning to quantities of higher rank forms the background

of the tensor definition given in section 8.2.1.
Besides the classical theory of tensors described above (which is strongly con-

nected with geometry due to historical developments) there is also a more mod-

ern approach for introducing tensors, which uses the abstract-algebraic concepts

of space, vector space, sets, linear and multi-Iinear functionals, mappings, man-

ifolds, groups, charts, atlases, etc. Examples of this approach can be found in

(Foster and Nightingale, 1979), (Bishop and Goldberg, 1968) and others. whereas

in the classical approach the first step was a special metrical 3-space (Euclidean

space Eg) which was later generalized to non-metrical spaces of any dimension, the

modern approach starts with general spaces of arbitrary dimension and may end up

(after imposing more and more conditions onto the space) with the ES as a very

special case. In spite of the EB being in fact the traditional "working space" of

geodesists, the modern approach must also.have some appeal to them if interpreted

as a framework in which we work from "large" (most general) to "small" (specific

case).

8.2.3 Derivat ives

In the last section we saw that tensor analysis deals either with problems concerning

non-linear spaces or problems in linear spaces expressed in curvilinear coordinates.

(It is obvious that the use of curvilinear coordinates in a non-linear space is in-

evitable.) Consider now one of these two possible situations. In the space, a tensor

field is defined which, in general, will be a function of the coordinates. In a point of

this space we may construct a basis spanning the local tangent space in that point.

In curvilinear coordinates this basis will also depend on the coordinates so we are

in fact considering a field of coordinate dependent base vectors and tangent spaces

(O'Neill, 1966). A change of coordinates will in general imply a change of the local

basis with respect to which the tensor field is defined. Study of the tensor field

therefore requires knowledge about the way in which neighbouring tangent spaces
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8.2. Tensor analysis

are connected. The situation of continuously changing base vectors (which is the
case when using curvilinear coordinates) forces us to consider differential coordinate
changes. This brings us to examining the process of differentiation of tensors. If we
like to continue our computations using tensor analysis, we require that this difter-
entiation process yields again a tensor. Partial differentiation of a tensor. as known
from ttordinary" analysis, does, however, in general not lead to a tensor, as can be
shown easily. Consider an arbitrary contravariant vector u" which, under a general
coordinate transformation rd : ri(r") will transform as ui - 

ffiu". The partial
derivative of this equation with respect to ct yields:

or . , i  a  (a" r \  ^  o r iou"
_ t _ l - . - I

6rj  Ed \Er" )  
-  '  

Ex" Eri

The partial derivative is denoted by a comma preceding the differentiation index:
,i.,j : # lt the term containing the second-order partial derivative was absent,
u',, would transform as a mixed tensor. We conclude that obviously the ordinary
partial derivative is not a tensor. One exception to this conclusion is the partial
derivative of a scalar field ,S, which, according to the chain rule, transforms as

AS )xa 63
A r r :  A " t  A " "  

'

So for each scalar field ,S, S.o is a tensor.
Partial differentiation obviously is not the right method to account for the con-

nection of neighbouring tangent spaces. In order to find this connection, we look at
the way in which the basis e" changes under a differential change of coordinates dro
in each of the coordinate directions. Expressing this change of the base vectors ffi
relative to the basis e" itself, we may write

de"
6rt 

: Litec

o2 xi  orb ^ ar;  arb aoo
6ra6"b Qbi 

- ' 
flso flri Qab

0r" 02r i

(B.5)

(B.7)

209

(8.6)

where the Ili are called the coeffi.cients of the linear connection or for short "linear
connection", ttconnection coefficients", ttaffine connectiont', etc. The way of intro-
ducing the connection coefficients as in equation B.6 may be interpreted as imposing
a certain structure on an arithmetic space (although this structure is not a metric) .
This structure consists of nothing more then requiring the base vectors to change in
a linear way under a differential coordinate change and not completely arbitrarily.
The space is now said to be a linearly connected space (Moon and Spencer, 1986).
The Ili may in general be functions of the coordinates. Sometimes they are intro-
duced just by giving their transformation equation (ibid.), which is:

t "  -  6x t  }xJ  0x"  n1lh: 
ar" aro arr\i -

f lr i f lroflrb
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This equation (which we give without derivation) shows that the connection coef-

ficients do not form a tensor. It furthermore shows that the linear connection is

symmetric in its two subscripts, at least if ## : ##. We will in the sequel

assume that the latter is always the case. If this is not true, the basis field is called

anholonornfc and the space is a so-called torsionalspace in which differentiation is

possible, but integration is not.
With the linear connection we try to find a process of differentiation of a ten-

sor which gives again a tensor. From equation 8.7 we solve b, ffi through

multiplication with $$:

02 ri

0 ro  E rb
ry,-##,*0r'

0r"

Substitution of this expression into equation 8.5 gives after some manipulations (cf.

(Moon and Spencer, 1986)):

o r ,  * r t .  n , l  _  ox i  o rb  (y :  *n i  r " \
5Ai 

'  ' i *  u -  
Aro Ai l  \Arb 

'  -o '-  
)

This equation shows that the quantity on the left hand side transforms as a mixed

tensor. It is called the couariant deriuative of a contravariant vector and is denoted

by a semi-colon preceding the differentiation index: ui i (or Viui):

, i  , j  = ui ,, + t|1rrk . (8 .8)

We see the covariant derivative consists of two parts. One part is the familiar partial

derivative. The additional term, containing the connection coefficients, accounts for

the change of the basis in the differentiation process. Sometimes it is no longer

important that a tensor was originally created through the process of covariant

differentiation. In that case we simply write u].. This also means that every covariant

index of a tensor of rank r can be viewed upon as originating from a process of

covariant differentiation of another tensor of rank r - 1, namely one covariant index

less. For example: Ai i1, 
: A' irn 

-- Ai.i1, or Vr, : Vr;, --V;rs ot 9o : 9;a : 9,a'
Consider now the scalar'field S 

'': 
uorto. Since for a scalar field the partial

derivative transforms as a tensor, it is S,o - S,o. So we have:

(uow")  p  -  (oow") ; t

ua,b uo + vo wo,6 : uo;b u)o a lUowor6

: !a;b rDo + uo(uo,o * D? .")

yielding (with a change of dummy indices)
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8.3. Geometry

which has to be true for arbitrary t a, so that we find for the covariant derivative of
a covariant vector:

0oib : rto,6 - lf6 v" (B.e)
The covariant derivative of a contravariant tensor of rank 2, tab can be found in a
similar manner by writing 1ob - ,a*b. The extension to tensors of arbitrary rank
or type follows analogously. For each superscript one adds to the partial derivative
a term with I, and for each subscript one subtracts a term with f (like the ones in
equations B.8 and B.9).

The covariant derivative is the tensor analogy ofthe partial derivative ofclassical
analysis. For the total derivative duo : ffidxb the analogy in tensor analysis is the
absolute deriaatiue, defined as:

Doo: uo.6d* :  duo - t l6 f ;u"drb (8 .10)

Again only for a scalar field the absolute derivative of tensor analysis equals the total
derivative of ordinary analysis. The absolute derivative can be used to extend the
notion of a field of "parallel" vectors along a straight line in Es (which is ff : g) 66
a parallel field ofvectors along a general curve in a general space (see section B.3.1).
For the latter we have

D!"  :o
d u

along the curve parametrized by the parameter u. If we take for uo in this equation
the tangent vector dx"f du along the curve, equation 8.11 becomes

d2ro , nndrb dr"
d u ' + t u i ^ E : o

which is the equation of a geodesic. So geodesics are those curves in space along
which the tangent vectors in all points form a parallel vector field. Note that the
meaning of the word parallel in this sense is much more general and abstract than
the visual meaning it has in Euclidean space.

B.3 Geometry

In the previous sections some aspects of index notation and tensor analysis were
treated. As explained in section B.2 purely geometrical subjects were left out. In
the present section attention will be paid to geometry. First the notion and classifi-
cation of several spaces will be treated, which was already initiated in section 8.2.2.
Furthermore, we saw in section B.2.3 that the introduction of the linear connection
I already imposes some kind of structure to a space. The step from such non-
Riemannian (non-metrical) spaces to Riemannian (metrical) spaces consists of the
introduction of a metrical tensor. This tensor will be treated in section B.3.2. Spe-
cial attention will be drawn to curvature and curvature related quantities in the last
part of this section. Many general textbooks exist on geometry. As an example see
(O'Nei l l ,  1966).

( B . 1 1 )
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8.3.1 Spaces

In section 8.2.2 a space was considered a set of points with some structure. Such

a definition stil l remains vague because no explanation of the words "point" and

"structure" is given (Moon and Spencer, 1986). The reader, probably familia,r with

these concepts, will have an intuitive understanding of these ideas. When proceed-

ing, the meaning will become clearer through the description of some special cases.

Instead of "space", the word manifold is also used sometimes, but in the literature

one encounters various definitions of a manifold, strongly dependent on further appli-

cations. Most frequently it is used when introducing the tensor concept in a modern,

abstract-algebraic manner (see section 8.2.2). In that case, the structure imposed

on the set of points (which has to have a finite dimension) has to be such that co-

ordinate transformations involve differentiable functions. Or simply put: the space

has to have certain smoothness properties. The classical, geometrical treatment of

tensor analysis usually uses the word space. The introduction of a coordinate system

(viewed upon as a mapping of the elements of the space (the points) onto the set of

real numbers) allows labelling of the points in a unique manner. If the structure of

the space is reduced to zero, we call it an arithmetic space, denoted by Xt.

A very primitive structure can be imposed on the arithmetic space by giving

a certain meaning to concepts like "in", t'out", ttneart', etc. The space is then

called topological. As we already saw, another way of giving some kind of structure

to a space is the introduction of the connection coefficients Ii!. In general these

are functions of the coordinates, i.e. Qi(r'). The space is now a linearly connected

non-metrical space, denoted by Lt. If, in such a space, linear coordinates may be in-

troduced, we have a linearly connected, non-metric al linear space, which we already

encountered before as an affine space, denoted by At. Calling the latter space affine

or linear may tempt us to call the former "curved", but since curvature is a concept

which only has a meaning in metrical spaces, this may be misleading. As a compro-

mise a linearly connected, non-metrical and non-linear space is sometimes called

"pseudo-curved". Different coordinate systems labelling a pseudo-curved space are

connected via non-linear transformations. The "point" is one of the few invariants

of such a space. In affine space (in which coordinate systems are connected through

linear transformations) there are more invariants (like proportionalities of lengths

and surfaces or all kinds of intersection properties) giving already the possibility of

solving some elementary geometrical problems.

What remains are concepts like distance, angle, orthogonality and others, which

first obtain a meaning if a metric is introduced in the space. This idea originated

from Riemann, who proposed to introduce the concept of distance by means of a

quadratic differential form

dsz : go6dr"dxb , ( 8 . 1 2 )

the infinitesimal distance ds being an invariant and the quantities 9o6 the metrical

coefficients (or metrical tensor), which, in general, are functions of the coordinates.

The metrical tensor will be discussed in the next section. A space endowed with a
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metric by means of equation B.12 is called a Riemannian spaces, denoted by Ro.

In general a Riemannian space is curved. We may use this word here, since in
a metrical space we can give a meaning to the word curvature, as we will see in
section 8.3.3. Only if it is possible to introduce in the space globally (i.e. covering
the whole space) a linear orthogonal coordinate system, the space is called linear,
flat or Euclidean and is denoted by Eo. The complete classification of spaces as it
is presented here is given schematically in figure B.3.

arithmetic: Xn

r

I in.  coord.
non-metrical: Iinearlv connected: Ln affine: An

o
o

oo

l in .  coord.
metrical: Riemannian: Rn -------------> Euclidean: En

Figure B.3 Spaces

8.3.2 Metr ic

The metric, imposed on a space by means of the introduction of the metrical tensor
g, allows us to give a meaning to geometrical concepts like length, angle, volume,
etc. From the definition of the invariant ds (equation B.f 2) it follows that 9o6 is sym-
metric. In general 9o6 is a full matrix of which the components are functions of the
coordinates. Since 9o6 is a tensor (which we will not prove here), its transformation

3In fact, Riemann
nection coefficients I
Iater.

introduced the quadratic form direct ly
were afterwards expressed in terms of

into an ari thmetic space. The con-
the metrical tensor. as we shal l  see
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equation is
6ri }sj

9ab:  j ro  ar tg; i  
' (B.13)

This equation is extremely usefirl for computation of the components of 9o6 in vart-

ous curvilinear coordinate systems from g;; in cartesian coordinates, at least if the

transformation equations cd : ,'("") are known. The metric tensor provides the

space with an inner product. So analogously to equation B.12, which gives the in-

finitesimal length ds belonging to a differential change of coordinates dr, the length

u of a vector u" is given by
'2  -  go6'o 'b ,

and the inner product of two vectors uo and tlo is

gobuo wb

If the latter quantity is zero, the two vectors are orthogonal. The angle 0 between

the two vectors is now defined as

c o s d :
g obvo tttb

uID

with u : 1/l-o6u" ub and tu : \/ g 
"bw;fi. 

If we have an orthogonal coordinate system

and we take for uo and tu" differential changes of the coordinates in each of the

coordinate directions, we can show that the metrical tensor 9o6 takes on the diagonal

form, cf. (Moon and Spencer, 1986). If, furthermore, the coordinates are linear, the

diagonal components of 9o6 are constants. In a linear, non-orthogonal coordinate

system, 9o6 has not the diagonal form, .but its components are stil l constants.

The contrauariant metric tensor goo (also called associated or conjugate metric

tensor) is defined through
gob gb" -- 6o,

and it can be considered the inverse of goo.The contravariant metric tensor provides

the dual space with an inner product:

g"bvowt .

Now let us define the components of a covariant vector ;r as the tensor product

P o :  g o b A b

where )D are the components of an arbitrary contravariant vector l. Using the

definition of the contravariant metric tensor we find the inverse relation as

\o :  gob lrb .

The lengths of the two vectors p and A are respectively
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and

We may now write:

from which we conclude
write for the components

or

) o  :  g o D ) o  .

These operations (which involve the metrical tensor) are called respectively the
Iowering and raising of indices. They give us the possibility to compute from a
vector either the covariant or the contravariant components. In a space where a
metric is defined, the distinction between covariant and contravariant therefore only
applies to components, not any more to the vectors (or in general tensors) themselves
(compare sect ion 8.2.2).

Whereas the introduction of a metric offers us the possibility of solving a large
number of geometrical problems tnore than without a metric, it is in fact a limitation
on the generality of the space. As we shall see, the introduction of the metric limits
the choice for the connection coefficients f . These have now a specified form to be
computed from the metrical tensor. This relationship will be derived now.

Consider two arbitrary parallel vector fields )o and po along a curve parametrized
by a parameter u. According to equation B.11 we have for the two vector fields

D!" :o
qu

and
D p "  

: 0  .
du

In E3 the inner product of two parallel vector fields is constant along the curve, so
we require analogously that in curved space of any dimension

d(g"bl"  t tb) _ D(so,)"pb) _ o .
du du

(For scalars the total derivative equals the absolute derivative, see section B.2.3.)
This yields:

'-@#A : (T) \o t b + t- (#) tr * souAo (#)

l r2 :  gob lrolrb :  Ao po

\2 - 
9o6\" \b :  \o l to

that p.2 : )2. We therefore identify the two vectors and

)o  :  9o6AD

gobl"Ab

:(T)^",'
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d r "  ' o  b: 9 a b ; c  
4 u A  

P

- 0 .

This must hold for arbitrary vector fields ,\o and p.o and for arbitrary tangent vectors

# "" 
we have

9 o b : " :  O

(which is a tensor equation, so it holds in any coordinate system) or if we use

equation B.9

9ob,c : t!" suo )- *" s"a .

Cyclic permutation of the indices gives

l c a , b : * g " o * * s " o

lbc,a : tA g"o t t!, soo '

Adding the second and the third equation and subtracting the first and also dividing
by 2 yields

. l
t lu Sra :  ;  (9o"1 - f  gb",o -  1ot,c) (B'14)

or
1

rfo: 
,o 'o 

(goa,u - t  9bd,a -  9ob,d) (B'15)

Christoffel already derived this quantity (equation B.15) some time before the de-

velopment of the tensor analysis, and it is therefore called Christofel syrnbol of the

second kind. The Christoffel symbol of the first kind is equation B.14:

loa .  =  9"a l f .

The explicit form of the components of the metric tensor and the Christoffel

symbols are given for several coordinate systems in section A.2'

We should mention that, with the use of the metric tensor, we may also give

a definite meaning to the concepts of divergence and the Laplacian. Consider a

scalar field gr. The gradient of this scalar field is g;o: got which forms a covariant

vector. The contravariant components are rpo : gobpb.Covariant differentiation of

the latter and contraction of the indices gives the divergence of go:

go,o  =  9oo:  gub 4ob ,

which may also be considered the Laplacian of the scalar field rp'
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8.3.3 Curvature

In a curved space no linear coordinates can be introduced, at least not globally. Take
for example the 2-dimensional surface of a sphere. It may be described by curvilinear
polar coordinates (0,4) but not with'cartesian coordinates (r,y). In a flat space,
however, linear coordinates as well as curvilinear coordinates may be introduced.
Take for example in E3 cartesian coordinates (r, y, z) and polar coordinates (r,g, \).
In general, the components of the metrical tensor in curvilinear coordinates are
functions of the coordinates. Only in linear coordinates, those components are
constants. Suppose now, that we are given a metrical tensor of which the components
are functions of the coordinates. How can we find out if this metric belongs to a
curved space, so that it by no means can be transformed to a coordinate system
in which the components are constants, or that it is just the metrical tensor of flat
space but expressed in curvilinear coordinates? Or stated otherwise: what is the
condition for a space to be flat?.

In order to get an answer to this question we look at the way in which the
components of the metrical tensor change under a differential change of coordinates,
i.e. we compute the derivatives of the metrical tensor. In linear coordinates the
components of the metrical tensor are constants, so their partial derivatives will be
zero. But the partial derivative is not a tensor, so we may not conclude that in that
case the components of the metrical tensor will be constant in every other coordinate
system. We have to look to the covariant derivative. However, this does not help
us since we already saw in the last section that the first covariant derivative of the
metrical tensor is zero in all coordinate systems, independent of the structure of the
space. We may try to look to the Christoffel symbols. They are some function of
the first partial derivatives of the metrical tensor. But they also are no tensors, so
if they are zero in linear coordinates, this does not mean that they are zero in other
coordinate systems.

The answer to the question above has to be found by considering the second
partial derivatives of the metrical tensor. Now the first partial derivatives of the
metrical tensor appear, via the Christoffel symbols, in the expression for the first
covariant derivative of an arbitrary vector uo (in general of arbitrary tensors). For
the second partial derivatives we therefore compute the second covariant derivative
of uo. We find:

ua;bc : (uo;t)," - *" ro,u - \1v";a
: (rop - t"do ro) ," - ljr(ro,o - \'a r) - \1@",0 * lfa rr)
:  la,bc -  t1, .  ,o -  t&va,,  -  \7va,a *

I:"lbit," - tf"vo,it * tifior" .

We also have, on interchanging the indices 6 and c:

za;cb : ua,cb - t!"p ra - *"ro,u - *tra," +

+l:b\iu" - lbd.uo,,t * ruo"tior" .

217



appendix B. Index notation and tensor analysis

Subtraction yields:

uo;bc -  ua;cb: ua(*r,a -  * ,"  + L'"  ql  -  qi  4:)

where we used uo,bc : u4,c0 and the symmetry of the Christoffel symbols and we also

changed dummy indices. The left hand side of this equation is obviously a tensor,

so is u4, which implies that the term between brackets is also a tensor. This is the

Riernann-Christoffel tensor Rdob", also called the cutuature tensor:

Rdob" = *,0 - q1,, + t/-ry" - f:f:b . (B.16)

Now, in flat space and in linear coordinates, the components of the metrical tensor

are constant. The components of the Christoffel symbols are in this case zero, and

so are all the components of the Riemann-Christoffel tensor, as follows from equa-

tion 8.16. Since the latter is a tensor, its components will in this case also be zero

in all other coordinate systems. The vanishing of the Riemann-Christoffel tensor

is therefore a condition for the space to be flat, and vice versa. It can be shown

that this is a necessary and sufficient condition (see for example (Ohanian, 1976)).

The curvature tensor contains all the information about the curvature of the space

in its na components (where n is the dimension of the space) . However, it pos-

sesses a number of symmetries and its components satisfy certain identities, which

reduce the number of independent components to Snz(n2 
- L) (see for example

(Moon and Spencer, 1986)). Nevertheless, it is sometimes useful to consider con-

tractions of the curvature tensor. The Ricci tensor is defined as the contraction of

the curvature tensor on its first and last index:

Rob: R"ob"

and the curvature scalar is defined as

R: gob Rou _ Roo .

We mention one last contracted form of the curvature tensor, especially valuable in

the general theory of relativity. It is lhe Einstein tensor, defined as

G o b :  R o b  _ r r * n *  .

It can be shown that this tensor is symmetric and has zero divergence, i.e.

G " ' . u :  o  .
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appendix C I

Inclination functions

In chapter 4 we used, as observation equations, expressions for the local cartesian
second-order potential derivatives in terms of derivatives with respect to the orbital
polar coordinates (r,6,ro). The latter coordinate system has the satellite's orbit
as equator. The expressions are derived in section 3.1. We see that in this case we
have to know the expression for V6, the potential derivative with respect to /, for
example for the computation of the gradients V", andVs". However, in section 3.2
we had the potent ial  given as funct ion of ei ther (r ,0, \)  or (r ,wo,ur, I)  and not of
the coordinates (r ,6,uo). In order to f ind V6 we proceed as fol lows.

Let us compare the expressions for V, in terms of ro' and in terms of rA' (cf.
(Bett i  and Sansd, 1989)):

v , :  
*%vr

vu : \vr
" f

From these expressions we see that obviously

v5: -Ly'
' sln (,o

For V7 a series expansion exists (see section 3.2) so a similar expansion has to exist
f.or V6 in which the term sin-1a,, has already been included. This expansion can
be found in an analogous manner as the expansion of the potential in inclination
functions. The latter expansion is derived in (Kaula, 1966) and we will only briefly
show here the derivation of the series expansion for V6.

We start with formula (3.58) from (ibid.) which we write in the following manner

(c .1)

Ir,o,," 
cos m(re t sunsin mo,) *vr,o:ry (il'*'*"
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appendix C. Inclination functions

k

+ i (Cmsin m w" - Suocos rn c^.,r)) DTrrr, "int-m-zt 
1,

l=0

q / - \ . {  . ,  m - s  t - m - 2 t * . c  I

"  L  I  |  -? ' .o . '  lcos*-" ,os int -* -2 ' * ' ,o l

I
where j : '/i,.:)"' ,1" ,".tpart and

When differentiating V,"
equation C.1)

) V r m  : G M  ( E \
w -  R  \ ; i

where

f  ( I )  :  r in l -nr ' -2t -1 - Icos"-1 I  
[ ( /  

-  m -  2t )cor21-  ss in2 l ]

g(u") : (C,,o - jSho) si^"'

h(wo) : alnl-zn-2t*s-L ' ')o cos^-t ' !o '

Equation C.2 can be compared with formula (3.59) from (Kaula, 1966). Proceeding

in the same way as (ibid.), we arrive at

(  f  1 l - r n :even

0r^,r : gy (!\'*' i n;,(1) { | 
sho 

| .. sttmp*
ao  R  \ r /  / J - . ' ' " p \ - , t Lo_ .J ,_ ,o ,ooo

| -",* 1t-rn:even I
+ | ; sin ,1,,*ol (C'3)

L s ' -  Jr-* ,oaa )

where

$kop :  ( l  -  2P  -  I ) r o  *  mue

t f t u @ r  n L  / - \

F,.*r(r): D r,^,Dl "" 
I f (r)r"- '*t1-1;r+t *

f = 0  s = O \  S  
/

/ .  \  /  \

x  " f  I , - * - 2 t t s - r  I  I  
r n - s  

I  t _ r l .
" - H , n \  "  / \ o - r - " ) '
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f (I) as in equation C.2

k : integer part of (l _ m) I Z

trnax :  min(k,p)

c r n a r  :  m i n ( l -  m - 2 t * s -  l , r n -  s )

cmin :  max(O,p -  t )  .

Methods of computing of the inclination functions and their derivatives with
respect to .[ can be found in e.g. (wagner, 1983) , (Schrama, 19g9) and (Goad, 19gz).
The cross-track inclination functions f,io(1) as derived above can be computed in
a similar manner as will be shown hereafter. For the description of a recursiae
algorithm for computation of the inclination functions or the cross-track inclination
functions, we refer to respectively (sneeuw, 199ra) and (sneeuw, 1991b).

Following (Wagner, 1983) the method for computation of the inclination func-
tions described in (Schrama, 1989) makes use of a "unit potential function', devel-
oped along a great circle with inclination 1. Along this circular unit orbit (defined
by  .R:  1 r_9  :  0c  =  e :0  (so  a lso  c , . r ,  :0 )  and M +u:  uo  j  u )  we eva lua te  the
function ffi' which can be obtained by applying the chain rule of differentiation

uY: : ry+y-+ 2?y (c.4)a 6  a 0  a 6 '  a A  a 6
with

}Vtro - D! (^,
A0 

' l '??\-os m) + sin m))

}Vt^ ^-# : rnPlro(cos m) - sin m))

where we use a unit  potent ial  funct ion def ined by GM : R =, :  et^:  Sho: L.
Now we have to find the partial derivatives ffi and ff. tr'rom appendix A we have
on the unit sphere

X :  s i n d c o s , \

Y  :  s i n 0 s i n )  ( C . b )

Z : cos?

and

X' : cos Scoswo
Y'=  cos  $s in . , .o  (C.6)
D lL  : s l n e .
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appendix C, Inclination functions

The transformation between the coordinate systems c/ and cI' consists only of a

rotation about the X-axis by an angle 1(since @, :0), or:

f " l  f '  o  o  l f " ' Ir r r l l . l
I  Y  I  :  I  O cos l  -s in . [  |  |  Y '  It t t  | l
l t l  l o s i n . I  c o s r J l , z ' J

Combination of eq. C.5, C.6 and C.7 leads to:

s i n 0 c o s ) :  c o s  $ c o s w o

sin 0 sin ) : cos / sin ar, cos -I - sin { sin I

cos0 :  cos {sinc,.ro sin I  *  s in{cos 1 .

Differentiating eq. C.10 yields for / 
- 0:

A0 cos -I

A 6 :  
-  

" i " 0
and differentiating the quotient of C.9 and C.8

al sin l cos )
r i "0  

'

Now we have from eq. C.3 for the unit potential

(c.7)

(c.8)
(c.e)

(c.10)

n '  t - r  f  f  - t l  lo v t m  : I 4 ; ,  
{ c o s ( /  

- 2 p - l ) u +  
| '  I  

s i n ( /  - z p -  r ) u l
a o  ? o  r  L  t l  )

where the bar over F indicates that the cross-track inclination functions are now

normalized. This series can be regarded as a Fourier-type series. Introducing k =

I - 2 p - l y i e l d s

os ku*

I
sin ku )

)

W:-fr,,, { {ur,,-,. qt2+ Fr,.u-'-

* (F,tt,-,- k)tz -4;,,-,-*,rr) 
[

k)p)

- 1

1

where

- :  

{

0 , 2 , 4 , . . . r 1  - 1  J : o d d

1 , 3 , 5 , . . . r 1  - 1  / : e v e n

222



Comparison with an ordinary Fourier series

TVun ttl ,
t 

: 
| )"! 

cos ru * b,f sin ru

yields

Ff*1,-r.11, : 
"! 

for odd /

Ff^1t_t+*112 : 1"0r + u0o11z for / - n1 eve\

Fi,,"1t_t_*112 : 1"1 - o0r11z for I - rn even

Ff*1t_r+*y1z : pfr - u!112 for / - rn odd

Fi*1t_r_*112 : @f + of11z for J - rn odd .

The Fourier coefficients of and bf, are derived by computing the unit potential at
discrete points along a great circle. With an FFT routine these potential values
(time domain) are transformed to the coefficients afo and 6f (frequency domain).
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