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Abstract

Software maintenance is an essential and time-consuming task during the soft-
ware development cycle. Readability of test code is a crucial element for performing
programming tasks, such as testing, bug fixing and maintaining code. Hence poorly
written tests are difficult to maintain and lose their value to developers. In order to over-
come this problem, we need to understand how programmers read test code. Therefore
we conducted an empirical study to analyze the various reading patterns in novices
and professionals using a sophisticated eye tracking device. Our results show that (i)
all programmers first comprehended the production code and then switched between
test and production codes, (ii) novices had higher fixations reading test code and assert
statements, (iii) professionals revisited the test code more than novices, (iv) profession-
als had significantly lesser test code coverage than novices, and (v) there is a significant
difference in reading test code between novice and professionals.
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Chapter 1

Introduction

Software readability is a property which determines the ease reading and comprehending
of a given piece of code. Readability of code during program comprehension is a crucial
element for performing programming tasks, such as testing, bug fixing and maintaining
code. These costs make up to 50% of maintenance tasks [38], which inevitably leads to
the alteration of the code snippets. Hence readability must be considered a major factor in
determining maintenance of code. Subsequently, better readability of code can minimize
both the maintenance and the software process costs. This can result in a cheaper soft-
ware development process. Reading the software code tends to take over 40% of the total
time to comprehend [38]. Buse et al. [12] recognized readability as a significant factor in
understanding source codes. Various studies on readability such as investigation of different
code styles [41], improving software quality code readability [11] [70], readability testing
[77] and effect of code features on readability [3], [74, 21] [35], provide novel approaches
to measure readability.

Moreover, modern code bases are not only composed of production code; instead, de-
velopers write extensive test code bases to ensure the quality of their systems. Maintaining
and writing good test code is important because the patterns of test smells are repetitive and
induce high robust costs which are extensively researched by Meszaros et al. [48]. Hence
understanding how programmers read test code is the first step to write better software code
and reduce software maintenance costs. In the past years, there has been immense research
on comprehension on source code but none of the studies uses bio-metric devices to analyze
the readability of tests to measure a programmer’s expertise.

Hence, our motivations for conducting this research are therefore important for two rea-
sons. Firstly, we look into the different reading patterns during test code comprehension
performed by novice and professionals programmers using an eye tracker. Analyzing the
reading patterns helps us define whether a developer needs some rest to minimize potential
errors or to estimate the time required to comprehend the code realistically. In our research,
however, we follow an empirical method consisting of 14 professionals and 15 novices pro-
grammers, using an eye-tracker which help us understand the different reading patterns. We
focus on test code complexity by generating heat maps to each participant and calculating
the fixation time, average time spent and revisits in different Area Of Interest (AOI). In par-
ticular, we explore the principle of linearity. The linearity of the reading is how strongly
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1. INTRODUCTION

reader adheres to natural language order(left-right,top-bottom) since software programs are
different from natural languages, developers follow unique ways to understand code. This
method has been proven successful by various studies, to map source code readability [73],
[14], [79].

Secondly, we go beyond analyzing the basic metrics of fixation and gaze patterns. Our
thesis focuses on implementing linear mixed regression model to classify the significant dif-
ferences in fixation features while performing test code comprehension. Stein and Brennan
[45] implemented ANalysis Of VAriance (ANOVA) to examine the effect on the outcome
of the second group based on eye gazes of other respondents. Their results show that re-
spondent’s eye gaze provides essential clues to other person’s performance. In our study,
we use linear mixed regression models as they are more robust than ANOVA to validate the
results by the participants.

Finally, we discuss the challenges faced during test code comprehension. Even though
there are numerous studies in the field of code comprehension, there is not enough docu-
mentation on the difficulties faced by novices and professionals while performing test code
comprehension. In this thesis, we aim to bridge this knowledge gap by providing a de-
tailed analysis of challenges which will act as a starting point for future researchers and
academics to understand test code comprehension. We can improve the readability of code
by understanding the various issues encountered while performing code comprehension and
aid novices with tools to write good readable tests in the future.

The research questions addressed in this thesis are:

RQ1: How do developers read test code?

RQ2: What are the differences between novices and professionals when reading
test code?

Our results show that all the participants first comprehended the production code, novices
had higher fixations reading test code and assert statements, professionals revisited the
test code more than novices, professionals had significantly lesser test code coverage than
novices, and finally, we found that there is a significant difference by applying linear mixed
model in reading test code between novice and professionals. This paper contributes by pro-
viding an empirical analysis of test code readability, examines the different reading method-
ologies using fixation features and also provides a starting point for future research in the
field on test code comprehension using bio-metric devices.

The report is structured in the following manner. Chapter 2 provides background in-
formation about the eye movements and highlights related research conducted in this pio-
neering field. In Chapter 3, we describe the research methodology and the experiment setup
and all the required criteria for this pilot study. Further, in chapter 4, we present the results
and observations gathered from our experiment. Chapter 5, we discuss the overview of the
project’s contribution and future work which can be performed based on the finding. Lastly,
in Chapter 6, we provide our conclusions.
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Chapter 2

Related Work

To address the research questions in this study, we first discuss the background of code
comprehension and look into the various fields of code comprehension studies. Finally, we
discuss the advancements in research methods over the last few decades.

2.1 Background on Code Comprehension

Software maintenance is an extremely demanding, vast and complex subject which requires
the developers to understand the source code in detail [10]. To do the necessary mainte-
nance work, skilled developers must know the code framework that is continuously chang-
ing. Hence code comprehension is increasingly being taken into account during software
development, and it is a significant concern for software development companies. The lack
of initial developers reduces code comprehension and thus affects the participants nega-
tively [10]. A maintenance team needs to establish a fast and efficient understanding of
the source code relevant to the maintenance tasks. A study by Penta et al. [23] concluded
that code comprehension techniques have confirmed to obtain potential advantages in the
maintenance work.

Furthermore, developers would want to re-evaluate their code and modify it to their
requirements. The capacity to read and comprehend a program that others have written is
also a crucial challenge. Rather of having one developer, software companies rely on team
effort so that everyone writes a component of code working as a team. Code comprehension
is one of the major steps to tackle many software and maintenance tasks. The accumulation
of information about the program is critically important [71], [47]. This information is
generally complex, which means many aspects such as maintenance [86], reporting [26],
testing [95], reuse [36] and validation [18] are incorporated.

In terms of tools that support the latest software design and maintenance activities
are up-to-date to meet code comprehension necessities. In recent decades, Storey’s [87]
methodology investigates some of the cognitive approaches of program understanding. In
particular, the author explores how the theories and technologies are related, and focuses on
the research methodology used to build the hypotheses and analyze the tools. The theories
and devices evaluated can be further distinguished by the individual features, program, and
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2. RELATED WORK

the purpose of the various understanding tasks. Code comprehension tools help developers
to take advantage of the newly implemented software code [87].

2.2 Fields of Code Comprehension

In this section, we explore the different fields in code comprehension.

2.2.1 Code Readability

We perceive readability as a subjective evaluation that software developers have difficulty
in understanding code. The connection between readability and comprehension is similar
to the syntactic and the semantic evaluation; the syntactic dimension is readability, whereas
the semantic measurement is comprehensibility [14]. Essentially, readability is a potential
obstacle to understanding which the programmer feels the need to resolve before executing
with a code. Subjective interpretation measures are challenging to accomplish and require
human testing. They are also fundamentally variable with the help of large-scale surveys,
and rigorous statistical evaluation of survey data is required for a meaningful analysis [58].

Recent studies have developed unique code readability methodologies that have an im-
pact on software readability. Buse and Weimer [12] suggested a readability measure and
implemented a readability tool, which tests the readability measure efficiently. They choose
java code snippets and used human observers for making judgments about the readability
of the code. The findings from the human observers were compared to a programming tool.
The total precision of the tool was 80%. However, Posnett et al. [66] asserted that code
readability is a qualitative attribute and that readability grades can not be achieved using an
automated readability tool. They also stated that the readability score could be estimated
depending on the size and the code complexity, using the data obtained in the source code.
Elements such as appropriate comments improve software readability, and poorly defined
variables reduce readability [56].

Cowan [89] proposed a novel method of improving the readability of code using SGML
to integrate semántic and syntactic code through content and text-database visualization.
The visualization of principles attempts to link the writer’s mental representation to the
software reader’s mental image.

Wang et al. [96] designed a new and efficient automatic readability metric which cal-
culates faster than human judgement. To analyze code snippets and assess the complexity
based on certain functions such as keywords, summary, loop, lines, etc., the investigator
collected many snippets from open source databases.

Relf [69] also conducted a study of the empirical influence of naming formats on and
management of code base on a team of software engineers-novice and professionals. The
study compared and compiled 19 guidelines for constructive naming formats and created a
java compiler that can verify the names of the identifier. The use of relevant names has been
explored by Butler et al. [15], and researchers have been trying to compare their findings
using the tool they developed called FinBugs. While researching further connections with
software quality, the researchers extended their work with java methods.
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The scenario scan technique [57], [55] is used when a person searches for and renders
brief fixations and longer saccades for a goal in the code. A task inspection is a voluntary
act of the person; thus, the focus sight fits the ”top-down” cycle of cognitive processing
and can be described by direct visual function [55]. Ambient sight is cheaper and dictates
parallel scanning, while sequential searches in viewing tasks need close attention [55]. A
study by Bednarik et al. [7] showed that differences in the reading styles such as gazed
locations, fixation duration, and switching eye movements were recorded in novice and
expert programmers. Furthermore, Busjahn et al. [14] compared the reading patterns in
Java code to natural languages. It has been proven that novices follow a linear approach
when they read Java code, while professionals followed a non-linear path because reading
skills increase with more experience.

2.2.2 Test code

In this section, we highlight the various advancements in test code research. Unit testing is
a technique of developing software where the shortest testable components of a program,
termed units, are individually examined [88]. There are several experiments on readability
in the past, but the challenge of defining what a subjective interpretation is a big concern
with readability studies [58]. Test cases are often used as regression tests to ensure that the
features of the software are always working once it is developed. Unit testing allows you
to check for bugs and ensures that these bugs wouldn’t induce the program to break. Errors
which a unit test reveals are easy to track down and comparatively easy to fix.

In the past decade, various research has been contributed in the software engineering
field to understand how programmers read test code. A study by Scanniello et al. [75] per-
formed an empirical Test-Driven Development (TDD) research with focus groups to gain
perspectives into developer viewpoints using TDD. They found that it is hard to apply TDD
without learning advanced unit testing methodologies. The significance of tests during soft-
ware development to enhance the efficiency of software projects ensures corrective actions
are taken and serves as a document, which has been highlighted numerously in various
studies [67], [81].

Li et al. [43] designed an automated stereotype-based tagging tool to aid unit test cases
and testing tools. They conducted the study with 46 students and 25 developers to validate
the tool and its usefulness. In a study by Kamimura and Murphy [34] proposed generating
human-oriented summaries to aid the comprehension of large test cases. They implemented
their methodology on JFreeChart application and successfully highlighted statements which
were important to the developers.

2.2.3 Task difficulty

Task difficulty is another important area of research. Gundel et al. [28] studies the topo-
graphical distribution of EEG when performing two tasks with different difficulty levels.
The test showed reduced alpha band through when performing visual scanning and increase
in the theta band in the left frontal electrodes related to the overall cognitive workload.
The principal benefit of EEG is to specifically test functions inside the brain rather than
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2. RELATED WORK

indirectly measuring the blood flow or metabolisms such as fMRI and fNIRS. Also, EEG-
based approaches ideally suited towards cognitive processes and task difficulties due to the
strongly sensitive EEG.

2.2.4 Cognitive load

A collection of bio-metric detectors such as eye trackers for evaluating the size of the pupil,
EEG to assess cognitive function, skin-related electro-dermal detectors and cardiac sensors
have been employed in software engineering. Crk and Kluthe [19] determined the Alpha
and Theta fluctuations ERD (event-related desynchronization) seen between task test time
and the relaxation time. ERD activity is measured to be intrinsic workload, and the cogni-
tive load rises whenever tackling problems with high complexity. Siegmund et al. [84] used
fMRI to analyze the brain regions stimulated during code comprehension of code snippets.
Some researchers utilized eye tracker measurements to measure cognitive load at various
task levels and were able to demonstrate that cognitive load decreased near the high-level
task limit. Researchers have shown that increasingly demanding tasks require longer com-
putation time, generate high psychological levels of cognitive load and induce enhanced
pupil dilation reaction at significant tasks [33].

2.2.5 Attributes of the programmer

Selecting the sample group to experiment is important to get credible results. The experi-
ments by Pennington [63] study showed that the chosen language has a significant impact
on the processes of comprehending the code by programmers.

We know the importance of using electronics and software in our everyday life; hence
software development is no longer a niche practice. A study by Storey [85] reviewed work
from biologists, astronomers and medical researchers who use and implement specialized
software without any formal training in computer science. As a consequence, methods
must be used to enhance the understanding of non-experts and end-users. There is a lot
of research in this field ( PPIG community-www.ppig.org) to explore how code compre-
hension can be enhanced by supporting resources for excel and other end-user platforms.
Complex software development knowledge in fields such as advanced visual interface, ma-
chine learning and hardware programming is only known to only sophisticated developers.
Hence a niche group of advanced users are selected for these studies who have the required
knowledge.
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2.3. Advancements in Research methods

2.2.6 Behavioral/psychological studies

Study into emotions in software engineering has a long history. To evaluate emotions,
a wide variety of psychological research has studied using biometric sensors to assess
emotion-caused physiological changes. Frustration is among the most popular subjects
examined through the use of sensing devices. Müller and Fritz [51] utilized developers’
positive and negative emotions as indicators of performance during code comprehension.

Wrobel et al. [98] also performed research to evaluate how emotions influence the effi-
ciency of programmers at work. They discovered that anger is the most common unpleasant
feeling that also disrupts performance and that negative moods could also have a positive
effect on performance for some individuals.

2.3 Advancements in Research methods

The research scope in this study consists of several important and diverse topics, resulting
from changes throughout the research frameworks and technologies in the last few decades.
In table 2.1 we present an investigation of the different methodologies and developments in
the code comprehension.

2.3.1 Traditional methodology

The previous studies [49], [27], [76] focuses on using think-aloud protocols or question-
naire approach to analyzes reading patterns, and these do not accurately measure the visual
patterns employed by experts and novices as they are subject to bias and lessen the compre-
hension capacity [13].

Research by Crosby and Stelovsky [20] attempted to explore similarities between read-
ing non-procedural text and software code, as well as the effect of programming skills on
comprehension. Components used in the analysis were a Pascal code with the binary search
application, which includes inline comments and visualizations of the control flow of the
program. They examined ten novices and nine professionals. The findings indicate a dis-
parity between written texts: a higher amount of fixations and multiple regression induced
while comprehending source code. Novices were more interested in comments and de-
scriptions, while professionals looked at control flow statements. The findings indicate that
important information about the program is found in comments and complex statements.
Think aloud (CTA) is a tool often used in the code comprehension experiments. This pro-
cedure shows the dynamics of cognitive understanding but is difficult for the subjects to
perform this task and affects their actions since it imposes added cognitive load. Another
issue with methods such as CTA and self-reporting techniques is that subjects can have a
different approach to the same task; hence it can be biased. In recent decades there have
been advances in the code comprehension studies which used innovative and sophisticate
tools such as bio-metrics devices and machine learning to improve their findings. We dis-
cuss them in the following sections.
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2. RELATED WORK

2.3.2 Bio-metric devices

In this section, we look into various bio-metric devices which have been used to study the
programmer’s cognitive activity such as fMRI, fNIRS, EEG, eye-tracking and physiological
devices. Currently, commercial based eye trackers are widely used in experimental research
studies as they are cheap and readily available. In the field of software engineering, most
studies are focused on cognitive load, program comprehension and emotional/psychological
studies.

Studies aimed at interpreting natural language processing using eye movement offer a
more in-depth understanding of the cognitive processes. Yet there are just a handful works
which examined eye movements while comprehending code. The outcomes of the few
conducted studies in code comprehension indicate that eye tracking is a successful method
of analyzing cognitive processes, particularly those associated with think-aloud techniques.

• Eye-tracking Eye-tracking is a useful way to examine the mechanism of program
comprehension. Assessment of the eye motions during the interpretation of the code
helps scientists to determine the visual load. According to the viewing location of the
visible focus item, measuring techniques are often used in the study of the area of the
focused fixation, length of focus and search trend.

A study by Rodeghero et al. [72] developed an experiment for professional java
programmers to read code and summarize them in English. This study helped to build
better summarizing systems in the future. [7], [80], [5], [8] also studied the effect
of eye tracking on code comprehension by recording fixation duration, location and
switching between eye movements. This data helped to categorize the most effective
way to read source code.

Eye-tracking is also seen as an effective tool in understanding marketing trends [97].
It was reported that heightened gaze leads to high cognitive load on the brain. Clinical
studies on patients with Schizophrenia [30], [31] has provided an effective tool to
understand how eye gaze relates to mental disorders. There have also been various
studies combining eye tracking with fMRI, fNIRS or EEGs [62], [61], [60] to provide
more novel methodology to understand a programmer’s mind.

Bednarik and Tukiainen [6] studied where less complicated tools such as the restricted
focus viewer (RFV) provide equivalent data analysis. An RFV is a spatial cognition
control device which only enables the visualization of a specific area in focus and
blurs the remainder of the image. The minimal exposure tends to affect cognitive
behaviour. Current research findings suggest correlations between the eye movements
and patterns of cognitive load. But these are dynamic, and it’s not easy to match.
Cognitive load is generally correlated with fixation length, so complicated texts cause
longer fixations, brief saccades and regular regressions [16].

• fMRI A variety of research has utilized brain activity control methodologies to in-
vestigate comprehension of code. Researchers use spatially sensitive devices, like
fMRI scanners, to classify an area of the brain. The minimally invasive method of
monitoring blood oxygen levels which increase due to concentrated brain activity is

10



2.3. Advancements in Research methods

functional magnetic resonance imaging (fMRI). [94], [90], [68], [44], [91] studied
the effect on the cognitive load during visualization tasks. They demonstrated exper-
imental studies using fMRI to observe working memory load and visual load while
performing visual tasks.

Siegmun et al. [82] conducted a study using a guided test in the fMRI scanner, 17
individuals reading and understanding brief source code snippets with syntax faults
were recorded. Across five brain areas, a consistent and distinctive activation trend
has been identified linked to memory, focus and linguistic production [83].

[60], [62], [62], [84] also studied program comprehension but they employed both
fMRI and eye-tracking devices.

• fNIRS fNIRS is a wearable brain-imaging methodology that detects the hemody-
namic response from the exterior of the skull to a specific distance. Due to its high
temporal resolution and minimal user constraint, NIRS is a particularly viable tool
for code comprehension experiments. Nakagawa et al. [53] observed increased blood
flow when reading code and proposed the use of fNIRS to assess cognitive workload
during program comprehension.

Ikutani et al. [32] also implemented fNIRS to prove that high brain activity was in
the frontal area, which related workload to short-term memory caused by variables
in code. It also showed no change when arithmetic tasks were implemented. Pike
et al. [64] performed four think-aloud protocols using fNIRS to study the effect of
verbalization on the mental workload of the brain. Studies [93], [59], [29] proved that
measuring the hemodynamic responses from fNIRS can be used to measure mental
workload while doing natural tasks such as driving in a simulator and hand gestures.

• EEG EEG was commonly used to measure and determine cognitive loads which
decreases the total capacity of the brain and makes it much harder for the activity to
be done, leading to reduced flexibility of the working memory and heightened mental
stress. [4], [101]. [50], [102], [17] have performed experimental tests to detect the
cognitive load. Cognitive workload interventions using EEGs have not only been
implemented but have also been successful in many fields, like those of adaptive
learning, design performance, gameplay videos, etc.

Lee et al. [39] used a portable EEG sensor to investigate the difference in cogni-
tive load between novices and professionals. The primary focus in these studies was
collecting metrics correlating with the efficiency of computer programmers. Zuger
and Fritz [104] employed interruptibility, whereas Muller and Fritz [52] examined
the software developers’ positive and negative emotions as metrics for performance.
The data were analyzed by various bio-metric devices and implemented supervised
learning to differentiate the levels of such cognitive processes.

2.3.3 Machine learning

Machine learning is becoming popular in recent years due to its ability to learn from com-
plex data automatically. The previous studies in test code comprehension involved automat-
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2. RELATED WORK

ing unit test generation, instead of understanding the cognitive process. We try to bridge
this knowledge gap by classifying developers expertise using linear mixed regression model,
which is a powerful statistical tool used in most social science experiments. A recent study
by Lee et al. [40] proved that we could use machine learning models to predict the exper-
tise during source code comprehension accurately. They used bio-metric devices such as
EEG and eye-tracking and compared the performance of the machine learning models in
these bio-metric devices. Another study by Dreiseitl and Ohno-Machado [24] highlighted
the popularity of logistic regression models in the field of biomedical devices, due to its
advantages in interpretability of model variables and ease of use. These studies [37], [103],
[42] also employ machine learning models to predict program comprehension among par-
ticipants.

2.3.4 Information Retrieval

Software comprehension is a required prerequisite before making any improvements to the
system. The developer needs to collect information across the source code of the software
components and then understandably display the obtained data. This task takes time and is
susceptible to error, mainly if it is a vast and complex system. Hence much work on how
to reduce the time and resources required to understand a program was conducted. Maletic
and Marcus [46] used semantic and structural information to support software maintenance
tasks. Another study by Denys et al. [65] combines the concept analysis (FCA) and latent
semantic indexing (LSI).
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Chapter 3

Methodology

The goal of this thesis is to understand the reading patterns of software developers when
reading the test code. Thus, we formulated the following research questions.

RQ1: How do developers read test code?

RQ2: What are the differences between novices and professionals when reading
test code?

In order to address these research questions, we implemented an experiment shown in
figure 3.1. In a nutshell, we propose a controlled experiment where participants perform test
code comprehension tasks. We monitor the participants’ actions through a webcam-based
eye tracking solution. Using the fixation, we first visualize the data using heat-maps and
make qualitative analysis to map each participant’s treatment to areas of interest. Next, we
perform a statistical analysis using linear regression to measure the differences between the
behaviour of novices and expert developers.

Figure 3.1: Our research methodology
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3. METHODOLOGY

3.1 Experimental Setting

In this section, we explain the various design features taken before the implementation of
the experiment.

We first conducted a pre-questionnaire where we collected the demographics data from
the participants to understand their level of expertise (novice/expert) in java programming.
We provided two java code comprehension tasks to determine the visual load of the partici-
pants. We experimented using a webcam by Real-eye software. Real-eye is approximately
100px precise with an estimated visual angle deviation of 4.17 deg with video recording.
To conduct this experiment, we use everyday web-cameras available on a computer or lap-
top. Web camera eye tracking is a revolutionary way to determine the gaze of an individual
which is achieved in real-time in an internet browser. Hence the identity of the partici-
pant remains safe, and only the gaze points are stored in the form of the simple texts of
”Time-stamp: 08, GazePoint-X: 500, GazePoint-Y: 345” [1]. In Figure 3.1, we show the
experimental process in the test code experiment grid:

1. Participants complete a pre-questionnaire survey, which is focused on demographic
information such as experience in Java, Junit, gender and occupation.

2. Calibrate the eye tracker with the required guidelines.

3. Comprehend and explain the goal of two test suites, 10 minutes each.

4. Fill in the post-questionnaire after the experiment, regarding difficulty, the time re-
quired, and understandably of code.

In figure 3.1, we show the overall experiment design. First, the participants fill the post-
questionnaire, which contains questions regarding the background of the participants. Once
completed, the participants are redirected to the eye-tracking application to begin the tests.
Each test lasts 10 minutes, and the participants can finish on click to exit answer the sum-
mary questions. Once completed, the participants fill a general overall post-questionnaire
and end the experiment. We explain the questionnaires and tasks in more depth below.

In Appendix A.2, we display the interface of the experiment. The platform for the exper-
imentation is available in shareable links. The interface first calibrates the eye movements
and then starts the experiment. We showed the programming tasks in the form of images
and asked the participants to do the summary task, later answer the questions related to
these tasks. Participants are automatically redirected to the external survey once the task
was complete.

3.2 Pre-Questionnaire

We designed the questionnaire to understand the participant’s level of expertise and back-
ground prior to the experiments. We collect the subject’s background data before beginning
the experiment [100]. This questionnaire is required to evaluate the expertise and coding
skills of participants with Java. We ask general questions about the participant’s history and
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skill level in Java, given that existing studies have proven that use features such as gender,
age and expertise influence on the characteristics of individuals [25], [54]. Lime-survey was
used to design the questionnaires. The participants were given a unique token to start the
survey and are allowed to edit their answers anytime.

3.3 Tasks

We asked the participants to comprehend two codes snippets containing both production &
test code and write the summary of the codes given. We selected four code out of which the
participants selected two codes randomly. We asked the participants to explain the imple-
mentation of the code in detail which were shown are shown side-by-side to the participants.
The font sizes were maintained in the same style all tasks to aid eye trackers to differentiate
from each code line. Participants did not communicate using the cursor or the keyboard.
Hence we obtained all the answers after the test was completed in the survey. We asked the
following tasks for each test code. The tests contain two questions regarding test code and
production code.

• Summary production task: What does the given class in the production code do?
And can you briefly explain its implementation?

• Summary test task: What does the given class in the test code do? and can you
briefly explain its implementation?

The goal of the tasks is to understand if the participants understand the basic overview of
the program and its test cases. Hence the answers provided were only used to validate if the
participants performed the comprehension of tasks. The participants who did not meet the
standards were excluded from the experiment.

3.4 Code selection

We selected four independent code snippets with the same level of difficulty. The code
snippets consisted of basic concepts of programming, such as nested loops, and basic in-
put/output commands. All the programs are selected so that participants can finish each task
within 10 minutes to prevent fatigue. We measured the programming tasks by measuring the
time spent on each task received from recording the screen and by solving the tasks using
Realeye software. We applied the following selection criteria to choose the code snippets
for the tasks of this experiment:

1. The code should resemble ”real-world” projects used by software developers.

2. The codes must be comprehensible in a discrete and independent form

3. The code should be complicated and long enough to initiate cognitive thinking pro-
cess to detect reading patterns.
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Hence, four codes were selected with an equal level of difficulty, each code performing
different types of array/string manipulations. The purpose of designing the tests was to en-
sure that everyone could comprehend them with only basic knowledge of Java and Junit(so
that no real domain knowledge is required), they all have similar complexity in terms of
LOC and branch statements. Hence we wrote test cases manually1. All the classes have
well defined descriptive names to allow participants to understand the overall purpose of
the code. We eliminated the risk of bias by randomly picking only 2 out of 4 codes for the
participants to solve.

Code Test LOC Production LOC Test class Assert

Unique 79 25 10 10
Reverse 81 20 3 11
LastIndexOfTest 78 28 6 12
ContainsAny 61 26 4 12

Table 3.1: Summary of production and test codes

Table 3.1 summarises the lines of code for test and production codes, with number of
test cases and assert statements. Below we explain the implementation of codes.

• The code Unique finds the input value of type double in the given treeset. Returns
an array of unique values after sorting them in decreasing order. Empty arrays are
allowed, but null arrays result in Null Pointer Exception.

• The code LastIndexOfTest finds the last index of the given value in the array starting
at the given index. A startIndex which is larger than the length of the array will search
from the end of the array.

• ContainsAny returns true if at least one element is in both collections of the array.
In other words, this method returns true if the intersection of coll1 and coll2 is not
empty.

• The code Reverse, reverses elements in a given array, with the arguments startIn-
dexInclusive and endIndexExclusive. It returns the value after sorting in decreasing
order. The starting index takes the Undervalue and is promoted to 0, and the overvalue
results in no change.

3.5 Areas of interest

The area of interest, also called the AOI, is a method for choosing sections of the code
shown and for collecting metrics for certain areas in particular. To better analyze the visual
data, we broke the code in ”blocks”, whose components of which fit logically into a unit

1The original test suite of these snippets was in a single method, which would hinder our ability to see how
developers behave in test suites with multiple test methods
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which may be of importance to the participants. We also sub-categorize AOI based on
programming statements; they are roughly identical to sentences in natural languages. In
this study, we have the following AOIs.

• Control flow statements: govern the sequence in which the code is executed.

• Assert statements: This is used for testing types, argument values and the method
output.

• Declaration statements: are used to initialize/declare a value.

Based on these elements, we evaluate the total code coverage area differences in novices
and professionals.

3.6 Variables

In this section, we discuss the dependent and independent variables that we have imple-
mented in our research. These metrics are were derived manually using gaze videos and
automatically using fixation data.

3.6.1 Independent variables

Our study includes two independent variables: if the participant is novice or expert pro-
grammer, and if they are reading a test code or production code.

1. Expertise: The expertise of the programmer has played a crucial role in the analysis
of code comprehension in the field of software engineering in the previous years
[9], [14]. The programming expertise of our participants ranged from bachelor’s
studies in Java to graduate school students with a limited programming background
to professional programmers with a strong background in Java. The programming
experience was diverse. Appendix B.2 shows the overall participants data.

2. Total time: In this study we consider total time as a control feature used in the linear
mixed model (someone that spends more time in the code will spend more time in
comprehending test/production code).

3.6.2 Dependent variables

Our dependent variables are all based on the data we collect from the eye-tracking. Table
3.2 shows the dependent variables implemented in this experiment. We explain them in
more detail below.

1. Fixation points: We used various fixation features from the eye tracker and obtained
the fixation times between saccades. During such focus gaps, the eye may search
multiple lines of code, and in each fixation, the participant will move their attention
from one topic to the next.
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Feature Definition
Fixation data based on AOIs

Fixation points The number of points of fixation on the code
Avg. Fixation time The duration of fixation in seconds
TTFF(Time To First Fixation) Time taken to look at the different AOIs, provides priority levels of AOIs.
Time spent Total time spent on fixation in seconds
Total time Total gaze time spent from the beginning of the experiment in seconds
Revisits Number of times the participant returned their gaze to a particular AOI.

Manual gaze metrics

Source time The total source time taken in seconds
Test time The total test time taken in seconds
source switch count The number of times participants switch to source code.
test switch count The number of times participants switch to test code.
assert time taken The total time taken in seconds to read assert statements.
test read The number of tests read by the participants.
Total switch The total number of switches between test and source code.

Table 3.2: Fixation Features

2. Avg. Fixation time: In this metric, we calculate the average fixation time taken by
participants. This data provide the results in seconds which is helpful to analyze the
time taken by participants when they fixate on specific LOC.

3. TTFF(Time To First Fixation): This metric gives the time at which the participants
first fixated on a LOC. This data is helpful to analyze when the participants shift
between test and production code.

4. Time spent: This metric provides the total fixation time taken by the participants to
comprehend the test and production code completely.

5. Total time: This metric provides the total gaze time taken to comprehend test and pro-
duction code in seconds. Gaze analysis provides the data of eye movements through-
out the code reading and comprehension phase.

6. Revisits: This metric provides the number of times the participant returned their gaze
to particular AOI. Using the revisit data, we can analyze which part of the code was
interesting and difficult to comprehend to the participants.

The below variables were selected by manually analyzing gaze videos recorded during the
experiment through the eye tracking device.

1. Source time: The total source time taken by participants to comprehend source code
in seconds.

2. Test time: The total test time taken by participants to comprehend source code in
seconds.
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3. Source switch count: The number of times participants switch to source code.

4. Test switch count: The number of times participants switch to test code.

5. Assert time taken: The total time taken in seconds to read assert statements.

6. Test read: The number of tests read by the participants.

7. Total switch: The total number of switches between test and source code.

3.7 Post-Questionnaire

At the end of the experiment, we asked the open-ended questionnaire that gathers data re-
garding the challenges faced by participants during code comprehension. We ask questions
regarding difficulty, the time required, and understandably of code. We also ask questions
about how the programmers solved the comprehension tasks and their techniques used to
solve them. We based the questionnaire on various similar studies related to software com-
prehension tasks [22], [99].

This questionnaire is an important part of the study as it helps gain insight on how pro-
grammer’s read test code. We have asked specific questions such as if they first focused on
test or production code, did they read line-by-line and if production code aided to compre-
hend test code. These questions help us see distant patterns based on the expertise of the
participants.

3.8 Data Analysis

In this section, we explain the various steps involved in the analysis of different reading
patterns among novices and professionals.

3.8.1 Quantitative analysis

We examined the relationship between dependent variables and independent variables using
a linear mixed regression model. We choose this model because we deal with hierarchical
data. We investigate the best approach to read test codes to be able to solve comprehension
tasks efficiently. We first analyze the gaze videos and heat maps treatments using the eye
tracker and investigate the reading strategies of novices and professionals. We select the
manually dependent metrics mentioned in table 3.2. and feed the data to out linear regres-
sion model to find the significant differences. Finally, we implemented various fixations
features from the eye tracker software to the linear mixed regression model to observe if
there are any significant differences. We examined the developer’s efficiency using visual
data such as fixation points, revisits, average fixation, and total time is taken to solve the
task. We evaluate whether there are any correlations on the outcomes between the skills of
the participants: novice and expert using box plots to visualize our results [78].
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3.8.2 Qualitative data analysis

In our study, we performed a qualitative analysis using open-ended questionnaires to an-
alyze the readability patterns. These post-questionnaires aims to understand the partici-
pant’s experience and difficulties during the experiment. We ask questions regarding the
complexity of code, tasks asked, the time required, etc. We used the answers provided
by the participants to correlate the quantitative data to validate our findings. We analyzed
different gaze patterns for each participant and compared linear reading to that of natural
language(left-to-right and top-to-bottom).

3.9 Pilot study

We performed a pilot to evaluate the study in which four participates took part voluntarily.
All the participants were familiar with Java testing in Junit, and the results of the pilot study
were analyzed. In a preliminary analysis, two novices and two professionals evaluated
initial test code tasks. We assessed their programming skills in a questionnaire. They then
proceeded to comprehend the java test code and answered post-questionnaires. We used
the participant’s observations and feedback in defining the final experimental code.

There were multiple updates made using feedback from the pilot study.

• Increase in the code size.

• Keep the same level of difficulty for both codes to remove bias.

• Add extra buttons and instructions to navigate the eye-tracking tool.

• Add a darker background colour to reduce the reflection on the lens and strain on
eyes.

• People with glasses were instructed not to wear to reduce calibration issues during
eye-tracking.

Hence the final study had significant improvements, which increased the overall participa-
tion.

3.10 Participants

In this study participants from two groups were selected, novices and professionals. We
termed students who previously worked with the language as professionals and bachelor
students who are still learning the language in their courses as a novice. Participation has
been made known to be voluntary and does not engage in the curriculum and therefore,
does not have a favourable or detrimental effect on student’s grades. We recruited expert
programmers by advertising on various websites to participate in the study and were 5-10
euro gift cards as compensation for their time. Our study consisted of programmer’s from
both software testing and software developer fields. Appendix B.2 provides an overview of
all the participant demographics in this study.
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Background characteristics of the participants

Factor Percentage

Gender

Female 34.48%
Male 65.52%

Age group

<22 13.79%
22-27 37.93%
28-35 27.59%
>35 13.79%

Experience

Student 51.72%
Software developer 41.38%
Tester 6.90%

Years of experience

0-2 27.59%
2-4 37.93%
4-8 17.24%
>8 3.45%

Table 3.3: Background characteristics of the participants

The experiment was conducted for two months and has 29 participants in total, of which
15 are novices, and 14 are professionals. The main distinction between novices and pro-
fessionals is that professionals have a minimum industry experience of 2 years in software
development and testing. In contrast, novices are bachelor/master students without proper
work experience. In table 3.3, we summarise the background characteristics of participants.

Furthermore, among the professionals, 14.29% have experience in testing with two
years of experience. The participants were 34.48% females, of which 60% are students,
and 40% are developers, the male participants (65.52%) consisted of 42.11% students and
57.89% professionals. We show the different level of expertise for novices and professionals
in Figure 3.2
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Figure 3.2: Level of expertise for novices and professionals
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Chapter 4

Results and Observations

In this section we look deeper into the various distributions of dependent variables based
on programming expertise. We analyze the differences in reading patterns between novices
and professionals using gaze videos and heat-maps to visualize how programmer’s read test
code.

4.1 RQ1: How do developers read test code?

In this section we report the different reading patterns followed by novices and profession-
als. We use different assessment strategies such as heat-maps, open-ended questions and
gaze video. Here we answer our first research question (RQ1).

We analyzed gaze videos manually which were recorded during the experiment by ex-
amining the (i) time taken to finish comprehension of production and test code, (ii) the
number switches between test and source, (iii) time taken to read assert statements, and (iv)
the number of tests read. To have a more accurate overview of tests read, we combined the
results with heat maps.We summarized our results in Table 4.1.

• First view: We find that both novices and professionals on average, first fixate on
the production code at 1.37 secs and 1.59 secs respectively, which is within 2 secs
from the start of the experiment. According to the answers provided, all the par-
ticipants first focused on the production code to understand the basic functional-
ity/implementation of the code, next they concentrate on the test code and switch
between production code and test code. Participant P10 stated “I first read all the
production code to understand what it did, and then read the test code to see how it
tested the functionality.” Novices (P13, P14, P6, P28) sometimes found the produc-
tion code challenging to comprehend and hence switched to test code to understand
the source code. However, professional P13 choose to read the production code first
because the test code in the industry is not explicit enough and has poor naming con-
ventions and an unclear purpose. This was highlighted by P13: “It might happen,
in industry, that the test code is not explicit enough (bad naming, not clear enough
what it tests), so I’m not used to rely on test code. In this exercise, the tests were well
written so it could also be used as a starting point.”
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• Production time: Novices spent on average spent 58 secs reading production code
and whereas professionals spent only 47 secs of their time reading production code,
which shows that novices spent 23.4% more time reading production code than pro-
fessionals. This is because participants read the production code line-by-line and then
switched to test code. Participant P10 stated ”I first read all the production code to
understand what it did, and then read the test code to see how it tested the functional-
ity.” Furthermore, 4 out of 15 novices also said that the production code was difficult
to comprehend.

• Test time: We observe that the professionals spent 63.6% more time reading test
code than novices, which corresponds the answers providing during the open-ended
questions, where professional P2 stated:“Taking look at the test case name first to
get a rough idea what it is testing. Then looks at the implementation of the test case
while switching back and forth from the production code to understand what the test
is doing.”. We found that professionals spend more time reading test code because
they validate the production code. Participant P1 highlighted that reading test cases
also allows them to see the corner cases and boundaries of each parameter. On the
other hand, novices spent more time reading production code and switched to test
code after reading the production code line-by-line. In particular, a group of novices
(P20, P29, P14, P26) read the test cases in a linear manner (line-by-line) and top-
to-bottom, this statement was exemplified by P26 “Just from top to bottom. Line by
line”.

• Assertions: Novices spent on average 70 secs of their time reading assert statements,
in contrast, professionals spent only an average of 45 secs, which is 35.7% lesser than
novices. We also observe that professionals had 70.29% higher assert fixation counts
than novices. Using post-questionnaires we find that 9 out of 29 survey participant
commented they read the method names first and used assert statements to verify
the arguments. Novice P8 focused more on the inputs of the test code:“Read test
code objects to verify the functionality of source. Focus more on inputs in the test”.
Furthermore, professional P22 stated that “I mostly focus on the overall test methods
and glance through the objects in it.”. Additionally, expert P1 also provided a detailed
procedure they followed while reading the test code. Participant P1 first read the
inputs and outputs and then validated the methods and assertions. In the words of
P1:“For me, I follow these rules to create my tests: given (input), when (invoked
method) and then (assertions).”

• Source switch: We also examined the switches between test and production code
during the experiment and found that professionals had 16.4% higher source switch
count than novices. This is due to linear reading methodology followed by novices,
whereas professionals read the code to understand the control flow. 4 out of 14 of
the professionals (P16, P17, P7, P2) highlighted that they switched multiple times
between production and test code. P2 stated:“Taking look at the test case name first
to get a rough idea what it is testing. Then looks at the implementation of the test
case while switching back and forth from the production code to understand what the
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test is doing.” Furthermore, professional P12 said due to exact tests provided with
descriptive test method names and assert statements in this experiment, it motivated
P12 to switch between to test code more often to verify the production code.

• Test revisit: We found that professionals revisited the test code 59.14% more than
novices. Looking closely, we found novices prefer reading test code when the pro-
duction is complicated, in the words of P28: “Yes, especially in the first example
(replace). I trusted in the test and I ignore some parts of the implementation, that I
couldn’t completely understand.”. Novice P26 also highlighted that due to multiple
input samples and descriptive names provided in the tests, helped P26 to switch to test
code. Almost all the participants expect (P13, P1, P14) answered that test code aided
them to understand the production code completely as they found reading production
code rather difficult at times.

Features Novice(avg) Professionals(avg)

Gaze data analysis
Test time 55 secs 90 secs
Production time 58 secs 47 secs
Assertions time 70 secs 45 secs
source switches count 6.7 7.8
All test read 82.76% 13.79%

Linear regression analysis
source time fix spen 36.3 secs 28.49 secs
source Total time 79.57 secs 50.44 secs
source TTFF* 1.37 secs 1.59 secs
test fixation 248.6 fixations 157.14 fixations
test TTFF* 44.23 secs 27.07secs
test Total 174.05 secs 144.05secs
test revisits count 21.85 counts 13.73 counts
assertions 153.86 fixations 90.35 fixations

Table 4.1: Summary of finding using fixations, gaze data, and heat maps.
*TTFF=Time to first fixation.

• Fixation counts: We observe that in novices, there is a higher fixation count than
professionals for test code. This is because professionals switched between test and
production code but did not fixate (comprehend) the test code line-by-line. Hence
novices spent more time fixating on production code than test code. Novice P10
commented:“I read line by line and then check the source code with input and outputs
.” This confirm the previous studies [9] [13] conducted in this field, where novices
show higher fixation count than professionals.

• Tests read we observed that novices had higher test code coverage compared to pro-
fessionals in both production and test code. Professionals read (comprehended) only
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13.79% of the test cases, whereas novices read (line-by-line) 82.76% of the test cases.
We analyzed the number of test read using heat maps, and the results indicate that 13
out of 15 novices fixate on the whole test code; however, only 2 out of 14 profes-
sionals fixated on the entire test code. The most preferred reading patterns (P1, P2,
P5-P7, P13, P9-P11) to comprehend test is by first reading the method names and
read the verifying the assert statements using input and output arguments which was
reported by 9 out of 29 survey participants. Expert P10 exemplified “The title of the
test method already gives me an indication of what the test is for. Then I gloss over
the input given and the expected outcome.”

Result RQ1: Our results show that (i) all programmers first comprehended produc-
tion code and then switched between tests and production, (ii) novices had higher
fixations reading test code and assert statements and also took longer time to com-
prehend them, (iii) Professionals revisited the test code more than novices in-order
to verify the assert statements wheras novices read the test code line-by-line and
switched to test code when they found production code difficult to understand, and
(iv) professionals had significantly lesser test code coverage than novices.

4.2 RQ2: What are the differences between novices and
professionals when reading test code?

In this section, we report on the various dependent variables using the linear mixed model.
We have also verified our model assumptions for linearity using Q-Q plot and residuals vs
fitted plot in Appendix E. We provide the formula used in this model below:

lmer(test Total ≈ total time + pro f essional + (1|task id) + (1|participant id) +
(1+ task id|order))

Here we choose the total time (time taken to complete production code and test code)
and professional (novice/professionals) as the independent variable in order to predict the
dependent variables in column one(features). We have reported the results of LMM in table
4.2 for general fixation features in the form of the p-values of all fixed effect per dependent
variable. When the result of the p-value is lower than (α ≤ 0.05) then it is significant
with symbol marked by “*”. Statistical significant value shows that changes in independent
variables lead to shifts in the dependent variable, where the independent variables are the
total time of test code/production and expertise of the participants[2].

4.2.1 Model variables analysis

We visualize the distribution of various dependent variables using box plots. We use box
plots in Figure 4.1 we to understand the relationship between continuous data and categori-
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cal data between professionals for significant dependent variables.

• source time fix spent: The linear mixed model also indicates that participants had
a significant difference (p-value = 0.0175*) where novices had higher fixation time
on production code than professionals. The total time variable is also increasingly
affected by the total time taken to read production code by 0.039±0.016. This find-
ing suggests that professionals can stay focused on the important elements of the
production code than novices, which is consistent with previous expertise research.

• source Total time: The regression model confirms significance for the total time
taken on production code (p-value = 0.000238*) and shows that the total time taken
to read production code is higher for novices. The source Total time variable is in-
creasingly affected by the total time taken by 0.136±0.0347 to complete the task
between novice and professionals.

• test fixation: During test code comprehension, we see that professionals have 36.7%
lesser fixation counts than novices. We tested these differences using LMM and found
that it is statistically significant (p-value = 4.51E-05***) for expertise where novices
had higher test fixation counts than professionals. The test fixation variable is de-
creasingly affected by the amount of experience in Java in years by -86.319± 19.453,
indicating that professionals fixated only on methods names and necessary tests, as
discussed in section 3.1.2.

• test TTFF(time to first fixation): In this feature, we observe the time taken to switch
to test code. After LMM analysis, we found that test TTFF is highly significant (p-
value = 3.01E-07***) which shows that novices took longer to switch to test code
than professionals. The test TTFF variable is decreasingly affected by the amount
of experience in Java by -18.307±3.133 Hence professionals took on average 38.78
lesser times to switch to test code than novices. This shows that professionals chose
non-linear reading methodology and focused on the control flow of the production
code rather than reading line-by-line.

• test Total: The total time taken to comprehend test code is highly significant (p-value
= <2E-16***) and where novices had higher time comprehending test code. The
test TTFF variable is decreasingly affected by the total time taken to comprehend
the code by 0.863±0.034. This is because they read all tests instead of focusing on
reading methods/class names, which was highlighted by participants in section 3.1.2.

• test revisits count: Upon running the LMM we discovered that the result is indeed
highly significant the expertise of the programmers (p-value = 2.38E-05***) where
professionals had higher test revisit count than novices. With increase in years of
expertise, the odds of being able to identify the test revisits count increased by 8.389
± 1.654. This implies that professionals revisited to test code multiple times to co-
relate the production code with the test code in order to validate the samples, as
answered by participants in open-ended questions. This shows that novices prefer to
read all the test cases line by line instead on reading the most significant test cases.
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Figure 4.1: Box plots showing relationship between professionals with significant depen-
dent variables
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Linear mixed model fit by REML. t-tests use Satterthwaite’s method [’lmerModLmerTest’]

Fixed effects Features Estimate Std. Error df t value Pr(>|t|)

source fixation count total time 0.10364 0.06146 52.93109 1.686 0.0976
professional -16.66941 15.35758 27.80421 -1.085 0.2871

source Avg total time 9.63E-06 2.74E-05 4.88E+01 0.351 0.727
professional 5.81E-03 6.84E-03 2.54E+01 0.849 0.404

source TTFF total time -0.0004481 0.0020815 53.5967187 -0.215 0.8304
professional 0.1541709 0.5157746 53.9962501 0.299 0.7662

source time fix spent total time 0.03936 0.01605 54.12681 2.452 0.0175*
professional -5.36674 3.96982 54.42151 -1.352 0.182

source Total time total time 0.13688 0.03472 53.0202 3.943 0.000238***
professional -20.32861 9.92868 27.99235 -2.047 0.050101

source revisits total time 0.003402 0.00407 53.98899 0.836 0.40691
professional 0.983937 1.006678 54.138919 0.977 0.33271

test fixation total time 0.05326 0.07858 53.94695 0.678 0.501
professional -86.31939 19.4534 54.20273 -4.437 4.51E-05***

test Avg total time 2.46E-06 2.64E-05 5.50E+01 0.093 0.926
professional -5.71E-03 6.53E-03 5.50E+01 -0.875 0.385

test TTFF total time -0.01333 0.01249 52.44036 -1.067 0.291
professional -18.30731 3.1339 54.29997 -5.842 3.01E-07***

test tim fix spent total time -0.006363 0.023504 55 -0.271 0.788
professional -5.399673 5.809452 55 -0.929 0.357

test Total total time 0.86312 0.03472 53.02017 24.862 <2E-16***
professional 20.3286 9.92867 27.99239 2.047 0.050101

test revisits count total time 0.004493 0.006513 54.367332 0.69 0.493
professional 8.389503 1.654151 27.542058 5.072 2.38E-05***

Table 4.2: Linear mixed model for fixation features.* Statistically significant effect (α ≤
0.05).

In Figure 4.2, we visualize the total time taken by both novices and professionals to
comprehend source code and test code. We see that the participates less test total time
in comprehending Contains Any (code 1) program and the maximum time comprehending
Reverse (code 3) program. This shows that participants perceived Contains Any to be easier
to comprehend because it has only 4 test cases with few samples of 61 lines of code (LOC).
On the contrary Reverse program had 3 test cases with multiples samples of 81 (LOC).
Similarly, participants took minimum time to comprehend source code for Contains Any
(code 1) program and maximum time to comprehend Unique (code2) program.
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Figure 4.2: Total time taken to comprehend source code and test code

AOI based Linear mixed model

Fixed effects Features Estimate Std. Error df t value Pr(>|t|)

test name total time 0.04249 0.02604 54.65182 1.632 0.1085
professional -12.93515 6.68982 28.10284 -1.934 0.0633

assertions total time 0.004879 0.109218 52.431708 0.045 0.9645
professional 65.698936 27.234565 54.812723 2.412 0.0192*

method first total time 0.009305 0.009486 52.224479 0.981 0.3312
professional -0.958852 2.388759 53.617516 -0.401 0.6897

method last total time 0.00501 0.004353 54.982771 1.151 0.254775
professional -4.187072 1.171034 28.11434 -3.576 0.001289**

control flow total time -0.07581 0.04503 54.28334 -1.683 0.098
professional -18.49755 11.12392 54.24394 -1.663 0.102

Table 4.3: Linear mixed model based on AOI features.* Statistically significant effect (α≤
0.05)

4.2.2 Linear mixed model (LMM) based on AOI features

In this section, we report our results on AOI based features. We found that assertions and
method last feature has statistically significant results. Table 4.3 shows the results from
LMM.

• assertions: The total fixation time is significant (p-value = 0.0192*) where profes-
sionals have lower fixations on assert statements. The assert fix variable is increas-
ingly affected by the amount of the expertise by 65.698±27.234, where novices spend
41.2% less time than professionals. Participants (P5-P7, P1, P2, P13, P9-P11) said
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they read the assert statements using input and output arguments to verify the produc-
tion code.

• method last: We see significant difference for the last method of the test code (p-
value = 0.001289**), where novices read the test code line-by-line and had higher test
code coverage than professionals. The method last variable is decreasingly affected
for expertise by -4.187±1.171 to fit the linear mixed model. This implies that novices
spent 67.1% less time reading the last test method than professionals.

Other features such as Test name, method first and control flow did not yield any significant
results.

Result RQ2: There is a statistical significance between novices and professionals
for source time fix spent and source Total time while comprehending the produc-
tion code. Most importantly, we observe a significant difference in test code for
test fixation count, test TTFF, test total, test revisits, assertions and method last.
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Chapter 5

Discussions

In this section, we first revisit the research questions in this study. Next, we reflect on the
challenges of testing observed during our experiments. Finally, we address risks that could
undermine our study’s validity.

5.1 Research question review

In this section, we revisit the main research question using the results observed, and we
discuss various reading patterns followed by programmers during test code comprehension.
Based on the results, we have identified differences in reading patterns. The main research
questions explored in this study are:

RQ1: How do developers read test code?

• All the participants started with production code and then switched between tests and
production.

• Novices took more time to comprehended test code and spent more time fixating on
test code.

• Professionals spend 63.6% more time reading test code and than novices.

• Professionals spent 35.7% lesser time comprehending assert statements and also had
41.2% lesser assert fixation counts than novices.

• Professionals revisited the test code 59.14% more than novices.

• Professionals read 13.79% of the test cases, whereas novices read 82.76% of the test
cases.

In our study, 28 out of 29 participants confirmed that source code aided them in the com-
prehension of source code. This is because the production provides the overall functionality
and test code helped them test the corner cases and boundary parameters which they missed
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to observe in the production code. We believe the professionals use their software expe-
rience in the industry to enhance their performance during comprehension tasks. We also
verified our results using post-questionnaires provided by participants after the experiment.

RQ2: What are the differences between novices and professionals when reading
test code?

We implemented a linear mixed regression model to verify our results using the eye
tracking device. We see a significant difference between novices and professionals for
test code comprehension, and we observed significant difference for test fixation count,
test TTFF, test total and test revisit. We also see similar trends for source time fix spent
and source Total time while comprehending the production code. These results confirms
the previous studies in the field of software engineering [14], [92], [79].

5.2 Challenges

Our study not only provides a readability analysis of test code comprehension, but we also
provide analysis of various challenges faced during testing. Table 5.1 shows the overall
analysis of the challenges.

1. Method/class names: Method names play a crucial role in understanding the overall
purpose of the tests. From our survey, 7 out of 29 participants believe that descrip-
tive and clear method names help reduce the time taken and indicates the critical test
cases. Participant P4 also mentioned that the clear and descriptive method names
provided in this experiment helped them comprehend the code faster. P4 stated “gen-
erally understanding test codes and their purpose when it is not clearly written like in
these tests.” Hence to understand the purpose of the test code quickly when the pro-
duction code is complicated, it is highly essential to write descriptive method/class
names.

2. Complexity of unit tests: 4 out of 29 participants found it challenging to correlate
test cases to source when very long and multiple assertions are present. P28 also
highlighted that the tests codes need to be well organized and well commented on
reducing the time taken to read tests cases. Furthermore, P15 exemplified :“Test
code can be written in many ways and sometimes it can be hard to see exactly what
the methods do. Moreover, if the tester thinks of other cases than you do, it may be
challenging to correlate them.” P6 added that having only a single test covering all
the functionalities of the code becomes complex. P6 says “I think the big problem
is when the code test has no too many samples about the behaviour of the produc-
tion class or when It has only one method that tests everything with many confusing
variables.”

3. Setup of mock tests: P1 answered that due to various design methodology by fol-
lowed by each developer, the tests becomes complex due to inconsistent naming,
multiple assertions and complex variable. In our survey, 13.79% of the participants
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Challenges Participant Percentage

Method/class names P2, P3, P4, P26, P29, P21, P23 20.69%
Complexity of unit tests P28, P15, P6, P26 13.79%
Setup of mock tests P21, P19, P1, P17 13.79%
Corner case tests P8, P9 6.9%

Table 5.1: Summary of challenges

(P21, P19, P1, P17) agree that mock test is complicated to write, specifically when it
involves backend databases. P21 states “I haven’t faced such a challenge yet. Most
of the time I find it difficult to mock a backend service that is not a database neither
an HTTP server, for instance: SMTP server or SMPP server.”

4. Corner case tests Another challenge participants (P8, P9) faced during test code
comprehending is finding all the corner cases for the production code. Participant
P29 emphasizes that “Writing tests for corner cases is difficult for me and when the
tests are not written properly with case classes and methods names, it difficult to
understand what it does.” Difficulties finding the corner cases is indicated by 2 out of
29 survey participants.

5.3 Threats to validity

Eye-tracking provides useful insights into code comprehension experiments through the
collection of visual stimulation data from participants. They provide researchers with ob-
servations that can not be gained through interviews or questionnaires. That being said,
these studies are not defects free and pose methodological and ethical issues.

5.3.1 Internal Validity

We focused our study mainly on code readability for test code. Since LOC for production
code was lesser than that of test code, we could not receive sufficient analysis for production
code comprehension using fixation data. However, the test code analysis had an adequate
amount of manually written test cases which provided the required amount of fixation data
needed for this study, as we are mainly interested in test code readability metrics. In our
research, we implemented seven fixation features using eye tracker, which validated using
gaze videos manually by seeing videos of all participants. The summary tasks check the
cognitive process of the participant. We implemented the following criteria to evaluate if
the participates performed the experiment completely, and participants who did not meet
the standards were excluded from the experiment.

3Descriptive explanations of the implementation of code The eye-tracking data is
captured according to the explanations Minimum of 50 fixations per task should be
captured.
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In our experiment, we found that all the participant satisfied the criteria except for one
participant since the explanations were too short, and no accurate corresponding fixation
data was captured. Hence our experiment had a total of 29 participants.

5.3.2 External Validity

We observed that, while each participant’s eye tracker was calibrated before each mission,
the gaze orientation of the captured sometimes looked too tiny or too large while mapping
gaze on code. It was sometimes shifted to the left or the right in even more extreme situa-
tions. Such a mistake will occur if the subject moves too far from the camera. In such cases,
the gaze data was reviewed and was readjusted to fit the correct offset. As the study was
conducted in an online platform using realeye.io, we could not run a controlled experiment
as performed in previous research using an eye-tracking device [92], [79], [14].
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Conclusion

In our study, we conducted empirical research aiming at investigating the readability of test
cases. In particular, we focused on the difference in code readability between (i) production
code and corresponding test code (ii) reading patterns in novices and professionals (iii)
fixation metrics from eye tracker and manual analysis of gaze data. Our preliminary results
are open to new interesting research directions.

This research contributes to the current field by identifying various reading patterns be-
tween novices and professionals such as (i) detect how often participants transition between
regions test code and the production code, (ii) discovered various trends in comprehending
test code (iii) the most influential factors affecting the comprehension of test code. We have
selected several manual and automated dependent features to study the patterns using linear
mixed regression model and also verified our results according to the answers provided by
the participants during the post-questionnaire.

Our results show that (i) all programmers first comprehended the production code and
then switched between test and production codes, (ii) novices had higher fixations reading
test code and assert statements and also took longer time to comprehend them, (iii) pro-
fessionals revisited the test code more than novices in-order to verify the assert statements
whereas novices read the test code line-by-line and switched to test code when they found
production code difficult to understand, (iv) professionals had significantly lesser test code
coverage than novices, and (v) there is a significant difference in reading test code between
novice and professionals.

Our methodology has some limitations which need to be addressed. Firstly, an online
experiment can affect the ability to accurately detect the differences in reading patterns
among participants. Since it is not possible to monitor the experiment, it is difficult to
validate the authenticity of the results. Secondly, given the small sample size, there is
minimal generalization. Hence further studies are required to achieve generalizability.

Our long-term goal is to build technologies that can support young programmers to
comprehend test code in real-time using their eye-tracking data. This study is the first step
in this direction. We call other researchers to validate and further contribute by improving
experimental techniques using other bio-metric devices such as EEG and fMRI to better
understand how programmers read test code.
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Appendix A

Experimental Design

In this appendix provide various experimental data collected and the survey overview.

A.1 Survey format

Below we provide the complete survey implemented in this experiment.
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A. EXPERIMENTAL DESIGN
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A.1. Survey format

53



A. EXPERIMENTAL DESIGN

54



A.1. Survey format
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A.1. Survey format
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A. EXPERIMENTAL DESIGN

A.2 Eye tracking experiment

Below we provide the steps involved in eye tracking experiment.

A.3 Procedure

• Step1: Make sure your face is inside the green frame at all times.

• Step 2: Click the red dotes while looking at them to start eye-tracking calibration.

58



A.3. Procedure

• Step 3: Look at all the dots-they will explode.

• Step 4: Start the experiment in 3..2..1..
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A. EXPERIMENTAL DESIGN

• Step 5: Read and comprehend the code.
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A.3. Procedure

• Step 6: Provide your full name (same as the consent form) so that we can match the
results to the survey.
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A. EXPERIMENTAL DESIGN
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Appendix B

Data Analysis

In this chapter we provide all the data collected from the tools.

B.1 Gaze data

Below we provide the gaze data collected from all the participants which has been updated
with YouTube links to get easy access. The data is anatomized to preserve the identities of
the participants.

participant id task id gaze video
Noivce

1392341774 1 https://youtu.be/czughxmi1G0
1814760247 1 https://youtu.be/gUw9zbh-nm4
867061267 1 https://youtu.be/4An1HKhC9 I
799810770 1 https://youtu.be/ZV9ExePK−−k
1787537632 1 https://youtu.be/X3OuIG6BfSk
1444712459 1 https://youtu.be/OPLU-2LPunk
1916717354 2 https://youtu.be/N4oA0HBbtM8
1213879844 2 https://youtu.be/mzMbNdGvF-I
2097377084 2 https://youtu.be/0E- 8U34a Q
1590805764 2 https://youtu.be/MCWh6750iBo
859391687 2 https://youtu.be/2eTMVD5itn0
1470195088 2 https://youtu.be/wlp1Jo G6kQ
1860228703 2 https://youtu.be/A2G2KCMWegI
615697347 2 https://youtu.be/dGjjX5F RwY
1373918450 2 https://youtu.be/8 0teSiOm Q
1392341774 3 https://youtu.be/IRG1 8P9JZ4
1814760247 3 https://youtu.be/TWoCsEtigmk
867061267 3 https://youtu.be/ZwjcUndcm28
799810770 3 https://youtu.be/koHlKj4JmlE
1787537632 3 https://youtu.be/sTRIEhoE 3Y
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B. DATA ANALYSIS

Table B.1 continued from previous page
participant id task id gaze video
1444712459 3 https://youtu.be/dyFiIDoBTgw
1916717354 4 https://youtu.be/HlHY8VAV6CI
1213879844 4 https://youtu.be/lREuK4Ltb k
2097377084 4 https://youtu.be/R2hCpnERMQA
1590805764 4 https://youtu.be/Ybfb5LFyrHQ
859391687 4 https://youtu.be/FjZM vgunsw
1470195088 4 https://youtu.be/kIn6GOcICbI
1860228703 4 https://youtu.be/iCljsr3W6q8
615697347 4 https://youtu.be/gJwb9oCuCTE
1373918450 4 https://youtu.be/XkiuI9jSJfE

Expert
1874230670 1 https://youtu.be/QQRwq3ID nU
1761982197 1 https://youtu.be/8TGFoWVwApk
1644468044 1 https://youtu.be/3rgf2H3HpAQ
1110950035 1 https://youtu.be/VLVm9fY5FUA
1792232827 1 https://youtu.be/JmrjpEWJH9E
719395131 1 https://youtu.be/O9NCMq8sHeI
1527991542 1 https://youtu.be/9UEHx7OCCls
777734110 1 https://youtu.be/eLqzxgWcjjY
1565132263 1 https://youtu.be/OWio2TqMkVM
225699910 2 https://youtu.be/jdDkYRyY3VQ
784768767 2 https://youtu.be/AzaM2wUgjwY
603351179 2 https://youtu.be/IE3vKwJRu3c
175830142 2 https://youtu.be/MCWh6750iBo
1527991542 2 https://youtu.be/q9FpakziMKM
1874230670 3 https://youtu.be/xWw01PukEbk
1761982197 3 https://youtu.be/orhrDHNQysQ
1644468044 3 https://youtu.be/O-So5c-pFD0
1110950035 3 https://youtu.be/buBfDrZDOkU
1792232827 3 https://youtu.be/9b2Cqh 4YkY
719395131 3 https://youtu.be/YLI4Wv51zHE
1527991542 3 https://youtu.be/uvPbA7 Y5rI
777734110 3 https://youtu.be/HI zB6jaLBM
1565132263 3 https://youtu.be/zJs2aD-ZjEA
1110950035 4 https://youtu.be/cJOVivcpqrM
603351179 4 https://youtu.be/oz59-fBIpl8
1792232827 4 https://youtu.be/SDqSP5uJ6fo
719395131 4 https://youtu.be/hVg2S4445rI
1527991542 4 https://youtu.be/vfRV9-kV3UA

Table B.1: Gaze videos of all participants
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B.3. Analysis of Gaze videos

B.2 Participant’s Data

In this section we provide the participant’s background data.

Participant
No. Male Female Student Developer Tester Years

exp

Lvl
exp
junit

Lvl
exp
java

P1 Yes No No Yes No 5.5 4 4
P2 Yes No No Yes No 6 4 4
P3 Yes No No Yes No 3 2 4
P4 Yes No Yes No No 2.6 2 4
P5 No Yes No No Yes 2 2 3
P6 Yes No No Yes No 3 3 4
P7 Yes No No Yes No 3 3 4
P8 No Yes Yes No No 2 2 2
P9 No Yes Yes No No 2 1 2
P10 No Yes Yes No No 1 4 3
P11 No Yes No Yes No 4 2 4
P12 Yes No No Yes No 4.5 3 4
P13 Yes No Yes No No 1 1 3
P14 No Yes Yes No No 2.4 1 2
P15 No Yes Yes No No 1 2 3
P16 Yes No Yes No No 2.5 2 3
P17 Yes No Yes No No 4.5 3 4
P18 Yes No No Yes No 3 3 3
P19 Yes No No Yes No 9.5 4 4
P20 No Yes Yes No No 1 1 2
P21 Yes No No Yes No 3 1 4
P22 No Yes No Yes No 4 3 4
P23 Yes No Yes No No 2 1 2
P24 No Yes No Yes No 3 2 4
P25 No No Yes No No 1 2 2
P26 Yes No Yes No No 1 3 4
P27 Yes No No No Yes 3 2 3
P28 Yes No Yes No No 1 2 3
P29 Yes No Yes No No 1 1 3

Table B.2: Participant’s data

B.3 Analysis of Gaze videos
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B. DATA ANALYSIS

participant id task id
source
switch
count

test
switch
count

assert
time
taken

source
time

test
time

test
read

total
switch

Novice
1392341774 1 9 10 1.45 1.33 2.01 100 1.33
1814760247 1 9 8 1.39 2.07 1.21 100 2.07
867061267 1 5 4 1.02 0.54 1.4 100 0.54
799810770 1 7 9 1.25 1.14 1.36 100 1.14
1787537632 1 8 7 1.13 1.03 1.35 80 1.03
1444712459 1 6 5 1.54 1.16 2.06 100 1.16
1916717354 2 7 8 0.5 0.5 1.33 40 0.5
1213879844 2 8 8 0.34 0.42 0.53 100 0.42
2097377084 2 10 11 1.28 1.03 1.43 50 1.03
1590805764 2 7 6 0.3 0.54 0.42 100 0.54
859391687 2 8 7 0.55 1.13 1.14 100 1.13
1470195088 2 5 6 1.44 1 2.03 100 1
1860228703 2 9 8 1.12 1.05 1.35 100 1.05
615697347 2 4 4 1 1.43 1.13 100 1.43
1373918450 2 7 7 1.33 0.53 1.56 100 0.53
1392341774 3 8 23 1.21 1.19 2.11 100 1.19
1814760247 3 4 7 0.48 1.43 1.03 100 1.43
867061267 3 3 5 0.35 0.56 2.04 100 0.56
799810770 3 6 6 1.09 1.32 1.45 80 1.32
1787537632 3 11 10 0.44 1.35 1.04 100 1.35
1444712459 3 7 8 1.03 1.5 1.24 100 1.5
1916717354 4 8 10 1.15 1.29 1.44 100 1.29
1213879844 4 7 8 0.46 1.23 1.04 100 1.23
2097377084 4 8 6 1.21 0.57 1.32 100 0.57
1590805764 4 6 7 0.21 0.56 0.41 100 0.56
859391687 4 3 2 1.07 0.32 1.34 100 0.32
1470195088 4 6 8 1 0.46 1.18 0 0.46
1860228703 4 8 10 1.17 1.02 1.42 100 1.02
615697347 4 3 5 1.47 1.21 1.52 100 1.21
1373918450 4 4 4 1.06 1.03 1.27 100 1.03

Expert
1874230670 1 5 6 0.34 1.29 0.48 50 1.29
1761982197 1 6 6 0.37 0.32 0.55 75 0.32
1644468044 1 10 11 0.17 0.36 0.32 75 0.36
1110950035 1 6 7 0.23 0.45 0.45 100 0.45
1792232827 1 7 8 0.23 0.51 0.31 100 0.51
719395131 1 8 8 0.38 1.03 0.54 50 1.03
1527991542 1 7 7 0.33 0.54 0.45 100 0.54
777734110 1 4 6 0.17 0.51 0.3 75 0.51
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B.3. Analysis of Gaze videos

Table B.3 continued from previous page

participant id task id
source
switch
count

test
switch
count

assert
time
taken

source
time

test
time

test
read

total
switch

1565132263 1 8 9 0.35 1.04 0.45 75 1.04
225699910 2 10 11 0.49 1.02 1 66 1.02
784768767 2 4 5 0.28 1.03 0.48 83 1.03
603351179 2 8 7 1.21 0.59 1.48 50 0.59
175830142 2 9 11 1.52 1.02 2.25 66 1.02
1527991542 2 11 9 0.25 1.19 0.4 100 1.19
1874230670 3 8 9 0.44 0.21 1.04 60 0.21
1761982197 3 6 8 1.49 0.36 2.01 70 0.36
1644468044 3 12 11 0.31 0.5 0.41 45 0.5
1110950035 3 7 9 0.46 0.42 0.57 60 0.42
1792232827 3 8 7 0.14 0.34 0.39 60 0.34
719395131 3 6 7 0.14 1.03 0.29 70 1.03
1527991542 3 8 10 0.25 0.54 0.33 80 0.54
777734110 3 8 7 0.43 0.35 0.51 40 0.35
1565132263 3 6 7 0.37 1.16 0.44 80 1.16
1110950035 4 7 6 0.31 0.19 0.43 63 0.19
603351179 4 11 9 0.46 0.31 1.02 54 0.31
1792232827 4 8 7 0.43 0.21 0.57 60 0.21
719395131 4 6 7 1.02 0.36 1.23 81 0.36
1527991542 4 12 8 0.18 0.41 0.35 81 0.41

Table B.3: Gaze video analysis
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Appendix C
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C. EXPERIMENTAL CODES

Experimental Codes

C.1 ContainsAny
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C.2. Unique

C.2 Unique
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C. EXPERIMENTAL CODES

C.3 Reverse
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C.4. LastIndexOf

C.4 LastIndexOf
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Appendix D

Heat Maps

In this section we show differences in heat maps for each code between novice and experts.
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D. HEAT MAPS

D.1 ContainsAny
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D.2. Unique

D.2 Unique
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D. HEAT MAPS
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D.3. Reverse

D.3 Reverse
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D. HEAT MAPS
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D.4. LastIndexOf

D.4 LastIndexOf
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Appendix E

Model Assumptions

In this section we verify the model assumptions for linear mixed for model.

E.1 Homoskedasticity

Figure E.1: Homoskedasticity

E.2 Normality of residuals
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E. MODEL ASSUMPTIONS

Figure E.2: Normality of residuals
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