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We introduce the ε-susceptible-infected-susceptible (SIS) spreading model, which is taken as a benchmark for
the comparison between the N-intertwined approximation and the Pastor-Satorras and Vespignani heterogeneous
mean-field (HMF) approximation of the SIS model. The N-intertwined approximation, the HMF approximation,
and the ε-SIS spreading model are compared for different graph types. We focus on the epidemic threshold and the
steady-state fraction of infected nodes in networks with different degree distributions. Overall, the N-intertwined
approximation is superior to the HMF approximation. The N-intertwined approximation is exactly the same as
the HMF approximation in regular graphs. However, for some special graph types, such as the square lattice
graph and the path graph, the two mean-field approximations are both very different from the ε-SIS spreading
model.
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I. INTRODUCTION

We consider the spread of a virus in an undirected graph
G(N,L), characterized by a symmetric adjacency matrix A. As
a spreading model we use the susceptible-infected-susceptible
[1] (SIS) epidemic process, which is described as follows.
The arrival of an infection over a link and the curing of
an infected node are assumed to be independent Poisson
processes with rates β and δ, respectively. Only infected
nodes can infect their healthy direct neighbors. The effective
spreading rate is defined as τ = β

δ
. The viral state of a

node i at time t is specified by a Bernoulli random variable
Xi(t) ∈ {0,1}, where Xi(t) = 0 refers to a healthy node and
Xi(t) = 1 to an infected node. Every node i at time t is
either infected, with probability vi(t) = Prob[Xi(t) = 1] or
healthy (but susceptible) with probability 1 − vi(t). Since an
exact solution for any network has not been found yet, several
approximations of SIS epidemics have been developed.

A fundamental question in the study of epidemics is
whether a virus will spread through the entire network or
will die out. The answer to this question is given by the
epidemic threshold τc, which separates two different phases of
the dynamic spreading process on a network: if the effective
infection rate τ is above the threshold, the infection spreads
and becomes persistent in time; if τ < τc, the infection dies
out exponentially fast. Many authors (see [2–9]) mention
the existence of an epidemic threshold τc. Here, we focus
on the steady-state of two mean-field approximations of SIS
epidemics: the N-intertwined approximation [10,11] and the
Pastor-Satorras and Vespignani approximation [7]. A first-
order mean-field epidemic threshold τ (1)

c = 1
λ1(A) , where λ1(A)

is the largest eigenvalue of the adjacency matrix A, was first
proposed by Wang et al. [9], and its existence rigorously
proved by Van Mieghem et al. [10,11]; later it appeared
in the physics community [12]. Van Mieghem et al. [10]
also showed that this mean-field threshold lower-bounds the
“in reality observed” epidemic threshold τ (1)

c = 1
λ1(A) � τc.

A more accurate lower bound (the second-order mean-field
threshold) τc � τ (2)

c � τ (1)
c has been derived in [13]. Pastor-

Satorras and Vespignani [7] proposed the heterogeneous mean-

field HMF approximation, whose epidemic threshold [4,7] is
given by τHMF

c = E[D]/E[D2], where D is the degree of a
randomly chosen node in G.

Here we present a detailed comparison of the two mean-
field approximations. Usually, the quality of an approximation
is assessed by two criteria: (1) which approximation is closer to
the exact SIS model, and (2) which approximation’s epidemic
threshold is nearer to the epidemic threshold of the exact SIS
model. A direct comparison to the SIS model is, however, not
possible, because the steady state of the exact SIS model in a
finite network is, as shown in [10], the overall-healthy state,
which is equal to the absorbing state of the SIS Markov chain.
The presence of an absorbing state is a major complication
in the analysis of the SIS model. The steady state of both
the above mean-field approximations corresponds, in fact, to
the metastable state in the SIS model, which is not clearly
defined for finite networks [10]. Therefore, we define here the
metastable state of the SIS model via the steady state of the
ε-SIS model for a prescribed value of ε. The ε-SIS process
generalizes the SIS model by adding a nodal component to
the infection. We assume that each node i can be infected
spontaneously. The spontaneous infection process is a Poisson
process with rate ε. Hence, besides receiving the infection
over links from infected neighbors with rate β, the node i can
also itself produce a virus with rate ε. All involved Poisson
processes are independent. For ε > 0, the ε-SIS model has no
absorbing state and Markov theory guarantees a unique steady
state. When ε = 0, the ε-SIS model clearly reduces to the
“classical” SIS model. Hence, for small values of ε > 0, the
ε-SIS spreading model can be used to approximate the exact
SIS model. Here, the ε-SIS spreading model with a small value
of ε is used as a benchmark to compare the steady state of the
N -intertwined approximation and the HMF approximation on
different network types.

This paper is organized as follows. Section II overviews the
N-intertwined approximation, the Pastor-Satorras and Vespig-
nani HMF approximation, and the ε-SIS spreading model in
detail. The steady state of infection in the ε-SIS model and
these two approximations are described in Sec. III. Section IV
compares the steady-state fraction of infected nodes in various
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types of graphs: complete graphs, star graphs, Erdős-Rényi
(ER) random graphs, small-world graphs, and Bárabasi-Albert
graphs. An analytic comparison of the epidemic thresholds
of the two mean-field approximations is shown in Sec. V.
Conclusions are summarized in Sec. VI.

II. DESCRIPTION OF THE ε-SIS MODEL
AND THE MEAN-FIELD APPROXIMATIONS

A. The ε-SIS spreading model

The ε-SIS spreading model was proposed recently by Hill
et al. [14] in their analysis of emotions as a form of infection in
a social contact network and earlier in [15] where ε is defined
as the driving field conjugate to the density of infected nodes.
Here, we will explain the simulation process, but defer to [16]
for an analysis of the ε-SIS model.

In our simulations we take a nodal-central, event-driven
approach. An event can either be the curing of a node or the
spreading of the infection from one node to another. Events
are stored in a timeline as tickets. A ticket contains, besides
the time and the event type (spreading or curing), the owner
of the ticket. The ticket owner is usually a node, but can also
be the system to allow for scheduling of administrative tasks.
Tickets are continuously taken from the timeline and passed
on to the owner.

If the ticket owner is a node, the ticket indicates either a
curing or a spreading event. In the case of a curing event,
the node simply changes its state from infected to healthy; in
the case of a spreading event, it will spread the infection to
the neighbor mentioned in the ticket. If the neighbor was not
already infected, it will now become infected and create one
or more tickets.

A newly infected node will always create a ticket for
its own curing event. According to continuous-time Markov
theory (see [17]), the time between infection and curing is
exponentially distributed with rate δ and is stored by the node
for future reference. An infected node also generates spreading
times at which it will spread the infection to its neighbors. The
spreading times are again exponentially distributed but now
with rate β. If the spreading time does not exceed the node’s
curing time, a ticket is created for the spreading event. All
newly created tickets are stored in the timeline. Finally, the
owner of the original ticket generates a new spreading time,
which, if not exceeding its own curing time, creates a new
spreading ticket for the same neighbor.

If the ticket is not owned by a node, it is a system ticket.
System tickets are used to cause the spontaneous infections
in nodes. Every node becomes infected spontaneously at
a rate ε, but to minimize the number of tickets in the
timeline, the system creates one spontaneous infection ticket
at the time. The time between spontaneous infection tickets
is exponentially distributed with rate Nε. When the system
receives a spontaneous infection ticket, it selects a random
node and tries to infect it. If the node is already infected,
nothing will change, whereas a healthy node will become
infected and create the tickets described above.

During the simulation, for each possible number of infected
nodes (0 to N ) how long the network was in a state with
that many nodes infected is recorded. The average number of

infected nodes during the simulation can be determined by
multiplying the number of infected nodes by the fraction of
time spent in that state, and sum over all the states.

B. The Pastor-Satorras and Vespignani HMF approximation

Pastor-Satorras and Vespignani [7] studied the susceptible-
infected-susceptible epidemic on networks and proposed the
heterogeneous mean-field approximation, in which the degree
distribution plays an important role. Highly connected nodes
are statistically significant and the strong fluctuations in the
degree distribution cannot be neglected. Consider the relative
density ρk(t) of infected nodes with given degree k, i.e., the
probability that a node with k links is infected. The fraction of
infected nodes in a network is denoted by ρ. The dynamical
mean-field reaction rate equation can be written as

∂tρk(t) = −δρk(t) + βk[1 − ρk(t)]	(ρ(t)).

	(ρ(t)) is the probability that any given link points to an
infected node. In steady state, y∞ = limt→∞ ρ(t) is a function
of τ only, and as consequence, so is 	(ρ(t)). By imposing
stationarity [∂tρk(t) = 0], when t → ∞, the relative density
reduces to

ρk(τ ) = τk	(τ )

1 + kτ	(τ )
, (1)

where τ = β

δ
is the effective infection rate and

	(τ ) = 1

E[D]

N−1∑
k=1

kProb[D = k]ρk(τ ). (2)

Here D is the degree of a randomly chosen node in the graph.
Clearly, if τ = 0, then 	(0) = 0. Substituting (1) into (2)
leads to a self-consistent relation, from which 	(τ ) can be
determined as

	(τ ) = τ	(τ )

E[D]

N−1∑
k=1

k2Prob[D = k]

1 + kτ	(τ )
. (3)

Equation (3) has a trivial solution, 	(τ ) = 0. For a nontrivial
solution 	(τ ) > 0 to exist, Eq. (3) must satisfy the following
condition:

E[D]

τ
=

N−1∑
k=1

k2Prob[D = k]

1 + kτ	(τ )
. (4)

Next, we introduce the following expansion:

1

1 + kτ	(τ )
=

∞∑
j=0

(−1)j [kτ	(τ )]j ,

valid when kτ	(τ ) < 1 for all k, and

E[D]

τ
=

∞∑
j=0

(−1)j
{

N−1∑
k=1

Prob[D = k]kj+2

}
τ j	j (τ )

=
∞∑

j=0

(−1)jE[Dj+2]τ j	j (τ ),

where the latter series converges for 	(τ ) < 1/(Dmaxτ ). Since
τ = 0 leads to 	(0) = 0, the nontrivial solution 	(τ ) > 0
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occurs when τ > τHMF
c � 0 by the definition of the epi-

demic threshold. When 	(τ ) is sufficiently small [	(τ ) <

1/(Dmaxτ )] and 	(τ ) > 0, we can write the above expansion
up to first order as

E[D]

τ
= E[D2] − τ	(τ )E[D3] + O(	(τ )2), (5)

in which τ	(τ )E[D3] > 0. Hence, when τ > τHMF
c but 	(τ )

is small enough to ignore the second-order terms O(	(τ )2),
we have from (5)

E[D]

τ
< E[D2],

implying that for all τ > τHMF
c , it holds that τ > E[D]

E[D2] . Thus,
the epidemic threshold of the HMF approximation is

τHMF
c = E[D]

E[D2]
.

The same result was also deduced differently in [18]. For a
regular graph [7] with degree r , E[D2] = E[D]2 = r2, the
epidemic threshold is τHMF

c = 1
r

= 1
λ1

.
Finally, we can evaluate the fraction y∞(τ ) of infected

nodes using the relation

y∞(τ ) =
N−1∑
k=1

Prob[D = k]ρk(τ ). (6)

C. N-intertwined approximation

The HMF approximation considers the relative density
ρk(t) of infected nodes with given degree k during the epidemic
process. However, the state of each node is not taken into
account. The N-intertwined epidemic approximation [10,19]
is derived by separately observing each node. Every node i

at time t in the network is in one of two states: infected,
with probability Prob[Xi(t) = 1], and healthy, with probability
Prob[Xi(t) = 0]. Since a node can only be in one of two states,
Prob[Xi(t) = 0] + Prob[Xi(t) = 1] = 1. Since the curing and
infection processes are Poisson processes, the whole epidemic
process is a Markov process. If we apply Markov theory
straightforwardly, the infinitesimal generator Qi(t) of this
two-state continuous Markov chain is

Qi(t) =
[−q1;i q1;i

q2;i −q2;i

]

with q2;i = δ. Markov theory requires that the infinitesimal
generator is a matrix whose elements are not random variables.
However, this is not the case in our simple approximation:
q1;i(t) = β

∑N
k=1aij 1{Xk (t)=1}. Using a mean-field approxima-

tion [10] so that E[q1;i] = β
∑N

j=1 aij Prob[Xj (t) = 1], the
effective infinitesimal generator becomes

Qi(t) =
[−E[q1;i] E[q1;i]

δ −δ

]
.

Then, in accordance with Markov theory in [17, Eqs. (10)
and (11), p. 182], denoting vi(t) = Prob[Xi(t) = 1] and
Prob[Xi(t) = 0] = 1 − vi(t), the set of nodes obey the dif-

ferential equations

dv1(t)

dt
= β

N∑
j=1

a1j vj (t) − v1(t)

⎛
⎝β

N∑
j=1

a1j vj (t) + δ

⎞
⎠ ,

dv2(t)

dt
= β

N∑
j=1

a2j vj (t) − v2(t)

⎛
⎝β

N∑
j=1

a2j vj (t) + δ

⎞
⎠ ,

...

dvN (t)

dt
= β

N∑
j=1

aNjvj (t) − vN (t)

⎛
⎝β

N∑
j=1

aNjvj (t) + δ

⎞
⎠ ,

written in matrix form as
dV (t)

dt
= βAV (t) − diag(vit)[βAV (t) + δu], (7)

where the vector V (t) = [v1(t) v2(t) · · · vN (t)]T . The average
number of infected nodes in G is equal to y(t) = uT V (t),
where u is the all-1 vector.

For the N-intertwined approximation, the largest eigenvalue
λ1 of the graph’s adjacency matrix rigorously defines the first-
order epidemic threshold τ (1)

c = 1
λ1

. A second-order epidemic
threshold τ (2)

c � τ (1)
c is studied in [13] which also presents

a different derivation of the N-intertwined equations. The
threshold arises as a consequence of the mean-field approxi-
mation. A major property, proved in [10] as well as in [13],
of the N-intertwined approximation is that Vi(t) � Vi(t)|exact.
Hence, the N-intertwined approximation upper-bounds the SIS
epidemics and, consequently, τ (1)

c < τc.

III. THE STEADY-STATE INFECTION IN THE MODEL
AND TWO APPROXIMATIONS

A. The ε-SIS spreading model

In this paper, we use the ε-SIS model as a benchmark
to compare both mean-field approximations. Whereas the
classical SIS model has an absorbing state, the ε-SIS model
does not for ε > 0. The nonzero steady state of the ε-SIS model
is reached as time progresses. We believe that the steady-state
fraction of infected nodes in the ε-SIS model is the simplest
and best way to determine the number of infected nodes in
the metastable state of the SIS model. The metastable state
of the classical SIS model, although easily recognized, is
difficult to define precisely. One approach would be to run
many independent instances of the virus spreading process,
calculate the average number of infected nodes at sampled
points in time, and look for a plateau. This will, however, lead
to too low an average number of infected nodes as a function
of time, as for smaller values of the effective spreading rate,
many instances of the virus spreading process die out very
quickly. These died-out instances have a large impact on the
average number of infected nodes as a function of time. Since
instances of the virus that die out quickly do not reach a
metastable state they have to be filtered out, but that would
require an assessment of how long a “reasonable” outbreak
lasts. Such a reasonable outbreak will be dependent on the
effective spreading rate and on the network topology, which
makes it infeasible as a simulation method.
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FIG. 1. (Color online) The steady state of the classical SIS model (solid yellow line) and the metastable state of the ε-SIS model (dashed
blue line) in ER graphs (ε = 10−3).

As the ε-SIS model has a well defined steady state,
the steady-state number of infected nodes can be computed
precisely. We start our simulations with no nodes infected
and continue to run for a specified warm-up period. After
the warm-up period, the measurement period starts during
which we record the average number of infected nodes. For
all simulations we have taken the warm-up and measurement
period to be 107 time units and ε = 10−3 time units. We
have chosen the duration of 107 time units after careful
experimentations. The accuracy of the ε-SIS simulations have
been compared to the exact ε-SIS Markov chain (see [16]) for
small (N � 10) networks, where more than three digits were
accurate for all the considered τ ranges.

The steady-state number of infected nodes of the ε-SIS
model will be close to the average number of infected nodes
in the metastable state of the SIS model for small values of ε.
In Fig. 1, we show a reasonable instance of a virus outbreak
together with the steady-state number of infected nodes of
the ε-SIS model. These examples illustrate that the steady-
state average number of infected nodes of the ε-SIS model is
precisely the line around which the number of infected nodes
in the SIS model varies.

B. Pastor-Satorras and Vespignani HMF approximation

From (1) and (2), we obtain the set of nonlinear equations

τ
∑N−1

k=1 kProb[D = k]ρk

E[D] + τ
∑N−1

k=1 kProb[D = k]ρk

− ρ1 = 0,

2τ
∑N−1

k=1 kProb[D = k]ρk

E[D] + 2τ
∑N−1

k=1 kProb[D = k]ρk

− ρ2 = 0,

...

(N − 1)τ
∑N−1

k=1 kProb[D = k]ρk

E[D] + (N − 1)τ
∑N−1

k=1 kProb[D = k]ρk

− ρ
N−1 = 0. (8)

From the nonlinear set (8), the densities ρ1,ρ2, . . . ,ρN−1 can
be calculated, and after using (6), we obtain the steady-state
fraction y∞(τ ) of infected nodes.

C. N-intertwined approximation

The steady-state of the N-intertwined approxima-
tion is obtained from (7), after letting t → ∞ and

limt→∞
dvj (t)

dt
= 0, as

βAV (t) − diag(vit)[βAV (t) + δu] = 0. (9)

Written as a nonlinear equation for a single node i, this
leads to

vi∞ = β
∑N

j=1 aij vj∞

β
∑N

j=1 aij vj∞ + δ
= 1 − 1

1 + τ
∑N

j=1 aij vj∞
. (10)

The steady-state fraction y∞(τ ) of infected nodes can be
calculated using (10).

For example, for the complete graphs KN , when t → ∞,
vi∞ = y∞, from which the fraction of infected nodes (10)
reduces to

y∞ = 1 − 1

1 + τ (N − 1)y∞
or

y∞ = 1 − 1

(N − 1)τ
, (11)

which is exactly the same as for the HMF approximation in (8)
when ρk = ρN−1 = ρ = y∞, as also illustrated in Fig. 5.

D. Asymptotics for large τ

We present the exact steady-state asymptotics of the
epidemic for large τ . If τ is sufficiently large, the infection
state vj∞ = limt→∞ Prob[Xj (t) = 1] of a node j with dj

neighbors tends to be independent of the viral state of its
dj neighbors, because the neighbors are with overwhelming
probability infected. Hence, the nodal viral state of node
j is not intertwined anymore with that of its neigbors, but
independent, and is exceedingly well described by a two-state
continuous Markov process with infection rate β and curing
rate δ, where vj∞ = βdj

δ+βdj
= 1

1+1/τdj
= 1

1+s/dj
with s = 1

τ
.

The derivative for large τ or, equivalently, s → 0, is

dvj∞(s)

ds

∣∣∣∣
s=0

= − 1

dj

.

The average steady-state fraction of infected nodes is
thus y∞(s) = 1

N

∑N
j=1 vj∞(s) and has a derivative at s = 0

equal to

dy∞
ds

∣∣∣∣
s=0

= − 1

N

N∑
j=1

1

dj

= −E

[
1

D

]
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which is precisely equal to that computed in [20] for the N -
intertwined mean-field approximation.

For the HMF approximation, we obtain, by substituting (1)
into (6) and using the transform s = 1

τ
,

y∞;HMF(s) =
N−1∑
k=1

Prob[D = k]

1 + s
k	(s−1)

,

from which, using lims→0 	(s−1) = 1,

dy∞;HMF(s)

ds

∣∣∣∣
s=0

= − lim
s→0

N−1∑
k=1

Prob[D = k](
1 + s

k	(s−1)

)2

1

k

×
(

1

	(s−1)
− s

	2(s−1)

d	(s−1)

ds

)

= −
N−1∑
k=1

Prob[D = k]

k
= −E

[
1

D

]

because d	(s−1)
ds

|s=0 is finite. Indeed, taking the derivative of
the self-consistent relation (4),

E[D] =
N−1∑
k=1

k2Prob[D = k]

s + k	(s−1)
,

yields

0 =
N−1∑
k=1

k2Prob[D = k]

[s + k	(s−1)]2

(
1 − k

d	(s−1)

ds

)

or

d	(s−1)

ds
=

∑N−1
k=1

k2Prob[D=k]
[s+k	(s−1)]2∑N−1

k=1
k3Prob[D=k]
[s+k	(s−1)]2

,

from which d	(s−1)
ds

|s=0 = 1∑N−1
k=1 kProb[D=k]

= 1
E[D] .

Hence, both mean-field approximations return both
lims→0 y∞(s) and the derivative dy∞(s)

ds
|s=0 correctly in the

large-τ regime.

IV. COMPARISON OF THE STEADY-STATE FRACTION
y∞(τ ) OF INFECTED NODES VERSUS τ

This section compares the ε-SIS model and the two ap-
proximations for different graph types. We take the following
topologies into account: the bipartite graph, the star graph, the
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complete graph, the lattice graph, the path graph, the Erdős-
Rényi random graph, the Bárabasi-Albert scale-free graph,
and the small-world graph. The steady-state fraction y∞(τ ) of
infected nodes is calculated for increasing effective spreading
rates τ and ε = 10−3. The values of the N-intertwined
approximation, the HMF approximation, and the simulations
of the ε-SIS spreading model are shown in blue, red, and green
lines, respectively. The different markers indicate the sizes of
the graphs, e.g., circles in Fig. 2 indicate the results for graphs
with N = 10 nodes.

A. Complete bipartite graphs

A complete bipartite graph KM1,M2 consists of two disjoint
sets S1 and S2 containing respectively M1 and M2 nodes. All
nodes in S1 are connected to all nodes in S2, while nodes within
a set do not connect. In this paper, we take M1 = N/4 nodes,
and M2 = 3N/4 nodes. The steady-state fraction y∞(τ ) of
infected nodes as a function of τ are computed in bipartite
graphs with N = 10, 20, 40, 80, 160, and 320 nodes. Figure 2
shows that the epidemic thresholds for the HMF approximation
and the N-intertwined approximation are close to that of the
ε-SIS spreading model (ε = 10−3) in complete bipartite
graphs. Since τ (1)

c of the N-intertwined approximation is nearer
to τc than τHMF

c of the HMF approximation, τ (1)
c provides the

better epidemic prediction for the SIS model in the complete
bipartite graph KM1,M2 . Moreover, in [13] it is proved that τc �
τ (2)
c � τ (1)

c , which means that the second-order N-intertwined
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FIG. 4. (Color online) Comparison in star graphs.
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approximation is closer to the ε-SIS spreading model, and
therefore the better approximation in bipartite graphs.

Three interesting results can be observed by zooming in on
Fig. 2 as shown in Fig. 3. First, the N-intertwined approxima-
tion is an upper bound of the ε-SIS spreading model. Second,
the difference between the N-intertwined approximation and
the ε-SIS spreading model decreases with N . We observe that
the N-intertwined approximation almost overlays the ε-SIS
spreading model, when N = 320. Third, the HMF approxi-
mation is lower than the ε-SIS spreading model, showing that
the HMF approximation is not upper-bounding the SIS model.

B. Star graphs

The star graph K1,N−1 is a special bipartite graph where
one of the disjoint sets contains only one node while the other
set contains the rest of the nodes. The epidemic threshold for
the first-order N-intertwined approximation equals τ (1)

c = 1
λ1

.
For any connected graph, the spectral radius is bounded [21]
from above by λ1 �

√
2L − N + 1, and equality is reached

for the complete graph KN and the star K1,N−1. As a star
graph contains L = N − 1 links, we obtain

τ (1)
c = 1√

2L − N + 1
= 1√

N − 1
. (12)

The second-order mean-field threshold for the star was
estimated in [13] to be τ (2)

c = 1√
0.53N−1.3

, while exact com-
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FIG. 6. (Color online) Comparison in lattice graphs.
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FIG. 7. (Color online) Comparison in path graphs.

putations indicate that τc = 1√
N

√
1
2 ln N + ln ln N + O(1) for

large N .
Recall that the epidemic threshold of the HMF approxima-

tion is given by τHMF
c = E[D]

E[D2] . For star graphs it holds that

E[D2] = N2−N
N

and E[D] = 2(N−1)
N

, so the HMF threshold
reduces to

τHMF
c = 2

N
. (13)

The equalities (12) and (13) indicate that, for N > 2,

the epidemic threshold of the N-intertwined approximation
is always larger than that of the HMF approximation in star
graphs. Figure 4 shows the superiority of the N-intertwined
approximation, especially when N is large. Nevertheless,
the two epidemic thresholds are both quite far from the
threshold of the ε-SIS spreading model (ε = 10−3) in star
graphs.

C. Complete graphs

The complete graph KN is a graph in which every node
pair is connected. For a complete graph τHMF

c = E[D]
E[D2] =

N−1
N(N−1)2/N

= 1
N−1 ; at the same time λ1 = N − 1. Hence,

the epidemic threshold of the N-intertwined approximation
τ (1)
c = 1

λ1
is equal to the threshold of the HMF approximation

τHMF
c = E[D]

E[D2] . For KN , both approximations are very close
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FIG. 8. (Color online) Comparison in Erdos-Renyi random graphs.

026116-6



SUSCEPTIBLE-INFECTED-SUSCEPTIBLE MODEL: . . . PHYSICAL REVIEW E 86, 026116 (2012)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

sedon det cefni f o egatne crep

0.500.400.300.200.100.00

ER N = 160, p = 2pc
the N-intertwined approximation
the HMF approximation

the -SIS spreading model (

FIG. 9. (Color online) Comparation among the N-intertwined
approximation, the Pastor-Satorras approximation, and the ε-SIS
model in an ER network (N = 160).

to the ε-SIS spreading model (ε = 10−3) (see Fig. 5). This
is to be expected, since the mean-field approximation in
the N-intertwined approximation is best for dense graphs, as
explained in [10]. Moreover, for KN , the steady-state equations
(see Secs. III C and III B) in the N-intertwined and HMF
approximations are the same. The steady-state fraction y∞(τ )
of infected nodes as a function of τ has been deduced in (11).

D. Square lattice graphs

The square lattice graph is a two-dimensional grid. Ignoring
the boundary nodes, the square lattice can be regarded as a
regular graph, where all nodes have the same degree (ki = 4).
In this case, the equations of the N-intertwined approximation
and the HMF approximation are almost the same, as verified
from the simulations of the two approximations. Our simu-
lations (see Fig. 6) show that the epidemic threshold of the
ε-SIS spreading model (ε = 10−3) decreases with the size N

of the network. The HMF approximation performs slightly
better than the N-intertwined approximation in approaching
the ε-SIS spreading model in lattice graphs. The simulation
illustrates that neither the N-intertwined approximation nor
the HMF approximation predicts the epidemic threshold for
epidemic processes in lattices. We remark that, in the related
process of percolation, the critical probability [22–24] on the
square lattice is equal to 1/2.

E. Path graphs

The path graph is a example of a tree graph, in which every
root node has only one branch and only the last root node is not
branched at all. As shown in Fig. 7, the steady-state fractions
y∞(τ ) of infected nodes of the N-intertwined approximation
and the HMF approximation are far from that of the ε-SIS
spreading model (ε = 10−3). The epidemic thresholds of the
N-intertwined approximation and the HMF approximation are
both near 0.5, since the average degree of the path graph
is 2, ignoring boundary nodes. However, the steady-state
fraction y∞(τ ) of infected nodes of the ε-SIS spreading model
increases very slowly with τ between 0 � τ � 1, and seems
to always be around 0 in the range of network sizes that we
considered.
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FIG. 10. (Color online) Comparison in Barabasi-Albert scale-free
networks.

F. Erdős-Rényi random graphs

In this section we investigate the thresholds in Erdős-Rényi
random graphs,1 which have a binomial degree distribution
[25]. An Erdős-Rényi random graph is connected with high
probability, if p > pc ≈ ln N

N
for large N , where pc is the

disconnectivity threshold. All the graphs in the simulations
are generated with p = 2pc, and checked for connectivity.
Figure 8 shows that the steady-state fractions y∞(τ ) of infected
nodes of the N-intertwined approximation and the HMF
approximation for ER graphs N = 10, 20, 40, and 80, are
extremely close. However, they both differ from the epidemic
threshold of the ε-SIS spreading model, especially when N is
small. When N is large, the two approximations are close to
the ε-SIS spreading model (ε = 10−3) (see Fig. 9).

G. Bárabasi-Albert scale-free graphs

The Bárabasi-Albert (BA) graph2 [26] is a characteristic
model for complex networks because of its power-law de-
gree distribution. Power-law degree distributions are widely,
although approximately, observed in real-world complex
networks. The steady-state fraction of infected nodes as a
function of the effective spreading rate y∞(τ ) is computed
in a BA graph with N = 1000 and m = 4 and shown in
Fig. 10. The N-intertwined approximation is close to the HMF
approximation, but a little superior. This is to be expected,
since the N-intertwined approximation is better than the HMF
approximation in star graphs as explained in Sec. IV B, and
the BA model can be regarded as a set of hubs with star graph
features.

1An Erdős-Rényi random graph can be generated from a set of N

nodes by randomly assigning a link with probability p to each pair
of nodes.

2A Bárabasi-Albert graph starts with m nodes. At every time step,
we add a new node with m links that connect the new node to m

different nodes already present in the graph. The probability that a
new node will be connected to node i in step t is proportional to the
degree di(t) of that node. This is referred to as preferential attachment.
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H. Watts-Strogatz small-world graphs

Watts-Strogatz (WS) small-world graphs3 [27] have two
main properties: a small average hop count E[H ], similar to
Erdős-Rényi random graphs, and a high clustering coefficient
CG, similar to a ring lattice. The structural properties of small-
world graphs have been found in various real-world networks,
including social networks [28], neural networks [29], and
biological oscillators [30]. In this paper, the WS graphs are
generated with N = 40 and 80, ks = 6, and p = 0.1 and 1. In
Fig. 11 the steady-state fractions y∞(τ ) of infected nodes, as
predicted by the two approximations, are shown together with
the ε-SIS simulations. The N-intertwined approximation and
the HMF approximation are quite close to each other, but far
away from the ε-SIS spreading model. The τ (1)

c = 1
λ1

and the

τHMF
c = E[D]

E[D2] in small-world graphs are near to each other no
matter what N and p are. This can be explained by observing
that most nodes have the same degree in WS graphs, justifying
the approximation of E[D2] by E[D]2 and τHMF

c = E[D]
E[D2] by

1
E[D] . Another consequence of the similar node degrees in WS
graphs is that E[D] is close to Dmax. Since λ1 is bounded from
below and above as E[D] � λ1 � Dmax ([21], article 43, p.
46 and article 48, p. 52), we can approximate λ1 by E[D] and
τ (1)
c by 1

E[D] , just like τHMF
c .

V. ANALYTIC COMPARISON OF THE EPIDEMIC
THRESHOLDS τ (1)

c AND τHMF
c

In this section, we analyze the relation between the first-
order epidemic threshold of N-intertwined approximation,
τ (1)
c = 1

λ1
, and the epidemic threshold of the HMF approxima-

tion, τHMF
c = E[D]

E[D2] . From the comparison in Sec. IV, we find
that the relation between the two epidemic thresholds strongly
depends on the graph type. The two epidemic thresholds are
equal to each other in regular graphs where each node has
degree r increasing with N . Indeed, since λ1 = E[D] = r

(see [21], article 43, p. 46]), and τHMF
c = 1

r
, we find that

τ (1)
c = τHMF

c . There are graphs for which τ (1)
c < τHMF

c , while in

3A Watts-Strogatz small-world graph can be generated from a ring
lattice with N nodes and ks edges per node, by rewiring each link at
random with probability p.

most cases, our simulations in Figs. 2, 4, 8, and 10 demonstrate
that τ (1)

c > τHMF
c .

Cases τ (1)
c < τHMF

c . The epidemic threshold τHMF
c is larger

than the first-order threshold τ (1)
c = 1

λ1
, when the assortativity4

ρD is zero. Van Mieghem et al. [21,32] have reformulated the
assortativity as follows:

ρD = N1N3 − N2
2

N1
∑N

i=1 d3
i − N2

2

, (14)

where Nk = uT Aku is the total number of walks with k hops.
In [33], we have proved that λ1 � N2

N1
= E[D2]

E[D] = 1
τHMF
c

, when
ρD = 0.

Cases τ (1)
c > τHMF

c . Newman [31] pointed out that the
assortativity ρD of the ER graph and the BA graph is zero
when N is large. However, in most ER and BA graphs with
finite size, the assortativity is only approximately zero. Our
simulations in Figs. 8 and 10 show that τHMF

c � τ (1)
c in ER and

BA graphs, demonstrating that the precise ρD = 0 condition
in (14) that led to N1N3 = N2

2 is not valid. Moreover, we
have already proved that τHMF

c � τ (1)
c in star graphs (see

Sec. IV B).
It would be interesting to find all or the most prominent

graph classes in which τ (1)
c > τHMF

c and in which τ (1)
c < τHMF

c .

VI. CONCLUSION

Many approximations of the SIS model have been proposed
to understand SIS epidemics. In this paper, we studied which
mean-field approximation, the N-intertwined or the HMF,
is better in approaching the SIS epidemic model. A direct
comparison to the SIS model is, however, not possible, because
the steady state of the exact SIS model in a finite network is the
overall-healthy state. Although an infection in the SIS model
will eventually die out, for high enough effective spreading
rates the fraction of infected nodes as a function of time is
metastable. We proposed to define the number of infected
nodes in the metastable state of the SIS model via the number
of infected nodes in the steady state of the ε-SIS model for
a prescribed small value of ε. From the comparison between
the N-intertwined and HMF approximations with the ε-SIS
spreading model, we conclude that, overall, the N-intertwined
approximation is better than the HMF approximation, except
for square lattice graphs and path graphs. We have seen that the
N-intertwined approximation can approach the ε-SIS epidemic
model well in most graph types. The simulations show that the
N-intertwined approximation almost overlaps with the ε-SIS
spreading model, when the size of the network is large enough.
While the HMF approximation is better than the N-intertwined
approximation in the square lattice and path graphs, the
difference between the two is small. Moreover, they are both
far away from the ε-SIS spreading model. We also showed that

4The degree correlation, also called the assortativity ρD , is computed
as the linear correlation coefficient of the degree of nodes connected
by a link [31]. It describes the tendency of network nodes to connect
preferentially to other nodes with either similar (when ρD > 0) or
opposite (when ρD < 0) properties, i.e., degree.
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the N-intertwined approximation and the HMF approximation
are exactly the same in regular graphs with the degree of
nodes increasing with N , such as complete graphs, and are
similar in small-world graphs. In addition to our simulation

results, we showed analytically the conditions under which
the epidemic threshold of the N-intertwined approximation
is larger than, smaller than, or equal to that of the HMF
approximation.
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