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Formal Abstraction of General Stochastic
Systems via Noise Partitioning

John Skovbekk , Student Member, IEEE , Luca Laurenti , Eric Frew , Member, IEEE ,
and Morteza Lahijanian , Member, IEEE

Abstract—Verifying the performance of safety-critical,
stochastic systems with complex noise distributions is
difficult. We introduce a general procedure for the finite
abstraction of nonlinear stochastic systems with non-
standard (e.g., non-affine, non-symmetric, non-unimodal)
noise distributions for verification purposes. The method
uses a finite partitioning of the noise domain to construct
an interval Markov chain (IMC) abstraction of the system
via transition probability intervals. Noise partitioning allows
for a general class of distributions and structures, includ-
ing multiplicative and mixture models, and admits both
known and data-driven systems. The partitions required for
optimal transition bounds are specified for systems that are
monotonic with respect to the noise, and explicit partitions
are provided for affine and multiplicative structures. By the
soundness of the abstraction procedure, verification on the
IMC provides guarantees on the stochastic system against
a temporal logic specification. In addition, we present a
novel refinement-free algorithm that improves the verifica-
tion results. Case studies on linear and nonlinear systems
with non-Gaussian noise, including a data-driven example,
demonstrate the generality and effectiveness of the method
without introducing excessive conservatism.

Index Terms—Autonomous systems, Markov processes,
stochastic systems.

I. INTRODUCTION

THE DEPLOYMENT of autonomous systems for safety-
critical applications, such as medical robotics and

self-driving vehicles, requires diligent verification of their
behavior. Such systems are inherently stochastic due to uncer-
tainty in physical components (e.g., noise in sensors and
actuators) or black-box software components. Formal methods
provides rigorous techniques for verifying stochastic systems
subject to temporal logic specifications [1], [2]. In particular,
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powerful model checking algorithms exist for finite-state
Markov processes that can scale to large systems [1]. However,
to apply them to continuous-space systems, finite abstractions
with correctness guarantees are required [2], [3], which is
difficult in both accuracy and scalability. For this reason,
most existing work focuses on specific classes of stochastic
systems often with strong assumptions on the dynamics or
noise models [4], [5], [6], [7], which we aim to relax in this
letter.

Uncertain Markov models, namely interval Markov chains
(IMCs [8]) have proven to be effective abstraction mod-
els for stochastic systems [4], [5], [6], [9], [10]. Beyond
capturing stochasticity, they also provide a means to incor-
porate other sources of uncertainty (e.g., discretization error),
thereby facilitating correctness. Yet, the difficulty remains
for general stochastic models due to the need to correctly
compute stochastic transition kernels. Existing techniques rely
on standard (unimodal, symmetric and zero-mean) or affine
noise distributions [6], [10], [11], [12], linear systems [7], [9].
Additionally, stochastic systems may possess multiple sources
of uncertainty, such as data-driven settings [5], [10], [13],
[7], [14]. Thus, IMC abstraction approaches for nonlinear
systems that admit a wider class of distributions and structures
are necessary to lift these limitations.

Another difficulty facing abstraction is the state-explosion
dilemma in higher dimensions. Common approaches to this
problem are focused on parallelizing computation [15] and
adaptive refinement [4], [16]. Despite these efforts, the state-
explosion problem remains, and new ideas are needed for
further mitigation. Specifically, using the continuous system in
tandem with the abstraction to improve the verification without
refinement is largely unexplored.

Contributions: We present an abstraction method for non-
linear stochastic systems with non-affine, non-standard noise
that admits known and data-driven systems. Our method
generalizes an approach for systems learned from data with
affine, sub-Gaussian noise [5]. It is based on partitioning the
noise domain to bound the transition kernel of the IMC, side-
stepping the need to evaluate it. We show optimality criteria
for the noise partitions for systems with noise monotonicity,
and provide explicit partitions for affine and multiplicative
structures. To help address the state-explosion problem, we
also propose a refinement-free method to improve the verifica-
tion results of an abstraction by using the continuous process.
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Finally, we demonstrate the efficacy of the method by verifying
linear, nonlinear and data-driven systems without introducing
excessive conservatism.

In summary, our contributions are (1) a procedure for con-
structing abstractions via noise partitioning (Theorem 1); (2)
optimal noise partition sizes and values for a general class of
distributions (Theorem 2); (3) a procedure to improve the ver-
ification of the abstraction without refinement (Algorithm 1),
and (4) evaluations and applications to nonlinear systems with
non-standard and multiplicative noise (Section VI).

II. PROBLEM FORMULATION

We first introduce the stochastic process and its finite
abstraction, and then formulate two main problems.

A. Stochastic Process Model

Consider the following discrete-time stochastic process

x(k + 1) = f (x(k), w(k)), (1)

where x ∈ R
n, w ∈ W ⊆ R

nw is i.i.d. process noise sampled
from distribution p(w) with possibly bounded support, and
f : Rn×W → R

n is a possibly nonlinear function. Distribution
p(w) is allowed to be non-standard, i.e., non-uniform and
non-symmetric. Let X ⊂ R

n be a Borel measurable set. The
one-step transition kernel, which defines the probability of
x(k + 1) ∈ X given x(k) = xk is

T(X | xk) =
∫

X
f (xk, w(k))p(w)dw. (2)

The transition kernel T is the basis for probability measures
of paths of System (1) [17], i.e., given an initial condition
x(0) = x0, Pr(x(0) ∈ X | x0) = 1(x0 ∈ X) and Pr(x(k + 1) ∈
X | xk) = T(X | xk), where 1(·) is the indicator function that
returns 1 if the argument is true and 0 otherwise.

B. Interval Markov Chains

A finite abstraction of System (1) is often an interval
Markov chain [2], which defines a space of Markov chains.

Definition 1 (IMC): An interval Markov chain is a tuple
I = (Q, P̌, P̂), where
• Q is a finite set of states;
• P̌ : Q×Q→ [0, 1] is the transition interval lower-bound

function, where, ∀q, q′ ∈ Q, P̌(q, q′) ≤ Pr(q, q′);
• P̂ : Q×Q→ [0, 1] is the transition interval upper-bound

function, where ∀q, q′ ∈ Q, P̂(q, q′) ≥ Pr(q, q′);
It holds that, for every q ∈ Q,

∑
q′∈Q P̌(q, q′) ≤ 1 ≤∑

q′∈Q P̂(q, q′). Define the adversary γ :Q × Q→ [0, 1] as a
true transition probability function such that, for all q, q′ ∈ Q,
γ (q, q′) ∈ [P̌(q, q′), P̂(q, q′)] and

∑
q′∈Q γ (q, q′) = 1. The set

of all adversaries is denoted by �. Under adversary γ , the
IMC reduces to a Markov chain with a well-defined probability
measure over its paths.

Consider a path property φ. The probability that all paths
initiated at q ∈ Q satisfy φ is denoted by Pr(q |= φ). When
φ is expressed in probabilistic computation tree logic (PCTL)
or linear temporal logic (LTL) [1], Pr(q |= φ) is equivalent to
the reachability probability on an IMC that composes I with

φ. W.L.O.G., let Qφ ⊆ Q be the set of states, reaching which
satisfies φ. While the exact value of Pr(q |= φ) cannot be
computed, it can be bounded, i.e., Pr(q |= φ) ∈ [p̌(q), p̂(q)],
using dynamic programming [4]. For the lower bound,

p̌0(q) = 1
(
q ∈ Qφ

)
, p̌k(q) = min

γ∈�
∑
q′∈Q

γ
(
q, q′

)
p̌k−1(q′

)
. (3)

The upper bound p̂ is computed by replacing the min with
max operator and p̌ with p̂. The computation of the satisfaction
bounds p̌(q) and p̂(q) for all q ∈ Q is called the IMC
verification procedure.

C. Problem Statements

Verifying System (1) against φ can be performed by
discretizing the state space of (1) to build an IMC abstraction
I that soundly models (1), and then verifying I against φ.
Given a compact set X ⊂ R

n, we let QX denote a finite
partitioning of X, with no preference on its inception. With
an abuse of notation, q ∈ QX is both one of these partitions
and an IMC state. The verification results can be extended
to (1), i.e., for every x ∈ q, Pr(x |= φ) ∈ [p̌(q), p̂(q)], if the
abstraction satisfies the soundness definition below as shown
in [5, Th. 2].

Definition 2 (Abstraction Soundness): An IMC abstraction
I is sound with respect to System (1) if, for all x ∈ q,
P̌(q, q′) ≤ T(q′ | x) ≤ P̂(q, q′) holds for all q, q′ ∈ QX .

To satisfy this definition, we assume that one of the
requirements of φ is to remain within a bounded (safe) set
X ⊂ R

n and refer to R
n \ X as an unsafe set.

Existing methods for IMC abstraction of stochastic systems
are largely limited to simple dynamics – affine in noise with
unimodal or symmetric distributions, or linear dynamics. The
first problem considered here aims to establish a method that
jointly addresses these limitations.

Problem 1 (Abstraction Construction): Construct a sound
IMC abstraction for System (1) with a nonlinear f and non-
affine and non-standard p(w).

In Section III, we propose a method that partitions the
domain of p(w) to construct the transition bounds of the
IMC which are valid for arbitrary distributions. Solving this
problem allows the application of IMC abstractions to a wider
class of systems, including data-driven systems.

The conventional approach to improving the satisfaction
intervals of an IMC is to refine the discretization QX , which
contributes to the state-explosion dilemma. The next problem
aims to improve the intervals on the same discretization QX
by leveraging the model of (1).

Problem 2 (Verification Improvement): Given abstraction I
of System (1), reduce the verification error p̂(q)− p̌(q) for all
q ∈ QX without refining QX .

In Section V, we propose an approach based on clustering
states in QX that uses the structure of the transition bounds
and (1) to reduce the gap between p̂ and p̌.

Remark 1: While we focus on IMC abstractions, the
results are trivially applied to interval Markov decision
process (IMDP) abstraction methods via concatenation
of IMCs.
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III. ABSTRACTION VIA NOISE PARTITIONS

The IMC abstraction for System (1) involves discretizing the
continuous state-space and computing transition probability
bounds between the resulting states.

A. State Discretization

Constructing a finite-state abstraction for System (1)
requires a bounded subset X ⊂ R

n. The abstraction is sound
on X, but not the entire state-space as discussed in Definition 2.
X is partitioned into a finite set of bounded and convex regions
QX , which implies, for every q, q′ ∈ Q, q ∩ q′ has zero
measure and

⋃
q∈QX

q = X. Let q¬X represent the remainder
(i.e., unsafe set) Rn\X. Then, the complete state set of the IMC
is Q = QX ∪ {q¬X}. The next IMC abstraction step computes
the transition bounds between states.

B. Transition Bounds With Noise Partitioning

The definition and computation of the transition bound
functions P̌, P̂ begins with states in QX . The transitions to q¬X
is a modified case. The connection between System (1) and
the abstraction arises from the transition kernel T in (2) over
IMC states. From a given x ∈ q, the transition kernel to q′ is
T(q′ | x). Finding bounds on the kernel amounts to searching
over all x ∈ q, i.e., minx∈q T(q′ | x), and maxx∈q T(q′ | x).
To satisfy Definition 2, P̌(q, q′) and P̂(q, q′) must bound these
extrema. For tractable evaluation of T in (2) with non-standard
distributions, the probability measure of w is evaluated over
partitions of its domain W.

Definition 3 (Noise Partition): A noise partition set C is a
measure-preserving discretization of W, i.e.,

⋃
c∈C c = W and

∀c ∈ C,
∑

c∈C

∫
c p(w)dw = ∫

p(w)dw = 1.
For brevity, c is used in place of w(k) ∈ c, and its probability

is Pr(c) = ∫
c p(w)dw. For a given c ∈ C, the posterior of

region q is Post(q, c) = {f (x, w) | x ∈ q, w ∈ c}. The
following theorem bounds the transition kernel.

Theorem 1: Let q, q′ ∈ QX and C be a partition of W
according to Definition 3. Then, the transition kernel is lower-
and upper-bounded, respectively, by

min
xk∈q

T
(
q′ | xk

) ≥∑
c∈C

1
(
Post(q, c) ⊆ q′

)
Pr(c) (4a)

max
xk∈q

T
(
q′ | xk

) ≤∑
c∈C

1
(
Post(q, c) ∩ q′ = ∅) Pr(c) (4b)

Proof: We begin with finding the upper bound. Using T and
finding the maximizing point,

max
xk∈q

T
(
q′ | xk

) = max
xk∈q

∫
1
(
x(k + 1) ∈ q′ | xk, wk

)
p(w)dw (5)

The integral is split according to the partitions in C,

(5) = max
xk∈q

∑
c∈C

∫
c

1
(
x(k + 1) ∈ q′ | xk wk

)
p(w)dw, (6)

which maintains equality due to the linearity of the integral.
The indicator function is upper-bounded by the existence of a
point in the intersection of Post(q, c) with q′,

(6) ≤
∑
c∈C

1
(
Post(q, c) ∩ q′ �= ∅) Pr(c),

where the max operator is dropped, as xk is subsumed by q.
The lower-bound is similar, instead doing under-approximation
by checking if Post(q, c) �′.

The transition bounds found using Theorem 1 require two
components: Post(q, c) and Pr(c). Note that for the bounds
in (4a)-(4b), an over-approximation of Post(q, c) can be used,
which can be obtained for nonlinear systems using local
linear bounds of f (x(k), w(k)) [18], [19], discretization with
Taylor model flowpipes [20], or mixed-monotone maps [21]
depending on the knowledge of System (1). Pr(c) can be
computed analytically for distribution-dependent soundness
guarantees, or statistically for sampling-based guarantees[7].
The next section discusses how partitions are selected to
optimize the bounds in Theorem 1.

To complete the abstraction, transitions to the unsafe state
q¬X are defined using the following corollary.

Corollary 1 (Unsafe State Transitions): For every state q ∈
QX , the transition bounds to q¬X are P̌(q, q¬X) = 1 −
maxxk∈q T(X | xk) and P̂(q, q¬X) = 1 − minxk∈q T(X | xk).
Additionally, the transition bounds between q¬X and itself are
P̌(q¬X, q¬X) = P̂(q¬X, q¬X) = 1.

Remark 2: Theorem 1 can be applied to general (non-
probabilistic) uncertainty sets by interpreting Pr(c) as a
deterministic indicator function. For example, for the bounded
uncertainty set W, choose c = W so Pr(c) = 1, and Pr(c′) = 0
for every other c′ ∈ C. Effectively, using Theorem 1 in this
case results in a non-deterministic transition system.

IV. OPTIMAL PARTITIONS

The transition bounds in Theorem 1 return valid bounds
for any choice of partition, and C can differ between (4a)
and (4b). However, haphazard partitions can result in the
trivial transition probability interval [0, 1]. The optimal noise
partitions minimize the distance between the transition bounds,
i.e., given q, q′ ∈ QX ,

C∗ = arg max
C

∑
c∈C

1
(
Post(q, c) ⊆ q′

)
Pr(c),

C
∗ = arg min

C

∑
c∈C

1
(
Post(q, c) ∩ q′ = ∅) Pr(c), (7a)

Hence, noise partitions can be selected to optimize the transi-
tion bounds for each pair (q, q′) independently. To begin the
analysis on these partitions, we assume component-wise noise
as defined below.

Definition 4 (Component-Wise Noise): For i ∈ {1, . . . , n},
let Mi ∈ {0, 1}n×n be a matrix whose i, i element is one and all
the other elements are zeros. Then, noise w(k) ∈ W ⊂ R

n is
called component-wise if Mif (x(k), w(k)) = f (x(k), Mi w(k)).

In other words, the noise vector shares the size of x(k), and
each component wi(k) only affects xi(k+1), which admits (but
is not limited to) affine and multiplicative noise (see Example 1
below). Definition 4 does not preclude the noise from being
correlated. Assuming the noise satisfies Definition 4, the next
step is to explore how Post(q, c) changes with variations
in c. If increasing wi

k consistently increases (or decreases)
xi(k + 1), it can lead to partitions C that induce non-empty
intersections between Post(q, c) and q′. This occurs if the
system is monotone with respect to the noise, which is defined
below.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:11:36 UTC from IEEE Xplore.  Restrictions apply. 



3714 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

Definition 5 (Noise Monotonicity): Monotonicity is the
condition that, for all scalars a, b ∈ R, a > b implies f i(·, a)−
f i(·, b) has the same sign. System (1) is monotonic with respect
to w(k) if each f i is monotonic with respect to wi(k).

Example 1: Consider the system x(k+1) = f (x(k))�w(k),
where each wi(k) ≥ 0 and� is the element-wise product. Then
the noise acts component-wise, and the system is monotonic
with respect to w(k).

Hitherto, we have made no assumptions about the convexity
of Post(q, c). Let the i component of a set in R

n refer to
its projection on the i-th unit axis. The following theorem
discusses non-convexity in terms of discontinuities (or holes)
in each component of Post(q, c). The theorem bounds the sizes
of C∗ and C

∗
for a system with monotonic noise.

Theorem 2 (Partition Size): Let q, q′ ⊂ R
n be bounded

and convex, and d be the largest number of discontinuities in
each component of Post(q, c). If System (1) is monotonic with
respect to component-wise, uncorrelated noise w(k), then |C∗|
and |C∗| are at most (3+ 2d)n.

Proof: The proof is provided for the upper-bound parti-
tion (7a). The lower-bound is the same but uses Post(q, c) �′.

C
∗

is found my choosing the constraint set that satisfies
to (7a). As the noise is uncorrelated, it is sufficient to minimize
the area intersection of Post(q, c) with q′ to minimize (7a).
Let q, q′ be convex and bounded, let Post(q, c) contain at most
d discontinuities for any choice of c, and let System (1) be
monotonic with respect to w(k).

First, consider d = 0, so Post(q, c) is convex for a given c
in all components. Then, Post(q, c) ∩ q′ must be convex. As
q′ is bounded, Post(q, c)∩ q′ is also bounded. For each i, due
to the monotonicity of System (1), at most 3 partitions of Wi

are needed to induce the minimum intersection with q
′i due

to the convexity and boundedness of q
′i. Thus, C

∗
consists of

3n partitions at most when d = 0.
Next, consider d > 0 for a component of Post(q, c) and

begin with C
∗

as found above. The intersection Post(q, c)∩q′
is possibly non-convex due the projection of discontinuities
of Posti(q, c). For each discontinuity, only two additional
partitions are needed to induce the minimum intersection with
q
′i due to the monotonicity of System (1). This is repeated

for each component in [1, n] for the result |C∗| ≤ (3+ 2d)n.
Repeating this procedure for the lower bound yields the same
number of partitions in C∗.

Theorem 2 shows that the sizes of C∗ and C
∗

are bounded,
but it leaves them unspecified. The following corollaries
specify the partitions for affine and multiplicative noise in the
case Post(q, c) is convex (hence d = 0). To facilitate this,
let Postf (q) = {f (x) | x ∈ q} be the f -dependent posterior.
The corollaries partition Wi into three intervals, C

∗ = {[ −
∞, ε1], [ε1, ε2], [ε2,∞]} and C∗{[−∞, ε3], [ε3, ε4], [ε4,∞]},
according to Theorem 2.

Corollary 2 (Partitioning for Affine Noise): Assume
System (1) satisfies the requirements of Theorem 2 and has
affine noise, i.e., f (x(k)) + w(k). Let the i-th component
endpoints of the target region q′ be aq′ , bq′ , and aq, bq for
the f -dependent posterior, and let l = bq − aq. Let C1 be
l > bq′ − aq′ , C2 be bq > bq′ , and C3 be aq < aq′ . Then
ε1 = aq′ − bq, ε2 = bq′ − aq in all cases. For the lower-bound,

Fig. 1. Endpoints aq′ , bq′ , aq , bq and distances between a component
of q′ and Postf (q).

ε3 =
⎧⎨
⎩

0 if C1
aq′ − bq + l if C2
aq′ − aq o.w.

, ε4 =
⎧⎨
⎩

0 if C1
bq′ − l− aq if C3
bq′ − bq o.w.

Proof: The proof uses the relative positions in Figure 1 to
find partitions that minimize and maximize the intersection
between the posterior and target region. For the upper
bound (4b), w(k) < aq′ − bq or w(k) > bq′ − aq is the largest
interval that ensures no intersection can occur with q′. For the
lower bound (4a), C1 occurs when the posterior is larger than
the target, so no partition of noise can cause intersection. For
C2, aq′ + l− bq < w(k) ≤ bq′ − bq is the largest interval that
ensures an intersection. C3 is the same as C2 with mirrored
positions. When no cases are true, Postf (q) �′, and aq′ −aq ≤
w(k) ≤ bq′ − bq ensures intersection.

Corollary 3 (Partitioning for Multiplicative Noise):
Assume System (1) satisfies the requirements of Theorem 2
and has (w.l.o.g.) positive multiplicative noise, i.e., Example 1.
Let the component endpoints be the same as Corollary 2, and
let them all be positive. Then, ε1 = aq′/bq, ε2 = bq′/aq, ε3 =
aq′/aq, and ε4 = bq′/bq.

Proof: The proof is similar to that of Corollary 2. The lower
bound is maximized when both bqw(k) < bq′ and aqw(k) >

aq′ , so aq′/aq < w(k) ≤ bq′/bq. Note that if aq′/aq > bq′/bq,
then the CDF evaluates to zero, so the partition set is trivial.
Likewise, the upper bound is minimized when aqw(k) > bq′
or bqw(k) < aq′ , so w(k) < aq′/bq or w(k) > bq′/aq.

These corollaries can be extended in the non-convex case
(d > 0) if the f -dependent posterior is readily available. The
case studies in Section VI show that the partitioning approach
finds accurate abstractions for systems with non-standard noise
when compared to a specialized method.

V. STATE CLUSTERING

Improving the satisfaction intervals of the IMC directly
impacts the guarantees on System (1), but relying solely on
refining the space discretization can lead to an explosion in
the number of states. Here, we propose a novel method based
on clustering the states of the IMC to improve the satisfaction
intervals without refinement to solve Problem 2.

Consider state q ∈ QX and its set of successor states Q′.
By the structure of (4a), P̌(q, q′) increases with the size of
q′ as it depends on Post(q, c) ⊂ q′ being true. Algorithm 1
is based on this principle. The sorting of QX on Line 1
makes the algorithm start with states with large p̌, as its
successor states have larger p̌, making improvement more
likely. Then, a subset of Q′ is chosen to cluster into a
single state q̃. The transition interval to q̃ is computed using
Theorem 1, and the satisfaction intervals are recalculated.
Clustering any states from Q′ improves the transition interval,

Authorized licensed use limited to: TU Delft Library. Downloaded on January 02,2024 at 15:11:36 UTC from IEEE Xplore.  Restrictions apply. 



SKOVBEKK et al.: FORMAL ABSTRACTION OF GENERAL STOCHASTIC SYSTEMS VIA NOISE PARTITIONING 3715

Algorithm 1 Clustering-Based IMC Improvement

Require: IMC I, verification results p̌, p̂
1: QX ← sort by p̌(q) in descending order
2: for each q ∈ QX do
3: q̃← cluster Q̃ ⊂ Q′ into a single state
4: p̌(q̃) ← minq′∈Q̃ p̌(q′)
5: P̌(q, q̃), P̂(q, q̃)← Theorem 1
6: p̌new(q)← min

γ∈�
∑

q′∈Q′\Q̃
γ (q, q′)p̌(q′)+ γ (q, q̃)p̌(q̃)

7: p̂new(q)← similarly with (3)
8: if p̌new(q) > p̌(q) or p̂new(q) < p̂(q) then
9: Save these values to p̌, p̂

10: return Improved intervals p̌, p̂

Fig. 2. Comparison of verification results.

but it must be balanced with p̌(q′) for effective enhancement.
We leave the question of the optimal clustering choice for
future work. However, our application of Algorithm 1 to a
data-driven example reveals that even sub-optimal clustering
yields improvements to the verification results.

VI. EVALUATIONS

We evaluate the proposed methods on linear, non-linear, and
data-driven systems using the PCTL specification φ that states
“the probability of reaching goal G within k steps (infinity
unless otherwise noted) while avoiding obstacles O is ≥ 0.9.”
Figures show states satisfying (|= φ) or violating ( �|= φ) the
specification, and possibly either (?φ).

1) Linear System Comparison: First, we compare our
set-based transition interval calculations against the direct
point-search method for specific noise proposed in [21] over
the same state discretization. The system is linear with additive
truncated Gaussian noise bounded on [−0.4, 0.4] from [21].
As shown in Figure 2(b), the classification results are nearly
identical with average and maximum differences of 8 ×
10−4 and 0.02, respectively, in the lower-bound satisfaction
probability. Computation time for discretization, verification,
and refinement is approximately 90 seconds. In this example,
the set-based criteria of Theorem 1 with the optimality of
Corollary 2 are sufficient to provide an accurate abstraction. In
addition, we highlight the shortcomings of using Theorem 1
without Corollary 2. The hatching on Figure 2(a) indicates the
verification results using fixed noise partitions [− 0.1, 0.1] to
construct C for both components, which is a shadow compared
to using the optimal partitions.

Fig. 3. Verification of the system with multiplicative noise.

Fig. 4. Verification of the learned linear system.

2) Multiplicative Noise: Next, we consider a system with
multiplicative noise, which existing abstraction approaches
cannot explicitly handle, to the best of our knowledge. The
dynamics are x(k+1) = Ax(k)�w(k), where the 1st and 2nd
rows of A are (0.7, 0.1) and (0.1, 0.8). Each noise component
is from a truncated Normal distribution with support [0.9, 1.1],
mean 1, and variance 0.1. Figure 3(a) shows verification results
using Corollary 3, which took 2 min. to compute. Figure 3(b)
shows the mean and 1-sigma bounds of 1000 sampled paths.
These validations are consistent with the classifications, as
some pass too close to O to make a conclusion either way,
and others consistently reach G or O.

3) Data-Driven Verification: The linear system from the
comparison example with wi(k) ∼ N (0, 0.12) on each compo-
nent is learned via Gaussian process (GP) regression with 200
data points. The transition bounds account for both the result-
ing uncertainty from the learning procedure and the inherent
system noise, as the resulting noise distribution is a sum of
normals. The efficacy of Algorithm 1 is demonstrated on the
initial discretization by clustering the states that intersect with
the f -dependent posterior of q, which is found similar to [5].
Figures 4(a) and 4(b) show additional satisfying and violating
states are identified without refinement. The lower-bound
satisfaction was improved in 8 states, with a 10% (absolute)
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Fig. 5. Verification of the noisy Duffing oscillator.

Fig. 6. Verification of the constant-turn Dubin’s car system.

average increase in the lower bound. Figures 4(c) and 4(d)
show the similarity of classifications between the known and
learned system after refining the abstraction. This shows the
efficacy of the method in the data-driven setting.

4) Duffing Oscillator: The nonlinear Duffing oscillator has
complex motion and chaotic behavior with continuous-time
dynamics ẍ + δẋ + αx + βx3 = γ cos(ωt), where, δ = 0.3,
α = −1.0, β = 1.0, γ = 0.37, and ω = 1.2. This system is
discretized over the time-span [0, 0.5], after which the forcing
function is reset and noise wi(k) ∼ N (0.1, 0.012) is drawn.
Taylor models were used to over-approximate the Post of
each discrete region [22]. The abstraction and verification for
k = 10, shown in Figure 5, took 4.5 hours to compute.
The paths are the means of 1000 samples with 2-sigma
confidence bounds at each point and the initial classification.
The validating trajectories provide insight to why initial states
bear their classification.

5) Dubin’s Aircraft With Mixture: A 3D discrete-time
Dubin’s car model [23] with a constant right-turn con-
trol input is verified with additive mixture noise consisting
of UNIFORM(−0.05,−0.01) and UNIFORM(0.0, 0.04), each
with a 50% weighting, on each state component x, y, and
heading θ . Figure 6 shows results in 3D and a 2D slice. Initial
states are identified that are guaranteed to make the turn safely,
or fail to meet the minimum safety threshold. This shows
the efficacy of the method in the verification of autonomous
system with non-standard distributions.

VII. CONCLUSION

We present an IMC abstraction method for nonlinear
stochastic systems by partitioning the noise domain, and a
refinement-free approach to improve IMC verification. This
procedure admits systems with non-affine and non-standard

noise distributions, and data-driven systems. Future work will
add measurement models, generalize the optimal partitioning
beyond component-wise noise and convex posteriors, and
improve the efficacy of the clustering procedure.
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