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a b s t r a c t 

Answering a major demand in modern credit risk management, we propose a nonparametric survival 

approach for the modeling of the recovery rate and the recovery time of a defaulted counterparty, by 

introducing what we call the Recovery Reinforced Urn Process, a special type of combinatorial stochastic 

process. 

The new model allows for the elicitation and exploitation of prior knowledge and experts’ judgements, 

and for the constant update of this information over time, as soon as new data become available. We 

show how to use it to perform Bayesian nonparametric prediction about the recovered amounts and the 

(total) recovery time of a series of defaulted exposures. 

An application to real data is provided using the Single Family Loan-Level Dataset by Freddie Mac. 

© 2018 Elsevier B.V. All rights reserved. 
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. Recovery modeling: introduction and main issues 

In the wake of the latest financial regulations for the banking

ector ( BCBS, 2011, IFRS9, 2014, EBA, 2017 ), we provide an answer

o the increasing demand of models for the recovery process of de-

aulted exposures. Differently from most contributions in the liter-

ture that mainly focus on the recovered amounts, here we pro-

ose a way to also study the duration of the recovery process,

 common “known unknown” ( Jorion, 2009 ) in risk management,

ith the final goal of predicting the possible recovery trajectory of

 counterparty, not only on the basis of the available data, but also

ith the possibility of using experts’ judgements and other a priori

nowledge to mitigate historical bias ( Knight, 1964, Taleb, 2007 ), at

east partially ( Shackle, 1955, Derbyshire, 2017 ). The model we pro-

ose is able to learn, improving its performances over time, using

he mechanism of Bayesian update, or machine learning in com-

uter science language. 

When a counterparty defaults, the corresponding loss is not

ecessarily equal to the Exposure-at-Default (EAD), that is the

ominal value of the exposure at the time of default. In fact,

hanks to the recovery process, i.e. the set of all the procedures

hat can be put in place to collect the amount due, one may

e able to recover at least a part of the outstanding exposure

 Hull, 2015 ). But these procedures are costly and may require a
∗ Corresponding author. 
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ubstantial amount of time, a very important variable for correct

isk management. 

The recovery rate (RR) is the amount of principal and accrued

nterest on a defaulted exposure that can be recovered, expressed

s a percentage of its face value, once again the EAD. In what fol-

ows, to ease notation, we will consider RR ∈ [0%, 100%], even if

he case RR > 100% is actually possible, thanks to fees and inter-

sts, as frequent among leasing contracts ( Schmit, 2004, Zhang and

homas, 2012 ). The recovery rate is naturally linked to the Loss

iven Default, or LGD , that is the percent loss experienced when

 counterparty defaults and no further recovery is possible. For

R ∈ [0%, 100%], we have LGD = 100 − RR . When RR ≥ 100%, we set

GD = 0% . 

In the last decade, because of the Basel Accords ( BCBS, 2005,

006, 2011 ), and the new International Financial Reporting Stan-

ards ( IFRS9, 2014 ), recovery modeling has become a major con-

ern for banks and regulators. In particular, the new IFRS 9

egulations–just entered in full force–define LGD assessment and

ack-testing as a major task for banks and financial institutions

 Reitgruber, 2015 ). Recovery risk, defined as the risk associated

ith the recovery process, in terms of time length and quantifi-

ation of the actual loss, is officially one of the new challenges in

redit risk management ( Schuermann, 2004, Bade et al., 2011, Re-

tgruber, 2015 ). 

The recovery process is not at all a simple object ( Altman et al.,

005a ), given that the entire process is influenced by a series

f important factors, which affect its success and duration. As

esti and Sironi (2007) point out, an effective recovery depends

https://doi.org/10.1016/j.jbankfin.2018.08.014
http://www.ScienceDirect.com
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on the characteristics of the exposure (presence of collateral, de-

gree of effectiveness), of the counterparty (e.g. industry, country

and legal framework), on macroeconomic factors like the state of

the economy, and on internal factors like the efficiency of a bank

in recovering its money, for instance in dealing with out-of-Court

settlements. 

The complexity of the recovery process is evident if we take

into account its possible outcomes, and the fact that its actual du-

ration, the recovery time T , is not known until the very end. We

can clearly distinguish three main scenarios: 1) the past due re-

ceivable is fully collected, so that, at some random time T , the re-

covery process terminates with RR = 100% ; 2) the uncollected re-

ceivable is fully or partially written-down or written-off, because

it has no residual market value nor it can be monetized, so that

at time T we have RR < 100%; 3) the recovery time exceeds a

given maximum time T max , legally imposed, therefore RR < 100%

and T = T max . From a statistical point of view, this last case in-

volves censored data ( Kleinbaum and Klein, 2012 ), something that

needs to be taken into consideration ( Resti and Sironi, 2007 ). 

The quantification of the recovery rate is a further problem, be-

cause also the recovered amount is precisely known only at the

end of the recovery process. And while it is true that for the bond

issues of large corporations one can typically rely on the so-called

market recoveries (computed as the ratio of the price at which

the defaulted bond is traded some days after default, provided

the market is not illiquid, to the price of that asset at the time

of default), it is also true that for smaller counterparties, or for

other products like loans, the information about prices is either

not available nor reliable. Khieu et al. (2012) have shown that post-

default prices tend not to be rational, but rather biased and ineffi-

cient. Even when prices are available, the discounted value of cash

flows is the preferred measures by both analysts ( Frye, 2005 ) and

regulators ( BCBS, 2011, IFRS9, 2014 ). 

The paper is organized as follows. Section 2 provides a

brief overview of the state-of-the-art in recovery modeling.

Section 3 gives an intuitive representation of the recovery process,

which is propaedeutical to the model we introduce in Section 4 .

In Section 5 we provide an extensive application of the model

to real data, showing how to deal with the recovery trajecto-

ries of defaulted loans in the Single Family Loan-Level Dataset by

Freddie Mac (2017) . Section 6 closes the paper. All the mathemat-

ical contents related to the new model, from theorems to proofs

and simulation details, are collected in the Appendix . 

2. The state-of-the-art of recovery modeling 

The literature on recovery modeling is not as extensive as the

one related to the probability of default (PD), but especially for the

recovery rates it is nevertheless rich and varied, from the pioneer-

ing works on hazard functions for loss data ( Kiefer, 1988 ), to the

very recent contributions about the methodological implications of

the new regulations on the estimation of LGD ( Reitgruber, 2015 ). 

For good reviews, we refer to Altman et al. (2005a) ,

Höochstötter and Nazemi (2013) , Gürtler and Hibbeln (2013) and

Yashkir and Yashkir (2013) . In particular, the first paper also con-

tains details about some less used methods like those based on

utility theory. 

Statistically, the modeling of LGD includes parametric and non-

parametric approaches ( Hartmann-Wendels et al., 2014 ). In the

first class, we find the different flavors of generalized linear mod-

els, from the convenient beta regression of Huang and Ooster-

lee (2011) to the logit, probit and tobit regressions described in

Bellotti and Crook (2012) , or in Loterman et al. (2012) , where

interesting comparisons are discussed. In a very recent paper,

Krüger and Rösch (2017) deal with quantile regression, and they

are able to deal with both bulk and tail events, that is with the
ntire LGD spectrum. Regarding nonparametric methods, NP re-

ression and model trees ( Hartmann-Wendels et al., 2014 ) are

ommon tools, together with mixtures ( Calabrese and Zenga, 2010 )

nd beta kernels ( Renault and Scaillet, 2004 ). 

Recently, a series of survival analysis models have also been

roposed, e.g. Im et al. (2012) , according to a trend in PD mod-

ling, but also following the new regulations ( BCBS, 2011, IFRS9,

014 ) asking for both point-in-time (PIT) and through-the-cycle

TTC) estimates ( Chawla et al., 2015, Reitgruber, 2015 ). We can cite

onini and Caivano (2013) and Witzany et al. (2012) as examples

f pure survival approaches. In particular, in the latter, different

odels are considered, including interesting semi-parametric and

seudo-survival constructions. For a comparison between regres-

ion and survival methods, we refer to Zhang and Thomas (2012) . 

Most of the contributions in the literature, a notable excep-

ion being Bastos (2010) , do not present models that are able to

earn from data, updating their parameters, and improving their

erformances over time, whenever new pieces of information be-

ome available. This is actually our ambition: using a specially con-

eived reinforced urn process ( Muliere et al., 20 0 0 ), we propose

 nonparametric survival approach that allows for the elicitation

nd exploitation of prior information, and its automatic updating

nd correction over time using data. A model that can be seen

s a mixture of combinatorial stochastic processes and machine

earning, but that, differently from traditional machine learning

 Murphy, 2012 ), gives us full control of its probabilistic features. 

. Visualizing recovery 

Without loss of generality, we can discretize the recovery rate

f a counterparty in terms of a scale of recovery levels from 0 to

 . Level 0 corresponds to no recovery ( RR = 0% ), levels 1 to m − 2

epresent intermediate stages of recovery (0% < RR < 100%), while

evel m − 1 is full recovery ( RR = 100% ). Level m is a special stage,

ot associated to any specific recovery rate, but representing the

ermination of the recovery process. We can read it as the situa-

ion in which the recovery process has reached full recovery or a

rite-off, and we need some little extra time for closing the bu-

eaucratic procedures. As we shall see, the termination level m is a

ittle artifice needed to fully develop the model, guaranteeing the

roperty of recurrence ( Appendix : Lemma 1 ). 

Let us consider a simple example. Set m = 4 and define 4 pos-

ible levels for the recovery rate: 

 : 0% , 1 : (0% , 50%] , 2 : (50% , 100%) , 3 : 100% , (1)

lus the extra level 4 representing the termination of the recovery

rocess. 

The larger m , the finer the partition for the discretized recovery

ate. Notice that it is not required that each recovery level guar-

ntees the same additional recovery. In other words, in the previ-

us example, we could define a scale in which level 0 corresponds

o 0%, level 1 to (0%, 25%], level 2 to (25%, 100%), and level 3 to

00%, according to our needs. The only constraints are that level 0

s equal to 0%, no recovery, level m − 1 corresponds to 100%, full

ecovery, and level m is the termination level. 

Following intuition, we can take the recovery level to be a non-

ecreasing quantity: once we have recovered 20% of the outstand-

ng exposure, we can further increase our recovery level or not, but

e cannot go back to 10%. 

We set time t to be a nonnegative integer ( t ∈ N 0 ), repre-

enting a particular time unit, like days or months. For the re-

overy process, discrete time is not a limitation: according to

ltman et al. (2005a) , it is actually more realistic than a contin-

ous time framework. 

With the couple ( t, l ), we can therefore indicate that a given

ounterparty at time t is at recovery level l ∈ { 0 , 1 , . . . , m } . 
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By definition, the recovery process of a counterparty starts in

0,0), at default, where the recovery clock is yet to start and the

ecovered amount is null. From (0,0), time starts running and we

an spend several time units at a given recovery level, before being

ble to reach a higher one. 

Let us consider a counterparty A, whose recovery trajectory R A 
ooks like 

 A ={ (0 , 0) , (1 , 0) , (2 , 0) , (0 , 1) , (1 , 1) , (0 , 3) , (1 , 3) , (0 , 4) , (1 , 4) } . (2)

his means that, after default in (0,0), counterparty A spends 2

ime units in level 0, where no amount is recovered, visiting (1,0)

nd (2,0). It then jumps to recovery level 1, where it stays 1 time

nit, recovering up to 50% of its EAD in the scale of Eq. (1) . Fi-

ally, for one time unit, A reaches level 3, full recovery, before

umping to termination level (0,4), which closes the recovery pro-

ess. For the termination level, in what follows, we always assume

 fixed fictitious permanence of 1 time unit (more later). The to-

al recovery time for counterparty A is therefore T A = 2 + 1 + 1 = 4 .

he time spent in level 4, the termination level, is not taken into

onsideration for the computation of the total recovery time. 

. Recovery modeling and reinforced urn processes 

Consider a portfolio of k defaulted exposures, which we assume

xchangeable. 1 Exchangeability is a relaxation of the stronger as-

umption of independence: the order in which we observe our

ounterparties is for us irrelevant, and the joint distribution of

heir recovery times and levels is immune to permutations in the

rder of appearance. Exchangeability is a common assumption in

redit risk modeling, for instance in the class of mixture models

 McNeil et al., 2015 ), where it probabilistically represents the idea

hat we can split a group of counterparties into subgroups that are

omogeneous in terms of risk, that is exchangeable within. 

In this paper, the exchangeability of counterparties consists in

he exchangeability of their recovery trajectories: it is not impor-

ant if the recovery process of counterparty i is observed before or

fter that of counterparty j , because the joint distribution of their

ecoveries is unaffected, and so our estimates. We assume that the

ecovery trajectory R i of counterparty i is representable as in the

xample of Eq. (2) , for i = 1 , . . . , k . 

.1. The general RUP construction 

To develop our model we make use of Reinforced Urn Processes

RUPs) that are a class of combinatorial stochastic processes intro-

uced by Muliere et al. (20 0 0) . 

A RUP { X n } n ≥ 0 is characterized by the following elements: 

• A countable state space S of all the possible states the process

{ X n } can visit with positive probability. 

• Every element s ∈ S is associated with a Pólya urn, i.e.

an urn characterized by sampling with reinforcement

( Mahmoud, 2008 ), containing colors belonging to a set C ,

with cardinality # C > 0. 

• For each urn we define a function U : s ∈ S → R 

# C describing

the composition of the urn itself. In other words, for every s ∈ S ,

urn U ( s ) contains N s ( c ) ≥ 0 balls of color c ∈ C . To avoid degener-

ate cases, we assume �c ∈ C N s ( c ) > 0, so that every urn contains

a positive amount of at least one color. 2 
1 Given two random variables X 1 and X 2 , they are exchangeable whenever P(X 1 ≤
 1 , X 2 ≤ x 2 ) = P(X 1 ≤ x 2 , X 2 ≤ x 1 ) , that is when their joint distribution is immune to 

ermutations in the order of the variables. The concept is easily extended to higher 

imensions ( de Finetti, 1975 ). 
2 Notice that N s ( c ) is a real number, so that we can have 1.3 balls of color c . A 

eal number of balls can be represented using balls of different radius: the bigger 

 

 

t

t

s

• A law of motion q : S × C → S indicating how the sampling of the

different urns drives the process { X n }. Given a color c ∈ C and

two states s, w ∈ S , so that w can be visited from s with pos-

itive probability after sampling c from U ( s ), the function q is

such that w = q (s, c) . Clearly the definition of q allows for the

construction of very different processes, all falling within the

general RUP framework of Muliere et al. (20 0 0) to which we

refer for details. 

Without any loss of generality, fix an initial state s 0 . A RUP

 X n } on S with initial state s 0 is defined recursively as follows: set

 0 = s 0 , and for all n ≥ 1, if X n −1 = s n −1 ∈ S, sample a ball from the

rn U(s n −1 ) associated with s n −1 . Now, register the color of the

all, say c ∈ C , put it back in U(s n −1 ) , and Pólya-reinforce the urn

ith r > 0 balls of the same color. This increases the probability of

icking again that color in the future, if the urn is sampled again:

he higher r the stronger the update. Finally, using the rule of mo-

ion q , set X n = q (s n −1 , c) . The sequence { X n } is a reinforced urn

rocess with initial state s 0 and reinforcement r . 

A RUP is just a reinforced random walk on a state space of urns.

t is a Bayesian nonparametric model, in which the initial com-

osition of the urns defines the a priori (the way in which the a

riori is elicited is given in Appendix ), which we can update over

ime thanks to the sampling of the urns, using reinforcement and

ther technical conditions we shall discuss later. This possibility of

mbedding prior knowledge and to learn from data is one of the

oints of strength of RUPs that, in the last years, have been used

o develop some interesting models in finance ( Cirillo et al., 2010,

eluso et al., 2015 ), biostatistics ( Mezzetti et al., 2007 ) and other

elds. 

.2. The recovery RUP (R-RUP) 

A generic RUP can be adapted to model recovery rates and re-

overy times, we call this special process the Recovery RUP or R-

UP. 

We better specify the space S by setting S = N 0 × L, so that it

ontains all the couples ( t, l ) of recovery times t and recovery lev-

ls l the process { X n } can visit. As per Section 3 , levels 0 to m − 1

re a discretization of the recovery rates from 0% to 100%, while

evel m represents the termination level. 

The set of colors is now C = { c 0 , c 1 , . . . , c m 

} , where each color

rom c 0 to c m 

corresponds to a given recovery level, as if we color

hem. 

For the fundamental rule of motion q , we define three behav-

ors: 

A. q ((t, l) , c i ) = (t + 1 , l) , for i ≤ l ≤ m . In words: if, from the urn

centered in ( t, l ), we extract a ball whose color corresponds to

level l or lower, the process moves to the next time unit t +
1 , but stays at the same recovery level l . From ( t, l ) we move

to (t + 1 , l) . The rule can be further simplified if we assume

that urns at level l only contain balls of colors (c l , c l+1 , . . . , c m 

) ,

so that we can set q ((t, l) , c l ) = (t + 1 , l) . This is actually the

version we adopt from now on. 

B. q ((t, l) , c i ) = (0 , i ) , for l < i ≤ m . The process jumps to level i > l

while time is reset to 0. Resetting time at every jump helps in

counting the time units the R-RUP spends in each recovery level

it visits. When a c m 

ball is extracted from the urn in state ( t, l ),

the recovery process jumps to the termination level. Clearly, if

c m 

is extracted in level m − 1 , the recovery process has reached

full recovery, otherwise, for l = 0 , . . . , m − 2 , we are experienc-

ing a write-off. 
he ball, the easier to sample it. Naturally we can choose N s ( c ) to be an integer: 

his will not affect the model, but it can help to have a simpler intuition of the 

ampling scheme. 
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C. q ((1 , m ) , c m 

) = (0 , 0) . The process { X n } can stay in level m only

for one time unit thanks to rule A 

3 , after which it reaches (1,

m ) and it is reset to (0,0). This last movement allows us, using

Lemma 1 in the Appendix , to define a recurrent R-RUP. 

To avoid degenerate situations and to facilitate the application

to real data, we can impose extra restrictions on the urn composi-

tions. From one side, we can set N (0 ,l) (c i ) = 0 for i = l + 1 , . . . , m,

and all l ∈ L , guaranteeing that we cannot visit two recovery lev-

els at the same (discrete) time, because when the process touches

level l in (0, l ), it must spend at least one time unit at this level.

From the other side, for all t ≥ 1, we can impose N (t,m −1) (c i ) = 0 for

i < m , and N (t,m −1) (c m 

) > 0 , so that the process necessarily moves

to the termination level after visiting full recovery for one time

unit. 

In the R-RUP construction, the recovery process of counterparty

i , with all its intermediate stages, can be represented as a sequence

of points ( t, l ) in the space S . For a first counterparty we might for

example observe 

R 1 = [ X 0 , X 1 , . . . , X n 1 ] = 

[ (0 , 0) , (1 , 0) , . . . , (t 0 , 0) , (0 , l 1 ) , (1 , l 1 ) , . . . , (t 1 , l 1 ) , 
. . . , (0 , l max ) , . . . , (t max , l max ) , (0 , m ) , (1 , m ) ] , 

where l 1 , l 2 , . . . , l max are the levels visited by the counterparty

( l max < m being the maximum recovery level reached), and

 1 , t 2 , . . . , t max are the corresponding sojourn times, whose sum

represents the total recovery time T 1 . The quantities l max and T 1 
fully summarize the recovery trajectory (and risk) of exposure 1. 

Similarly to R 1 , the recovery process of each counterparty i is

thus represented as a block R i of visited states starting with (0,0).

If we consider k exposures, we will have k blocks. Every time we

observe (0,0) in the sequence generated by { X n }, it means that we

are looking at a new counterparty. Since we assume the recovery

trajectories of the exposures to be exchangeable, the blocks R i are

exchangeable. The R-RUP is therefore able to model any number

of counterparties if, every time a recovery process is over, we re-

set { X n } to (0,0), so that we can start a new block. In probabilistic

terms, { X n } needs to be a recurrent, as we discuss in the Appendix .

In general, after n time steps, for { X n } we have 

{ X 0 , X 1 , X 2 , . . . , X n } = { R 1 , R 2 , . . . , R k } , 
so that the first n states visited by { X n } can be collected into k 0-

blocks, where the number k depends on the number of (0,0) in the

sequence of states generated by { X n }. A group of k defaulted coun-

terparties will thus be represented by k 0-blocks: R 1 , . . . , R k . Natu-

rally the last recovery trajectory R k could be incomplete at step n ,

depending on n and k . 

4.3. A clarifying example 

The maximum recovery level is m = 4 , so that each urn in S is

characterized by a set of 5 colors C = (c 0 , c 1 , c 2 , c 3 , c 4 ) . According

to Subsection 4.2 , every urn at recovery level l ∈ {0, 1, 2, 3, 4} only

contains balls of color (c l , . . . , c 4 ) . 

We start with the default of exposure 1, which begins its recov-

ery process in X 0 = (0 , 0) . We sample urn U ((0, 0)) and extract a c 0
ball, so that we move to X 1 = q ((0 , 0) , c 0 ) = (1 , 0) , that is exposure

1 stays at the recovery level 0 for one time unit. Then, we sample

urn U ((1, 0)) and we extract c 2 , therefore we jump to X 2 = (0 , 2) ,

i.e. after staying at recovery level 0 for 1 time unit, the counter-

party jumps immediately to level 2, without touching level 1. In

urn U ((0, 2)), we sample again a c 2 ball, we set X 3 = (1 , 2) , and

we stay at recovery level 2 another time unit. Finally, we extract a
3 We are using the simplified version of rule A, otherwise it is sufficient to set 

q ((1 , m ) , c i ) = (0 , 0) for every i . 

l  

r  

t  

t

 3 ball from urn U ((1, 2)) and the exposure reaches the full recov-

ry level 3. The recovery process goes back to state (0,0) after we

tay one more time in the full recovery level 3, and in the termina-

ion level 4 for “bureaucratic” reasons. Summarizing, for exposure

 we observe: 

 1 = { X 0 , . . . , X 7 } 
= { (0 , 0) , (1 , 0) , (0 , 2) , (1 , 2) , (0 , 3) , (1 , 3) , (0 , 4) , (1 , 4) } . (3)

he total recovery time for exposure 1 is T 1 = 1 + 1 + 1 = 3 , given

hat the one-period permanence in level 4 is not counted. The re-

overy trajectory is visible in Fig. 1 (a). 

All the urns in S are Pólya, therefore every ball sampled from an

rn is reinforced with r extra balls of the same color, thus chang-

ng the composition of that urn. Hence, after R 1 has been observed,

he probability that a new counterparty follows the same trajec-

ory increases. The R-RUP thus remembers and learns from what

appens. 

Let us now continue our sampling from urn U ((0, 0)), where

he process { X n } has landed after the resetting due to the rule of

otion q applied in (1, 4) ∈ R 1 . Imagine that we obtain two further

ecovery trajectories for exposures 2 and 3, i.e. 

 2 = { X 8 , . . . , X 17 } 
= { (0 , 0) , (1 , 0) , (2 , 0) , (3 , 0) , (0 , 1) , (1 , 1) , (0 , 2) , (1 , 2) , 

(0 , 4) , (1 , 4) } , 
nd 

 3 = { X 18 , . . . , X 33 } 
= { (0 , 0) , (1 , 0) , (2 , 0) , (3 , 0) , (4 , 0) , (0 , 1) , (1 , 1) , (0 , 2) , 

(1 , 2) , (2 , 2) , (3 , 2) , (4 , 2) , (5 , 2) , (6 , 2) , (0 , 4) , (1 , 4) } . 
otice that for exposure 2 (and also for 3), because of the recovery

rajectory of exposure 1 and the Pólya-reinforcement mechanism,

he probability of picking a c 2 ball in (1,0) is higher than what orig-

nally experienced by exposure 1 (there are r extra c 2 balls now),

nd this is true for all the already visited states. 

The recovery processes for exposures 1, 2, and 3 can thus be

epresented as follows: 

 R 1 ,R 2 ,R 3 } = { X 0 ,X 1 , . . . ,X 33 } = 

⎧ ⎨ 

⎩ 

exposure 1 ︷ ︸︸ ︷ 
(0 , 0) , . . . , (1 , 3) , (0 , 4) , (1 , 4) , 

×
exposure 2 ︷ ︸︸ ︷ 

(0 , 0) , . . . , (1 , 2) , (0 , 4) , (1 , 4) , 

×
exposure 3 ︷ ︸︸ ︷ 

(0 , 0) , . . . , (6 , 2) , (0 , 4) , (1 , 4) 

⎫ ⎬ 

⎭ 

. 

Using reinforcement, the R-RUP modifies its transition proba-

ilities at every cycle. In the R-RUP, the initial compositions of the

rns represent our a priori, which we modify through sampling,

n order to get what looks like a Bayesian posterior, as clear from

heorem 2 in the Appendix . 

.4. The introduction of censoring 

To make the model more realistic, assume there are legal pro-

isions on the market such that there exists a maximum recov-

ry time T max , above which all recovery is exogenously stopped,

otwithstanding the possibility to further recover later on. From a

tatistical point of view, the existence of T max introduces the prob-

em of right-censoring ( Kleinbaum and Klein, 2012 ). In looking at

eal data, it means that we have no idea about what happens af-

er T max : an exposure could have reached full recovery or not, but

hat remains unknown to us. 
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Fig. 1. The graphical representation of the recovery trajectories of exposures 1, 2, and 3 with maximum recovery time T max = 9 . For 1 and 2, the recovery process ends 

at times 3 and 5 (green diamonds, no censoring), and the passing of time can be easily read on the recovery trajectories. Notice that counterparty 2 never reaches the 

maximum recovery level m = 3 , but it stops in (1,2) with a write-off. For 3, the recovery process is right-censored at time T max = 9 (green cross, censoring). 
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4 http://www.freddiemac.com/news/finance/sf _ loanlevel _ dataset.html . 
As an example, set T max = 9 , so that the recovery process of a

iven counterparty cannot last more than 9 time units. Fig. 1 gives

 graphical representation of the recovery processes of exposures

, 2 and 3 of Section 4.3 in the case of censoring. For counterparty

 and 2, the recovery process ends at time T 1 = 1 + 1 + 1 = 3 < 9

nd T 2 = 3 + 1 + 1 = 5 < 9 , respectively, well before the maximum

ime limit, therefore no censoring takes place. For exposure 3, on

he contrary, T 3 = 4 + 1 + 6 = 11 > 9 , hence its recovery is forcedly

nterrupted and right-censored at time T max = 9 . The recovery tra-

ectory for counterparty 3 in case of censoring is thus given by 

 

cens 
3 = { X 18 , . . . , X 29 } = { (0 , 0) , (1 , 0) , (2 , 0) , (3 , 0) , (4 , 0) , (0 , 1) , 

(1 , 1) , (0 , 2) , (1 , 2) , (2 , 2) , (3 , 2) , (4+ , 2) } ,
here (4+ , 2) indicates that the time spent in level 2 is censored

n 4, given that the global T max has been reached. Again, in case of

ensoring, we do not know what happens to the recovery trajec-

ory of exposure 3 after T max . 

For every counterparty i , we will make use of a dummy variable

i to indicate whether its recovery trajectory is censored (1) or not

0). More in the Appendix . 

.5. Main properties 

The R-RUP is characterized by several probabilistic properties,

hich make it powerful and flexible, and able to update its a priori

nowledge with the information coming from actual recovery tra-

ectories, even when these are censored, as very common in real

usiness life ( Resti and Sironi, 2007 ). 

When recurrent, the R-RUP may be represented as a mixture of

emi-Markov chains, and this mixture is characterizable as a new

ivariate random distribution given by a particular interaction of

irichlet and beta-Stacy processes (Theorem 1). The knowledge of

his random distribution allows for the Bayesian prediction of the

ossible recovery trajectories of new counterparties ( Theorem 2

nd Corollary 1 ). 

All the theorems, the proofs and the mathematical details re-

ated to the R-RUP are collected in the Appendix at the end of the

aper. 
. Application: recovery modeling of family loans with US data 

We show how the R-RUP can be used to jointly model recovery

imes and recovery levels, using US data from Freddie Mac (2017) .

he results we get are encouraging, as they show the ability of the

-RUP to learn from data and to reach interesting out-of-sample

erformances, also being able to correct possible mistakes in the

licitation of our prior beliefs. 

.1. Data and model initialization 

We use a subset of the larger Single Family Loan-Level Dataset

f Freddie Mac (2017) , freely available online 4 , covering around 23

illion fixed-rate mortgages originated between January 1, 1999

nd March 31, 2016. For each loan several covariates are avail-

ble, the most relevant ones being the loan size, the loan-to-value,

he FICO score (as indicator of the borrower’s creditworthiness)

nd several measures of credit performance. For each single ex-

osure the monthly EAD is registered together with all the repay-

ents and, in case of a default, the information about the recov-

red amounts, the losses, the recovery procedure and the possible

EO (real estate owned) dispositions is available. 

Using Freddie Mac classification, a loan experiencing more than

80 days of delinquency is considered defaulted and the credit

vent is registered. From that very moment the recovery process

tarts, therefore delinquency day 180 corresponds to state (0,0)

n the R-RUP construction. It is important to stress that we do

ot take into consideration those loans that have been liquidated

rior to a delinquency of 180 days because of a short sale, a re-

urchase or a foreclosure. This choice is due to the fact that we

eed a clear definition of credit event to correctly define the initial

tate of our reinforced urn process. Consistently with the literature

 Altman et al., 2005a ), we also exclude all loans that, despite being

ormally defaulted after 180 days, have cured after the credit event

nd then prepaid or repurchased. 

http://www.freddiemac.com/news/finance/sf_loanlevel_dataset.html
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Table 1 

Repartitions of the training set (in-sample: 20113 loans originated in the first 

quarter of 2006) and of the validation set (out-of-sample: 20038 loans orig- 

inated in the second quarter of 2006) using the FICO scores, and the size of 

the loans (in thousand dollars). 

FICO score ≤ 650 (650,685] (685,725] > 725 

Training 4691 4936 5057 5509 

Validation 4851 4747 4999 5441 

Loan size ≤ 100 (100,150] (150,200] (200,250] > 250 

Training 3346 4386 4333 3198 4850 

Validation 3317 4608 4407 3111 4595 
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To train our model, that is to update the initial urn composi-

tions (more in Section 5.2 and the Appendix ), we start with a set

of 20,113 defaulted loans originated in the first quarter of 2006.

These loans correspond to roughly 10% of all the loans originated

in the months of January, February and March 2006. Given our

definition of credit event, these loans start defaulting in the third

quarter of 2006, but many of them later. Almost all loans in the

Freddie Mac Dataset are not right-censored: a complete recovery

process is indeed observed, probably thanks to the long time win-

dow over which the loans are followed. As a consequence, in what

follows, ρi = 0 for i = 1 , . . . , 20113 , where ρ i is the dummy vari-

able indicating censoring. 

In our training set almost 93% of the defaulted loans have ex-

perienced a write-off, and only 7% a full recovery. 

The performances of the model have then been tested in-

sample and, most importantly, out-of-sample, making inference

and prediction about the recovery times and the recovery levels of

loans originated in subsequent periods, like the 20,038 defaulted

loans generated in the second quarter of 2006. 

The 20,113 loans of the training sample and the 20,038 of the

validation sample have been divided into different groups, to better

model their recovery processes. In particular, we have considered 4

classes in terms of FICO score: ≤ 650, (650,685], (685,725], > 725;

and 5 classes in terms of size of the exposure: ≤ 100, (100,150],

(150,20 0], (20 0,250] and > 250 in thousand dollars. Table 1 gives

the number of observations in each class in the training and in the

validation sets according to the two classifications. 

Splitting the data into groups guarantees that the assumption

of exchangeability can be reasonably made for the counterparties

in the different classes. Within each group, we thus assume that

all the defaulted exposures are homogeneous and exchangeable in

terms of risk ( McNeil et al., 2015 ). While it is plausible to assume

that counterparties with similar FICO scores (or loan sizes) are ex-

changeable, it is not at all safe to assume that all loans together

are. Each class will be modeled with a different R-RUP. 
For each defaulted loan in the Freddie Mac Dataset the monthly

recovered amounts are collected. By dividing these numbers by the
corresponding Exposure-at-Default, we easily obtain the monthly
recovery rates. In order to be used in our model, these recovery
rates are discretized into recovery levels. We have defined 13 lev-
els: 

L = 

{ 

0 : 0% , 1 : (0% , 10%) , 2 : [10% , 20%) , 3 : [20% , 30%) , 4 : [30% , 40%) , 

5 : [40% , 50%) , 6 : [50% , 60%) , 7 : [60% , 70%) , 8 : [70% , 80%) , 

9 : [80% , 90%) , 10 : [90% , 100%) , 11 : 100 + % , 12 : termination 

} 

. 

(4)

In level 11, corresponding to full recovery, we have also included

the few cases (in the order of tens) of recovery rates above 100%,

while level 0 includes the few (again in the order of tens) situa-

tions in which the actual recovery rate is slightly negative, because

the defaulted exposure has generated fees that the debtor has not

paid. For more details about the technicalities of these events we

refer to Freddie Mac (2017) . 
Given the range of variation of the recovery times in the data,

e have chosen t = 0 , 1 , . . . , 100 , where each time step represents

 month. The R-RUP is thus representable as a 13 × 101 matrix

f urns, with levels of recovery on the rows, and times on the

olumns. 

.2. Prior elicitation and update 

A fundamental aspect of the R-RUP initialization is the defini-

ion of the starting urn compositions, which represent our prior

eliefs about recovery times and recovery levels. To embed our a

riori in the R-RUP, we need to intervene on the number of balls in

ach urn. At the end of the Appendix , we give all the details about

he process of prior elicitation using the properties of the bivariate

andom distribution that characterizes the R-RUP. Here it is suffi-

ient to say that we have used three different prior sets to test the

odel. In all sets, the priors on the risk levels are discrete uni-

orms, with the empirically-based assumption that the higher the

ecovery level an exposure reaches, the higher the chance of fur-

her recovery ( Altman et al., 2005b ). Regarding the recovery times,

onversely, we use the empirical cumulative distribution function

n Prior Set 1, a discrete uniform with empirically determined sup-

ort in Prior Set 2, and a uniform on [0,100] in Prior Set 3. 

As in all Bayesian models, the prior elicitation step is very im-

ortant in the R-RUP, in that it influences the speed at which the

odel converges to the true posterior distribution, and thus all es-

imates and predictions. But there are good news: even a totally

rong prior can be corrected with a sufficient number of obser-

ations, provided it is not degenerate, in accordance to Cromwell’s

ule ( Jackman, 2009 ). 

The urn compositions and our beliefs are then updated using

he 20,113 recovery trajectories of the training sample. This is done

y translating the recovery process of each observed counterparty

nto a sequence of samplings from the urns of the R-RUP, accord-

ng to the rule of motion we have described in Section 4 . For in-

tance, when in the data we observe that counterparty i moves

rom state ( t, l ) to state (t + 1 , l) , we read this as an extraction of

 c l ball from the urn in ( t, l ). Therefore the composition of that

rn is changed by adding r balls of color c l . And so on for all the

ransitions we observe in the data, one counterparty at a time, un-

er the hypothesis of exchangeability. 

The parameter r thus plays the role of learning parameter. The

igger r , the quicker the model learns and adapts to the empirical

ata. The smaller r , the longer it will take to update our a priori.

he calibration of r is therefore one of the ways in which we can

how how confident we are about our beliefs, and how much we

ccept to modify them. Once again the importance of r diminishes

ith the number of available observations. With r > 0, thousands

f observations will always be able to modify our a priori, shift-

ng it towards the empirical reality that emerges from data. In the

ollowing we choose four different values for the reinforcement,

 ∈ {0, 0.01, 1, 100}, where r = 0 means that we do not update our

 priori, as if we do not trust data, while r = 100 indicates that

mpirical evidence is able to quickly modify our prior beliefs. For

ore details, once again we refer to the Appendix . 

A natural question then arises: why do we need to elicit any a

riori if we will always converge towards the empirical distribution

f the data, with a sufficient number of observations? The answer

s that: first, our prior beliefs become extremely important when

he number of observations is not large, as in low default portfolios

or instance ( BCBS, 2011 ); second, a correct prior may compensate

or the lack of information in the data and the problems of histor-

cal bias, as in the case of extreme and rare events ( Shackle, 1955,

aleb, 2007 ); third, with the right prior elicitation we can also em-

ed meaningful ideas about not-yet-observed trends and future de-

elopments. In the limit, in the totally ideal case in which our pri-



D. Cheng, P. Cirillo / Journal of Banking and Finance 96 (2018) 1–17 7 

Table 2 

P-values for two sample Kolmogorov-Smirnov Goodness-of-Fit Tests for 

the total recovery times in the training sample (20113 defaulted expo- 

sures originated in the first quarter of 2006), comparing the posterior 

R-RUP distributions and the empirical ones, for different reinforcements 

r . The training sample has been divided into 5 groups in terms of loan 

size, as per Table 1 . 

Loan size Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 0.13 0.08 0.15 0.00 

2 0.16 0.09 0.06 0.00 

3 0.09 0.01 0.23 0.00 

(100 K,150 K] 1 0.01 0.00 0.00 0.00 

2 0.01 0.00 0.04 0.00 

3 0.02 0.07 0.02 0.00 

(150 K,200 K] 1 0.10 0.05 0.11 0.00 

2 0.09 0.03 0.06 0.00 

3 0.02 0.06 0.00 0.00 

(200 K,250 K] 1 0.90 0.58 0.26 0.00 

2 0.92 0.45 0.47 0.00 

3 0.39 0.22 0.22 0.00 

> 250 K 1 0.31 0.86 0.64 0.00 

2 0.46 0.74 0.07 0.00 

3 0.60 0.75 0.68 0.00 

Table 3 

P-values for two sample Kolmogorov-Smirnov Goodness-of-Fit Tests 

for the total recovery times in the training sample (20113 defaulted 

exposures originated in the first quarter of 2006), comparing the pos- 

terior R-RUP distributions and the empirical ones, for different rein- 

forcements r . The training sample has been divided into 4 groups in 

terms of FICO scores, as per Table 1 . 

FICO score Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 650 1 0.01 0.02 0.03 0.00 

2 0.06 0.04 0.02 0.00 

3 0.04 0.06 0.00 0.00 

(650,685] 1 0.02 0.04 0.02 0.00 

2 0.07 0.28 0.02 0.00 

3 0.04 0.13 0.07 0.00 

(685,725] 1 0.21 0.16 0.03 0.00 

2 0.08 0.26 0.05 0.00 

3 0.08 0.06 0.21 0.00 

> 725 1 0.03 0.09 0.06 0.00 

2 0.06 0.03 0.08 0.00 

3 0.03 0.17 0.06 0.00 

o  

g

5

 

e  

t  

u  

t  

t

 

f  

t  

T  

(

S  

t  

i  

t  

a  

t

 

c  

Table 4 

P-values for two sample Kolmogorov-Smirnov Goodness-of-Fit Tests for 

the recovery levels in the training sample (20113 defaulted exposures 

originated in the first quarter of 2006), comparing the posterior R-RUP 

distributions and the empirical ones, for different reinforcements r . The 

training sample has been divided into 5 groups in terms of loan size, as 

per Table 1 . 

Loan size Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 0.99 1.00 0.97 0.00 

2 1.00 0.98 0.98 0.00 

3 1.00 0.99 1.00 0.00 

(100 K,150 K] 1 0.80 0.31 0.88 0.00 

2 0.82 0.80 0.72 0.00 

3 0.82 0.51 0.52 0.00 

(150 K,200 K] 1 0.38 0.83 0.46 0.00 

2 0.49 0.32 0.25 0.00 

3 0.55 0.40 0.46 0.00 

(200 K,250 K] 1 1.00 1.00 1.00 0.00 

2 1.00 1.00 1.00 0.00 

3 1.00 0.99 1.00 0.00 

> 250 K 1 0.99 1.00 0.97 0.00 

2 1.00 1.00 1.00 0.00 

3 1.00 0.99 1.00 0.00 
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rs were true, we would need not a single observation in order to

et perfect predictions. 

.3. Results 

We now discuss the performances of the different R-RUP mod-

ls, when initialized with one of the Priors Sets of Subsection 5.2 ,

rained using actual data like the training set in Table 1 , and then

sed to obtain the posterior distributions of the total recovery

imes, and of the recovery levels, for the different classes of in-

erest. 

Following Gelman et al. (2004) , we start by testing the per-

ormances of our model in-sample, comparing the posterior dis-

ributions with the empirical distributions of the training data.

his comparison takes the name of posterior consistency check

 Meng, 1994 ). 

Tables 2 and 3 show the p-values of several Kolmogorov–

mirnov goodness-of-fit tests (KS-test), between the posteriors and

he empirical distributions of the total recovery times in the train-

ng sample, for the different groups of Table 1 . We show the KS-

ests as they tend to be more conservative, hence in principle

gainst our model. Compatible results hold using other tests like

he χ2 , omitted for the sake of space. 

Let us consider Table 2 , where the p-values for the posterior

onsistency check are provided for the loan sizes. Looking at loan
ize class (200 K , 250 K ] , the R-RUP successfully passes the KS-test

or most combinations of Prior Sets and reinforcement r > 0, at the

5% or 99% confidence level. As anticipated, the relative irrelevance

f the value of r is due to the large number of observations avail-

ble, together with the rather regular behavior of this class of ex-

osures, which help the R-RUP in quickly learning from data. Con-

ersely, as expected, if we do not let the R-RUP learn from the data,

etting r = 0 , and we just compare our naive prior beliefs with the

mpirical distributions of the recovery times, the null hypothesis

f same distribution is definitely rejected. 

Interestingly, in the (100 K , 150 K ] class of Table 2 , we need the

trong reinforcement r = 100 in order not to reject the null hy-

othesis at the 1% significance level, indicating that this class prob-

bly contains more peculiar behaviors with respect to our prior be-

iefs (and the other classes), and the R-RUP thus requires a stronger

einforcement (or possibly more data) in order to deal with them.

 check of the data confirms our suspects: in this class there is a

ery large variability in the total recovery times, almost twice the

ther classes. For all the other loan classes, results are in line with

hat we have just said. 

In Table 3 the same type of analysis is performed using the FICO

cores. In this case the R-RUP still shows interesting performances,

nd the best results are apparently obtained setting r = 1 , that is

 mild reinforcement, which averages our prior beliefs and empiri-

al evidence. This is due to the fact that a strong reinforcement like

 = 100 quickly amplifies recurring patterns in the data, so that the

ew unusual ones appear farther away from the bulk of the distri-

ution, and this is known to have effects on the KS statistic, which

s based on the supremum distance. 

All in all, the R-RUP satisfactorily passes the posterior consis-

ency check, when we deal with the total recovery times. 

In Table 4 we show the p-values of the KS-tests for the poste-

ior check when looking at the recovery levels per loan size. For

he FICO score the results are completely comparable and they are

mitted. The performances of the R-RUP on the recovery levels are

xtremely good, for most reinforcements, indicating that our prior

eliefs are probably not too far from reality ( Altman et al., 2005b ),

nd only minor modifications are necessary. This holds also for the

(100 K , 150 K ] class, which is no longer as problematic as for the

ecovery times. In a nutshell: all combinations of Prior Sets and

ositive reinforcements give very good results. This makes sense,

f we remember that the prior sets mainly differ for the time part,

hile the levels part is always the same ( Subsection 5.2 ). 
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Fig. 2. Example of (in-sample) learning, showing the ecdf of the actual recovery levels in the first quarter 2016, a wrong prior and the posterior after the training of the 

model with r = 100 . As expected, the model posterior very well approximates the actual distribution from the data. 

Table 5 

P-values for two sample Kolmogorov-Smirnov Goodness-of-Fit Tests 

between the posterior distributions of the trained R-RUP and the em- 

pirical distributions of the validation sample (20038 defaulted expo- 

sures originated in the second quarter of 2006) for the total recovery 

times in the 4 FICO score classes. 

FICO score Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 650 1 0.37 0.27 0.71 0.00 

2 0.79 0.24 0.99 0.00 

3 0.83 0.19 0.20 0.00 

(650,685] 1 0.20 0.21 0.38 0.00 

2 0.48 0.10 0.21 0.00 

3 0.12 0.05 0.21 0.00 

(685,725] 1 0.21 0.21 0.06 0.00 

2 0.03 0.17 0.26 0.00 

3 0.31 0.20 0.06 0.00 

> 725 1 0.54 0.69 0.46 0.00 

2 0.40 0.96 0.76 0.00 

3 0.60 0.86 0.30 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Median total recovery times per loan size class as predicted by the trained R-RUP 

against the actual values in the validation sample, for different configurations of 

priors and reinforcements r . Time expressed in months. Data in Table 1 . 

Loan size Prior Set Actual r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 13 13 13 13 21 

2 13 13 13 13 18 

3 13 13 13 13 123 

(100 K,150 K] 1 15 14 14 14 16 

2 15 14 14 15 9 

3 15 14 14 15 123 

(150 K,200 K] 1 15 15 14 15 17 

2 15 14 15 15 9 

3 15 14 14 14 123 

(200 K,250 K] 1 14 14 14 13 15 

2 14 14 13 13 9 

3 14 13 13 13 123 

> 250 K 1 13 13 13 13 17 

2 13 13 13 13 10 

3 13 13 13 13 124 

Table 7 

Median total recovery times per FICO scores class as predicted by the trained 

R-RUP against the actual values in the validation sample, for different configura- 

tions of priors and reinforcements r . Time expressed in months. Data in Table 1 . 

FICO score Prior Set Actual r = 100 r = 1 r = 0.01 r = 0 

≤ 650 1 16 15 15 15 25 

2 16 15 15 15 15 

3 16 15 15 15 123 

(650,685] 1 15 14 14 14 16 

2 15 14 14 14 9 

3 15 14 14 14 123 

(685,725] 1 14 14 14 14 21 

2 14 14 14 13 15 

3 14 14 14 14 124 

> 725 1 13 12 13 12 17 

2 13 12 12 12 7 

3 13 13 13 12 124 
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As further evidence of the good in-sample performances of the

R-RUP, in Fig. 2 we show the comparison between the empirical

cumulative distribution function (ecdf) of the actual recovery levels

in the 1st Quarter of 2016, for loan size class ≤ 100 (see Table 1 ),

with a purposely wrongly elicited a priori, and with the updated

posterior with reinforcement r = 100 . As expected, given the good

results with the KS tests, the trained model posterior very well ap-

proximates the actual distribution from the data, showing the abil-

ity of learning and improving, even when starting from a wrong

set of beliefs. 

Satisfied with the in-sample performances of the R-RUP, we

can move to the more interesting out-of-sample validation. Is the

trained R-RUP able to predict the recovery times and levels of fu-

ture companies? 

Following again Gelman et al. (2004) , we can compare the

posterior marginal distributions generated by the trained R-RUP

(on the first quarter of 2006) with the empirical distributions of

the validation sample, for example the one containing the 20,038

defaulted exposures originated in the second quarter of 2006.

Theorem 2 in the Appendix proves extremely helpful in this sit-

uation. In Table 5 , it is nice to see how the trained R-RUP is able

to well approximate the distribution of the total recovery times in

the validation sample. Similar results are obtainable using the loan

size classes and/or the recovery levels, and they are available upon

request. 
Let us now consider some predictions made by the trained R-

UP with respect to the validation set, using the methodology we

xplain in the Appendix . Tables 6 –9 compare the predicted me-

ian recovery times and levels for the defaulted exposures origi-

ated in the second quarter of 2006 with the actual medians from

he validation set. The choice of the median as quantity of inter-

st for credit risk purposes is consistent with works like that of
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Table 8 

Median recovery levels per loan size class as predicted by the trained R-RUP 

against the actual values in the validation sample, for different configurations of 

priors and reinforcements r . Levels follow the classification in Eq. (4) . Data in 

Table 1 . 

Loan size Prior Set Actual r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 3 3 3 3 9 

2 3 3 3 3 10 

3 3 3 3 3 11 

(100 K,150 K] 1 5 5 5 5 7 

2 5 5 5 5 10 

3 5 5 5 5 10 

(150 K,200 K] 1 5 5 5 5 7 

2 5 5 5 5 10 

3 5 5 5 5 10 

(200 K,250 K] 1 5 5 5 5 7 

2 5 5 5 5 11 

3 5 5 5 5 10 

> 250 K 1 6 6 6 7 8 

2 6 6 6 7 10 

3 6 6 6 6 11 

Table 9 

Median recovery levels per FICO scores class as predicted by the trained R-RUP 

against the actual values in the validation sample, for different configurations 

of priors and reinforcements r . Levels follow the classification in Eq. (4) . Data 

in Table 1 . 

FICO score Prior Set Actual r = 100 r = 1 r = 0.01 r = 0 

≤ 650 1 5 5 5 5 9 

2 5 5 5 5 11 

3 5 5 5 5 11 

(650,685] 1 5 5 5 5 7 

2 5 5 5 5 11 

3 5 5 5 5 11 

(685,725] 1 5 5 5 6 9 

2 5 5 5 6 10 

3 5 5 5 5 11 

> 725 1 5 5 5 5 7 

2 5 5 5 7 11 

3 5 5 5 7 11 
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Table 10 

P-values for two sample Kolmogorov–Smirnov Goodness-of-Fit Tests 

for the recovery levels, when comparing the posterior distributions 

of the R-RUP trained on 2006 data, with the empirical ones from 

the fourth quarter of 2009 (1252 data points), for different reinforce- 

ments r and the usual Prior Sets, according to the four FICO score 

classes. 

FICO score Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 650 1 0.01 0.01 0.01 0.00 

2 0.01 0.03 0.00 0.00 

3 0.02 0.02 0.00 0.00 

(650, 685] 1 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 

(685, 725] 1 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 

> 725 1 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 

Table 11 

P-values for two sample Kolmogorov-Smirnov Goodness-of-Fit Tests 

for the total recovery times, when comparing the posterior distribu- 

tions of the R-RUP trained on loans originated in the first quarter of 

2006 and the fourth quarters of 2007 and 2008, with the empirical 

ones from the fourth quarter of 2009, for different configurations of 

priors, reinforcements r , and FICO score classes. 

FICO score Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 650 1 0.99 0.96 0.95 0.10 

2 0.96 0.97 0.72 0.00 

3 0.96 0.96 0.03 0.00 

(650, 685] 1 0.22 0.14 0.17 0.00 

2 0.16 0.23 0.02 0.00 

3 0.14 0.17 0.00 0.00 

(685,725] 1 0.27 0.19 0.22 0.00 

2 0.29 0.29 0.21 0.00 

3 0.24 0.21 0.00 0.00 

> 725 1 0.04 0.01 0.00 0.00 

2 0.02 0.01 0.11 0.00 

3 0.00 0.00 0.00 0.00 

n  

r  

h  

e  

2  

d  

(  

r  

u  

t

 

f  

o  

I  

r  

2  

m  

p  

t  

t  

p  

5 Or better priors have to be used. In a little experiment, on the basis of what 

we know happened in 2008 and 2009, we have modified our priors, and the R- 

RUP actually works well, because the a priori compensate for the lack of empirical 

information. 
6 Similar results hold for the other quarters, and combinations of quarters. 
eluso et al. (2015) , where medians are chosen for their statistical

obustness. 

Looking at Table 6 , for example, we see that in the validation

ataset, the actual median total recovery time is 15 months in loan

ize class (100 K , 150 K ] , and 13 months in class > 250 K . In both

ituations the R-RUP is able to provide predicted median values

hat are very close to the actual ones. The equivalence is also sup-

orted statistically by Mann-Whitney tests on medians. As before,

he null reinforcement r = 0 is the one giving the worst results,

nd we find this comforting, as it underlines, once again, the abil-

ty of the R-RUP of learning and updating itself. 

Upon request, we are glad to share the comparable results we

btain using other validation samples, like the defaulted exposures

riginated in the different quarters of 2007. 

In line with expectations, bad performances are obtained if we

ove further into the future, still using only data from 2006 to

rain the model. The behaviors of the total recovery times and lev-

ls in 2008 and 2009 are not correctly reproduced, notwithstand-

ng the r value and the Prior Set. For instance, in Table 10 we show

he bad predictive power of the R-RUP trained on 2006 data, when

ealing with the recovery levels of the defaulted exposures origi-

ated in the fourth quarter of 2009, according to the FICO classes.

he only exception is represented by the class ≤ 650, consisting

f the least reliable loans. This makes sense to us: being the worst

lass, the possibility of getting worse is limited, therefore it is more

table and easier to predict. 

The decrease in the goodness of fit and in the predictive power

or 2008 and 2009 is probably due to the impact of the 2008 eco-
omic crisis, which has substantially changed the dynamics of the

ecovery processes, given the larger number of defaults and the

igher uncertainty on the markets ( Caselli et al., 2008, Jankowitsch

t al., 2014 ). To satisfactorily capture the dynamics of late 2008 or

009, the R-RUP thus needs to be re-trained on 2007 and 2008

ata. 5 Given its probabilist properties, and in particular conjugacy

 Theorem 2 ), updating a R-RUP is rather simple, and it does not

equire to perform all computations anew. It is in fact sufficient to

pdate its parameters using the new observations, as we show in

he Appendix . 

In Tables 11 and 12 we show the performances of the R-RUP

or the total recovery times, if we complement its initial training

n 2006 data with additional observations from 2007 and 2008.

n particular, always focusing on the fourth quarter 6 , we add the

ecovery trajectories of 20,118 defaulted exposures originated in

0 07, and 390 0 trajectories from 2008. We then use the re-trained

odel to make predictions with respect to the 1252 defaulted ex-

osures originated in the fourth quarter of 2009. The p-values in

he tables clearly show the ability of the R-RUP to correctly predict

he total recovery times. Interestingly, we can observe relatively

oorer performances in two cases: class > 725 for FICO scores,
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Table 12 

P-values for two sample Kolmogorov–Smirnov Goodness-of-Fit Tests for 

the total recovery times, when comparing the posterior distributions of 

the R-RUP trained on loans originated in the first quarter of 2006 and 

the fourth quarters of 20 07 and 20 08, with the empirical ones from the 

fourth quarter of 2009, for different configurations of priors, reinforce- 

ments r , and loan size classes. 

Loan size Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 0.02 0.02 0.00 0.00 

2 0.03 0.01 0.01 0.00 

3 0.01 0.01 0.00 0.00 

(100 K,150 K] 1 0.17 0.12 0.18 0.00 

2 0.18 0.18 0.13 0.00 

3 0.15 0.17 0.00 0.00 

(150K,200K] 1 0.15 0.12 0.15 0.00 

2 0.16 0.19 0.14 0.00 

3 0.17 0.10 0.00 0.00 

(200 K,250 K] 1 0.75 0.77 0.73 0.03 

2 0.79 0.82 0.02 0.00 

3 0.77 0.78 0.00 0.00 

> 250 K 1 0.41 0.46 0.30 0.00 

2 0.38 0.40 0.93 0.00 

3 0.39 0.42 0.00 0.00 

Table 13 

Median recovery levels as predicted by the trained R-RUP, using data from 2006 to 

2008, against the actual values in the validation sample (4th quarter of 2009), for 

different configurations of priors, reinforcements r , and loan size classes. 

Loan size Prior Set Actual r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 6 4 4 4 7 

2 6 4 4 4 10 

3 6 4 4 4 11 

(100 K,150 K] 1 7 5 5 5 8 

2 7 5 5 6 10 

3 7 5 5 6 11 

(150 K,200 K] 1 7 6 6 6 7 

2 7 6 6 6 10 

3 7 6 6 6 10 

(200 K,250 K] 1 8 6 6 6 7 

2 8 6 6 7 11 

3 8 6 6 7 11 

> 250 K 1 8 7 7 7 8 

2 8 7 7 7 10 

3 8 7 7 7 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 

P-values for two sample Kolmogorov-Smirnov Goodness-of-Fit Tests 

for the total recovery times, when comparing the posterior distribu- 

tions of the R-RUP trained on yearly data from 2008, with the empir- 

ical ones from 2009, for different configurations of priors, reinforce- 

ments r , and FICO score classes. 

FICO score Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 650 1 0.93 0.94 0.92 0.66 

2 0.95 0.75 0.00 0.00 

3 0.95 0.97 0.00 0.00 

(650,685] 1 0.77 0.76 0.89 0.97 

2 0.74 0.63 0.00 0.00 

3 0.79 0.89 0.00 0.00 

(685, 725] 1 0.97 0.94 0.87 0.78 

2 0.96 0.99 0.00 0.00 

3 0.97 0.83 0.00 0.00 

> 725 1 0.88 0.89 0.98 0.19 

2 0.93 0.66 0.00 0.00 

3 0.80 0.97 0.00 0.00 

Table 15 

P-values for two sample Kolmogorov–Smirnov Goodness-of-Fit Tests for 

the total recovery times, when comparing the posterior distributions of 

the R-RUP trained on yearly data from 2008, with the empirical ones from 

2009, for different configurations of priors, reinforcements r , and loan size 

classes. 

Loan size Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 0.96 0.95 0.96 0.66 

2 0.96 0.77 0.00 0.00 

3 0.97 0.99 0.00 0.00 

(100 K, 150 K] 1 0.38 0.48 0.49 0.52 

2 0.48 0.27 0.00 0.00 

3 0.42 0.51 0.00 0.00 

(150 K,200 K] 1 0.84 0.80 0.70 0.29 

2 0.88 0.95 0.00 0.00 

3 0.92 0.65 0.00 0.00 

(200 K, 250 K] 1 0.57 0.59 0.42 0.31 

2 0.61 0.77 0.00 0.00 

3 0.59 0.33 0.00 0.00 

> 250 K 1 0.32 0.34 0.42 0.87 

2 0.36 0.37 0.00 0.00 

3 0.34 0.32 0.00 0.00 
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and class ≤ 100 in terms of loan size. Our explanation is that

these two classes are those historically experiencing lower default

rates, higher recovery levels and shorter recovery times. A sudden

change in the recovery trajectories, as that observed during the cri-

sis, is therefore more difficult to grasp. Nevertheless we consider

the overall results quite satisfactory. Again, notice that as expected

the naive Prior Set 3 is the one with the worst performances. 

If we move from recovery times to recovery levels, we get sim-

ilarly good results: the re-trained R-RUP is able to improve its

predictive power, obtaining interesting performances, well above

those of the old R-RUP trained on 2006 data only. All tables, omit-

ted for the sake of space, are available upon request, also for

the subsequent years up to the end of 2015. Here we only show

Table 13 , which contains the actual and the predicted median re-

covery levels in the 4th quarter of 2009, using data from 2006,

2007 and 2008. It is interesting to notice how the R-RUP, in this

specific case, slightly underestimates the ultimate recovery level,

on average by one level, showing a conservative behavior 7 The
7 Given the recent discussions about the margins of conservatism, and the pref- 

erence of regulators for conservative estimates, slightly underestimating the actual 

recovery level would be something acceptable in the Basel framework ( EBA, 2017 ). 

Unfortunately, we cannot guarantee that the R-RUP is always conservative, for all 

parameter choices. For sure a conservative prior set could be used as a standard, 

and even proposed by regulators. 

R  

t

5

l

eason are once again unusual observations at the end of 2009,

nd, as before, our already good predictions could be improved by

nputing more data in the R-RUP, for instance using those from the

rst half of 2009. It goes without saying that better priors, i.e. bet-

er experts’ judgements, or a different scale (finer for instance) for

he recovery levels could also be viable solutions. 

The good results we obtain for quarters also hold if we consider

early observations. In Tables 14 and 15 we show the comparisons

t the yearly level for the recovery times, using the data up to the

nd of 2008 to predict the times in 2009. Once again the R-RUP

erforms well, learning from the data, even after a major economic

risis. Please notice that, in order to lower the computational bur-

en, for the yearly comparisons we have used a smaller dataset,

lways provided by Freddie Mac. 8 

All in all, the R-RUP construction is clearly able to model recov-

ry trajectories in a satisfactory way, being capable of adapting to

eriods of crisis, by constantly updating its performances. And that

s actually the idea: to use the model under continuous reinforce-

ent, every time new data become available. As said, updating the

-RUP does not require to perform all computations anew, but only

o add the new information. 
8 Citing Freddie Mac (2017) : ”The sample dataset is a simple random sample of 

0,0 0 0 loans selected from each full vintage year and a proportionate number of 

oans from each partial vintage year of the full Single Family Loan-Level Dataset.”
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Table 16 

P-values for two sample Kolmogorov-Smirnov Goodness-of-Fit Tests for 

the total recovery times in the basic training sample (20113 defaulted ex- 

posures originated in the first quarter of 2006), comparing the posterior 

R-RUP distributions and the empirical ones, for different reinforcements 

r , under L 1 . 

Loan size Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 0.84 0.76 0.86 0.00 

2 0.78 0.66 0.08 0.00 

3 0.89 0.88 0.20 0.00 

(100 K, 150 K] 1 0.85 0.97 0.64 0.00 

2 0.48 0.96 0.02 0.00 

3 0.39 0.91 0.05 0.00 

(150K, 200K] 1 0.92 0.30 0.62 0.00 

2 0.36 0.96 0.05 0.00 

3 0.97 1.00 0.05 0.00 

(200 K, 250 K] 1 1.00 0.91 0.96 0.00 

2 0.96 0.54 0.06 0.00 

3 0.83 0.98 0.07 0.00 

> 250 K 1 0.58 0.86 0.94 0.00 

2 0.87 0.99 0.08 0.00 

3 0.74 0.93 0.45 0.00 

Table 17 

P-values for two sample Kolmogorov–Smirnov Goodness-of-Fit Tests for 

the total recovery times in the basic training sample (20113 defaulted ex- 

posures originated in the first quarter of 2006), comparing the posterior 

R-RUP distributions and the empirical ones, for different reinforcements 

r , under L 2 . 

Loan size Prior Set r = 100 r = 1 r = 0.01 r = 0 

≤ 100 K 1 0.13 0.20 0.23 0.00 

2 0.51 0.09 0.00 0.00 

3 0.49 0.18 0.00 0.00 

(100 K,150 K] 1 0.07 0.02 0.03 0.00 

2 0.01 0.00 0.00 0.00 

3 0.02 0.05 0.00 0.00 

(150 K,200 K] 1 0.19 0.23 0.36 0.00 

2 0.36 0.07 0.00 0.00 

3 0.11 0.23 0.00 0.00 

(200 K,250 K] 1 0.28 0.70 0.68 0.00 

2 0.55 0.45 0.00 0.00 

3 0.29 0.62 0.00 0.00 

> 250 K 1 0.77 0.37 0.55 0.00 

2 0.37 0.67 0.00 0.00 

3 0.90 0.53 0.00 0.00 
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It is important to stress that our R-RUP has been trained using

 lot of observations, which naturally correct wrong priors via re-

nforcement. In case of smaller datasets, the reliability of the prior

eliefs becomes fundamental in order to obtain satisfactory results.

n case of no prior knowledge, as common in Bayesian statistics

 Dey and Rao, 2005 ), we naturally suggest the use of the empiri-

al distribution of the training set as starting point. If used in the

RB setting ( BCBS, 2011 ), specific prior sets could also be imposed

y the regulator, which could also define restrictions for the rein-

orcement parameter. 

.4. The impact of discretization 

By construction, the R-RUP relies on the discretization of re-

overy times and rates. While the discretization of time is not a

roblem, given that observations are often taken at pre-determined

ime points and, as discussed in Altman et al. (2005a) , discrete

ime may even be an advantage in dealing with recovery risk, it

ay be worth analyzing the impact of discretizing recovery rates

nto recovery levels. 

In Section 3 , we said that one needs to define m + 1 recovery

evels, where level 0 accounts for no recovery, levels 1 to m − 1

epresent intermediate stages of recovery up to full recovery, and

evel m is the official termination level guaranteeing the technical

ondition of recurrence ( Appendix : Lemma 1 ). The larger m , the

ner the partition for the discretized recovery rates. 

In the application to the Freddie Mac data, we have used the

ecovery levels of Eq. (4) . In that partition, each level between 1

nd 10 accounted for an extra 10% recovery. Do our results change

f we modify the interpretation of each level, or if we chose a dif-

erent number of levels? 
Let us consider the following three alternatives: 

 1 = 

{ 

0 : 0% , 1 : (0% , 2%) , 2 : [2% , 18%) , 3 : [18% , 28%) , 4 : [28% , 36%) , 

5 : [36% , 44%) , 6 : [44% , 51%) , 7 : [51% , 60%) , 8 : [60% , 71%) , 

9 : [71% , 88%) , 10 : [88% , 100%) , 11 : 100 + % , 12 : termination 

} 

, 

 2 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 : 0% , 1 : (0% , h %) , 2 : [ h % , 2 h %) , 3 : [2 h % , 3 h %) , 4 : [3 h % , 4 h %) , 

5 : [4 h % , 5 h %) , 6 : [5 h % , 6 h %) , 7 : [6 h % , 7 h %) , 8 : [7 h % , 8 h %) , 

9 : [8 h % , 9 h %) , 10 : [9 h % , 10 h %) , 11 : [10 h % , 11 h %) , 12 : [11 h % , 100%) , 

13 : 100 + % , 14 : termination 

⎫ ⎪ ⎬ 

⎪ ⎭ 

,

here h = 8 . ̄3 , and 

 3 = 

{ 

0 : 0% , 1 : (0% , 12 . 5%) , 2 : [12 . 5% , 25%) , 3 : [25% , 37 . 5%) , 4 : [37 . 5% , 50%) , 

5 : [50% , 62 . 5%) , 6 : [62 . 5% , 75%) , 7 : [75% , 87 . 5%) , 8 : [87 . 5% , 100%) , 

9 : 100 + % , 10 : termination 

} 

. 

n L 1 we use the same number of levels of L in Eq. (4) , but we

hange their interpretation: they are no longer equally-spaced in

erms of recovery. The intervals are empirically chosen so that each

f them contains the same amount of observations: about one-

enth. In L 2 we increase the number of levels to 14, with a finer

artition, in which each level between 1 and 12 accounts for an

xtra recovery of 8 . ̄3 % . Finally, in L 3 we decrease the number lev-

ls, and each intermediate level accounts for an extra recovery of

2.5%. 

Table 16 contains the same information of Table 2 , when we

ubstitute L with L 1 . Since the intervals in L 1 are chosen empiri-

ally, to guarantee the same number of observations per level, this

artition optimizes the information in the dataset in terms of num-

er of updates per level, improving the goodness-of-fit (but not

hanging the conclusions substantially). Table 17 shows the results

f the goodness-of-fit for L 2 : in this case no dramatic difference is

bserved with respect to Table 2 , apart from a general worsening

or r = 0 . 01 . The same holds when using L 3 . 

The choice of L 1 slightly improves also the results for the

oodness-of-fit of the ultimate recovery rate, but not for the pre-

ictive medians of times and levels. Conversely, L 2 and L 3 do not

eem to have any particular influence. 
In our application, the R-RUP shows to be quite robust with re-

pect to alternative choices of the recovery level partition. This is

robably due to the large number of observations available, and–

o some extent–to the fact that the partitions used above are not

xtremely different. For equally-spaced partitions with m > 25, re-

ults are more problematic, given the increasing number of inter-

als with just a few observations. 

In general, choosing a smaller number of levels improves fit-

ing, because the number of observations and transitions per level

ncreases, reinforcing the Bayesian learning process, ceteris paribus.

imilarly, as seen above, an improvement is observed when inter-

als are chosen to guarantee more or less the same number of ob-

ervations per level. Conversely, increasing m too much may lead

o the situation in which for a specific level no transition is ob-

erved, so that our a priori is not changed, and, if our beliefs are

rong (or not meant to compensate an alleged lack of information

n the data), this has naturally an impact on the goodness of fit,

otwithstanding the choice of the reinforcement r . 

As a natural trade-off, changing m has also effects in terms of

recision. In the limit, we could consider a partition with just 4

evels, in which level 2 corresponds to a recovery rate in the in-

erval (0%, 100%). This would dramatically increase the goodness

f fit, but we all agree it would be useless, as we would end up

aying that most counterparties reach some recovery rate between
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9 Notice that, given our assumptions on the urns, every 0-block necessarily ends 

with the state (1, m ). 
0% and 100%, without distinction. On the opposite side we could

be very precise and have thousands of levels, each representing an

additional recovery of just a few decimals, but our a priori would

be almost never updated for many levels (apart from the difficulty

of eliciting it), and the definition of the strength of the reinforce-

ment would become extremely complicated. 

The best way to decide the number of levels is to find a com-

promise between precision, as required by internal procedures or

the regulator, and the quantity and the quality of the empirical

data. The more and the better the observations, the more precise

the partition can be, but in any case each level should be charac-

terized by a minimum number of transitions in order to exploit

the Bayesian learning mechanism. To improve fitting, rarely visited

levels should be aggregated, or, at least, the corresponding rein-

forcement calibrated to maximize the available information. Once

again, experts’ judgements could represent a viable solution. 

6. Conclusions 

In this paper we have introduced a new nonparametric survival

approach for the modeling of recovery rates and recovery times.

We have made use of the reinforced urn process (RUP) construc-

tion of Muliere et al. (20 0 0) to build what we call the Recovery

RUP (R-RUP). 

The new process exhibits many interesting probabilistic proper-

ties, like partial exchangeability, semi-Markovianity and conjugacy.

Its construction is intuitive and allows for simple simulations. The

Bayesian update mechanism embedded in the Pólya urns builds a

model that is able to combine prior knowledge, for example in the

form of expert judgements, with empirical evidence; a model that

learns and adapts to new phenomena and trends emerging from

data, even in the case of censoring. The rate of updating can be

controlled by acting on the strength of the a priori, and on the re-

inforcement mechanism of the single Pólya urns. 

A first application on the Freddie Mac Single Family Loan-Level

Dataset shows that the R-RUP actually provides interesting perfor-

mances in terms of Bayesian prediction, with results that could be

easily improved, if we were able to elicit more reliable priors, ca-

pable of compensating the possible lack of evidence in the data

(the so-called historical bias) or unusual behaviors in certain peri-

ods. 

In our approach we have not dealt with wrong-way risk, an-

other interesting component of recovery risk, that is the positive

dependence between PD and LGD observed in the empirical liter-

ature, especially during financial crises ( Johnston Ross and Shibut,

2015, Dermine and De, 2006, Altman et al., 2005b ). For us, in fact,

default is given and it corresponds to the beginning of the recov-

ery process, so that the modeling of PD is not relevant. An exten-

sion of the model to include wrong-way risk is in our future plans,

and interesting starting points are the works of Han (2017) and

Bade et al. (2011) . 
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Appendix 

We here collect all the mathematics related to the R-RUP con-

struction, including definitions, theorems, proofs and technical de-
ails. Please notice that, not to overload notation, vector quantities

re not expressed in bold. 

otation, the process { Y p } and recurrence 

A process is said recurrent when, in infinite time, it will visit a

iven state infinitely often with probability one. For us this point

s the origin (0,0). 

From Muliere et al. (20 0 0) we know that a recurrent RUP is par-

ially exchangeable in the sense of Diaconis and Freedman (1980) ,

efining a sequence of visited states that can be collected into ex-

hangeable blocks, each one representing a Markov chain. There-

ore, a recurrent RUP gives rise to a mixture of Markov chains with

 given de Finetti (mixing) measure ( Muliere et al., 20 0 0 ). 

Can we obtain something similar for the R-RUP? The answer is

es. 

Fix η0 
0 

= 0 , and let the random variable η0 
i 

= inf { j > η0 
i −1 

:

 j = (0 , 0) } represent the i -th time the R-RUP process visits

he point (0,0) for all nonnegative integer i , defining what

uliere et al. (20 0 0) call a 0-block, i.e. a sequence of states in

 starting with (0,0) and containing no further (0,0). 9 Thus R i =
 X η0 

i −1 
, . . . , X η0 

i 
−1 

} will be the recovery history, with all the inter-

ediate stages of recovery, of the i th defaulted counterparty, until

ts recovery process stops, because of a write-off, a full recovery

r censoring. Let { R i } k i =1 
be the sequence of successive 0-blocks in

 X n }, representing the recovery histories of the first k defaulted ex-

osures. 

Let ψ be a mapping projecting all the finite sequences of ele-

ents of S , starting with an initial state (0,0) and ending up with

1, m ), with no (0,0) appearing in between, into a sequence of re-

overy levels belonging to L . For k ∈ N 0 , any t 0 , . . . , t k ∈ N 0 and

 1 , l 2 , . . . , l k ∈ L, we have 

ψ ((0 , 0) , . . . , (t 0 , 0) , . . . , (0 , l k ) , . . . , (t k , l k ) , (0 , m ) , (1 , m )) 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

t 0 times ︷ ︸︸ ︷ 
0 , . . . , 0 , 

t 1 times ︷ ︸︸ ︷ 
l 1 , . . . , l 1 , . . . , 

t k times ︷ ︸︸ ︷ 
l k , . . . , l k , m 

⎫ ⎪ ⎬ 

⎪ ⎭ 

. 

otice that ψ( R k ) is just another way of representing the recovery

rocess in block R k , just focusing on the recovery levels. 

The one-to-one correspondence between R k and ψ( R k ) is re-

ealed by a simple example with termination level m = 4 . For a

lock 

 k = { (0 , 0) , (1 , 0) , (0 , 2) , (1 , 2) , (0 , 3) , (1 , 3) , (0 , 4) , (1 , 4) } , 
e have ψ (R k ) = (0 , 2 , 3 , 4) . In this new representation, to recog-

ize a 0-block, we have to look for the first 0 following termination

evel m . 

Since the map ψ is measurable and bijective, and, in case

f recurrence, the blocks { R k } k ≥ 1 ar e exchang eable, the sequence

 ψ( R k )} k ≥ 1 is also exchangeable ( Diaconis and Freedman, 1980 ),

nd we can use the sequence of levels { ψ( R k )} to build a new pro-

ess { Y p } p ≥ 0 . 

Assume that the first two recovery trajectories we observe are 

 1 = { (0 , 0) , (1 , 0) , (0 , 2) , (1 , 2) , (0 , 3) , (1 , 3) , (0 , 4) , (1 , 4) } 
nd 

 2 = { (0 , 0) , (1 , 0) , (2 , 0) , (3 , 0) , (0 , 1) , (1 , 1) , (0 , 2) , (1 , 2) , 

(0 , 4) , (1 , 4) } . 
hen, the corresponding realization of the process { Y p } is 

 Y 0 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 } = { ψ (R 1 ) , ψ (R 2 ) } 
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= { 0 , 2 , 3 , 4 , 0 , 0 , 0 , 1 , 2 , 4 } . 
e define all the notations we need to use afterwards. For any

 ∈ L , set ξ l 
0 

= 0 , and for the positive integer n , define recursively 

l 
n = inf { t > ξ l 

n −1 : Y t−1 � = l, Y t = l} , 
s the n th time the process { Y p } p ≥ 0 touches l . For every l ∈ L , define

 sequence { τ l 
n } n ≥1 as follows: 

l 
n = inf { t − ξ l 

n −1 : t > ξ l 
n −1 , Y t � = l} . (5)

f { X n } is recurrent, for any l ∈ L and t ≥ 0, define 

l 
n = Y ξ l 

n −1 
+ τ l 

n 
. 

ll in all, τ l 
n summarizes the sojourn time at recovery level l during

he n -th visit, while δl 
n is the next recovery level touched by the R-

UP after the n th visit at level l . 

Set the initial level and the initial jump time as L 0 = J 0 = 0 . For

ny positive integer n , define then 

 n = inf { t > J n −1 : Y t � = Y t−1 } . 
et also L n = Y J n and M n = J n − J n −1 . Clearly J n is the n th jump time

f process { Y p }, L n is the level the process jumps to at time J n , and

 n is the sojourn time at level L n −1 before jumping to level L n . 

From a probabilistic point of view, a necessary and sufficient

ondition for the R-RUP to be recurrent, so that state (0,0) is visited

nfinitely many times, is provided by the following Lemma. 

emma 1 (Recurrence of the R-RUP) . The R-RUP { X n } is recurrent if

nd only if, for all l ∈ L , 

lim 

 →∞ 

n ∏ 

t=0 

N (t,l) (c l ) ∑ 

i ≥l N (t,l) (c i ) 
= 0 , (6) 

here N ( t, l ) ( c i ) is the number of balls of color c i ∈ C in urn U (( t, l )) . 

roof. From Lemma 2.13 and Lemma 3.23 in Muliere et al. (20 0 0) ,

t is clear that Eq. (6) is a necessary condition. Then, to prove that

he process is recurrent, it is sufficient to show 

 

[ 

∞ ⋂ 

u =1 

{
η0 

u < ∞ 

}] 

= 1 . 

irst, P 

[
η0 

1 
< ∞ 

]
= 1 holds since 

 [ η0 
1 < ∞ ] ≥ P 

[ 

m ⋂ 

l=0 

{ τ l 
1 < ∞} 

] 

= 1 , (7)

here the equality is obtained from Lemma 3.23 in

uliere et al. (20 0 0) and the finiteness of the maximum level m .

hen, by induction, we can prove on n that 

 

[ 

n +1 ⋂ 

u =1 

{
η0 

u < ∞ 

}] 

= 1 , 

f P 

[⋂ n 
u =1 

{
η0 

u < ∞ 

}]
= 1 . Since 

 [ η0 
n +1 < ∞ ] ≥ P 

[ 

m ⋂ 

l=0 

n +1 ⋂ 

u =1 

{ τ l 
u < ∞} 

] 

= 1 , 

e get that 

 

[ 

n +1 ⋂ 

u =1 

{
η0 

u < ∞ 

}] 

= 1 , 

nd the result follows. �

Lemma 1 plays with the rule of motion q , by requiring that the

robability for the R-RUP to stay at a given level l for infinite time
s zero. This forces the R-RUP starting in (0,0) to jump to higher

evels, reaching either full recovery (sampling of a c m 

ball at re-

overy level m − 1 ) or write-off (sampling of a c m 

ball at recov-

ry level l < m − 1 ), before visiting the termination level m for one

ime unit and then restarting from (0,0). Clearly, when { X n } is re-

urrent, { Y p } is recurrent as well. 

In what follows, all the definitions, propositions, lemmas, and

heorems are based on the assumption of recurrence of the process

 X n }, or equivalently of the process { Y p }. 

he R-RUP as mixture of semi-Markov chains 

Let us give some important definitions. 

efinition 1 (beta-Stacy Process) . The random distribution func-

ion F is a beta-Stacy process with jumps at t ∈ N 0 and parameters

 αt , βt } t∈ N 0 
, if there exist mutually independent random variables

 V t } t∈ N 0 
, each beta distributed with parameters ( αt , β t ), such that

he random mass assigned by F to { t }, written F ({ t }), is given by

 t 
∏ 

u<t (1 − V u ) . 

Introduced by Walker and Muliere (1997) , the beta-Stacy pro-

ess can be seen as a generalization of the well-known Dirich-

et process, a pivotal random distribution in Bayesian nonparamet-

ics ( Dey and Rao, 2005 ). Its RUP representation was first given in

uliere et al. (20 0 0) . 

efinition 2 (beta-Stacy Dirichlet Process) . The random probabil-

ty mass function Q on L × N 0 is called beta-Stacy Dirichlet (BSD)

rocess with parameters { αt , β t } t ≥ 0 and { γ t } t ≥ 0 , if there exist mu-

ually independent Dirichlet processes { W t } t ≥ 0 of parameters { γ t },

nd a beta-Stacy process F with jumps at t ∈ N 0 and parameters

 αt , βt } t∈ N 0 
, independent of the sequence { W t }, such that the ran-

om mass assigned to the element ( j, t ) in L × N 0 is Q( j, t) =
 ({ t} ) W t ( j) . 

The BSD process is the bivariate random distribution that char-

cterizes the R-RUP, as stated by Theorem 1 below. However, be-

ore considering that fundamental result, we first need to intro-

uce the concept of semi-Markov chain. 

efinition 3. A process { Y p } p ≥ 0 is a discrete time semi-Markov

hain on L × L × N 0 , if the values Y J n at its jump times form a

arkov chain. Moreover, conditionally on Y J n and all the previous

nformation, the sojourn time in state Y J n , and the next state the

rocess jumps to, only depend on Y J n . 

If { Y p } p ≥ 0 is a discrete time semi-Markov chain, let G l ( j, t ) be

he probability of staying at level l for a time t and then jumping

o another state j , i.e. 

 l ( j, t) = P [ L n +1 = j, M n +1 = t | L n = l ] . 

hen G is the semi-Markov kernel of { Y p } on L × L × N 0 . 

Consider the set of semi-Markov kernels G on L × L × N 0 in the

opology of coordinate convergence. If the process { Y p } is a mixture

f semi-Markov chains, there exists a probability measure κ , also

alled the mixing measure, on the Borel subset of the space G ,

uch that, for any l 1 , . . . , l n ∈ L, t 1 , . . . , t n ≥ 0 , n ≥ 1 and l 0 = 0 , we

ave 

 [(L 1 , M 1 ) = (l 1 , t 1 ) , . . . , (L n , M n ) = (l n , t n )] 

= 

∫ 
G 

n ∏ 

u =1 

G l u −1 
(l u , t u ) κ( d G ) . (8) 

roposition 1. For every l ∈ L, the sub-sequence { (δl 
n , τ

l 
n ) } is ex-

hangeable. Moreover, the sub-sequences 

 (δ0 
n , τ

0 
n ) } , { (δ1 

n , τ
1 
n ) } , . . . , { (δm −1 

n , τ m −1 
n ) } , { (δm 

n , τ
m 

n ) } (9)

re mutually independent. 
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Proof. The exchangeability of the sequence { (δl 
n , τ

l 
n ) } simply

derives from the fact that both δl 
n and τ l 

n are measurable func-

tions of the 0-blocks, which are exchangeable by construction.

The independence, conversely, simply derives from the R-RUP

construction. 

The following theorem shows that the R-RUP { Y p } is a mixture

of semi-Markov chains, i.e. the blocks ψ( R i ) constituting { Y p } p ≥ 0 

are exchangeable and each of them is a semi-Markov chain. The

mixing measure κ can be obtained by characterizing G . Knowing

the functional form of the semi-Markov kernel G will prove essen-

tial to use the R-RUP in practice. 

Theorem 1. If recurrent, the process { Y p } p ≥ 0 is a mixture of semi-

Markov chains, and its mixing measure κ is unique. More precisely,

there exists a unique random kernel G such that, conditionally on G,

Y p is a semi-Markov chain with semi-Markov kernel G. 

For each level of risk l ∈ L, the kernel G can be explicitly charac-

terized as the product G l ( j, t) = W (t,l) ( j) F l ({ t} ) , for any l, j ∈ L and

 ∈ N 0 , where: 

• F l is a beta-Stacy process with jumps at t ∈ N 0 , and parameters 

αl 
t = 

∑ 

h � = l 

N (t, l) (c h ) 

r 
and β l 

t = 

N (t, l) (c l ) 

r 
, 

with r the reinforcement of the different Pólya urns. 

• { W (t,l) } t∈ N 0 ,l∈ L are mutually independent Dirichlet processes of pa-

rameter γ ( t, l ) ( · ), all independent of F = { F l , l ∈ L } , assigning mass
N (t, l) (c j ) 

r to the j-th component for l + 1 ≤ j ≤ m, and mass 0 for

0 ≤ j ≤ l. 

Proof. Muliere et al. (20 0 0) show that a recurrent RUP { X n } defines

a mixture of Markov chains. This means that there exists a random

transition matrix R , which is a random element of the set of all

stochastic matrices, such that for all finite sequences (s 0 , s 1 , . . . , s n )

of elements of S , 

P [ X 0 = s 0 , X 1 = s 1 , . . . , X n = s n | R ] = 

n ∏ 

u =1 

R (s u −1 , s u ) a.s. (10)

Theorem 2.16 in Muliere et al. (20 0 0) characterizes R by showing

that its rows are mutually independent random probability masses

on S , and for all s ∈ S, R ( s ) follows a Dirichlet process with param-

eter ω( s ), which assigns N s (c) 
r to state q ( s, c ) ∈ S with c ∈ C . 

For any l, j ∈ L and t ∈ N 0 , define 

 (t,l) ( j) = 

R [(t, l) , (0 , j)] 

1 − R [(t, l) , (t + 1 , l)] 
, 

V 

l 
t = 1 − R [(t, l) , (t + 1 , l)] , 

F l ({ t} ) = V 

l 
t 

∏ 

u<t (1 − V 

l 
u ) . 

Because of the tail free property of the Dirichlet process ( Dey and

Rao, 2005 ), 

 (t,l) (·) = 

[
W (t,l) (0) , . . . , W (t,l) (m ) 

]
follows a Dirichlet process with measure γ ( t, l ) ( · ) assigning

N ( t, l ) ( c j )/ r to j > l and 0 to the rest. Moreover, { V l t } t≥0 are a series

of independent beta distributed random variables with parameters

(αl 
t , β

l 
t ) where αl 

t = 

∑ 

h � = l N (t,l) (c h ) /r and β l 
t = N (t,l) (c l ) /r. 

From Walker and Muliere (1997) , under the recurrence condi-

tion of Lemma 1 , F l is a discrete-time beta-Stacy process with pa-

rameters { αl 
t , β

l 
t } . This said, the goal is to characterize the mix-

ing measure of the component { (δl 
n , τ

l 
n ) } of the semi-Markov chain

{ Y p }. 

According to the de Finetti representation theorem, the ex-

changeability of the sub-sequence { (δl 
n , τ

l 
n ) } guarantees the exis-

tence and uniqueness of a random probability measure Q l on L ×
N , conditionally on which the elements of the sub-sequence are
0 
�

.i.d. with a bivariate mass function Q l ( de Finetti, 1975 ). The fol-

owing lemma characterizes this de Finetti measure as a new com-

ination of well-known random distributions, namely the Dirichlet

nd the beta-Stacy processes. �

emma 2. If recurrent, for any l ∈ L, the unique random probability

easure Q l on L × N 0 is a BSD process with parameters { αl 
t , β

l 
t } t≥0 

nd { γ ( t, l ) } t ≥ 0 , where, for any t ∈ N 0 , αl 
t = 

∑ 

h � = l 
N (t, l) (c h ) 

r , β l 
t =

N (t, l) (c l ) 

r , and γ ( t, l ) ( · ) assigns mass 
N (t, l) (c j ) 

r to the jth component for

 < j ≤ m, and mass 0 to all the other components. 

roof. For all t 1 , . . . , t n ∈ N 0 and l 1 , . . . , l n ∈ L, we have 

P [ δl 
1 = l 1 , τ l 

1 = t 1 , δl 
2 = l 2 , τ l 

2 = t 2 , . . . , δl 
n = l n , τ l 

n = t n | R ] 

 

∏ n 
k =1 

∏ 

u<t k 
R [(u, l) , (u + 1 , l)] × R [(t k , l) , (0 , l k )]) 

 

∏ n 
k =1 

∏ 

u<t k 
R [(u, l) , (u + 1 , l)] ×

(1 − R [(t k , l) , (t k + 1 , l)]) × R [(t k , l) , (0 , l k )] 

1 − R [(t k , l) , (t k + 1 , l)] 

 

∏ n 
k =1 [ W (t k ,l) 

(l k ) V 

l 
t k 

∏ 

u<t k 
(1 − V 

l 
u )] 

 

∏ n 
k =1 [ W (t k ,l) 

(l k ) F 
l ({ t k } )] a.s. 

efine Q l ( j, t) = W (t,l) ( j) F l ({ t} ) , for any l, j ∈ L and t ∈ N 0 . Since

he bivariate measure is measurable with respect to the P -

ompletion of the Borel σ -algebra of R , the above relation remains

alid after replacing R with Q l . Hence, for any l 1 , . . . , l n ∈ L and

 1 , . . . , t n ∈ N 0 , 

 [ δl 
1 = l 1 , τ

l 
1 = t 1 , δ

l 
2 = l 2 , τ

l 
2 = t 2 , . . . , δ

l 
n = l n , τ

l 
n = t n | Q l ] 

= 

n ∏ 

k =1 

Q l (l k , t k ) a.s. 

he result follows. �

emma 3. F 0 , . . . , F m are mutually independent. The elements

 W (t,l) } t∈ N 0 ,l∈ L are mutually independent, and independent from F =
 F l , l ∈ L } . 
roof. It is sufficient to show that for any l ∈ L and any t, u ∈ N 0 ,

 ( t, l ) and F l ({ u }) are independent. We have already seen that for

very l ∈ L and u ∈ N 0 , { W (t,l) : t � = u, t ∈ N 0 } and V l u are indepen-

ent thanks to the R-RUP construction. We only need to prove that

 ( t, l ) and V l t are independent, which can be obtained from the tail

ree property of the Dirichlet process. The result then follows. 

Define G l (·, ·) = Q l , for any l ∈ L . Thanks to Lemmas 2 and 3 , for

ny l 1 , . . . , l n ∈ L and t 1 , . . . , t n ∈ N 0 , we have that 

 [(L 1 , M 1 ) = (l 1 , t 1 ) , . . . , (L n , M n ) = (l n , t n ) | G ] = 

n ∏ 

u =1 

G l u −1 
(l u , t u ) 

(11)

heorem 1 is thus finally proved. �

he posterior predictive distribution with and without right-censoring

The results we have obtained with recurrence and semi-

arkovianity are extremely useful to derive the posterior predic-

ive distribution of the R-RUP in terms of the BSD process, which

roves to be conjugate ( Dey and Rao, 2005 ). 

Here below we give an important theorem, in which we show

hat, given the information about the recovery processes of k coun-

erparties, the recovery trajectory of the k + 1 th one is still a semi-

arkov chain with updated kernel. With updated kernel we indi-

ate the one resulting from the combination of the prior knowl-

dge, embedded into the initial composition of the urns of the R-
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UP, and the empirical evidence we can collect from data, i.e. the

 observed recovery trajectories. 

The result we provide deals with the general case of possibly

ensored observations, as per Subsection 4.4 . Naturally it is com-

letely valid even when all recovery trajectories are fully observed,

eing this just a special case. 

Let ρ i , i = 1 , . . . , k, be a dummy variable indicating censoring.

ach recovery block R i , i = 1 , . . . , k, can then be accompanied by

 corresponding ρ i , so that (R i , ρi = 0) indicates that the recovery

rajectory of counterparty i is not censored, while (R i , ρi = 1) tells

s that the recovery has been censored because of some T max . 

The information in ( R i , ρ i ) can be further summarized by H i =
( ψ (R i ) , ρi ) , where H i represents the recovery history of counter-

arty i = 1 , . . . , k, including the information about censoring. With

 k = [ H 1 , H 2 , . . . , H k ] we indicate the histories of the first k coun-

erparties in our portfolio. Let s ( t, l ) ( j ) be the number of counter-

arties sojourning at level l in t and then jumping to another level

 ∈ L , w 

l 
t be the number of counterparties whose exact sojourning

ime at level l exceeds time t , and v l t be the number of counterpar-

ies whose sojourning time at level l is right-censored in t . 

heorem 2. Conditionally on H k , possibly with right-censoring, the

lement H k +1 , representing the recovery history of the (k + 1) -th

ounterparty, is (still) a semi-Markov chain with semi-Markov ker-

el ˆ G , such that ˆ G l ( j, t) = E 
[

˜ G l ( j, t) 
]
, for l, j ∈ L and t ∈ N 0 , where

˜ 
 l ( j, t) = 

˜ F l ({ t} ) ̃  W (t,l) ( j) and 

• ˜ F l is a beta-Stacy process with jumps at t ∈ N 0 and updated pa-

rameters 

˜ αl 
t = αl 

t + 

∑ 

h>l s (t,l) (h ) , 
˜ β l 

t = β l 
t + w 

l 
t + v l t . 

• { ̃  W (t,l) } are mutually independent Dirichlet with parameters ˜ γ(t,l) 

where 

˜ γ(t,l) ( j) = γ(t,l) ( j) + s (t,l) ( j) , 

for t ∈ N 0 and j ∈ L. 

As in Theorem 1 , { ̃  W (t,l) } is independent from 

˜ F l for every l ∈ L. 

roof. Let ρ l 
i 
, i = 1 , . . . , k l be a binary variable indicating local

ight-censoring, where k l is the number of counterparties sojourn-

ng at recovery level l . The recovery histories of the first k defaulted

ounterparties H k can be split into several sets H 

l 
k 
, l ∈ L , each of

hich contains the observed sojourning time τ l 
i 

at level l , and the

ext recovery level δl 
i 
, when ρ l 

i 
= 0 , or just the observed sojourn-

ng time if censoring has occurred with ρ l 
i 
= 1 . �

emma 4. For every l ∈ L, given H 

l 
k 
, the posterior predictive probabil-

ty mass function for the couple (δl 
k l +1 

, τ l 
k l +1 

) is given by 

 

[
δl 

k l +1 = j, τ l 
k l +1 = t | H 

l 
k 

]
= 

˜ αl 
t 

˜ αl 
t + 

˜ β l 
t 

∏ 

u<t 

˜ β l 
u 

˜ αl 
u + 

˜ β l 
u 

× ˜ γ(t,l) ( j) 

˜ αl 
t 

, 

or j ∈ L and all nonnegative integer t, with 

˜ l t = αl 
t + v l t , 

˜ l 
t = β l 

t + w 

l 
t , 

˜ (t,l) ( j) = γ(t,l) ( j) + s (t,l) ( j) , 

(12) 

here s ( t, l ) ( j ) is the number of counterparties sojourning at level l in t

nd then jumping to level j, where w 

l 
t is the number of counterparties

hose exact sojourning time at level l exceeds time t, and where v l t 
s the number of counterparties whose sojourning time at level l is

ight-censored in t. 

roof. If right-censoring occurs, from Lemma 2 , we have that, 

P [ τ l 
1 = t 1 , ρ l 

1 = 1 | G ] = 1 − ∑ 

u ≤t 1 
F l ({ u } ) = 1 − F l (t 1 ) . 
therwise, 

P [ δl 
1 = l 1 , τ

l 
1 = t 1 , ρ

l 
1 = 0 | G ] = W (t 1 ,l) (l 1 ) F 

l ({ t 1 } ) . 
ence, 

P 

[ 
(τ l 

k l +1 , δ
l 
k l +1 ) = (t, j) | H 

l 
k 

] 
= 

P [(τ l 
k l +1 

, δl 
k l +1 

) = (t, j) , H 

l 
k 
] 

P [ H 

l 
k 
] 

= 

E 

[ 

W (t,l) ( j) F l ({ t} ) 
k l ∏ 

i =1 

[
W (t i ,l) 

(l i ) F 
l ({ t i } ) 1 [ ρ l 

i 
= 0] + [1 − F l (t i )] 1 [ ρ l 

i 
= 1] 

]] 

E 

[ ∏ k l 
i =1 

[
W (t i ,l) 

(l i ) F l ({ t i } ) 1 [ ρ l 
i 
= 0] + [1 − F l (t i )] 1 [ ρ l 

i 
= 1] 

]] 

= 

E 

[ 
W (t,l) ( j) F l ({ t} ) ∏ 

ρl 
i 
=0 

[
W (t i ,l) 

(l i ) F 
l ({ t i } ) 

]∏ 

ρl 
i 
=1 

[
1 − F l (t i ) 

]] 
E 

[ ∏ 

ρl 
i 
=0 

[
W (t i ,l) 

(l i ) F l ({ t i } ) 
]∏ 

ρl 
i 
=1 

[
1 − F l (t i ) 

]] 

= 

E 

[ 
W (t,l) ( j) 

∏ 

ρl 
i 
=0 

W (t i ,l) 
(l i ) 

] 
E 

[ 
F l ({ t} ) ∏ 

ρl 
i 
=0 

F l ({ t i } ) ∏ 

ρl 
i 
=1 

[
1 − F l (t i ) 

]] 
E 

[ ∏ 

ρl 
i 
=0 

W (t i ,l) 
(l i ) 

] 
E 

[ ∏ 

ρl 
i 
=0 

F l ({ t i } ) ∏ 

ρl 
i 
=1 

[
1 − F l (t i ) 

]] 
= 

˜ αl 
t 

˜ αl 
t + 

˜ β l 
t 

∏ 

u<t 

˜ β l 
u 

˜ αl 
u + 

˜ β l 
u 

× ˜ γ(t,l) ( j) 

˜ αl 
t 

, 

ith the second last equality coming from Lemma 3 , and where,

or j ∈ L and all nonnegative integer t , 

˜ l t = αl 
t + v l t , 

˜ l 
t = β l 

t + w 

l 
t , 

˜ (t,l) ( j) = γ(t,l) ( j) + s (t,l) ( j) . 

(13) 

Thanks to Proposition 1, Theorem 2 is then proved. �

orollary 1. The (k + n ) th recovery history H k + n for any positive in-

eger n, conditionally on H k , possibly with right-censoring, is a semi-

arkov chain with a common semi-Markov kernel ˆ G defined as in

heorem 2 . 

Exploiting Theorem 2 and Corollary 1 , we can perform Bayesian

rediction about the recovery trajectories (levels and times) of fu-

ure counterparties, given our a priori–as expressed by the initial

ompositions of the urns in the R-RUP–and the collected empirical

vidence in H k , with or without censoring. In fact, Theorem 2 tells

s that the semi-Markov kernel governing the future recovery his-

ories is the updated BSD process combining our a priori with the

ata, and whose parameters we know. In statistical terms, the BSD

rocess is conjugate. The probability of every feasible future recov-

ry history can therefore be computed explicitly, given the avail-

ble information. 

The more our priori is close to the truth, the more reliable our

redictions from the very beginning, and the better we can over-

ome the problem of censoring, by compensating the lack of infor-

ation in the data with our beliefs. In case of a wrong a priori,

owever, in a way similar to what happens with machine learning,

 sufficient amount of recovery histories can compensate unrealis-

ic beliefs, as we see in Section 5 . 

rior Elicitation 

Notice that G is a random kernel on L × L × N 0 and for every

 ∈ L, G l is a bivariate random probability measures taking values

n the space of bivariate discrete probability measures, which can

e obtained as the product of beta-Stacy and Dirichlet processes.

herefore, if we want to center G on a given semi-Markov ker-

el Ḡ , we can exploit the following relationship between the prior

uess Ḡ and the initial composition of the Pólya urns constitut-

ng the R-RUP. Generalizing results in Muliere et al. (20 0 0) and
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Mezzetti et al. (2007) , we have 

E[ G l ( j, t)] = Ḡ l ( j, t) = 

αl 
t 

αl 
t + β l 

t 

∏ 

u<t 

β l 
u 

αl 
u + β l 

u 

× γ(t,l) ( j) 

αl 
t 

, 

for j, l ∈ L, j > l , t ∈ N 0 , and where αl 
t = 

∑ m 

h = l+1 

N (t,l) (c h ) 

r , β l 
t =

N (t,l) (c l ) 

r , and γ(t,l) ( j) = 

N (t,l) (c j ) 

r . 

From this we derive that, for every state ( t, l ) ∈ S , and every

color c j , with j = 0 , . . . , m, the initial urn composition is given

by 

N (t, l) (c j ) = 

⎧ ⎨ 

⎩ 

d l t × Ḡ l ( j, t) , if j > l;
d l t ×

[
1 − ∑ t 

k =0 

∑ 

h>l Ḡ l (h, k ) 
]
, if j = l;

0 if j < l. 

(14)

From Definition 3 , the semi Markov kernel Ḡ is controlled by F̄ l ,

charactering the distribution of the sojourn times in level l , and
¯
 (t,l) , expressing the probability of jumping to other levels from

level l , given the time t spent in l . Hence, to elicit prior guesses

easily and flexibly, we can just specify the one-dimensional dis-

tributions F̄ l and W̄ (t,l) , replacing Ḡ l in Eq. (14) with their

product. 

The parameter d l t > 0 in Eq. (14) is what

Muliere et al. (20 0 0) call the strength of belief. It is a value

representing how confident we are in our a priori. The larger

d l t > 0 , the more we are convinced that our prior beliefs are

correct, so that the R-RUP will need more time and more ob-

servations, or a stronger reinforcement r , in order to correct

them if wrong. In this paper we set d l t = 1 for all t ∈ N 0 and

l ∈ L . 

Regarding the reinforcement parameter r , which in the R-RUP

represents the strength of updating, i.e. how empirical observa-

tions affect and modify our a priori, we have chosen four differ-

ent values to compare, i.e. r ∈ {0, 0.01, 1, 100}. A value of r = 0 . 01

says that we do not trust the empirical evidence too much, and

that we prefer to stick to our a priori, only allowing for very slow

updates. A value of r = 100 , conversely, indicates that we trust the

empirical evidence and we are ready to update our beliefs quickly.

Naturally for r = 0 the process never learns from data, and our a

priori is never changed. 

The following list collects the prior beliefs we have elicited to

test our model, for the different classes (size of the exposure and

FICO score) described in Subsection 5.1 : 

Prior Set 1: For every l ∈ L and t ∈ N 0 , W̄ (t,l) assigns mass 0 to

{ 0 , . . . , l} and equal mass to { l + 1 , . . . , m } , while F̄ l is the

empirical cumulative distribution function (ecdf) of the so-

journ times, as obtainable from the data, for each recovery

level l . 

Prior Set 2: For every l ∈ L and t ∈ N 0 , W̄ (t,l) assigns mass 0 to

{ 0 , . . . , l} and equal mass to { l + 1 , . . . , m } , while F̄ l is a dis-

crete uniform distribution on { 0 , 1 , . . . , T l emp } , with T l emp in-

dicating the maximum empirical sojourn time at level l as

observable in the training data. 

Prior Set 3: For every l ∈ L and t ∈ N 0 , W̄ (t,l) assigns mass 0 to

{ 0 , . . . , l} and equal mass to { l + 1 , . . . , m } , while F̄ l a dis-

crete uniform distribution on { 0 , 1 , . . . , 100 } . 
Remember that W̄ (t,l) essentially governs the probability of

jumping to higher recovery levels from ( t, l ), while F̄ l accounts for

the probability of the permanence time at level l. Please notice that

the a priori elicited by W̄ (t,l) , with the support { l + 1 , . . . , m } de-

pending on the level l , corresponds to assuming that the higher the

recovery level an exposure reaches, the higher the chance of fur-

ther recovery. This is consistent with the empirical evidence about

recovery rates in most countries ( Altman et al., 2005a, Resti and

Sironi, 2007 ). 
Given Priors Sets 1–3, Eq. (14) is used to define the initial

omposition of all the urns of the R-RUPs in the 13 × 101 matrix

f visitable states. Naturally, the urn compositions’ limitations of

ubsection 4.2 still apply. 
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