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Abstract
Software Defined Networking (SDN) is a rela-
tively new networking paradigm that proposes
to separate the control and the data logic in
networks. The control logic is centralized in
a controller, which allows for a programmable
network. SDN is promising but also intro-
duces some critical security vulnerabilities to
networks. This work proposes a survey of state-
of-the-art research into attacks and state-of-
the-art defences arising from controller place-
ment, controller failure and the northbound in-
terface. Furthermore, it proposes a comparison
and analysis of the limitations of that research.
Finally, it proposes future research directions to
improve SDN security focused on network con-
sistency and on the interoperability of different
defences.

1 Introduction
Software-Defined Networking (SDN) is a relatively new net-
working paradigm that proposes revolutionary changes to net-
works as we know them today. SDN decouples the control
logic from the data forwarding logic in networks [1]. A pro-
grammable controller handles the control logic, also known
as the control plane, whereas routers, or switches, are re-
sponsible for the data forwarding logic, also called the data
plane. The controller gets its instructions from applications
connected to it, like load balancing applications or firewalls.
In figure 1, a representation of a network using SDN is given.

Figure 1: Representation of a network using SDN

This new approach to networking offers numerous advan-
tages to the classical one. In most routers used today, the soft-
ware or the control part is hard-coded and almost impossible
to update after the deployment of a network. Such updates
would require each router to be updated individually. In most
networks, this is not feasible due to the enormous amount
of devices and the differences in vendor-specific commands.
These constraints are why getting rid of old networking stan-
dards like IPv4 is hard, even though these standards have be-

come obsolete. Classical networks have almost no capabili-
ties to deal with evolving, dynamic networks. The separation
of the control and data plane, as SDN proposes, allows these
issues to be solved. For example, an update from IPv4 to IPv6
would only require an update of the controllers. Additionally,
the vertical dissociation of the control plane from the data
plane allows for smart load-balancing and traffic forwarding.

However, one of the under-explored aspects of SDN is the
vulnerabilities it possesses [2]. The separation of control and
data planes means that if a malicious actor has access to the
control plane, it has access to the entire network. This control
centralization creates vulnerabilities and security threats that
are not present in networks today. While SDN is a promising
networking paradigm, its wide deployment beyond its spe-
cific use cases today requires addressing these vulnerabilities.

This research will focus on security vulnerabilities and
threats arising from controller placement, controller failure,
and the northbound interface. The controller placement prob-
lem was first proposed by Heller et al in [3] and consists of
finding the optimal placement and amount of controllers for a
network. A network using one controller will have very low
latency but also a low fault tolerance, and vice versa. Finding
an optimal controller distribution is still challenging, and this
survey will address some of the latest proposed strategies to
achieve this. Controller failure can be a significant issue for
SDN as it can harm network performance: one failed con-
troller could mean that an entire section of the network gets
disconnected. Strategies mitigating the effects of controller
failures are critical to SDN security. The northbound inter-
face (NBI) in SDN is the interface between network appli-
cations and the control plane. Network applications used in
SDN have an immense degree of control over the network:
they can, for example, insert new flow rules, view network
traffic and view the topology of the network [4]. Malicious or
buggy applications connected to the NBI can use these privi-
leges to perform a variety of attacks.

The main goal of this paper is to survey attacks exploit-
ing the vulnerabilities outlined in the previous paragraph and
state-of-the-art solutions to help counter those attacks. Fur-
thermore, it will also contain an analysis of the effects on
network performance caused by these vulnerabilities, as well
as a future research direction for this subject.

The rest of this paper is structured as follows. Section
2 provides an overview of related work in this area. Then,
Section 3 presents an overview of state-of-the-art controller-
related attacks and defences. Section 4 compares similar so-
lutions, their effectiveness in mitigating vulnerabilities and
how they affect network performance. Section 5 contains a
discussion on the ethical repercussions this paper might have.
Section 6 examines the limits of the most recent research, fu-
ture research directions to improve current solutions, and the
vulnerabilities that are still under-explored. Finally, Section
7 contains the conclusion of this paper.

2 Related Work
Various research efforts into controller-related security have
already been made. However, papers surveying controller-
related vulnerabilities, comparing different attacks exploiting



those vulnerabilities and surveying a wide range of state-of-
the-art defences are more scarce.

Rauf et al [4] focus on the NBI and its importance in SDN
security. They discuss the different types of NBI that exist
and have made a detailed survey of NBI-related vulnerabil-
ities. It contains an examination of how a malicious appli-
cation could exploit those vulnerabilities to attack a network
using SDN. Finally, the research proposes advanced solutions
to all the examined vulnerabilities.

Vizarreta et al [5] have produced an in-depth overview of
controller failure dynamic. It contains an analysis of the dif-
ferent ways a controller can fail and the impact of controller
failure on network availability. To help quantify the network
availability, it proposes a Stochastic Activity Network model,
a powerful tool for modelling dependability in a network.

Das et al [6] have made a survey on papers discussing con-
troller placement. It investigates the different proposed con-
troller placement schemes and the metrics that have been used
to qualify them. It then classifies the papers into different
categories based on how the proposed controller placement
scheme functions.

This paper will be, to the best of our knowledge, the first
survey that considers attacks on the whole of the control
plane, and not a specific subsection of it. Moreover, it also
contains an evaluation of how attacks exploiting these vul-
nerabilities affect network performance and it will provide a
summary and analysis of the state-of-the-art solutions that ex-
ist to help diminish the risks that result from those attacks.

3 Attacks and State-of-the-Art Defences
This section contains an analysis of multiple papers. They
contain attacks and solutions to defend against them or solu-
tions to mitigate the effects of controller failure. Each sub-
section contains one paper. Table 1 contains an overview of
all the papers that will be analyzed.

3.1 Cross-App Poisoning in Software-Defined
Networking

In [7] a new attack on the SDN control plane, Cross-App Poi-
soning (CAP), is introduced. This attack makes it possible
to bypass Role-Based Access Control (RBAC) defences. It
also proposes a solution to defend against this attack, named
ProvSDN.

Role-Based Access Control
RBAC is an SDN defence strategy that attempts to mitigate
the effect malicious applications can have on a network by
assigning roles with different reading and writing privileges
to network applications [13]. In theory, a malicious applica-
tion that does not possess writing privileges will not be able
to modify the flow rules of the control plane. Furthermore,
if it does not have reading access, it should not be capable of
reading the network state.

Threat model
The authors of this paper assume that the SDN controller is
secure and that the used network applications can originate

from third parties. Furthermore, they presume that an at-
tacker controls a malicious application with the least privi-
leged RBAC permissions. The attacker’s objective is to in-
stall a malicious flow rule without having permission to do
so.

Information Flow and Information Flow Challenges for
SDN
Information Flow describes how data propagates through a
system and how it affects other data in that system. Informa-
tion flow control (IFC) is a mechanism that uses a security
policy to decide what data can flow between various entities.

SDN lacks controller designs that record information flow
and perform IFC between the numerous applications con-
nected to the control plane. As a result, modern controller
designs that use an RBAC defence are vulnerable to mali-
cious applications exploiting the lack of IFC to bypass the
privileges initially assigned to them.

Cross-app Poisoning Attack
Cross-App Poisoning (CAP) exploits the lack of information
flow control in modern SDN controllers with RBAC. All at-
tacks using malicious applications to poison the network view
of other applications, thus misleading them into performing
unauthorized actions on their behalf, can be described as CAP
attacks.

In their experiments, the authors manage to execute a CAP
attack by designing an application that poisons the network
view of the reactive forwarding application by modifying the
routing information the application uses. The forwarding ap-
plication consumes the poisoned data to set up a new flow rule
which causes a denial-of-service of the data plane for the vic-
tim. Furthermore, the ID associated with the malicious flow
rule will be the ID of the forwarding app, wrongly causing
the controller to believe that the forwarding app is responsi-
ble for the attack and allowing the malicious application to
remain completely undetected.

ProvSDN
This paper also proposes a defence against CAP attacks
which they name ProvSDN. ProvSDN uses data provenance
to determine whether API calls to the controller should be
executed or blocked. Data provenance informs us where data
comes from and what changes it has made to the network.
The three components of ProvSDN are the provenance collec-
tor, the online reference monitor and the provenance graph.

The provenance collector collects API call information like
data usage, called methods, generated data, and identifies the
network relations and entities involved. The online reference
monitor checks the provenance graph against the chosen IFC
policy and decides whether the application executing the call
satisfies the security policy. If that is the case, the monitor
includes the application to the provenance graph, and if not,
the monitor blocks the API call. The provenance graph keeps
track of all the entities and relations in the network and en-
ables online policy checking and investigating how a network
state came to be, effectively allowing the controller to detect
malicious applications like the one in the example attack.



Research Work Area of Interest Focus Heuristic

Cross-App Poisoning in
Software-Defined Networking [7] NBI Attack

Using one application with low privilege
to trick other applications into
performing higher privileged operations

An Efficient Approach to Robust SDN
Controller Placement for Security [8] Controller Placement Defence

Using greedy algorithms and a Monte Carlo
simulation to quickly find near-optimal
multi-link failure resilient controller
placement schemes

Byzantine-Resilient Controller Mapping and
Remapping in Software Defined Networks [9] Controller Placement Defence

Using a primary and backup
controller approach to create a
Byzantine fault tolerant network

SDN-RDCD: A Real-Time and Reliable
Method for Detecting Compromised SDN
Devices [10]

Controller Failure Defence
Adding new controller role, auditor,
to verify network interactions
and detect compromised devices

AIM-SDN: Attacking Information
Mismanagement in SDN-datastores [11] NBI Attack

Exploiting lack of synchronization between
SDN datastores to cause memory overflows
and permit unauthorized traffic

Attacking the Brain: Races in the SDN
Control Plane [12] Controller failure Attack Detect and exploit race conditions in

SDN controllers

Table 1: Overview of discussed papers, their area of interest, their focus and the heuristic used

Evaluation
ProvSDN is evaluated by executing the example attack de-
scribed in the CAP section. They use two different scenar-
ios: one involving reads, and one involving writes. In both
cases, ProvSDN manages to restrict the malicious applica-
tion from inserting a malicious flow rule. They also evaluate
the performance effects of ProvSDN on the network. On a
baseline network without ProvSDN, the average latency for
control plane state changes is 11.66 ms. With ProvSDN, the
average latency is 29.53ms, which seems like a significant
increase over the baseline network. It is meaningful to note
that control plane changes are relatively infrequent as they
only happen when internal controller services and new appli-
cations register to receive events. When flow rules already
exist, ProvSDN is not used, and the network experiences no
latency.

3.2 An Efficient Approach to Robust SDN
Controller Placement for Security

In [7], the focus is on a new controller placement scheme re-
silient against multi and single-link failure. This placement
scheme uses a greedy algorithm and a Monte Carlo simula-
tion to reduce computational overhead.

Link Failure
There are two ways in which the control plane can fail: link
failure and controller failure. Link failure is when a physical
or virtual link between controllers is compromised, and a sec-
tion of the network is disconnected from the rest. Controller
failure is when a controller fails and cannot perform its duties
anymore.

This paper exclusively focuses on the link failure problem.
The link failure problem has two aspects: single-link failure
and multi-link failure. This paper distinguishes itself from
other research on this subject because the placement scheme
it proposes is resilient against multi and single-link failure.

The authors find that in the data traces of the links of
the China Education and Research Network consisting of 21
nodes and 23 physical links, the failure rate follows a “long
tail” feature, which implies that a few specific links cause
most of the link failures. This feature can also be observed
in other networks and constitutes the basis for the placement
heuristic employed in this paper as it implies that some links
are more likely to than others fail [14].

Placement for Mitigating Single-Link Failure
This paper proposes two algorithms to solve the controller
placement problem for single-link failures: the Optimal
Placement Algorithm(OPA) and the Greedy Placement Algo-
rithm(GPA).

OPA implements an exhaustive search of all the possible
controller placement schemes to discover the optimal solu-
tion to the controller placement problem. Exhaustive search-
ing causes this algorithm to run in non-polynomial time with
worst-case time complexity of O(m ×

(
n
k

)
) where m is the

number of physical links, n is the number of nodes and k is
the number of controllers.

GPA, on the other hand, adopts a greedy strategy for con-
troller placement. Utilizing a greedy strategy has the disad-
vantage of not always finding an optimal solution. However,
it has the advantage of having a considerably lower worst-
case time complexity of O(mnk).



Placement for Mitigating Multi-Link Failure
For the multi-link failure aspect of the controller placement,
the paper again proposes one optimal and one greedy algo-
rithm. The OPA for multi-link failure is similar to the OPA
for single-link failure. It performs an exhaustive search of
the possible controller placement schemes while monitoring
how all the possible failure scenarios can affect the worst-case
latency and ultimately selects the one with the lowest worst-
case latency. However, this algorithm runs in non-polynomial
time with an exponentially higher worst-case time complexity
than its single-link variant.

Each link in the network has a certain failure probability
according to statistical data. Therefore it is possible to em-
ploy a Monte Carlo simulation to simulate the failure scenar-
ios to reduce the computational overhead. The greedy algo-
rithm implements the Monte Carlo simulation to estimate the
multi-link failure scenarios according to the link failure rates
N times. Subsequently, it implements the same algorithm
from the single-link failure section to place the controllers.
This algorithm has a worst-case time complexity of O(knN).

Evaluation
To evaluate their algorithms, the authors of this paper use real
network topologies, like Internet Topology Zoo [15], Inter-
net2 [16], and Cernet2 [17]. The metrics they use to evalu-
ate the network performances are worst-case propagation run-
time, latency, and the probability of network survival.

To evaluate the results, the authors compare their results
with two commonly used algorithms for controller place-
ment and find that GPA performs significantly better. It pro-
duces almost optimal performance while having a substan-
tially lower computational overhead than an optimal place-
ment algorithm. Latency increase due to GPA is minimal.
The probability of network survival is near 100%, particularly
when the number of controllers in the network increases.

3.3 Byzantine-Resilient Controller Mapping and
Remapping in Software Defined Networks

A critical security issue in SDN is controller failure due to at-
tacks and software failure. The authors of this paper propose
a dynamic Byzantine Fault Tolerant (BFT) controller place-
ment scheme that helps mitigate the security issues arising
from controller failure [9]. In contrast with the previous pa-
per, this paper focuses on the controllers themselves and not
the links between them.

Byzantine Fault Tolerance in SDN
The Byzantine generals problem is a famous and valuable
computer science concept for describing how networks can
agree on a consistent network state when it is impossible to
know which parts of the network to trust. This is equally valid
for SDN, and BFT represents an efficient strategy for guaran-
teeing data integrity in the control plane. However, the con-
ventional BFT approach to secure the control plane against
controller failures requires mapping each switch to 3f + 1
controllers where f is the number of failures a network must
be able to overcome [18]. Furthermore, all the controllers
must coordinate to achieve a consensus before forwarding
new flow rules. This approach makes the network experience

a slowdown in throughput and flow-setup time [19]. This re-
duced effectiveness demonstrates the need for a new BFT al-
gorithm that reduces overhead.

Primary-Backup Controller Approach for BFT
The authors of this paper propose an alternative approach for
controller mapping that requires only 2f + 1 controllers per
switch. The new mapping is based on a primary and backup
controller approach. Each switch is mapped to f +1 primary
controller and f backup controllers. When receiving a new
forwarding rule, the switch verifies with all its primary con-
trollers whether the received rule is consistent. If there is any
inconsistency among the primary controllers, the switch con-
tacts its backup controllers to receive and install the correct
rule. This approach offers significant advantages:

• Reducing overhead: when there is no failure, it only re-
quires 2f + 1 messages; when there is a failure, it re-
quires 2(2f + 1) messages. The conventional approach
always requires 2n = 3n2 messages where n = 3f + 1
is the amount of controllers required per switch.

• Decreased controller load: a portion of the controllers
operate as backup and are queried less often.

• Decreased number of controllers: the capacity of backup
controllers can be shared among switches.

MINCON and MINRUS
Optimal algorithms exist to map the switches to primary and
backup controllers. However, these algorithms can be ex-
tremely time-consuming, especially when the networks grow
in size. The authors propose a fast algorithm for mapping
switches and minimizing the network’s number of needed
controllers, named MINCON. MINCON uses the greedy
programming paradigm to rapidly produce a mapping for
switches to primary and backup controllers. MINCON will
not use new controllers unless no controllers in the network
satisfy the conditions required for connecting a new switch to
keep the number of used controllers as low as possible. It also
ensures that a controller can not be a backup and a primary
controller for the same switch. MINCON has a worst-case
time complexity of O((f + 1) × |N | × |M |) where |N | is
the amount of nodes in the network and |M | the amount of
controllers. Since f usually is a low number, the worst-case
time complexity is dominated by O(|N | × |M |).

If a faulty controller is detected, the network cannot use
it anymore, and the switches connected to that controller
must be remapped. The paper proposes another greedy al-
gorithm to do the remapping, MINRUS. MINRUS remaps all
switches connected to a defect controller to other non-defect
controllers in the network. However, to reduce computational
overhead, it is practical to avoid remapping switches con-
nected to benign controllers as much as possible. To do this,
MINRUS tries finding a controller with a communication de-
lay beneath a certain threshold for each affected switch. Only
when it cannot find such a controller it will remap an un-
affected switch with an identical process to free up a spot
and try to accommodate the affected switch. MINRUS uses
a greedy strategy and, as a result, has a worst-case time com-
plexity of O(|N | × |M |).



Evaluation
The key metrics the authors use to evaluate their algorithms
are:

• The total number of controllers used.

• the Min-Max ratio, an index which is the ratio of the
minimum load to the maximum load among the con-
trollers used to determine how fair the load distribution
is.

• The average controller load.

• number of unaffected switch remaps.

The algorithms are evaluated by comparing them to the op-
timal solutions for mapping and remapping controllers and
the conventional BFT algorithm BG-FT. MINCON outper-
forms the conventional algorithm by a significant margin and
enjoys better performances on all metrics. The experiments
also show that MINCON and MINRUS perform slightly
worse than optimal solutions while experiencing significantly
lower computational overheads.

3.4 SDN-RDCD: A Real-Time and Reliable
Method for Detecting Compromised SDN
Devices

In [10], a new method for detecting compromised SDN de-
vices, named SDN-RDCD, is proposed.

Detection of compromised SDN devices
Detecting compromised devices in SDN involves comparing
a device’s expected behaviour with its actual output. How-
ever, this detection problem is far more challenging for SDN
than for conventional networks, where it is possible to com-
pare the output a device produces with the output the protocol
installed on the device should produce. In SDN, many appli-
cations and controller modules are involved in programming
how the control plane and data plane should behave, which
leads to controllers and switches behaving in a multitude of
unpredictable ways.

Threat Model
The defined threat model assumes that neither controllers nor
switches are trustful and that an attacker has compromised an
unknown amount of controllers or switches. Then, he can in-
struct state changes and disable primary and security systems
of compromised devices. However, to keep their solution ef-
fective, the authors assume that at least one of the switches
and one of the controllers involved in an attack stay honest.

Proposed Solution: SDN-RDCD
To solve this detection problem, the authors of this paper pro-
pose a new solution: SDN-RDCD. To detect compromised
devices in a network, SDN-RDCD collects all network up-
date information and the handling of that update by all the
controllers and switches in the network. To detect anomalies
in the expected network state after network updates, SDN-
RDCD proposes a new role for controllers, besides master
and slave, the auditor-controller. The auditor-controller is
charged with verifying whether the behaviour of switches
and controllers is consistent with the expected behaviour after
each network update. Each executed network update and its

handling information is stamped with a unique ID to facilitate
monitoring. The master controller is designed to pass on all
legitimate network update requests and their execution results
to the auditor-controller. Then, the auditor-controller will re-
execute the update requests and store the two results in an
audit record together with the unique ID of the request. If the
results match, then the network is secure. If the results do not
match, it means some device is compromised. The algorithm
proposed in this paper classifies network information updates
in four categories: network update requests, network update
results, update instructions received by switches, and switch
state updates. With this information and the execution results
stored by the auditor-controller, SDN-RDCD can determine if
a controller or a switch is behaving abnormally and whether
a man-in-the-middle attack is likely to have occurred.

Evaluation
To evaluate the effectiveness of SDN-RDCD, the authors ex-
ecute two attacks on a simulated network: one controller hi-
jacking attack and a switch hijacking attack. The controller
and switch attack both successfully manage to infect their tar-
get devices, but SDN-RDCD detects each misbehaviour con-
ducted by the compromised devices. The added overhead is
relatively insignificant and does not hamper network perfor-
mance. The overhead can be reduced even more by using idle
slave controllers for the auditor role.

3.5 AIM-SDN: Attacking Information
Mismanagement in SDN-datastores

In [11] the vulnerabilities arising from information misman-
agement in SDN datastores and the steps needed to address
these vulnerabilities are discussed.

Information Management in SDN
SDN stores data in three different datastores classified
into three categories: control/configuration data, inven-
tory/operational data, and management data. The con-
trol/configuration datastore is where applications and services
store flow rules, access control services, and quality of service
criteria, amongst other information. This information is dy-
namically accessed and needs fast response times to ensure
that the information remains up to date for other applications.

The inventory/operational datastore contains essential in-
formation about the current network view, like topology, run-
time state and traffic statistics. This information is obtained
through southbound plugins and cannot, and applications or
services cannot modify it. This information must remain up
to date as it gives all the applications their current view of the
network, and incorrect information could, for example, lead
to a load-balancer excluding a switch from the topology for
no reason or a firewall giving access to an unauthorized host.

The management datastore contains management informa-
tion like users, authorizations, and groups.

Information Mismanagement
The current design of SDN is problematic because it allows
for information mismanagement This paper identifies three
information management design flaws that can lead to an in-
consistent network state: information disparity, blurred re-
sponsibilities, and unreliable service chaining.



• Information disparity: SDN applications use the NBI
to send instructions to the controller, which stores these
state changes in its control datastore. The controller ser-
vices then apply the changes to the network, after which
the controller’s operational datastore updates itself by
monitoring the network state. It is easy to imagine that
the communication between these two components can-
not be flawless, especially when considering link and de-
vice failures.

• Blurred responsibilities: when a rule is added to a net-
work by a user, this rule must then be updated in an ap-
plication, which then updates the control datastore. Af-
ter that, the controller must implement the rule in the
network, and finally, the operational datastore updates
its state based on the network change. The issue in this
process is that there is no clear ownership of the rule and
that it is hard to decide who can delete it or who should
re-execute it if it fails. This problem can lead to rules not
being added or added twice, which can lead to inconsis-
tent network states.

• Unreliable Service Chaining: if an application requests
a series of network changes, it expects those changes to
be executed in order. However, the current design of
the datastores lacks synchronization and can not ensure
a chained sequence of actions, which can again cause an
inconsistent network state.

Network state consistency is one of SDN’s main security
challenges, even more so when distributed controllers are
used.

Vulnerabilities and Proposed Attacks
To detect the vulnerabilities arising from these data stores and
to develop attacks, the authors of this paper have developed a
black-box fuzzing tool. This tool will send random network
requests to a list of services in the network. Then, it uses
the responses to analyze whether the service it communicates
with is a datastore and what kind of datastore it is.

The vulnerabilities discovered by this tool have led the au-
thors to discover a multitude of attacks that allow them to
cause memory overflows leading to denial-of-service, as well
as infiltrating the network to permit unauthorized and unde-
sired traffic.

Mitigation strategies
To prevent an overflow of data in the NBI, the authors pro-
pose limiting the amount of configuration that external appli-
cations can add by using a rate-limiting proxy that also mon-
itors suspicious amounts of traffic.

The paper also proposes a system clock to help avoid the
vulnerabilities arising from the lack of synchronization be-
tween the control and operational datastores. This way, ob-
solete network configurations can be pruned using a timeout
value, and applications can ascertain the age of a specific con-
figuration.

Finally, the paper proposes to track ownership of config-
urations using metadata to mitigate the ”blurred responsibil-
ities” issue. For example, if an application adds a configu-
ration, it owns that configuration, but if a service modifies it

without external interaction, the ownership will be transferred
to that service.

3.6 Attacking the Brain: Races in the SDN
Control Plane

In [12] a new attack against SDN networks is proposed; a
state manipulation attack exploiting harmful race conditions
in controllers. It also proposes a tool, CONGUARD, to help
detect these harmful race conditions.

Race Conditions in SDN
Race conditions occur when a system tries to perform two op-
erations on the same data simultaneously. Simultaneous op-
erations can lead to the system modifying data in ways both
operations do not expect and ultimately to bugs. SDN’s asyn-
chronism leads to many race conditions in the control plane.
In theory, these race conditions are not harmful since mutual
exclusion synchronizations should protect them. However,
due to oversights and logical flaws by programmers, many of
these race conditions can be harmful and exploited by adver-
saries.

Exploiting harmful race conditions is not easy because it
is hard to determine which race conditions are harmful and
benign. Furthermore, an attacker must also be able to trigger
these harmful conditions to exploit them without access to the
controller.

Threat Model
The authors assume that an attacker is unable to compromise
controllers, switches, and applications and is also unable to
exploit SDN protocols and links between devices. In short,
this means that the only entry point an attacker has is a com-
promised host.

CONGUARD
To detect harmful race conditions, the authors propose a tool
called CONGUARD. It does this in two phases: first, it tries
to detect harmful race conditions and then attempts to trigger
them by remotely injecting network events with the proper
timing.

Finding the harmful race conditions is done by first finding
race conditions and then determining which race conditions
are harmful. Detecting race conditions is done by generating
network events and tracing their execution to determine if two
race operations in a shared state occur. Adversarial state rac-
ing is used to determine which race conditions are harmful.
Adversarial state racing is a technique developed by the au-
thors which relies on the observation that harmful race condi-
tions often arise from two operations on shared network states
that are not commutative. However, controlling the scheduler
allows forcing these operations to execute in the wrong order
and introducing, for example, delays. Upon observation of an
erroneous state, a harmful race condition is found.

It is difficult to trigger these conditions using only exter-
nal network events because the amount of possible combina-
tions of schedules is enormous. However, the authors devise
a clever strategy of tracing back harmful race conditions with
the control flow graph to an external operation. The attack
strategy is based on the timing of requests to the controller



and rapidly flipping connection states. If the attacker man-
ages to time an update request with the trigger event correctly,
a harmful race condition can be triggered. However, if this is
impossible, this race condition can not be triggered by an ad-
versary limited by the defined threat model.

Defense Schemes
The paper also proposes three defence schemes to counter
the vulnerabilities revealed by CONGUARD. The first idea is
to add safety checks to avoid concurrency violations. These
safety state checks have been successfully used to patch 12
vulnerabilities discovered by CONGUARD. The second idea
is to guarantee deterministic execution runtimes of state oper-
ations. Finally, it proposes sanitation of external events. This
would, for example, ensure that an external host cannot flip
connection states frequently in a short time.

Evaluation
CONGUARD allowed the authors to find 15 previously un-
known vulnerabilities in three mainstream controllers that al-
low an adversary to cause system crashes, switch connec-
tion disruptions, service disruptions and service chain inter-
ference. CONGUARD completed its analysis in less than 2
minutes for all three controllers. Furthermore, CONGUARD
was the only detector to detect harmful race conditions com-
pared to other state-of-the-art race detectors.

4 Limitations and comparison of solutions
This section contains a comparison of solutions and an anal-
ysis of their effectiveness in mitigating SDN vulnerabilities.

4.1 Controller placement security limitations:
comparing and analyzing [8] and [9]

The papers concerning controller placement discussed in this
survey have a different focus; the first one is dedicated to
mitigating link failure, while the second one is focused on
mitigating controller failure. The difference in focus makes
them complicated to compare, but it is interesting to analyze
whether, when used together, they provide an even more se-
cure control plane:

• The placement algorithm for mitigating multi-link fail-
ure from [8] introduces no significant latency overhead
while still surviving a majority of failure scenarios, es-
pecially with a larger number of used controllers.

• The BFT placement scheme from [9] also boasts a rela-
tively low worst-case time complexity for mapping and
remapping operations, while the mappings it proposes
are nearly optimal.

• The worst-case time complexities of both algorithms are
nearly similar, implying that using both in a network will
not cause significant overhead.

These two algorithms can be combined quite well. The multi-
link failure produces a mapping of controllers, while the BFT
algorithm produces a mapping of switches to controllers.
When a remapping occurs for the BFT algorithm, this does
not affect the mapping produced by the multi-link failure al-
gorithm. This means that the placement scheme produced

by combining the algorithms will produce a Byzantine fault-
tolerant and multi-link failure resilient controller mapping for
a low overhead cost.

4.2 Northbound Interface security limitations:
comparing and analyzing [7] and [11]

The two papers discussing NBI security both propose an at-
tack, but only one of them proposes a defence to their attack.
This section contains an analysis of the shortcomings of both
attacks. Furthermore, it will determine how effective the pro-
posed defence in [7] is in mitigating both attacks. Both the
cross-app poisoning attack proposed in [7] and the datastore
attacks proposed in [11] use the NBI to poison information
in the control plane or to perform black-box fuzzing to find
datastores and seek to exploit them.

• The advantage of both these attacks is that they can be
performed on open source and commercial controllers
since they do not need access to the controller’s source
code to detect vulnerabilities.

• CAP can circumvent RBAC defences.

• The black box fuzzing tool used in [11] can not circum-
vent RBAC defences since it requires multiple different
network requests that it would not have access to without
the right role.

This is not to say that the vulnerabilities revealed in [11] are
not relevant, and the designed fuzzing tool can be helpful
for developers to test their networks. However, in a scenario
where a network has an RBAC defence, it is not harmful.

The defence proposed in [7], ProvSDN has advantages and
disadvantages:

• ProvSDN can detect cross-app poisoning attacks

• Due to its use of a provenance graph and of IFC to de-
cide whether a request made by an application can be
executed, it is likely that it will also refuse the function
calls made by the black box fuzzing tool from [11].

• ProvSDN produces high overhead when it is used. How-
ever, it is important to note that this overhead only occurs
with control plane state changes.

A developer designing an SDN network not interested in se-
curing it from NBI attacks or ensuring that the applications
used in the network are secure does not need ProvSDN. In
contrast, ProvSDN could be a beneficial security addition for
networks that regularly use third-party applications.

4.3 Controller failure security issues: comparing
and analyzing [12] and [10]

Regarding controller failure, two papers have been discussed,
one defence, SDN-RDCD and one tool facilitating the dis-
covery of new attacks, CONGUARD. SDN-RDCD is an ade-
quate defence, but not against CONGUARD, so it is challeng-
ing to compare these two algorithms. It is crucial to consider
both the limitations and overhead CONGUARD and SDN-
RDCD cause to determine whether the combination is an ef-
fective strategy:



• CONGUARD is an effective tool for discovering harm-
ful race conditions in an SDN network. It takes two
minutes to run, but it needs access to the source code
of the used controller, making it a very ineffective tool
for attacking commercial controllers. However, it is an
extremely effective tool for developers wishing to detect
harmful race conditions in their networks.

• SDN-RDCD uses an auditor-controller to verify network
interactions and log network state changes at a relatively
low overhead cost. Furthermore, in the experiments ex-
ecuted by the authors of [10], SDN-RDCD manages to
detect every compromised network device after an at-
tack.

To effectively combine these two tools, it would be wise
to use them differently. For example, CONGUARD could be
used every time a new network version is deployed to ver-
ify that no harmful race conditions have been inadvertently
added. In contrast, SDN-RDCD could be continually running
to detect attackers compromising devices.

5 Responsible Research
This paper has created a survey of cybersecurity vulnerabil-
ities of a new networking paradigm, SDN. Summarising all
these vulnerabilities in one paper can make the work of a
malicious actor easier, should he wish to exploit controller-
related exploits in SDN networks. However, the vulnera-
bilities that are analysed also come with proposed defences
against them. Therefore, this paper can also be useful for
SDN designers who want to improve their networks’ security.
Furthermore, the SDN architecture is still in an early phase
of its life cycle. It is still subject to many vulnerabilities that
must be addressed before it can be widely deployed. Papers
like this one that point out those vulnerabilities and state-of-
the-art solutions mitigating these are critical towards devel-
oping SDN further and making it ready for the real world.

In works focusing on surveying other research, it is essen-
tial to ensure that no plagiarism is conducted. Therefore, this
work has tried to provide correct references for all the ideas
it proposes and to avoid copying ideas from other research
work.

6 Discussion and Future Research
Controller placement, controller failure mitigation, and north-
bound interface security are critical security issues for SDN.
The papers discussed in this survey propose either solutions
to defend against known vulnerabilities or new vulnerabili-
ties that need further research. The proposed solutions are
all reasonably practical and induce relatively little overhead.
However, when all combined, that overhead can significantly
impact network latency. One of the goals of the SDN design
paradigm is to improve network speed, and adding a multi-
tude of defences to a network that reduces the network speed
ultimately defeats the purpose of SDN. Therefore, when de-
signing a network using SDN, it is essential to assess what
threats it will face, what capabilities an attacker will most
likely have, and to cherry-pick the needed defences to avoid

excessive speed reductions. When using SDN in a data cen-
tre that does not use third-party applications, for example, it
is not beneficial to use ProvSDN.

As well as most solutions discussed in this survey work
to tackle controller-related security issues, the control plane
state consistency remains a significant concern, in particular
when the number of controllers in a network increases [11].
The problem with the control plane state consistency is that it
results directly from SDN’s design, and ensuring consistency
without drastically changing the design of SDN is a signifi-
cant challenge. Some solutions proposed in this survey can
prove quite effective in mitigating these issues, but new secu-
rity issues will continue to appear.

Future research should improve the control plane state
consistency and make it possible to use multiple defences
in a network without excessively impacting network perfor-
mance.

Network consistency
Improving consistency can be done directly in the design of
SDN itself or by designing tools that can significantly miti-
gate the impacts of control plane inconsistency. While it is
possible to redesign SDN to have a consistent control plane
state, it will significantly impact its efficiency, as the parallel
processing causing the inconsistencies are a significant rea-
son that allows SDN to be so efficient.

One approach towards alleviating the impact of network
state inconsistency could involve the detection of inconsis-
tencies. Detecting inconsistencies between distributed con-
trollers and their datastores could be done using a central
database in the control plane. This database has read access
to all the datastores and would use a consensus algorithm to
see the most common network state among the controllers
and select that state as the general state. Then controllers that
do not conform to that state after a certain amount of time
would have to be re-synchronized, and all network actions
taken cancelled while warning applications that their actions
may not have been completed. This central database would
be closed for writes to everyone but owners of the network to
keep it secure.

In a simple SDN network with three controllers, this would
involve one database connected to both datastores of all con-
trollers. When the database detects an inconsistency between
controllers, it chooses the state occurring in most controllers
as the general state. The divergent controller is then reset.
Furthermore, network applications are warned that instruc-
tions have not been propagated through the affected part of
the network and that they might need to re-execute them.

This approach has the advantage of not requiring a redesign
of the control plane and being relatively simple to implement.
However, it also has disadvantages:

• Some network data could be lost.
• Bugs could occur during re-synchronization
• New vulnerabilities could be introduced

Using Joint Defences
Research should also focus on making defences capable of
joint use. A significant amount of defences have been pro-
posed in the past decade, all of them addressing some area of



SDN security. Future research could focus on determining the
best way of using these defences together and if it is possible
to combine them in a network smartly. Without smartly com-
bining solutions, networks will experience excessive amounts
of performance overhead.

7 Conclusion
This work aimed to survey state-of-the-art attacks and de-
fences for controller-related security risks and vulnerabilities
in Software Defined Networking. Many papers have been
thoroughly analyzed to provide an insight into the novel ap-
proaches they propose. These approaches include Byzan-
tine Fault Tolerant and multi-link failure resilient controller
placement algorithms, cross-app poisoning and information
mismanagement attacks exploiting the northbound interface,
a defence against northbound interface attacks using prove-
nance, an algorithm to mitigate controller failure as well as
attacks using harmful race conditions in the control plane to
cause crashes and disruptions. The limitations of these ap-
proaches, as well as SDN security as a whole, have been dis-
cussed. Furthermore, it proposes future research directions,
including an idea for improving network state consistency.
This survey is limited by the number of papers it has used but
provides an interesting overview of state-of-the-art research
into controller-related SDN cybersecurity.

Widely deploying SDN outside of current specific use
cases will remain a challenge until these security issues can
be solved. However, SDN is a design paradigm that is still
relatively new, and an incredible amount of progress can be
made in the upcoming years.
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