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Integral Equation Formulations for Geodetic 
Mixed Boundary Value Problems 

Roland Klees, Stefan Ritterl, Rüdiger Lehmann2 

1 Mathematical Institute, University of Karlsruhe, Germany 
2 Geodetic Institute, University of Karlsruhe, Germany 

Abstract 

We consider mixed boundary value problems in Physical Geodesy and study possibilities in 
order to transform them into a system of integral equations over the boundary of the domain. 
The system of integral equations can be solved numerically, by, e.g. boundary element methods, 
provided that (a) the mixed boundary value problem is uniquely solvable, (b) the system of 
integral equations is equivalent to the mixed boundary value problem, and (c) the matrix of 
integral operators is strongly elliptic. We introduce a method, first proposed by Stephan, which 
allows to derive integral equation formulations for all mixed boundary value problems relevant 
to geodetic applications. Moreover, the analysis of Stephan for the mixed Dirichlet-Neumann 
problem may be generalized to the geodetic mixed boundary value problems, as weIl. 

1 Introduction 

The objective of the paper is to study mixed boundary value problems (MBVPs) of type 

t:J.u = 0 in De 

Bou = go on So 

Beu = ge on Sc 

u = O(lxl-1
) , lxi --+ 00. 

(1) 

D is a bounded domain in ]R3 with sufficiently smooth boundary S = So U Se, with So n Se = 0, 
and De its complement in ]R3, i.e, De = ]R3 \ D. The curve 50 n Se is assumed to be smooth 

and simply cIosed. Bo and Be are first-order differential operators, and go and ge are the given 
boundary data. In geodetic applications, So can be identified with the surface of the oceans and 
Se with the continents. Depending of the choice of Bo and Be different mixed boundary value 
problems can be formulated. In geodesy, the most relevant (Iinearized) MBVPs are summarized 

in Table I. Depending on the level of approximation, additional MBVPs can be derived from 
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Table 1. Linearized geodetic mixed boundary value problems 

name Bo Be type 
altimetry-gravimetry 1 1 1 -Dr Dirichlet-Poincaré 
altimetry-gravimetry Ir Dr I -Dr oblique-Poincaré 
fixed altimetry-gravimetry I Dr Dirichlet-oblique 

the three basic problems listed in Table 1. For instance, in spherical approximation and constant 
radius approximation, the oblique boundary operator Dr becomes the Neumann operator, and 
the Poincaré boundary operator 1- Dr becomes the Robin operator. 

Existence and uniqueness of various linearized geodetic MBVPs have been studied, mostly 
in the context of the spherical and constant radius approximation, see, e.g., Amold (1981); 

Sjöberg (1982); Holota (1982); Svensson (1983); Sacerdote and Sanso (1983a, 1983b); Holota 

(1983a, 1983b); Amold (1984); Sacerdote and Sanso (1987); Svensson (1988); Sanso (1993); 

Keiler (1996). 
Numerical aspects of geodetic MBVPs have been studied by, e.g., Sjöberg (1982); Bjer

hammar (1983); Sanso and Stock (1985); Hofmann-Wellen hof (1985); Mainville (1986); Mayer 
(1997). In the context of integral equation formulations, the references Sanso and Stock (1985) 
and Mayer (1997) are of interest. In Sanso and Stock (1985) an integral equation formulation 
of the linearized altimetry-gravimetry 11 MBVP in spherical approximation has been used and 

applied to a local area (see Section 4) . The transformation of the MBVP into an integral equa

ti on is based on the explicit solution of the Neumann problem for a spherical boundary surface 
S , and cannot be applied to MBVPs with non-spherical surfaces andlor other types ofboundary 
data. Mayer (1997) propos es a completely new solution strategy for the nonlinear altimetry
gravimetry TI MBVP, which assumes agiobal coverage with gravity values and, in addition, 
the potential to be given on the free continental part of the boundary. Firstly, a hypersingular 
integral equation for the linearized fixed gravimetric BVP is solved, due to the global coverage 
with gravity values. Then, the remaining Dirichlet boundary condition over the free continental 
part yields a nonlinear operator equation, which has to be solved for the unknown continental 
geometry. The solution has to be improved iteratively (see Section 5). 

Stephan (1987) studied the Dirichlet-Neumann MBVP on closed surfaces in ]R3 based on 
an equivalent formulation of the MBVP as a system of two integral equations. His method is 
general enough to derive integral equations for all relevant MBVPs in geodesy. Moreover, his 
procedure to prove the existence and uniqueness of the system of integral equations, and the 
equivalence of the MBVP with the system of integral equations, may be applied to geodetic 
MBVP, as weil. Therefore we first want to introduce his method and the main lines of the 
analysis; then we want to show how integral equations for geodetic MBVPs can be derived 
analogously. Finally, we will briefly discuss the methods of Sanso and Stock (1985) and Mayer 
(1997) since they also make use of integral equations in order to solve geodetic MBVPs. 



2 The method of Stephan 

Stephan (1987) discusses the solution of the Dirichlet-Neumann problem in ]R3 : 

t:.u = 0 in DC 

u = gl on SI 

Dnu = g2 on S2 

u = O(JXJ-1), JxJ--+ 00. 
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(2) 

nis the unit normal vector to S pointing into DC. Sis assumed to be sufficiently smooth. An 
extension to polyhedral domains is presented in von Petersdorff and Stephan (1990). 

Existence and uniqueness of the weak solution u of the Dirichlet-Neumann MBVP (2) is 
proved by use of (a) the uniqueness of the weak solution, (b) the equivalence of the MBVP 
to the system of integral equations, (c) the existence and uniqueness of the solution of the 
system of integral equations, and (d) the solution of the integral equation by inserting into the 
representation formula. The weak solution is defined by Green's first identity: Let u E HI~c(DC) 
and v E H 1(DC) with bounded support. Then 

r 'Vu 'VvdD = - r 'Y(Dn u)"(vdS, iDc is (3) 

where'Y denotes the restrietion to S. This holds if the trace 'YDnu is at least in H-1 j 2(S). The 
space U we look for the weak solution is defined by U := {u E HI~c(DC) : t:.u = 0 in DC, u = 
O(JXJ-1), Ixl--+ oo}. 

The uniqueness of the weak solution can easily be proved by means of Green's first identity 
applied to n := B n DC, where B denotes a sufficiently large balI with radius R that encloses 

D. Let u EU with 'Y1U = 0 and 'Y2Dnu = 0, where 'Yi is the restriction to Si, i = {I, 2}. Then 

(4) 

The left-hand side of (4) tends to zero as R --+ 00 . This implies l'Vul = 0, thus u = const. in 
n. Since u = O(lxl-1), it follows that u = o. 

In order to transform the MBVP (2) into an integral equation we need a representation of 

the weak solution u of the MBVP in terms of boundary potentials. This can be done in different 
ways, e.g., by using a representation of u as single layer potential, double layer potentialor a 
linear combination of both. Here, we make use of another possibility, namely of Green's third 
identity: For u E U, and the Cauchy-data 

(5) 

it holds 

u(x) = lJ.1(Y)Dn(y)S(X- Y)dS(y)-ls(x- Y)V(Y)dS(Y), xEDc, (6) 
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where s(x - y) is the fundamental solution of the Laplace equation in IR3, i.e., s(x - y) 
(411" I y - x I) -1. The Calderon-projector 

(7) 

projects H 1j2(S) x H1j2(S) on the Cauchy-data of weak solutions in U, see Stephan (1987). 

This projector might be understood as generalization of the well-known limit-relations for the 
single layer potential and the double layer potential (e.g., Miranda (1970)). Using p( ~) for the 
Cauchy-data of the weak solution, we obtain the following system of integral equations on S: 

! (J-L) = (K -V) (J-L) . 
2 1/ D -K' 1/ 

The boundary integral operators V, K, K', and D are defined by (x ES): 

(Vx)(x) = Is S(x - y) x(y) dS(y), 

(KX)(x) = Is Dn(y)s(x - y) X(y) dS(y), 

(K'X)(X) = Is Dn(x)s(x - y) X(y) dS(y) , 

(DX)(x) = Is Dn(x)Dn(y)s(x - y) X(y) dS(y). 

(8) 

(9) 

The system (8) together with the boundary conditions in (2) provide more equations than un
knowns; depending on how they are combined, we can derive a system of first order integral 
equations, of second order integral equations, or a mixed system of integral equations. For in

stance, when restricting the first equation in (8) to SI and the second equation to S2, we obtain 

(10) 

or, in matrix form, 

(11) 

The subscript ik means integration over Si and evaluation on Sk> e.g., if 

(KX)(x) = Is Dn(y)s(x - y) X(Y) dS(y) , xE S, (12) 

the operator Kik is defined by 

(KikX)(X) = Isi Dn(y)s(x - y) X(y) dS(y), xE Sk· (13) 
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Equation (11) defines a system of first order integral equations for the Cauchy-data (~) . AI
tematively, we may restrict the first equation in (8) to S2 and the second one to SI; then we 

obtain 

on SI: ~v = Dll g1 + D21Jl- K~IV - K~lg2, 
1 

on S 2: 2/-L = K 1291 + K 22 /-L - V12V - V2292' 

i.e., a system of second kind integral equations 

(14) 

(15) 

Analogously, mixed systems can be obtained by taking only one of the two equations in (8) 

and restricting first to SI and then to S2 . 

The solvability of the systems of integral equations is shown in several steps. We will omit 
the details and will only point out the main lines, whereby we limit to system (11). For the 

details, see Stephan (1987). 

Firstly, the mapping properties of the involved integral operators are determined. The oper

ators V, K, and K' have kemels of order O(ly - Xl-I) as (y - x) -+ 0, hence they are weakly 

singular integral operators on S. D has a kemel of order O(ly - xl-3
) as (y - x) -+ 0, i.e., it is 

a hypersingular integral operator on S. Moreover, V, K, K', and D are continuous mappings 
in suitable Sobolev spaces, i.e., they define pseudodifferential operators of integer order on S. 
V, K, and K' have order -1, and D has order +1. Although the mappings 

Vik :Ï[8(Si) -+ HS+1(Sk) , 

Kik :HS(Si) -+ W+1(Sk) , 

K~k :HS(Si) -+ HS+1(Sk) , 

Dik :Hs+1(Si) -+ HS(Sk), 

(16) 

act only on pieces of S, it can be shown, using standard arguments from the theory of pseudod

ifferential operators, that they are continuous for some rea! s, depending on the smoothness of 

S. Here, u E fIS(Si) = {u E HS(S) : supp u C S\}. 
Secondly, the system (11) is rewritten in order to make use of the mapping properties (16): 

if 91 E H 1/ 2(S) and 92 E H - 1/ 2 (S) denote arbitrary extensions of the boundary data, the 
unknown Cauchy-data (~) admit the form 

(17) 

with /-Lo E H1/2(S2) and Vo E H- 1/2(SI) and 'Yl/-LO = 0 and 'Y2 VO = O. Then, (11) can be written 
as 

(18) 



6 

where K S1 means integration over S and evaluation on SI etc. 

Thirdly, the mapping properties of the involved matrix operators 

(19) 

are investigated. From (16) it follows that the matrix operator A is continuous for some real s 
depending on the smoothness of S as mapping fIS(S2) X fI S(SI) ---+ fIS(SI) X fIS-l(S2). 
The continuity of the extensions 9i, i = {1,2} in HS(S) for gi E HS(Si) together with 
the mapping properties (16), provide the continuity of Bas mapping fIS(S) x fIs-l(S) ---+ 
fIS(SI) X fI s- 1 (S2), for some real s, depending on the smoothness of S . 

Fourthly, the uniqueness of (18) is shown. We omit the details and refer to Stephan (1987). 

Moreover, since the matrix operator A is strongly elliptic, i.e., it satisfies some coerciveness 

inequalities in appropriate Sobolev spaces, it differs by a compact perturbation from a positive 
definite operator. Hence, A is a Fredholm operator of index zero. For Fredholm operators of 
index zero it is known that injectivity implies surjectivity, thus A is bijective. 

Finally, the equivalence of the original MBVP (2) with the system of integral equations (11) 

is shown, i.e., J-Lo = 72U - 7291, /10 = 71 Dnu - 7192 , and, conversely, u in DC is given by 

u(x) = Is jj(y) Dn(y)s(x - y) dS(y) - Is s(x - y) v(y) dS(y) , x E DC
, (20) 

with 

(21) 

and extensions 9i' i = {I , 2} from above. 

3 Application of Stephan's method to geodetic MBVP 

The method of Stephan may be applied to any geodetic MBVP in order to transform it into 
a system of integral equations. Then, we have to study the solvability of the system, making 

use of the procedure as sketched above, and have to investigate the equivalence of the geodetic 

MBVP with the system of integral equations. For instance, let us consider the Dirichlet-oblique 

MBVP 

.6.u = 0 in D C 

u = go on So 

Dru = gc on Sc 

u = O(lxl-1
) , Ixl---+ 00, 

(22) 

with Dirichlet data on the oceans and oblique-derivative data on the continents. 70 and 7c de
notes the restriction to So and Sc, respectively. T defines an oblique unit vector field on S, 
pointing into D . This problem has been studied by Keiler (1996). It results after lineariza
tion of the non-linear fixed altimetry-gravimetry MBVP, which assumes that the geometry of 
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the Earth's surface is known and that gravity potential and gravity is given in ocean areas and 
continental areas, respectively. Keiler (1996) shows the existence and uniqueness of the solu
ti on using the Kelvin transformation and the Lax-Milgram theorem. In order to transform the 

Dirichlet-oblique MBVP into an integral equation, we first need a representation formula that 

conneets the Cauchy-data a := ')'U and,8 := -( 1 )')'(DTu) with the unknown function u. Starting 
n.T 

from Green's third identity (6), we obtain 

u(x) = Is (n~~~~y) Drs(x - y) dS(y) - Is s(x - y) (3(y) dS(y) 

+ Is (~, V(as))(y) dS(y), x EDe, (23) 

with the unit vectors r = 2(n, T) n - T and ~ = (n~T) - n. Since V(a s) = Grad(a s) + 
nDn(as), and observing that (E,n) = 0, we obtain (E, V(as)) = (~,Grad(as)). Grad 
denotes the surface gradient operator. Moreover, since S is a closed surface, it holds 

Is (~, Grad(a sj) dS = - Is a s Div E dS, (24) 

with the surface divergence operator Div. Therefore, we obtain for (23) 

u(x) = Is (n~~~~y) Drs(x - y) dS(y) - Is s(x - y) (3(y) dS(y) 

- Isa(y)s(x- y) (DivE)(y)dS(y), xEDe. (25) 

Equation (25) is our new representation formula. It is called "generalized Green-identity" 

(cf.Klees (1992, 1997)). Defining the oblique-derivative differential operator 

Pr := _( 1 )Dr - Div~I, 
n,T 

(26) 

we obtain the final form of our representation formula: 

u(x) = Is Pr(y)s(x - y) a(y) dS(y) - Is s(x - y) (3(y) dS(y), x EDe. (27) 

Observing the jump relations for the single layer potential and its gradient, we obtain the bound
ary integral equation (cf.Klees (1997)) 

~ u(x) = r Pr(y)s(x - y) a(y) dS(y) - r ,8(y) s(x - y) dS(y), xE S. (28) 
2 is is 

Taking the oblique derivative of (27), we obtain for the limit to the boundary 

xE S, (29) 
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with 

and 

Defining the new boundary integral operators 

(Xx)(X) := Is Pr(y)S(X - y) x(y) dS(y) , 

xE S, 

(UX)(x) := Is DT(x)Pr(y)s(x - y) X(y) dS(y), 

xE S, 

(WX)(x) := Is DT(x)s(X - y) X(y) dS(y), 

xE S, 

(30) 

we obtain the following system of integral equations by restricting (28) first to So and then to 

Sc: 

( 
Xco -Voo) (0) _ (~I - X oo v;,o) ( 90 ) 

~I-Xcc Voc (3 - X oc -v;,c (n~T)9c' 
(31) 

Equation (31) defines a mixed system of boundary integral equations; it is of the second kind 

w.r.t. 0 and of the first kind w.r.t. (3. We can derive alternative integral equations, e.g., by 
restricting (28) to So and (29) to Sc and vice versa. For instance, restricting (28) to Sc and (29) 
to So, we obtain a system of second kind integral equations for the unknowns 0 and (3: 

Analogously, restricting (28) to So and (29) to Sc, we obtain the mixed system of integral 
equations: 

Like (31) it is of the second kind w.r.t. 0 and of the first kind w.r.t. (3. The boundary operators 
in (31),(32), and (33) have the following mapping properties: For some real s, depending on 

the smoothness of S, and i, k = {o, c}, the mappings 

X ik : fIS(Si) --+ HS(Sk) , 

Uik : fIS+l(Si) --+ HS(Sk) , 

Wik: fIs (Si) --+ H S (Sk) 

(34) 
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are continuous. X ik and Wik define strongly singular integral operators, which are pseudodif
ferential operators of order 0; Uik is a hypersingular integral operator, which has order 1. For 

the property of Vib see (9). What still has to be done is to investigate the solvability of the sys

tems (31)-(33) and to prove the equivalence of the Dirichlet-oblique MBVP with the systems 

of integral equations. This can be done following the procedure of Stephan (1987). 

4 The method of Sanso and Stock 

Sanso and Stock (1985) consider the Robin-Neumann mixed boundary value problem 

~u = 0 in De 

Dn U = go on 50 

2 
Dn u + RU = ge on Sc 

u = O(lxl- 1
), lxi -+ 00, 

(35) 

where 5 is the surface of a sphere with radius R. They look for a solution u E HI~e(S) for given 
boundary data go E H)..-l(So) and ge E H)..-l(Se) with ~ < À < ~. The transformation into a 

boundary integral equation is based on the explicit solution of the Neumann BVP for a sphere, 

which is known as Hotine's formula: 

u(x) = - ~ Is H(x - y) (-yDn u)(y) d5(y), xE 5, 

with the Green function of the second kind (Hotine function, Neumann function) 

2R ( 2R) 
H(x - y) = Ix _ yl - In 1 + Ix _ yl . 

Defining the integral operator 

E x(x) := _!!:.. ( H(x - y) x(y) dS(y), xE S, 
47r is 

(36) 

(37) 

(38) 

equation (36) can be written as /-l = Ev. As in Section 2, (~) define the traces on 5 ('Y~:u). 
Observing the boundary condition of the Robin-Neumann MBVP, we have 

(39) 

hence, 

(I + ~Ees) /-l = Eosgo· (40) 

Equation (40) is an integral equation of the second kind for the unknown Cauchy-data /-l. Sub

stituting /-l = /-la + ~lgo, we obtain 

(41) 
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The operators A, B : HS(S) -+ HS(S) are continuous for some real s depending on the smooth
ness of S. Analogously to Section 2, we can prove the solvability of (41) and the equivalence 
of the integral equation with the Robin-Neumann MBVP. We omit the details. In order to solve 
the integral equation, we can apply, e.g., the Nyström method, collocation boundary element 
methods or Galerkin boundary element methods. 

The method relies on the spherical topology since only then the Neumann function is known, 
i.e., there is an explicit solution of the Neumann problem available. However, the basic idea can 
easily be generalized if instead of Hotine's formula Green's third identity is used. With the 
results of Section 2, we have 

hence, 

(43) 

The operator A := (!I - K - ~Vcs) is continuous from HS(S) -+ HS(S), the operator B := 

_(~~)T is continuous fromHS-1(So) x HS-1(Sc) -+ HS(S) . 
Altemative integral equations can be derived in different ways making use of (8) and re

stricting to So or Sc' If on Sc 'cV is replaced by gc - ~'cJ.L, we obtain only one integral equation 
for the unknown J.L = ,U. For instance, when restricting the first equation in (8) to Sa' we obtain 
the second kind integral equation 

(44) 

with weakly singular kemels. When restricting the second equation in (8)to Sc, we obtain a 
second kind integral equation with weakly singular and hypersingular kemels 

(45) 

We can also derive a first order integral equation by restricting the second equation in (8) to Sa: 

(46) 

The corresponding kemels are weakly singular and hypersingular. What remains is to prove the 
solvability of the integral equations and the equivalence with the original MBVP. The prove can 
easily be done using the procedure and results of Section 2. We omit the details. 

5 The method of Mayer 

Mayer (1997) considers the altimetry-gravimetry 11 MBVP in non-linear form. There are two 
sources of nonlinearities: 
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1. gravity is a non-Iinear functional of the potential, and 

2. the boundary surface is partly free (over the continents, unobservable by altimeter radar) . 

The new idea of Mayer is to perform a linearization with respect to source 1 (gravity) only, and 

later on, to solve the resulting (still non-linear) problem by a special iteration procedure. This 
approach is justified by recent findings of Heck and Seitz (1993), that source 2 (free boundary) 
is the more severe source of non-Iinearity in geodetic boundary value problems. Consequently, 
if any iteration will be necessary, then w.r.t. source 2. 

The formulation of the partly Iinearized altimetry-gravimetry 11 MBVP is: 

/::"u = 0 in De 

Dru = g on S 

u = ge on Se 

U = O(lxl-1
) , Ixl--+ 00. 

(47) 

The oceanic surface So := S \ Se is assumed to be known, as weil. If in addition Se were 

known instead of ge, the resulting BVP would be identical to the linearized fixed gravimetric 

BVP, which in turn equals the classical oblique BVP for the Laplace equation. This problem is 
much easier to solve because it is not mixed. Some theoretical results exist (e.g., Klees (1992)), 

and have been augmented recently by Mayer (1997). Also from the numerical point of view, 
this problem is solvable using boundary element methods (e.g., Klees (1992)) . 

A boundary integral equation for the linearized fixed gravimetric BVP is derived from a 
representation formula, for which Mayer prefers a combined double- and single-layer potential 

u(x) = (KX)(x) + K: (VX)(x) , x EDe, (48) 

where K: is an arbitrary positive real number, and X is the surface density. Defining the operators 

(Yx(x ) := Is Dr(x )Dn(y)s(x - y) X(y) dS(y) , 

x ES 

1 
(ZX(x) := - (Gradx, r) , 

2 

we obtain an integro-differential equation of the second kind on S 

AX := ( -~K:(n, r )1 + Z + Y + K:W) X = g. 

Formally, the solution of this integro-differential equation can be written as 

Hence, the desired potential function is 

u(x) = ([K + K:VJA-lg)(X), x EDe. 

(49) 

(50) 

(51) 

(52) 
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Now, we return to the actual problem (47), where additionally the Dirichlet condition over the 
continents 

/eU = ge (53) 

has to be fulfilled. The only unknown of this equation is the boundary surface Sc. Therefore, 
we end up with an operator equation, which must be solved for Sc: 

(54) 

The operator Q(Se, g) is non-linear in the first argument. The complicated structure of this 

operator is the price we have to pay for the striking simplicity of the first solution step (51),(52). 
The nonlinear operator equation (54) must be solved iteratively, starting from an initial guess Sc 
for Sc, which in geodesy is known as the telluroid. However, note that S := Sc U So must be a 
closed surface, which is not guaranteed by classical definitions of the telluroid. Quite formally, 
let us express the Fréchet expansion of Q as 

(55) 

This expansion suggests an iterative procedure of Newton type: Let S~O) := Sc; for n 
1,2, . .. : 

(56) 

So far, nothing can be said about the feasibility of this suggestion, neither about the existence 

and uniqueness of the inverse Fréchet derivative nor about the convergenee of this procedure. 
Moreover, due to the complicated structure of Q there is even less hope to obtain similar results 
as with classical geodetic approaches. Mayer (1997) has also derived an explicit expression for 
the Fréchet derivative of Q. However, the complexity of this expression wil! certainly prevent 
any practical application in geodesy. 

Nonetheless, Mayer (1997) has shown that there always exist interesting alternatives to the 
standard geodetic techniques. 
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On Singular Surface Integrals in Physical Geodesy 

Roland Klees 

Abstract 

We consider integrals over closed surfaces with non-integrable point singularities that arise in 
Physical Geodesy. We investigate their behavior under smooth parameter transformations and 
show how they can be regularized making use of the definition of singular integrals. Finally, we 
address the problem of numerical integration of the regularized integrals. 

1 Introduction 

The objective of the paper is to study integrals of type 

i K(x, y - x) P,(y) dU(y), x E U. (I) 

U is a piecewise smooth closed surface, and y and x are points on U; K(x, y - x) is the kemel 
function, which has order O(ly - xl- S

) as y - x -+ O. J-l(Y) is the density function, which is 
assumed to be sufficiently smooth, and s is the order of the singularity. If s = 1 the kemel K 
is "weakly singular" , but still absolutely integrable. Examples are the single layer potential, the 
double layer potential, and the formulas of Hotine and Stokes. Cubature formulas for weakly 

singular surface integrals have been studied by, e.g. Klees (1996). If s = 2 and s = 3 the 
kemel K is called "strongly singular" and "hypersingular", respectively, and the integral is not 
absolutely integrable. For instance the oblique derivative of the single layer potential (T is the 
oblique unit vector) 

! (TjX), y la x) P,(y) dU(y), 
u y-x 

(2) 

the integral of Vening-Meinesz (e is an oblique unit vector, St the Stokes function) 

i (e(x), "i7 xSt(y - x)) P,(y) dU(y), (3) 

and Molodensky's Cl-Term 

1 h(x) - h(y) -( ) dU( ) 
1 1

3 J-l Y Y u y-x 
(4) 
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have kemel functions of order O(ly - xl-2
), i.e. s = 2. The oblique derivative of the double 

layer potential (n is the norrnal unit vector on U) 

r ((n(y), r(x)) _ 3 (n(y),y - x)(r(x), y - X)) [i,(y) dU(y) 
Ju Iy - xl 3 Iy - xl 5 (5) 

has a kemel function with order of singularity s = 3, and the multipole of order p 

i a::y)p [Iy ~ xl] [i,(y) dU(y) (6) 

has order s = p. The paper aims at the efficient numerical computation of integrals with 

non-integrable kemels, i.e. when s ~ 2. Section 2 is devoted to the behavior under smooth 

parameter transformations of singular surface integrals. In Section 3 we will regularize the 
integrals making use of the definition of singular surface integrals and of polar coordinates in 
the parameter domain. In Section 4, we apply the theory to a numerical example and discuss 
some aspects of the numerical computation of the regularized integrals. Section 5, finally, 
contains a short summary and some conclusions. 

The motivation for this paper is three-fold. Firstly, integrals with point singularities of 

potential type that are not absolutely integrable have not been discussed yet systematically in 

geodetic Iiterature. There are only a few references which cover some very special cases of (1), 
mostly for planar boundary surfaces U, e.g. Bosch (1977), Shaofeng and Xurong (1991), Bian 
and Sum (1994). Secondly, a change of variables (parameter transformation) is commonly 
perforrned in singular integrals without taking care of the additional terrns that may appear 

since in general the subsitution rule as known for absolutely integrable kemels does not apply to 

singular kemels (e.g. Vijayakumar and Corrnack (1988)). Thirdly, singular integrals are avoided 
as often as possible in Physical Geodesy, because it is believed that they cannot be computed 
efficiently. A lot of effort is put into the regularization making use of standard theorems of 
vector analysis on surfaces. This results in absolutely integrable kemels which often have very 
complicated structures making the numeri cal computation more elaborate than the strategy to 
be discussed in this paper (e.g. Meissl (1971), Hofmann-Wellenhof (1983)). 

A proper analysis of strongly singular and hypersingular integrals has been done by Kieser 

(1991), and Schwab and Wendland (1992a). Numerical integration forrnulas, which properly 
take into account the behavior of singular integrals under smooth parameter transformations, 
have been developed in, e.g., Guiggiani (1991), Klees (1992), Schwab and Wendland (1992b), 
Kieser et al. (1992), Guiggiarti et al. (1992). 

2 Parameter transformation 

Let us first study the behavior of singular integrals under smooth parameter transformations. 
For any fixed computation point x E U we may split-up the integral over U into two parts, the 
first taken over U \ S and the second taken over S, where S denotes some neighborhood of x. 
The integral over U\S is regular since x ~ U\S, so Iy -xl cannot become zero. Therefore, we 
can limit to the integral over S. For convenience we assume S to be the image of the standard 
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T 
x 

_____ i<<--______ .LJ ___ ~1 

1 

Fig. 1. Surface pateh, reference triangle, and mapping X 

triangle 

(7) 

under a smooth mapping x, i.e. S = X(T) (cf. Figure 1). Therefore, we consider the integral 

Is k(x, y) ï1(y) dS(y), xE S, (8) 

where S is a triangular surface patch containing the computation point x in its interior. In order 
to transform the integral (8) into an integral over T let us first excIude a neighborhood of the 
computation point, say, Sg. Sg may be any domain containing x that shrinks down to x as 
c -+ O. Moreover we assume Sg to be star-shaped W.r.t. x (cf. Figure I). Then, instead of (8), 
we consider the regular integral 

r k(x,y) ï1(y) dS(y), xE Sg. 
}S\s< 

(9) 

Later, we wiII investigate the behavior of this integral as c -+ 0, but for the moment we assume 
c > co with some positive number co. Now, since the integral is regular, we can perform the 
parameter transformation applying the usual substitution rule to the regular integral (9): With 
x = X(u), y = X(v), k(x, y - x) = K(u, v - u), and ï1(y) dS(y) = p,(v) dT(v), we obtain 

r k(x, y - x) P,(y) dS(y) = r K(u, v - u) p,(v) dT(v), (10) 
}S\s< }T\T< 

where Tg = X-l(Sg). The kemel K(u, v - u) and the density p,(v) can be expanded into a 
Taylor series around u at p = 0, where p, cp are the pol ar coordinates w.r.t. u. We obtain 

.-2 

K(u, v - u) = 2: /-. Kk(U, cp) + (R._2K)(u , v), (11) 
k=O 

and 

.-2 

p,(v) = 2:rJ p,j(cp) + (R'-2p,)(V). (12) 
j=O 
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The remainders (Rs-2K) (u, v) and (Rs-2f..t) (v) are of the order 0 (p-l) and 0 (pS-I), respec
tively, as p -+ O. Thus, 

r K(u,v-u)f..t(v)dT(v) 
JT\T. 

with 

s-2 
= r K(u, v - u) (Rs-2f..t) (v) dT(v) + "E r (Rs_2K)(u, v) pi f..tj(CP) dT(v) 

JT\T. j=O JT\T. 

+ L 1 pi+j-s K;(u, cp) f..tj(CP) dT(v) 
-1$i+j-s$s-4 T\T. 

s-2 

+ "E r pi-sgi(u,cp)dT, (13) 
i=O JT\T. , ' v 

s-1 tenns with kemels O(p-a), 2$u$s 

; 

gi(U, cp) := L Ki_j(U, cp) f..tj(CP) · (14) 
j=O 

The flrst three integrals on the right-hand side of (13) converge absolutely to the integral over T 
as c -+ O. They have kemels O(pU), a ;:: -1, i.e. the limit c -+ 0 exists, as regular or improper 
integraI. Therefore, we can limit to the last tenn on the right-hand side of (13), which consists 
of tenns O(p-U), 2 ~ a ~ s. In order to simplify the notation, we will omit from now on 
the dependency of the functions of the computation point u, i.e. we write e.g. instead of g( u, cp) 
simply g(cp) etc. The terms with kemels of order O(p-U), 2 ~ a ~ s, i.e. 

Fi(C) := r pi-s gi(CP) dT, i = 0, ... ,s - 2, 
JT\T. 

(15) 

can be integrated analytically w.r.t. the variabie p. Assuming that R( cp) is the boundary of the 
standard triangle T in polar coordinates, and RE (cp) is the boundary of TE in polar coordinates 
(cf. Figure 2), we obtain, observing dT = pdpdcp, 

i=s-2 } 
dcp , 

0~i<s-2 

(16) 

where we have introduced the new variabie m = s - 2 - i if i i- s - 2, i.e. for m it holds 

0< m ~ s - 2. 

3 Regularization 

In order to study what happens as c -+ 0, we need to know the equation of the boundary of TE' 
p = RE(u, cp), in tenns of c. Since we assumed that TE is star-shaped w.r.t. u and that TE shrinks 



Fig. 2. é-neighborhood T, and boundary of T in local coordinates 

down to zero as r:: ---+ 0, R, (cp) has in general an expansion of the form 

Therefore, 

and 

R,(cp) = r:: Ldi(cp) ei, e ---+ O. 
i~O 

In R,(cp) = In r:: + In do(cp) + 0(1), r:: ---+ 0, 

m-l 

R;m(cp) = dm,m(CP) + L dn,m(CP) r::n- m + 0(1), e ---+ O. 
n=O 
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(17) 

(18) 

(19) 

The functions dn,m (cp) ean be expressed in terms of the funetions di (cp). Inserting (18), (19) 

into (16) yields 

Fi(r::) rv 121r 

9i(CP) [In R(cp) -In do(cp)] dcp - In r:: 121r 

9i(CP) dcp, i = s - 2, (20) 
, v ' 

unboundedterm,,~o 

and 

1 121r 
1 m-l 121r 

Fi(r::) rv - 9i(CP) [dm,m(CP) - R-m(cp)] d cp + - L en- m 9i(CP) dn,m(CP) d cp, 
mom n=O 0 

, v ' 

unbounded terms O(c' ), ... ,o(cm ), ,~o 

o :::: i < s - 2. (21) 

In general, the terms with In r::, cl, ... , r::-m are unbounded in the limit r:: ---+ 0, i.e. 

limHo Fi(r::) does not exist. Neglecting all unbounded terms yields the so-called finite part 
of Fi (r::) , written f.p. Fi(e): 

(21r 

f.p. Fi(r::) = Jo 9i(CP) [In R(cp) -In do(cp)] dcp, i = s - 2, (22) 
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and 

112
11" f.p . Fi(C) = - 9i(ep) [dm,m(ep) - R-m(ep )] dep , O:::; i < s - 2. 

m 0 
(23) 

The limit Iimó-+o Fi(C) exists if and only if 

{211" 

Jo 9i(ep )dep=0,i =s-2, (24) 

and 

(211" 

Jo 9i(ep) dn,m( ep) dep = 0, for all n = 0, ... ,m - 1, 0:::; i < s - 2, (25) 

respectively. Then it is called Cauchy principal value of Fi(C), written p.v. Fi(C), i.e. 

p.v. Fi(é) = limFi(é) 
e-tO 

(26) 

if the limit exists. Note that the Cauchy principal value, if it exists, is equal to the finite part 
of the singular integral. The only difference is that the finite part of a singular integral imposes 
stronger requirements on the smoothness of the density ft . 

The result has some implications for the choice of the neighborhood Te of the computation 

point u. Assume that there are two neighborhoods, Tl ,e and T2,e, with star-shaped continuous 
boundaries p = Rl,e(ep) and p = R2,e(ep), both shrinking down to zero as é -t 0 (cf. Figure 3). 
Then, we may consider the difference 

and obtain for the finite part of boFi(é): 

_ {fo
2

11" 9i(ep) [In d~2)(ep) -In d~l)(ep)] d ep, 
f.p. boFi(C) -

-~ f0211" 9i(ep) [d~~m(ep) - d~~m (ep) ] dep, 

(27) 

i=s-2 
(28) 

0:::; i<s -2 

Since f. p. boFi (c) is not equal to zero, we can conclude that the finite part depends on the shape 

of the c-neighborhood of u. For instance, if Tl,e is the circle with radius C and center u, and T2,e 
is the ellipse with semi-axes é and 8 é , 8 < 1, centered at u, we obtain 

d(l) (Ir, ) = ° m ,m"'" , (29) 

and 

[ 
1 _ 82 ] - 1/2 

R2,e = é 1 + ----;r- sin 2 ep , 

(2) - u . 2 

[ 
1 .. 2 ] -1/2 

do ( ep) = 1 + ----;r- sm ep , (30) 



Fig. 3. Choice of the ê-neighborhood in local coordinates 

T 

Fig. 4. "Identical" ê-neighborhoods in global and local coordinates 

Thus, 

_ {- ~ f021f 9i ( cp) In [1 + sin 
2 cp l"6r ] d cp, i = s - 2 

f.p . flFi(ê) -

0, ° :S i < s - 2 

21 

(31) 

Therefore, for a given ê-neighborhood of the computation point x, Se, the choice of the neigh

borhood Te in the parameter domain is not arbitrary but given by Te = X-I (Se). In particular 

(cf. Figure 4) 

f.p. r K(x,y-x)ji(y)dS(y)=lf.p . r K(u,v-u)J-t(v)dT(v). (32) 
J S\ly-xl<e JT\lv-ul <e 

Since it is always easier to work with "simpie" neighborhoods, we may ask when the choice of 

the neighborhood Te is independent of the given neighborhood Se, i.e. when Te can be chosen 

arbitrarily, e.g. as the circle with radius ê . Kieser (1991) has proved that this only depends on 

the properties of the kemel function K(x, y - x). Let K(x, y - x) admit an expansion of the 

form 
8-2 

K(x , y - x) = L JCm(x, z) + O(lzl- I
) , z := Px (y - x), (33) 

m=O 

where Px is the orthogonal projection onto the tangent plane of S at x, (cf. Figure 5), and let 

the terms JCm(x, z) be homogeneous of degree m - s w.r.t. the second variabie, i.e. 

(34) 
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Fig. 5. Invariance of the finite part integral w.r.t. choice of the E-neighborhhood 

If 

(35) 

the finite part is independent of the é-neighborhood Tg, and the usual substitution rule can be 

applied. In particular it holds (cf. Figure 4) 

f.p. ( k(x,y-x)[t(y)dS(y)=f. p.l K(u,v-u)p,(v)dT(v). (36) 
J S\l y- xl<e T\ lv - ul <e 

For applications in Physical Geodesy it is important to know that all kemels that are derived 

from Green-type potentiais, e.g. by applying some differential operators, and taking the limit to 

the boundary, have this property. That holds in particular for the examples in Section 1. 

The final result is that the integral (1) is defined as finite part integral provided that the 
density function is smooth enough, i.e. [t should be at least of cIass C 5

-
2 ,o: (S). We write 

J k(x, y - x) [t(y) dS(y) = f.p . ( k(x , y - x) [t(y) dS(y) 
~ J~~ 

= Ir (kemels of order O(pU), (J 2: -1) dT 
, # 

5-2 

+ :l).p. Fi(é). 
i=O v 

absolutely integrable, cf. (13) 
'-v--' 

regular line integrals over boundary of T 
(37) 

If the conditions (24) and (25) are fulfilled the Cauchy principal value exists, and we write 

J k(x, y - x) jL(y) dS(y) = lim r k(x, y - x) jL(y) dS(y) 
]S HO JS\s. 

= Ir (kemels of order O(pU), (J 2: -1) d~ + 
5-2 

L p .v. F;(é). 
;=0 .. 

absolutely integrable, cf. (13) ------regular line integrals over the boundary of T 
(38) 
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T 
x 

U' 

Fig. 6. Geometry of the numerical test 

The regularization, which makes use of the definition of the finite part of a singular integral and 
of the Cauchy principal value, respectively, results in absolutely integrable integrals over the 
domain Tand the sum of s - 1 regular integrals over the boundary of T. 

4 Numerical integration 

In order to test the formulas derived in Section 3, we consider a curved triangle S, which is the 
image of the standard triangle T under the quadratic mapping 

(

VI + V2 + vi - 2vi + 4VI V2 ) 

x(v):= - VI + V2 + v~ - vi + lOVIV2 

VI + V2 + VI - 2VI V2 

The density function is assumed to be linear in local coordinates, i.e. 

(39) 

(40) 

and the computation point is located at u = (00255) (cf. Figure 6). As kemel functions we use 
the kemel ofthe double layer potential (s=l) 

( 
1 ) (n(y), y - x) 

Kd(X, y) = Dn(y) Iy _ xl = Iy - xl 3 ' (41) 

the oblique derivative of the single layer kemel (s=2) 

( 
1 ) (T(X),y-x) 

Kos(x, y) = Dr(x) Iy _ xl = Iy - xl 3 ' (42) 

and the oblique derivative of the double layer kemel (s=3) 

KOd(X, y) = Dr(x) Dn(y) (_I -1-1) = (nl(y) , T1~)) - 3 (n(y), y I x) (YI; x, T(X)). (43) 
y-X y-X y-X 

The following questions will be addressed: 

1. Can finite part integrals be computed with the same accuracy as absolutely integrable 
integrals or do numerical instabilities occur? 
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2. Does the computation of finite part integrals require more nodes in order to achieve the 
same accuracy as absolutely integrable integrals or are many more nodes necessary? 

3. Are the numerical costs in terms of function evaluations and number of arithmetic opera
tions comparabie or is the numerical effort per node higher? 

As already has been shown (cf. (37),(38)), the regularization of the finite part integrals yields 

integrals with kemel functions of the order O(pU), a ~ -1, which are absolutely integrable, 

and s - 1 regular integrals over the boundary of the integration domain. If a ~ 0 we can directly 
make use of Gauss-Legendre product formulas because the kemels are analytic. If a = - 1, 
the integrals are weakly singular. Although they are still absolutely integrable, the numerical 
integration requires some care due to the singularity at p = O. Let us briefly summarize how 
they can be computed efficiently; for more details see Klees (1996). The integrals have the form 
(cf. (13)) 

1= hf(u,V) dT(V), f(u ,v)=O(p-1) . (44) 

Weobtain 

1211" lR('P) 3 l'Pn+l l Rn ('P) 
1= (J p) dpdcp = L k(p, cp ) dpdcp 

o 0 '-v-' n=1 'Pn 0 =:k(p,'P )=O(1), P-+O 

3 l 'Pn+l f1 3 !.tn('Pn+d f1 
= ~ 'Pn Jo ~(p(~) , ~) ~(cp), dç dcp = ~ tn ('Pn ) Jo ~(p(ç~: ~(tn)), dç dtn. 

oszllIatmg m 'P analytlc m ç, tn 

(45) 

The regularization has been performed using the Jacobian of the transformation of cartesian 

coordinates into pol ar coordinates. The new kemel k(p, cp) has order 0(1), p ~ O. The integral 
over T has been split-up into three integraIs, since the boundary p = R( u, cp ) of T is not smooth 
as cp runs from 0 to 27f. Each of the three integrals is smooth w.r.t. cp, because the boundary 
Rn(u, cp ), n = 1,2, 3, is smooth. The transformation p ~ ç ; [0 , Rn(u, cp )] ~ [0, 1] yields a 
new kemel k(p, cp ) Rn(u, cp ), which oszillates if the computation point u is near the boundary 
p = Rn (u, cp ). For instance, if n = 2 we have (cf. Figure 7) 

h2 R2 (u, cp ) = --. 
cos cp 

(46) 

For small h2 the integration bounds tend to ±~, and R2 (u , cp) has strong gradients. The 
practical implication is that then the integration over cp requires many nodes. In order to 
avoid this we can smooth the kemel by applying for each n a parameter transformation 

cp ~ tn ; [CPn , CPn+1] ~ [tn (CPn ) , tn(CPn+1)], defined by 

dtn = Rn(u,cp) dcp, n = 1, 2, 3. (47) 

Then, the new kemel k(p(ç)), cp(tn)) is analytic w.r.t. the new variables tn and ç, and Gauss
Legendre product formulas can be applied to compute the integral efficiently. 
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Fig. 7. Regular line integrals over the boundary of T 

Table 1. Number of nodes and relative integration error for various kemel functions 

number of nodes, relative integration error 

Kd 12 1.0( -3) 27 1.6( -6) 48 3.4( -6) 108 2.0(-9) 

Kos 18 6.8(-3) 36 9.5( -5) 60 3.3(-6) 126 4.0(-10) 

KOd 18 4.1(-3) 36 4.2( -5) 60 6.1(-6) 126 7 .2(-9) 

The regular line integrals over the boundary of T have the form 

1211" ( ) {In R(u, cp) -In do(u, cp), 
1= 9i U, cp 1 

o -m: [R-m(u, cp) - dm ,m(u, cp)], 
i=s-2 } 
O::;i<s-2 

dcp, (48) 

with m = s - 2 - i and 0 < m ::; s - 2. The integrand is not smooth w.r.t. cp for the same 
reason as mentioned before. Again, we have to split-up the line integral into three integrals over 

p = R,.(u, cp), n = 1,2,3, and have to perform parametertransformations cp -+ tn , n = 1,2,3, 
in order to get an analytic integrand. Then, Gauss-Legendre quadrature formulas are the best 
choice in order to get high accuracies with a minimum number of nodes. 

The results of the test calculations are shown in Table 1 and Table 2. Table 1 gives answer 
to the first two questions: there is no difference between finite part integrals and absolutely 
integrable integrals in terms of accuracy and number of nodes. This implies that finite part 
integrals can be calculated as accurately as absolutely integrable integrals, and do not require 
more nodes to achieve the same accuracy. In particular, the regularization does not cause any 
instabilities. Striking is that only very few nodes are needed in order to make the integration 

error smal!. 
Table 2 gives answer to the third question: the numerical costs in terms of number of arith

metic and function evaluations is much higher for finite part integrals than for absolutely in
tegrable integraIs. This is caused by the regularization of the singular integrals, which yields 
kemel functions that are more elaborate to compute than the kemel of the singular integra!. 
Therefore, the higher the order of singularity is the higher the numeri cal effort per node. 
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Table 2. Number of arithmetic operations and number of function evaluations for various kemel func-
tions 

Kd Kos KOd 
number of arithm. operations 489M2 392M2 + IBM 3484M2 + 52M 

4401 3582 31512 
14% 11% 100% 

number of function evaluations 10M2 15M2 + 11M 118M2 +23M 

90 168 1131 
8% 15% 100% 

M=number of nodes of the Gauss-Legendre quadrature formula; relative integration error ~ 
10-4 if M = 3. 

5 Summary 

We discussed the concept of strongly singular and hypersingular surface integrals with kemels 
possessing a point singularity of order:::: 2 in the interior of the domain of integration. We have 
shown how to transform them into absolutely integrable integrals over the parameter domain 
and regular one-dimensional integrals over the boundary of th at domain. The choice of the 
neighborhood of the computation point in the parameter domain is in general not arbitrary 

but depends on the choice of the neighborhood on the surface. Only if the kemel function 

has some special properties the finite part is invariant w.r.t. the choice of the neighborhood 
in the parameter domain. Then, the most convenient neighborhood, the circ1e centered at the 
computation point, can be used. 

The regularized two-dimensional integrals that have weak point singularities can be com
puted efficiently using Gauss-Legendre product formulas after some special parameter transfor
mations are applied. For a given number of nodes, strongly singular and hypersingular integrals 
can be computed with the same accuracy as absolutely integrable integrals. The numerical costs 

per node, however, do strongly depend on the order of singularity. Thus, hypersingular integrals 

are much more costly to calculate than strongly singular integrals, and the computation of the 
latter takes more time than the computation of weakly singular integrals. This is due to the reg
ularization, which yields complicated expressions for the regularized kemels, which are more 
elaborate to evaluate than the original kemels. 

The one-dimensional line integrals can be calculated without any problems using Gauss
Legendre quadrature formulas. Only if the computation point is near the boundary, additional 
parameter transformations have to be applied before Gauss-Legendre quadrature formulas are 
used. The same holds for the regularized two-dimensional integrals. 
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The Fiction of the Geoid * 

Roland Klees and Martin van Gelderen 

Abstract 

We discuss the role of the static and time-varying geoid in sea-Ievel studies by means of three 
examples, i.e. (a) mean ocean circulation, (b) post-glacial rebound, and (c) vertical datum con
nection. First, the contribution of the geoid to these items is addressed. Then, the requirements 
in terms of accuracy and resolution are discussed and compared with the current knowledge 
about the statie and time-varying geoid. Thereafter, we discuss the main problems of current 
geoid determination in terms of data, modeIs, and numerics. Finally, we show the impact of 
dedicated satellite gravity mapping missions on the quality of the static and time-varying geoid 
in terms of accuracy and spatial and temporal resolution , and discuss the implications of an im
proved geoid for sea-1evel change studies. Currently, the contribution of the geoid to sea-Ievel 
studies is rather weak for various reasons such as data distribution, data quality and data han
dling, inconsistency in the mathematical models used, and numerical and conceptual problems. 
All make the geoid a fiction when talking about accuracies of 10-8 and higher over various spa
tial and temporal sc ales as needed in sea-Ievel studies. This will change dramatically, however, 
if a dedicated gravity field mission will be launched provided that at the same time adequate 
functional models and numeri cal techniques are at our disposal. 

1 Introduction 

It is not a secret that the geophysical mechanisms of sea level change are not fully understood 
and that current estimates of future sea level change are not sufficiently accurate and reliable. 
However, most of the processes relevant for sea level studies involve redistribution of mass, 
and, therefore, are likely to result in changes in the geoid. This sensitivity of the geoid w.r.t. 
mass redistribution gives rise to the question whether we can 1earn more about the mechanism 
of mass exchange between ice and ocean and the reaction of the deformabIe Earth to these 
forces by studying the inverse problem, i.e. to deduce from measured changes in the geoid 
information about the underlying processes. In order to answer this question, we have to study 
the sensitivity of the geoid w.r.t. mass redistribution and the quality of current and future geoid 
modeIs. In addition, the problem of sèparation of competing sources of geoid variability has 
to be addressed, because there are other processes, not re1ated to cliIpate, which may cause 
geoid variations. Besides the time-varying geoid also the static geoid plays a significant role 

• Pres. at the Sta ring Symposium, October 21 , 1997, Royal Academy of Sciences, Amsterdam, the NetherJands 
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Fig. 1. The geoid and the mean sea surface 

in sea level studies; for instanee, by providing a reference surface in order to model relevant 
dynamic processes such as mean ocean circulation, in order to connect different continental 
height systems, and in order to describe absolute sea level changes in a unified world height 
system. 

The goal of the paper is to discuss by means of some examples the current and future role 
of the static and time-varying geoid in sea-level studies. In Section 2 we will make some 
remarks about the geoid. In Section 3 we will illustrate the potential implications of the geoid 
for sea-level studies by means of three examples, i.e. ocean circulation, post-glacial rebound, 
and vertical datum connection. Section 4 is devoted to the current knowledge about the geoid 
and the main problems of current geoid determination. In Section 6, finally, we will discuss the 
implication of future geoid models for sea-Ievel studies. 

2 The geoid 

The gravity field of the Earth is the net result of the Newtonian gravitational attraction of the 
Earth masses and the Earth rotation. To a first approximation, i.e. to better than 10-5, the Earth 
has an ellipsoidal shape and gravity field. Therefore, the shape and gravity field of the Earth 
is commonly expressed as departure from a well-defined ellipsoidal reference field . One pos
sibility to quantify this departure is by means of the vertical separation between corresponding 
equipotential surfaces of the real and the reference gravity field. For the real field this is the 
geoid, defined as the equipotential surface of the real gravity field that c10sely corresponds with 
the mean sea level; for the reference field it is the surface of the ellipsoid of revolution which 
is an equipotential surface of the reference gravity field. The vertical separation between geoid 
and level ellipsoid is called "geoid height" (see Figure I). The time-averaged or mean sea sur
face, to which elevations on land are referred, is vertically displaced from the geoid since the 
fluids in the oceans are in motion w.r.t. the solid Earth. These departures are on the order of 1-2 
m, about two orders of magnitude less than the geoid heights . They are referred to as "mean dy
namic sea surface topography". In absence of wind-driven currents, heat-driven and salt-driven 
circulation, and river discharges, the mean dynamic sea surface topography would be equal to 
zero, meaning that mean sea surface and geoid would essentially coincide. From space we can 
measure the height of the mean sea surface above the reference ellipsoid, which is the sum of 
the geoid height and the mean dynamic sea surface topography. 

The current state-of-the-art geoid model, the EGM96, is shown in Figure 2. The geoid 
heights approach maximum values of about 100 m, the global RMS is about 42 m. They reflect 
in fact the dynamics of the Earth caused by a variety of processes on a wide range of spatial 
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Fig. 2. The EGM96 geoid w.r.t. GRS80 

and temporal scales ranging from kilometers to worldwide and from hours to million of years. 
Dominant are irregularities in the solid Earth caused by convective processes that deform the 
Earth on time scales of thousands to millions of years. The time-varying part of the geoid takes 
less than 1% of the total geoid signalover human life-times (cf. National Research Council 
(1997)). 

3 Geoid and global sea level change 

The role of the statÎC and time-varying geoid in sea level studies is determined by the sensitivity 
of the geoid w.r.t. mass distribution and mass transfer among the solid Earth, the hydrosphere, 
cryosphere, and atmosphere, respectively. That is 

1. to discriminate among causes of variation in sea level, e.g. between ocean thermal expan
sion and mass inflow as sources of a sea level change; 

2. to improve our understanding of processes causing sea level change, e.g. by studying 
large scale ocean circulation or by determining changes in the mass distribution of polar 
ice; 

3. to provide constraints to models of geophysical processes affecting global sea level such 
as post-glacial rebound; 

4. to serve as a reference surface w.r.t. which absolute changes are measured; 

5. to provide high accurate orbits of altimeter satellites, which map the sea surface on a 
global scale with high spatial and temporal resolution. 
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Fig. 3. The Dynamic Sea Surface Topography (from ESA (1997» 

Let us make this clear by means of three examples. 

The main problem in interpreting global sea level is the separation between the total mass 
of water in the ocean, the mean temperature of water, and the ocean circulation (e.g. Wunsch 
(1993)) . The geoid, in conjunction with altimeter measurements, determines the time-averaged 
or mean dynamic sea surface topography. An example is shown in Figure 3. Particularly im
portant in the context of ocean circulation are the basin-wide currents with slopes of about 10- 8 

and scales between 1000 km and 3000 km, the Antarctic Circumpolar Current with typical 
slopes of about 10-6 and scales of 500-1000 km, and the Western Boundary Currents such as 
the Gulf Stream and the Kuroshio with slopes on the order of 10-5, and typical scales between 
50-100 km (cf. National Research Council (1997); ESA (1997)). Since the slope ofthe mean 
dynamic sea surface topography is proportional to the mean surface geostrophic velocity, the 
geostrophic surface currents can be determined. These, in turn, can be used with in-situ mea
surements of temperature and salinity, in inverse calculations of the deep ocean circulation, i.e. 
of the transport of sea water, heat, and salt, which is a key factor in regulating the Earth's cli
mate on decadal and longer time scales. Therefore, the role of the geoid has to be seen in the 
context of interpretation, understanding, and prediction, as opposed to the monitoring, of global 
sea level change. 

A nice example how the geoid can provide observational constraints to models of geophys
ical processes affecting global sea level is post-glacial rebound. Post-glacial rebound is related 
to sea-level change in two respects: 

Firstly, post-glacial rebound induces a sea-level signal because it affects the topography of 
the Earth and the geoid. For instance, the top panel of Figure 4 shows the secular change in 
the geoid due to post-glacial rebound over North America (National Research Council (1997)). 
The maximum amplitude is about 2.4 mmlyr. The topographic signal can even be larger, up 
to 10 mmlyr ( National Research Council (1997)). These signals must be subtracted from the 
altimeter and tide-gauge measurements in order to quantify the climatic contribution to sea
level change, e.g. due to thermal expansion of ocean water and the melting of glaciers and ice 
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Fig. 5. The principle of vertical datum connection 

sheets. Therefore, accurate knowledge about the post-glacial rebound signal in the geoid and 
the topography is needed. 

Secondly, post-glacial rebound is indispensable to make reliable predictions of future sea
level change. Since it is mainly controlled by the mantIe viscosity, most of the present-day 
post-glacial-rebound studies try to provide constraints on the viscosity profile of the mantle. 
Very important in that respect are independent observational constraints for the lower-mantle 
viscosity in order to validate tbe geophysical modeis. They are hard to get due to the huge 
masses needed, but can be provided by study of the secular change in the geoid due to e.g. 
the melting of the Wisconsin ice sheet over North America. The reason is that different lower
mantle viscosity values result in different amplitudes of secular geoid variations, but remains 
the geoid pattern al most unchanged (cf. Figure 4). For instanee, the geoid signal shown in the 
bottom panel is based on a lower-mantle viscosity 5 times larger than in the top' panel. This 
yields a maximum geoid signalof only 1.5 mmlyr compared to the 2.4 mmlyr for the lower 
viscosity value. Therefore, measuring temporal variations in the geoid would allow to resolve 
differences between competing viscosity modeis. 

A last example concerning the role of the geoid in global sea level studies is the connection 
of height systems. Usually, the origin of a continental height system has been chosen by as
signing a value to a reference marker, a bench mark (cf. Figure 5). The value chosen was based 
on the observation of the mean sea level for a given time interval at a time one believed that 
mean sea level and geoid are identical. Since in fact mean sea surface and geoid deviates up to 
2 mand due to non-homogeneous sea level changes, land movements, and local currents, each 
reg ion has in fact its own vertical datum. One implication is that ti de gauge data referring to 
different height systems cannot be used in global studies of absolute mean sea level. The geoid 
would provide a physically meaningful connection between the various height systems, which 
in turn would all ow to transform all tide-gauge time series into a unified world height system. 

4 Current knowledge of the geoid 

Let us now have a look at the current knowledge about the geoid and whether this knowledge is 
sufficient for sea level studies in terrns of accuracy and resolution. 

Figure 6 illustrates the development of the knowledge about the geoid in terrns of resolution 
and accuracy. The first global geoid modeis, which date back to the thirties, were based on ter
restrial gravity data and limited to the very low degrees, thus representing wavelengths of, say, 
5000 to 10000 km. The advent of satellite altimetry in 1975 revolutionized the measurements 
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of much shorter wavelengths of the marine geoid resulting in a geoid model of degree 52 in 
1978, which corresponds to wavelengths of about 800 km. Progress in terrestrial gravimetry, 
satellite-tracking techniques, satellite altimetry, and gravity solution techniques, together with 
an increasing number of satellites for which data is available, have led to the development of 
many gravity models with increased resolution over the last 20 years. The most recent global 
gravity field, the EGM96, represents all wavelengths up to degree 360, corresponding to a spa
tial resolution of about 55 km at the equator. 

The same holds tme for the development of the accuracy. Starting from some 20 meter total 
RMS in the geoidal heights in the early sixties, which amounts to about 50% of the total RMS 
signal, we have now approached a level of about 40 cm global RMS for the most recent model, 
due to more data, more accurate data and more satellites. However, the quality is highly non
homogeneous, and there are still are as almost not covered with gravity data, where the geoid 
error can reach several meters. 

What does this imply for the role of the geoid in sea level studies, e.g. for deterrnining the 
geostrophic surface currents? Figure 7 shows the geoid slope errors versus the spatial resolution 
for the current state-of-the-art geoid model. This is compared with the mean sea surface slope 
errors as derived from satellite altimeter measurements, and with the slopes and scales of the 
currents we want to recover, namely the basin-wide currents (BASIN), the Antarctic Circum
pol ar Current (ACC), and the Western Boundary Currents (WBC). Obviously, altimetry fits the 
requirements except for the very long wavelengths. The geoid slope error, however, exceeds 
the altimeter error at resolutions shorter than about 3000 km. Therefore, the present ability to 
~esolve the most important currents is limited by the geoid slope errors at the corresponding 
scales. 

The next example was post-glacial rebound. Here we expected that the geoid can pro
vide unambiguously observational constraints to the viscosity profile of the mantle. However, 
present-day observed secular changes in the geoid are limited to a few very long-wavelength 
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cornponents, which are derived from satellite laser tracking. The Figure 8, e.g. shows the result 
of five years observation of changes in the difference between the Earth's polar and equatorial 
moments of inertia. The observed variations show strong annual and inter-annual components. 
They do certainly contain a post-glacial-rebound signal, but the dominant features are the cumu
lative effect of a number of processes such as atmospheric mass redistribution, long-period non
equilibrium ocean tides, continental water storage, snow cover, and ice sheet volume changes. 
A separation of the post-glacial rebound signal from the other effects is hardly possible with 
the currently available information. In order to do that information about secular changes in the 
geoid on much shorter wavelengths is indispensable. 

The last example shown referred to the problem of vertical datum connection. Figure 9 
shows the estimated RMS for the vertical datum connection between various height systems 
on the world. The left panel uses a geoid model which has been derived from purely satellite 
tracking data, the right panel uses a model including terrestrial gravity data. Depending on the 
regions to be connected, we estimated errors up to 80 cm when using a satellite only geoid and 
about 20 cm if terrestrial gravity data is taken into account. Although some other error sources 
contribute to the total budget, the geoid error is by far dominant. Therefore, a datum connection 
at a level of, say, some centimeters, requires a more accurate geoid over various wavelengths 
depending on the spatial di stance between different height systems. 

The vertical datum inconsistencies may have serious consequences, e.g. for the geostrophic 
velocity estimates derived from geoid slopes and mean sea surface slopes. To illustrate this 
we have ca1culated the effect on the geoid of the vertical datum difference between the Dutch 
and the British height system. The apparent geoid heights shown in Figure 10 result in wrong 
estimates of the geoid slope, which in turn imply erroneous geostrophic velocity field estimates 
over that area. 
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5 State-of-the-art geoid - the problems 

Obviously the current knowledge about both the static geoid and the time-varying geoid is to 
weak for many global sea level studies. One reason is the data distribution and data quality, 
aithough state-of-the-art geoid modeis, incorporate virtually all available data. That are (a) 
satellite tracking data, including óptical data, radio Doppier and radio interferometry observa
tions, satellite laser ranging, and microwave tracking data from GPS, DORIS and PRARE, (b) 
about twenty years of satellite altimetry, (c) measured surface gravity data (land, sea, air) and 
geophysically predicted gravity data, and (d) digital elevation models of the Earth 's topogra
phy. Each of these data sets contributes to the geoid model in a different way and has its own 
deficiencies and limitations. 

Satellite tracking data, for in stance, provides a global data coverage, and a rather homo ge
neous data quality, but can only determine the long-wavelength components of the geoid, i.e. 
wavelengths of a few thousand kilometers and longer. One reason is the well-known attenuation 
of the gravitational attraction with increasing di stance to the mass. To explain this effect let us 
have a look at Figure 11. The bottom panel shows the surface gravity data, which is closely 
related to the Earth's topography, thus containing many fine, i.e. short-wavelengths structures. 
The middle panel shows what is seen in satellite tracking data to satellites at an altitude of 450 
km. All the fine structures of the gravity field have been smoothed out and only the dominant 
large scale features are still visible. The practical implication of the attenuation effect is that 
from noisy satellite tracking data the short-wavelength features in the geoid cannot be recov
ered. 

Surf ace gravity data is in principle capable of resolving all wavelength features of the geoid 
provided that a uniform dense global coverage of high-quality is available. However, surface 
gravimetry is a time-consuming and expensive measurement technique and current data sets are 
derived from several thousand different sourees collected over decades with different instru-
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ments. Although the data holdings have improved dramatically over the last years, many lakes, 
high mountain areas, shallow water areas, and polar regions are almost void of gravity measure
ments. In addition, the accuracy and density of gravity data vary substantially with geographic 
region and the gravity data sets are contaminated by systematic errors. 

Sate/lite altimetry provides an unsurpassed mapping of the (mean) sea surface in terrns of 
accuracy and resolution. However, altimetric measurements are confined to the ocean areas 
and the satellite's inclination leaves high latitude are as uncovered. Moreover, the conversion 
of altimetric measurements into gravity data requires the time-averaged dynamic sea surface 
topography to be known. Both aspects weaken the quality of geoid heights and geoid slopes 
derived from altimeter measurements. 

The problems related to data distribution, coverage and quality can only be solved by means 
of satellite techniques, provided that the attenuation problem can be solved, as weil. The latter, 
however, can be addressed by choosing a new observation type at satellite altitude. For instance, 
the top panel in Figure 11 shows what can be recovered at satellite altitude when classical 
satellite tracking data is replaced by measurements of the second derivatives of the geopotential. 
Obviously, the sensitivity w.r.t. the short-wavelength features improves dramatically. Significant 
improvements are also possible if range rates are measured between two satellites. 

Therefore, a number of studies have been done, and are still in progress, for a dedicated 
gravity field mission, which will improve all wavelengths of the geoid down to wavelengths 
of several hundred kilometers. Two mission designs are considered. The so-called satellite-to
satellite tracking (SST) utilizes differential tracking of two satellites and thereby measures or
bital perturbations. The so-called satellite gravity gradiometry (SGG) measures the differences 
in acceleration of two masses within the same spacecraft. Examples are ESA's GOCE mission, 
which utilizes a combination of SGG and high-low SST, and the U.S. GRACE mission, which 
utilizes low-low SST only. 

In order to get an idea what really will improve, we can compare the geoid height error by 
degree for the GOCE and the GRACE mission with the current state-of-the-art geoid model 
EGM96 (Figure 12). Clearly, the improvement is dramatic down to half-wavelengths of about 
200 km for GOCE and 400 km for GRACE. 

But data distribution and data quality are not the only problems in current geoid deterrnina-
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tion; modeling and numerical aspects are important, as weIl. 

I. For instance, the standard approach to the solution of the geoid is the discrete weighted 
least-squares technique which is used in order to get a best linear estimate w.r.t. a hy
brid norm. The functional relationship between observations and gravity field parameters 
defines the functional model which is a mathematical description of the physical real
ity. Together with the gravity field parameters, many other parameters will appear in the 
functional model as weil, e.g. parameters describing station coordinates, satellite orbits, 
non-conservative forces, atmospheric path delay, tides etc. The quality of the functional 
model depends on how weil it represents reality, and it is by far not a trivial problem to 
set up a consistent functional model in the sen se that the predefined goals are met w.r.t. 
accuracy and resolution. 

2. The functional model will in general be highly non-linear. Therefore, a linearization is 
performed based on appropriate reference modeIs. The neglected higher-order terms are 
attributed to the model noise. The set-up of an iteration process is obvious, but by far not 
trivial, and suitable iteration procedures have not been designed and applied yet. 

3. Although millions of discrete observations wil! enter the model, the system is always 
highly under-determined due to the structure of the gravity field. An approximate solution 
is sought in a finite dimensional subspace by limiting to a finite number of gravity field 
parameters to be estimated. The resulting error is again attributed to the model error, 
assuming that this is consistent with the requirements. 

4. Not all parameters are weil determined by the observations resulting in unstable normal 
equations which requires some regularization. This causes some biases in the weakly de
termined parameters, which strongly depends on the regularization. In addition, the finite 
dimension of the solution space and the neglect of higher order terms directly contribute 
to the bias. 

Other problems are related to the feasibility of a discrete least-squares approach. 

1. For, e.g. to resolve all wavelength down to 110 km, about 130000 gravity field parameters 
are required. In addition, thousands of nuisance parameters have to be incIuded into the 
functional model. 

2. Limited computational capabilities make a proper discrete least-squares approach not 
feasible at the time being, but require alternative strategies and simplifications. Con se
quently, current geoid modeIs, even when based on the same data sets, show global RMS 
differences of some decimeters depending on the fol!owed strategy, data handling, and 
simplifications. For in stance, non-global data and overlapping data are "removed" by ap
plying approximation techniques; satel!ite altimeter data are not treated as direct tracking 
observations but are converted into gravity data; observations are not weighted individu
ally according to their estimated error variances; existing correlations are not taken into 
account, and observations are interpolated on some regular grid to make them suited for 
fast numeri cal techniques. 

3. Many heterogeneous observations enter the functional model. The stochastic model is 
incomplete; correlations are mostly neglected, and even realistic variance estimates are 
often not available. Moreover, numerous reductions have to be applied to the data, among 
them reductions to further limit the numeri cal effort. 
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4. Finally, the observations are contaminated by systematic errors, e.g. vertical datum in
consistencies, inconsistent data reductions, and instrumental biases. 

The high accuracies needed in sea level studies make even a consistent conceptual definition of 
the geoid an elusive and by far not trivial procedure. The definition of the geoid as equipotential 
surface that closely corresponds with the mean sea level is sufficient when accuracies on the 
order of 10-6 are needed. The same holds true for other more fancy definitions such as the geoid 
as the surface of a homogeneous ocean under the inftuence of the Earth's gravity field or the 
geoid as the surface of a uniform and static ocean. However, none of them is the definition for 
use in sea level studies where accuracies of 10-8 and higher are needed depending on the scale. 
That is because they give not sufficient credit to the observables to be used in implementing 
the geoid, to the temporal variations in the geoid, and to the existence of a dynamic sea surface 
topography. 

Many alternatives have been proposed in the past. Each identifies a different surface as the 
geoid. However, none of them is without problems, especially from an operational point of view. 
For in stance, most definitions assume that the tota! tida! effect has been removed, including the 
permanent tides; an effect which amounts up to 3 decimeters in geoidal heights. This, however, 
is not possible because we do not know the correct values of the Love numbers. Even though 
we can get an internally consistent model by using the same Love numbers, a "non-tidal" geoid 
will remain a fiction. Moreover, any lack of global coverage with measurements results in a 
realization which is only approximate. 

6 Potentialof future geoid models 

Let us assume that the conceptual problem has been solved, that we have a consistent func
tional model at our disposal, and that gravity data is available from the GOCE and the GRACE 
mission. What would be the implications of the new geoid models for sea level studies? 

The first example of Section 3 referred to dynamic sea surface topography and mean ocean 
circulation. Figure 13 shows what will happen with the geoid slope errors compared with the 
quality of altimeter derived mean sea surface slopes and with the typical scales and slopes of 
the most important currents we want to recover. Clearly, GOCE and GRACE will all ow BAS IN 
and ACC scales to be resolved accurately. The geoid slope error will even become insignificant 
in the range between 300-3000 km half-wavelengths, which is completely reverse to the current 
situation. Only the WBC sc ales will hardly be resolved because the geoid slope uncertainty will 
have about the same order as the slope of the dynamic sea surface topography at these spatial 
scales. 

The second example was related to post-glacial rebound and observational constraints on 
lower-mantle viscosity. Figure 14 indicates that the post-glacial rebound signal can now readily 
be seen in the geoid. That is because the geoid signalof post-glacial rebound exceeds the 
uncertainty levels of a SST mission like GRACE at wavelengths greater than 1500 km. Sec
ondly, differences between competing viscosity values can be resolved. For instance, the geoid 
signalof the difference between two viscosity values, which differ by a factor of 5, exceeds the 
GRACE uncertainty level at wavelengths greater than, say, 3400 km. 

The last example referred to the vertical datum connection. The left panel in Figure 15 
shows the current situation, i.e. the total RMS error for the connection between various vertical 
datums. The right panel shows what really improves if thegeoid derived from measurements 
of the GOCE mission is used. The total error reduces from some 20 centimeters to less than 5 
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Accuracy vs. Spatia\ Reso\ution (90 days mission) 
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Fig. 13. Accuracy vs. resolution of the EGM96 gravity model (EGM96) and gravity fields to be obtained 
from a SGG or SST mission. The surface-slope scale is shown on the right-hand scale with the altimetry 
slope error (assuming lOmm uncertainty in altimetry height differences), the approximate slope of basin
wide currents (BASIN), the Antarctic Circumpolar Current (ACC) and the Western Boundary Currents 
(WBC). (From National Research Council (1997)) 
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Fig. 14. The degree amplitudes for post-glacial rebound in North America for a lower-mantle viscosity 
of 1O.E21 Pa-sec and for the difference between results for viscosities of 1O.E21 and 50.E21 Pa-sec, 
compared with degree variances of GRACE (from National Research Council (1997)) 
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Fig. 15. Vertical datum connection quality with future GOCE data (from Onselen (1997)) 

centimeters. Moreover, when analyzing the total error budget we see that the geoid error will 
no longer be the dominating error source. 
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Abstract 

Above the Groningen gas field gravity observations are available over a 18 year time span. The 
old gravity data was reanalyzed and a new campaign executed. The observed gravity changes 
(from 4 campaigns) were compared with the gravity effect computed from the reservoir model 
and the production data. For two epochs a good comparison was obtained, for two others not. 
The stochastic error of the gravity values is smal! enough to detect the effect of gas extraction 
af ter a few years. But systematic errors present in the gravity data hamper the extraction of 
additional informational on the reservoir. Only with a very systematic network setup and wel! 
calibrated instruments gravimetry can contribute to the modeling of the gas extraction process. 

1 Introduction 

In the past 18 years, four gravity campaigns were carried out above the Groningen gas field. 
The campaigns were not set up for the prime purpose of reservoir modeling: the initial drive 
was the possible replacement of the costly leveling campaigns for the monitoring land sub si
dence by gravimetry. Although this did not work out, the (limited) gravimetry campaigns were 
continued. In 1996 the last campaign was carried out already with the idea in mind to find out 
what gravimetry could contribute to the modeling of the gas extracting process. 

The Groningen gas fields are located in the northern part of the Netherlands. It is one of the 
world's bigger gas fields with an area of the main field of approximately 900 km2 and an initial 
reserve estimated 2900 .109 m3 . The mean depth of the layer is 2900 meters bel ow sea level. 
The production started in 1963 and wil! be continued far into the next century. Apart from the 
main field, the Groningen field, many smal! subfields exist; mainly west and north-west to the 
Groningen field were the gas-carrying layer is rather fractured. See figure 1 for a map of the 
gas field. 

In this paper we report on the gravimetry work and we would like to answer the fol!owing 
two questions: 

• What is the gravity signalof the natural gas extraction? 

• Can gravity surveys contribute to the reservoir modeling? 
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Fig. 1. The location of the Groningen gas fields. 

First we compute the expected gravity signal from the production data. Then we see whether 
the gravity change from the reservoir data and the observed gravity change could give us hints 
about the correctness of the applied reservoir model. 

In the this paper we will first focus on the reservoir and production data that is available 
and how that relates to gravity. Then we will show some data and results of the gravimetry 
campaigns. In the following section we will confront the ca1culated gravity variations with the 
observed values and finally we will come to some conclusions and recommendations. 

2 The Reservoir Data 

In the Groningen field 26 production clusters are located. In these points the following infor
mation was available to us: 

• depth of the gas-carrying layer 

• thickness of the layer above gas-water contact 

• proportion of natural gas (or Equivalent Hydro Carbon heights) 

• pressure change for each epoch 

• temperature 

Furthermore, also for some inspection wells the depth of the layer was given and there is data 
about the composition of the natural gas. Each of the data listed above was interpolated to a 
denser point set by means of inverse di stance interpolation. See figures 2 and 3. The thickness 
and therefore also the EHC values are rather smooth, whilst the depth is more irregular due to 
the fracturing of the reservoir layer. In the period 1978-1984 the pressure drop in the north is 
clearly higher than in the southern part of the reservoir. In that period more gas was produced 
from the northern area. 
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Fig. 2. Characteristics of the Groningen field. 
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Fig. 4. The finite element model of the reservoir. 

From this data the induced gravity reduction at the surface can be calculated. First density 
changes are derived from the production data as this can be directly related to gravity. For the 
gas density change we have 

Dop = mDon 
Vgas 

with m the molecular weight of the gas, n the number of mole gas and Vgas the volume of the 
gas. With the ideal gas law 

PVgas = zRTn 

(P: pressure, z: correction factor, R: gas constant and T: temperature) this can be written as 

m P 
Dop = RTDo-; . 

By a volume integral over the reservoir the effect on the vertical component of the gravity vector 
at the surface is found: 

Dog = G ! ! ! ~ ~f dV ~ G ! ! ~ ~f EHC dA. 

Obviously, the volume integral only covers the gas volume and not the entire layer thickness. 
The effective gas layer thickness is represented by the ERe values. As it is low with respect 
to the depth of the reservoir (30 vs. 2900 meters) the volume integral can be replaced by a 
surface integral over the reservoir layer. In theory the pressure should be corrected for reservoir 
compaction. The maximum surface subsidence amounts to 20 centimeters; with an average 
ERe of 20 meters this is an effect in the order of 1 % and therefore negligible. 

The latter integral was evaluated by numeri cal integration. A finite element model of the 
reservoir was constructed with the NAM wells as nodes plus an additional amount of interpo
lated support points; see figure 4. The attraction change for each epoch, triangle and gravity 
station combination was computed by a linear interpolation of the ERe values in the triangle 
and a Gauss quadrature of the surface integral (figure 5). 
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Fig. 5. Illustration of the integration over a triangle. 

An independent check on the reservoir model was obtained by using the production data. 
The reservoir volume directly follows from the finite element model but can also be estimated 
from the combination of pressure and production data with the gas law: 

(The overbars indicate the average over the reservoir.) In this estimate it is assumed that the 
reservoir is rather homogeneous. The comparison yielded a difference of 12% which seems 
to be acceptable for the accuracies we strive for. (As such the total reservoir volume does not 
enter into the formulae at all, it serves only as an indication if we are on the right track with the 
reservoir model.) 

The computed gravity changes for the period 1978-1996 are displayed in figure 6. The 
picture is rather smooth with a maximum decrease of 40J.Lgal. Amplitudes which are weil de
tectable with terrestrial gravimetry. 

3 The Gravity Surveys 

Four gravity campaigns were carried out in a 18 year time span: 1978, 1984, 1988 and 1996; an 
average interval of six years. The initial network consisted of 21 stations; 20 in the Groningen 
area and one outside as base point (see figure 7) . Most of the stations are situated on NAM 
sites (NAM is the oil company exploiting the field) . Some others are in railway stations or near 
churches. Mandatory for each point was the availability of leveling heights to be able to carry 
the free air reduction (see furtheron). 

In 1984 and 1988 one new station was added to the network; mainly to get a better con
nection between the different epochs. In 1996 two more base stations were added. In each 
campaign 85 up to 106 measurements (i .e. gravity differences between stations) were made. 
For all the campaigns LaCoste Romberg G-gravimeters were used. Unfortunately for each 
campaign different instruments were available and, except for the last campaign, without an 
feedback system. This makes the observations prone to systematic errors which are hard to de
tect. According to the manufacturer, or see e.g. Becker (1984), Torge (1989) or Valliant (1991), 
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Fig. 6. The ca\culated gravity change in the epoch 1978 - 1996. 
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Fig. 8. The gravity network of the 1996 campaign. The network consists of 10 loops and 149 observa
tions. 

the G-type instruments can have periodic errors with an amplitude as high as 30fJ,gal. The ran
dom error for this kind of instruments has a standard deviation of 5 - lOfJ,gal if all the necessary 
corrections have been applied. 

For the 1996 network care was taken to get a robust and accurate network. Therefore a 
network planning was carried out to optimize the design. Essentially this is an error propagation 
using an a-priori instrument standard deviation and the ca1culation of the threshold values for 
the statistical testing. The following criteria were applied: 

• maximum precision and reliability, 

• inc1usion of three points from the Dutch reference network, 

• c10sed loops within the day for drift control , 

• two observers/two instruments: each point visited byeach possible combination, 

• realistic travel time between the points, 

• NAM site occupations concentrated in time as much as possible, 

• maximum campaign duration of 12 days. 

This led to the network shown in figure 8. 
After the least-squares adjustment various statistical test were carried out to detect blunders 

in the readings and breaks in the instrument drift. Finally the network was connected to the 
base points to get absolute gravity values. Unfortunately it turned out that the newly added base 
points could not be used because they are close to the gas field and the information of the Dutch 
gravity network was too old. The forma!, a-posteriori error standard deviations for each station 
and each campaign is shown in figure 9. In 1978 and 1984 the standard deviation is 6 - 7fJ,gal 
and for the latest epochs 4fJ,gal. It has to be mentioned that especially for the epochs of 1978 
and 1984 different data adjustment strategies led to significant different results for some points. 
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Fig, 9. The a-posteriori standard deviations of the gravity values for each station and epoch. The bars 
'test' for 1996 refer to the values predicted with the network design. 
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Fig. 10. The land subsidence for the epoch 1978 - 1996. 

Also this indicates that the observational model is not completely correct (i.e. the data contains 
systematic errors) 

The final correction that has to be applied is for land subsidence. Due to the compaction 
of the reservoir the surface subsides up to almost a centimeter per year. For the 1978 - 1996 
period the subsidence is displayed in figure 10. The leads to a considerable effect in the surface 
gravity values (3J.Lgal/cm). As we are interested in what is happening under the surface, all the 
absolute gravity values are reduced to the 1978 altitude by means of a free-air reduction. The 
final gravity changes for the epoch 1978 - 1996 are displayed in figure 11 . 

For a selected number of stations the values for all epochs are displayed in figure 12. The 
a-posteriori standard deviations for the gravity changes are about ';62 + 42 ~ 8J.Lgal. Apart 
from systematic errors, these values are low enough to see the gravity change in one epoch (6 
years) or e.g. the effect of ground water influx. (E.g., an area of 4 kilometer radius with two 
meter water at the depth of the resevoir yields about 15J.Lgal.) Stations 1, 2 and 4 are located 
in the center of the field, 5 is at the eastem border and 6 is outside the field to the north-west. 
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Fig. 11. The observed gravity changes for the period 1978 - 1996. 
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Fig. 12. The observed gravity changes for a selected number of stations. The numbers in front of the 
station narnes refer to the numbers in figure 11. The dashed line indicates the 2a values. 
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Fig. 13. Difference between observed and ca1culated gravity changes for the epoch 1978 - 1996. 

A clear downward trend in gravity is visible; especially in the center of the field as could be 
expected. However, for 1988 a strange dip occurs. It seems that the gravity values of 1988 are 
too low. A careful re-examination of the 1988 campaign did not reveal any undetected errors 
and this effect remains unexplained up to now. The station of Gasselte (the basepoint) was only 
included for later reference. By definition at this station the gravity change is zero. 

4 Confrontation of the Results 

It could al ready be seen from the figures 6 and 11 that the results are quite different. In figure 3 
the difference between the observed and caIculated gravity changes is depicted. The a-priori 
standard deviation of the gravity observations was about 8j.tgal. If we add a few j.tgal for the 
reservoir mismodelling this means that 2a is about 20j.tgal. About half of the number of points 
exceeds this threshold. All the observed gravity changes are too high with respect to the cal
culated change. As no probable geophysical scenario exist for this situation (if it was the other 
way round we could think of e.g. ground water inftux) the deviations have the be attributed ei
ther to reservoir mismodelling or to undetected (systematic) errors in the gravity observations. 
For the four points in the north-west part of the area the former explanation is not improbable: 
in this area the reservoir is rather fractured and many small fields exist. This was not put ac
curately into the finite element model. For the point in Groningen city it is believed an height 
error exists for the 1978 and should be eliminated. The errors for the four points in the middle 
of the reservoir can only be attributed to gravimetry errors. 

As was already mentioned in the introduction, the gravimeters used in the first three epochs 
were different and did not have a feedback system. Moreover, the network setup was different 
for each campaign. Although the gravimeters have been calibrated for a linear scale factor, no 
extended testing was performed to detect e.g. periodic errors. All this together makes the dataset 
prone to systematic errors which can be much larger than the stochastic measurement noise. 

In figure 14 we displayed the difference between 1984 and 1996. These results show a good 
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Fig. 14. Difference between observed and caIculated gravity changes for the epoch 1984 - 1996. 
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agreement between the calculated and observed values. None of the points (except for point 6 
in the NW part) exceeds the 20p,gal threshold. This means that the gravimetry campaigns are of 
acceptable quality but also that the applied reservoir model is in agreement with these data and 
does not have to be improved. 

In the next figure (15) the gravity data for six selected stations has been plotted. Here 1984 
serves as reference. Clearly for some of the points displayed here the 1978 and 1988 do not give 
a good fit (i.e. the calculated gravity changes exceed the error bounds of the observations). The 
strange dip in 1988, as observed in the gravimetry data, does not occur in the computed gravity 
change. The point Gasselte, the base point, fortunately appears to be stabie in time. 

5 Conclusions and Recommendations 

The concJusions of this research can summarized as follows : 

• A reasonabie fit of observation data for epoch 1984 - 1996 has been obtained. 

• Gravity data for 1978 and 1988 are questionable with respect to the gas data. 

• In general the gravity data quality is too poor to yield additional information about the 
gas field. At best, a reasonable fit was obtained between observed and caJculated data. 
This can be mainly attributed to undetected, systematic effects in the gravity data. 

As the stochastic noise level of the instruments is very low, we still believe that gravimetry can 
provide a valuable contribution to the monitoring of gas fields . In order to do so we have the 
following recommendations: 

• consistent measurement setup 

• improved instrument calibration 
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Fig. 15. The gravity changes for a number of selected stations. 

• more epochs (minima! every 3 yours or so) to be able to remove an epoch if something 
went wrong with the observations 

• more stations needed for higher reJiability of the detection of model errors 

• more datum points desired for better contro!. 
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Error Propagation for Satellite Gradiometry 

Martin van Gelderen 

Abstract 

Two approaches for the estimation of potential coefficients from satellite gradiometry are com
pared: least-squares and quadrature. Three errors are computed for each method: the propa
gated error, the bias and the aliasing error. Special attention is given to the effect of the regular
ization required by the presence of data gaps in the polar areas . 

1 Introduction 

For error prediction of a satellite gradiometer mission we often rely on (co)variance propaga
tion, with degree variances or the full co-variance matrix, in the time or in the frequency domain. 
Most attention we gave to the propagated noise. With a model for the instrument noise, the vari
ances of the potential coefficients can be simply estimated from the Iinear observation model. 
Two other main error sources, biases and aliasing, we usually omit because we believe they 
are small or they are more difficult to model. In this paper it is attempted to give some rough 
estimates of these two errors in particular in the view of the existence of polar gaps. The generaI 
idea is taken from the paper of Xu (1992), meanwhile some work in the same direction has been 
carried out by Bouman and Koop (1996). 

2 The Model 

Our caIculations are carried out with the place domain approach. The general concIusions, 
however, will also be valid for the time domain approach because for dense data sets both 
methods will yield identical results. For the simplicity of the caIculations and the cIarity of the 
expressions the radial (zz) component was analyzed. For other components the result will differ 
but as we do not strive for accurate results but for getting a general impression this should not 
limit the validity of the concIusions. 

We start with the Iinear observational model (everything in spherical, constant radius ap
proximation) 

(I) 

or in matrix notation 

z = EPAc, (2) 
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where c contains the potential coefficients, A the eigenvalues related to the type of observations, 
P the Legendre functions, E the exponential base functions and z the observations. The structure 
of the matrices is illustrated in figure 1. Multiplying both sides by tE* (conjugate transpose, 
N number of observations on a paraJlel) yields the new observation equations 

y == tE*z = PAc. (3) 

Due to the block-diagonal structure of Pand its orthogonality properties the solution can be 
computed for each order and parity of degree individuaJly. We'Jl concentrate on this observation 
equation. Although it does not give the complete picture, the main disturbing effect is the 
presence of pol ar gaps which enter only in this step. 

Two kind of solutions wiJl be considered: least-squares and quadrature of the corresponding 
inverse formula. GeneraJly the solution can be written as 

ê=BTy. 

For the least-squares solution we have 
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with a (diagonal) regularization matrix R. This matrix is required for the lower orders: due to 
the polar gaps the normal matrix gets (weakly) singular. Kaula's mie was used here for R. 

For the radial component it is easy to find the analytical inverse of (3) in the limit case of an 
infinite number of observations and the whole earth covered homogeneously: 

GIm = (4 _ ~§m,o) (I + 1)\1 + 2) C~y+31 y(B)Plm(B) sin BdB. (4) 

For the case with real data, the integral is discretized in the area where data is available. In 
matrix notation: 

(S is a diagonal matrix with sin Band the necessary scale factors). 

3 The three errors 

The complete picture of the error (disregarding the approximations committed by using the 
model (1) as starting point) consists of three parts: the propagated error, the bias and the aliasing 
error. The propagated error is 

BTQyyB, 

where Qyy is the covariance matrix of the observation noise. The bias is defined as 

(I-BTPA),e 

(5) 

but this requires the (tme) potential coefficients. To avoid this, and to make the calculation 
easier, we compute the signal power of the bias (bias-variance): 

(6) 

Here K is a diagonal matrix with degree/order variances of the potential, e.g. from OSU91a or 
Kaula. The third error is introduced when discretizing the observation equations: meanwhile 
the number of unknowns (potential coefficients) had to be reduced in order to avoid an under
determined system of equations. This introduces a model error (aliasing), who se effect can be 
numerically estimated by extending the model (2) as 

where P, A and e are defined as before and their primed versions complete the model up to 
degree infinity. Infinity is here approximated by L = 360 (the maximum degree and order of 
the coefficients estimated is 180). Now the total non-stochastic error is computed as 

e - ê = e - B T Y = e - B T P Ae - B T P' A' e'. 

The first two terms together we already defined as the bias, the last term is the aliasing error. 
Also this error we model with signal variances as: 

(BTP'A'e')K(BTp' A'e') T. 

Again we underline that this is not the complete aliasing error: implicitly we assumed that in 
the east-west direction no aliasing occurs. 
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4 Results 

For the computations a noise PSD of the gradiometry data 1O-3E/ JHZ and an orbital incli
nation of 97.5° were used. For the noise we took the model of lekeli-Rapp lekeli and Rapp 
(1980): 

2 
(J2 _ (Jobs 
lm- N.M 

The parameters were not tuned very accurately. It was assumed th at there is (on the average) 
one observation in a half-by-half degree block (N and M denote the number of observations 
per parallel and meridian, respectively), which compares to a sampling time of approximately 
10 seconds. The height of the orbit is 350 kilometers. 

The results of the analysis are shown in figure 2. For some orders the results are also 
presented as line graphs (figure 3). It can be clearly seen that least-squares has a superior 
performance for the propagated error, as expected. There is a notabie bias in order zero with 
quadrature whereas for LS this is more spread over the spectrum. The main point of concern, 
however, is the considerable aliasing error in the least-squares estimate. (We should still keep 
in mind that the sampling effect in longitudinal direction was not accounted for here.) 

To estimate the effect of the selection of the maximum degree of the linear observation 
model, we take L = 90 (figure 4) . For quadrature only the aliasing error changes, but with 
least-squares the minimum degree affected by aliasing shifts with the maximum degree to the 
left. This leads to the conclusion that increasing the maximum degree in the linear model might 
diminish the aliasing error. This would mean that, if possible with the data sampling, a max
imum degree of, e.g. 240 is used instead of 180 in the LS procedure, the aliasing error can 
be reduced, although the signal-to-noise ratio of the coefficients above 180 might be smaller 
than one (henceforth do not contain useful information) and are thrown away afterwards. An
other observation is the decrease of the bias for least-squares. This might be explained by the 
more strict band-limitation. This reduces the singularity of the normal system and has the effect 
that the implicit extrapolation of the measurements into the polar gaps gets more weight in the 
least-squares adjustment (see also discussion in the next section). 

The largest errors in the spectrum are always in a wedge-shaped area of the spectrum. This 
can be explained by the power-I oss of the Legendre functions due to the polar gaps Gelderen and 
Koop (1997), by calculating the condition number of the normal matrix or by simply inspecting 
the Legendre functions . As can be seen from figure 5, the support of the Legendre functions in 
the polar areas decreases for an increasing orders and decreasing degrees. 

Another typical pattern we see is that within this wedge, the error increases with increasing 
I up to degree 150 and decreases a little going towards 180. This behavior can be explained by 
doing an eigenvalue analysis ofthe normal matrix. The eigenvalue decomposition ofthe normal 
matrix is: 

N = pT AQ-l AP = SDS-1 
yy - . 

Transforming the stabilized, inverse normal matrix to this system of eigenvectors yields: 

(7) 

Clearly, for small eigenvalues of N, the regularization matrix R gets all the weight in the inver
sion. These components will be badly estimated because they are almost completely determined 
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Fig. 6. The eigenvalues of the normal matrix and the eigenvectors of the smallest eigenvalues 

by the regularization. The components of the related eigenvectors indicate the linear combina
tions of coefficients which are estimated poorly. For many cases, these eigenvectors have a 
similar character: increasing support towards ± degree 150, then decreasing. Two examples are 
shown in figure 6. 

5 Contribution of Regularization 

Regularization is necessary to obtain a solution when the data is not sufficient to solve for 
the parameters directly. We would like to see how much is the effect of the regularization on 
our final estimate. The contribution of the regularization to the least-squares solution can be 
estimated as follows. We start with the standard partitioned model of observation equations: 

(::) (:} 
If c can be estimated from ZI and Z2 individually (êl and ê2 respectively), we can write 

ê = (AiWIAI + AJW2A2tl(AiWIAI êl + AJW2A2 ê2) (8) 
, v '~ ~ 

N-I NI N2 

The re1ative contribution of the observations ZI to the final estimate is N-I NI, like-wise for z2. 
The standard method of regularization is obtained by setting 

A2 = I, Z2 = 0, 

W:;I = degree/order variance model , 
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Fig. 7. Relative contribution of regularization 

and obtain 

The relative contribution of regularization is then N -1 W2 . For the radial and cross-track compo
nent the results are shown in figure 7. The contribution of regularization is mainly concentrated 
in the low orders. The cross-track component is weak in the low-order/high-degree part of the 
spectrum, which is also reflected in the relative contribution of the regularization. 

As altemative for the standard regularization we can use zero observations only for the pol ar 
areas ('local regularization') . Then we take 

(we assume here all observations have unit weight). If the radial component has been observed 
the design matrix can be written as 

A=VA, 

(V = EP) and the relative contribution of the estimation ê2 (the estimation from the fake obser
vations) becomes 

The diagonal elements of this expression are 

r ~;"da 
}Polar gaps 

and do not depend on the type of data observed! It is equal to the power-Ioss rule mentioned 
earlier; see figure 8. (Actually ê1 and ê2 can't be computed at all because both are given on a 
part of the earth's surface only, but here we assume both Zl and Z2 are globally available only 
with a very low weight for the poles or the remaining domain respectively) . 
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Fig. 8. Relative contribution of local regularization 

As we are mainly interested in geoid heights etc., the relative contributions are propagated 
to the space domain. Suppose we generate a grid of, e.g. geoid heights from the estimated 
coefficients. If the grid is dense enough we can compute back the coefficients without loss of 
accuracy. In matrix form: 

f = Gc = YAfc 

(f contains the grid values, G is the transfer matrix). f can be estimated from ê, ê1 or ê2 which 
we use to compute the relative contribution of regularization 

f = Gx, f1 = Gêl, f2 = Gê2 

=> f = YAfWlNIAflyTfl + YAfWIN2AflyTf2' 

For standard regularization the relative contribution of regularization (the underIined part) is 

Y Af W I P2Afi yT. 

For the local method it is 

Y Af A -1 yTp2 Y AAf
l yT 

The results are shown in figure 9. Contrary to what was expected, the local regularization per
forms worse with respect to the standard regularization: it has more inftuence on the computed 
geoid etc. It can be improved a little by smoothing the transition from true values to zero val
ues at the pol ar gap boundary by a linear filter (figure 10), but that does not change the results 
fundamentally. The reason for the weaker performance is that though the regularization is very 
local, it is also hard: the fake data gets all the weight in the polar zones. With the standard 
method it is much softer: we put in zero potential coefficients but with a high variance. This 
makes that this fake information is also used very selective due to the least-squares aIgorithm. 
What it really makes performing so weIl is the band-limitation we apply in the linear model. 
Together with the high amount of data available the least-squares procedure extrapolates to the 
polar areas and the relative contribution of regularization never reaches 100% in the polar gaps. 
Whether this good performance is real, after all the band-limitation is also artificial, should be 
investigated further. 
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6 Conclusions & Recommendations 

• Least-squares gives a smaller over-all error with respect to quadrature, mainly due to the 
smaller propagated error. 

• The bias introduced by regularization is not very large but that might be related to the 
band-limitation. 

• The aliasing error can exceed the signal below degree 180. 

• The local regularization does not work satisfactory. 

• The effect of the true bias and aliasing error should be investigated by means of simu
lation studies. The maximum degree used in the observation equations is of particular 
importance due to the non-orthogonality of the base-functions in the observed area. 
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Quality Differences between Tikhonov 
Regularization and Generalized Biased Estimation 
in Gradiometric Analysis 

Johannes Bouman and Radboud Koop 

Abstract 

The determination of the earth's gravity field from satellite gravity gradiometry is an inverse 
or ill-posed problem requiring regularization. In geodesy the regularization is usually done by 
adding a priori information, Kaula's rule for example. This can be interpreted as constraining 
the signal and is called Tikhonov regularization. Another method is to add an arbitrary positive 
definite matrix to the system of normal equations. This matrix is chosen such that the total 
deviation of the estimated function from the true function is minimal which is called biased 
estimation. The aim here is to compare the regularization by constraining the signal to biased 
estimation. This is done for several gradiometric mission scenarios. The comparison is based 
on the mean square error of the solutions, which is the sum of the propagated error and the, 
often neglected, regularization error. The total error of the solutions is computed and the errors 
are propagated to geoid heights as weil. The main conclusions are that the qualification 'best 
regularization method' depends on the cause of the instability, that the regularization error is 
not negligible and that additional measurements or other solution methods are needed. 

1 Introduction 

An accurate and high resolution knowledge of the earth's gravity field is needed in several earth 
oriented sciences. In geodesy, for example, the gravity field is needed for levelling with GPS, 
in oceanography it is important for studying large scale ocean circulation and last but not least 
in geophysics a better knowledge of the earth's gravity field yields better boundary conditions 
in the study of the earth's interior. 

The determination of the earth's gravity field is very convenient using satellite methods 
since a satellite orbiting the earth samples practically the whole globe within a relative short time 
span. Two very promising satellite techniques for global gravity field determination are satellite
to-satellite tracking and satellite gravity gradiometry. Here only gradiometry is considered since 
with this technique one can in principle determine all frequencies up to high degree and order, 
with the for gradiometry specific numerical instability caused by the polar gaps. 

A disadvantage of both techniques is the ill-posedness of the problem, i.e. the solution, in 
particular gravity potential coefficients, derived from the measurements is unstable. One reason 
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is the downward continuation of the observations to the earth's surface. A stable solution can 
only be obtained by regularizing the solution. This is weIl known and often Kaula's rule is used, 
which can be interpreted as a constraint on the signal and this is called Tikhonov regularization 
(TR), Tikhonov and Arsenin (1977). An alternative method is to add an arbitrary positive def
inite matrix to the system of normal equations such that the difference between the estimated 
and true function is minimal in the sen se of the mean square error. This is called generalized 
biased estimation (GBE) or ridge regression, Vinod and Ullah (1981); Xu (1992a, 1992b). 

The purpose of this paper is to compare the two regularization methods for eight gradio
metric missions. The comparison is based on the mean square error which is the sum of the 
propagated measurement error and regularization error or bias. The latter is often neglected, but 
is inherent to the regularization, Louis (1989); Xu (1992b). 

The description of the eight example gradiometric missions and the observation model in 
Section 2 is followed by a summary of the methods of regularization and the related errors in 
Section 3. Section 4 lists the results and Section 5 presents the conclusions. 

2 Model and mission description 

2.1 Observation model 

The unknowns to be solved for are the norrnalized harmonie coefficients Cim, Slm of a spherical 
harmonie expansion of the gravitational potential: 

GM L (R)I+1 I 
V = -2:: - 2:: Ytm(e , À) 

R 1=0 r m=-l 
(1) 

with the abbreviation 

(2) 

where G M is the gravitational constant times mass of the earth, R the radius of a reference 
sphere enclosing all masses, Z, m degree and order, Am(cos e) the fully normalized Legendre 
functions and r, e, À the geocentric polar coordinates. For the maximum degree and order we 
take L = 180, corresponding to a spatial resolution of approximately 10

, which is a typical 
resolution to be achieved from a gradiometry mission. 

The observations we consider are gravity gradients or the second order derivatives of the 
gravitational potential. The measurements could for example be the change in range between 
two falling proof masses around the earth. Alocal satellite coordinate system is x, y, z with x 
along-track, y cross-track and z radial. Observing the range changes in these three directions 
yields the observables Vxx , Vyy and Vzz . By a proper coordinate transformation these values can 
be related to (1), see e.g. Koop (1993). 

The unknowns and observations are connected by the linear model 

E{g} = Aj, D{g} = p - l (3) 

with 9 the observations, j the unknowns, A the design matrix and p-l the error covarianee 
matrix of the observations. Let's assume that the orbit of the satellite is circular, that there are 
no data gaps and that after a number of revolutions the ground-track of the satellite repeats 
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Table 1. Missions considered 

inclination (degrees) 

observation 90 92.5 95 97.5 100 

Vyy + + + + + 

Vzz + + 

Vxx, Vvv' Vzz + 

itself exactly. Then one can consider the observations Vxx etc. as a time series along the orbit. 
Due to the assumptions one can compute the Fourier coefficients of these observations, the 
lumped coefficients, e.g. Koop (1993); Schrama (1990). These lumped coefficients are linear 
combinations of the unknown potential coefficients Cim, Slm . The above approach is the time
wise in the frequency domain method, with the advantage that for example colored noise can 
easily be accounted for, Rummei et al. (1993), see also Section 2.3. 

2.2 Mission variables 

Eight satellite gradiometric missions are considered as listed in Table 1. 
Vyy was chosen since it was the observable for the proposed STEP mission, Blaser et al. 

(1996). Another ESA proposed mission, current under investigation, is GOCE (Gravity Field 
and Ocean Circulation Explorer), ESA (1996). This mission will measure the three diagonal 
components of the gravity tensor Vxx , Vyy and Vzz, for brevity denoted by Vd (diagonal). The 
observation Vd is used as reference. Several inclinations of the satellite orbit are considered. 

2.3 Mission constants 

For all missions we have chosen a satellite height of 300 km and amission duration of six 
months. For the measurement error we took a colored noise PSD with a flat spectrum for 
{3km > 10 cpr at the level of 10- 3 E / VIiZ (cpr = cycles per revolution, E = Eötvös unit 
= 10-9/ 8 2) and a l/w characteristic for 2 :S {3km :S 10 cpr. (w stands for frequency here.) The 
{3km describe the spectrum along the orbit. The noise characteristic basically implies that the 
minimum degree that can be determined is 2, and that all spherical harmonic degrees above 2 
are affected by the colored noise error spectrum. 

3 Stabilization methods 

3.1 Introduction 

The standard technique for parameter determination is least-squares (l.s.). The sum of the 
squared errors has to be minimized: 

which leads to the l.s. estimate j of f 

min lig - Afll~ 
f 

(4) 

(5) 
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where N = ATPA and P is the weight matrix of the observations g. However, the inverse of 
the norm al matrix is unstable, reflecting an ill-posed problem. This has three reasons: 

• Downward continuation. The higher degrees attenuate by a factor of (Rlr )1+1 at satellite 
height so the observation noise is amplified due to the downward continuation. 

• Polar gaps. Every inclination not equal to 900 results in two polar gaps. Hence, agiobal 
gravity field is estimated from regional measurements. 

• Type of observation. Every kind of observation related to the gravity potential (like grav
ity, po si ti on or gravity gradients) will have, in the frequency domain, a different sensitivity 
for different frequencies. For instanee, for V.Z the sensitivity decreases with increasing 
Z, whereas it is constant for all orders m per degree. Or Vyy which has an increasing 
sensitivity for increasing order m. Sometimes a particular observation is not sensitive to 
a certain gravity field parameter at all, like Vyz and Vxy in a po lar orbit which are not 
sensitive to the zonal harmonies or Vyy from whieh the zonal harmonies can only poorly 
be determined, in particular at the equator. 

Several methods exist to compute a stabie solution. The first method discussed here is Tikhonov 
regularization, Tikhonov and Arsenin (1977), the second is ridge regression or biased estima
tion, Vinod and Ullah (1981); Xu (1992a, 1992b). 

Using Tikhonov regularization (TR) implies constraining the signal f or some higher deriva
tives of f, whereas (generalized) biased estimation (GBE) just adds an arbitrary positive definite 
matrix to N to stabilize the solution. Af ter introducing both methods in more detail, we compare 
the total Mean Square Error (MSE) in both cases. 

3.2 Tikhonov regularization 

Method. The idea is to constrain the total power of the signalor of derivatives of the signa!. 
The minimization problem 

min lig - Afl1 2 + ailLfl1 2 

f 
(6) 

has to be solved instead of (4), where L is some differential operator and a is the compromise 
between minimizing the observation error and the constraint, Louis (1989); Engl et al. (1996). 

Here we consider only the signal constraint with weighted norm 

so that 

min lig - Afll~ + allfll~ 
f 

(7) 

(8) 

where K is for example a diagonal matrix with elements 1010 [4 which is the inverse of the well 
known degree-order Kaula mie. If one takes for f a geopotential model, say OSU9IA, then it 
approximately holds 

(9) 

which is needed for comparison with biased estimation. 
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Errors. Suppose one has exact observations ge with corresponding solution f = A+ge. The 
difference between f and the regularized solution ft is 

(10) 

The first term on the right hand side is called the data error, the second the regularization error, 
Louis (1989). The latter can be written as 

!:lf ((N + aK) - IATp - N- I ATp) ge 

((N + aKtl - N- 1) Nf 

(N + aKt1(N + aK - aK)f - If 

-(N +aKt1aKf 

which represents the bias, cf. next section. 

(11) 

The total error or Mean Square Error Matrix (MSEM) consists of the propagated error, from 
(8) 

(12) 

and the bias 
(13) 

The trace of the MSEM is called the Mean Square Error (MSE) which is used here as a measure 
of the quality of the solution. 

3.3 Generalized biased estimation 

Preliminaries. Biased estimation is also called ridge regression, e.g. Vinod and Ullah (1981). 
Let the Choleski decomposition of P be P = WWT, and define the transformations gw = WTg 
and Aw = W T A . Then the observation model is E{gw} = Awf with least-squares solution 

j (A~Aw)-lA~gw 
(ATWWTA) - l ATWWTg 

(ATpA) - 1 ATpg = N- 1 ATpg. 

Let the singular value decomposition of Aw be 

(14) 

(15) 

where U, Vare orthogonal matrices, i.e. U-I = uT and ~ is a diagonal matrix with singular 
values ai in descending order: limi-+oo ai = O. The least-squares solution (14) can now be 
written as 

j (V~2 V T ) -1 V~UT gw 

V(~2) - I~UTgw 

(16) 

since A~Aw = V~2VT and VT = V-I. Now it is c1ear that the instability is caused by the 
small singular values ai, their inverse becomes large. 
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Method. The idea of generalized biased estimation is to add an arbitrary positive definite di
agonal matrix to the matrix of singular values to stabilize the solution: 

(17) 

Hence the smallest singular values become larger, the inverse can be computed. 

Errors. The propagated error is, Xu and Rummei (1994): 

Qf = V(~2 + D)-1~2(~2 + Dt1VT
. (18) 

The bias is, Vinod and Ullah (1981); Xu (1992b): 

E{Jb - J} = b.f = -(N + M)Mf (19) 

where M = V DVT or 
(20) 

Again the total error is the mean square error matrix, equation (13). The Mean Square Error is, 
Xu and Rummei (1994): 

MSE = t (7; + d;(f, V,)2 
,=1 ((7; + d,)2 

(21) 

The set of di with minimum MSE is obtained by differentiating the MSE with respect to di, see 
for example Xu and Rummei (1994): 

aMSE 2(7; (di (f, Vi? - 1) 
adi ((7r + di )3 

(22) 

The minimum is thus obtained for di = (f, Vi) -2. 

Comparison with Tikhonov regularization. Note that 

(23) 

where Vi is the i-th column of V. Hence we may write 

(24) 

which gives 

(25) 

Comparing TR and GBE, equations (9) and (25), one sees some similarity in the regularization 
matrix. The difference is that the signal f fT is subject to aspectral transformation when biased 
estimation is used, which has the unfortunate consequence that the computation of the inverse 
in (25) gives severe numerical difficulties for the specific problem we are dealing with here, i.e., 
gravity field determination from gradiometry alone, compare Section 4.2 and 4.4. 

4 ResuIts 

To compute the bias, true coefficients f are needed. For this purpose the spherical harmonie 
expansion OSU91A, Rapp et al. (1991), was taken. All results are relative to GRS80. 
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Table 2. Regularization with signal constraint 

I obs. MSEi f)"ff)"fT E:( inv) a MSE d Q 

90 yy 1.5 105 42 10-7 

zz 3.2 4 10-4 10-10 

92.5 yy 0.6 14 10- 8 

95 yy 0.7 16 3 10-7 

97.5 yy 1.0 329 91 10-7 

zz 4.9 32 3 10-6 

d 2.5 2 10-8 

100 yy 520 103 104 10- 9 

4.1 Tikhonov regularization 

Minimization of the trace of the Mean Square Error Matrix gives the optimal a. For TR this 
a is found after several iterations. In Table 2 the results for the regularization with the signal 
constraint are listed. The first two columns define the mission. The third column gives the 
optimal a for which the trace of the MSEM is minima\. The a 's for the different types of 
observations cannot be directly compared since the norrnal matrix N differs from one type of 
observation to another. Better comparabie are the a's for the same type of observation when 
only the inclination varies. In general a increases when increasing the size of the pol ar gap, Vyy 

at 90 degrees is an exception. As already mentioned the zonal harmonics cannot be deterrnined 
in this case, resulting in a more severe iII-posed problem than e.g. Vyy at 92.5 degrees. 

In the fourth column the total error of the specific mission is given with respect to the total 
error of Vd• Only Vz z in apolar orbit gives the same level of precision, the other missions are 
one to five orders worse. 

When the trace of the bias part is compared with the trace of the propagated error, column 
five, one sees that only for V.., I = 90 the bias can be neglected. The bias and the propagation 
error for Vyy at I = 92.5 and I = 95 and for Vzz and Vd at 1 = 97.5 are of the same order 
of magnitude. For the three remaining missions the bias is two to four orders larger. In fact 
VZ Zl I = 90 is the only gradient for which the total gravity field spectrum can be estimated. The 
remaining five gradients are not or not sufficiently sensitive to some frequencies of the gravity 
field, Koop (1993). 

The last column Iists the maximum error of the inverse, c(inv). It was checked by how 
much 

(26) 

differed from the identity matrix. The error should ideally be something Iike 10-15 which is the 
computer round-off error. However, as is evident the maximum error is several orders larger. 
This means that the stabilized inverse is not as stabie as one would like, underrnining the value 
of the computed 'optima!' solution. 

4.2 Generalized biased estimation 

In Table 3 the results for generalized biased estimation are listed. 
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Table 3. Generalized biased estimation results 

I obs. MSE(i) bofbofT MSE(gbe) é{inv) MSE(d'j Qf MSE(tr) 

90 yy 104 24 0.7 10-7 

ZZ 10-4 10-10 

92.5 yy 273 169 72 10-6 

95 yy 103 103 103 10-5 

97.5 yy 104 103 97 10-3 

ZZ 104 15 103 10-2 

d 2 4 10-7 

100 yy 104 103 34 10-3 

Again one sees that only the total error of V.Z in apolar orbit is comparable with that of 
Vd , the other missions are much worse. Apart from the VZZ ) I = 90 case the bias cannot be 
neglected. 

When the total error of the two types of stabilization is compared, we see that the perfor
mance of generalized biased estimation is worst in most cases, the missions in a po lar orbit give 
about the same error. These results are in conflict with what one would expect. Since GBE 
uses several regularization parameters and TR only one, GBE is expected to produce a smaller 
error, if the parameters are tuned properly. In Section 4.4 this is studied in more detail and an 
explanation is given. 

The maximum error of the inverse is even larger for GBE, the computed inverse is probably 
unrealistic with the exception of Vyy and Vzz at 1 = 90 and Vd ) 1= 97.5. 

4.3 Error propagation for selected missions to geoid heights 

A further understanding of the accuracy of the solutions can be obtained by propagating the 
errors in Cim and Slm, as described by the MSEM, to e.g. geoid heights. Because of the 
mission design (circular orbit, exact repeat, no data gaps) and because the Cim and Slm errors are 
assumed to be equal, the Q f error propagation to geoid heights becomes longitude independent. 
The norrnal matrix is block diagonal, orders are independent, even and odd orders are separated, 
Koop (1993). Furthermore we took the bias part to be of the same block diagonal structure, 
hence the propagation of the MSEM to geoid heights is longitude independent as weIl, compare 
Figure 1. Taking only the block diagonal part of the MSEM as described means neglecting the 
correJation between orders and between even and odd degrees of the same order. Unfortunately 
we are forced to do so since the computation of /::"f /::"fT results in a full, O(L2 x L2), matrix, 
which cannot be handled on nowadays computers. 

In Figure 1 the geoid height errors for Vd ) I = 97.5 are shown. In the pol ar regions GBE 
becomes very unrealistic, in the area with observations both methods result in the same geoid 
error. 

Comparing TR at the same inclination I = 97.5 for all three types of observables, 
Vd ) Vyy ) Vzz , one sees that in the area with observations Vd and Vzz give the same resuIt, whereas 
Vyy is much worse, Figure 2. The GBE errors are not propagated to geoid heights for all these 
cases because the inverse computation is too unrealistic, compare Table 3. 
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Table 4. Regularization with signal constraint, m 2: 10 

I obs. MSEi 6.[6.[T é(inv) a MSE d Q 

90 yy 0.7 210 0.4 10-11 

zz 0.8 2 10-4 10-12 

92.5 yy 0.6 158 0.3 10-11 

95 yy 0.6 98 0.2 10-12 

97.5 yy 0.6 54 0.1 10-12 

zz 0.4 3 0.4 10-11 

d 0.5 10-4 10-13 

100 yy 1.0 84 1.3 10-11 

4.4 ExcIusion of long wavelenghts 

The above problems (Section 4.2) are entirely due to the polar gaps. The low orders cannot be 
determined weIl because of these gaps. GBE is affected more, which is inherent to the solution. 
To the small singular values at 

di = (1, Vi)-2 (27) 

is added. However, the small singular values correspond for a polar gap not only to high fre
quencies but also to low orders. Consequently, the product (f, Vi) becomes large since low 
frequencies have high energy. Therefore, the squared inverse becomes small which means that 
there is hardly any stabilization for the small singular values involved with low orders. 

This explanation has been tested by exc1uding the orders m = ° - 9, i.e., we only solve for 
the spherical harmonic coefficients of degree and order between 10 and 180. The results are 
given bel ow. 

4.4.1 Tikhonov regularization 

The results for stabilization by constraining the signal, with m ~ 10, are listed in Table 4. 
The optimal a 's are in general smaller compared to the fuIl solution and have about the same 

size. This is no surprise since the major part of the badly solved coefficients has been removed. 
Therefore, less stabilization is required. Note, however, that a direct comparison of Table 2 and 
4 should be done with some care because the normal matrices changed. 

When the missions are compared with Vd , I = 97.5, one sees that Vyy performs better 
for increasing polar gap. Supposedly this is a consequence of the change of direction of the 
measurements with respect to an earh fixed reference frame. Both lI.z missions give about the 
same quality as the Vd mission. 

The bias is negligible for VZZ) I = 90 and Vd , I = 97.5. It reaches up to 40% for most of 
the other missions with a minimum of 10%. The bias is 1.3 times larger than the propagated 
error for Vyy , I = 100, probably because orders above m = 9 are affected here by the polar gap, 
compare the rule of thumb relating the pol ar gap and the affected orders in van Gelderen and 
Koop (1997). 

The maximum error in the inverse computation is small, less than 10-11 . One can therefore 
conc1ude that indeed optimal solutions have been found. 



79 

Table 5. Generalized biased estimation results, m ~ 10 

I obs. c(inv) 

90 yy 169 0.4 0.8 10-11 

zz 2 0.01 1.0 10-12 

92.5 yy 124 0.3 0.8 10-12 

95 yy 74 0.2 0.8 10-12 

97.5 yy 46 0.1 0.8 10-12 

zz 3 0.1 0.9 10-11 

d 0.01 1.0 10-13 

100 yy 31 1.6 1.0 10-10 

4.4.2 Biased estimation 

The results for generalized biased estimation, with m ::::: 10, are Iisted in Table 5. 
Again the Vzz missions give about the same MSE as the Vd mission. Here also Vyy performs 

better for increasing polar gap. The Vyy missions have a mean square error one to two orders 
larger than the reference MSE. 

The bias for Vzz in a po lar orbit and Vd at 97.5 degrees is lOO times larger than for TR but 
still very smal!: 1 % of the propagated error. The relative bias for the remaining missions is 
about the same for GBE and TR when m ::::: 10. 

The mean square error of GBE now is equal to that of TR or slightly smaller. Again the 
errors in the inverse show a dramatic improvement with respect to the results in Table 3. The 
maximum error is less than 10-10 . 

5 Conclusions 

Generalized biased estimation is not suited to stabilize an ill-posed problem when part of the 
long wavelength signal (high energy) is causing the instability. Tikhonov regularization is better 
applicabIe, although the errors of the inverse computation are too large. In general: the method 
of regularization one has to choose depends on the cause of the instability. 

Not estimating the low degree and order harmonic coefficients more or less solves this prob
Iem. However, then one has to rely on a priori coefficients which is not desirabie for a dedicated 
gravity field mission Iike satellite gradiometry. Other constraints, for example by GPS tracking, 
are therefore needed. 

In most cases the bias cannot be neglected. Propagated to geoid errors these biases, and the 
total error, become largest in the polar areas where no measurements are available. The errors 
for GBE are not propagated to geoid heights when the error in the inverse is too large. Even 
when the low degree and orders are excIuded the bias can reach up to 40% of the propagated 
error. 

The regularization parameter a should be determined with care since large variations exist 
in the a giving the minimium Mean Square Error. It is therefore not justified to just pick any 
number one likes. The a's shown here are not realistic in the sen se that no realor simulated 
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observations have been used. Future research should use obeservations and compare the results 
with those reported here. 

Encouraging is the finding that for Tikhonov regularization, exc1uding the actual pol ar gaps, 
and assuming that not only Vyy observations are available, the quantity of greatest interest in the 
space domain, the geoid undulation, can be precisely obtained. 

Acknowledgement The computations were partially performed in C++ which was facilitated by the 
matrix Iibrary newma t 0 8 developed by R. Davies. 
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Quality Assessment of Geopotential Models by 
Means of Redundancy Decomposition? 

Johannes Bouman 

Abstract 

The determination of a model of the earth's gravitational potential from satellite observations is 
an ill-posed problem in the sen se that a small change in the data may result in a large change 
in the solution. A stabie solution is obtained by adding a priori information to the system of 
normal equations. One way to describe the quality of the solution is to assess how much the 
observations contribute to the solution and how much the a priori information. The redundancy 
number, which is associated with intemal reliability, is sometimes used as a measure of this con
tribution. It is shown here that this is not strictly correct and an alternative method is developed. 
Moreover, a contribution measure for biased estimators is given. 

1 Introduction 

Suppose one wants to determine a model ofthe earth's gravitational field from satellite methods, 
e.g. satellite tracking, satellite gravity gradiometry, etc. It is th en weil known that the deter
mination is an inverse or ill-posed problem requiring regularization or stabilization, Rummei 
et al. (1979). In Geodesy such a stabilization is often looked upon as collocation, for example 
Marsh et al. (1988), and the estimated parameters are assumed to be unbiased. Another ap
proach comes from Tikhonov regularization which stabilizes the unstable problem in the same 
way as collocation, however, inherent to the method is the regularization error in the estimated 
parameters, Louis (1989). It can be shown that this regularization error is equal to the bias in 
biased estimation, Bouman and Koop (1997). 

If one has computed a geopotential model from satellite observations, this model has little 
value unless one knows its quality. But how should 'quality' be described, does there exist 
a uniform measure? The answer is probably 'no'. First of all a quality assessment can only 
start when we agree on the (un)biasedness of the solution. Secondly, if we do agree on this 
issue there are a number of possibilities to gain insight in the 'overall quality'. One could, 
for example, use the mean square error, or one could propagate the errors in the geopotential 
model to physical quantities of interest like geoid heights. Other measures are the signal-to
noise ratio of the parameters solved for, the correlation between parameters, reliability, etc. 
The quality assessment method considered here is redundancy decomposition as described in 
Schwintzer (1990). Basically the redundancy number is a relative comparison of the a priori and 
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a posteriori error variances of the measurements and can be associated with intemal reliabiIity. I 
The smaller the redundancy part of an observation, the larger an error in that observation must 
be in order to he detectable, Bouman (1993). 

The outline of this paper is as follows. Firstly, the linear model relating the measure
ments to the unknowns is described as weil as the method to compute a stable solution. Then 
Schwintzer's method of quality assessment is recalled and our objections against his interpre
tation of the redundancy number. We propose a different quality assessment based on the gain 
matrix from Kalman filtering and generalize the method for biased estimators. Finally the con
cIusions are listed. 

2 Model description and stabilized solution 

2.1 Model description 

We assume that the relation between the observations, y, and the unknowns to be solved for, x, 
is linear 

y=Ax+e (1) 

where A is the Iinear or Iinearized model and e is the vector of miscIosures. The latter contains 
observation errors and model errors. These errors have zero expectation, i.e. 

E{y} = Ax, D{y} = p-I (2) 

with p-I the error covariance matrix of the observations. 
Although it is not important in this paper to specify the exact nature of the observations 

and the unknowns, one could for example think of lumped coefficients as observations and of 
spherical harmonic coefficients as unknowns. It is important, however, to note that (1) is an 
abstract notation of the discretisized vers ion of an integral equation of the first kind, which 
is ill-posed. In satellite geodesy this is, for example, due to the downward continuation term 
(r / R)n+l, with r > R, which amplifies the measurement noise. 

2.2 Solution with collocation 

The least-squares collocation solution of (1) is 

or 

Xc = (ATpA + G;xl tI ATpy 

Xc = GxxAT(AGxxAT + Qy) -I y 

Gxy(Gyy + Qy)-Iy 

(3) 

(4) 

where G ij are signal covariance matrices between i and j and Qy = p - I is the measurement 
error covariance matrix. The equality of (3) and (4) is for example derived in Rummei et al. 
(1979); Bouman (1993). The least-squares collocation solution Xc minimizes 

J(x ) = IIAx - YII~ + Il x ll~- I . .. 
I The a posteriori errors or residuals are defined as !he differences between !he real and computed observations 

af ter least-squares adjustment, whereas!he a priori errors can only be estimated, for example on basis of knowledge 
of !he invo\ved measurement device. 
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Here, both noise and signal are minimized. Cxx could for example be Kaula's rule. 
One of the assumptions in collocation is that the signal is on the average equal to zero, 

Moritz (1980): 
M{x} = 0 

with M the average over the whole sphere. If the disturbing potential is defined in the proper 
manner this is true, however, it is not true in genera!, for example when individual potential 
coefficients have to be estimated. 

Solution (3) also solves (2) extended with zero observations for all unknowns 

(5) 

with z = 0, and this will be the point of departure for the redundancy decomposition. The error 
covariance matrix of the estimated parameters is, see (I) and (5) 

(6) 

which can be used in error propagation. 

2.3 Solution with Tikhonov regularization 

The least-squares solution of (I) can be obtained by minimizing 

l(x) = IIAx - YII~ · (7) 

Dealing with ill-posed problems, however, one does not get a stabie solution by minimizing (7). 
Imposing an additional constraint on x does give a stabie solution. Minimizing 

lo(x) = IIAx - YII~ + allxll~-l .. 
results in 

(8) 

where a > 0 is the regularization parameter. 
Of course, there seems to be no essential difference between equations (3) and (8) apart from 

a. Note, however, that in deriving Tikhonov regularization we made no assumptions about x 
other than that its total energy is bounded. Thus (8) gives a biased solution unless the average 
of x is indeed zero. The difference between the exact solution Xe from exact data Ye and the 
regularized solution Xt is 

(9) 

with Xe = A+Ye and A+ is the generalized inverse of A. The first term on the right-hand side 
in (9) is called the data error, the second the regularization error Louis (1989). The latter can 
be shown to be equal to the bias in biased estimation, Bouman and Koop (1997) . For biased 
estimation compare Vinod and Ullah (1981); Xu (I992a, 1992b). 

Note that the extended model (5) is not valid here since E{O} = x or E{x} = 0 doesn't 
necessarily make sense. 
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3 Contribution of tbe observations to tbe collocation solution 

Schwintzer (1990) uses the redundancy number as a measure of the contribution of the obser
vations to the solution of the unknowns. Therefore, the redundancy number is discussed first, 
followed by Schwintzer's interpretation of it. Finally, we present an alternative measure be
cause we do not agree with this interpretation. For further discussion it is referred to Bouman 
(1993). 

3.1 Redundancy number 

Consider the linear relationship E {y} = Ax, where the number of observations is mand the 
number of unknowns is n, m ~ n. Further, let the error covariance matrix p-1 = Qy be 
diagonal, i.e. the measurements are uncorrelated. The redundancy is T = m - n and it can be 
shown that (Teunissen, 1994, p. 49) 

E{ êT Q;lê} = trace( QêQ;l) 

and because (Teunissen, 1994, p. 55) 

E{êT Q;l ê} = m - n 

it holds that 
(10) 

with Qy the error covariance matrix of y, Qê the covariance matrix of ê and ê the vector mini
mizing eTQ;le, e = y - Ax. The least-squares solution of x is i, and iJ = Ai, ê = y - iJ. 

The elements on the diagonal in (10) are denoted as Ti: [QêQ;l]ii = Ti' The sum of all Ti is 

m 

LTi=T, 
i=l 

Ti is the i-th local redundancy number. It is a measure of the extent with which the observation 
Yi contributes to the total redundancy. Because Qê = Qy - QiI (Teunissen, 1994, p. 60) we can 
write 

O'~ 
Ti = [(Qy - QiI )Q;l]ii = [1 - QilQ; l] ii = 1 _ ~' . O'y, 

Therefore, 0 < Ti < 1 since 0 < O'~, < 0';, (if not the error variances O'~, couldbecome 
negative). 

Intemal reliability. The Ti can be associated with the internal reliability, Förstner (l979a, 
1979b); Teunissen (1995), which is a measure of the model error that can be detected with 
a certain probability "'fa, for example "'fa = 80%. The minimal detectable bias (mdb) of an 
observation Yi is, Teunissen (1995): 

lVii = O'y,fFi 

with the noncentrality parameter >'0 which depends on the choice of "'fa. The mdb tells us that 
an error of size lVii in observation Yi can be detected with a probability of "'fa, the power of the 
test. Therefore, the smaller the redundancy part of an observation, Ti is smal!, the larger an error 
in that observation must be in order to be detectable. 



85 

3.2 Schwintzer's interpretation 

Consider the extended model (5). The redundancy number of the zero observation Zi is 

(11) 

where ot and (J~, are the i-th diagonal elements of Q i and Q z respectively. Here we have Q z = 
Cxx and Q i = Qx since z = I xc, see also (6). Schwintzer (1990) uses the local redundancy 
number (11) as a measure for the contribution to the solution from the observations y. He 
states: "The partial redundancy r z" ( ... ), reflects the contribution of the a priori information to 
the corresponding results for CIm or Slm in relation to the contribution coming from the real 
data." (CIm and Slm are coefficients of a spherical harmonic series and the a priori information 
are the zero observations with weight matrix C;;.) 

There is some truth in this. Specifically, the zero observations are uncorrelated and E{ z} = 
Ix. Any redundancy of an observation Zi, that is any verifiability of Zi, is due to the observations 
y. If r z, is close to one or r z, = 1, then the corresponding zero observation has excellent internal 
reliability. Because of the uncorrelated zero observations, the redundant part of Zi has to come 
from the 'real' observations y and these observations contribute 100% to the verification of 
Zi. However, we had E{Zi} = Xi and therefore one could say that y contributes 100% to the 
solution of Xi. On the other hand, if rz; = 0 then the corresponding zero observation has poor 
reliability and y does not contribute to the solution of Zi = Xi' 

However, our objection to this line of reasoning is that the redundancy has to do with the 
reliability of observations and it has nothing to do with the unknowns. Moreover, when the a 
priori information are for example correlated coefficients of an earl ier solution, it is not obvious 
how to explain the redundancy number. Finally note that the expression of the mdb in terms of 
ri is derived under the assumption that Qy is diagonal, Teunissen (1995). 

3.3 Alternative contribution measure 

Instead of the redundancy number one can also look at the change in the error covariance matrix 
of the unknowns due to the adding of the zero observations. The contribution of the observations 
to the solution of the unknowns is defined as follows: 

(12) 

where Q;,1 is the least-squares normal matrix and P not necessarily diagonal. This comparison 
makes sense. The larger the weight of the observations relatively to the prior information, the 
larger contry gets. Conversly, the smaller the weight matrix P is with respect to C;x1, the 
smaller contry gets. Of course also the design matrix A is important in the comparison of 
the observations with the a priori information, since different A's may give different relative 
influence of C;x1

• However, we assume A as being a given constant matrix. The contribution of 
y to an unknown Xi corresponds to the i-th diagonal element of the matrix contry. 

The contribution of the zero observations to the solution of the unknowns is analogously 

(13) 

Note that the sum of the two contributions equals In, which indicates that the total information 
for one estimator comes from the observations and the a priori information together. Further 
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note that the i-th diagonal element of contr z is 

since Cxx = Qx,z is a diagonal matrix. Therefore, 

which happens to be equal to (11). On purpose we use 'happens' since in case of correlated a 
priori information these two numbers will not be equal. Still (12) can easily be used and makes 
sen se. 

As is shown in Bouman (1993), equation (13) equals the gain matrix in Kalman filtering 
which describes the precision improvement of the estimated unknowns when additional mea
surements become available, Salzmann (1993). It is, however, not allowed to speak about pre
cision improvement. The least-squares solution from y alone is unstable and has to be avoided. 
Equation (12) is just a measure for the contribution of y to Xi. 

4 Contribution of the observations to the biased solution 

The above deriviations are all based on the assumption of unbiasedness of the estimator. How
ever, the solution might be biased and the precision of the solution can no longer be described 
with the propagated observation error alone: the bias has to be included as weil. 

4.1 The meao square error matrix 

Remark: The equations involved with the mean square error matrix (and bias) become more 
complex compared to the unbiased case. Therefore, we will abandon the weight matrices Pand 
Cxx for the moment, i.e. P = Cxx = J. 

The propagated data error is from (8) 

where explicitely E {z} =1= X has been used. The bias in the solution is 

which can be derived from (9), see for example Bouman and Koop (1997). The total error or 
Mean Square Error Matrix (MSEM) consists of the propagated error and the bias 

The contribution of y now is, compare with (12) 
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Remark: Including weight matrices (14) becomes 

contry = (ATPA+aC;xl)-I(ATPA+a2C;xlxxTC;"I) x (ATpA + aC;x1)-IATpA. (15) 

Now suppose that Cxx can be represented by Kaula's mie and that x are potential coefficients. 
Then Cxx ~ diag(xxT ) since Kaula's mie approxmimates the tme values, or 

contr ~ (ATPA+aC- 1)-I(ATPA+a2C- 1)(ATPA+aC-1)-IATpA a~1 (ATpA+C-1)-1 ATpA y xx xx xx xx, 

neglecting the off-diagonal terms of xxT and for a = 1. Hence, for this special case the MSEM 
is equal to (6) and (15) equals (12). 

4.2 The mean square error 

An alternative to the use of the MSEM is the spectral decomposition of the Mean Square Error 
(MSE). The trace of the MSEM is defined as the MSE, which can be shown to be, e.g. Bouman 
(1993): 

n 2 + 2( )2 
MSE = L ai a X,Vi 

i=1 (al + aF 
with the singular value decomposition of A = U~VT and Vi is a column vector of V and ai is 
the i-th diagonal element of~. Comparing for a single i the MSE with and without a gives 

MSEi al + a 2(x, Vi)2 2 

contr Yi = MS'E I = (2 )2 ai . 
, a=O a, + a 

(16) 

When the eigenvalue al is large (compared to a) it means that the unknown Xi is represented 
weIl by the measurements and contr Yi ~ 1. On the other hand, when al is small compared to 
a, contrYi ~ 0, as required. Of course also (x, Vi) has a certain size and cannot be neglected. 
However, in the time domain (x, Vi) has comparable size for various i since Vi is an orthonormal 
vector and the energy of the signal is expected to be about equal at different locations. In the 
frequency domain (x, Vi) is large when the long wavelengths are poorly determined and will be 
smaller for shorter wavelengths (less energy). Thus, only poorly determined long wavelengths 
could cause problems because the numerator becomes larger. Then the above contribution 
measure probably fails. 

4.3 Discussion on the mean square errors 

Comparison of MSEM and MSE. Let the singular value decomposition of A be A = U~VT, 
with U and V orthonormal matrices, i.e., UT = U-I, V T = V - I and ~ is the matrix with the 
singular values on the main diagonal. Some elementary calculation then gives 

contry = V(~2 + aI)-I(~2 + V T a2xxTV) x (~2 + aI)-I~2VT. 

The trace of con try now yields 
n 

LcontrYi 
i=1 

where contrYi is defined in (16), see also Xu and Rummei (1994). However, the diagonal 
elements of contryare not the same as contr Yi' only their sum consists of these elements. The 
elements [contrY]ii are build of contrYi subject to a 'spectral transformation' by V and V T. At 
first sight we prefer the measure (15) since it is directly comparabie with (12). The measure 
based on MSE maybe usefull as weIl, numeri cal examples could further clarify this issue. 
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Camputatianal aspects. Assuming that x is known (which it is not since we are trying to 
estimate x), a severe problem in the computation of MSEM and cantry is that xxT gives a 
full matrix. When for example potential coefficients are the unknowns up to degree and order 
180, this matrix is too large to be handled on nowadays computers. One could take the block 
diagonal part of the full matrix but the neglected parts may be of the same order as the block 
diagonal elements. Unfortunately we do not know of any better alternative yet. 

The realization of the MSE requires a singular value decomposition or, better, an eigenvalue 
decompostion of the positive definite normal matrix ATA. The eigenvalue decomposition is 
better since it is a less expensive decomposition in terms of computation time. However, if the 
normal matrix does not have a special stmcture, also the eigenvalue decomposition may give 
trouble. Again, one could take only the block diagonal part for example. 

Weight matrices. The weight matrices Pand Cxx are in general not equal to the indentity 
matrix of course. Therefore, it may seem necessary to redo the above deriviations for the more 
general case. Fortunately this is not necessary, since a transformation to the standard form: 
minimize 

J",(x) = IIAx - yl12 + allxl12 

is always pos si bIe, see e.g. Hansen (1997); Bouman (1993). 

Haw ta campute the bias. It was noted above that we do not know x, hence, we cannot com
pute the bias or the mean square error. Instead, we could use the biased estimator Xt. but this 
might underestimate the bias, Xu (I 992b ). 

Specifically for satellite geodesy one might choose some existing gravity model like 
OSU91A, Rapp et al. (1991), to compute the bias or one can take the size of the coefficients 
according to Kaula's mIe and the sign following from the satellite solution, Koop (1993). Then 
the bias will not be underestimated and the error assessment is probably more reliable. 

5 Conclusions 

The answer to the question: 'Quality assessment of geopotential models by means of redun
dancy decomposition?', must be 'No, unless the a priori information has the simple form (5) 
and the estimator is unbiased.' Otherwise it is better to use (12) which is related to the gain 
matrix in Kalman filtering, or (15) when the estimator is biased. 

A further understanding of the respective measures and a comparison of them, would be by 
numerical examples. The major problem for the 'biased' measures is the estimation of the bias 
and the handling of the large matrix xxT . 

References 

Bouman, J. (1993). The normal matrix in gravity field determination with satellite methods; its stabilization, its 
information content and its use in error propagation. Master's thesis, Delft University of Technology. 

Bouman, J. and Koop, R. (1997). Quality differences between Tikhonov regularization and generalized biased 
estimation in gradiometric analysis. DEOS Progress Letters, 97.1, 42-48. 

Förstner, W. (l979a). Das Programm TRINA zur Ausgleichung und Gütebeurteilung geodätischer Lagenetze. 
Zeitschriftfür Vermessungswesen, 104, 61-72. 

Förstner, W. (l979b). Das Rechenprogramm TRINA für geodätische Lagenetze in der Landesvermessung. Nachr. 
a. d. öff. Vennessungsw. NW, 12, 125-166. 



89 

Hansen, P. (1997). Regularization Tools, A Matlab package for analysis and solution of discrete ill-posed prob
lems, Version 2.1 for Matlab 5.0. Department of Mathematica! Modelling, Technica! University of Denmark. 
http://www.imm.dtu.dkrpch. 

Koop, R. (1993). Global gravity field modelling using satellite gravity gradiometry. Publications on geodesy. New 
series no. 38, Netherlands Geodetic Commission. 

Louis, A. (1989). Inverse und schlecht gestellte Probleme. Teubner. 

Marsh, J., Lerch, E, Putney, B., Christodoulidis, D., Smith, D., Fe\sentreger, T., Sanchez, B., Klosko, S., Pavlis, 
E ., Martin, T., Williamson, J. R. R., Colombo, 0., Rowlands, D., Eddy, w., Chandler, N., Rachlin, K., Patel, G., 
Bhati, S., and Chinn, D. (1988). A new gravitational model for the earth from satellite tracking data: GEM-Tl. 
Journal of Geophysical Research, 93(B6), 6!69~2!5. 

Moritz, H. (1980). Advanced physical geodesy. Wichmann. 
Rapp, R., Wang, Y., and Pavlis, N. (1991) . The Ohio State 1991 geopotential and sea surface topography harmonic 

coefficient modeis. Report No. 410, Ohio State University. 
Rummei, R., Schwarz, K., and Gerstl , M. (1979). Least squares collocation and regularization. Bulletin 

Géodésique, 53, 343-361. 
Salzmann, M . (1993). Least squares filtering and testing for geodetic navigation applications. Publications on 

geodesy. New series no. 37, Netherlands Geodetic Commission. 
Schwintzer, P. (1990). Sensitivity analysis in least squares gravity field modelling by means of redundancy decom

position of stochastic a priori information. Deutsches Geodätiches Forschungs-Institut, internal report. 
Teunissen, P. (1994). Mathematische geodesie I, inleiding vereffeningstheorie. Lecture notes, Delft University of 

Technology, Faculty of Geodetic Engineering, Delft. (Introduction to adjustment, in english). 
Teunissen, P. (1995). Mathematische geodesie Il, inleiding toetsingstheorie. Lecture notes, Delft University of 

Technology, Faculty of Geodetic Engineering, Delft. (Introduction to testing, in english). 
Vinod, H. and UlIah, A. (1981). Recent advances in regression methods. Marcel Dekker. 
Xu, P. (1992a). Determination of surface gravity anomalies using gradiometric observables. Geophysical Journal 

International,110, 321-332. 
Xu, P. (1992b). The value of minimum norm estimation of geopotential fields. GeophysicaLJournal International, 

111, 170-178. 
Xu, P. and RummeI, R. (1994). Generalized ridge regression with applications in determination of potential fields. 

Manuscripta Geodetica, 20, 8-20. 





DEOS Progress Letter 98.2: 91-1 JO 

Overview of tide gauge systems and averaging 
techniques 

Kyra van Onselen 

Abstract 

Variations in sea level can be determined using tide gauges, relating the variation in sea level 
height to alocal bench mark. The quality of the resulting time series depends on the measuring 
accuracy of the tide gauge system used and on the frequency of the measurements. Since sea 
level variation curves are usually based on monthly or yearly mean sea level heights, the method 
used to form these mean sea level values also influences the accuracy of the determined curves. 

In this article an overview of error characteristics (precision, inherent systematic errors, and 
limitations) is given for six major ti de gauge systems: tide poles, tide poles with float, stilling 
weil tide gauges, reflection tide gauges, subsurface pressure tide gauges, and open sea pressure 
gauges. In addition a number of methods are discussed which have been used in the past, or are 
still being used nowadays, to form monthly and annual mean sea level heights. 

1 Introduction 

Sea level is conventionally monitored using tide gauges, which relate variations in sea level 
height to alocal tide gauge bench mark. Over the years a number of different tide gauge systems 
have been developed, with varying measuring precision and recording methods. In Section 2 
error characteristics will be discussed for the six major tide gauge systems that have been used 
in the past or are still in use today, i.e., ti de poles, tide poles with float, stilling weil tide gauges, 
reflection tide gauges, pressure tide gauges and open sea pressure tide gauges. 

The quality of sea level height time series and, consequently, the quality of estimated pat
tems in sea level variation, not only depends on the measuring accuracy of the tide gauge sys
tems which have been used, but on the measuring frequency as weil. In addition, since usually 
only some kind of mean values (hourly, daily, monthly, or even yearly values) are available, 
the method used to form these mean values also influences the quality of sea level height time 
series. These effects of sampling rate and averaging method wil! be discussed in Section 3. 

2 Error characteristics of tide gauge instruments 

Local sea level variations have been measured for hundreds of years using a variety of mea
suring techniques. At first, sea level measuring systems consisted of a vertically mounted pole, 
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relative to which instantaneous sea level height could be determined by an observer. Since read
ing sea level height relative to a pole is difficult in the presence of waves, the introduction of a 
float which moves vertically in a weil significantly improved the accuracy of the measurements. 
This system was further improved by automating the recording of the sea level data, e.g., by 
means of a pen driven by the float across achart, which in turn is mounted on a circular drum. 
According to Pugh (1987), self-recording gauges began operating in the beginning of the nine
teenth century. Mechanical recording has a number of disadvantages as weil, e.g., distortion of 
the paper chart due to humidity, friction of the pen, etc. Therefore, digital recording leads to a 
further improvement in the accuracy of the measurements. 

Besides improvements on the "traditional" system of the stilling weil with float system, a 
number of other sea level measuring devices, based on other measuring principles, have been 
developed during this century. Examples are tide gauges that measure pressure at a fixed point 
below the sea surface and tide gauges that measure the reflection time between a fixed point and 
the instantaneous sea surface. 

For planning required measurement durations for sites were new tide gauges have to be in
stalled, only the accuracy of state-of-the-art tide gauge systems is important. However, error 
characteristics of older sea level measuring systems are relevant as weil since often ol der sea 
level records have to be included in order to estimate specific phenomenon in sea level height 
variations. For some sites, tide gauge data have been recorded for more than a century, and, in 
order to determine meaningful results from these data, variations in data quality over the length 
of the time series (e.g., due to changes in applied measuring techniques) have to be taken into 
account. Error characteristics and limitations for the six major techniques, i.e., tide poles, tide 
poles with float, stilling weil tide gauges, pressure tide gauges, reflection tide gauges, and open 
sea pressure tide gauges, will be described in the following sections. 

2.1 Tide poles 

One of the first systems for monitoring sea level variations consisted of a so-called tide pole, 
vertically mounted on a site assumed representative for the area of interest. At regular intervals 
the height of the instantaneous sea level relative to this pole can be read by an ob server. The 
gauge zero should be connected to a permanent bench mark on shore, the so-called tide gauge 
bench mark. 

The precision of sea level measurements from tide pole readings is determined by random 
reading errors which, according to Montag (1970), depend on the state of the sea surface, the 
quality of the markers, the di stance between the observer and the tide pole, light conditions, 
and the constitution of the observer. From experiments carried out under different weather 
conditions, Montag (1970) concIuded that the average error due to these reading errors amounts 
to less than 2 cm. Pugh (1987) is slightly less optimistic, he states a reading precision of 2 
cm but only for calm weather conditions; in the presence of waves this precision deteriorates. 
According to Pugh (1987), experiments show that in the presence of waves with a height of 1.5 
meters, experienced observers are able to read the tide pole with a precision of 5 cm. 

Apart from these random reading errors, the accuracy of tide pole measurements is also deter
mined by the presence of systematic errors and blunders. Blunders can originate from gross 
errors either in the readings of the sea level heights or in the registration of these heights. Sys-
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tematic errors can result 

1. from the construction of the pole itself 
e.g., deviations in the scale of the pole, or problems with the connection between the 
individuallmeter sections of the pole, 

2. from environmental conditions 
e.g., due to different illumination during day and night, or 

3. they are caused by the operator 
e.g., operator has a tendency to read slightly to high values. 

Furtherrnore, sea level in the presence of waves is often deterrnined as the average between 
the crest and trough of the waves, as aresuit, due to two different mechanisms waves give 
rise to additional systematic errors. First of all, as explained by Pugh (1987), for an observer 
viewing the pole at an angle the apparent trough may actually be the crest of an interrnediate 
wave which is obscuring the true trough at the pole, resulting in an averaged level which is 
too high. In addition, since water waves differ from a true sine oscillation, averaging between 
crest and trough values will give a systematic error, which value depends on the state of the sea 
surface, but on average will be in the order of 1 mm; see Montag (1970) for more details. 

Although tide pol es have a large number of limitations they have some advantages as weIl. For 
example, due to the small amount of technology involved they are relative cheap and easy to 
install and operate. Consequently, they provide an easy method to check readings of other tide 
gauge systems, e.g, to check the datum imposed for pressure tide gauge measurements (see 
Section 2.5). 

2.2 Tide pole with float 

As indicated by, e.g., Pugh (1987), the problem of reading the tide pole (especiaIly in the pres
ence of waves) can be minimized as follows . A transparent tube is fitted alongside the ti de pole, 
this tube is connected to the sea by means of a narrow inlet tube, which prevents waves from 
entering the tube connected to the tide pole, see Figure 1. As aresuIt, the height of the sea level 
inside the tube can easily be read relative to the tide pole. 

How weIl waves are attenuated depends on the so-caIled time constant of the specific tide pole 
system. According to Smithson (1997), this time constant is deterrnined by the characteristics 
of the inlet tube and stilling tube and can be estimated as 

32vLpD~ 
T = gD: 

(1) 

in which 9 is the gravitational acceleration, v is the kinematic viscosity of sea water, Dp and Lp 
are resp. the diameter and length of the inlet tube, and Dw is the intemal diameter of the stilling 
tube. 

The amplitude of a wave with frequency w (in radians) is attenuated by a factor a which can 
be estimated by 

1 
a = -ylr.1;=+=w"'2;=T""2 (2) 
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Fig. 1. Tide pole with float; reproduced from Smithson (1997) 

In addition, the inlet tube system causes a phase lag (8) of the wave given by 

tan () = WT 

Both equations are given by Smithson (1997). 

(3) 

A tide pole with a float in a stilling tube has a lot of error characteristics and limitations in 
common with stilling weIl tide gauges. Since stilling weIl tide gauges are one of the more 
popular tide gauges in use nowadays, these characteristics will be described in detail in the 
next section. In this section, problems related to using a float and a stilling tube will only be 
discussed briefly. 

The accuracy of tide pole measurements fitted with a float in a stilling tube is deterrnined 
by mechanical problems and the deviation between the water level in the tube and the open sea 
level outside. Mechanical problems are, e.g., friction of the float within the stilling tube and 
deviations in the construction of the pole itself as discussed in Section 2.1. 

Deviations between the water level inside and outside the stilling tube depend, e.g., on the 
state of the sea surface in connection with the size of the inlet and stilling tube. Waves, which 
cause reading inaccuracies if "norrnai" tide poles are used, are damped out by the filtering 
properties of the inlet and stilling tube construction. How weil these waves are attenuated 
depends on the size of these tubes. However, this mechanical filtering of high frequency signals 
also results in a small time delay of the sea level in the tube as compared to the sea level height 
variations outside the tube. Since this delay is frequency dependent (see equation 3), this causes 
an error in measured sea level. As will be discussed in more detail in the following section, 
an additional problem is that due to environmental conditions (like silting up by sediments 
and marine growth) the filtering characteristics of the inlet and stilling tube construction might 
change over time. 

Other factors contributing to a deviation between levels inside and outside the stilling tube 
are differences in salinity and temperature between the "open sea" water and the water inside 
the tube and pressure deviations due to the inlet tube being placed in a tidal stream. Since these 
error sources also impede stilling weil tide gauges, they will be further discussed in Section 2.3. 
An additional problem with salinity and temperature differences in the stilling tube is that their 
effects are extremely difficuIt to estimate if dye is mixed into the water in order to increase 
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Fig. 2. Stilling weil tide gauge with mechanical recording on a drum; reproduced from IOC (1985) 

the visibility of the level of water in the tube and/or some substances are added to the water to 
prevent freezing. 

2.3 Stilling weil tide gauges 

The two previous tide gauge systems have the major disadvantage that tide gauge readings have 
to be performed by a human observer. Apart from the fact that this facilitates the occurrence of 
blunders (gross errors in reading or recording of sea level heights) this makes them unsuitable 
for long term measurement campaigns with a high measuring frequency. This high measuring 
frequency allows elimination of a.o., high frequency disturbances, and results in more precise 
(e.g., hourly) mean values. 

Since the mid-nineteenth century self-recording gauges have been in operation. They often 
consist of a so-called stilling weIl (a tube or other enclosed area, connected to the open sea by 
an orifice or inlet pipe) with a float. This float is connected to the recording system, which in 
the past was a mechanical device, whereas newer tide gauges use digital recording. Figure 2 
shows an example of a stilling weIl tide gauge with orifice and mechanical recording on a drum. 

In order to prevent aliasing and to all ow for the use of a float, high frequency movements of 
the water surface have to be filtered out mechanically. The stilling weil provides a protection 
of the float system against environmental conditions (e.g., from the effect of wind), whereas the 
relatively small diameter of the in let provides a mechanical filter of high frequency movements 
like waves . Damping characteristics of the stilling weil are, mainly, determined by the ratio 
between the diameter of the inlet and the diameter of the stilling weil itself. 

Damping effect of the stilling weil system is determined by the flow coefficient through the 
inlet. As explained in detail by, e.g., Sager and Matthäus (1970), this flow coefficient includes 
the hydraulic losses inherent to the water having to move through the inlet, and has a value 
between 0 (inlet is completely closed) and I (ideal flow conditions) . Detailed relations between 
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Fig. 3. Relation between attenuation factor and wave period for stilling wells with resp. an orifice and a 
pipe inlet; reproduced from Smithson (1997) 

water level response in the stilling weIl to resp. constant, linear and periodic variations of the 
"open" sea water level have been described by Sager and Matthäus (1970), both this is beyond 
the scope of this artic1e. 

The term "inlet" has been used to indicate one of the two types of inlets commonly used, i.e., 
orifices and inlet pipes. These two types of inlets have different attenuation and (maybe even 
more important) phase lag characteristics. As explained in detail by Noye (1974), a stilling weIl 
using an inlet pipe has a number of advantages compared to a stilling weIl with an orifice, i.e., 

• using an in1et pipe gives full system response (no attenuation) for a relatively wide range of 
tidal and long-period oscillations, 

• high-frequency phenomena like wind waves do not cause a systematic set-down of the mean 
water level in the stilling weIl, 

• inlet pipes yield linear systems which allow tidal constituents to be directly corrected for 
attenuation and phase lag, and 

• instead of gradualy increasing the attenuation factor with increasing frequency, stilling wells 
with an in1et pipe have a relatively sharp cut-off. 

These effects are illustrated by Figure 3 (reproduced from Smithson (1997)) which shows for 
both types of inlet the relation between wave period and attenuation factor. 

The accuracy of sea level variations based on stilling weIl tide gauges is determined by the 
stilling weIl itself (deviations between the water level inside the stilling weIl and the "open" 
sea), by mechanica! problems of the float system, and by problems with the recording of data. 
If digital recording is used to record samples of sea level height at discrete periods in time, 
based on the mechanical filtering characteristic of the stilling weIl system, the sampling period 
has to be carefully selected in order to prevent aliasing of remaining high frequency fluctuations 
in the stilling weIl. 

Mechanical recording has the advantage that it allows for a continuous monitoring of sea 
level variations, and thus the problem of alising is averted. However, mechanica! recording of 
sea level heights, e.g., on achart mounted on a circular drum (see Figure 2), yields inaccuracies 
in recorded sea level heights as weIl. Main problems, as indicated by e.g., Lennon (1970), 
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Van der Made (1987), and Xu (1990), are problems with the time scale (e.g., due to a deviation 
in the rotational speed of the drum, or even worse, due to variations in this rotation), deformation 
of the drum, and deformation of the paper (e.g., due to variations in humidity). In addition, as 
indicated by Pugh (1987), reading of the produced charts is a tedious procedure which is prone 
to errors. Pugh (1987) estimates that due to the width of the chart trace, precision of sea level 
height charts is in the order of 2 cm for levels and 2 minutes in time 

Mechanical problems with the float system incIude movements of the float and wire, friction 
and backslash in float and counterpoise suspension, variabIe tension in the suspension wire of 
the float, and variations in the length of the float suspension (again based on Lennon (1970), 
Van der Made (1987), and Xu (1990» . A number of these mechanical problems can be checked 
against by the so-called "van de CasteeIe test". In this test, the di stance between the contact 
point and water level is measured manually (e.g., with a steel tape) and compared to the recorded 
sea level height, see Figure 4. Plots of the difference between these two distances through time 
(the so-called "van de CasteeIe diagrams) give an indication of probable mechanical errors in 
the tide gauge system. For an "ideally" operating tide gauge the diagram shows a straight line, 
different types of deviations from these straight line correspond to different types of mechanical 
problems. For more details the interested reader is referred to, e.g., Smithson (1997). 

The last category of limitations on the accuracy of stilling weIl sea level heights are introduced 
by the stilling weIl structure itself. As indicated in the preceding section, mechanical filtering 
by means of a relative sm all inlet not only attenuates high frequency signals it also causes a 
time delay between sea level variations in the "open" sea and resulting water level variations 
in the stilling weIl. Furthermore, the water level in the stilling weIl deviates from that in the 
"open" sea if differences in density (differences in temperature and salinity) and pressure occur 
between the water inside and outside the stilling weIl. 

An additional probIem with mechanical filtering by means of a relative narrow inlet is that 
its filtering characteristics change if the diameter of the inlet changes. Environmental causes 
which can narrow the inIet are siltation, marine growth and accumulation of weed or trash. 
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Tide gauges situated in somesites will be more prone to cIogging up than tide gauges situated 
in other sites. Besides, as investigated by Cross (1968), the flow through an orifice inIet is 
asymmetrieal, resulting in a pumping-down effect of the water level in the weil if significant 
surging outside the weil occurs. Cross (1968) estimates that this effect can give an error of 14 
cm in the presence of waves with heights between 1.5 and 3 meters. 

Deviations in density (in temperature and salinity) between the sea water and the water 
inside the stilling weil causes different water levels inside and outside the weIl. As described 
by Van der Made (1987) if salinity of the "open" sea water changes (e.g., due to variations in 
runoff of a nearby river), the effect on the density of the water outside the stilling weil will be 
much larger than the effect on the water inside the weIl. As an example of the impact of this 
phenomenon on determined sea level heights, Van der Made (1987) shows that for a stilling 
weil with an inlet tube 4 meters below the water level and a density of 1010 kg/m3 inside the 
weil, an increase in density outside the weil from 1000 to 1020 kg/m3 would yield a deviation 
between the level inside and outside the weil of 4 cm. 

Especially stilling weil tide gauges at estuary sites can show large deviations between the 
water level inside and outside the stilling weil due to variations in salinity and temperature 
through the tidal cycIe. As explained by, e.g., Pugh (1987), with rising tide the density of 
estuary water increases. Consequently, at high tide the density of the "open" sea water is higher 
than inside the stilling weil, where the density is an average of the "open" sea density during the 
filling up of the stilling weIl. As aresuIt, the water level in the stilling weil can be significantly 
higher than outside the stilling weIl. In extreme cases, Iike tide gauges in the river Mersey 
where the tidal range is in the order of 10 meters, Lennon (1970) estimates that at spring high 
water the level inside the weil can be 6 cm higher than outside the weIl. Pugh (1987) even gives 
a difference in water level of 12 cm for a tidal range of 10 meters. 

Deviations between the water level inside the stilling weil and the "open" sea level can also 
be caused by differences in pressure. If the stilling weil is situated in a tidal stream, the stilling 
weil structure itself causes pressure disturbances by (partly) blocking the flow. In addition, 
other obstacIes in the vicinity of the stilling weil can cause pressure differences. The result is 
a draw-down of the water level, which gives (analogous to differences in density) systematic 
errors in recorded sea level heights. 

Estimates of the precision of stilling weil tide gauge measurements and resulting mean hourly 
values vary widely. For example, Christensen et al. (1994) state that tide gauges at Harvest 
platform estimate sea level heights with a sample standard deviation of ± 1.5 cm around the 
mean. On the other hand, according to Diamante et al. (1987), the standard deviation of a single 
measurement of sea level height made by a stilling weil tide gauge will not be better than about 
5 cm. The precision of sea level heights can be improved by forming hourly mean values, since 
this reduces the influence of high frequency (nearly) random errors as introduced by waves. 
Hamon and Godfrey (1980) estimate that an adequately maintained tide gauge situated in a 
suitable location can yield hourly mean values with a precision of 1 cm, whereas daily mean 
values will have an even higher precision, i.e., a standard deviation of only 1 mmo A suitable 
location is (probably) a site which is the least possible influenced by local processes, so the tide 
gauge is e.g., not installed near a large river mouth. 

In Section 3 different methods will be discussed which can be used to form longer-term 
average values like monthly and yearly means. The precision of these mean values will be sig
nificantly better than that of the single samples of sea level heights because the effect of most 
random influences (Iike the effect of waves) will be strongly reduced. However, a number of 
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systematic errors (Iike draw-down by pressure differences and relative high water levels in the 
stilling weIl during high tides due to differences in density) also occur in sea level measure
ments. These errors cannot be reduced by forming monthly or yearly averages of sea level. As 
explained by Diamante et al. (1987) special attention has to be paid to these systematic effects 
since, if not taken into account by other methods, they will introduce long-period effects which 
are al most identical to the actual trend in sea level height. 

One possible way of dealing with systematic effects is to combine sea level readings for a 
number of tide gauges in a region. However, it should be noted that some of these systematic 
effects (Iike hydrodynamic draw-down) will influence all ti de gauges in the same manner and, 
consequently, it is not possible to completely eliminate these effects by simple averaging tide 
gauge data over a large region. Combining time series for a number of tide gauges in a region 
does not necessarily yield a mean time series with an improved accuracy. Although taking an 
area average will reduce some of the systematic errors present in the individual time series, 
some new errors will be introduced as weIl. For example, the accuracy of the combined time 
series is limited by inaccuracies in the determined height differences between the tide gauge 
benchmarks of the tide gauges under consideration. 

2.4 ReftectioD tide gauges 

As explained in the preceding section, the accuracy of stilling weIl ti de gauge measurements 
is largely influenced by the filtering characteristics of the (narrow) orifice or inlet pipe (and 
especially by alterations of the filtering characteristics by, e.g., siltation of the inlet) and by 
mechanical problems with the float system. According to, e.g., Diamante et al. (1987), these 
systematic errors can be prevented (or at least largely reduced) if this float is replaced by a 
remote sensor which does not require physical contact with the actual water surface. For this 
type of sensor it is no longer necessary to attenuate the high-frequency fluctuations which makes 
mechanical filtering by means of a narrow orifice or inlet pipe superfluous. 

In practice, as indicated by Diamante et al. (1987), present day acoustic measuring equip
ment still requires some kind of protective weIl in order to limit power consumption and procure 
accurate enough results. However, an open protective weIl, in which sea level conditions will 
be more resemblant to the open sea (iess sensitive to e.g., density build-ups, etc.), which is 
Iess pro ne to siltation and does not have a strong filtering effect, might be sufficient. On the 
other hand, for a state-of-the-art station configuration Martin et al. (1996) still propose the use 
of a protective weIl with an orifice opening. However, they use a 15 cm diameter protective 
weIl with a 5-cm diameter orifice, whereas for stilling weIl gauges Pugh (1987) recommends 
an orifice to weIl diameter ratio of 0.1. 

Figure 5, which was reproduced from Martin et al. (1996), gives a schematic drawing of 
such a state-of-the-art reflection tide gauge. Sea level height is measured by means of the time 
taken by an acoustic pulse to travel between the acoustic sensor, the instantaneous sea surface 
and back. From this two-way travel time and the height of the acoustic sensor relative to the 
tide gauge bench mark the instantaneous sea level height can be determined. 

The two-way travel time (tr ) not only depends on the di stance between the acoustic sensor 
and the sea surface (li) but also on the velocity of the acoustic pulse in the sounding tube (Ca), 

i.e., 
21i 

t r =
Ca 

(4) 

For dry air at a temperature of 10° and one atmosphere pressure, sound has a velocity of 337.5 
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Fig. 5. Reflection tide gauge system; reproduced from Martin et al. (1996) 

mis. This implies that, under these conditions, timing must be accurate within 5.9.10-5 seconds, 
in order to detect a I cm change in sea level height. 

Velocity of sound in air depends on temperature, pressure and humidity, therefore, in order 
to accurately determine variations in sea level height, variations in these parameters have to be 
taken into account. The new reflection tide gauge system as described by Martin et al. (1996) 
consists of a self-calibrating acoustic sensor which compensates for variations in Ca (due to 
temperature changes) in the sounding tube. 

According to Martin et al. (1996), sea level heights are determined as average values over 6-
minute intervals based on instantaneous measurements with a sampling rate of 1/s. Averages 
are determined over 3-minute periods, while sample outliers exceeding three times the standard 
deviation corresponding to this 3 minute interval are removed from the data. The resulting 
new averages provide one sea level measurement for every 6 minutes with a resolution of ± 1 
mmo Smithson (1997) is slightly less optimistic; he estimates that a resolution of only about 3 
mm can be achieved by averaging measurements with a sampling rate of 1/s over periods of 3 
minutes. 

2.5 Subsurface pressure tide gauges 

As an other alternative for the stilling weIl tide gauge, nowadays often subsurface pressure tide 
gauges are used. These tide gauges measure pressure at a fixed point somewhere below the 
sea surface and, based on the atmospheric pressure acting on the sea surface (PAw)' the mean 
density in the water column (Pw) and the gravitational acceleration (g). This pressure can be 
converted to sea level height using the relationship between measured pressure (P) and depth 
(D) as given by, e.g, Pugh (1987): 

(5) 

As an example of a subsurface pressure tide gauge system, Figure 6 (reproduced from Pugh 
(1987)) shows a schematic drawing of a so-called bubbler gauge. The cylinder is open at the 
bottom so that water can flow in. A steady flow of compressed air or other gas is let into the 
connecting tube and can bubble out through an orifice (the pressure-point). As explained by 
Pugh (1987), for low rates of gas escape, gas pressure equals water pressure (P). Apart from 
some small pressure gradients in the connection tube, this pressure is transmitted along the tube 
and recorded by the recording system, see Pugh (1987) for a description of recording systems. 



101 

Fig. 6. Subsurface pressure tide gauge system; reproduced from Pugh (1987) 

Equation 5 requires atmospheric pressure measured at the instantaneous sea surface. Since this 
pressure cannot be obtained in practice, atmospheric pressure is measured by a sensor at a height 
(ha) above the sea surface. According to Carrera et al. (1996) the relation between atmospheric 
pressure (PA) at height ha and atmospheric pressure at the instantaneous sea surface (PAw) is 

(6) 

in which Pa is the density of the air between the sensor and the sea surface. 
From equation 5 and equation 6 it is cIear that the precision of sea level heights determined 

by subsurface pressure tide gauges depend on the precision of the measurements of atmospheric 
pressure and "water" pressure, the precision of the value used for the gravitational acceleration, 
the precision of the values used for resp. the water and air density, and on the precision of 
the determined height between the pressure point in the cylinder and the atmospheric pressure 
sensor. 

Carrera et al. (1996) give a comprehensive description of these error sources contributing 
to the overall precision of determined sea level heights. Many of these error sources themselves 
depend on measurements of a number of other parameters, e.g., water density is a function 
of salinity, water temperature and pressure. According to Carrera et al. (1996), of the six 
parameters involved, uncertainties in "water" pressure, water density and gravity contribute the 
most to the resulting uncertainty in sea level height, whereas the contribution of uncertainties in 
atmospheric pressure, atmospheric density and height between the pressure point in the cylinder 
and the atmospheric pressure sensor are relatively smaII. 

Pugh (1987) estimates that the pneumatic system in a subsurface pressure tide gauge with a 
connecting tubes up to 200 meters, can produce water head equivalents (i.e., the depth of water 
which would produce a specific pressure) with a precision of 1 cm. 

Besides random errors, the accuracy of determined sea level heights is also infiuenced by 
the occurrence of systematic errors. For example, as described by Xu (1990), systematic errors 
are introduced by the non-linear relationship between water depth and pressure; hydrostatic 
pressure ranges between 0.10 19 and 0.1034 kg/cm2

. Furthermore, large errors occur when 
water is forced into the connection tube by waves, for more details see Pugh (1987). 
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One of the major advantages of subsurface pressure tide gauges is that they are relatively con
venient to use and they can be operated under difficult environmental conditions. One of their 
major drawbacks is that it is of ten difficult to relate the zero-height point of the system to the 
land based tide gauge bench mark. This is due to (different) biases and drifts inherent to the air 
pressure sensor and the "water" pressure sensor. This problem is addressed in detail by Wood
worth et al. (1996), who estimate that subsurface pressure tide gauge data is often related to 
the land datum with a precision of about 2 cm. They mention the following methods which are 
presently used to overcome this datum problem: 

• simultaneous measurements at a nearby stilling weIl 
Although this method works fairly weIl as long as comparisons are performed based on 
several complete tidal cycles to remove the effect of any lag in the weIl, as described in 
Section 2.3, stilling wells will introduce systematic errors of their own. 

• measurements of tide poles or tide poles with float by an observer 
Read outs can only be made at a limited number of times and accuracy of measurements 
depends, a.o., on the state of the sea surface, see Sections 2.1 and 2.2 

• water level "switches" in mini-stilling wells 
Although these switches show great promise, presently they are not able to entirely elim
inate the effect of waves, and are probably accurate to only a few cm 

• using "comparators" , or precisely calibrated reference pressure devices 
Although they appear to give a precision of at least 1 cm for the datum control, they do not 
provide near-continuous datum check, are clumsy to operate and are not weIl documented. 

All the above is based on Woodworth et al. (1996). 
Woodworth et al. (1996) describe a method which seems to be able to provide datum con trol 

with a precision in the order of only 1 mmo This method is based on an additional pressure point 
situated at a known height approximately near mean sea level. A description of this method is 
beyond the scope of this article and interested readers are referred to Woodworth et al. (1996) . 

2.6 Open sea pressure gauges 

The tide gauge instrurnents as described in the preceding sections can only be used to measure 
sea level variations relative to a tide gauge bench mark on land, or on an off-shore platform. 
Using so-called open sea pressure gauges it is also possible to measure sea level heights ar sites 
far away from coasts. Usually, these tide gauge systems consist of a pressure sensor, placed 
on the ocean bottom, which is able to measure and record the pressure of the overlying water 
column. Depending on the water depth in which the tide gauge has to operate, different systems 
have been developed. In principle there are two categories of open sea pressure gauges: deep 
sea pressure gauges and pressure gauges for use on continental shelves. 

According to Pugh (1987), in relative shallow water the tide gauge is often attached to a ground 
line, which simplifies the recovering of the gauge. In shallow water it is also possible to transmit 
recorded data to, e.g., a surface buoy, either through a cable or acousticaIly. This has the major 
advantage that the sea level data can be collected without removing the tide gauge from its 
location on the bottom of the sea. Consequently, data can be available almost real-time and tide 
gauges can continue operating on the same location (at least for as long as its power supply 
lasts). 
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Fig. 7. Deep see pressure tide gauge system capable of 4 years of recording; reproduced from 
Smithson (1997) 

For deep sea operations, pressure tide gauges are usually built into a protective framework which 
is lowered to the bottom of the sea. These pressure gauges can operate in depths of over 4000 
meters, with a resolution of 0.01 meters; see Pugh (1987). Since, presently, no methods have 
been developed to transmit the data while the pressure tide gauge is situated at the bottom of 
the sea, after a certain amount of time (usually 1 year), the tide gauge has to be recovered. This 
has the disadvantage that sea level data is only available after recovery of the tide gauge, and 
undisturbed time series are only available over relative short periods of time. After recovery, 
the tide gauge can be lowered back to the bottom of the sea, but it will always be in a (slightly) 
different location and the measurements series is discontinued for the time period needed for 
the recovery and replacement of the tide gauge. 

A new deep sea pressure tide gauge called "MYRTLE" (Multi Year Return Tide Level 
Equipment) can, partly, overcome these problems. Figure 7 shows a schematic drawing of 
this tide gauge system which consists of four data logger capsules. After one year of operation 
the first capsule is reIeased and floats to the ocean surface where it can be recovered. After two 
years of recording the second capsule is released, etc. To prevent loss of data, each capsule con, 
tains data for the full measurement series as performed up to the release of the capsule. After 
four years of operation, the whole framework is released and can be recovered. 

Major limitations for the accuracy of open sea pressure system are the accuracy of the pressure 
sensor itself, drift of the pressure transducer zero, and settlement or lift of the instrument relative 
to the bottom of the sea. Pugh (1987) estimates that the framework will settle into the sediments 
with a velocity of a few cmlmonth. The accuracy of the pressure transducer is, a.o., affected 
by its sensitivity to temperature changes. According to Pugh (1987), in depths of (at most) 200 
meters drift of the transducer zero can be reduced to a few cmlmonth, while in depths of around 
4000 meters drift can be significantly larger. In addition, according to Banaszek (1985), the 
pressure sensor, and especially the framework in which the tide gauge is mounted, can seriously 
distort the velocity field and, consequently, pressure detected by the sensor deviates from the 
hydrostatic pressure which is related to depth. Errors in observed pressure ranging between I 
and 30 mb have been found; see, e.g., Banaszek (1985) or Muir (1978). 

Variations in density through the water column above the pressure transducer should be 
taken into account as weil, e.g., by calibration of the instrument based on measurements through 
the water column. Furthermore, pressure as measured by the transducer not only depends on the 
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amount of water overlying the transducer but also on the atmospheric pressure acting on the sea 
surface. Rae (1976) estimates that pressure variations due to atmospheric pressure can be in the 
order of 50 millibars. However, since sea level response to variations in atmospheric pressure is 
al most inverse barometric (at least for "open" seas, i.e. , away from continental boundaries), the 
total pressure at the sea bottom will not be significantly affected. On the other hand, according 
to Rae (1976), density variations (e.g., due to intemal waves and the formation ofthermocIines) 
can cause variations in total bottom pressure of about a few millimeters . 

3 Sampling rate and averaging method of tide gauge readings 

In the preceding section, for the six major tide gauge systems, error characteristics have been 
described. However, predictions of sea level variation curves are usually based on some kind of 
average values (e.g., monthly or yearly sea level heights) instead of on instantaneous measure
ments of sea level height. Consequently, the accuracy of these predictions is not only determined 
by the accuracy of the individual tide gauge measurements but also by the sampling rate of these 
measurements and the method applied to these individual measurements to form mean values. 

The reason for basing evaluations of sea level variations on mean seà level heights is sim
ply that records of instantaneous sea level values are, in general, not available. In the past, 
when observations of sea level height were simply written down, only monthly mean values (or 
even yearly mean values) were recorded for long-term keeping. Even after the introduction of 
mechanical recording (e.g., on a paper chart mounted on a drum) usually only monthly mean 
values were stored. For the more recent past (last few decades ?) sometimes hourly mean values 
are available, often obtained by digitizing the paper charts at hourly intervals . Although state
of-the-art tide gauge systems usually work with a relatively high sampling rate, again, only 
average values are stored. As an example, in the case of a reftection tide gauge (see Section 2.4) 
measurements are made at a rate of lis but only 3-minute average values are stored. 

An advantage of mean sea level heights is that, depending on the method used to form the 
averages and the time span over which the average is taken, high frequency signals (Iike waves) 
and periodic effects (Iike ti des) are, partly, removed from the data. In the following sections 
different averaging methods will be described which have been used through the years. In com
plexity these methods range from simply taking the arithmetic mean of only two measurements 
a day, to low-pass filtering based on 24 hourly values a day. 

A limitation of historic sea level data based on manual readings by an observer is that these data 
often have a relatively low sampling rate, i.e., mean values are based on only a few reading a 
day. In addition, the oldest data is often based on irregular sampling over the tidal cycIe, e.g., 
a tide pole was only read during daytime (at high and low water). Since this Iimited number of 
sea level height samples outlines the averaging method which can be used, its effects will be 
described in the following sections where the different averaging methods will be introduced. 

Finally, it should be noted that the accuracy of mean sea level values is also inftuenced by how 
weil outliers and systematic errors in the individual sea level measurements have been corrected 
for. As described in detail by Pugh (1987), prior to forming the average values, individuaI 
measurements should be checked for reading errors and corrected for scaling errors (due to e.g., 
timing errors in the con trol cIock) and it might be necessary to use interpolated values to fill 
gaps in the data series. Since this is beyond the scope of this articIe, for a description of methods 
which can be used to check the recorded measurements, the interested reader is referred to, e.g., 
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Pugh (1987). 
Depending on the averaging method used, periodic effects (with a period which is short 

relative to the time span over which the measurements are averaged) are, partly, removed from 
the resulting mean values. However, the influences of low-frequency tides (like the lunar nodal 
tide with a period of 18.6 year) will more or less remain in monthly and even in yearly mean sea 
level heights. In addition, mean monthly and annual sea levels are influenced by the occurrenee 
of storm surges. 

3.1 Low-pass filtering of hourly values 

The most advanced method of forming mean (monthly or annual) sea level heights is low-pass 
filtering of hourly (mean) sea level heights to obtain smoothed daily mean sea levels. By taking 
the arithmetic mean of these smoothed daily sea levels over a period of a month or a year, resp. 
monthly or annual mean sea level heights can be derived. 

Different low-pass filters, requiring a different number of hourly (mean) sea level values 
have been developed, the most widely used is the so-called Doodson X o filter which uses 39 
hourly values. As described in, e.g., IOC (1985) the smoothed daily value (XF(t» is derived 
by applying the filter Fm to the 39 hourly values in the symmetrie window around time t: 

1 
30 FoX (t) + 

1 19 

30 L Fm [X(t + m) + X(t - m)] 
m = 1 

in which the filter elements are defined by 

mOl 2345678910 11 1213 14 15 16 17 18 19 
Fm 0 2 1 1 20 1 1 02 0 1 1 0 1 0 0 1 0 1 

(7) 

This Doodson low-pass filter, and other filters based on even more hourly observations (e.g., 
72, or even 169 values), are designed to yield an optimal elimination of the influence of diurnal 
and semi-di urn al tidal constituents on the resulting monthly and annual mean sea level heights. 

3.2 Arithmetic mean of hourly values 

Instead of using low-pass filters to smooth the hourly values in a first step, often the hourly 
values themselves are used directly to form monthly or annual mean sea level heights. These 
mean values are simply determined as the arithmetic mean over all (mean) hourly sea level 
values in resp. a month or year. According to Xu (1990) this method is the most widely used 
because it involves less computational effort and, since the major part of the effects of the 
diurnal and semi-diurnal ti des are removed, the resulting mean values are almost similar to 
those produced by low-pass filtering. 

From 1971 onwards in the Netherlands mean (monthly and annual) sea level heights have been 
deterrnined as arithmetic means of hourly sea level heights; see Van der Hoek Ostende and 
Van Malde (1989). At first these hourly values were derived by digitizing mechanical produced 
sea level charts at hourly intervals. Starting in 1987, mechanical recording on charts has been 
replaced by digital recording of 1 O-minute mean values. The resulting hourly values are rounded 
off to cm-level, the arithmetic means over all hourly values in a year are rounded to the mm
level. 
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Fig. 8. Historicaloverview of averaging methods applied to tide gauge measurements to form mean 
annual sea level height; reproduced from Van der Hoek Ostende and Van Malde (1989) 

Figure 8, reproduced from Van der Hoek Ostende and Van Malde (1989), shows for 10 tide 
gauges in the Netherlands for which more than 100 year of ti de gauge data is available, which 
method of forming annual mean sea level heights has been applied through the years. This 
Figure clearly shows that, the further back in time, the smaller the number of daily observations 
used to determine annual mean sea level heights. In the following sections, in descending order 
of number of daily observations, these historie methods of forming annual mean sea levels will 
be described. 

3.3 Arithmetic meao of 3-hourly values 

Prior to using hourly measurements, annual mean sea level heights were based on 8 measure
ments/day. As described by Van der Hoek Ostende and Van Malde (1989), sea level values at 2, 
5, 8, 11, 14, 17,20, and 23 o'clock were read from the paper charts and rounded off at cm-level. 
From these 3-hourly values annual mean sea level was simply determined as the arithmetic 
mean over all values in one year, rounded to I mmo 

As described by Van der Hoek Ostende and Van Malde (1989) measurements performed 
before 1961 usually refer to Amsterdam time, later measurements are usually made with refer
ence to MET (Middle European Time), the time difference between the two systems being 40 
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minutes. However, according to Van der Hoek Ostende and Van Malde (1989) the effect of this 
time-shift on determined annual mean values is negligible. 

Prior to using 3-hourly measurements, annual mean sea level heights were (usually) based on 
only 4 daily measurements, see Section 3.4. As can be seen from Figure 8, the moment when 
the change was made between these two sampling rates varies widely for the various stations. 
As an example, for the station Den Helder aiready around 1885 mean sea levels were based on 
8 observations/day, whereas only from 1936 onwards this method was used for all tide gauge 
stations along the Dutch coast. 

Experiments based on hourly mean values for the period between 1971 and 1986, as performed 
by Van der Hoek Ostende and Van Malde (1989), showed that the difference between annual 
mean sea level heights based on the 3-hourly values and annual mean sea level heights based 
on hourly values is relatively smal\. The mean value for the difference between these two time 
series of annual values ranges between -0.4 and +0.6 mm for the various stations, whereas the 
standard deviations range between 0.3 and 1.0 mmo According to Van der Hoek Ostende and 
Van Malde (1989), the stations under consideration are situated in largely varying tidal regimes, 
which can be assumed representative for the Dutch coastal zone. Therefore, they conc1ude that 
using 3-hourly values instead of hourly values will hardly introduce errors for other tide gauge 
stations as weil. 

3.4 Arithmetic meao of 6-hourly values 

From Figure 8 it can be seen that af ter mechanical recording became available, for most stations 
the switch was made from annual mean sea levels based on (daytime) tide levels to annual mean 
sea level heights based on 6-hourly values. Analogous to the method as applied to the 3-hourly 
measurements, sea level heights at 2:00, 8:00, 14:00, and 20:00 o'c1ock Amsterdam time were 
read from the paper chart and the arithmetic mean of all values in one year (rounded at the 
mm-level) was taken to form annual mean sea level heights. 

Van der Hoek Ostende and Van Malde (1989) have compared, for the period between 1971 and 
1986, annual mean sea levels based on 6-hourly values with those based on hourly values. For a 
number of stations the difference between the two resulting time series is rather large. These are 
all stations situated in a rather special tidal regime, where a short-duration increase in sea level 
height is seen at low tide, which is related to a relative long duration of low tide. Consequently, 
relative large deviations are introduced for these stations if annual mean sea level is based on 
6-hourly values instead of on hourly values. 

Also for stations situated in more "normal" tidal regimes there are significant differences 
between annual mean values based on 6-hourly values and those based on hourly values. For 
these stations, the mean value for the difference between the two time series of annual values 
range between -3 and +6 mm, whereas the standard deviations range between 1.2 and 2.8 mm; 
see Van der Hoek Ostende and Van Malde (1989). 

3.5 Meao sea level heights determioed from meao tide level 

For a number of stations, between 1920 and 1935, yearly mean sea level heights were based 
on mean tide levels; see Figure 8. Since hourly values were, in principle, available this was 
probably done in order to simplify computations. Contrary to the period before the installation 



108 

of mechanical recording devices (see next section), these tidal mean values were not only based 
on daytime measurements of high and low tide level but on nighttime values as weil. These 
high and low tide values were simply read from the paper charts with a resolution of I cm; see 
Van der Hoek Ostende and Van Malde (1989) for more details. Until 1971, in addition to hourly 
sea level values, these high and low water values have been recorded. 

By taking the arithmetic mean of resp. all high tide values and all low tide values in one 
year, annual mean high tide and low tide values were determined and rounded to the nearest 
mmo By averaging these two mean tide values the annual mean tide value was found. From 
these annual mean tide levels, annual mean sea levels were determined by applying a correction 
factor. According to Van der Hoek Ostende and Van Malde (1989) this was based on the, false, 
assumption that with a high enough accuracy the difference between annual mean sea level and 
annual mean tide level for a specific station could be assumed constant. 

The corrections as applied to the mean tide level were different for every station, for the 
stations under consideration they range between -15.5 and +18 cm. Unfortunately, although the 
values used for these corrections are known, it is (as yet) unknown how these values have been 
derived, see Van der Hoek Ostende and Van Malde (1989) for more details. 

For the period between 1971 and 1986, Van der Hoek Ostende and Van Malde (1989) compared 
annual mean sea levels based on mean tide values with annual mean sea levels based on hourly 
values of sea level height. For the various stations they found a wide range in differences 
between these two time series of annual mean values. The mean value for the differences 
ranging between -25 and + 21 cm, and the standard deviations ranging between 0.4 and 1.5 cm. 

In addition, experiments by a number of authors have shown that the ti dal regime along a 
major part of the Dutch and German coasts is changing, i.e., the mean difference between high 
and low tide increases. Consequently, estimating mean sea level height by applying a, constant, 
correction to mean tide level can yield an (increasingly) large systematic error. As a result of 
this phenomenon and the large standard deviations found between time series based on mean 
tide values and hourly sea level values, Van der Hoek Ostende and Van Malde (1989) conclude 
that annual mean sea level values based on mean tide values are rather inaccurate. 

3.6 Meao sea level heights determioed from meao daytime tide level 

As described by Van der Hoek Ostende and Van Malde (1989), in the Netherlands, before the 
installation of mechanica! recording devices only the high and low water level were measured. 
Measurements were made during daytime (between 6:00 and 18:00 Amsterdam time), with a 
I-cm resolution. All values of high water level in one year were combined in a mean daytime 
high-tide level. Mean daytime low-tide level was accordingly determined as the arithmetic 
mean of all daytime low tide va!ues in a year. Both mean tidal values were determined with a 
resolution of I-cm. Next, annual mean daytime tide level was ca\culated as the arithmetic mean 
of mean daytime high-tide level and mean daytime low-tide level, and rounded off to an integer 
number of cm. This rounding off was performed as follows, if the integer part of the mean value 
was an even number it was rounded down, an uneven value was rounded up. 

From these annual mean daytime tide levels the annual mean sea levels were determined by 
applying a correction. The various stations have different correction factors which are, usually, 
constant over the whole period of time for which this method was applied. However, for some 
stations the value used for the correction factor has been changed at a certain time. For the 10 
stations under consideration, values for the correction factor range between -17 and + 18 cm. 
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It should be noted when comparing sea level data for various tide gauges, that although for 
most tide gauges (as mentioned in these sections) the switch to 6-hourly measurements was 
made around the same time (somewhere around 1885) for station Terschelling annual mean sea 
levels were still based on annual mean daytime tide level until around 1920, see Figure 8. 

For the period between 1923 (resp. 1936) and 1960, Van der Hoek Ostende and Van Malde 
(1989) compared, for 7 stations along the Dutch coast, annual mean sea level heights based 
on mean annual daytime ti de level with those based on mean annual tide level. They found 
differences between the mean values of these two time series of up to 6.4 mm (for station Den 
Helder). However, as explained by Van der Hoek Ostende and Van Malde (1989), this difference 
in mean value does not necessarily have a large influence on the accuracy of the mean daytime 
tide level method. Since both time series of annual mean sea level are obtained by applying a 
correction to the mean tide levels, the difference between the two series can be minimized by 
changing the correction factor as applied to the mean annual daytime tide values. However, 
standard deviations for the time series based on mean daytime tide level are between 10 and 
30% higher than standard deviations for the series based on mean tide level; both relative to 
annual mean sea level heights based on 3-hourly measurements. 

As described by Van der Hoek Ostende and Van Malde (1989) in addition to inaccuracies 
introduced by using only daytime samples, less precise annual mean sea levels are obtained 
because annual mean daytime high tide and low tide levels are rounded off to an integer number 
of centimeters. Compared to annual mean sea level heights based on mean high tide and low tide 
values, which are rounded to the nearest mm, this rounding off already introduces a standard 
deviation of almost 3 mmo 

4 Conclusions and recommendations 

In the preceding sections error characteristics of a number of tide gauge systems have been 
discussed. It is clear that tide gauges without automatic recording are unsuitable for high quality 
monitoring of sea level variations over a longer period of time, due to the Iimited measuring 
frequency and the susceptibility to reading and recording errors. State-of-the-art tide gauge 
systems are equipped with a mechanicalor digital recording device which allows continuous 
measurements or measurements with a relative high sampling rate. These recording devices 
introduce some errors of their own, e.g., errors due to mechanical problems (Iike friction) or 
due to aliasing. In addition, the quality of the measured sea level heights is influenced by the 
occurrence of systematic errors. Tide gauges based on different techniques, i.e., based on a float 
in a stilling weil, acoustic travel times, or acomparison between water pressure and atmospheric 
pressure, are susceptible to different systematic errors. 

For a new site, a suitable tide gauge system should be selected based on characteristics of the 
specific location (e.g., is it easy to reach for maintenance), environmental conditions (e.g., the 
occurrence oflarge currents), expected measuring precision, and available budget. However, for 
analysing existing tide gauge data, it should be remembered that often less optimal tide gauge 
systems have been used. For example, in the Netherlands tide gauge data from the 19th century 
is usually based on manual recording. 

Since often for longer periods of time only monthly or annual sea level heights are available, the 
method used to form these average values should be considered as weil. Especially for relatively 
old tide gauge data, averaging methods have been used which yield biased mean values. For 



110 

example, in the Netherlands only from 1935 onwards for all tide gauges mean values were based 
on 3-hourly or hourly values. Prior to this date, often only 6-hourly values were used or mean 
sea level heights were even based on mean tide levels. When evaluating long series of sea level 
values, differences in tide gauge systems and averaging methods used, occuITing over the time 
span of the measurements should be taken into account. 

References 

Banaszek, A. (1985). Procedures and problems associated with the calibration and use of pressure sensors for 
sen level measurements. In Evaluation, comparison and calibration of oceanographic instruments, volume 4 of 
Advances in underwater technology and offshore engineering. Graham and Trotman, London. 

Carrera, G., Tessier, B., and O'Reilly, C. (1996). Statistical behavior of digital pressure water level gauges. Marine 
Geodesy, 19, 137-163. 

Christensen, E., Haines, B., Keihm, S., Morris, C., Norman, R, Purcell, G., Williams, B., Wilson, B., Born, G., 
Parke, M., GilI, S., Shum, C., Tapley, B., and Nerem, R. S. (1994). Calibration of TOPEX/POSEIDON at platform 
Harvest. Journal of Geophysical Research, 99(CI2), 24465-24485. 

Cross, R. (1968). Tide gauge frequency response. Journal ofwaterways and harbour division, 94(WW3). Ameri
can Society of Civil Engineers. 

Diamante, J., Pyle, T., Carter, w., and Scherer, W. (1987). G10bal change and the measurement of absolute sea
level. Progress in Oceanography, 18, 1-21. 

Hamon, B. and Godfrey, J. (1980). Mean sea level and its interpretation. Marine Geodesy, 4(4), 315-329. 
IOC (1985). Manual on sea level measurementnand interpretation. Technical Report 14, Intergovernmental 

Oceanographic Commission. 
Lennon, G. (1970). Sea level instrumentation, its Iimitations and the optimization of the performance of conven

tional gauges in Great Britain. In R Sigl, editor, Coastal Geodesy; symposium, Munich, July 1970. z. uitg. 
International Union of Geodesy and Geophysics; Technical University Munich, Institute for Astronomical and 
Physical Geodesy. 

Martin, D., Chapin, J., and Maul, G. (1996). State-of-the-art sea level monitoring. Marine Geodesy, 19, 105-114. 
Montag, H. (1970). On the accuracy of determination of secular variations of mean sea level at the Baltic Sea coast. 

In R Sigl, editor, Coastal Geodesy; symposium, Munich, July 1970. z. uitg. International Union of Geodesy and 
Geophysics; Technical University Munich, Institute for Astronomical and Physical Geodesy. 

Muir, L. (1978). Bernoulli effects on pressure-activated water level gauges. International Hydrographic Review, 
55(2), lll-Il9. 

Noye, B. (1974). Tide-well systems: 3. Improved interpretation of tide-well records . Journalof Marine Research, 
32,183-194. 

Pugh, D. (1987). ndes, surges and mean sea level, a handbookfor engineers and scientists. John Wiley & sons. 
Rae, J. (1976). The design of instrumentation for the measurement of tides offshore. In The Hydrographic Society 

Symposium on tide recording, proceedings, number 4 in special publication Hydrographic Society. Hydrographic 
Society. 

Sager, G. and Matthäus, N. (1970). Theoretical and experimental investigations into the damping properties of 
tide gauges. In R Sigl, editor, Coastal Geodesy; symposium, Munich, July 1970. z. uitg. International Union of 
Geodesy and Geophysics; Technical University Munich, Institute for Astronomical and Physical Geodesy. 

Smithson, M. (1997). Tide gauges. presented at the summerschool: sea level changes on micro to macro time 
scales: measurements, modelling, interpretation and application; Kos, Greece. 

Van der Hoek Ostende, E. and Van Malde, J. (1989). De invloed van de bepalingswijze op de berekende gemiddelde 
zeestand. Technical report, Ministerie van verkeer en waterstaat, dienst getijdewateren. nota GWAO-89.006, in 
Dutch. 

Van der Made, J. (1987). Analysis of some criteria for design and operation of surf ace water gauging networks. 
Ph.D. thesis, Delft University of Technology. Van Gorcum, Assen. 

Woodworth, P., Vassie, 1., Spencer, R, and Smith, D. (1996). Precise datum control for pressure tide gauges. 
Marine Geodesy, 19, 1-20. 

Xu, P. (1990): Monitoring sea level rise. Technical report, Faculty of Geodetic engineering, TU Delft. 



DEOS Progress Letter 98.2: 111-115 

Research plan and progress report for the 
TOPEX/POSEIDON extended mission 
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Scharroo 

Abstract 

This papers covers the highlights of the research plan for the TOPEXlPOSEIDON Extended 
Mission (TPEM). It partly elaborates on themes of the original TIP science investigation plan, 
and partly deals with new challenges for ocean circulation, height systems, and gravity field 
studies. In addition, some recent results and publications are summarized. 

1 Introduction 

In 1996 the Announcement of Opportunity (AO) for the TOPEXlPOSEIDON Extended Mission 
(TPEM) was issued as a follow-on to the TOPEXlPoseidon (TIP) Science Investigation plan. 
It embroidered on the successes of the exploitation of altimeter data from the TIP mission for 
studying ocean circulation and ocean tides. DEOS, the Delft Institute for Earth-Oriented Space 
Research, a joint venture between the faculties of Aerospace and Geodetic Engineering of the 
DeIft University of Technology, has a long record in altimetry related studies. It took advantage 
of the AO by updating its research plan. This plan partly elaborates on themes of the original 
TIP science investigation plan, and partly deals with new challenges. 

In principal, the plan is based on three Iines of interest: the stationary behavior of the global 
mean sea surface, temporal variations of the sea surface at various scales, and calibration and 
validation of altimeter data. DEOS is most interested in continuing to use altimetry in its long 
term research activities. The justification is a continuation of an important measurement series 
of the global oceans. DEOS strives to use this series for continuing to understand the long 
periodic behavior of sea level anomalies which are vital for observing and predicting ENSO 
events and inferred Rossby waves, annual and semi-annual cycles in the oceans and global 
ocean tides. Obviously, continuation of the TIP time series implies improved results for ocean 
tide modeIs, mean sea surface, ocean circulation, and sea level change. The activities in the 
field of orbit determination are drastically reduced due to the present accuracy of TIP orbits. 
The main focus is on exploring new possibilities of altimeter and TDRSS case studies for orbit 
and gravity field improvement, and on orbit improvement of LEO satellites from TIP ocean ti de 
modeIs. 

Other regions of interest are the European continental shelf, the Indonesian Archipelago, 
and the Chinese Sea. Here TIP results are used for regional ocean tide and circulation modeIs, 
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Fig. 1. 2nd and 3rd EOF of TIP altimeter data (1994-1997) for the oceans around South Africa. 

connection and unification of height datums, regional sea level change and land subsidence 
studies. 

The TPEM project at issue unites three Dutch institutes and one German institute, viz. the 
Delft University of Technology (PI: K. F. Wakker, Cols: M. C. Naeije, R. Scharroo, R. H. N. 
Haagmans, and E. J. O. Schrama), Utrecht University (Cols: W. P. M. de Ruijter, and P-J. van 
Leeuwen), Survey department Rijkswaterstaat (Col: R. C. V. Feron), and the Technical Univer
sity of Munich (Col: R. Rummei). 

2 Ocean circulation 

The extension of the high precision altimetric database has been used to obtain better ocean 
tide, and ocean circulation results, both global and regional. In particular TIP altimetry is weIl 
suited to regional tide model improvement and storm surge predictions for the North Sea and 
the Chinese Sea. Intra- and inter annual variations, and the eddy shedding mechanisms of the 
western boundary currents have been studied in detail. A long term objective is to determine 
the decadel variability in the c1imate system. A key element in this system is the global ther
mohaline circulation in which the Agulhas region is thought to be a major link. For a better 
understanding of the Agulhas system the precise mechanism of shedding of rings from the Ag
ulhas Current is studied by means of assimilation of altimetry data in a regional ocean model. 
Also the decay and the interaction of Agulhas rings with the bottom topography are studied 
using a combination of altimeter data, infrared data, and optical data together with numerical 
modeis. To illustrate the complexity of the dynamics in this area, the 2nd and 3rd EOF of TIP 
data (1994-1997) for the oceans around South Africa are plotted in Figure 1, which reveals a 
mix of short (3 months) to long periodic (3 years) patterns. 

In addition, assimilation studies are also applied to the equatorial Pacific region to obtain a 
better insight in the El Nifio/Southem Oscillation, and ocean-atmosphere interaction. Special 
attention is given to the impact of the upper ocean salinity structure on the western Pacific 
dynamics. For this purpose the ability of the altimeter to serve as a salinometer is studied. This 
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Fig. 2. left: North Sea geoid GEONZ97 w. r. t. GRS80 in meters (contour intervalO. 25 cm). right: 
Differences of TIP and NEREF (GPS/leveling) data points with North Sea geoid; /l- = -O.lcm, a = 

4.2cm 

research is carried out in cooperation with the Royal Dutch Meteorological Institute (KNMI), 
NOAA, and NeEp. 

3 Height systems 

On agiobal scale the accuracy of sea level change estimates is improved. On regional scales 
the combination of TIP with ERS data and/or in situ data may improve the separability between 
the TIP instrument drift and sea level change. The current accuracy of TIP data enables incor
poration of altimetry in the NOrth Sea Sea level monitoring system (NOSS) for sea level rise 
and land subsidenee studies. 

The precise determination of the sea surface in the region of the Indonesian Arehipelago 
enables the connection and unification of height datums of the Indonesian islands, and analysis 
of the steady-state ocean topography. This is an important step towards an ultra preeise regional 
sea-Iand monitoring system based upon various terrestrial and satellite observation teehniques 
comparabie to NOSS. Figure 2 illustrates a suecessful attempt to conneet a land-sea based 
gravimetrie geoid for the North Sea with the geoid at mean sea level by fitting a correction 
model through TIP data at sea and GPS and leveling data on land. 

4 Gravity field 

Another aim is the determination of a highly detailed preeise mean sea surface using TIP data 
as a referenee for ERS, and Geosat ERM and GM data. Then from this mean sea surface an 
improved geoid ean be obtained whenever detailed models or data beeome available of the 
mean oeean dynamic topography. Furthermore, gravity anomalies, and gravity gradients are 
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Fig. 3. m regres sion coefficient in cm/mbar derived from TIP collinear differences (cycles 2-84). 

detennined for regional geophysical interpretation, and improvement of statistical models of 
the global gravity field. 

5 Outreach 

In behalf of national and international projects DEOS is working on a consistent altimeter data 
base from all past and present altimeter missions, taking into account all different references 
and corrections. Validation of these corrections is a key issue. Figure 3 illustrates that the 
regres sion between pressure field and TIP height anomaly is geographically dependent and on 
average not equals -1 cm/mbar. At least, one has to take the variations in wind speed and stress 
into account. 

As pointed out earlier DEOS is interested in continuing its altimetry related research. This 
means that already preparations are being made for incorporating the data from the forthcorning 
Jason mission. A proper phasing of the orbit of Jason w. r. t. TIP can lead to an enhanced 
sampling strategy for mapping meso-scale variability phenomena and ocean tides. Intersatellite 
calibration with respect to TIP and ERS-2 or other orbiting altimeters will play a significant role 
in these studies. 
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