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Abstract

In temporal action localization, given an input video, the
goal is to predict which actions it contains, where they be-
gin, and where they end. Training and testing current state-
of-the-art deep learning models requires access to large
amounts of data and computational power. However, gath-
ering such data is challenging and computational resources
might be limited. This work explores and measures how
current deep temporal action localization models perform
in settings constrained by the amount of data or computa-
tional power. We measure data efficiency by training each
model on a subset of the training set. We find that Tempo-
ralMaxer outperforms other models in data-limited settings.
Furthermore, we recommend TriDet when training time is
limited. To test the efficiency of the models during inference,
we pass videos of different lengths through each model. We
find that TemporalMaxer requires the least computational
resources, likely due to its simple architecture.

1. Introduction

Temporal action localization (TAL) is concerned with

automatically recognizing an action and its start and end

in a video [29]. TAL has found potential use in domains

such as video summarization [14] and public video surveil-

lance [27, 29]. Various algorithms are proposed for TAL,

and deep learning models such as such as TriDet [23], Tem-

poralMaxer [24], and ActionFormer [33] outperform mod-

els based on hand-crafted features [29]. These deep learn-

ing models require large datasets to train on, such as THU-

MOS’14 [11] or ActivityNet [9]. However, curating, an-

notating and storing datasets of such scale is difficult, ex-

penisve, and time-consuming [20, 29, 30]. To save data, in

this work we explore data efficiency of deep learning-based

TAL models.

*Equal contribution

In addition to data efficiency, we also evaluate com-

pute efficiency. Compute efficiency is particularly relevant

when the success of Transformers [26] in natural language

processing (NLP) [12, 26], is employed in TAL [18, 33].

Transformers are known to be computationally expensive

[13, 25]. To save computing resources, in this work, we

explore how computationally efficient deep learning-based

TAL methods are.

Our analysis of data- and compute-efficiency focuses on

ActionFormer [33], STALE [19], TemporalMaxer [24], and

TriDet [23], as they represent the current state-of-the-art in

temporal action localization. The contributions of this paper

are four-fold, as detailed below.

First, we test the data efficiency of the TAL models. In-

spired by Ding et al. [5] and Henaff [10], we train each

model multiple times on a percentage of the training set and

report the average mean average precision (mAP). By ap-

plying this method on both THUMOS’14 [11] and Activ-

ityNet [9] datasets, we find that the TemporalMaxer [24]

performs the best in a data-limited setting.

Second, we evaluate the effect of score fusion [28,32,33]

on data efficiency. Score fusion combines the outputs of an

evaluated model with the outputs of an auxiliary model, of-

ten UntrimmetNet [28, 33]. We find that score fusion can

significantly increase the performances of the models. We

thus recommend that when choosing a model for a cus-

tom dataset, the options both with and without score fusion

should be considered.

Third, we test the computational efficiency of each

model during training. We measure training performance

by analyzing the trade-off between training time and ob-

tained average mAP. We find that the TriDet model [23] is

the best choice in training time-limited settings, because it

requires the least amount of training time but still obtains

the best average mAP.

Fourth, we test the computational efficiency of each

model during inference. We expand on the approach of

measuring the computational complexity of the model by

passing to it a video of a specific size [23, 24, 33]. We

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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evaluate each model on videos of increasing lengths and re-

port the number of floating point operations, the memory

consumed, and the inference time. We find that Tempo-

ralMaxer requires the least computational resources, while

STALE [19] requires the most.

2. Related work
Action recognition. The survey by Xia and Zhan

[29] identifies five different tasks in video understanding:

untrimmed video classification, trimmed action recognition,

temporal action proposals, temporal action localization, and

dense-captioning events in videos. This work focuses on

temporal action localization (TAL) for its potential uses in

video summarization [14] and public surveillance [27]. In

TAL, the goal is to predict which actions happen in a video

stream, where they begin, and where they end. The deep

learning models created for this problem can be divided into

two categories [29]: two-stage and one-stage. Two-stage

models [7,16,17] attempt to first locate the actions and then

classify them. One-stage models [18, 23, 24, 33] locate and

classify the actions at the same time. This work analyzes

ActionFormer [33], STALE [19], TemporalMaxer [24], and

TriDet [23], all of which are one-stage models.

Testing for data efficiency. This problem involves as-

sessing how well a given model performs with limited train-

ing data available. A common approach is to use n-shot

learning [20,30], which involves training the model on only

n samples per class. However, since a single class can be

represented multiple times in a single video [9,11], it is un-

clear whether n should refer to the number of videos the

given class appears in or whether it is the total number of

instances of the class. Furthermore, representing each class

equally would be difficult as the number of instances of a

class per video varies. An alternative approach involves

training on a given percentage p of the samples from the

training dataset [5, 10]. In this work, we use this approach.

Optimizing for data efficiency. As collecting and an-

notating datasets is expensive [29], related works have pro-

posed few-shot TAL methods [20, 30]. These models use

meta-learning and require all of the support videos to be

input into the model at once. This makes their architec-

ture incompatible with the architecture of current state-of-

the-art models, which only expect a single video as input

[23, 24, 33]. This work, therefore, analyzes the data effi-

ciency of some of the current state-of-the-art models.

Testing for computational efficiency. The term ‘com-

putational efficiency‘ is often used to mean the number of

floating point operations [8, 23–25, 33], the memory used

[13,25], or the training [15] or inference time [23,24,33]. In

the task of temporal action localization, TriDet [23], Tem-

poralMaxer [24], and ActionFormer [33] all report the num-

ber of floating point operations as the amount of multiply-

accumulate (MAC) operations and the time it takes to for-

ward a single video of a fixed length through the model.

However, no experiments have been performed that would

show how these models scale with an increase in video

length. This is relevant, as models that scale linearly, will

asymptotically outperform models that scale e.g. quadrati-

cally. Hence, even if a quadratic model outperforms a lin-

ear model on short videos, it will perform worse on longer

videos. Thus, in this work, the inference performance of

each of the tested models is measured on videos of increas-

ing lengths.

Furthermore, motivated by [15], this work reports the

training time and the achieved mean average precision of

each of the TAL models. This is done to better understand

the suitability of each model for settings where the training

time is limited.

Optimizing for computational efficiency. Both TriDet

[23] and TemporalMaxer [24] aim to lower the required

computational cost of ActionFormer [33]. In TriDet, this is

achieved by replacing the multi-head self-attention module

with an efficient Scalable-Granularity Perception layer [23].

TemporalMaxer, on the other hand, replaces the entire trans-

former module with a max-pooling block [24]. This work

compares the computational efficiencies of ActionFormer,

STALE [19], TemporalMaxer, and TriDet.

3. Models
ActionFormer. ActionFormer [33] was one of the first

models that showed a successful use of Transformers [26]

in temporal action localization. The model uses an encoder-

decoder architecture with a Transformer encoder and a con-

volutional decoder. At the time of its proposal, the model

reached state-of-the-art performance on the THUMOS’14

dataset obtaining an average mAP of 66.8%. The model

also showed promising results on both the ActivityNet [9]

and EPIC-Kitchens 100 [4] datasets. We also selected this

model for evaluation, as the architectures of newer models,

TriDet [23] and TemporalMaxer [24], are inspired by the

architecture of the ActionFormer.

STALE. Zero-Shot Temporal Action Detection via
Vision-Language Prompting (STALE) [19] is the most re-

cent and state-of-the-art method in zero-shot temporal ac-

tion localization. Inspired by CLIP [21], STALE uses

a temporal vision transformer [6] to encode videos into

video embeddings and a text transformer [26] to encode

class prompts into text embeddings. STALE attempts to

learn an inter-relationship of vision-language via cross at-

tention [26]. The model achieved average mAP of 52.9%

and 36.4% on the THUMOS’14 and ActivityNet datasets

respectively, outperforming similar models. We selected

this model for evaluation, to compare it against methods that

were not designed for a zero-shot learning scenario.

TemporalMaxer. The TemporalMaxer [24] model was

constructed to require a low computational cost without
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sacrificing localization performance. Instead of employ-

ing a computationally-heavy backbone, such as a Trans-

former [26,33], the model uses a basic, parameter-free max

pooling block on top of a pre-trained 3D CNN. This model

currently represents the state-of-the-art on the MultiTHU-

MOS dataset [31] obtaining an average mAP of 29.9%. Im-

portantly, the model also has a lower computational com-

plexity compared to other models. On a video of a length

of around 5 minutes from the THUMOS’14 dataset, the in-

ference time of the TemporalMaxer was observed to be 3x

shorter than that of the ActionFormer.

TriDet. The TriDet model [23] bases its architecture

on the ActionFormer. Instead of using a multi-head self-

attention mechanism, the model replaces it with an efficient

Scalable-Granularity Perception (SGP) layer. The resulting

model improves on the performance of the ActionFormer,

obtaining an average mAP of 69.3% on the THUMOS’14

dataset. Furthermore, the TriDet model represents the cur-

rent state-of-the-art for the EPIC-Kitchens 100 dataset. Fi-

nally, the model was also shown to require less time and

fewer floating point operations than the ActionFormer when

performing inference on a 5 minute video from the THU-

MOS’14 dataset.

4. Evaluation setup

4.1. Data efficiency

Evaluation metrics. Following common practice [1,

23, 24, 29, 33], the models were evaluated by reporting

the achieved mean average precision (mAP) on different

tIoU thresholds. Intersection over union (tIoU) is a 1-

dimensional temporal Jaccard similarity metric and is thus

computed as the ratio of the intersection of the predicted

and actual duration of an action to their union. Given a

tIoU threshold μ and a class c, correct predictions are those,

whose tIoU ≥ μ and the predicted class is the class c. Pre-

cision is then the ratio of the number of correct predictions

to the total number of made predictions for the class c. As

there can be multiple videos for each class c, average pre-

cision is the average of the precisions obtained in each of

those videos. Finally, mean average precision is the average

AP over all of the classes c. Thus, in general, given a fixed

tIoU threshold μ, the higher the mAP, the better the model

performs.

Testing procedure. In this setup, it is assumed that a

dataset D has a predefined split into a training set Dtrain and

a testing set Dtest. Following works by Ding et al. [5] and

Henaff [10], a percentage p of the training set Dtrain was

randomly and uniformly sampled to create a subset Ds. The

models were then trained on the set Ds and evaluated on

the set Dtest. During the evaluation, mean average precision

was calculated at different tIoU thresholds. The sampling,

training, and testing procedure was repeated 5 times [2, 5]

with different random splits. The mAP for each threshold

was then averaged and the standard deviation was reported.

The entire procedure was repeated for multiple percentages

p. Algorithm 1 describes the exact testing procedure in the

form of pseudocode.

In the pseudocode, the function sample randomly sam-

ples videos from the training set, such that:

|Ds| = round
(
|Dtrain| · p

100%

)
(1)

with round rounding the value to the nearest integer. Ad-

ditionally, the function sample needs to ensure that each

action class is represented at least once in the resulting set

Ds. In practice, this was realized by repeatedly sampling

from the set Dtrain until a split, where all classes are repre-

sented, was found. The function calculate-mAP evaluates

the model, that is, it calculates the mean average precision

at different tIoU thresholds the model achieved on the test

set Dtest.

Algorithm 1 Data efficiency testing procedure

Dtrain = {(Xi, Ŷi)}Ni=1

Dtest = {(Xi, Ŷi)}Mi=1

for p = 10%, . . . , 100% do
mAPs ← empty list

for i = 1, . . . , 5 do
Ds ← sample(Dtrain, p)
Train on Ds

mAP ← calculate-mAP(Dtest)
mAPs.append(mAP)

Report avg(mAPs) and std(mAPs)

Algorithm 1. The data efficiency testing procedure. Assuming

Dtrain and Dtest are given, Dtrain is repeatedly subsampled with per-

centage p to create the set Ds. The model is then trained on Ds

and evaluated on Dtest. The procedure is repeated 5 times for each

percentage p, at each time reporting the averages of the mAPs and

their standard deviation.

To understand the results between different datasets, for

each percentage p the expected number of instances per

class is reported. This will help in investigating how many

instances per class each model requires. Given a dataset

Dtrain containing N samples, having M action instances

in total, and C action classes, the expected number of in-

stances per class for each percentage p is calculated as:

#/class =
p

100%
· N
C

· M
N

=
p

100%
· M
C

(2)

It should be noted that the value computed in Equa-

tion (2) is an estimate. The exact values would depend on

the splits Ds used in the testing procedure. Nonetheless,

this approximation was found to be useful in practice when

comparing the models on different datasets.
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Score fusion. Score fusion is a commonly used tech-

nique in TAL [19, 23, 33] to improve the performance of a

model. Although the exact implementations vary between

models, the general rule is that the final predictions made

by a model are combined with the output of UntrimmedNet

[19, 23, 28, 33]. UntrimmedNet [28] is a weakly-supervised

action recognition model which only predicts video-level

classes without temporal localization. It should be noted

that UntrimmedNet is trained on the full ActivityNet and

THUMOS datasets, respectively, while in practice limited

training data would also apply to UntrimmedNet. Thus, in

this work, the setups that use score fusion by default are also

evaluated without score fusion.

4.2. Computational efficiency

4.2.1 Training performance

Inspired by Li et al. [15], the training time of each of

the models is reported alongside the average mAP achieved

on the test set. The training time is measured without ini-

tialization, that is, only the time spent in the training loop

is measured. In this way, only the model performance is

measured, without the time taken by external methods such

as PyTorch data loaders. The training and testing procedure

is repeated 5 times using different random seeds, each time

measuring the time spent and the average mAP achieved.

4.2.2 Inference performance

Evaluation metrics. Following the works on TriDet

[23], TemporalMaxer [24], and ActionFormer [33] the

models were evaluated by reporting the total number

of multiply-accumulate (MAC) floating point operations,

memory consumed, and the inference time when fed an

input video. To count the number of multiply-accumulate

operations, the fvcore library [22] was used. As

Transformer-based methods are known to require large

amounts of memory [13, 25], we additionally report the to-

tal GPU memory (VRAM) footprint of each model, which

is measured using the max memory allocated method

from PyTorch.

Testing procedure. The models were evaluated on

randomly generated tensors, whose shapes correspond to

videos of differing lengths. To guarantee the independence

of results, the experiments for inference time, memory con-

sumption, and number of MACs were run independently.

Before each inference time measurement, the random ten-

sor was passed through the model once as a warm-up pro-

cedure. Without this procedure, it was observed for the

ActionFormer model that the inference time would be con-

stant for all lengths of the input tensor. This was most likely

caused by memory allocations happening as the tensor was

being passed through the model. As such, the warm-up pro-

cedure was applied to all models to ensure a fair evaluation

for all input sizes. Furthermore, the experiments for infer-

ence time were repeated 5 times [23] with different random

tensors.

Additional setup was also required by the ActionFormer

model. Given a dataset D, the ActionFormer model is pa-

rameterized by a value max seq len indicating the maxi-

mum length of a video in D expressed in the number of fea-

tures [33]. During inference, all videos are padded with ze-

ros to the max seq len length, which results in the same

amount of computation done regardless of video length. To

alleviate this issue, the value max seq len was config-

ured to the lowest allowable value, which would be found

through an inspection of the code. It should be noted that

the value max seq len is only used during training and

changing it during inference does not influence the output

of the model, which was verified with one of the authors of

the ActionFormer.

5. Experiments
Datasets. The models were evaluated on two datasets,

commonly used to assess temporal action localization algo-

rithms [19, 23, 33]: THUMOS’14 [11] and ActivityNet [9].

THUMOS’14 contains 413 untrimmed videos and 20 action

classes. This dataset is further split into a validation set,

containing 213 videos and a test set containing 200 videos.

In total, the validation set contains 3,007 action instances.

We follow the configuration from the authors of the tested

models and hence train the models on the validation set and

test on the test set [19, 23, 24, 33]. ActivityNet contains

around 20,000 videos with 200 action classes. The dataset

is further split into a training set (10,024 videos), a valida-

tion set (4,926 videos), and a test set (5,044 videos). Using

the approach from [19,23,33], the models are trained on the

training set and evaluated on the validation set. As some of

the videos from the ActivityNet dataset have become un-

available over time, it should be noted that the exact size of

the dataset varies when using different models or features.

Features. We take into consideration all features that

were made available by the authors of a model for the

given dataset. Hence, on the THUMOS’14 dataset, Action-

Former [33], TemporalMaxer [24], and TriDet [23] are all

evaluated using the Inflated 3D (I3D) features [3]. On the

ActivityNet dataset, the ActionFormer was evaluated using

both I3D and TSP [1] features. STALE [19] was tested with

the CLIP [21] features. The STALE model was not evalu-

ated using I3D features due to limited compute availability.

Finally, the performance of the TriDet model on the Activi-

tyNet dataset was measured using the TSP features.

Experimental setup. All of the models were trained

and tested using a single NVIDIA Tesla V100S 32GB lo-

cated on an HPC cluster. All of the training and testing
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(a) Performance of the compared models on the THUMOS’14

dataset [11] in terms of average mAP@tIoU[0.3:0.1:0.7]. The

TemporalMaxer model [24] performs the best with little train-

ing data available, likely due to a simpler architecture. The

TriDet model outperforms TemporalMaxer when the average

number of instances per class is > 100.
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(b) Performance of the compared models on ActivityNet [9]

in terms of average mAP@tIoU[0.5:0.05:0.95]. The x-axis is

shifted to the left for some setups due to fewer training sam-

ples being available. Most importantly, the ActionFormer and

TriDet models can be seen to outperform the STALE model on

all tested values of p.

Figure 1: Reported average mAP@tIoU for the tested models on the THUMOS’14 [11] and ActivityNet [9] datasets. For each model, only

the average mAP is shown. The width of each line corresponds to two standard deviations obtained by repeating the procedure 5 times for

each p. Additionally, the expected average number of instances per class (#/class) is reported as a secondary x-axis. We find that all of the

models reach their near-best performance with less than or around 100 action instances per class.

hyperparameters were left unchanged for the models unless

otherwise stated in the subsequent sections. During data ef-

ficiency experiments, we therefore also use score fusion im-

plemented by the ActionFormer, STALE, and TriDet mod-

els on the ActivityNet dataset [19,23,33]. We reflect on the

impact of the score fusion on the performance of the models

in Section 5.1.1.

5.1. Data efficiency

Results on THUMOS’14. The results on the THU-

MOS’14 dataset can be seen in Figure 1a. Firstly, we note

that at p = 100%, the average performance for each of the

models is slightly lower than in the original works. We find

an average mAP of 66.57 ± 0.22 [%] compared to 66.8%
for the ActionFormer, 66.79 ± 0.16 [%] contrary to 67.7%
for TemporalMaxer, and 68.07± 0.42 [%] instead of 69.3%
for TriDet. As noticed by [33], however, different hard-

ware setups may lead to different results, which might ex-

plain the differences observed in this work. Furthermore,

we see that all models follow a similar learning curve. This

is most likely caused by the fact that the models share a

similar architecture, inspired by the architecture of the Ac-

tionFormer [23,24,33]. Moreover, as can be observed, at the

low percentages p, the TemporalMaxer [24] model performs

the best. This can be explained by the simpler architecture

employed by the model, which would require less training

data than the other models. We also note that for all mod-

els, the incline in performance noticeably slows down above

p = 60%, which corresponds to around 90-100 action in-

stances per class. We can thus see that each model satu-

rates at around 100 action instances per class and does not

gain much from additional data. We also see that the TriDet

model begins to outperform the TemporalMaxer around the

same mark.

Results on ActivityNet. As can be seen in Figure 1b,

both the ActionFormer and the TriDet models outperform

the STALE model on all tested percentages p. Furthermore,

we observe that ActionFormer and TriDet saturate around

the 40-60% mark and do not gain from additional training

data. This corresponds to around 30-40 action instances per

class. We also notice that the STALE model does not visibly

gain from an increase in training data. The model achieves

an average mAP of 19.06± 0.22 [%] at p = 10% compared

to 19.53±0.22 [%] at p = 100%. This flat learning curve is

caused by the score enhancement, as is shown experimen-

tally in Section 5.1.1.

Discussion. From Figure 1a, we can observe that the

TemporalMaxer should likely be chosen in settings where
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the amount of data is limited. The simple architecture of

that model allows it to show the best data efficiency out of

the tested models. Figure 1b suggests that the ActionFormer

or TriDet models should be chosen in favor of STALE.

Based on the combined results in Figure 1, it is difficult

to put an exact bound on the number of action instances per

class required by the models. On both of the datasets, how-

ever, we can observe that the models reach their near-best

performance with less than or around 100 action instances

per class. This suggests making datasets larger will not fur-

ther improve the performance of the tested models.

5.1.1 Score fusion

In the default configuration, the score fusion techniques

are used by the ActionFormer [33], STALE [19], and TriDet

[23] on the ActivityNet dataset [9]. We repeat the data ex-

periments without score fusion for these models on the Ac-

tivityNet dataset and report the results. We use the default

features for these models for these experiments, hence, Ac-

tionFormer and TriDet use the TSP features [1], and STALE

uses CLIP [21]. The results can be seen in Figure 2. Score

fusion improves the performance of the models for all tested

values of p. The largest impact can be seen at low percent-

ages p in the small data regime.
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Figure 2: Performance of ActionFormer (AF), STALE, and TriDet

with score fusion (SF) and without score fusion (w/o SF). As we

can observe, the performance of the models drops when score fu-

sion is not used.

Discussion. Unsurprisingly, score fusion has a signif-

icant influence on the performances of the models. It

should be noted that score fusion is based on the assump-

tion that UntrimmedNet class predictions are readily avail-

able, which in practice may not be the case. One should

therefore be aware that performance on ActivityNet or Thu-

mos does not always directly translate to true performance

on a custom dataset, which may be lower. Alternatively,

employing score fusion on custom data requires additional

compute for retrieving the UntrimmedNet predictions. We

argue that when choosing a model on a custom dataset, it is

important to decide on the applicability of score fusion and

evaluate the model both with and without score fusion.

5.2. Computational efficiency

Concurrent jobs on the HPC cluster. By default, the

GPU nodes are shared between users in our compute clus-

ter. This setup could lead to a dependence of the training

or inference time on the other jobs running on the cluster.

To alleviate this issue, the training and inference time ex-

periments were performed five times sequentially, such that

the experiment jobs did not overlap. Therefore, the results

for training and inference times are averaged over a total

of 25 runs. We measure the remaining variance in training

time, assuming that a low variance means that there are no

important unmeasured confounding factors stemming from

the concurrent use of the cluster.

5.2.1 Training efficiency

Results. We present the results in Table 1. On THU-

MOS’14, TriDet achieves the best performance while re-

quiring the least amount of training time on average. In-

terestingly, we find that the training time of the Tempo-

ralMaxer varies greatly between runs: from 1216.56 to

6829.95 seconds. This variance might come from the early

stopping criterion employed in the training script of the

model. Nonetheless, even in its fastest training run, Tempo-

ralMaxer is still the slowest of the tested models. On Activ-

ityNet, ActionFormer and TriDet train for around five times

as long as STALE, but also achieve much better perfor-

mance. Finally, we note that the variance in training times

was low for all models, except for the TemporalMaxer, thus

the concurrent jobs on the cluster likely did not interfere

with the experiment jobs.

Discussion. From the results obtained in Table 1 we find

that the TriDet model should be chosen in settings where

the training time is limited. This is due to the fact that the

model was found to not only train for the least amount of

time on THUMOS’14 but also achieve the best performance

on both datasets. If the choice of the model is between Ac-

tionFormer and STALE, we find that the latter could be used

in limited training time settings. Choosing STALE over the

ActionFormer would, however, likely come with a decrease

in TAL performance.
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Figure 3: Inference time, number of floating point operations, and memory consumption for ActionFormer [33], TemporalMaxer [33],

and STALE [19]. Most notably, we find that the TemporalMaxer model requires the least computational resources during inference, while

STALE requires the most.

Table 1: Training performance of the compared models on the

ActivityNet [9] and THUMOS’14 [11] datasets. Both average

training time and obtained average mAP are reported. On THU-

MOS’14, TriDet is the fastest and performs the best. On Activ-

ityNet, the ActionFormer and TriDet models take longer to train

than STALE but also achieve better performance.

Model Time [s] Avg. mAP [%]

THUMOS’14

AF 887 ± 54 65.89 ± 0.09

TemporalMaxer 2957 ± 1660 66.96 ± 0.37

TriDet 646 ± 26 68.07 ± 0.42

ActivityNet

ActionFormer (I3D) 1945 ± 61 35.9 ± 0.14

ActionFormer (TSP) 1932 ± 232 36.4 ± 0.05

STALE 401 ± 6 19.37 ± 0.16

TriDet 2236 ± 224 36.57 ± 0.18

5.2.2 Inference efficiency

Additional experimental setup. For the Action-

Former [33], TemporalMaxer [24], and TriDet [23] mod-

els, we obtained inference efficiency results by creating ran-

dom tensors corresponding to I3D features [3] extracted

from videos from the THUMOS’14 dataset [11]. We ob-

tained results for the STALE model by creating random

tensors corresponding to CLIP features [21] on the Activ-

ityNet dataset [9]. The lengths of the tensors vary from

200 to 3000 in 200 increments. This range is dictated by

the ActionFormer model, where the lowest allowable value

of max seq len is 576, so videos of lengths longer than

3456 cannot be passed through the model without further

changes to the configuration.

Results. As can be seen in Figure 3, the TemporalMaxer

model consistently achieves the lowest inference time, num-

ber of floating point operations, and memory consumption.

This is because of the simple architecture of the model,

which contains fewer parameters than other models [24].

Conversely, we find that the STALE model is the most com-

putationally expensive in all three tested metrics and on all

tested lengths of the input video. Furthermore, we observe

that the number of floating point operations and the memory

consumption increase in steps for the ActionFormer model.

This is because the model architecture requires padding in-

put videos to multiples of 576. Nonetheless, the model

scales linearly with respect to the input size. This thus

matches the claims of the original work [33]. We see that

TriDet and TemporalMaxer both also scale linearly with re-

spect to the input size. As can be seen in Figure 3b, the

computational complexity of the STALE model does not in-

crease linearly. A similar pattern is observable for memory

consumption of STALE in Figure 3c. Interestingly, we find

a linear pattern in the inference time of STALE in Figure 3a.

Discussion. In case of limited compute resources, Tem-

poralMaxer should be chosen. TemporalMaxer requires the

least amount of computational power on all tested video

lengths. STALE should not be chosen in such settings,

not only due to higher computational complexity but also

because it scales non-linearly with respect to input video

length. Hence, even if a configuration would be found that

causes STALE to be more efficient on short videos, asymp-

totically it will still be worse than any other linear model.
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6. Conclusion

In this work, we ask how well state-of-the-art temporal

action localization models perform in settings limited by the

amount of training data or computational resources avail-

able. We find that in a data deficient setting the Tempo-

ralMaxer model [24] works the best, likely due to its sim-

ple architecture, which consists of fewer parameters com-

pared to other models and does not use a Transformer back-

bone. Additionally, we find that performance barely im-

proves when adding data beyond 100 action instances per

class. This suggests making datasets larger will not further

improve the performance of the tested models. The use of

score fusion was shown to improve the performances of the

models, hence when training a model on a custom dataset,

options with and without score fusion should be considered.

Furthermore, we test computational efficiency during train-

ing and inference. We find that TriDet [23] offers the lowest

training time as well as the best performance. Addition-

ally, we find that TemporalMaxer requires the least compu-

tational resources at inference time, again likely due to its

simple architecture without a Transformer backbone.

Limitations. It should be noted that the method for

measuring data efficiency is limited as ActionFormer and

TriDet are the only models that were evaluated on both

datasets. Furthermore, the procedures for testing training

and inference efficiency have limitations. The models have

only been so far evaluated on the THUMOS’14 and Activ-

ityNet datasets. The results on different datasets could lead

to different conclusions. Furthermore, the timing experi-

ments have been performed on a shared HPC cluster. It was

however observed that the variance in training and infer-

ence times was small, which indicates that the concurrent

jobs did not interfere with the experimental jobs.

Future work. This work provides insights that will help

in developing future data or computationally efficient TAL

models. Based on the results of ActionFormer [33] and

STALE [19], we see that self-attention should not be the

mechanism of choice if the training data or computational

resources are limited. We find that replacing such modules

with custom layers, such as SGP [23] or replacing trans-

former modules with max pooling [24] improves the effi-

ciency of the model. Finally, we note that future work in

evaluating current models in terms of data or computational

efficiency is possible. More models could be evaluated or

the models could be evaluated on more datasets.
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