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 A B S T R A C T

Image registration is essential for medical image applications where alignment of voxels across multiple images 
is needed for qualitative or quantitative analysis. With recent advances in deep neural networks and parallel 
computing, deep learning-based medical image registration methods become competitive with their flexible 
modeling and fast inference capabilities. However, compared to traditional optimization-based registration 
methods, the speed advantage may come at the cost of registration performance at inference time. Besides, 
deep neural networks ideally demand large training datasets while optimization-based methods are training-
free. To improve registration accuracy and data efficiency, we propose a novel image registration method, 
termed Recurrent Inference Image Registration (RIIR) network. RIIR is formulated as a meta-learning solver 
for the registration problem in an iterative manner. RIIR addresses the accuracy and data efficiency issues, by 
learning the update rule of optimization, with implicit regularization combined with explicit gradient input.

We extensively evaluated RIIR on brain MRI, lung CT, and quantitative cardiac MRI datasets, in terms 
of both registration accuracy and training data efficiency. Our experiments showed that RIIR outperformed 
a range of deep learning-based methods, even with only 5% of the training data, demonstrating high data 
efficiency. Key findings from our ablation studies highlighted the important added value of the hidden 
states introduced in the recurrent inference framework for meta-learning. Our proposed RIIR offers a highly 
data-efficient framework for deep learning-based medical image registration.
1. Introduction and related works

Medical image registration, the process of establishing anatomical 
correspondences between two or more medical images, finds wide 
applications in medical imaging research, including imaging feature 
fusion (Haskins et al., 2020; Oliveira and Tavares, 2014), treatment 
planning (Staring et al., 2009; King et al., 2010; Byrne et al., 2022), 
and longitudinal patient studies (Sotiras et al., 2013; Jin et al., 2021). 
Medical image registration is traditionally formulated as an optimiza-
tion problem, which aims to solve a parameterized transformation in 
an iterative manner (Klein et al., 2007). Typically, the optimization 
objective consists of two parts: a similarity term that enforces the 
alignments between images, and a regularization term that imposes 
smoothness constraints. Due to the complexity of non-convex optimiza-
tion, traditional methods often struggle with long run time, especially 
for large, high-resolution images. This hinders its practical use in 
clinical practice, e.g. surgery guidance (Sauer, 2006), where fast image 
registration is demanded (Avants et al., 2011; Balakrishnan et al., 
2019).

∗ Corresponding author.
E-mail address: q.tao@tudelft.nl (Q. Tao).

With recent developments in machine learning, the data-driven 
deep-learning paradigm has gained popularity in medical image regis-
tration (Rueckert and Schnabel, 2019). Instead of iteratively updating 
the transformation parameters by a conventional optimization pipeline, 
deep learning-based methods make fast image-to-transformation pre-
dictions at inference time. Early works learned the transformation in 
a supervised manner (Miao et al., 2016; Yang et al., 2016), while 
unsupervised learning methods later became prevalent. They adopt 
similar loss functions as those in conventional methods but optimize 
them through amortized neural networks (Balakrishnan et al., 2019; 
De Vos et al., 2019). These works demonstrate the great potential of 
deep learning-based modes for medical image registration. Nonetheless, 
one-step inference of image transformation is in principle a difficult 
problem, compared to the iterative approach, especially when the 
deformation field is large. In practice, the one-step inference requires a 
relatively large amount of data to train the deep learning network for 
consistent prediction, and may still lead to unexpected transformations 
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at inference time (Fechter and Baltas, 2020; Hering et al., 2019; Zhao 
et al., 2019).

In contrast to one-step inference, recent studies revisited iterative 
registration, using multi-step inference processes (Fechter and Baltas, 
2020; Kanter and Lellmann, 2022; Qiu et al., 2022; Sandkühler et al., 
2019; Zhao et al., 2019). Some of these iterative methods (Kanter 
and Lellmann, 2022; Qiu et al., 2022) fall within the realm of meta-
learning. Instead of learning the optimized parameters, meta-learning 
focuses on learning the optimization process itself. The use of meta-
learning in optimization, as explored by Andrychowicz et al. (2016) 
and Finn et al. (2017) for image classification tasks, has led to enhanced 
generalization and faster convergence. For medical imaging applica-
tions, a prominent example is the recurrent inference machine (RIM) 
by Putzky and Welling (2017), originally proposed to solve inverse 
problems with explicit forward physics models. RIM has demonstrated 
excellent performance in fast MRI reconstruction (Lønning et al., 2019) 
and MR relaxometry (Sabidussi et al., 2021).

In this study, we propose a novel meta-learning medical image regis-
tration method, named Recurrent Inference Image Registration (RIIR). 
RIIR is inspired by RIM, but significantly extends its concept to solve 
more generic optimization problems: different from inverse problems, 
medical image registration presents a high-dimensional optimization 
challenge with no closed-form forward model. Below we provide a 
detailed review to motivate our work.

1.1. Related works

In this section, we review deep learning-based medical image regis-
tration methods in more detail, categorizing them into one-step meth-
ods for direct image-to-transformation inference, and iterative methods 
for multi-step inference. Additionally, we provide a brief overview of 
meta-learning for medical imaging applications.

1.1.1. One-step deep learning-based registration
Early attempts of utilizing convolutional neural networks (CNNs) for 

medical image registration supported confined transformations, such as 
SVF-Net (Rohé et al., 2017), Quicksilver (Yang et al., 2017), and the 
work of Cao et al. (2017), which are mostly trained in a supervised 
manner. With the introduction of U-Net architecture (Ronneberger 
et al., 2015), which has excellent spatial expression capability thanks 
to its multi-resolution and skip connection, Balakrishnan et al. (2019), 
Dalca et al. (2019) and Hoopes et al. (2021) proposed unsupervised 
deformable registration frameworks. In the work of De Vos et al. 
(2019), a combination of affine and deformable transformations was 
further considered. More recent methods extended the framework by 
different neural network backbones such as transformers (Zhang et al., 
2021) or implicit neural representations (Wolterink et al., 2022; van 
Harten et al., 2023).

1.1.2. Iterative deep learning-based registration
However, a one-step inference strategy may struggle when pre-

dicting large and complex transformations (Hering et al., 2019; Zhao 
et al., 2019). In contrast to one-step deep learning-based registration 
methods, recent work adopted iterative processes, reincarnating the 
conventional pipeline of optimization for medical image registration, 
either in terms of image resolution (Hering et al., 2019; Mok and 
Chung, 2020; Fechter and Baltas, 2020; Xu et al., 2021; Liu et al., 
2021), multiple optimization steps (Zhao et al., 2019; Sandkühler et al., 
2019; Falta et al., 2022; Kanter and Lellmann, 2022), or combined (Qiu 
et al., 2022). In Sandkühler et al. (2019), the use of RNN with gated 
recurrent unit (GRU) (Chung et al., 2014) was considered, where 
each step progressively updates the transformation by adding an in-
dependent parameterized transformation. Another multi-step method 
proposed in Zhao et al. (2019) uses recursive cascaded networks to 
generate a sequence of transformations, which is then composed to get 
the final transformation. However, the method requires independent 
2 
modules for each step, which can be memory-inefficient. Hering et al. 
(2019) proposed a variational method on different levels of resolution, 
where the final transformation is the composition of the transforma-
tions from coarse- to fine-grained. Fechter and Baltas (2020) addresses 
the importance of data efficiency of deep learning-based models by 
evaluating the model performance when data availability is limited, 
and a large domain shift exists.  Falta et al. (2022) proposed an iterative 
method named Learn-to-Optimize (L2O) to emulate the gradient-based 
optimization in lung CT registration. Unlike the fully unsupervised 
training scheme, the method utilizes a deep supervision strategy on 
the generated key points with a recurrent use of U-Net. Noticeably, 
the method uses additional input feature modalities including dynam-
ically sampled coordinates and MIND features (Heinrich et al., 2012) 
to enhance the model. A more recent work proposed in Qiu et al. 
(2022), Gradient Descent Network for Image Registration (GraDIRN), 
integrates multi-step and multi-resolution for medical image registra-
tion. Specifically, the update rule follows the idea of conventional 
optimization by deriving the gradient of the similarity term w.r.t. the 
current transformation and using a CNN to estimate the gradient of the 
regularization term. Though the direct influence of the gradient term 
shows to be minor compared to the CNN output (Qiu et al., 2022), the 
method bridges gradient-based optimization and deep learning-based 
methods. The method proposed in Kanter and Lellmann (2022) used 
individual long short-term memory (LSTM) modules for implementing 
recurrent refinement of the transformation. However, the scope of 
the work is limited to affine transformation, which only serves as an 
initialization for the conventional medical image registration pipeline.

1.1.3. Meta-learning and recurrent inference machine
Meta-learning, also described as ‘‘learning to learn’’, is a subfield 

of machine learning. In this approach, an outer algorithm updates an 
inner learning algorithm, enabling the model to adapt and optimize 
its learning strategy to achieve a broader objective. For example, in a 
meta-learning scenario, a model could be trained on a variety of tasks, 
such as different types of image recognition, with the goal of quickly 
adapting to unseen similar tasks, like recognizing new kinds of objects 
not included in the original training set, using a few training sam-
ples. Hospedales et al. (2021). An early approach in meta-learning is 
designing an architecture of networks that can update their parameters 
according to different tasks and data inputs (Schmidhuber, 1993). The 
work of Cotter and Conwell (1990) and Younger et al. (1999) further 
show that a fixed-weight RNN demonstrates flexibility in learning mul-
tiple tasks. More recently, methods learning an optimization process 
with RNNs were developed and studied in Andrychowicz et al. (2016), 
Chen et al. (2017) and Finn et al. (2017), demonstrating superior 
convergence speed and better generalization ability for unseen tasks.

In the spirit of meta-learning, RIM was developed by Putzky and 
Welling (2017) to solve inverse problems. RIM learns a single recur-
rent architecture that shares the parameters across all iterations, with 
internal states passing through iterations (Putzky and Welling, 2017). 
In the context of meta-learning, RIM distinguishes two tasks of different 
levels: the ‘inner task’, which focuses on solving a specific inverse prob-
lem (e.g., superresolution of an image), and the ‘outer task’, aimed at 
optimizing the optimization process itself. This setting enables RIM to 
efficiently learn and apply optimization strategies to complex problems. 
Therefore, RIM only has one neural network component which learns 
the outer task. RIM has shown robust and competitive performance 
across different application domains, from cosmology (Morningstar 
et al., 2019; Modi et al., 2021) to medical imaging (Karkalousos et al., 
2022; Lønning et al., 2019; Putzky et al., 2019; Sabidussi et al., 2021, 
2023). To the best of our knowledge, most applications of RIM aim to 
solve an inverse problem with a known differentiable forward model 
in closed form, such as Fourier transform with sensitivity map and 
sampling mask in MRI reconstruction (Lønning et al., 2019).

However, the definition of an explicit forward model does not 
exist for the medical image registration task. Although RIM does not 
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require a forward model by its design, the absence of a concrete 
forward model makes the problem more complicated. In this case, 
our formulation is similar to a realization of iterative amortized in-
ference (Marino et al., 2018). In Marino et al. (2018), a variational 
auto-encoder (VAE) framework is studied to learn the amortized op-
timization process given the input data and approximate posterior 
gradients where the likelihood under certain forward model could be 
absent. In this work, we sought to extend the framework of RIM, which 
demonstrated state-of-the-art performance in medical image recon-
struction challenges (Muckley et al., 2021; Putzky et al., 2019; Zbontar 
et al., 2018), to the medical image registration problem which relaxes 
the need of gradient likelihood under specific forward model solely. 
The same formulation can be generalized to other high-dimensional 
optimization problems where explicit forward models are absent but 
differentiable evaluation metrics are available.

1.2. Contributions

The main contributions of our work are three-fold:
1. We propose a novel meta-learning framework, RIIR, for medical 

image registration. RIIR learns the optimization process, in the absence 
of explicit forward models. RIIR is flexible w.r.t. the input modality 
while demonstrating competitive accuracy in different medical image 
registration applications.

2. Unlike existing iterative deep learning-based methods, our
method integrates the gradient information of input images into the 
prediction of dense incremental transformations. As such, RIIR largely 
simplifies the learning task compared to one-step inference, signifi-
cantly enhancing the overall data efficiency, as demonstrated by our 
experiments.

3. Through in-depth ablation experiments, we not only showed 
the flexibility of our proposed method with varying input choices but 
also investigated how different architectural choices within the RIM 
framework impact its performance. In particular, we showed the added 
value of hidden states in solving complex optimization problems in 
the context of medical imaging, which was under-explored in existing 
literature.

2. Methods

2.1. Deformable image registration

Deformable image registration aims to align a moving image 𝐼mov
to a fixed image 𝐼fix by determining a transformation 𝝓 acting on 
the shared coordinates 𝝌 , such that the transformed image 𝐼mov◦𝝓 is 
similar enough to 𝐼fix. The similarity is often evaluated by a scalar-
valued metric. In deformable image registration, 𝝓 is considered to 
be a relatively small displacement added to the original coordinate 𝝌 , 
expressed as 𝝓 = 𝝌 + 𝑢(𝝌). Since the transformation 𝝓 is calculated 
between the pair (𝐼mov, 𝐼fix), the process is often referred to as pairwise
registration (Balakrishnan et al., 2019). Finding such transformation 𝝓
in pairwise registration can be viewed as the following optimization 
problem: 

𝝓̂ = argmin
𝝓

sim (𝐼mov◦𝝓, 𝐼fix) + 𝜆reg (𝝓), (1)

where sim is a similarity term between the deformed image 𝐼mov◦𝝓
and fixed image 𝐼fix, reg is a regularization term constraining 𝝓, and 
𝜆 is a trade-off weight term.
3 
2.2. Recurrent inference machine (RIM)

The idea of RIM originates from solving a closed-form inverse 
problem (Putzky and Welling, 2017): 
𝒚 = 𝐴𝒙 + 𝒏, (2)

where 𝒚 ∈ R𝑚 is a noisy measurement vector, 𝒙 ∈ R𝑑 is the underlying 
noiseless signal, 𝐴 ∈ R𝑚×𝑑 is a measurement matrix, and 𝒏 is a random 
noise vector. When 𝑚 ≪ 𝑑, the inverse problem is ill-posed. Thus, 
to constrain the solution space of 𝑥, a common practice is to solve a
maximum a posteriori (MAP) problem: 
max
𝒙

loglikelihood(𝒚|𝒙) + log 𝑝prior(𝒙), (3)

where likelihood(𝒚|𝒙) is a likelihood term representing the noisy for-
ward model, such as the Fourier transform with masks in MRI recon-
struction (Putzky et al., 2019), and 𝑝prior is the prior distribution of 
the underlying signal 𝒙. A simple iterative scheme at step 𝑡 for solving 
Eq. (3) is via gradient descent: 
𝒙𝑡+1 = 𝒙𝑡 + 𝛾𝑡∇𝒙𝑡

(

loglikelihood(𝒚|𝒙) + log 𝑝prior(𝒙)
)

, (4)

where 𝛾𝑡 denotes a scalable step length and ∇𝒙𝑡  denotes the gradient
w.r.t. 𝒙, evaluated at 𝒙𝑡. Then, in RIM implementation, Eq. (4) is 
represented as: 
𝒙𝑡+1 = 𝒙𝑡 + 𝑔𝜃

(

∇𝒙𝑡
(

loglikelihood(𝒚|𝒙)
)

,𝒙𝑡
)

, (5)

where 𝑔𝜃 is a neural network parameterized by 𝜃. In RIM, the prior 
distribution on the data prior (regularization) 𝑝prior(𝒙) is implicitly 
integrated into the parameterized neural network 𝑔𝜃 which is trained 
with a weighted sum of the individual prediction losses between 𝒙 and 
𝒙𝑡 (e.g., the mean squared loss) at each time step 𝑡.

In the context of meta-learning, we regard the likelihood term 
likelihood guided by the forward model as the ‘inner loss’, denoted by 
inner as it is serving as the input of the neural network 𝑔𝜃 . For example, 
given the Gaussian assumption of the noise 𝒏 with a known variance 
of 𝜎2 and linear forward model described in Eq. (2), the inner loss can 
be given as the logarithm of the maximum likelihood estimation (MLE) 
solution: 
inner =

1
𝜎2

‖𝒚 − 𝐴𝒙‖22. (6)

In RIM, the gradient of inner is calculated explicitly with the (linear) 
forward operator 𝐴, which is free of the forward pass of a neural 
network. That means inner does not directly contribute to the update 
of the network parameters 𝜃. The weighted loss for training the neural 
network 𝑔𝜃 for efficient solving the inverse problem can be regarded as 
the ‘outer loss’, denoted by outer. In the form of the inverse problem 
shown in Eq. (2), the outer loss to update the network parameter 𝜃
across 𝑇  time steps can be expressed as: 

outer(𝜃) =
1
𝑇

𝑇
∑

𝑖=1
‖𝒙 − 𝒙𝑡‖22. (7)

For clarity and consistency, these notations of inner and outer will 
be uniformly applied in the subsequent sections.

2.3. Recurrent Inference Image Registration Network (RIIR)

Inspired by the formulation of RIM and the optimization nature of 
medical image registration, we present a novel deep learning-based 
image registration framework, named the Recurrent Inference Image 
Registration Network (RIIR). The overview of our proposed framework 
can be found in Fig.  1.

Originally, RIM aimed to learn a recurrent solver for an inverse 
problem where the forward model from signal to measurement is 
known for inverse problems, such as quantitative mapping (Sabidussi 
et al., 2021) or MRI reconstruction (Lønning et al., 2019). Similarly to 
RIM in other medical image applications, the regularization is proposed 
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Fig. 1. Overview of RIIR framework. Here, an illustrative cardiac image pair is shown as an example. The hidden states 𝒉𝑡 = [𝒉1
𝑡 ,𝒉

2
𝑡 ] are visualized in channel-wise fashion. The 

inner loss inner is calculated during each step of RIIR thus dynamically changing. When 𝑡 = 0, the deformation field 𝝓0 is initialized as an identical transformation. In RIIR Cell, 
the dimensions of Conv and ConvGRU layer are dependent on the input (2D or 3D).
to be learned implicitly in the neural network. Therefore, we determine 
the inner loss inner by adapting the optimization objective in Eq. (1). 
Specifically, we use the similarity part sim in Eq. (1) as the inner loss 
at time step 𝑡: 
inner

(

𝐼mov◦𝝓𝑡, 𝐼fix
)

= sim
(

𝐼mov◦𝝓𝑡, 𝐼fix
)

. (8)

The gradient of inner can be calculated using auto differentiation.
Nevertheless, in the standard RIM framework on the optimization 

objective in Eq. (1), the displacement fields serve as the primary 
optimization signal which may overlook the rich structural and con-
textual information present in the original and warped images. This 
information loss can be critical, particularly for capturing implicit 
regularization introduced by the structures in original images, which 
directly influences outer and the goal of optimizing the evaluation 
metric (e.g., the overlapping of tissues or organs) which is usually not 
equivalent to outer. We recognize such potential loss of information 
when relying solely on the gradient of the inner loss w.r.t. to 𝝓. 
To address this, we extend the RIM framework, drawing inspiration 
from a more generalized formulation: the iterative amortized inference 
(Marino et al., 2018), ensuring that the model leverages the original 
images more effectively in the iterative optimization process. Such an 
extension takes the warped images as input for optimization, while not 
changing the optimization objective but enriching the information that 
could be passed into the neural network.

With this modification, our proposed framework performs an end-
to-end iterative prediction of a dense transformation 𝝓 in 𝑇  steps 
for pairwise registration: Given the input image pair (𝐼mov, 𝐼fix

)

, the 
optimization problem in Eq. (1) can be solved by the iterative update 
of 𝝓. And the update rule at step 𝑡 ∈ {0, 1,… , 𝑇 − 1} is: 
𝝓𝑡+1 = 𝝓𝑡 + 𝛥𝝓𝑡, (9)

where 𝝓0 is initialized as an identity mapping 𝝓0(𝝌) = 𝝌 . The update 
at step 𝑡, 𝛥𝝓𝑡, is calculated by a recurrent update network 𝑔𝜃 by taking 
a channel-wise concatenation of 
{𝝓𝑡,∇𝝓𝑡

inner
(

𝐼mov◦𝝓𝑡, 𝐼fix
)

, 𝐼mov◦𝝓𝑡, 𝐼fix} (10)

as input, where ∇𝝓𝑡
 denotes the gradient w.r.t. 𝝓 evaluated for 𝝓 = 𝝓𝑡

and inner denotes the inner loss.
In the implementation of RIM, the iterative update Eq. (9) is 

achieved by a recurrent neural network (RNN) to generalize the update 
4 
rule in Eq. (5) with hidden memory state variable 𝒉 estimated for 
each time step 𝑡, which is the only neural network component in the 
whole pipeline. Unlike previous RIM-based works (Putzky et al., 2019; 
Sabidussi et al., 2021) which use two linear gated recurrent units (GRU) 
to calculate the hidden states 𝒉𝑡, in RIIR, two convolutional gated 
recurrent units (ConvGRU) (Shi et al., 2015) are used to better preserve 
spatial correlation in the image. We further investigate the necessity of 
including such two-level recurrent structures in our experiment, partic-
ularly considering potential complexities in constructing computation 
graphs for neural networks. The iterative update equations of RIIR at 
step 𝑡 have the following form, with the hidden memory states:
{

𝛥𝝓𝑡,𝒉𝑡+1
}

= 𝑔𝜃(𝝓𝑡,∇𝝓𝑡
inner

(

𝐼mov◦𝝓𝑡, 𝐼fix
)

, 𝐼mov◦𝝓𝑡, 𝐼fix,𝒉𝑡), (11)

𝝓𝑡+1 = 𝝓𝑡 + 𝛥𝝓𝑡, (12)

where 𝒉𝑡 = {𝒉1𝑡 ,𝒉
2
𝑡 } denotes the two-level hidden memory states at step 

𝑡. The size of 𝒉𝑡 depends on the size of input image pair (𝐼mov, 𝐼fix) with 
multiple channels. For 𝑡 = 1, 𝒉1 is initialized to a zero input. We name 
our network 𝑔𝜃 as RIIR Cell, with its detailed architecture illustrated 
in Fig.  1. To address the difference between our RIIR from the existing 
gradient-based iterative algorithm (GraDIRN) (Qiu et al., 2022) under 
the same definition of inner as in Eq. (8), RIIR uses the gradient of inner 
loss as the neural network input to calculate the incremental update. 
On the other hand, GraDIRN takes the channel-wise warped image pair 
(𝐼mov◦𝜙, 𝐼fix) and deformation field 𝜙 as the input to the network to 
output regularization update in Eq. (1), while the gradient of inner is 
added to the update of the deformation without any further processing 
thus does not directly affect the network part of the pipeline.

Unlike previous work in deep learning-based iterative deformable 
image registration methods which does not incorporate internal hidden 
states (Zhao et al., 2019; Fechter and Baltas, 2020; Qiu et al., 2022), 
we propose to combine the gradient information and hidden states as 
the network input. Our method also differs from Falta et al. (2022) in 
several aspects: in Falta et al. (2022), the input consists of a collection 
of images, displacement, sampled coordinates and MIND features; also, 
the part of the U-Net output channels serve as hidden states, instead 
of using dedicated ConvGRU units as in our design. Using 𝒉𝑡 also 
suggests an analogy with gradient-based optimization methods such as 
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-
BFGS) to track and memorize progression (Putzky and Welling, 2017). 
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To substantiate this design, the input selections of RIIR will be further 
ablation-studied and discussed in our experiments.

Since the ground-truth deformation field is not known in deformable 
image registration, we use the optimization objective Eq. (1) as the 
proposed outer loss to optimize the parameters 𝜃 of RIIR Cell 𝑔𝜃 . We 
incorporate a weighted sum of losses for the outer loss outer to ensure 
that each step contributes to the final prediction: 

outer(𝜃) =
𝑇
∑

𝑡=1
𝑤𝑡

(

sim (𝐼mov◦𝝓𝑡, 𝐼fix) + 𝜆reg (𝝓𝑡)
)

, (13)

where 𝑤𝑡 is a (positive) scalar indicating the weight of step 𝑡. In our 
experiment, both uniform (𝑤𝑡 = 1

𝑇 ) and exponential weights (𝑤𝑡 =

10
𝑡−1
𝑇−1 ) are considered and will be compared in the experiments. It is 

noticeable that the design of using a (weighted) average of the stepwise 
loss also makes our proposed RIIR different from other iterative deep 
learning-based methods (Qiu et al., 2022; Zhao et al., 2019) which use 
only the final output to calculate the loss, and Falta et al. (2022) use 
a uniform weight, addressing the fact that early steps in the prediction 
process were neglected before.

2.4. Metrics

Similarity Functions for Inner Loss inner: In the context of im-
age registration, unlike inverse problems with straightforward forward 
models, the problem is addressed as a broader optimization challenge. 
Therefore, it requires an investigation of choosing a (differentiable) 
function acting as the inner loss function evaluating the quality of 
estimation of 𝝓𝑡 iteratively in RIIR. Furthermore, the gradient of inner
as an input of a convolutional recurrent neural network has not been 
studied before for deformable image registration. These motivate the 
study on the different choices of inner under a fixed choice of outlet 
loss outer. In this work, we evaluate three similarity functions: mean 
squared error (MSE), normalized cross-correlation (NCC) (Avants et al., 
2008), and normalized mutual information (NMI) (Studholme et al., 
1999).

The MSE between two 3D images 𝐼1, 𝐼2 ∈ R𝑑𝑥×𝑑𝑦×𝑑𝑧  is defined as 
follows: 
MSE

(

𝐼1, 𝐼2
)

= 1
𝑑𝑥𝑑𝑦𝑑𝑧

‖

‖

𝐼1 − 𝐼2‖‖
2
2, (14)

where |𝛺𝐼 | = 𝑑𝑥𝑑𝑦𝑑𝑧 denotes the all possible coordinates. The MSE 
metric is minimized when pixels of 𝐼1 and 𝐼2 have the same intensities. 
Therefore, it is sensitive to the contrast change. In comparison, the 
NCC metric measures the difference between images with the image 
intensity normalized. The NCC difference between 𝐼1 and 𝐼2 is given 
by: 

NCC(𝐼1, 𝐼2) =
1

|𝛺𝐼1 |

∑

𝝌∈𝛺𝐼1

∑

𝝌 ′∈𝛺𝝌
(𝐼1(𝝌 ′) − 𝐼1(𝝌))(𝐼2(𝝌 ′) − 𝐼2(𝝌))

√

𝐼1(𝝌)𝐼2(𝝌)
, (15)

where 𝛺𝐼1  denotes all possible coordinates in 𝐼1, 𝛺𝝌  represents a 
neighborhood of voxels around coordinate position 𝝌 and 𝐼(𝝌) and 𝐼(𝝌)
denote the (local) mean and variance in 𝛺𝝌 .

Compared to MSE and NCC, NMI is shown to be more robust when 
the linear relation of signal intensities between two images does not 
hold (Studholme et al., 1999; de Vos et al., 2020), which is often the 
case in quantitative MRI as the signal models are mostly exponen-
tial (Messroghli et al., 2004; Chow et al., 2022). The NMI between two 
images can be written as: 

NMI(𝐼1, 𝐼2) =
𝐻(𝐼1) +𝐻(𝐼2)

𝐻(𝐼1, 𝐼2)
, (16)

where 𝐻(𝐼1) and 𝐻(𝐼2) are marginal entropies of 𝐼1 and 𝐼2, respec-
tively, and 𝐻(𝐼1, 𝐼2) denotes the joint entropy of the two images. Since 
the gradient is both necessary for inner and outer we adopt a differ-
entiable approximation of the joint distribution proposed in Qiu et al. 
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(2021) based on Parzen window with Gaussian distributions (Thévenaz 
and Unser, 2000).
Regularization Metrics:  To ensure a smooth and reasonable deforma-
tion field, we primarily use a diffusion regularization loss which penal-
izes large displacements in 𝝓 acting on 𝐼 ∈ R𝑑𝑥×𝑑𝑦×𝑑𝑧

(Fischer and Modersitzki, 2002): 

diff =
1

|𝛺𝐼 |

∑

𝝌∈𝛺𝐼

‖∇𝝓(𝝌)‖22 , (17)

where |𝛺𝐼 | = 𝑑𝑥𝑑𝑦𝑑𝑧, ∇𝝓(𝝌) denotes the Jacobian of 𝝓 at coordinate 
𝝌 . It is noticeable that Eq. (17) and its gradient are not evaluated in 
each RIIR inference step as indicated in Eq. (8), the outer loss outer
and the data-driven training process can guide the RIIR Cell 𝑔𝜃 to learn 
the regularization implicitly.

Since RIIR aims to learn implicit regularization from data with the 
outer loss, we also include two additional regularization metrics in our 
ablation study: curvature regularization and linear elastic regulariza-
tion with fixed elasticity parameters (Fischer and Modersitzki, 2004). 
The curvature loss penalizes the second spatial derivatives of the dis-
placement field 𝝓, encouraging smoothness in the rate of change of 𝝓:

curv =
1

|𝛺𝐼 |

∑

𝝌∈𝛺𝐼

3
∑

𝑖,𝑗=1

‖

‖

‖

‖

‖

𝜕2𝝓(𝝌)
𝜕𝜒𝑖𝜕𝜒𝑗

‖

‖

‖

‖

‖

2

2
, (18)

where 𝜕2𝝓(𝝌)
𝜕𝜒𝑖𝜕𝜒𝑗

 denotes the second-order partial derivative of 𝝓 w.r.t.
dimensions 𝜒𝑖 and 𝜒𝑗 at coordinates 𝝌 .

The linear elastic regularization aims to regularize the displacement 
field by considering both the divergence and strain of the field. Its vari-
ational formulation can be described as follows
(Fischer and Modersitzki, 2004): 

elas =
1

|𝛺𝐼 |

∑

𝝌∈𝛺𝐼

(

𝜆𝑒
2

(div𝝓(𝝌))2 + 𝜇
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3
∑

𝑖,𝑗=1

‖

‖

‖

‖

‖

𝜕𝜙𝑖(𝝌)
𝜕𝜒𝑗

+
𝜕𝜙𝑗 (𝝌)
𝜕𝜒𝑖

‖

‖

‖

‖

‖

2

2

)

, (19)

where div𝝓(𝝌) =
∑3

𝑖=1
𝜕𝜙𝑖(𝝌)
𝜕𝜒𝑖

 denotes the divergence of the displace-
ment field, 𝜆𝑒 and 𝜇𝑒 are Lamé parameters controlling the strength of 
volumetric and shear deformation respectively. The first term penalizes 
volume changes, while the second term regularizes shear deformation 
of the displacement field 𝝓.

3. Experiments

3.1. Dataset

We evaluated our proposed RIIR framework on two separate
datasets: (1) A 3D brain MRI image dataset with inter-subject regis-
tration setup, OASIS (Marcus et al., 2007) with pre-processing from
Hoopes et al. (2021), denoted as OASIS. (2) A 3D lung CT dataset 
with intra-subject registration setup, National Lung Screening Trial 
(NLST) (Aberle et al., 2011), provided and processed by the Learn2Reg 
challenge (Hering et al., 2022). This dataset is denoted by NLST. (3) A 
2D quantitative cardiac MRI image datasets based on multiparametric 
SAturation-recovery single-SHot Acquisition (mSASHA) image time 
series (Chow et al., 2022), denoted as mSASHA. These datasets, each 
serving our interests in inter-subject tissue alignment and respiratory 
motion correction with and without contrast variation.
OASIS: The dataset contains 414 subjects, where for each subject, the 
normalized 𝑇1-weighted scan was acquired. The subjects are split into 
train/validation/test with counts of [300, 30, 84]. For training, images 
are randomly paired using an on-the-fly data loader, while in the 
validation and test sets, all images are paired with the next image 
in a fixed order. The dataset was preprocessed with FreeSurfer and 
SAMSEG by Hoopes et al. (2021), resulting in skull-stripped and bias-
corrected 3D volumes with a size of 160 × 192 × 224. We further 
resampled the images into a size of 128 × 128 × 128 with intensity 
clipping between (1%, 99%) percentiles. Fig.  2 illustrates an example 
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Fig. 2. An example of OASIS dataset for two subjects as 𝐼fix and 𝐼mov. The choices of 
𝐼fix and 𝐼mov are random during training.

Fig. 3. An example of NLST dataset for a single subject with 𝐼fix corresponding to the 
image captured at inspiratory phase and 𝐼mov corresponding to the image captured at 
expiratory phase.

Fig. 4. An example of mSASHA dataset, from left to right: 𝐼fix, 𝐼mov (random sample 
1), and 𝐼mov (random sample 2). The three images were taken from the same image 
series, with different acquisition time points. To emphasize the difference in both signal 
intensity and contrast across images in a single series, the color ranges are set to be 
the same for the three images.

pair of OASIS images, showcasing the consistency in signal intensity 
and contrast.
 NLST: We use the public NLST dataset from the Learn2Reg challenge. 
The dataset consists of 210 subjects with intra-subject inhale and exhale 
lung CT images that are affinely pre-aligned. The subjects are split 
into train/validation/test with counts of [170, 10, 30]. Following the 
convention, during training, only the inhale and exhale images from 
the same subject are paired, with the inhale image chosen as 𝐼fix for 
all pairs. The images were preprocessed and resampled to a size of 
224 × 192 × 224. The keypoints and their correspondences in the 
lung lobe, along with the lung lobe mask, were provided by the orga-
nizers, and obtained by the corrField algorithm (Heinrich et al., 2015) 
and nnU-Net (Isensee et al., 2021) respectively. An example pair of 
NLST images is shown in Fig.  3, demonstrating the large deformation 
required for this task.
mSASHA: During an free-breathing mSASHA examination, a time series 
of 𝑁 = 30 real-valued 2D images, denoted by 𝐼 = {𝐼𝑛| 𝑛 = 1, 2,… , 𝑁}, 
are acquired for the same subject. In the setting of quantitative MRI, 
we aim to spatially align 𝑁 images in a single sequence 𝐼 into a com-
mon fixed template image 𝐼fix, by individually performing 𝑁 pairwise 
registration processes over (𝐼𝑛, 𝐼fix) where 𝑛 = 1, 2,… , 𝑁 .

The mSASHA acquisition technique (Chow et al., 2022) is a voxel-
wise 3-parameter signal model based on the joint cardiac 𝑇1-𝑇2 signal 
model: 

(

𝑇 , 𝑇 , 𝐴
)

= 𝐴
{

1 −
[

1 −
(

1 − 𝑒−𝑇𝑆∕𝑇1
)

𝑒−𝑇𝐸∕𝑇2
]

𝑒−𝑇𝐷∕𝑇1
}

, (20)
1 2
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where (𝑇𝑆, 𝑇𝐸, 𝑇𝐷) denotes the set of three acquisition variables, 
and (𝑇1, 𝑇2, 𝐴) is the set of parameters to be estimated for each voxel 
coordinate of the image series. The sequence for mSASHA consists 
of a reference image without magnetization preparation, a series of 
saturation recovery (SR) images, and a series of both SR and 𝑇2-
prepared images. We encourage interested readers to refer to Chow 
et al. (2022) for a more detailed explanation.

In our experiment, an in-house mSASHA dataset was used. This fully 
anonymized raw dataset was provided by NIH, and was considered 
‘‘non-human subject data research’’ by the NIH Office of Human Sub-
jects Research’’. The dataset comprises 120 subjects, with each subject 
having 3 slice positions, resulting in a total number of 360 slices. Each 
mSASHA time series consists of a fixed length of 𝑁 = 30 images. We 
split mSASHA into train/validation/test with counts of [84, 12, 24] by 
subjects to avoid data leakage across the three slices. Given variations 
in image sizes due to different acquisition conditions, we first center-
cropped the images into the same size of 144 × 144. Subsequently, we 
applied intensity clipping between (1%, 95%) percentiles to mitigate ex-
treme signal intensities from the chest wall region. We selected the last 
image in the series, i.e., in the 𝑇2 preparation stage, as the template 𝐼fix, 
which is then a T2-weighted image with the greatest contrast between 
the myocardium and adjacent blood pool. An illustrative example of 
mSASHA images can be found in Fig.  4, showing varying contrasts and 
non-rigid motion across frames.

3.2. Evaluation metrics

For evaluating the smoothness of the deformation field, we employ 
three complementary metrics based on the Jacobian of the deforma-
tion 𝐽𝝓 = ∇𝝓: (1) the percentage of negative Jacobian determinant 
|𝐽𝜙|≤0, which quantifies the proportion of regions exhibiting folding or 
topology-breaking transformations, (2) the standard deviation of the 
log-Jacobian determinant std(log |𝐽𝝓|), which characterizes the global 
variation of volume changes, and (3) the magnitude of the spatial 
gradient of the Jacobian determinant mag(∇|𝐽𝝓|), which measures the 
local rate of change in volume deformation. To allow fair comparisons 
between methods, we meticulously adjust the regularization parameter 
𝜆 for each baseline to achieve comparable levels of smoothness of 
transformation. To assess registration accuracy, we utilize structural 
similarity metrics that are independent of optimization objectives sim
and reg, with dataset-specific metrics detailed in subsequent sections.

For OASIS, two metrics, Dice score and Hausdorff distance (HD) are 
considered to evaluate segmentation quality after registration. Given 
two sets 𝑋 ⊂ 𝑀 and 𝑌 ⊂ 𝑀 , the Dice score, is defined to measure the 
overlapping of 𝑋 and 𝑌 : 

𝐷𝑖𝑐𝑒(𝑋, 𝑌 ) =
2|𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 |

. (21)

Similarly, the Hausdorff distance of two aforementioned sets 𝑋 and 𝑌
is given by: 

𝐻𝐷(𝑋, 𝑌 ) ∶= max
{

sup
𝑥∈𝑋

𝑑(𝑥, 𝑌 ), sup
𝑦∈𝑌

𝑑(𝑋, 𝑦)
}

, (22)

where 𝑑(⋅, ⋅) is a metric (2-norm in this work) on 𝑀 and 𝑑(𝑥, 𝑌 ) ∶=
inf𝑦∈𝑌 𝑑(𝑥, 𝑦). As a remark, in this work, we consider the average across 
all segmentation labels to calculate the Dice score and HD in OASIS
instead of only considering the major regions.

For the NLST dataset, we evaluate the registration performance 
using both lung lobe mask overlap and Target Registration Error (TRE) 
of the keypoints. For a quantitative evaluation of local registration 
accuracy, TRE is calculated based on the provided keypoint pairs. Given 
a set of corresponding keypoint pairs {(𝒑𝑖, 𝒒𝑖)}𝐿𝑖=1 where 𝒑𝑖 represents 
a keypoint in the moving image and 𝒒𝑖 its corresponding point in the 
fixed image, TRE is defined as: 

TRE = 1
𝐿
∑

‖𝝓(𝒑𝑖) − 𝒒𝑖‖2, (23)

𝐿 𝑖=1
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where ‖ ⋅ ‖2 denotes the Euclidean distance.
Furthermore, we also evaluate two more independent metrics for 

the mSASHA dataset proposed by Huizinga et al. (2016) isolated from 
training. The metrics are based on the principal component analysis 
(PCA) of images. Assume 𝑀 ∈ R𝑑𝑥𝑑𝑦×𝑁  is the matrix representation of 
𝐼 , where a row of 𝑀 represents a coordinate in the image space. The 
correlation matrix of 𝑀 is then calculated by: 

𝐾 = 1
𝑑𝑥𝑑𝑦 − 1

𝛴−1(𝑀 −𝑀)⊺(𝑀 −𝑀)𝛴−1, (24)

where 𝛴 is a diagonal matrix representing the standard deviation of 
each column, and 𝑀 denotes the column-wise mean for each column 
entry. Since an ideal qMRI model assumes a voxel-wise tissue align-
ment, the actual underlying dimension of 𝐾 can be characterized by a 
low-dimensional (linear) subspace driven by the signal model. In the 
mSASHA signal model, the dimension of such a subspace is assumed to 
be four according to Eq. (20), determined by the number of parameters 
to be estimated. With the fact that the trace of 𝐾, tr(𝐾) is a constant, 
two PCA-based metrics were proposed as follows:

PCA1 =
𝑁
∑

𝑖=1
𝜎𝑖 −

𝐿
∑

𝑗=1
𝜎𝑗 = tr(𝐾) −

𝐿
∑

𝑗=1
𝜎𝑗 , (25)

PCA2 =
𝑁
∑

𝑗=1
𝑗𝜎𝑗 , (26)

where 𝜎𝑖 denotes the 𝑖th largest eigenvalue of 𝐾. Both metrics were 
designed to penalize a long-tail distribution of the spectrum of 𝐾, and 
𝐿 is a hyperparameter regarding the number of parameters of the signal 
model. For PCA1, an ideal scenario would involve all images perfectly 
aligning with tissue anatomy and the signal model, resulting in a value 
of 0. Meanwhile, the interpretation of PCA2 further emphasizes the tail 
of the eigenvalues, thus enlarging the gaps across experiments.

To narrow the analysis to the region of interest to the heart re-
gion, the calculation is confined to this area by cropping the resulting 
images before computing the metric. This constraint ensures that the 
evaluation is focused on the relevant anatomical structures.

3.3. Experimental settings

We here summarize the main experiments for evaluation and further 
ablation experiments for RIIR. For all experiments, the main workflow 
is to register the image series 𝐼 of length 𝑁 in a pairwise manner: that 
is, we first choose a template 𝐼fix, and then perform 𝑁 registrations. 
When 𝑁 = 2, the registration process simplifies to straightforward 
pairwise registration.
Experiment 1: Comparison Study with Varying Data Availability

We introduce five data-availability scenarios to evaluate the ro-
bustness of the models when data availability is limited, on both 
datasets, which often happens in both research settings and clinical 
practices as the number of subjects is heavily limited. The training data 
availability settings in this study were set to [5%, 10%, 25%, 50%, 100%]
for all datasets. It is worth noticing that for limited data availability 
scenarios, the data used for training remained the same for all models 
in consideration, and the leave-out test split remained unchanged for 
all scenarios.
Experiment 2: Inclusion of Hidden States

Unlike most related works utilizing the original RIM framework
(Lønning et al., 2019; Sabidussi et al., 2021) where two levels of 
hidden states are considered, we explored the impact of modifying or 
even turning off hidden states. In our implementation of convolutional 
GRU, at most two levels of hidden states 𝒉1𝑡  and 𝒉2𝑡  are considered, 
following recent works using RIM (Lønning et al., 2019; Sabidussi et al., 
2021, 2023). Both hidden states were configured with 32 channels 
in their corresponding convolutional GRU layers. All experiments in 
this ablation study were performed in the validation split. We present 
7 
the results for OASIS and NLST as they represent distinct imaging 
modalities (brain MRI and lung CT) and registration scenarios.
Experiment 3: Inclusion of Gradient of Inner Loss ∇𝝓𝑡

inner as RIIR 
Input

We performed an experimental study on the input composition for 
RIIR. As shown in Eq. (12), the goal was to study the data efficiency 
and the registration performance by incorporating the gradient of 
inner in RIIR. We could achieve ablation by changing the input of 
𝑔𝜃 . A comparison with other input modeling strategies seen in Qiu 
et al. (2022) was proposed against the gradient-based input for 𝑔𝜃 . 
Depending on whether the moving image is deformed (explicit) or not 
(implicit), as well as the original RIM formulation, we ended up with 
four input compositions:

1. Implicit Input without ∇inner: [𝝓𝑡, 𝐼mov, 𝐼fix];
2. Explicit Input without ∇inner: [𝝓𝑡, 𝐼mov◦𝝓𝑡, 𝐼fix];
3. RIM Input: [𝝓𝑡,∇𝝓𝑡

inner];
4. RIIR Input: [𝝓𝑡,∇𝝓𝑡

inner, 𝐼mov◦𝝓𝑡, 𝐼fix].

This study aimed to provide information on the impact of different 
input compositions on the efficiency of RIIR when data availabil-
ity varies. We conducted the experiment with two data availability 
choices ([5%, 100%]) to examine the data efficiency and other potential 
influences induced by the gradient input. 
Experiment 4: Regularization Analysis

It is known that the regularization metric and weight influence the 
registration performance. In this experiment, we want to investigate the 
change in the evaluation metrics. For comparison, we used diffusion, 
curvature, and elastic regularization functions. For elastic regulariza-
tion, we set the elastic parameters to be [𝜆𝑒 = 540.8, 𝜇 = 22.5] for OASIS 
and [𝜆𝑒 = 45.33, 𝜇 = 8] for NLST according to the literature (Kumaresan 
and Radhakrishnan, 1996; Lai-Fook and Hyatt, 2000; Reithmeir et al., 
2024).

Experiment 5: RIIR Architecture Ablation Since RIIR is the first 
attempt to formulate and implement the RIM framework for medical 
image registration, we performed an ablation study on the RIIR network 
architecture for the number of evaluation steps 𝑇 .

3.4. Baseline methods and implementation details

We compared our proposed method to various registration meth-
ods that are closely related to our interest. We use the same choice 
of similarity and regularization functions for all deep learning-based 
methods in the comparative study for fair comparison, unless otherwise 
indicated. We used MSE loss for OASIS, NCC with window size 𝑤 = 5
for NLST, and NMI with 𝑛 = 32 bins for mSASHA. We used diffusion 
regularization for all three datasets in the comparative study. The 
methods and applicable hyperparameters are described as follows:

• Elastix (Klein et al., 2009): An iterative optimization-based regis-
tration toolbox. Specifically, we used ITK-Elastix
(Ntatsis et al., 2023) in Python. Three resolution levels with
third-order B-spline transformation and a grid spacing of four 
were applied for all datasets.

• VoxelMorph (Balakrishnan et al., 2019): We used 𝜆 = 0.02 for 
OASIS as in the original paper, 𝜆 = 0.15 for NLST, and 𝜆 = 0.3 for 
mSASHA. The channels used in each downsampling encoder block 
were [16, 16, 32, 32, 32]. Two layers of activation with channels 
[16, 16] after the decoder was used.

• GraDIRN (Qiu et al., 2022): A multi-resolution multi-step deep 
learning method that uses explicit similarity loss gradient and 
dense CNN to produce incremental updates. We followed the orig-
inal implementation with 3 resolutions and 3 steps per resolution 
and use the last-step output for loss calculation. The training 
losses were set to the same as VoxelMorph, with weight parameter 
𝜆 = 0.015 for OASIS, 𝜆 = 0.125 for NLST, and 𝜆 = 0.25 for 
mSASHA.
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Fig. 5. A visualization of RIIR inference on OASIS test split, visualized with a 2D slice and in-plane deformation. The inference step was set to 6 in both training and inference. 
All images in the same row were plotted using the same color range for better consistency.
• LapIRN (Mok and Chung, 2020): A multi-resolution deep learn-
ing method with Laplacian pyramid networks. We followed the 
original implementation of the displacement version with three-
stage training and used multi-level NCC in the paper as similarity 
loss for OASIS, with 𝜆 = 0.6. For NLST and mSASHA, we followed 
the same loss and weight as for VoxelMorph.

• Learn-to-Optimize (L2O) (Falta et al., 2022): A multi-step deep 
learning method that uses additional input modalities, including 
3D MIND features (Heinrich et al., 2012) and sampled coordi-
nates for 3D datasets. Constrained by the inherent 3D nature 
of MIND features, we evaluated L2O on the OASIS and NLST 
datasets. The original paper uses keypoint supervision only; there-
fore, we replaced the loss function by the same unsupervised loss 
as used by other baseline methods while keeping the uniform 
weight for each step, with 𝜆 = 0.03 for OASIS and 𝜆 = 0.225 for 
NLST.

• Recursive-cascaded VoxelMorph (RCVM) (Zhao et al., 2019):A 
single-resolution iterative deep learning method that uses cas-
caded U-Nets and composition of the deformation field to gen-
erate the final output. We used the same VoxelMorph backbone 
and loss functions with 𝜆 = 0.015 for OASIS, 𝜆 = 0.25 for mSASHA, 
and 𝜆 = 0.125 for NLST.

We implemented the RIIR in the following settings for experiment 1: 
The backbone network is the same as the VoxelMorph in baseline, with 
8 
additional ConvGRU in the second level with 32 channels. We used the 
inference steps 𝑇 = 6 and exponential weighting for 𝑤𝑡 = 10

𝑡−1
𝑇−1 . To 

ensure a similar level of smoothness, the trade-off parameter for RIIR 
was set to 𝜆 = 0.0125 for OASIS, 𝜆 = 0.125 for NLST, and 𝜆 = 0.25
for mSASHA. The optimizer of all methods remained the same using 
Adam (Kingma and Ba, 2015) with 𝛽1 = 0.9 and 𝛽2 = 0.999. The initial 
learning rate was set to 1 × 10−4 for all models. For all experiments, 
the maximum epochs was set to 100 epochs with early stopping if the 
evaluation metrics does not improve for 10 epochs. The experiments 
were performed on an NVIDIA RTX 4090 GPU with a VRAM of 24 GB. 
The source codes for RIIR, with the implementation of the baseline 
models and data processing are publicly available.1

4. Results

4.1. Experiment 1: Comparison study with varying data availability

An illustrative visualization of RIIR inference on an example test 
data, can be found in Fig.  5. The results for OASIS are presented in 
Fig.  6, as well as . LapIRN, leveraging its multi-resolution architecture, 

1 gitlab.tudelft.nl/ai4medicalimaging/riir-public.

https://gitlab.tudelft.nl/ai4medicalimaging/riir-public
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Fig. 6. Results of Experiment 1 with boxplots for Dice score on OASIS. The circle 
denotes the mean of the metric of interest. The segmentation metric Dice is calculated 
for all 35 segmentation labels and post-processed by taking the average.

Fig. 7. Results of Experiment 1 with boxplots for TRE on NLST. The circle denotes 
the mean of the metric of interest. The TRE is calculated based on the anatomically 
meaningful keypoint pairs provided by corrField algorithm within lung lobes. For 
visualization, outliers over a TRE of 20 mm were excluded but used for statistical 
calculation.

also demonstrates robust performance. It is evident that RIIR outper-
forms most deep learning-based baselines when data availability is 
severely limited and maintains consistent performance across various 
data availability scenarios, showcasing its data efficiency and accuracy.

The results for NLST are shown in Fig.  7. An illustrative visualiza-
tion of RIIR inference on an inhale-exhale lung CT pair, can be found in 
Fig. 20. The registration of lung CT presents unique challenges due to 
the large deformation between respiratory phases. RIIR demonstrates 
superior performance in capturing these large deformations, achieving 
lower TRE while maintaining anatomically plausible transformations.

The results of this experiment on mSASHA are shown in Fig.  8 using 
a composition of boxplots. Both LapIRN and RCVM achieved superior 
performance in group-wise registration, with RCVM showing slightly 
better results in terms of PCA1. Our proposed RIIR demonstrated 
comparable performance levels in terms of PCA1. The qualitative 
visualization of RIIR inference on mSASHA test split is shown in Fig. 
21.

For a comprehensive quantitative comparison, Table  1 presents de-
tailed statistics across all datasets under full data availability, including 
performance metrics, model parameters, memory consumption, and 
computational time.
9 
Fig. 8. Results of Experiment 1 with boxplots for 𝐷𝑝𝑐𝑎1 on mSASHA. The circle denotes 
the mean of the metric of interest. The group-wise metric 𝐷PCA1 was calculated based 
on further center-cropping at a ratio of 70% on the warped images.

Fig. 9. Results of Experiment 2 evaluated on OASIS validation set (left) regarding Dice 
score and NLST validation set (right) regarding TRE. Here, for example, [0, 0] denotes 
the case that no hidden states are considered, and [1, 1] denotes both hidden states 
were considered in the pipeline. Two-sided Wilcoxon tests were conducted for [0, 1]
against other settings with statistical significance (p< 0.05), except for [0, 0] (𝑝 = 0.076)
in OASIS dataset.

4.2. Experiment 2: Inclusion of hidden states

The architectural settings were kept the same as in the aforemen-
tioned experiments, and the results are shown in Fig.  9. Although 
improved performance using hidden states ([0, 1]) over no hidden 
states is only observed in the NLST dataset, we empirically noticed that 
training was more stable when hidden states were enabled. It is also 
notable that the inclusion of hidden states in the pipeline does not incur 
significant computational overhead. For the OASIS dataset, the addition 
of hidden states only increases VRAM consumption by approximately 
800 MB, while maintaining the model’s computational speed.

4.3. Experiment 3: Inclusion of inner loss gradient as RIIR input

The results are shown in Fig.  10. It can be observed that the network 
struggled if the warped image 𝐼mov◦𝝓 is only implicitly fed to the RIIR 
cell, i.e., there is an additional cost to learn the transformation. When 
training data is abundant (100% availability), RIIR and Explicit input 
achieve comparable performance, as evidenced by the non-significant 
statistical differences (𝑝 = 0.17 for OASIS and 𝑝 = 0.27 for NLST). This 
suggests that with sufficient training data, both approaches can effec-
tively learn the registration task, though RIIR maintains its advantage 
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Table 1
Quantitative comparison of different registration methods with 100% data availability. For each evaluation metric except Par. (number of parameters), Mem. (VRAM consumption), 
and 𝑇  (training/inference time), we report mean ± std. VRAM consumption indicates the peak GPU memory consumption during training. The training/inference time is profiled 
for a batch on GPU (excluding data loading time), except for elastix where CPU time is reported. For LapIRN, metrics are reported at level 3. The best performance is shown in 
bold and marked with ∗ if there is a statistically significant difference (𝑝 < 0.05) from the second best by a two-sided Wilcoxon signed-rank test.
 Dataset Method Dice HD (mm) |𝐽𝝓|≤0 (%) std(log |𝐽𝝓|) mag(∇|𝐽𝝓|) Par. (K) Mem. (G) 𝑇  (s)  
 

OASIS

Affine 0.563 ± 0.063 8.56 ± 1.19 – – – – – –  
 elastix 0.696 ± 0.040 3.89 ± 0.58 0.003 ± 0.002 0.254 ± 0.045 𝟎.𝟎𝟏𝟓 ± 𝟎.𝟎𝟎𝟐∗ – – 17.45  
 VM 0.729 ± 0.030 3.61 ± 0.49 0.016 ± 0.031 0.295 ± 0.115 0.029 ± 0.003 320 1.57 0.17/0.14 
 L2O 0.733 ± 0.032 3.62 ± 1.01 0.021 ± 0.028 0.411 ± 0.132 0.035 ± 0.003 343 20.52 1.19/0.86 
 GraDIRN 0.739 ± 0.027 3.54 ± 0.45 0.012 ± 0.003 0.206 ± 0.065 0.022 ± 0.002 269 16.13 0.57/0.25 
 LapIRN 0.751 ± 0.026 3.50 ± 0.44 0.010 ± 0.002 0.260 ± 0.051 0.034 ± 0.002 923 3.78 0.16/0.10 
 RCVM 0.753 ± 0.025 𝟑.𝟒𝟔 ± 𝟎.𝟒𝟑∗ 𝟎.𝟎𝟎𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟏𝟖𝟗 ± 𝟎.𝟎𝟒𝟑∗ 0.027 ± 0.003 1920 10.20 0.64/0.54 
 RIIR 𝟎.𝟕𝟓𝟔 ± 𝟎.𝟎𝟐𝟓∗ 3.48 ± 0.41 0.011 ± 0.009 0.264 ± 0.073 0.029 ± 0.003 436 11.82 0.55/0.27 
 Dataset Method TRE (mm) Dice |𝐽𝝓|≤0 (%) std(log |𝐽𝝓|) mag(∇|𝐽𝝓|) Par. (K) Mem. (G) 𝑇  (s)  
 

NLST

Affine 8.43 ± 3.97 0.873 ± 0.041 – – – – – –  
 elastix 5.01 ± 2.92 0.946 ± 0.007 𝟎.𝟎𝟎𝟎 ± 𝟎.𝟎𝟎𝟎∗ 𝟎.𝟏𝟔𝟎 ± 𝟎.𝟎𝟑𝟏∗ 𝟎.𝟎𝟏𝟏 ± 𝟎.𝟎𝟎𝟑∗ – – 14.21  
 VM 3.99 ± 2.48 0.957 ± 0.012 0.120 ± 0.162 0.677 ± 0.399 0.057 ± 0.005 320 0.93 0.18/0.15 
 L2O 2.51 ± 2.96 0.961 ± 0.019 0.451 ± 0.363 1.325 ± 0.554 0.068 ± 0.007 343 11.81 0.83/0.52 
 GraDIRN 2.89 ± 2.49 0.960 ± 0.020 0.114 ± 0.068 0.454 ± 0.269 0.058 ± 0.005 279 9.32 0.37/0.15 
 LapIRN 2.44 ± 1.60 0.967 ± 0.006 0.073 ± 0.065 0.555 ± 0.240 0.058 ± 0.004 923 2.18 0.14/0.05 
 RCVM 2.32 ± 1.35 𝟎.𝟗𝟔𝟖 ± 𝟎.𝟎𝟎𝟓∗ 0.229 ± 0.278 0.913 ± 0.511 0.063 ± 0.005 1920 5.89 0.38/0.27 
 RIIR 𝟐.𝟐𝟏 ± 𝟏.𝟕𝟏∗ 0.966 ± 0.012 0.108 ± 0.259 0.568 ± 0.481 0.048 ± 0.004 436 7.12 0.41/0.18 
 Dataset Method PCA1 PCA2 |𝐽𝝓|≤0 (%) std(log |𝐽𝝓|) mag(∇|𝐽𝝓|) Par. (K) Mem. (G) 𝑇  (s)  
 

mSASHA

Raw 1.28 ± 0.88 46.70 ± 10.40 – – – – – –  
 elastix 0.40 ± 0.38 35.81 ± 4.72 0.162 ± 0.005 0.551 ± 0.685 𝟎.𝟎𝟐𝟐 ± 𝟎.𝟎𝟎𝟗∗ – – 2.46  
 VM 0.46 ± 0.42 36.49 ± 5.13 𝟎.𝟎𝟎𝟐 ± 𝟎.𝟎𝟎𝟏 0.210 ± 0.082 0.053 ± 0.012 79 0.06 0.05/0.01 
 GraDIRN 0.39 ± 0.38 35.85 ± 4.51 0.002 ± 0.002 𝟎.𝟏𝟓𝟔 ± 𝟎.𝟎𝟒𝟑∗ 0.040 ± 0.012 89 0.21 0.09/0.04 
 LapIRN 0.34 ± 0.32 35.11 ± 4.09 0.006 ± 0.002 0.248 ± 0.128 0.054 ± 0.015 309 0.09 0.04/0.01 
 RCVM 𝟎.𝟑𝟐 ± 𝟎.𝟑𝟎∗ 𝟑𝟒.𝟕𝟗 ± 𝟑.𝟖𝟑∗ 0.005 ± 0.002 0.275 ± 0.081 0.073 ± 0.019 589 0.13 0.07/0.02 
 RIIR 0.36 ± 0.36 35.46 ± 4.41 0.007 ± 0.002 0.312 ± 0.042 0.039 ± 0.008 148 0.24 0.13/0.05 
Table 2
Comparison of Explicit Input and RIIR under 5% data availability in Experiment 3. For 
each metric, we report mean ± std.
 Dataset |𝐽𝜙|≤0 (%) std(log |𝐽𝜙|) mag(∇|𝐽𝜙|)  
 OASIS
 Explicit 0.014 ± 0.015 0.299 ± 0.133 0.035 ± 0.003 
 RIIR 0.019 ± 0.012 0.350 ± 0.088 0.034 ± 0.003 
 NLST
 Explicit 0.092 ± 0.108 0.575 ± 0.372 0.057 ± 0.003 
 RIIR 0.085 ± 0.084 0.581 ± 0.309 0.055 ± 0.004 

over other input types. However, RIIR input demonstrates more robust 
performance in data-limited scenarios, particularly when only 5% of the 
training data is available. We also found that for both datasets when 
data availability is 5%, the deformation-related metrics have smaller 
variation for RIIR input compared with Explicit inputs as shown in 
Table  2.

4.4. Experiment 4: Regularization analysis

The results of regularization analysis on OASIS and NLST datasets 
are shown in Figs.  11 and 12, respectively. For OASIS, diffusion reg-
ularization achieves better Dice scores compared to affine registration 
across all weights. For NLST, while all three regularization terms im-
prove the TRE over affine registration, curvature regularization exhibits 
a higher percentage of negative Jacobian determinants. For elastic 
regularization, it is worth noting that different parameter settings for 
𝜆𝑒 and 𝜇 were used across datasets to reflect tissue differences, which 
may lead to varying regularization effects.

4.5. Experiment 5: RIIR architecture ablation

Here we demonstrate the model architecture ablation by showing 
the corresponding boxplots in Fig.  13. The increasing number of steps 
leads to proportionally higher VRAM consumption and inference time. 
Specifically, VRAM usage ranges from approximately 8 GB (4 steps) 
10 
Fig. 10. Results of Experiment 3 evaluated on OASIS validation set (left) and 
NLST validation set (right). For OASIS with 5% data availability, RIIR input shows 
significance over all types except RIM (𝑝 = 0.81). At 100%, significance remains except 
for Explicit input (𝑝 = 0.17). For NLST with 5% data availability, RIIR input shows 
significance over all types. At 100%, significance remains except for Explicit input 
(𝑝 = 0.27).

to 24 GB (12 steps), with corresponding inference times varying from 
0.40 s to 1.12 s. Apart from the main experiments shown previously, 
this experiment can be regarded as a minor ablation study, aiming to 
strike a balance between computational precision and inference speed.

5. Discussion

In this study, we introduced RIIR, a deep learning-based medical 
image registration method that leverages recurrent inferences as a 
meta-learning strategy. We extended Recurrent Inference Machines 
(RIMs) to the image registration problem, which has no explicit forward 
models. Given the absence of explicit forward models, our approach can 
be viewed as a case of amortized iterative inference, where the network 
learns to progressively refine the registration. RIIR was extensively 
evaluated on public brain MR, lung CT, and in-house quantitative 
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Fig. 11. Results of regularization analysis on OASIS validation set. Different regu-
larization weights are compared in terms of Dice score. Here w/o reg denotes the 
results without regularization and negJ denotes the percentage of negative Jacobian 
determinant.

Fig. 12. Results of regularization analysis on NLST validation set. Different regulariza-
tion weights are compared in terms of TRE. Here w/o reg denotes the results without 
regularization and negJ denotes the percentage of negative Jacobian determinant.

Fig. 13. Results of Experiment 5. For the ablation study on network steps on OASIS, 
two-sided Wilcoxon tests suggest significant difference is found for 𝑡 = 6 against all 
other scenarios.
11 
cardiac MR datasets, and demonstrated consistently improved perfor-
mance over established deep learning models, both in one-step and 
iterative settings. Additionally, our ablation study confirmed the impor-
tance of incorporating hidden states within the RIM-based framework.

The acclaimed improvement in registration performance is espe-
cially pronounced in scenarios with limited training data, as demon-
strated in Figs.  6, 7, and 8. In particular, RIIR achieved superior average 
evaluation metrics with lower variance. This performance advantage 
was particularly pronounced in the NLST experiments, where large 
deformations need to be estimated with very limited training data. 
Most baseline models required substantially more training data to 
achieve comparable performance levels, with the exception of L2O, 
which benefits from additional input modalities such as dynamically 
sampled coordinates and MIND features. Though both GraDIRN and 
RIIR are iterative methods that use similarity gradients, GraDIRN iso-
lates the update of explicit sim and deep learning-based reg with no 
internal states, potentially resulting in worse generalization and slower 
convergence compared to RIIR. In particular, GraDIRN initialized the 
deformation field randomly by default, which could lead to optimiza-
tion difficulties when the data were extremely limited during training. 
RCVM achieves lower folding rates (|𝐽𝜙|≤0) through its composed 
deformation strategy, where the final transformation is obtained by 
composing multiple smaller deformations. Although this approach ef-
fectively prevents topology-breaking deformations, it comes at the cost 
of an increased number of parameters. While the training and inference 
times on the OASIS dataset are the second longest among learning-
based methods (after L2O), RCVM exhibits comparable runtime with 
RIIR for both 3D datasets, and shows faster inference time on the 2D 
dataset (mSASHA). Notably, LapIRN, as a single-pass multi-resolution 
method, shows remarkable advantages in both VRAM efficiency and 
inference speed.

Although hidden states were used in the original RIM and later 
work (Putzky and Welling, 2017; Putzky et al., 2019; Sabidussi et al., 
2021, 2023), their impact on the optimization of RIM-based methods 
has not been investigated in detail. Our second experiment investigates 
the impact of these hidden states within RIIR. Our findings reveal 
that the presence of hidden states, as proposed in the original RIM 
work (Putzky and Welling, 2017), contributes positively to the perfor-
mance of our model, as shown by the quantitative results in Fig.  9. 
Unlike L2O which operates on full resolution features at the output, 
our implementation of hidden states at downsampled resolution leads 
to minimal additional memory overhead.

The ablation study in input combinations (Experiment 3) demon-
strates that, in scenarios with limited data, RIIR with images gradient 
input achieves superior registration performance in anatomical evalu-
ation metrics, as shown in Fig.  10. This improvement is particularly 
evident in the NLST dataset, where RIIR achieves lower TRE and 
smoother deformation fields. Although including gradient input can be 
considered to offer additional information, its impact on regularization 
varies between datasets (Table  2). This could possibly be due to the 
different similarity losses and registration objectives (intra-subject for 
NLST versus inter-subject for OASIS).

The regularization analysis reveals that RIIR’s performance remains 
dependent on both the choice and weight of regularization terms. As 
shown in Figs.  11 and 12, different regularization strategies lead to 
varying trade-offs between registration accuracy and deformation reg-
ularity. This suggests potential future improvements by incorporating 
adaptive regularization schemes (Hoopes et al., 2021; Mok and Chung, 
2021; Reithmeir et al., 2024). Such extensions could enhance RIIR’s 
robustness across different clinical scenarios without manual parameter 
tuning.

The superior registration performance and data efficiency of RIIR 
suggest its potential for applications in medical image registration. 
However, it is necessary to acknowledge the current limitations, to 
further enhance the framework in future work. From an architec-
tural perspective, RIIR employs a relatively conventional design that 
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lacks multi-resolution capability, which has proven effective in meth-
ods like LapIRN. The simple convolutional GRU structure could also 
be enhanced with modern components such as dilated convolutions 
for larger receptive fields or attention mechanisms for better feature 
extraction. Another significant limitation lies in GPU memory consump-
tion. Despite having fewer parameters than LapIRN and RCVM, RIIR 
requires more VRAM due to its recurrent nature, and this memory 
usage increases linearly with the number of inference steps, as demon-
strated in Experiment 5. To better adapt to downstream tasks, potential 
improvements could include semi-supervised strategy, instance opti-
mization and adaptive regularization strategies, which could enhance 
the flexibility of the model in different clinical scenarios.

6. Conclusion

In conclusion, we present RIIR, a novel recurrent deep-learning 
framework for medical image registration. RIIR significantly extends 
the concept of recurrent inference machines for inverse problem solv-
ing, to high-dimensional optimization challenges with no closed-form 
forward models. Meanwhile, RIIR distinguishes itself from previous 
iterative methods by integrating implicit regularization with explicit 
loss gradients. Our experiments across diverse medical image datasets 
demonstrated RIIR’s superior accuracy and data efficiency. We also 
empirically demonstrated the effectiveness of its architectural design 
and the value of hidden states, significantly enhancing both registration 
accuracy and data efficiency. RIIR is shown to be an effective and gen-
eralizable tool for medical image registration, and potentially extends 
to other high-dimensional optimization problems.
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