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summary

Quantum computing holds the potential to revolutionize computation by leveraging quantum mechanical
principles to solve problems intractable for classical computers. However, current noisy intermediate-
scale quantum (NISQ) devices are constrained by limited qubit connectivity, high gate error rates, and
hardware-specific noise patterns. One of the key challenges in quantum circuit execution is qubit
routing—efficiently mapping logical qubits to physical qubits while adhering to connectivity constraints
and minimizing error accumulation. Traditional heuristic and rule-based transpilation techniques
struggle to generalize across different hardware architectures and noise conditions, motivating the
exploration of machine learning approaches for more adaptive and scalable routing strategies.

This study investigates reinforcement learning (RL)-based methods for qubit routing, focusing on how
different RL formulations (primitive vs. hierarchical action spaces) and environment configurations (e.g.,
lookahead depth, training-circuit sizes) impact routing performance. The designed RL environment
models quantum hardware constraints through coupling graphs and noise parameters, providing
configurable state representations and flexible action spaces.

Key findings indicate that a moderate lookahead (e.g., 4 gates) offers the best balance between
performance and computational complexity. Training on circuits with 8-16 gates yields optimal
generalization to larger circuits. Comparing RL policy formulations, hierarchical approaches converge
faster and perform robustly on complex topologies, while primitive approaches occasionally achieve
higher reliability given sufficient training. Larger hardware graphs diminish RL’s relative advantage
over heuristic transpilers, whereas higher-connectivity topologies improve RL routing efficiency.

Benchmarks against Qiskit’s standard transpilers reveal that RL methods are competitive on small-scale
and highly connected devices but face challenges on larger and more constrained architectures. While
RL-based qubit routing can effectively integrate hardware noise and connectivity constraints, scalability
and adaptability to dynamic error rates remain open challenges.

Future research should explore integrating more comprehensive noise models, adaptive noise tracking,
concurrent gate execution, hybrid heuristic-RL approaches, and benchmarking with real hardware
implementations. As quantum devices scale, RL-driven, noise-aware compilation strategies may become
integral to optimizing practical quantum computations.
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Introduction

Quantum computing leverages the principles of quantum mechanics—such as superposition and entan-
glement—to offer computational speedups on problems that are intractable for classical computers [1],
[2], [3]. Although rapid progress has been made in designing and building noisy intermediate-scale
quantum (NISQ) devices, these systems are constrained by limited qubit numbers, noisy operations, and
non-uniform gate connectivity [4]. Such constraints introduce the qubit routing challenge: efficiently
mapping a quantum algorithm onto the physical hardware so that gate and measurement operations
remain valid while minimizing detrimental effects from noise and circuit overhead.

1.1. Context

Research on quantum circuit compilation has produced many approaches to tackling qubit routing,
including constraint-based optimizations, heuristic routing, and more recently, machine learning
methods [5], [6], [7], [8]. Reinforcement learning (RL), in particular, has shown promise by adaptively
learning routing policies that account for hardware constraints, circuit interactions, and noise factors.
However, most RL research for quantum compilation has relied on simplified or custom-tailored
environments, limiting applicability to diverse topologies and noise conditions. Noise-awareness and
scalability also remain significant challenges, underscoring the need for more flexible, robust, and
hardware-aware RL approaches.

1.2. Problem Statement

Existing qubit routing strategies frequently overlook the interplay between noise, hardware variability,
and circuit structure. Methods that do account for noise often scale poorly to larger NISQ devices.
This research therefore aims to develop and evaluate an RL environment for qubit routing that flexibly
represents diverse hardware topologies and connectivity constraints while aiming to be more scalable
and noise-aware than current approaches.

1.3. Objectives

A goal is the design of an RL environment that systematically models quantum hardware constraints,
noise parameters, and circuit interactions in an extensible and scalable manner. Another objective is to
investigate how different RL policy formulations—such as hierarchical action spaces—impact routing
outcomes when tested on varied topologies. The performance of these RL agents is then assessed
through experiments that measure circuit reliability, compared against heuristic and standard compiler
baselines.

1.4. Scope

Superconducting quantum processor architectures with limited qubit connectivity and moderate noise
levels anchor the scope of this research. Although the proposed environment is extensible to other
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quantum platforms, the experiments and evaluation metrics focus on gate-based superconducting
devices. The study emphasizes two-qubit gate connectivity and qubit routing in compilation, without
explicitly integrating advanced error mitigation or error-correction techniques.

1.5. Significance

Investigating how different reinforcement learning (RL) policy formulations—such as hierarchical
action spaces—impact qubit routing outcomes is crucial for optimizing quantum circuit compilation.
Traditional heuristic and rule-based approaches often struggle to generalize across diverse hardware
topologies and noise conditions. By exploring alternative RL policy structures, this research aims to
uncover strategies that enhance adaptability, efficiency, and scalability in qubit routing.

1.6. Structure

The remainder of this report is organized as follows. Chapter 2 provides theoretical background on
quantum computing, including qubit measurement, quantum gates, gate commutation, and hardware
constraints, then introduces fundamental concepts in reinforcement learning. Chapter 3 surveys the
literature on qubit routing, covering exact formulations, heuristic approaches, and Machine Learn-
ing (ML)-based methods and discusses the current research gap. Chapter 4 details the methodology,
including problem formulation, environment design, and evaluation metrics as well as the implementa-
tion. Chapter 5 presents experimental results that compare RL approaches against baseline transpilers
and heuristics. Finally, Chapter 6 summarizes key findings, limitations, and directions for future work.



Theory

This section explains the relevant theory and concepts essential for understanding the research, including
quantum computing and reinforcement learning.

2.1. Quantum Computing

Quantum computing is a paradigm of computation that exploits the laws of quantum mechanics
to process information. This approach leverages quantum phenomena such as superposition and
entanglement, which enable computational tasks that can surpass the capabilities of classical systems.
Compared to conventional bits, quantum systems can encode information in more complex ways,
providing new avenues for algorithm design. At a high level, quantum computing involves manipulating
quantum states through specialized operations and measurements, executed on physical devices subject
to hardware-specific constraints. The following sections explore the essential principles of quantum
computing, including Hilbert spaces and quantum states, qubits, qubit measurement, quantum gates,
and gate commutation.

2.11. Hilbert Space and Quantum States

Quantum states are represented as vectors in a complex vector space known as a Hilbert space.

A Hilbert space H is a complete vector space equipped with an inner product that allows the computation
of norms and angles between vectors.

In quantum computing, the state of a single qubit is described as a unit vector in a two-dimensional
Hilbert space Ha:
H, = C* = span{|0),|1)}. (2.1)

In bra-ket notation, these basis states can be written explicitly as column vectors:

o=[5|. 1w 22

A general quantum state |1,b> in a two-dimensional Hilbert space is a superposition of the basis states |0)
and |1):
[} = @10) +11) 23)
where a and § are complex probability amplitudes satisfying the normalization condition:
lal® +1pI* = 1 (24)
Quantum operations, such as quantum gates, are represented as unitary transformations on the Hilbert

space. Measurement collapses the quantum state onto one of the basis vectors, |0) or |1), probabilistically
based on the squared magnitudes of the amplitudes.

3
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For a system of n qubits, the state resides in a 2"-dimensional Hilbert space H>+, formed by the tensor
product of single-qubit spaces (Equation 2.5):

Hon =HHr QHH® - - @ H, (2.5)

n times

This mathematical structure enables quantum entanglement and interference, distinguishing quantum
computing from classical computing.

2.1.2. Qubits

Qubits are the fundamental units of quantum information. While classical bits can only be in one of
two possible states (0 or 1), a qubit can exist in a superposition of these basis states, as described in
Equation 2.3. This ability to occupy multiple states simultaneously underpins quantum phenomena
such as entanglement and interference, leading to computational advantages over classical systems [9].
A distinction can be made between virtual qubits, which are used in quantum algorithms and theoretical
models, and physical qubits, which refer to the actual qubits in a quantum computer. The implementation
of qubits differs across quantum technologies, such as superconducting qubits [10], trapped ions [11],
[12], and topological qubits [13], [14].

2.1.3. Qubit Measurement

Measuring a qubit collapses its superposition into one of the classical states. The probability of obtaining
|0) or |1) is given by |a|? and |B|?, respectively [9]. This process is central to extracting classical
information from quantum states. Because the measurement outcome is probabilistic, applying specific
quantum gates before measurement can change the measurement basis and influence the observed
results.

2.1.4. Quantum Gates

Quantum gates are the building blocks of quantum circuits, performing operations on qubits. Formally,
a gate is an operator mapping the n-qubit Hilbert space Hy» to itself, as shown in Equation 2.6. The gate
set G is the collection of all such gates (Equation 2.7), and the indices of the qubits in the n-qubit system
that are affected by the gate operation are defined by its domain dom(U¢) (Equation 2.8).

UG : 7‘{214 = 7‘{2n (26)
G ={Uc | Ug : Har = Hor} 2.7)
dom(Ug): G — {{1},{2},...,{1,2},...} (2.8

Single-qubit gates, such as the X, Y, and Z gates, act on individual qubits, while multi-qubit gates, such as
the controlled-not (CNOT) gate, can entangle qubits by applying conditional operations. Entanglement
is a key resource in quantum computing that enables the representation of complex, highly correlated
states beyond what is possible with classical bits [9].

Single-Qubit Gates

Single-qubit gates are quantum gates that operate on a single qubit. Any arbitrary single-qubit operation
can be represented as a rotation on the Bloch sphere (Figure 2.1). The Pauli-X gate, also known as
the bit-flip gate, flips the state of a qubit from |0) to |1) and vice versa by introducing a phase change
of  around the X-axis of the Bloch sphere (Figure 2.1a). The Pauli-Y and Pauli-Z gates perform
similar operations, introducing a phase change of 7 around the Y and Z axes of the Bloch sphere,
respectively. The operation can be also described by a unitary matrix that acts on the qubit’s state vector
(Equation 2.9). The identity gate I leaves the qubit state unchanged. Another important single-qubit
gate is the Hadamard gate, which creates superposition states by rotating the qubit state vector by 7/2
around the axis between the X and Z axes of the Bloch sphere (Figure 2.1b) [9].
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(a) Pauli-X gate action on a |0) state, applying a 7 rotation around (b) Hadamard gate action on a |0) state, applying a /2 rotation
the X axis moving the state to |1). around the axis between the X and Z axes moving the state to

I+) = 3510y +1)).

Figure 2.1: Bloch sphere representation of single-qubit gates. It is a unit sphere that represents the state of a qubit, with the poles
corresponding to the |0) and |1) states. Any gate introduces a rotation on the Bloch sphere, changing the state of the qubit.

U unitary matrix
_ [ cos(6/2) —e sin(6/2) 6 rotation angle
u= el® sin(6/2) el(@+4) cos(6/2) where ¢ phase ang]e (2.9)
A global phase

Controlled Gates

Controlled gates are multi-qubit gates that perform an operation on a target qubit based on the state
of a control qubit. The controlled-not (CNOT) or controlled-X (CX) gate is a two-qubit gate that flips
the state of the target qubit if the control qubit is in state |1). This conditional operation is essential for
creating entanglement between qubits and implementing quantum algorithms. All other variations of
controlled gates can be constructed from the CNOT gate by applying single-qubit gates before and after
the CNOT gate [9].

SWAP Gate

The SWAP gate is a two-qubit gate that exchanges the quantum states of two qubits. This operation is
used in qubit routing to move qubit states between physical qubits. SWAP gates are usually not native
to quantum hardware and need to be decomposed into elementary gates, such as CNOT gates, to be
implemented on physical qubits. Most superconducting qubit architectures support the implementation
of SWAP gates using a sequence of three CNOT gates (Figure 2.2) [9].

o
" ) m
ql q1 a1
(a) (b) Figure 2.3: Quantum Circuit for

Creating the [W*) Bell state with a

Figure 2.2: Decomposition of the SWAP gate into CNOT gates. (a) SWAP gate Hadamard gate and a CNOT gate

circuit. (b) SWAP gate decomposition into CNOT gates.

2.1.5. Gate Commutation

Gate commutation is the property of quantum gates that allows them to be rearranged without changing
the final state of the system. The mathematical representation of gate commutation between two gates
U; and U; is given by [U;, U;] = 0, where [, -] denotes the commutator (Equation 2.10). When two gates
commute, they can be executed in any relative order. The Hadamard gate and CNOT gate are examples
of gates that do not commute, leading to different outcomes depending on their relative order [9].
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[A,B]=AB-BA, so [AB]=0 < AB=BA. (2.10)

2.1.6. Quantum Circuits

Quantum circuits are visual representations of quantum algorithms that consist of qubits, gates, and
measurements. Qubits are represented as lines with gates and measurements as boxes that act on qubits.
The final state of a quantum circuit is obtained by applying gates sequentially from left to right, starting
from the initial state of the qubits. An example of a quantum circuit which creates the |W™) state is
shown in Figure 2.3. It uses a Hadamard gate to create superposition and a CNOT gate to entangle two
qubits such that its final state is:

W) = %000) +11)). (2.11)

This state is one of the four Bell states that are maximally entangled and play a crucial role in quantum
communication and quantum error correction. The entanglement in the |¥*) state means that the
qubits cannot be separated into individual states, and the measurement of one qubit will determine the
state of the other qubit.

An example of a state which would not be entangled is a separable state such as:

|$) =10y ®[1) =101). (2.12)

In this case, the measurement of one qubit does not provide any information about the state of the
other qubit. Unlike entangled states, separable states can be described as a simple tensor product of
individual qubit states [9].

2.1.7. Quantum Hardware

The physical implementation of quantum computing hardware introduces constraints and challenges
that impact the design and execution of quantum algorithms. Quantum hardware can be characterized in
part by its topology and noise, which influence the performance and reliability of quantum computations.

Topology

The topology of quantum hardware refers to the arrangement of qubits and their connectivity. The
topology defines the possible interactions between qubits and the constraints on gate operations.
Different quantum architectures have distinct topologies, such as linear, 2D grid, or fully connected
layouts. The choice of topology affects the efficiency of quantum algorithms and the complexity of qubit
routing. Usually the topology is dictated by the physical implementation of the qubits. For example,
superconducting qubits are typically arranged in a grid-like structure [15] and trapped-ion qubits in a
linear chain [16].

Noise

In practice, the quantum gates introduced in subsection 2.1.4 and the measurement described in
subsection 2.1.3 can deviate from their ideal, unitary-based descriptions due to environmental factors,
control electronics, and hardware imperfections, collectively called noise. Such deviations introduce
errors in quantum operations, which can be quantitatively described using error rates.

For a quantum gate G, ideally represented by a unitary matrix Ug, noise causes the actual operation to
deviate from Ug. A common approach to model this deviation is to introduce a noise channel &, such
that the actual operation applied to a quantum state p is:

p’ = &E(UgpUY). (2.13)

One standard noise model is the depolarizing channel, which assumes that with probability 1 — r¢, the
gate operation is a completely depolarizing channel, and with probability rg, the gate operation is the
ideal unitary operation Ug [9]:

I
Edepol(p) = relcpUf + (1 - TG)E/ (2.14)
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where d is the dimension of the Hilbert space of the system. The parameter r¢ is the reliability of the
gate G, and 1 — r¢ is the error rate of the gate.

For many quantum devices, two-qubit gate errors dominate in many quantum devices, and error
mitigation strategies often focus on reducing their impact. In this work the focus is on the two-qubit gate
error, and single-qubit gate errors are assumed to be negligible.

Physical quantum processors exhibit spatial variations in error rates, where certain qubits or specific
gate locations may have significantly higher error rates. Additionally, error rates are subject to temporal
fluctuations due to changes in system calibration and environmental conditions [17]. These factors
make error characterization and mitigation essential for reliable quantum computation.

2.1.8. Quantum Compiling

Quantum compiling is the process of translating a quantum algorithm into a form that can be executed
on quantum hardware. One of the key challenges in quantum compiling is the mapping of virtual
qubits to physical qubits, taking into account the connectivity constraints of the hardware. This process
involves qubit placement and qubit routing to ensure that the quantum circuit can be executed. Other
relevant aspects of quantum compiling include gate scheduling, which determines the order of gate
operations, and circuit optimization, which reduces the number of gates in a circuit [6].

2.2. Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm in which an agent interacts with an
environment over a sequence of discrete steps. At each step, the agent receives a (partial) observation
of the environment’s state s;, selects an action a;, and receives a numerical reward r;1 along with a
transition to the next state s;.1. This sequence of interactions continues until an episode ends, which can
happen upon reaching a terminal state or after a maximum number of steps. Figure 2.4 illustrates the
interaction between an RL agent and its environment.

Action a,

! ]
Reward

T ! Tt+1

Agent " Environment

T 5 T

St+1

St '
State
t+1

Figure 2.4: The interaction between a Reinforcement Learning (RL) agent and its environment follows a cyclic process. At each
time step ¢, the agent selects an action a; based on the current state s;. The environment processes this action, determines the next
state s¢4+1, and provides a reward ;41 to the agent.

2.2.1. Markov Decision Process

An MDP provides a formal framework for RL problems. It comprises a set of possible states S, a set
of possible actions A, a transition function P(s’ | s, a) that gives the probability of moving to state s’
after taking action a in state s, and a reward function R(s, a) that specifies the immediate reward upon
making that transition. The Markov property holds that the next state and reward depend only on the
current state and action, not on the history of previous states or actions [18].

2.2.2. Training Process

The training process of an RL agent involves iteratively updating its policy or value function based on
the rewards received from the environment. A fundamental aspect of training is balancing exploration
(trying actions that may yield more information about the environment) and exploitation (selecting
actions that currently appear to maximize rewards). This interplay helps the agent discover strategies
that optimize long-term returns. Once training is complete, the agent can use its learned policy to make
effective decisions in real or simulated scenarios [19].
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Model-Free vs. Model-Based Learning

When training an RL agent, one distinguishes between model-free and model-based approaches. Model-free
RL learns the policy or value function directly through environmental interactions, making no attempt
to build a model of the transition or reward functions. By contrast, model-based RL either learns or has
access to an explicit model of the environment’s dynamics (via P and R) and can use them to simulate
outcomes or plan future actions [19].

Value-Based vs. Policy-Based Decision-Making

In value-based methods, the agent learns a value function—often a Q-function Q(s, a)—that estimates
the expected return of taking action a in state s [19]. The policy is then implicitly derived by selecting
the action that maximizes the estimated value. By contrast, policy-based methods directly parameterize
ni(a | s) and adjust those parameters to maximize long-term returns, rather than first learning a separate
value function. In practice, both value-based and policy-based approaches often leverage deep neural
networks to approximate functions and optimize decision-making.

On-Policy vs. Off-Policy Training

Another important distinction is whether the agent learns from the same policy it is currently using
(on-policy) or from data generated by a different policy (off-policy) [19]. On-policy methods, such as
Proximal Policy Optimization (PPO) [20], continually update the policy that generates the training
experience. Off-policy methods, like Q-Learning [21], can learn from experience generated by a behavior
policy that may differ from the current target policy.

2.2.3. Q-Learning

Q-Learning is a classic model-free algorithm where the agent explicitly learns a Q-function Q(s, a). This
function represents the expected return of taking action 4 in state s and thereafter following an optimal
policy. The update rule is:

Q(s,a) < Q(s,a) + a(R(s,a) + )/rr}ﬁlx Q(s’,a’) - Q(s,a)), (2.15)

where a is the learning rate, y is the discount factor, and s’ is the next state. Over time, Q-learning (QL)
converges to optimal values for each state-action pair, from which an optimal policy can be derived by
selecting arg max, Q(s, a) [21].

2.2.4. Function Approximation

Modern RL systems often use neural networks to approximate the value function (or the policy in

policy-based methods). Let 6 denote the parameters of a neural network. In a value-based approach

like Deep Q-Network (DQN) [22], the network outputs an estimate Q@(S, a) of the Q-function for each

state-action pair (s, a). To update 9, one typically minimizes a mean squared error (MSE) loss of the

form: )
L(0) = (R(s, ) + y max Qo-(s",a") = Qo(s, ), (2.16)

7
where 0~ represents a set of target network parameters periodically synchronized with 0, and s’ is the
next state. The parameters 0 are then updated via stochastic gradient descent to minimize L(0).

By contrast, policy-based methods parameterize mg(a | s) and use a gradient ascent update to directly
maximize the expected return. Here, the objective function J(0) typically measures the long-term
reward under policy 7ig, and gradients are computed using backpropagation through the network:

Vo] (0) = Es a)~mo| Vo log mo(a | s) Gy ], (2.17)

where G; represents an estimator of the future returns [23]. Thus, whether in value-based or policy-based
RL, neural networks are trained using gradient-based optimization procedures that leverage large-scale
data collection from the environment.

2.2.5. Policy Optimization
Policy optimization aims to directly optimize a parameterized policy by adjusting its parameters in
the direction of the performance gradient. These methods, such as REINFORCE [24] and actor-critic
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algorithms [25], leverage gradient-based updates to maximize expected cumulative rewards. Policy
optimization is particularly effective in high-dimensional action spaces and continuous control tasks,
where explicit value function estimation may be challenging.

2.2.6. Proximal Policy Optimization

PPO [20] is a popular policy optimization method that improves stability and sample efficiency by
employing a clipped surrogate objective, which constrains large deviations from the previous policy update.
It is a model-free, on-policy algorithm that adjusts policy parameters to maximize expected rewards
while balancing stability and exploration. PPO typically uses a mini-batch approach with stochastic
gradient ascent, where each iteration involves multiple epochs of optimization using data sampled from
a replay buffer. The update step minimizes the clipped loss function, ensuring balanced exploration
and exploitation while maintaining stable learning dynamics. This makes PPO particularly effective for
continuous control tasks and other complex RL problems.

2.2.7. Hierarchical Reinforcement Learning

To enable more efficient learning and decision-making, Hierarchical Reinforcement Learning (HRL)
organizes actions into a hierarchy of subtasks [26]. In one form of such a framework, higher-level actions
correspond to decisions that trigger predefined policies, which execute sequences of sub-actions to
complete specific tasks. By delegating low-level decision-making to these predefined policies, the agent
can operate at a higher level of abstraction, focusing on strategic choices rather than finer execution
details. This approach leverages the structure of the environment to improve learning efficiency and
performance in complex decision-making tasks.

2.2.8. Action Masking

Action Masking is a technique used in RL to handle environments where certain actions are invalid or
undesired in particular states [27], [28], [29]. By dynamically excluding these invalid actions, the agent
focuses solely on optimizing the valid ones, improving learning efficiency, stability, and performance in
complex action spaces. However, this approach requires environment-specific knowledge to define the
masks accurately, and errors in masking can lead to suboptimal policies or performance.
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3.1. Related Work

In this section, a survey of relevant existing approaches to the qubit routing problem is made by
grouping them on their optimization method with noise-aware methods discussed separately.

3.11. Rule-based

A fixed routing scheme [30] focused on reducing communication overhead in two-dimensional architec-
tures through deterministic swaps. Although this rule-based approach simplifies implementation, it
often leads to suboptimal mappings and ignores hardware variability.

3.1.2. Mathematical Optimization

Early exact solutions with Pseudo-boolean optimization (PBO) were proposed to achieve optimal
qubit placements in linear [31] and multidimensional [32] architectures. Despite yielding optimal
solutions, PBO-based methods become computationally expensive for large circuits and did not
incorporate error rates. Integer linear programming (ILP) [33] is also employed to find optimal qubit
permutations on specific devices, but it shares scalability limitations. Quadratic unconstrained binary
optimization (QUBO) [34] extends the search space to modular architectures and can leverage specialized
hardware, including Ising machines [35], for faster solutions. However, these methods ignore noise and
hardware variability leading to suboptimal mappings.

3.1.3. Heuristic

Dynamic programming (DP) combined with heuristic routines [36] addresses routing through reversal,
swap, or bridge operations but quickly becomes intractable for large devices. Purely heuristic strategies [6]
focus on circuit depth optimization and are integrated into compilers like t|ket), offering speed at
the cost of ignoring hardware noise. Further heuristic-based mapping [37] introduces scheduling and
latency minimization, yet still does not incorporate evolving device-specific constraints. In general,
heuristic methods improve scalability over exact optimization but often rely on static or simplified
assumptions about hardware.

3.1.4. Machine Learning

Reinforcement learning (RL) [38], [39] formulates qubit routing as a combinatorial decision process
and learns a policy to optimize certain cost metrics (e.g., circuit depth). Although RL approaches
can adapt to complex circuit topologies, most assume idealized hardware or uniform costs for gates
and swaps. Graph neural networks (GNNs) combined with Monte Carlo Tree Search [7] approximate
value functions and policies, indicating the promise of ML for complex routing scenarios. Nonetheless,
dynamic hardware variation is rarely incorporated, and scalability to devices with many qubits remains
an open problem.

10
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3.1.5. Noise-aware Methods

Satisfiability modulo theory (SMT)-based methods coupled with greedy heuristics [40] take static
device-specific noise data into account, while purely heuristic strategies are used in SABRE [5], one
of Qiskits [41] routing strategies. Variable error rates are incorporated into A* search [17] and ILP
formulations [42] handle multi-constraint settings under noisy conditions but still face scalability issues.
Recently, Graph Neural Network (GNN)s are used to estimate fidelity with RL [43], demonstrating an
integrated noise-aware ML approach up to moderate system sizes. It is unclear how these methods
scale to larger devices or more complex noise models. Variation-aware mapping based on multi-agent
search [44] and deep RL strategies for noise-adaptive routing [8] further expand the suite of noise-aware
techniques. However, these methods often operate on smaller benchmarks or rely on simplified noise
models, limiting their applicability to larger real-world quantum processors.

3.2. Research Gap

Despite the growing body of work on quantum circuit routing—from exact formulations and heuristics
to ML-based strategies—several gaps remain unaddressed, particularly those relevant to the design of
RL environments, the treatment of hardware variability, and scalability challenges.

Environment Design Choices Current qubit routing strategies based on RL often use fixed custom envi-
ronment setups—without variations in state representation, reward design, and action spaces—making
it difficult to isolate which aspects directly impact performance. This lack of understanding hinders the
development of generalizable RL solutions that can adapt to different quantum hardware configurations.

Noise-awareness Although some hardware-aware approaches account for error rates or calibration
data, most RL research still relies on static or simplified assumptions. Consequently, there is a limited
understanding of how dynamic or uncertain hardware parameters (e.g., fluctuating gate fidelities,
varying connectivity) can be robustly incorporated into the RL environment. This gap is especially
relevant for Noisy Intermediate Scale Quantum (NISQ) devices, where noise and error rates can vary
significantly over time.

Scalability While RL-based qubit routing solutions have demonstrated encouraging results on small-
or mid-scale devices, scaling these methods to larger hardware remains problematic. On the one hand,
noise-aware approaches tend to be tested on relatively small benchmarks due to the computational
overhead of modeling device-specific or time-varying error rates, thus limiting their applicability to
bigger, more complex systems. Yet, more scalable techniques often rely on simplifying assumptions
about hardware. Overcoming these competing demands requires novel RL frameworks that effectively
account for hardware imperfections at scale—enabling both realistic noise modeling and practical
scalability on larger quantum processors.

Until methods are explored for building and evaluating RL environments, while also incorporating
real hardware awareness, and designing for scalability, the full potential of RL-based qubit routing
may remain out of reach. As quantum devices become larger, addressing these gaps will be crucial for
developing robust routing solutions.



Methodology

This chapter outlines the methodology used to investigate the effects of variations in reinforcement
learning environments and quantum hardware for qubit routing. First, the definitions of the quantum
hardware, circuits, and placement are introduced. Subsequently, the metrics used to evaluate the
performance of routing strategies are discussed. The problem formulation is presented, followed by
the environment design and data generation. Finally, the evaluation and implementation details are
described.

4.1. Definitions

4.1.1. Quantum Hardware

The quantum hardware is modeled as a coupling graph H, where the vertices P represent the set of
physical qubits, and the edges E the physical edges as shown in Figure 4.1. Each edge e; = p,, py € E
represents a bidirectional physical connection between two physical qubits p, and pp. The reliability of
successfully executing a two-qubit gate on this edge e in either direction is denoted by ., where r, € [0, 1]
is a value between 0 and 1, with 1 indicating perfect reliability and 0 indicating guaranteed failure.
Single-qubit gates are assumed to have a reliability of 1. Edges are assumed to have a bidirectional
connection and symmetric reliability, i.e., r,,, = t,,. The formal definition of the quantum hardware is
given in Equation 4.1.

H=(P,E),P ={pi},ECPXP,r, €[0,1] @.1)

@ —@——0

T2
€2
LC]

@ ———@———0

Figure 4.1: Example of a coupling graph H = (P, E) of the quantum hardware with a 2 x 3 grid of physical qubits.

4.1.2. Circuit

A quantum circuit C with n gates is represented by an ordered sequence of gates from the gate set G in
the order <c:

12
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C=(Go,...,Gu1) =(Gi € G, <c), (4.2)

The set of qubits Q(G) involved in a gate G is defined as:

Q(Gi) ={gi | i € dom(Ug)}, (4.3)
Figure 4.2b shows an example of a quantum circuit.

Gate Dependency Graph

The gate dependency graph D¢ of a circuit C is a directed acyclic graph, an example of which is shown
in Figure 4.2c. The vertices Vp are the gates in the circuit C, and the edges Ep denote the dependencies
between gates:

D¢ =(Vp,Ep),Vp ={Gi|G; € C},Ep C Vp x Vp (4.4)

This dependency relation is described by a partial ordering <p., where gate G; precedes gate G; if
G; occurs earlier in the circuit C and their operations do not commute (Equation 4.5). An edge exists
from gate G; to gate G; if the former precedes the latter according to the partial ordering <p., with no
intermediate gate Gy in circuit C that should be placed between them:

G; <Dg G]' = G; <c Gj A [UG,-/UG]-] #0 (4.5)

An edge from gate G; to gate G; exists if G; comes before G; according to <p., and no intermediate gate
in the circuit should be placed between them:

G; ll; Gj S Gy <Dg¢ Gj A ﬂGk eC, (Gi <Dg Gk <Dg G]') (4.6)

Interaction Dependency Graph

The interaction dependency graph Dj is constructed by preserving only vertices V; that are gates with
two-qubit interactions (Equation 4.7). The dependencies among gates are maintained by preserving each
path — from the dependency graph D to the interaction dependency graph D) using edge contractions.

These contractions ensure that if a path exists between two gates in the dependency graph D, the same
path exists in the interaction dependency graph D; (Equation 4.8). Figure 4.2d shows an example of an
interaction dependency graph.

D; = (V1,Ep), Vi ={G;i|G; € Vp,|dom(G;)| =2},E; C Vi X V] (4.7)
GiSG oG 3G, 4.8)

Interaction Circuit

Interactions are two-qubit gates that are executed on the quantum hardware. A valid execution order
of interaction dependency graph D; can be described by the interaction circuit . It is a sequence of
interactions representing a topological traversal of the interaction dependency graph D;. This order
is determined by the partial ordering <p, (Equation 4.9). In Figure 4.2d, the interaction circuit is
I= (Go, G1, Gz) orl = (Go, Gz, G1).

I =(Gi € D1, <p,) (4.9)
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Front Layer
The front layer L; is the set of gates in the gate dependency graph D¢ scheduled after timestep ¢t with
no dependencies on other gates after timestep ¢:

Li ={Gi € C| ¥Gj € C,(G; <p Gi Aj = 1)} (4.10)

Figure 4.2e shows an example of a front layer.

4.1.3. Placement
Qubit placement is defined as a bijective function 7, associating each virtual qubit 4 uniquely to a
physical qubit p:

n:Qw P, mn(g;)=p; (4.11)
This bijectivity ensures that the placement is both injective, ensuring each virtual qubit is mapped to a

unique physical qubit (Equation 4.12), and surjective, ensuring that every physical qubit is assigned a
virtual qubit Equation 4.13.

Vqi,q; € Q, m(q:)=m7(qj) = qi=4q; (4.12)

Vpi ePp, 3!]]' S Q, n(q]) = pi (4.13)
The placement function # uses this placement m to convert the virtual qubits of a gate to their

corresponding physical qubits:

P(rn,Gi):G— G, P(n, Gi)=Gi(n(qo),..., (k) (4.14)

Figure 4.2f shows an example of a placement.

4.1.4. Swap gates

To update the placement, swap gates S can be inserted in a circuit:

S={o.|e€E} (4.15)

Each swap o, swaps the states of the physically connected qubits p, and p, on edge e. This operation
updates the placement from 7 to 7t where state of p, is moved to p; and vice versa, while the states of
the other qubits remain unchanged:

ge:m~> 1, Ve={psps} €E,
7(pa) = (ps),  7t(pp) = 1(pa), (4.16)
filp) =n(p), V¥p € P\{pa, po}-

Figure 4.2f shows an example of a trivial placement after applying a swap gate.

4.2. Metrics

To evaluate and compare circuits and routing strategies, several metrics are used. This section expands
on the key metrics: circuit reliability, circuit depth, interaction count, interaction reliability, and routing time.
Depending on the use case, some or all metrics may be employed to assess the quality of a solution.
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(a) Coupling graph H = (P, E) (b) Quantum circuit C (c) Gate dependency graph Dg

Front layer
Other layers

(d) Interaction dependency graph Dy (e) Front layer Lq (f) Swapped placement 7t

Figure 4.2: Example of a quantum circuit and its corresponding graphs. (a) Coupling graph H = (P, E) of the quantum hardware.
(b) Quantum circuit C with gates: Go, G1, G2, G3, G4. (c) Gate dependency graph D for circuit C with nodes the gates from C
and the edges the dependencies between them. (d) Interaction dependency graph of D leaving only gates with two-qubit
interactions. (e) Front layer of D¢ at t = 1. Only gates G1 and G, are in the front layer as they have no dependencies on gates after
t = 1. The only gate they depend on is Gy which comes before ¢ = 1. (f) Trivial placement with a swap o, applied on edge ¢g
(po, p1) resulting in 7@ = {vg > p1,v1 > po,v2 > pa}.

4.2.1. Circuit Reliability

Definition. The overall reliability of a circuit estimates the probability that the circuit executes
successfully on a given quantum hardware H. As outlined in Equation 4.17, the reliability of a circuit is
calculated as the product of the reliabilities associated with each two-qubit interaction. Since single-qubit
gates are assumed to have perfect fidelity (i.e., reliability of 1), they do not affect the product.

REC) =[] (4.17)

e€I(C)

Interpretation. A higher R(C) implies a higher probability that the mapped circuit completes without
error (under the simplified assumption that two-qubit gates are the primary source of errors). If multiple
ways exist to map the same circuit, the mapping with the highest R(C) is usually preferred because it
maximizes the chance of successful execution.

4.2.2. Circuit Depth

Definition. The circuit depth D is the minimum number of sequential time steps required to execute
the circuit C, assuming as much parallelism as allowed by the gate dependencies and the hardware
constraints. Formally, it is the length of the longest path in the gate dependency graph once the scheduling
and placement constraints are accounted for:

D(C) = max _dist(G;, G)), (4.18)
(G,‘,Gj)EC
where dist(G;, G;) is the number of edges along the longest directed path from gate G; to G; in the a
dependency graph.

Interpretation. Circuit depth measures how many time steps it takes to finish running all gates under
the best possible parallelization. A smaller depth generally means faster execution, which can be crucial
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in mitigating decoherence. In architectures where the coherence time is limited, achieving a low circuit
depth may be as important as maximizing the reliability.

4.2.3. Interaction Count
Definition. The interaction count refers to the total number of two-qubit gates present in a circuit.
Mathematically, it is |I(C)|, the cardinality of the set of two-qubit interactions in the circuit.

Interpretation. Adding more two-qubit interactions increases the risk of error because two-qubit gates
are typically noisier than single-qubit operations. A lower interaction count is often beneficial for both
reliability and execution speed.

4.2 4. Interaction Reliability
Definition. Introducing the interaction reliability, denoted R(C), as a derived measure that quantifies

the effective per-interaction reliability of a circuit. Given that R(C) is computed as the product of
individual reliabilities, R(C) is defined as:

_ 1
R(C) = R(C)ITON, (4.19)
where |I(C)| represents the total number of two-qubit interactions in the circuit.

Interpretation. This measure provides insight into the reliability of individual interactions within the
circuit. It represents the effective per-interaction reliability, assuming that all two-qubit interactions
contribute uniformly. A higher or lower R(C) compared to the hardware average 7. suggests that the
circuit preferentially uses more or fewer reliable interactions respectively.

4.2.5. Routing Time

Definition. The routing time measures how long it takes to compute a valid mapping (and possibly a
scheduling) for a given circuit C onto the hardware H. It is typically reported as an average (or total)
CPU or wall-clock time over multiple benchmark circuits.

Interpretation. Routing time is an indicator of how scalable or efficient the mapping algorithm is in
practice. In scenarios where many circuits need to be routed rapidly (e.g., in a compiler pipeline or a
real-time quantum-control setting), a fast routing algorithm may be necessary even if it occasionally
sacrifices some reliability or circuit depth.

Overall, no single metric comprehensively captures “best” performance. Depending on hardware
constraints, user priorities, and the nature of the quantum algorithm, one may prioritize the highest
circuit reliability, the lowest circuit depth, the fewest interactions, or a balance among all criteria.
Thus, a thorough evaluation often involves examining multiple metrics in tandem to gain a complete
understanding of the trade-offs offered by different routing or scheduling solutions.

4.3. Problem Formulation

The mapping problem is formulated as transforming a quantum circuit C into an alternative representa-
tion, the mapped circuit C. This representation can be executed on a given quantum hardware H by
adhering to the hardware’s specific constraints while maximizing the circuit reliability of the mapped
circuit. It is formulated as two subproblems: the routing problem and the scheduling problem. The
solution to these subproblems is the set of swap gates R and the scheduling function S, respectively
that can be applied to the circuit C to obtain the mapped circuit C. The initial placement 7 is assumed
to be given.

4.3.1. Routing Problem
Given an initial placement 719, the circuit C should be updated with swap gates to ensure each gate
G is executable (Equation 4.25) under the placement 7t; at every time-step t. Whenever gate G; is
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not executable under 74, a sequence of swap gates s; should be inserted before gate G; to update the
placement from 7 to 7141:
0t,0 Ot,j Ot,m-1

T~ ...~ ... ~> T, with{oio,...,0m-1} =5, Vte{0,...,n—-1}. (4.20)

The solution R should define a sequence of swap gates for every gate G;:

R = (So, . ,Sm_l), S;i = (Oi,j S S) (4.21)

4.3.2. Scheduling Problem

A second goal is to determine the execution order of the gates in the circuit. This order is determined by
a sequence of gates S that schedules the gates in the circuit C. The scheduling function S is a valid
permutation of the gates in C following the dependencies in the gate dependency graph Dg:

S=(GieC,<py) (4.22)

4.3.3. Mapped Circuit

The mapped circuit C is constructed iteratively by starting with an empty circuit Cy and, at each
iteration f, appending the swap gates s;, updating the placement to 7t;,1, and then adding the gate G;
with the placement 7t;,1 applied to its qubits:

C():@

0 (4.23)
Cii1 = G5 P (141, S), Vte{0,...,n—-1}

Figure 4.3 shows an example of the quantum circuit routing process.

4.4. Environment

The environment is defined by its state, initialization, state transitions, actions, observations, rewards,
and termination conditions.

4.4.1. State

The state of the qubit routing environment is defined as in Table 4.1. It is updated according to the state
transitions and actions taken by the agent.

Table 4.1: State elements in the qubit routing environment.

Element Value Update Interval
Hardware H Episode

Circuit C Episode
Position t Timestep
Placement U Timestep
Inserted Swap Gates R Timestep
Execution Order S Timestep

4.4.2. Initialization

The hardware H and circuit C are initialized at the start of each episode and stay constant throughout
the episode. Additionally, the only change between episodes for the hardware is the edge reliabilities 7,.
The initial position t is reset to 0 at the start of each episode. The initial placement is given by 7y and can
be either random or predefined. The inserted swap gates R and the execution order S are initialized as
empty lists.

4.4.3. Actions

Two versions of actions can be configured for the environment: primitive or hierarchical actions. These
two versions of the environment will be called primitive or just RL, and hierarchical or RL (hierarchical)
respectively. The size of both action spaces is equal to the number of edges in the coupling graph |E|.
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Figure 4.3: Example of the quantum circuit mapping process onto a quantum hardware H (Figure 4.2a) for a quantum circuit C
(Figure 4.2b). (a) Initial placement with swapped p1 and p; resulting in 79 = {vg — po, v1 = p1,v2 = p2}. (b) Quantum circuit
to be mapped onto hardware H with initial placement 77y applied resulting in P (7o, C). (c) Rescheduled circuit for direct
execution of the second CNOT gate with gates Gz and G4 reordered: S = {Go, G1, G2, G4, G3}. (d) Mapped circuit with a swap
gate for execution of the final CNOT gate. One swap is inserted before G4 to update the placement to
114 = {vg = po,v1 > p2,02 = p1}. The final routing solution R = {@, @, @, @, s4}, with s4 = {0, }.

Primitive Actions
A primitive consists of choosing a physical edge e from the coupling graph. An action mask is used to
prevent the agent from selecting edges that do not have at least one qubit involved in the next interaction.

Hierarchical Actions

Hierarchical actions entail selecting a physical edge e from the coupling graph. An underlying policy
then computes an optimal action sequence s; that makes gate C; executable under the current placement.
This policy uses Dijkstra’s shortest path algorithm [45] with edge weights log(1 — r.) to relocate the
virtual qubits of the next interaction to the chosen edge according to Algorithm 1. The state is then
updated by appending the swap gates to the list of inserted swap gates and adjusting the placement
accordingly. This action corresponds to selecting an interaction edge from the coupling graph and
ensuring the next interaction is executed on the chosen edge.

4.4.4. State Transitions
Both explicit and implicit state transitions are possible in the environment. The agent’s action triggers
the explicit transitions, while the implicit transitions are triggered by the environment’s state.

Implicit Transitions

The executable front layer L; is the set of gates in the front layer that are executable under the current
placement 7t;. This edge should connect physical qubits Q involved in the gate G; placed following
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placement ;: y
L: = {G; € L; | executable(G;, 7t;)} (4.24)

Gate G; is considered executable if it involves only one qubit, otherwise the corresponding physical
qubits have to be connected in the coupling graph H by an edge e € E:

executable(G;, ;) © |Q(Gy)| =1V P(ry,Gt) € E (4.25)

When the executable front layer L; of the circuit C is not empty, the environment executes the executable
gates and transitions to the next state. The execution order is changed by appending the executable gate,
and the position is incremented by one. This corresponds to the execution of a gate in the circuit.

L#o=tet+tl=r,

Explicit Transitions

If no implicit transitions occur, the agent selects an action from the action space. Depending on the
chosen action, the environment transitions to the next state by applying the action to the current state.
The state is then updated by appending the swap to the list of inserted swap gates and adjusting the
placement accordingly. This action corresponds to inserting a swap gate into the circuit.

4.4.5. Observations

Multiple variations of observations can be configured in the environment. For each observation a
predefined lookahead ¢ can be set to vary the amount of information available to the agent. The
interaction circuit I is used to determine the upcoming interactions and is defined as the interaction
circuit derived from the gate dependency graph D¢ without the interactions that already executed in
the execution order S. Their description, value, and number of elements, as the number of integer
values, are summarized in Table 4.2.

Table 4.2: Possible observations.

Observation Value Elements (#int)
Interactions & placement I;i1, t+¢ & ;20 + | P

Placed interactions 7t;(It+1,... ¢+¢) 2¢

Interaction matrix M(C) ¢ x|P|

Interactions & Placement

The upcoming interactions and the current placement are observed. This includes the next ¢ interactions
in the interaction circuit and the current placement ;. The size of the observation space is the number
of interactions in the interaction circuit |V;| plus the number of physical qubits |P|.

Placed Interactions

The placed interactions observation is the next ¢ interactions of the interaction circuit I with the placement
applied to the virtual qubits. Each interaction is represented by the physical qubits they are mapped to.
The size is equal to ¢ times two as each interaction involves two qubits. It differs from the interaction
gates & placement observation by combining the interactions with the placement.

Interaction Matrix

The interaction matrix M(C) is a representation of the next ¢ interactions in the interaction circuit with
the placement applied to the virtual qubits. The matrix is constructed by iterating over the interaction
circuit, applying the placement and setting the corresponding physical qubits to 1 in the matrix. The
other elements are set to 0. Each row in the matrix represents an interaction gate, and each column
represents a qubit. It differs from the placed interactions observation by including all physical qubits in
the matrix, not just the ones involved in the interactions.
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4.4.6. Rewards
The reward function is defined as the circuit reliability as defined in section 4.2. It is given to the agent
at the end of each episode.

4.4.7. Termination
The episode terminates when the position ¢ reaches the end of the circuit t = |Cj].

4.5. Data

For training and evaluation, random quantum circuits and hardware configurations are generated.

4.5.1. Circuits

Random quantum circuits are generated by selecting gates randomly from a predefined set of operations,
such as single- and multi-qubit gates, with the number of qubits involved in each gate being flexible.
The circuit is constructed by adding gates layer by layer, with constraints such as the total number of
gates, depth, and operands per gate. A random number generator is used to ensure reproducibility.

4.5.2. Noise

The edge reliabilities in the coupling graph are generated randomly using a shifted and scaled beta
distribution. This distribution follows the probability density function of the standardized beta
distribution, as defined by:

T(a + B)x*1(1 - x)P!
L(a)T'(B) ’

where I is the gamma function, and « and 8 are the shape parameters of the beta distribution:

flx|a,p)= x€[0,1], a,peR’ (4.26)

I'(z) = /0 mtz‘le_t dt, R(z)>0 (4.27)

To shift and scale the beta distribution from B(a, ) to B'(«, B, i, 0), the following transformation is
applied:

1 x—u
falappo)=—flylap), y=—7- (4.28)

Reliabilities are derived from the error rates of IBM’s native quantum gates, specifically those of the
IBM Kyiv quantum processor. A beta distribution B "(a, B, p, 0) is fitted to the measured error rates.

Since a CNOT gate consists of multiple native gates, its overall reliability depends on the reliability of its
decomposed components. The individual single and two-qubit gate error rates are used to calculate the
error rate of the CNOT gate.

To model gate reliability variations statistically, the measured error rates are first used to fit a shifted
and scaled beta distribution. Given that reliability is defined as r = 1 — ¢, the corresponding reliability
distribution is obtained by transforming the fitted beta distribution. This transformed distribution can
then be used to sample edge reliabilities for the coupling graphs.

Figure 4.4 shows a comparison of the actual data and the fitted data, demonstrating how well the model
captures the characteristics of the gate error rates.

4.6. Evaluation
4.6.1. Baseline

Two baselines are used to evaluate the performance of the reinforcement learning model.

Random. The RL router selects actions randomly for both primitive and hierarchical actions. This
approach serves as a reference to determine whether the agent is learning a more effective strategy
compared to random selection.
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Figure 4.4: CNOT error rates and the fitted beta
distribution: ecnot ~ B/(« = 1.67,8 =3.25 % 1010, 1oc = 3.17 X 1073, scale = 2.32 x 108). The dashed vertical line represents the

mean error rate of the fitted distribution: cyor = 1.514 x 1072, The corresponding mean reliability is
Fenor = 1 —1.514 x 1072 = 0.98486.

Qiskit SWAP. The second baseline represents the optimal combination of initial placement and
SWAP-based routing methods from the Qiskit library [46]. This strategy is chosen over other Qiskit
routing methods because it provides a fair comparison by relying solely on SWAP gates for rout-
ing, without incorporating additional techniques. The initial placement strategies considered are
TrivialLayout, DenseLayout, and SabreLayout. The routing methods include BasicSwap, SabreSwap,
and StochasticSwap. The best combination is selected based on the highest circuit reliability produced
for each circuit.

4.6.2. Inference

Trained models can route circuits by predicting actions for each state until the episode concludes. To
enhance the reliability of the routing solution, it’s common practice in reinforcement learning to run
multiple trials per circuit and select the best outcome. Additionally, setting a maximum number of steps
ensures that the model doesn’t run indefinitely.

4.6.3. Validation

To validate the results of the trained model, the state vectors of the output circuits are compared to
the state vectors of the input circuits. This ensures that the output circuits are equivalent to the input
circuits, and the model has learned to map the circuits correctly.

4.7. Implementation

The implementation of the reinforcement learning model is based on the Stable Baselines3 library [47]
using the PPO [20] with action masking [28] algorithm and default hyperparameters. The environment
for qubit routing is implemented as a variation of the QGym library [48]. Source code is available as a
package called Q-NARR along with the configuration files for training and evaluation [49].



Results

All experiments are divided into two categories: optimization and evaluation. Within each category,
experiments are presented in separate subsections followed by their own discussion. For every
experiment a comparison is also made between primitive and hierarchical actions referenced as primitive
or just RL, and hierarchical or RL (hierarchical) respectively. Default parameters in Table 5.1 are used for
each experiment unless stated otherwise. The distribution of edge reliability is set to B’ as described in
subsection 4.5.2 with:

B'(a =1.67,8 = 3.25x 10'%,loc = 3.17 x 1073, scale = 2.32 x 10%)

Optimization experiments focus on finding the best training setup for the reinforcement learning agent
(section 5.1).

Evaluation experiments investigate the performance of the trained agent on different hardware configu-
rations including size and topology (section 5.2). Where possible, the metric is normalized relative to
Qiskit to provide a relative comparison.

Topology Grid 3x3
General Lookahead 4
Gate set CX, CY, Cz
Edge reliability 7, ~ B’
Circuit gates 8
Train Time steps 2x10°
Circuits 256
Interactions 32
Evaluation Qubits 9
Trials 4

Table 5.1: Default parameter values.

22
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5.1. Optimization

5.11. Experiment: Circuit Gate Count for Training
How does the number of gates in the training circuits affect training time and evaluation performance?

The number of gates in the training circuits is set to 4, 8, 16, and 32 gates. From the training data in
Figure 5.1, the training time increases with the number of gates, and the primitive routing algorithm
takes longer to converge than the hierarchical routing algorithm. The absolute number of steps is higher
for the primitive routing algorithm, but the hierarchical inserts more gates per step, so this is expected.
Figure 5.2 shows worse performance than Qiskit for both the primitive and hierarchical, with primitive
outperforming hierarchical except when only 4 gates are used for training.
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Figure 5.1: Training metrics for the number of gates in the training circuits. The shaded area is the standard deviation of every 10
update batches.
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Figure 5.2: Circuit reliability versus the number of gates in the training circuits relative to Qiskit. The shaded area is the
95% confidence interval. Note the non-linear scale on the x-axis.
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5.1.2. Experiment: Lookahead

How does the lookahead affect training time and evaluation performance?

The lookahead is set to 1, 2, 4, and 8 with the optimal number of gates (8) used for training from the
previous experiment. The training data in Figure 5.3 shows that the training time increases with the
lookahead parameter, which is expected as the observation space grows. Furthermore, the primitive
routing algorithm converges slower than the hierarchical routing algorithm. The evaluation results
in Figure 5.4 show that the optimal lookahead for both routing algorithms is 4, with the primitive
outperforming the hierarchical approach.
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Figure 5.3: Training metrics for the lookahead parameter. The shaded area is the standard deviation of every 10 update batches..
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Figure 5.4: Circuit reliability versus the lookahead parameter. The shaded area is the 95% confidence interval.
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5.1.3. Experiment: Number of Trials
How does the number of trials affect routing time and evaluation performance?

The number of trials is set to 1, 2, 4, 8, 16, and 32 with the optimal lookahead parameter (4) from
the previous experiment used. The training data in Figure 5.5 gives a more detailed comparison
of the two routing algorithms with the primitive approach converging slower than the hierarchical
approach but achieving a higher total reward in the end. The evaluation results in Figure 5.6a show
that the circuit reliability increases with the number of trials. Both trained models outperform their
random counterparts, but the primitive action space shows a larger improvement. Additionally, Qiskit
is outperformed by the trained models starting from 8 trials. No significant difference is observed when
using more than 8 trials (p > 0.05). Figure 5.6b shows a linear increase in routing time with the number
of trials, which is expected.
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Figure 5.6: Evaluation metrics for the number of trials. The shaded area is the 95% confidence interval. (a) Circuit reliability
versus the number of trials. (b) Routing time versus the number of trials.

5.1.4. Discussion

Across the optimization experiments, it is observed that training circuit size, lookahead, and the number
of trials each significantly influence both the routing performance (circuit reliability) and the training
and runtime overhead.

Effect of circuit gates for training. From Figure 5.1 and Figure 5.2, the overall reliability of both the
primitive and hierarchical approaches is worse than Qiskit when using only 4 gates. However, reliability
improves considerably for both algorithms as the gate count increases to 8 or 16, which emerge as
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the best-performing configurations (see Table 5.2). At 32 gates, the reliability drops slightly again
and remains below the level at 8 or 16 gates. Regarding training dynamics, the hierarchical approach
generally converges faster than the primitive approach, although the latter may reach a higher total
reward toward the end of training.

Effect of lookahead. Varying the lookahead parameter has a marked effect on both training time and
final performance (Figure 5.3 and Figure 5.4). Increasing lookahead expands the observation space,
which slows training but can improve the agent’s ability to plan. In practice, a lookahead of 4 yields
the best balance: it consistently outperforms lookahead 1 or 2 while avoiding the excessive complexity
at lookahead 8. Thus, for both primitive and hierarchical action spaces, lookahead 4 is chosen as the
optimal setting.

Effect of number of trials. Finally, increasing the number of trials improves circuit reliability for both
routing algorithms (Figure 5.5 and Figure 5.6a). However, Figure 5.6b also shows that routing time
scales roughly linearly with the number of trials. Although 8 trials already achieve most of the reliability
benefits, 16 or 32 trials can offer marginally higher reliability if the increased computational cost is
acceptable.

The results of the optimization experiments are summarized in Table 5.2. The values chosen for the best
performance are shown in bold and are used for the evaluation experiments.

Parameter Action Best Value(s)

Primitive 8,16

Circuit gates Hierarchical 8,16

Primitive 4

Lookahead Hierarchical 4
. Primitive 8,16,32
Number of trials Hierarchical 8,16, 32

Table 5.2
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5.2. Evaluation

After optimizing the training setup, the trained agents are evaluated on different hardware configurations
to investigate their performance in terms of circuit reliability. The parameters chosen are the best
performing from the optimization experiments.

5.2.1. Experiment: Hardware Size
How does the hardware size affect training time and evaluation performance?

The number of timesteps for training is set to 4 x 10° for the largest hardware size. The hardware
varies from a grid of 6 to 36 qubits to investigate the effect on training time and evaluation performance.
Figure 5.7 shows primitive routing outperforming hierarchical routing for all topologies less than
16 qubits. Qiskit is only outperformed for circuit smaller than 9 qubits with relative perfromance
decreasing as the number of qubits increases.

Circuit reliability relative to Qiskit
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Figure 5.7: Circuit reliability versus the number of qubits in the hardware. The shaded area is the 95% confidence interval. Note
the non-linear scale on the x-axis.
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5.2.2. Experiment: Topology

How does the topology affect training time and evaluation performance?

The topologies used in this experiment, illustrated in Figure 5.8, are designed to investigate their impact
on both training time and evaluation performance. These topologies vary in connectivity degree k,
ranging from an average of 2 to 4 connections per node, allowing us to assess how different levels of
connectivity influence routing efficiency and circuit reliability.

IBM'’s Falcon and Eagle architectures feature large-cell tessellation, forming loops of various sizes [50].
In contrast, Google’s Sycamore and Willow processors exhibit a connectivity approaching 4 [51], [52].
To maintain compatibility with the smallest topology, random circuits with 15 qubits are used, which
results in some qubits being redundant in larger topologies. Additionally, the diameter 6 of these
topologies ranges from 4 to 8, a factor that may impact routing efficiency.

The results presented in Figure 5.9 indicate that circuit reliability improves with higher node degree,
while the ladder topology exhibits a significant decline in performance. Moreover, the hierarchical
routing algorithm consistently outperforms the primitive routing algorithm across all topologies, likely
due to its more structured approach to path selection. Notably, for the cycle topology, the primitive
routing algorithm fails to converge during training, potentially due to inefficient routing paths or poor
optimization dynamics, leading to a missing value in the results.

160 Cycle 16 160 Grid 4xd. 16Q Hexagonal Lattice 2x2

(@) Cycle16 (k=2, 06 =38) (b) Grid 4x4 (k = 3,0 = 6) (c) Hexagonal lattice 2x2
(k=24,6=7)
16Q Ladder 8 15Q Triangular Lattice 4x4
(d) Ladder 8 (k =2.75,6 = 8) (e) Triangular lattice 4x4
(k=4,0=4)

Figure 5.8: Topologies used in the evaluation experiments.
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Circuit reliability relative to Qiskit
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Figure 5.9: Circuit reliability versus the topology. The shaded area is the 95% confidence interval.
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5.2.3. Discussion

Effect of hardware size. The results of the hardware size experiment (Figure 5.7) show that the
primitive routing algorithm outperforms the hierarchical routing algorithm for all topologies with fewer
than 16 qubits. Qiskit is only outperformed for circuits smaller than 9 qubits, with relative performance
decreasing as the number of qubits increases. This suggests that the hierarchical routing algorithm may
be more effective for larger circuits, while the primitive routing algorithm is better suited for smaller
circuits.

Effect of topology. The topology experiment (Figure 5.9) reveals that circuit reliability is highest for
topologies with the greatest node degree, while the ladder topology experiences a significant decrease
in performance. The hierarchical routing algorithm consistently outperforms the primitive routing
algorithm across all topologies. Notably, the primitive routing algorithm fails to converge during
training for the cycle topology, leading to a missing value in the results. These findings suggest that the
hierarchical routing algorithm may be more effective for complex topologies with a high node degree,
while the primitive routing algorithm may struggle with simpler topologies.



Conclusion

This chapter concludes the report by summarizing the key findings and assessing whether the overarching
research question has been addressed. It then identifies potential avenues for future research that build
on the work presented here.

6.1. Summary of Findings & Research Question

The central goal of this research was to design and evaluate a reinforcement learning (RL) environment
for qubit routing on noisy, near-term quantum hardware. Specifically, the study aimed to explore how
different RL formulations (primitive vs. hierarchical action spaces) and environment configurations
(lookahead, training-circuit sizes, number of trials) influence routing outcomes in terms of circuit
reliability, gate overhead, and routing time.

Environment Design Choices. An environment is proposed that flexibly models hardware constraints
(via coupling graphs and noise parameters) and circuit interactions (via gate dependency graphs).
The environment was equipped with configurable state representations (e.g., interaction matrices and
lookahead windows) and two types of action spaces (primitive and hierarchical).

* Lookahead parameter: The experiments showed that a moderate lookahead (e.g., 4 steps) offered
the best performance—outperforming smaller lookahead values, while avoiding the excessive
complexity associated with a large lookahead.

* Training-circuit size: Training on small circuits (fewer than 4 gates) led to suboptimal mappings for
larger, more complex circuits. Training with 8-16 gates offered a strong balance between learning
speed and generalization performance on larger circuits during evaluation.

RL Policy Formulations. Primitive and hierarchical action spaces are compared in terms of routing
performance, scalability, and robustness:

® Primitive Actions (Swap-based): The agent learned how to insert individual swap gates at each step.
While this approach often converged more slowly, it occasionally achieved a higher total reward
once sufficiently trained, particularly for smaller circuit or hardware sizes.

® Hierarchical Actions (Edge-based): The agent selected an entire path-planning solution (via Dijkstra’s
or a similar method) for relocating qubits. This method converged faster and performed more
robustly on larger or more complex topologies—though, at times, its ultimate reliability was
slightly below that of the best-tuned primitive approach.

Scalability and Hardware Variation. In extending the environment to different hardware sizes
and topologies (e.g., from a 6-qubit up to a 36-qubit grid, and from ladder-like to highly connected
triangular-lattice topologies), the following trends were observed:

31
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® Larger hardware graphs tended to reduce RL’s performance significantly compared to heuristic
transpilers, as the action and state spaces grew exponentially.

® Using hierarchical actions, RL methods were more robust and scalable on complex topologies,
converging faster and achieving higher reliability than primitive approaches.

* Topologies with higher connectivity (i.e., higher node degree) generally allowed both RL ap-
proaches to maintain higher reliability, as they could leverage more diverse routing paths.

Comparison to Standard Compilers. In benchmark tests against Qiskit’s swap-based transpiler passes
(e.g., BasicSwap, SabreSwap, StochasticSwap) on random circuits, the best RL policies were competitive
for smaller (up to 9 qubits) or highly connected topologies. For larger or more linear/ladder-type
devices, Qiskit baselines often performed on par or better, especially with more than 16 physical qubits.

Answer to the Research Question. The study demonstrates that a flexible RL environment, incorpo-
rating hardware noise, gate connectivity constraints, and varied observation spaces, can indeed learn
effective qubit-routing policies—occasionally surpassing or matching standard compiler heuristics
under specific conditions (smaller hardware, moderate circuit size, or higher connectivity). The choice
of action space (primitive vs. hierarchical), lookahead, and training-circuit complexity significantly
affects routing performance and scalability. This confirms that properly designed RL approaches can be
extended to more realistic, noise-aware scenarios on near-term quantum devices, although further work
is needed to make such methods fully competitive on large-scale hardware.

6.2. Directions for Future Research

Although the proposed environment and RL formulations represent an advance in noise-aware,
hardware-adaptive qubit routing, a number of open challenges remain. Below are several promising
directions for future investigation:

1. Integrating Single-Qubit Noise & More Detailed Error Models. The current framework largely
focuses on two-qubit gate noise, assuming single-qubit gates are error-free or have negligible noise.
Incorporating realistic single-qubit error rates, measurement noise, idle errors (decoherence), and
time-dependent calibration data would yield a more comprehensive noise model.

2. Adaptive/Online Noise Tracking. As real quantum devices exhibit time-varying error rates,
particularly for two-qubit gates, an RL agent could be periodically retrained or updated online
with new noise data. Techniques like meta-learning and continual learning may help the policy
adapt quickly to shifts in hardware calibration.

3. Advanced Scheduling & Concurrent Gate Execution. Future work could refine the scheduling
problem to allow parallel gate operations, respecting hardware-specific timing constraints and
crosstalk. Multi-level scheduling, which integrates classical control signals and readout timing,
remains largely unexplored in RL-based routing.

4. Hybrid Heuristic-RL Methods. Combining heuristic-based initial placements or partial solutions
with RL planning might mitigate the large action and state spaces that hamper pure RL. For
instance, short heuristic routes could be used where device connectivity is limited, while the RL
agent handles more complex or globally impactful decisions.

5. Scalability to Large Systems. To push beyond 30-50 qubits, RL frameworks will require
more efficient function approximators (e.g., graph neural networks) and distributed training.
Investigating how RL solutions scale—and how to best represent large coupling graphs—remains
an essential next step. Also reusing by training on smaller subgraphs or subproblems could help
manage the combinatorial explosion of state-action pairs.

6. Benchmarking With Real Hardware Runs. While simulation-based metrics (circuit reliability,
gate counts, etc.) provide insight, verifying the gains on real hardware experiments would
strengthen the case for RL-based routing. Comparing actual circuit success probabilities with
simulator predictions would also validate or refine the noise model.

Pursuing these directions will further clarify the viability of RL-based qubit routing on near-term
quantum devices. As quantum processors expand in size and complexity, robust, noise-aware, and
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scalable compilation methods—potentially leveraging advanced RL—are poised to play a key role in
maximizing practical quantum computational power.
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Algorithms

Algorithm 1 sub_actions: Determining sub-actions for hierarchical actions. Uses algorithm 2 for
calculating the distance of a path.

e e T e e =
PN DA RNy 22

NN
= O

—_
o N

Input: action, position, interaction_circuit, edges, placement
if state is done then

return []
end if
q1, g2 « convert action to edge > get physical qubits from action
v1,v2 « interaction_circuit[position] > get virtual qubits from state
pl, p2 « placement[v1, v2] > get physical qubits from mapping

path_1 « get shortest path from p1 to g1
path_2 « get shortest path from p2 to g2
path_3 « get shortest path from p1 to g2

: path_4 < get shortest path from p2 to g1
. if distance(path_1) + distance(path_2) > distance(path_3) + distance(path_4) then

actions_1 < convert path_3 to actions
actions_2 < convert path_4 to actions

. else

actions_1 < convert path_1 to actions
actions_2 < convert path_2 to actions

: end if
. if action is in actions_2 then > swap actions if the action is in the second path
swap actions_1 and actions_2
: end if
return actionsy || actionsy > Concatenate actions from both paths.

Algorithm 2 distance: Calculate the distance of a path using edge weights.

1
2
3
4
5

Input: path, weights
distance < 0
for each edge in path do
distance « distance + weights[edge]

: end for

return distance
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