
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Investigating the
Effects of Variations in
Reinforcement
Learning
Environments and
Quantum Hardware for
Qubit Routing
MSc Thesis

Joris Henstra

Investigating the
Effects of Variations

in Reinforcement
Learning

Environments and
Quantum Hardware

for Qubit Routing
MSc Thesis

by

Joris Henstra

to obtain the degree of Master of Science at the Delft University of Technology,

to be defended publicly on Wednesday, February 12, 2025, at 10:00 AM.

Student number: 4500954

Thesis committee: Dr. Sebastian Feld, TU Delft, supervisor

Dr. Jan van Gemert, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Summary

Quantum computing holds the potential to revolutionize computation by leveraging quantum mechanical

principles to solve problems intractable for classical computers. However, current noisy intermediate-

scale quantum (NISQ) devices are constrained by limited qubit connectivity, high gate error rates, and

hardware-specific noise patterns. One of the key challenges in quantum circuit execution is qubit

routing—efficiently mapping logical qubits to physical qubits while adhering to connectivity constraints

and minimizing error accumulation. Traditional heuristic and rule-based transpilation techniques

struggle to generalize across different hardware architectures and noise conditions, motivating the

exploration of machine learning approaches for more adaptive and scalable routing strategies.

This study investigates reinforcement learning (RL)-based methods for qubit routing, focusing on how

different RL formulations (primitive vs. hierarchical action spaces) and environment configurations (e.g.,

lookahead depth, training-circuit sizes) impact routing performance. The designed RL environment

models quantum hardware constraints through coupling graphs and noise parameters, providing

configurable state representations and flexible action spaces.

Key findings indicate that a moderate lookahead (e.g., 4 gates) offers the best balance between

performance and computational complexity. Training on circuits with 8–16 gates yields optimal

generalization to larger circuits. Comparing RL policy formulations, hierarchical approaches converge

faster and perform robustly on complex topologies, while primitive approaches occasionally achieve

higher reliability given sufficient training. Larger hardware graphs diminish RL’s relative advantage

over heuristic transpilers, whereas higher-connectivity topologies improve RL routing efficiency.

Benchmarks against Qiskit’s standard transpilers reveal that RL methods are competitive on small-scale

and highly connected devices but face challenges on larger and more constrained architectures. While

RL-based qubit routing can effectively integrate hardware noise and connectivity constraints, scalability

and adaptability to dynamic error rates remain open challenges.

Future research should explore integrating more comprehensive noise models, adaptive noise tracking,

concurrent gate execution, hybrid heuristic–RL approaches, and benchmarking with real hardware

implementations. As quantum devices scale, RL-driven, noise-aware compilation strategies may become

integral to optimizing practical quantum computations.

i

Contents

Summary i

1 Introduction 1
1.1 Context . 1

1.2 Problem Statement . 1

1.3 Objectives . 1

1.4 Scope . 1

1.5 Significance . 2

1.6 Structure . 2

2 Theory 3
2.1 Quantum Computing . 3

2.1.1 Hilbert Space and Quantum States . 3

2.1.2 Qubits . 4

2.1.3 Qubit Measurement . 4

2.1.4 Quantum Gates . 4

2.1.5 Gate Commutation . 5

2.1.6 Quantum Circuits . 6

2.1.7 Quantum Hardware . 6

2.1.8 Quantum Compiling . 7

2.2 Reinforcement Learning . 7

2.2.1 Markov Decision Process . 7

2.2.2 Training Process . 7

2.2.3 Q-Learning . 8

2.2.4 Function Approximation . 8

2.2.5 Policy Optimization . 8

2.2.6 Proximal Policy Optimization . 9

2.2.7 Hierarchical Reinforcement Learning . 9

2.2.8 Action Masking . 9

3 Literature review 10
3.1 Related Work . 10

3.1.1 Rule-based . 10

3.1.2 Mathematical Optimization . 10

3.1.3 Heuristic . 10

3.1.4 Machine Learning . 10

3.1.5 Noise-aware Methods . 11

3.2 Research Gap . 11

4 Methodology 12
4.1 Definitions . 12

4.1.1 Quantum Hardware . 12

4.1.2 Circuit . 12

4.1.3 Placement . 14

4.1.4 Swap gates . 14

4.2 Metrics . 14

4.2.1 Circuit Reliability . 15

4.2.2 Circuit Depth . 15

4.2.3 Interaction Count . 16

4.2.4 Interaction Reliability . 16

ii

Contents iii

4.2.5 Routing Time . 16

4.3 Problem Formulation . 16

4.3.1 Routing Problem . 16

4.3.2 Scheduling Problem . 17

4.3.3 Mapped Circuit . 17

4.4 Environment . 17

4.4.1 State . 17

4.4.2 Initialization . 17

4.4.3 Actions . 17

4.4.4 State Transitions . 18

4.4.5 Observations . 19

4.4.6 Rewards . 20

4.4.7 Termination . 20

4.5 Data . 20

4.5.1 Circuits . 20

4.5.2 Noise . 20

4.6 Evaluation . 20

4.6.1 Baseline . 20

4.6.2 Inference . 21

4.6.3 Validation . 21

4.7 Implementation . 21

5 Results 22
5.1 Optimization . 23

5.1.1 Experiment: Circuit Gate Count for Training . 23

5.1.2 Experiment: Lookahead . 24

5.1.3 Experiment: Number of Trials . 25

5.1.4 Discussion . 25

5.2 Evaluation . 27

5.2.1 Experiment: Hardware Size . 27

5.2.2 Experiment: Topology . 28

5.2.3 Discussion . 30

6 Conclusion 31
6.1 Summary of Findings & Research Question . 31

6.2 Directions for Future Research . 32

References 34

A Algorithms 38

1
Introduction

Quantum computing leverages the principles of quantum mechanics—such as superposition and entan-

glement—to offer computational speedups on problems that are intractable for classical computers [1],

[2], [3]. Although rapid progress has been made in designing and building noisy intermediate-scale

quantum (NISQ) devices, these systems are constrained by limited qubit numbers, noisy operations, and

non-uniform gate connectivity [4]. Such constraints introduce the qubit routing challenge: efficiently

mapping a quantum algorithm onto the physical hardware so that gate and measurement operations

remain valid while minimizing detrimental effects from noise and circuit overhead.

1.1. Context
Research on quantum circuit compilation has produced many approaches to tackling qubit routing,

including constraint-based optimizations, heuristic routing, and more recently, machine learning

methods [5], [6], [7], [8]. Reinforcement learning (RL), in particular, has shown promise by adaptively

learning routing policies that account for hardware constraints, circuit interactions, and noise factors.

However, most RL research for quantum compilation has relied on simplified or custom-tailored

environments, limiting applicability to diverse topologies and noise conditions. Noise-awareness and

scalability also remain significant challenges, underscoring the need for more flexible, robust, and

hardware-aware RL approaches.

1.2. Problem Statement
Existing qubit routing strategies frequently overlook the interplay between noise, hardware variability,

and circuit structure. Methods that do account for noise often scale poorly to larger NISQ devices.

This research therefore aims to develop and evaluate an RL environment for qubit routing that flexibly

represents diverse hardware topologies and connectivity constraints while aiming to be more scalable

and noise-aware than current approaches.

1.3. Objectives
A goal is the design of an RL environment that systematically models quantum hardware constraints,

noise parameters, and circuit interactions in an extensible and scalable manner. Another objective is to

investigate how different RL policy formulations—such as hierarchical action spaces—impact routing

outcomes when tested on varied topologies. The performance of these RL agents is then assessed

through experiments that measure circuit reliability, compared against heuristic and standard compiler

baselines.

1.4. Scope
Superconducting quantum processor architectures with limited qubit connectivity and moderate noise

levels anchor the scope of this research. Although the proposed environment is extensible to other

1

1.5. Significance 2

quantum platforms, the experiments and evaluation metrics focus on gate-based superconducting

devices. The study emphasizes two-qubit gate connectivity and qubit routing in compilation, without

explicitly integrating advanced error mitigation or error-correction techniques.

1.5. Significance
Investigating how different reinforcement learning (RL) policy formulations—such as hierarchical

action spaces—impact qubit routing outcomes is crucial for optimizing quantum circuit compilation.

Traditional heuristic and rule-based approaches often struggle to generalize across diverse hardware

topologies and noise conditions. By exploring alternative RL policy structures, this research aims to

uncover strategies that enhance adaptability, efficiency, and scalability in qubit routing.

1.6. Structure
The remainder of this report is organized as follows. Chapter 2 provides theoretical background on

quantum computing, including qubit measurement, quantum gates, gate commutation, and hardware

constraints, then introduces fundamental concepts in reinforcement learning. Chapter 3 surveys the

literature on qubit routing, covering exact formulations, heuristic approaches, and Machine Learn-

ing (ML)-based methods and discusses the current research gap. Chapter 4 details the methodology,

including problem formulation, environment design, and evaluation metrics as well as the implementa-

tion. Chapter 5 presents experimental results that compare RL approaches against baseline transpilers

and heuristics. Finally, Chapter 6 summarizes key findings, limitations, and directions for future work.

2
Theory

This section explains the relevant theory and concepts essential for understanding the research, including

quantum computing and reinforcement learning.

2.1. Quantum Computing
Quantum computing is a paradigm of computation that exploits the laws of quantum mechanics

to process information. This approach leverages quantum phenomena such as superposition and

entanglement, which enable computational tasks that can surpass the capabilities of classical systems.

Compared to conventional bits, quantum systems can encode information in more complex ways,

providing new avenues for algorithm design. At a high level, quantum computing involves manipulating

quantum states through specialized operations and measurements, executed on physical devices subject

to hardware-specific constraints. The following sections explore the essential principles of quantum

computing, including Hilbert spaces and quantum states, qubits, qubit measurement, quantum gates,

and gate commutation.

2.1.1. Hilbert Space and Quantum States
Quantum states are represented as vectors in a complex vector space known as a Hilbert space.

A Hilbert spaceℋ is a complete vector space equipped with an inner product that allows the computation

of norms and angles between vectors.

In quantum computing, the state of a single qubit is described as a unit vector in a two-dimensional

Hilbert spaceℋ2:

ℋ2 = C2 = span{|0⟩ , |1⟩}. (2.1)

In bra-ket notation, these basis states can be written explicitly as column vectors:

|0⟩ =
[
1

0

]
, |1⟩ =

[
0

1

]
. (2.2)

A general quantum state

��𝜓〉 in a two-dimensional Hilbert space is a superposition of the basis states |0⟩
and |1⟩: ��𝜓〉 = 𝛼 |0⟩ + 𝛽 |1⟩ (2.3)

where 𝛼 and 𝛽 are complex probability amplitudes satisfying the normalization condition:

|𝛼|2 + |𝛽|2 = 1 (2.4)

Quantum operations, such as quantum gates, are represented as unitary transformations on the Hilbert

space. Measurement collapses the quantum state onto one of the basis vectors, |0⟩ or |1⟩, probabilistically

based on the squared magnitudes of the amplitudes.

3

2.1. Quantum Computing 4

For a system of 𝑛 qubits, the state resides in a 2
𝑛
-dimensional Hilbert spaceℋ2

𝑛 , formed by the tensor

product of single-qubit spaces (Equation 2.5):

ℋ2
𝑛 = ℋ2 ⊗ ℋ2 ⊗ · · · ⊗ ℋ2︸ ︷︷ ︸

𝑛 times

(2.5)

This mathematical structure enables quantum entanglement and interference, distinguishing quantum

computing from classical computing.

2.1.2. Qubits
Qubits are the fundamental units of quantum information. While classical bits can only be in one of

two possible states (0 or 1), a qubit can exist in a superposition of these basis states, as described in

Equation 2.3. This ability to occupy multiple states simultaneously underpins quantum phenomena

such as entanglement and interference, leading to computational advantages over classical systems [9].

A distinction can be made between virtual qubits, which are used in quantum algorithms and theoretical

models, and physical qubits, which refer to the actual qubits in a quantum computer. The implementation

of qubits differs across quantum technologies, such as superconducting qubits [10], trapped ions [11],

[12], and topological qubits [13], [14].

2.1.3. Qubit Measurement
Measuring a qubit collapses its superposition into one of the classical states. The probability of obtaining

|0⟩ or |1⟩ is given by |𝛼|2 and |𝛽|2, respectively [9]. This process is central to extracting classical

information from quantum states. Because the measurement outcome is probabilistic, applying specific

quantum gates before measurement can change the measurement basis and influence the observed

results.

2.1.4. Quantum Gates
Quantum gates are the building blocks of quantum circuits, performing operations on qubits. Formally,

a gate is an operator mapping the 𝑛-qubit Hilbert spaceℋ2
𝑛 to itself, as shown in Equation 2.6. The gate

set 𝒢 is the collection of all such gates (Equation 2.7), and the indices of the qubits in the 𝑛-qubit system

that are affected by the gate operation are defined by its domain dom(𝑈𝐺) (Equation 2.8).

𝑈𝐺 : ℋ2
𝑛 ↦→ ℋ2

𝑛 (2.6)

𝒢 = {𝑈𝐺 | 𝑈𝐺 : ℋ2
𝑛 ↦→ ℋ2

𝑛} (2.7)

dom(𝑈𝐺) : 𝒢 ↦→ {{1}, {2}, . . . , {1, 2}, . . . } (2.8)

Single-qubit gates, such as the X, Y, and Z gates, act on individual qubits, while multi-qubit gates, such as

the controlled-not (CNOT) gate, can entangle qubits by applying conditional operations. Entanglement

is a key resource in quantum computing that enables the representation of complex, highly correlated

states beyond what is possible with classical bits [9].

Single-Qubit Gates
Single-qubit gates are quantum gates that operate on a single qubit. Any arbitrary single-qubit operation

can be represented as a rotation on the Bloch sphere (Figure 2.1). The Pauli-X gate, also known as

the bit-flip gate, flips the state of a qubit from |0⟩ to |1⟩ and vice versa by introducing a phase change

of 𝜋 around the X-axis of the Bloch sphere (Figure 2.1a). The Pauli-Y and Pauli-Z gates perform

similar operations, introducing a phase change of 𝜋 around the Y and Z axes of the Bloch sphere,

respectively. The operation can be also described by a unitary matrix that acts on the qubit’s state vector

(Equation 2.9). The identity gate 𝐼 leaves the qubit state unchanged. Another important single-qubit

gate is the Hadamard gate, which creates superposition states by rotating the qubit state vector by 𝜋/2
around the axis between the X and Z axes of the Bloch sphere (Figure 2.1b) [9].

2.1. Quantum Computing 5

(a) Pauli-X gate action on a |0⟩ state, applying a 𝜋 rotation around

the X axis moving the state to |1⟩.
(b) Hadamard gate action on a |0⟩ state, applying a 𝜋/2 rotation

around the axis between the X and Z axes moving the state to

|+⟩ = 1√
2

(|0⟩ + |1⟩).

Figure 2.1: Bloch sphere representation of single-qubit gates. It is a unit sphere that represents the state of a qubit, with the poles

corresponding to the |0⟩ and |1⟩ states. Any gate introduces a rotation on the Bloch sphere, changing the state of the qubit.

𝑈 =

(
cos(𝜃/2) −𝑒 𝑖𝜆 sin(𝜃/2)

𝑒 𝑖𝜙 sin(𝜃/2) 𝑒 𝑖(𝜙+𝜆) cos(𝜃/2)

)
where


𝑈 unitary matrix

𝜃 rotation angle

𝜙 phase angle

𝜆 global phase

(2.9)

Controlled Gates
Controlled gates are multi-qubit gates that perform an operation on a target qubit based on the state

of a control qubit. The controlled-not (CNOT) or controlled-X (CX) gate is a two-qubit gate that flips

the state of the target qubit if the control qubit is in state |1⟩. This conditional operation is essential for

creating entanglement between qubits and implementing quantum algorithms. All other variations of

controlled gates can be constructed from the CNOT gate by applying single-qubit gates before and after

the CNOT gate [9].

SWAP Gate
The SWAP gate is a two-qubit gate that exchanges the quantum states of two qubits. This operation is

used in qubit routing to move qubit states between physical qubits. SWAP gates are usually not native

to quantum hardware and need to be decomposed into elementary gates, such as CNOT gates, to be

implemented on physical qubits. Most superconducting qubit architectures support the implementation

of SWAP gates using a sequence of three CNOT gates (Figure 2.2) [9].

(a) (b)

Figure 2.2: Decomposition of the SWAP gate into CNOT gates. (a) SWAP gate

circuit. (b) SWAP gate decomposition into CNOT gates.

Figure 2.3: Quantum Circuit for

Creating the |Ψ+⟩ Bell state with a

Hadamard gate and a CNOT gate

2.1.5. Gate Commutation
Gate commutation is the property of quantum gates that allows them to be rearranged without changing

the final state of the system. The mathematical representation of gate commutation between two gates

𝑈𝑖 and 𝑈 𝑗 is given by [𝑈𝑖 , 𝑈𝑗] = 0, where [·, ·] denotes the commutator (Equation 2.10). When two gates

commute, they can be executed in any relative order. The Hadamard gate and CNOT gate are examples

of gates that do not commute, leading to different outcomes depending on their relative order [9].

2.1. Quantum Computing 6

[𝐴, 𝐵] ≡ 𝐴𝐵 − 𝐵𝐴, so [𝐴, 𝐵] = 0 ⇔ 𝐴𝐵 = 𝐵𝐴. (2.10)

2.1.6. Quantum Circuits
Quantum circuits are visual representations of quantum algorithms that consist of qubits, gates, and

measurements. Qubits are represented as lines with gates and measurements as boxes that act on qubits.

The final state of a quantum circuit is obtained by applying gates sequentially from left to right, starting

from the initial state of the qubits. An example of a quantum circuit which creates the |Ψ+⟩ state is

shown in Figure 2.3. It uses a Hadamard gate to create superposition and a CNOT gate to entangle two

qubits such that its final state is:

|Ψ+⟩ = 1√
2

(|00⟩ + |11⟩). (2.11)

This state is one of the four Bell states that are maximally entangled and play a crucial role in quantum

communication and quantum error correction. The entanglement in the |Ψ+⟩ state means that the

qubits cannot be separated into individual states, and the measurement of one qubit will determine the

state of the other qubit.

An example of a state which would not be entangled is a separable state such as:��𝜙〉 = |0⟩ ⊗ |1⟩ = |01⟩ . (2.12)

In this case, the measurement of one qubit does not provide any information about the state of the

other qubit. Unlike entangled states, separable states can be described as a simple tensor product of

individual qubit states [9].

2.1.7. Quantum Hardware
The physical implementation of quantum computing hardware introduces constraints and challenges

that impact the design and execution of quantum algorithms. Quantum hardware can be characterized in

part by its topology and noise, which influence the performance and reliability of quantum computations.

Topology
The topology of quantum hardware refers to the arrangement of qubits and their connectivity. The

topology defines the possible interactions between qubits and the constraints on gate operations.

Different quantum architectures have distinct topologies, such as linear, 2D grid, or fully connected

layouts. The choice of topology affects the efficiency of quantum algorithms and the complexity of qubit

routing. Usually the topology is dictated by the physical implementation of the qubits. For example,

superconducting qubits are typically arranged in a grid-like structure [15] and trapped-ion qubits in a

linear chain [16].

Noise
In practice, the quantum gates introduced in subsection 2.1.4 and the measurement described in

subsection 2.1.3 can deviate from their ideal, unitary-based descriptions due to environmental factors,

control electronics, and hardware imperfections, collectively called noise. Such deviations introduce

errors in quantum operations, which can be quantitatively described using error rates.

For a quantum gate 𝐺, ideally represented by a unitary matrix 𝑈𝐺, noise causes the actual operation to

deviate from 𝑈𝐺. A common approach to model this deviation is to introduce a noise channel ℰ, such

that the actual operation applied to a quantum state 𝜌 is:

𝜌′ = ℰ(𝑈𝐺𝜌𝑈
†
𝐺). (2.13)

One standard noise model is the depolarizing channel, which assumes that with probability 1 − 𝑟𝐺, the

gate operation is a completely depolarizing channel, and with probability 𝑟𝐺, the gate operation is the

ideal unitary operation 𝑈𝐺 [9]:

ℰdepol(𝜌) = 𝑟𝐺𝑈𝐺𝜌𝑈
†
𝐺 + (1 − 𝑟𝐺)

𝐼

𝑑
, (2.14)

2.2. Reinforcement Learning 7

where 𝑑 is the dimension of the Hilbert space of the system. The parameter 𝑟𝐺 is the reliability of the

gate 𝐺, and 1 − 𝑟𝐺 is the error rate of the gate.

For many quantum devices, two-qubit gate errors dominate in many quantum devices, and error

mitigation strategies often focus on reducing their impact. In this work the focus is on the two-qubit gate
error, and single-qubit gate errors are assumed to be negligible.

Physical quantum processors exhibit spatial variations in error rates, where certain qubits or specific

gate locations may have significantly higher error rates. Additionally, error rates are subject to temporal

fluctuations due to changes in system calibration and environmental conditions [17]. These factors

make error characterization and mitigation essential for reliable quantum computation.

2.1.8. Quantum Compiling
Quantum compiling is the process of translating a quantum algorithm into a form that can be executed

on quantum hardware. One of the key challenges in quantum compiling is the mapping of virtual

qubits to physical qubits, taking into account the connectivity constraints of the hardware. This process

involves qubit placement and qubit routing to ensure that the quantum circuit can be executed. Other

relevant aspects of quantum compiling include gate scheduling, which determines the order of gate

operations, and circuit optimization, which reduces the number of gates in a circuit [6].

2.2. Reinforcement Learning
Reinforcement Learning (RL) is a machine learning paradigm in which an agent interacts with an

environment over a sequence of discrete steps. At each step, the agent receives a (partial) observation

of the environment’s state 𝑠𝑡 , selects an action 𝑎𝑡 , and receives a numerical reward 𝑟𝑡+1 along with a

transition to the next state 𝑠𝑡+1. This sequence of interactions continues until an episode ends, which can

happen upon reaching a terminal state or after a maximum number of steps. Figure 2.4 illustrates the

interaction between an RL agent and its environment.

Figure 2.4: The interaction between a Reinforcement Learning (RL) agent and its environment follows a cyclic process. At each

time step 𝑡, the agent selects an action 𝑎𝑡 based on the current state 𝑠𝑡 . The environment processes this action, determines the next

state 𝑠𝑡+1, and provides a reward 𝑟𝑡+1 to the agent.

2.2.1. Markov Decision Process
An MDP provides a formal framework for RL problems. It comprises a set of possible states 𝑆, a set

of possible actions 𝐴, a transition function 𝑃(𝑠′ | 𝑠, 𝑎) that gives the probability of moving to state 𝑠′

after taking action 𝑎 in state 𝑠, and a reward function 𝑅(𝑠, 𝑎) that specifies the immediate reward upon

making that transition. The Markov property holds that the next state and reward depend only on the

current state and action, not on the history of previous states or actions [18].

2.2.2. Training Process
The training process of an RL agent involves iteratively updating its policy or value function based on

the rewards received from the environment. A fundamental aspect of training is balancing exploration
(trying actions that may yield more information about the environment) and exploitation (selecting

actions that currently appear to maximize rewards). This interplay helps the agent discover strategies

that optimize long-term returns. Once training is complete, the agent can use its learned policy to make

effective decisions in real or simulated scenarios [19].

2.2. Reinforcement Learning 8

Model-Free vs. Model-Based Learning
When training an RL agent, one distinguishes between model-free and model-based approaches. Model-free

RL learns the policy or value function directly through environmental interactions, making no attempt

to build a model of the transition or reward functions. By contrast, model-based RL either learns or has

access to an explicit model of the environment’s dynamics (via 𝑃 and 𝑅) and can use them to simulate

outcomes or plan future actions [19].

Value-Based vs. Policy-Based Decision-Making
In value-based methods, the agent learns a value function—often a Q-function 𝑄(𝑠, 𝑎)—that estimates

the expected return of taking action 𝑎 in state 𝑠 [19]. The policy is then implicitly derived by selecting

the action that maximizes the estimated value. By contrast, policy-based methods directly parameterize

𝜋(𝑎 | 𝑠) and adjust those parameters to maximize long-term returns, rather than first learning a separate

value function. In practice, both value-based and policy-based approaches often leverage deep neural

networks to approximate functions and optimize decision-making.

On-Policy vs. Off-Policy Training
Another important distinction is whether the agent learns from the same policy it is currently using

(on-policy) or from data generated by a different policy (off-policy) [19]. On-policy methods, such as

Proximal Policy Optimization (PPO) [20], continually update the policy that generates the training

experience. Off-policy methods, like Q-Learning [21], can learn from experience generated by a behavior

policy that may differ from the current target policy.

2.2.3. Q-Learning
Q-Learning is a classic model-free algorithm where the agent explicitly learns a Q-function 𝑄(𝑠, 𝑎). This

function represents the expected return of taking action 𝑎 in state 𝑠 and thereafter following an optimal

policy. The update rule is:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼
(
𝑅(𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)

)
, (2.15)

where 𝛼 is the learning rate, 𝛾 is the discount factor, and 𝑠′ is the next state. Over time, Q-learning (QL)

converges to optimal values for each state-action pair, from which an optimal policy can be derived by

selecting arg max𝑎 𝑄(𝑠, 𝑎) [21].

2.2.4. Function Approximation
Modern RL systems often use neural networks to approximate the value function (or the policy in

policy-based methods). Let 𝜃 denote the parameters of a neural network. In a value-based approach

like Deep Q-Network (DQN) [22], the network outputs an estimate 𝑄̂𝜃(𝑠, 𝑎) of the Q-function for each

state-action pair (𝑠, 𝑎). To update 𝜃, one typically minimizes a mean squared error (MSE) loss of the

form:

𝐿(𝜃) =
(
𝑅(𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄̂𝜃−(𝑠′, 𝑎′) − 𝑄̂𝜃(𝑠, 𝑎)

)
2

, (2.16)

where 𝜃− represents a set of target network parameters periodically synchronized with 𝜃, and 𝑠′ is the

next state. The parameters 𝜃 are then updated via stochastic gradient descent to minimize 𝐿(𝜃).
By contrast, policy-based methods parameterize 𝜋𝜃(𝑎 | 𝑠) and use a gradient ascent update to directly

maximize the expected return. Here, the objective function 𝐽(𝜃) typically measures the long-term

reward under policy 𝜋𝜃, and gradients are computed using backpropagation through the network:

∇𝜃 𝐽(𝜃) = E(𝑠,𝑎)∼𝜋𝜃

[
∇𝜃 log𝜋𝜃(𝑎 | 𝑠)𝐺𝑡

]
, (2.17)

where 𝐺𝑡 represents an estimator of the future returns [23]. Thus, whether in value-based or policy-based

RL, neural networks are trained using gradient-based optimization procedures that leverage large-scale

data collection from the environment.

2.2.5. Policy Optimization
Policy optimization aims to directly optimize a parameterized policy by adjusting its parameters in

the direction of the performance gradient. These methods, such as REINFORCE [24] and actor-critic

2.2. Reinforcement Learning 9

algorithms [25], leverage gradient-based updates to maximize expected cumulative rewards. Policy

optimization is particularly effective in high-dimensional action spaces and continuous control tasks,

where explicit value function estimation may be challenging.

2.2.6. Proximal Policy Optimization
PPO [20] is a popular policy optimization method that improves stability and sample efficiency by

employing a clipped surrogate objective, which constrains large deviations from the previous policy update.

It is a model-free, on-policy algorithm that adjusts policy parameters to maximize expected rewards

while balancing stability and exploration. PPO typically uses a mini-batch approach with stochastic

gradient ascent, where each iteration involves multiple epochs of optimization using data sampled from

a replay buffer. The update step minimizes the clipped loss function, ensuring balanced exploration

and exploitation while maintaining stable learning dynamics. This makes PPO particularly effective for

continuous control tasks and other complex RL problems.

2.2.7. Hierarchical Reinforcement Learning
To enable more efficient learning and decision-making, Hierarchical Reinforcement Learning (HRL)

organizes actions into a hierarchy of subtasks [26]. In one form of such a framework, higher-level actions

correspond to decisions that trigger predefined policies, which execute sequences of sub-actions to

complete specific tasks. By delegating low-level decision-making to these predefined policies, the agent

can operate at a higher level of abstraction, focusing on strategic choices rather than finer execution

details. This approach leverages the structure of the environment to improve learning efficiency and

performance in complex decision-making tasks.

2.2.8. Action Masking
Action Masking is a technique used in RL to handle environments where certain actions are invalid or

undesired in particular states [27], [28], [29]. By dynamically excluding these invalid actions, the agent

focuses solely on optimizing the valid ones, improving learning efficiency, stability, and performance in

complex action spaces. However, this approach requires environment-specific knowledge to define the

masks accurately, and errors in masking can lead to suboptimal policies or performance.

3
Literature review

3.1. Related Work
In this section, a survey of relevant existing approaches to the qubit routing problem is made by

grouping them on their optimization method with noise-aware methods discussed separately.

3.1.1. Rule-based
A fixed routing scheme [30] focused on reducing communication overhead in two-dimensional architec-

tures through deterministic swaps. Although this rule-based approach simplifies implementation, it

often leads to suboptimal mappings and ignores hardware variability.

3.1.2. Mathematical Optimization
Early exact solutions with Pseudo-boolean optimization (PBO) were proposed to achieve optimal

qubit placements in linear [31] and multidimensional [32] architectures. Despite yielding optimal

solutions, PBO-based methods become computationally expensive for large circuits and did not

incorporate error rates. Integer linear programming (ILP) [33] is also employed to find optimal qubit

permutations on specific devices, but it shares scalability limitations. Quadratic unconstrained binary

optimization (QUBO) [34] extends the search space to modular architectures and can leverage specialized

hardware, including Ising machines [35], for faster solutions. However, these methods ignore noise and

hardware variability leading to suboptimal mappings.

3.1.3. Heuristic
Dynamic programming (DP) combined with heuristic routines [36] addresses routing through reversal,

swap, or bridge operations but quickly becomes intractable for large devices. Purely heuristic strategies [6]

focus on circuit depth optimization and are integrated into compilers like t|ket⟩, offering speed at

the cost of ignoring hardware noise. Further heuristic-based mapping [37] introduces scheduling and

latency minimization, yet still does not incorporate evolving device-specific constraints. In general,

heuristic methods improve scalability over exact optimization but often rely on static or simplified

assumptions about hardware.

3.1.4. Machine Learning
Reinforcement learning (RL) [38], [39] formulates qubit routing as a combinatorial decision process

and learns a policy to optimize certain cost metrics (e.g., circuit depth). Although RL approaches

can adapt to complex circuit topologies, most assume idealized hardware or uniform costs for gates

and swaps. Graph neural networks (GNNs) combined with Monte Carlo Tree Search [7] approximate

value functions and policies, indicating the promise of ML for complex routing scenarios. Nonetheless,

dynamic hardware variation is rarely incorporated, and scalability to devices with many qubits remains

an open problem.

10

3.2. Research Gap 11

3.1.5. Noise-aware Methods
Satisfiability modulo theory (SMT)-based methods coupled with greedy heuristics [40] take static

device-specific noise data into account, while purely heuristic strategies are used in SABRE [5], one

of Qiskits [41] routing strategies. Variable error rates are incorporated into A* search [17] and ILP

formulations [42] handle multi-constraint settings under noisy conditions but still face scalability issues.

Recently, Graph Neural Network (GNN)s are used to estimate fidelity with RL [43], demonstrating an

integrated noise-aware ML approach up to moderate system sizes. It is unclear how these methods

scale to larger devices or more complex noise models. Variation-aware mapping based on multi-agent

search [44] and deep RL strategies for noise-adaptive routing [8] further expand the suite of noise-aware

techniques. However, these methods often operate on smaller benchmarks or rely on simplified noise

models, limiting their applicability to larger real-world quantum processors.

3.2. Research Gap
Despite the growing body of work on quantum circuit routing—from exact formulations and heuristics

to ML–based strategies—several gaps remain unaddressed, particularly those relevant to the design of

RL environments, the treatment of hardware variability, and scalability challenges.

Environment Design Choices Current qubit routing strategies based on RL often use fixed custom envi-

ronment setups—without variations in state representation, reward design, and action spaces—making

it difficult to isolate which aspects directly impact performance. This lack of understanding hinders the

development of generalizable RL solutions that can adapt to different quantum hardware configurations.

Noise-awareness Although some hardware-aware approaches account for error rates or calibration

data, most RL research still relies on static or simplified assumptions. Consequently, there is a limited

understanding of how dynamic or uncertain hardware parameters (e.g., fluctuating gate fidelities,

varying connectivity) can be robustly incorporated into the RL environment. This gap is especially

relevant for Noisy Intermediate Scale Quantum (NISQ) devices, where noise and error rates can vary

significantly over time.

Scalability While RL-based qubit routing solutions have demonstrated encouraging results on small-

or mid-scale devices, scaling these methods to larger hardware remains problematic. On the one hand,

noise-aware approaches tend to be tested on relatively small benchmarks due to the computational

overhead of modeling device-specific or time-varying error rates, thus limiting their applicability to

bigger, more complex systems. Yet, more scalable techniques often rely on simplifying assumptions

about hardware. Overcoming these competing demands requires novel RL frameworks that effectively

account for hardware imperfections at scale—enabling both realistic noise modeling and practical

scalability on larger quantum processors.

Until methods are explored for building and evaluating RL environments, while also incorporating

real hardware awareness, and designing for scalability, the full potential of RL-based qubit routing

may remain out of reach. As quantum devices become larger, addressing these gaps will be crucial for

developing robust routing solutions.

4
Methodology

This chapter outlines the methodology used to investigate the effects of variations in reinforcement

learning environments and quantum hardware for qubit routing. First, the definitions of the quantum

hardware, circuits, and placement are introduced. Subsequently, the metrics used to evaluate the

performance of routing strategies are discussed. The problem formulation is presented, followed by

the environment design and data generation. Finally, the evaluation and implementation details are

described.

4.1. Definitions
4.1.1. Quantum Hardware
The quantum hardware is modeled as a coupling graph 𝐻, where the vertices 𝑃 represent the set of

physical qubits, and the edges 𝐸 the physical edges as shown in Figure 4.1. Each edge 𝑒𝑖 = 𝑝𝑎 , 𝑝𝑏 ∈ 𝐸
represents a bidirectional physical connection between two physical qubits 𝑝𝑎 and 𝑝𝑏 . The reliability of

successfully executing a two-qubit gate on this edge 𝑒 in either direction is denoted by 𝑟𝑒 , where 𝑟𝑒 ∈ [0, 1]
is a value between 0 and 1, with 1 indicating perfect reliability and 0 indicating guaranteed failure.

Single-qubit gates are assumed to have a reliability of 1. Edges are assumed to have a bidirectional

connection and symmetric reliability, i.e., 𝑟𝑒𝑎𝑏 = 𝑟𝑒𝑏𝑎 . The formal definition of the quantum hardware is

given in Equation 4.1.

𝐻 = (𝑃, 𝐸), 𝑃 = {𝑝𝑖}, 𝐸 ⊆ 𝑃 × 𝑃, 𝑟𝑒 ∈ [0, 1] (4.1)

Figure 4.1: Example of a coupling graph 𝐻 = (𝑃, 𝐸) of the quantum hardware with a 2 × 3 grid of physical qubits.

4.1.2. Circuit
A quantum circuit 𝐶 with 𝑛 gates is represented by an ordered sequence of gates from the gate set 𝒢 in

the order ≺𝐶 :

12

4.1. Definitions 13

𝐶 = (𝐺0 , . . . , 𝐺𝑛−1) = (𝐺𝑖 ∈ 𝒢 ,≺𝐶), (4.2)

The set of qubits 𝒬(𝐺) involved in a gate 𝐺 is defined as:

𝒬(𝐺𝑖) = {𝑞𝑖 | 𝑖 ∈ dom(𝑈𝐺)}, (4.3)

Figure 4.2b shows an example of a quantum circuit.

Gate Dependency Graph
The gate dependency graph 𝐷𝐺 of a circuit 𝐶 is a directed acyclic graph, an example of which is shown

in Figure 4.2c. The vertices 𝑉𝐷 are the gates in the circuit 𝐶, and the edges 𝐸𝐷 denote the dependencies

between gates:

𝐷𝐺 = (𝑉𝐷 , 𝐸𝐷), 𝑉𝐷 = {𝐺𝑖|𝐺𝑖 ∈ 𝐶}, 𝐸𝐷 ⊆ 𝑉𝐷 ×𝑉𝐷 (4.4)

This dependency relation is described by a partial ordering ⪯𝐷𝐺 , where gate 𝐺𝑖 precedes gate 𝐺 𝑗 if

𝐺𝑖 occurs earlier in the circuit 𝐶 and their operations do not commute (Equation 4.5). An edge exists

from gate 𝐺𝑖 to gate 𝐺 𝑗 if the former precedes the latter according to the partial ordering ≺𝐷𝐺 , with no

intermediate gate 𝐺𝑘 in circuit 𝐶 that should be placed between them:

𝐺𝑖 ≺𝐷𝐺 𝐺 𝑗 ⇒ 𝐺𝑖 ≺𝐶 𝐺 𝑗 ∧ [𝑈𝐺𝑖 , 𝑈𝐺 𝑗] ≠ 0 (4.5)

An edge from gate 𝐺𝑖 to gate 𝐺 𝑗 exists if 𝐺𝑖 comes before 𝐺 𝑗 according to ≺𝐷𝐺 , and no intermediate gate

in the circuit should be placed between them:

𝐺𝑖
𝐷𝐺→ 𝐺 𝑗 ⇔ 𝐺𝑖 ≺𝐷𝐺 𝐺 𝑗 ∧ �𝐺𝑘 ∈ 𝐶, (𝐺𝑖 ≺𝐷𝐺 𝐺𝑘 ≺𝐷𝐺 𝐺 𝑗) (4.6)

Interaction Dependency Graph
The interaction dependency graph 𝐷𝐼 is constructed by preserving only vertices 𝑉𝐼 that are gates with

two-qubit interactions (Equation 4.7). The dependencies among gates are maintained by preserving each

path→
∗

from the dependency graph 𝐷𝐺 to the interaction dependency graph 𝐷𝐼 using edge contractions.

These contractions ensure that if a path exists between two gates in the dependency graph 𝐷𝐺, the same

path exists in the interaction dependency graph 𝐷𝐼 (Equation 4.8). Figure 4.2d shows an example of an

interaction dependency graph.

𝐷𝐼 = (𝑉𝐼 , 𝐸𝐼), 𝑉𝐼 = {𝐺𝑖|𝐺𝑖 ∈ 𝑉𝐷 , |dom(𝐺𝑖)| = 2}, 𝐸𝐼 ⊆ 𝑉𝐼 ×𝑉𝐼 (4.7)

𝐺𝑖
𝐷𝐺→
∗
𝐺 𝑗 ⇔ 𝐺𝑖

𝐷𝐼→
∗
𝐺 𝑗 (4.8)

Interaction Circuit
Interactions are two-qubit gates that are executed on the quantum hardware. A valid execution order

of interaction dependency graph 𝐷𝐼 can be described by the interaction circuit 𝐼. It is a sequence of

interactions representing a topological traversal of the interaction dependency graph 𝐷𝐼 . This order

is determined by the partial ordering ≺𝐷𝐼 (Equation 4.9). In Figure 4.2d, the interaction circuit is

𝐼 = (𝐺0 , 𝐺1 , 𝐺2) or 𝐼 = (𝐺0 , 𝐺2 , 𝐺1).

𝐼 = (𝐺𝑖 ∈ 𝐷𝐼 ,≺𝐷𝐼) (4.9)

4.2. Metrics 14

Front Layer
The front layer 𝐿𝑡 is the set of gates in the gate dependency graph 𝐷𝐺 scheduled after timestep 𝑡 with

no dependencies on other gates after timestep 𝑡:

𝐿𝑡 = {𝐺𝑖 ∈ 𝐶 | ∀𝐺 𝑗 ∈ 𝐶, (𝐺 𝑗 ⪯𝐷𝐺 𝐺𝑡 ∧ 𝑗 ≥ 𝑡)} (4.10)

Figure 4.2e shows an example of a front layer.

4.1.3. Placement
Qubit placement is defined as a bĳective function 𝜋, associating each virtual qubit 𝑞 uniquely to a

physical qubit 𝑝:

𝜋 : 𝑄 ↦→ 𝑃, 𝜋(𝑞𝑖) = 𝑝 𝑗 (4.11)

This bĳectivity ensures that the placement is both injective, ensuring each virtual qubit is mapped to a

unique physical qubit (Equation 4.12), and surjective, ensuring that every physical qubit is assigned a

virtual qubit Equation 4.13.

∀𝑞𝑖 , 𝑞 𝑗 ∈ 𝑄, 𝜋(𝑞𝑖) = 𝜋(𝑞 𝑗) ⇒ 𝑞𝑖 = 𝑞 𝑗 (4.12)

∀𝑝𝑖 ∈ 𝑃, ∃𝑞 𝑗 ∈ 𝑄, 𝜋(𝑞 𝑗) = 𝑝𝑖 (4.13)

The placement function 𝒫 uses this placement 𝜋 to convert the virtual qubits of a gate to their

corresponding physical qubits:

𝒫(𝜋, 𝐺𝑖) : 𝒢 ↦→ 𝒢 , 𝒫(𝜋, 𝐺𝑖) = 𝐺𝑖(𝜋(𝑞0), . . . ,𝜋(𝑞𝑘)) (4.14)

Figure 4.2f shows an example of a placement.

4.1.4. Swap gates
To update the placement, swap gates 𝑆 can be inserted in a circuit:

𝑆 = {𝜎𝑒 | 𝑒 ∈ 𝐸} (4.15)

Each swap 𝜎𝑒 swaps the states of the physically connected qubits 𝑝𝑎 and 𝑝𝑏 on edge 𝑒. This operation

updates the placement from 𝜋 to 𝜋̃ where state of 𝑝𝑎 is moved to 𝑝𝑏 and vice versa, while the states of

the other qubits remain unchanged:

𝜎𝑒 : 𝜋 { 𝜋̃, ∀𝑒 = {𝑝𝑎 , 𝑝𝑏} ∈ 𝐸,
𝜋̃(𝑝𝑎) = 𝜋(𝑝𝑏), 𝜋̃(𝑝𝑏) = 𝜋(𝑝𝑎),
𝜋̃(𝑝) = 𝜋(𝑝), ∀𝑝 ∈ 𝑃 \ {𝑝𝑎 , 𝑝𝑏}.

(4.16)

Figure 4.2f shows an example of a trivial placement after applying a swap gate.

4.2. Metrics
To evaluate and compare circuits and routing strategies, several metrics are used. This section expands

on the key metrics: circuit reliability, circuit depth, interaction count, interaction reliability, and routing time.
Depending on the use case, some or all metrics may be employed to assess the quality of a solution.

4.2. Metrics 15

(a) Coupling graph 𝐻 = (𝑃, 𝐸) (b) Quantum circuit 𝐶 (c) Gate dependency graph 𝐷𝐺

(d) Interaction dependency graph 𝐷𝐼 (e) Front layer 𝐿1 (f) Swapped placement 𝜋̃

Figure 4.2: Example of a quantum circuit and its corresponding graphs. (a) Coupling graph 𝐻 = (𝑃, 𝐸) of the quantum hardware.

(b) Quantum circuit 𝐶 with gates: 𝐺0 , 𝐺1 , 𝐺2 , 𝐺3 , 𝐺4. (c) Gate dependency graph 𝐷𝐺 for circuit 𝐶 with nodes the gates from 𝐶
and the edges the dependencies between them. (d) Interaction dependency graph of 𝐷𝐺 leaving only gates with two-qubit

interactions. (e) Front layer of 𝐷𝐺 at 𝑡 = 1. Only gates 𝐺1 and 𝐺2 are in the front layer as they have no dependencies on gates after

𝑡 = 1. The only gate they depend on is 𝐺0 which comes before 𝑡 = 1. (f) Trivial placement with a swap 𝜎𝑒
0

applied on edge 𝑒0

(𝑝0 , 𝑝1) resulting in 𝜋̃ = {𝑣0 ↦→ 𝑝1 , 𝑣1 ↦→ 𝑝0 , 𝑣2 ↦→ 𝑝2}.

4.2.1. Circuit Reliability
Definition. The overall reliability of a circuit estimates the probability that the circuit executes

successfully on a given quantum hardware 𝐻. As outlined in Equation 4.17, the reliability of a circuit is

calculated as the product of the reliabilities associated with each two-qubit interaction. Since single-qubit

gates are assumed to have perfect fidelity (i.e., reliability of 1), they do not affect the product.

𝑅(𝐶) =
∏
𝑒∈𝐼(𝐶)

𝑟𝑒 (4.17)

Interpretation. A higher 𝑅(𝐶̃) implies a higher probability that the mapped circuit completes without

error (under the simplified assumption that two-qubit gates are the primary source of errors). If multiple

ways exist to map the same circuit, the mapping with the highest 𝑅(𝐶) is usually preferred because it

maximizes the chance of successful execution.

4.2.2. Circuit Depth
Definition. The circuit depth 𝐷 is the minimum number of sequential time steps required to execute

the circuit 𝐶̃, assuming as much parallelism as allowed by the gate dependencies and the hardware

constraints. Formally, it is the length of the longest path in the gate dependency graph once the scheduling

and placement constraints are accounted for:

𝐷(𝐶̃) = max

(𝐺𝑖 ,𝐺 𝑗)∈𝐶̃
dist(𝐺𝑖 , 𝐺 𝑗), (4.18)

where dist(𝐺𝑖 , 𝐺 𝑗) is the number of edges along the longest directed path from gate 𝐺𝑖 to 𝐺 𝑗 in the a

dependency graph.

Interpretation. Circuit depth measures how many time steps it takes to finish running all gates under

the best possible parallelization. A smaller depth generally means faster execution, which can be crucial

4.3. Problem Formulation 16

in mitigating decoherence. In architectures where the coherence time is limited, achieving a low circuit

depth may be as important as maximizing the reliability.

4.2.3. Interaction Count
Definition. The interaction count refers to the total number of two-qubit gates present in a circuit.

Mathematically, it is |𝐼(𝐶)|, the cardinality of the set of two-qubit interactions in the circuit.

Interpretation. Adding more two-qubit interactions increases the risk of error because two-qubit gates

are typically noisier than single-qubit operations. A lower interaction count is often beneficial for both

reliability and execution speed.

4.2.4. Interaction Reliability
Definition. Introducing the interaction reliability, denoted 𝑅̄(𝐶), as a derived measure that quantifies

the effective per-interaction reliability of a circuit. Given that 𝑅(𝐶) is computed as the product of

individual reliabilities, 𝑅̄(𝐶) is defined as:

𝑅̄(𝐶) = 𝑅(𝐶)
1

|𝐼(𝐶)| , (4.19)

where |𝐼(𝐶)| represents the total number of two-qubit interactions in the circuit.

Interpretation. This measure provides insight into the reliability of individual interactions within the

circuit. It represents the effective per-interaction reliability, assuming that all two-qubit interactions

contribute uniformly. A higher or lower 𝑅̄(𝐶) compared to the hardware average 𝑟𝑒 suggests that the

circuit preferentially uses more or fewer reliable interactions respectively.

4.2.5. Routing Time
Definition. The routing time measures how long it takes to compute a valid mapping (and possibly a

scheduling) for a given circuit 𝐶 onto the hardware 𝐻. It is typically reported as an average (or total)

CPU or wall-clock time over multiple benchmark circuits.

Interpretation. Routing time is an indicator of how scalable or efficient the mapping algorithm is in

practice. In scenarios where many circuits need to be routed rapidly (e.g., in a compiler pipeline or a

real-time quantum-control setting), a fast routing algorithm may be necessary even if it occasionally

sacrifices some reliability or circuit depth.

Overall, no single metric comprehensively captures “best” performance. Depending on hardware

constraints, user priorities, and the nature of the quantum algorithm, one may prioritize the highest

circuit reliability, the lowest circuit depth, the fewest interactions, or a balance among all criteria.

Thus, a thorough evaluation often involves examining multiple metrics in tandem to gain a complete

understanding of the trade-offs offered by different routing or scheduling solutions.

4.3. Problem Formulation
The mapping problem is formulated as transforming a quantum circuit 𝐶 into an alternative representa-

tion, the mapped circuit 𝐶̃. This representation can be executed on a given quantum hardware 𝐻 by

adhering to the hardware’s specific constraints while maximizing the circuit reliability of the mapped

circuit. It is formulated as two subproblems: the routing problem and the scheduling problem. The

solution to these subproblems is the set of swap gates ℛ and the scheduling function 𝒮, respectively

that can be applied to the circuit 𝐶 to obtain the mapped circuit 𝐶̃. The initial placement 𝜋0 is assumed

to be given.

4.3.1. Routing Problem
Given an initial placement 𝜋0, the circuit 𝐶 should be updated with swap gates to ensure each gate

𝐺𝑡 is executable (Equation 4.25) under the placement 𝜋𝑡 at every time-step 𝑡. Whenever gate 𝐺𝑡 is

4.4. Environment 17

not executable under 𝜋𝑡 , a sequence of swap gates 𝑠𝑡 should be inserted before gate 𝐺𝑡 to update the

placement from 𝜋𝑡 to 𝜋𝑡+1:

𝜋𝑡

𝜎𝑡 ,0
{ . . .

𝜎𝑡 , 𝑗
{ . . .

𝜎𝑡 ,𝑚−1

{ 𝜋𝑡+1 , with {𝜎𝑡 ,0 , . . . , 𝜎𝑡 ,𝑚−1} = 𝑠𝑡 , ∀𝑡 ∈ {0, . . . , 𝑛 − 1}. (4.20)

The solution ℛ should define a sequence of swap gates for every gate 𝐺𝑡 :

ℛ = (𝑠0 , . . . , 𝑠𝑚−1), 𝑠𝑖 = (𝜎𝑖 , 𝑗 ∈ 𝑆) (4.21)

4.3.2. Scheduling Problem
A second goal is to determine the execution order of the gates in the circuit. This order is determined by

a sequence of gates 𝒮 that schedules the gates in the circuit 𝐶. The scheduling function 𝒮 is a valid

permutation of the gates in 𝐶 following the dependencies in the gate dependency graph 𝐷𝐺:

𝒮 = (𝐺𝑖 ∈ 𝐶,≺𝐷𝐺) (4.22)

4.3.3. Mapped Circuit
The mapped circuit 𝐶̃ is constructed iteratively by starting with an empty circuit 𝐶̃0 and, at each

iteration 𝑡, appending the swap gates 𝑠𝑡 , updating the placement to 𝜋𝑡+1, and then adding the gate 𝐺𝑡

with the placement 𝜋𝑡+1 applied to its qubits:

𝐶̃0 = ∅
𝐶̃𝑡+1 = 𝐶̃𝑡 𝑠𝑡𝒫(𝜋𝑡+1 ,𝒮𝑡), ∀𝑡 ∈ {0, . . . , 𝑛 − 1}

(4.23)

Figure 4.3 shows an example of the quantum circuit routing process.

4.4. Environment
The environment is defined by its state, initialization, state transitions, actions, observations, rewards,

and termination conditions.

4.4.1. State
The state of the qubit routing environment is defined as in Table 4.1. It is updated according to the state

transitions and actions taken by the agent.

Table 4.1: State elements in the qubit routing environment.

Element Value Update Interval
Hardware 𝐻 Episode

Circuit 𝐶 Episode

Position 𝑡 Timestep

Placement 𝜋𝑡 Timestep

Inserted Swap Gates ℛ Timestep

Execution Order 𝒮 Timestep

4.4.2. Initialization
The hardware 𝐻 and circuit 𝐶 are initialized at the start of each episode and stay constant throughout

the episode. Additionally, the only change between episodes for the hardware is the edge reliabilities 𝑟𝑒 .
The initial position 𝑡 is reset to 0 at the start of each episode. The initial placement is given by 𝜋0 and can

be either random or predefined. The inserted swap gates ℛ and the execution order 𝒮 are initialized as

empty lists.

4.4.3. Actions
Two versions of actions can be configured for the environment: primitive or hierarchical actions. These

two versions of the environment will be called primitive or just RL, and hierarchical or RL (hierarchical)
respectively. The size of both action spaces is equal to the number of edges in the coupling graph |𝐸|.

4.4. Environment 18

(a) Initial Placement 𝜋0 (b) Circuit with initial placement 𝒫(𝜋0 , 𝐶)

(c) Rescheduled Circuit 𝒮 (d) Mapped Circuit 𝐶̃

Figure 4.3: Example of the quantum circuit mapping process onto a quantum hardware 𝐻 (Figure 4.2a) for a quantum circuit 𝐶
(Figure 4.2b). (a) Initial placement with swapped 𝑝1 and 𝑝2 resulting in 𝜋0 = {𝑣0 ↦→ 𝑝0 , 𝑣1 ↦→ 𝑝1 , 𝑣2 ↦→ 𝑝2}. (b) Quantum circuit

to be mapped onto hardware 𝐻 with initial placement 𝜋0 applied resulting in 𝒫(𝜋0 , 𝐶). (c) Rescheduled circuit for direct

execution of the second CNOT gate with gates 𝐺3 and 𝐺4 reordered: 𝒮 = {𝐺0 , 𝐺1 , 𝐺2 , 𝐺4 , 𝐺3}. (d) Mapped circuit with a swap

gate for execution of the final CNOT gate. One swap is inserted before 𝐺4 to update the placement to

𝜋4 = {𝑣0 ↦→ 𝑝0 , 𝑣1 ↦→ 𝑝2 , 𝑣2 ↦→ 𝑝1}. The final routing solution ℛ = {∅,∅,∅,∅, 𝑠4}, with 𝑠4 = {𝜎𝑒
0
}.

Primitive Actions
A primitive consists of choosing a physical edge 𝑒 from the coupling graph. An action mask is used to

prevent the agent from selecting edges that do not have at least one qubit involved in the next interaction.

Hierarchical Actions
Hierarchical actions entail selecting a physical edge 𝑒 from the coupling graph. An underlying policy

then computes an optimal action sequence 𝑠𝑡 that makes gate 𝐶𝑡 executable under the current placement.

This policy uses Dĳkstra’s shortest path algorithm [45] with edge weights log(1 − 𝑟𝑒) to relocate the

virtual qubits of the next interaction to the chosen edge according to Algorithm 1. The state is then

updated by appending the swap gates to the list of inserted swap gates and adjusting the placement

accordingly. This action corresponds to selecting an interaction edge from the coupling graph and

ensuring the next interaction is executed on the chosen edge.

4.4.4. State Transitions
Both explicit and implicit state transitions are possible in the environment. The agent’s action triggers

the explicit transitions, while the implicit transitions are triggered by the environment’s state.

Implicit Transitions
The executable front layer 𝐿̃𝑡 is the set of gates in the front layer that are executable under the current

placement 𝜋𝑡 . This edge should connect physical qubits 𝒬 involved in the gate 𝐺𝑡 placed following

4.4. Environment 19

placement 𝜋𝑡 :

𝐿̃𝑡 = {𝐺𝑖 ∈ 𝐿𝑡 | executable(𝐺𝑖 ,𝜋𝑡)} (4.24)

Gate 𝐺𝑡 is considered executable if it involves only one qubit, otherwise the corresponding physical

qubits have to be connected in the coupling graph 𝐻 by an edge 𝑒 ∈ 𝐸:

executable(𝐺𝑡 ,𝜋𝑡) ⇔ |𝒬(𝐺𝑡)| = 1 ∨ 𝒫(𝜋𝑡 , 𝐺𝑡) ∈ 𝐸 (4.25)

When the executable front layer 𝐿̃𝑡 of the circuit 𝐶 is not empty, the environment executes the executable

gates and transitions to the next state. The execution order is changed by appending the executable gate,

and the position is incremented by one. This corresponds to the execution of a gate in the circuit.

𝐿̃𝑡 ≠ ∅ ⇒ 𝑡 ↦→ 𝑡 + 1⇒ 𝑟𝑒

Explicit Transitions
If no implicit transitions occur, the agent selects an action from the action space. Depending on the

chosen action, the environment transitions to the next state by applying the action to the current state.

The state is then updated by appending the swap to the list of inserted swap gates and adjusting the

placement accordingly. This action corresponds to inserting a swap gate into the circuit.

4.4.5. Observations
Multiple variations of observations can be configured in the environment. For each observation a

predefined lookahead ℓ can be set to vary the amount of information available to the agent. The

interaction circuit 𝐼 is used to determine the upcoming interactions and is defined as the interaction

circuit derived from the gate dependency graph 𝐷𝐺 without the interactions that already executed in

the execution order 𝒮. Their description, value, and number of elements, as the number of integer

values, are summarized in Table 4.2.

Table 4.2: Possible observations.

Observation Value Elements (#int)

Interactions & placement 𝐼𝑡+1,...,𝑡+ℓ & 𝜋𝑡 2ℓ + |𝑃|
Placed interactions 𝜋𝑡(𝐼𝑡+1,...,𝑡+ℓ) 2ℓ
Interaction matrix 𝑀(𝐶) ℓ × |𝑃|

Interactions & Placement
The upcoming interactions and the current placement are observed. This includes the next ℓ interactions

in the interaction circuit and the current placement 𝜋𝑡 . The size of the observation space is the number

of interactions in the interaction circuit |𝑉𝐼 | plus the number of physical qubits |𝑃|.

Placed Interactions
The placed interactions observation is the next ℓ interactions of the interaction circuit 𝐼 with the placement

applied to the virtual qubits. Each interaction is represented by the physical qubits they are mapped to.

The size is equal to ℓ times two as each interaction involves two qubits. It differs from the interaction

gates & placement observation by combining the interactions with the placement.

Interaction Matrix
The interaction matrix 𝑀(𝐶) is a representation of the next ℓ interactions in the interaction circuit with

the placement applied to the virtual qubits. The matrix is constructed by iterating over the interaction

circuit, applying the placement and setting the corresponding physical qubits to 1 in the matrix. The

other elements are set to 0. Each row in the matrix represents an interaction gate, and each column

represents a qubit. It differs from the placed interactions observation by including all physical qubits in

the matrix, not just the ones involved in the interactions.

4.5. Data 20

4.4.6. Rewards
The reward function is defined as the circuit reliability as defined in section 4.2. It is given to the agent

at the end of each episode.

4.4.7. Termination
The episode terminates when the position 𝑡 reaches the end of the circuit 𝑡 = |𝐶𝐼 |.

4.5. Data
For training and evaluation, random quantum circuits and hardware configurations are generated.

4.5.1. Circuits
Random quantum circuits are generated by selecting gates randomly from a predefined set of operations,

such as single- and multi-qubit gates, with the number of qubits involved in each gate being flexible.

The circuit is constructed by adding gates layer by layer, with constraints such as the total number of

gates, depth, and operands per gate. A random number generator is used to ensure reproducibility.

4.5.2. Noise
The edge reliabilities in the coupling graph are generated randomly using a shifted and scaled beta

distribution. This distribution follows the probability density function of the standardized beta

distribution, as defined by:

𝑓 (𝑥 | 𝛼, 𝛽) = Γ(𝛼 + 𝛽)𝑥𝛼−1(1 − 𝑥)𝛽−1

Γ(𝛼)Γ(𝛽) , 𝑥 ∈ [0, 1], 𝛼, 𝛽 ∈ R+ (4.26)

where Γ is the gamma function, and 𝛼 and 𝛽 are the shape parameters of the beta distribution:

Γ(𝑧) =
∫ ∞

0

𝑡𝑧−1𝑒−𝑡 𝑑𝑡, ℜ(𝑧) > 0 (4.27)

To shift and scale the beta distribution from 𝐵(𝛼, 𝛽) to 𝐵′(𝛼, 𝛽, 𝜇, 𝜎), the following transformation is

applied:

𝑓 (𝑥 | 𝛼, 𝛽, 𝜇, 𝜎) = 1

𝜎
𝑓 (𝑦 | 𝛼, 𝛽), 𝑦 =

𝑥 − 𝜇
𝜎

(4.28)

Reliabilities are derived from the error rates of IBM’s native quantum gates, specifically those of the

IBM Kyiv quantum processor. A beta distribution 𝐵̂′(𝛼, 𝛽, 𝜇, 𝜎) is fitted to the measured error rates.

Since a CNOT gate consists of multiple native gates, its overall reliability depends on the reliability of its

decomposed components. The individual single and two-qubit gate error rates are used to calculate the

error rate of the CNOT gate.

To model gate reliability variations statistically, the measured error rates are first used to fit a shifted

and scaled beta distribution. Given that reliability is defined as 𝑟 = 1 − 𝜀, the corresponding reliability

distribution is obtained by transforming the fitted beta distribution. This transformed distribution can

then be used to sample edge reliabilities for the coupling graphs.

Figure 4.4 shows a comparison of the actual data and the fitted data, demonstrating how well the model

captures the characteristics of the gate error rates.

4.6. Evaluation
4.6.1. Baseline
Two baselines are used to evaluate the performance of the reinforcement learning model.

Random. The RL router selects actions randomly for both primitive and hierarchical actions. This

approach serves as a reference to determine whether the agent is learning a more effective strategy

compared to random selection.

4.7. Implementation 21

Figure 4.4: CNOT error rates and the fitted beta

distribution: 𝜀CNOT ∼ 𝐵′(𝛼 = 1.67, 𝛽 = 3.25 × 10
10 , loc = 3.17 × 10

−3 , scale = 2.32 × 10
8). The dashed vertical line represents the

mean error rate of the fitted distribution: 𝜀̄CNOT = 1.514 × 10
−2

. The corresponding mean reliability is

𝑟CNOT = 1 − 1.514 × 10
−2 = 0.98486.

Qiskit SWAP. The second baseline represents the optimal combination of initial placement and

SWAP-based routing methods from the Qiskit library [46]. This strategy is chosen over other Qiskit

routing methods because it provides a fair comparison by relying solely on SWAP gates for rout-

ing, without incorporating additional techniques. The initial placement strategies considered are

TrivialLayout, DenseLayout, and SabreLayout. The routing methods include BasicSwap, SabreSwap,
and StochasticSwap. The best combination is selected based on the highest circuit reliability produced

for each circuit.

4.6.2. Inference
Trained models can route circuits by predicting actions for each state until the episode concludes. To

enhance the reliability of the routing solution, it’s common practice in reinforcement learning to run

multiple trials per circuit and select the best outcome. Additionally, setting a maximum number of steps

ensures that the model doesn’t run indefinitely.

4.6.3. Validation
To validate the results of the trained model, the state vectors of the output circuits are compared to

the state vectors of the input circuits. This ensures that the output circuits are equivalent to the input

circuits, and the model has learned to map the circuits correctly.

4.7. Implementation
The implementation of the reinforcement learning model is based on the Stable Baselines3 library [47]

using the PPO [20] with action masking [28] algorithm and default hyperparameters. The environment

for qubit routing is implemented as a variation of the QGym library [48]. Source code is available as a

package called Q-NARR along with the configuration files for training and evaluation [49].

5
Results

All experiments are divided into two categories: optimization and evaluation. Within each category,

experiments are presented in separate subsections followed by their own discussion. For every

experiment a comparison is also made between primitive and hierarchical actions referenced as primitive
or just RL, and hierarchical or RL (hierarchical) respectively. Default parameters in Table 5.1 are used for

each experiment unless stated otherwise. The distribution of edge reliability is set to 𝐵̂′ as described in

subsection 4.5.2 with:

𝐵′(𝛼 = 1.67, 𝛽 = 3.25 × 10
10 , loc = 3.17 × 10

−3 , scale = 2.32 × 10
8)

Optimization experiments focus on finding the best training setup for the reinforcement learning agent

(section 5.1).

Evaluation experiments investigate the performance of the trained agent on different hardware configu-

rations including size and topology (section 5.2). Where possible, the metric is normalized relative to

Qiskit to provide a relative comparison.

General

Topology Grid 3x3

Lookahead 4

Gate set CX, CY, CZ

Edge reliability 𝑟𝑒 ∼ 𝐵̂′

Train

Circuit gates 8

Time steps 2 × 10
6

Evaluation

Circuits 256

Interactions 32

Qubits 9

Trials 4

Table 5.1: Default parameter values.

22

5.1. Optimization 23

5.1. Optimization
5.1.1. Experiment: Circuit Gate Count for Training
How does the number of gates in the training circuits affect training time and evaluation performance?

The number of gates in the training circuits is set to 4, 8, 16, and 32 gates. From the training data in

Figure 5.1, the training time increases with the number of gates, and the primitive routing algorithm

takes longer to converge than the hierarchical routing algorithm. The absolute number of steps is higher

for the primitive routing algorithm, but the hierarchical inserts more gates per step, so this is expected.

Figure 5.2 shows worse performance than Qiskit for both the primitive and hierarchical, with primitive

outperforming hierarchical except when only 4 gates are used for training.

(a) (b)

Figure 5.1: Training metrics for the number of gates in the training circuits. The shaded area is the standard deviation of every 10

update batches.

Figure 5.2: Circuit reliability versus the number of gates in the training circuits relative to Qiskit. The shaded area is the

95% confidence interval. Note the non-linear scale on the x-axis.

5.1. Optimization 24

5.1.2. Experiment: Lookahead
How does the lookahead affect training time and evaluation performance?

The lookahead is set to 1, 2, 4, and 8 with the optimal number of gates (8) used for training from the

previous experiment. The training data in Figure 5.3 shows that the training time increases with the

lookahead parameter, which is expected as the observation space grows. Furthermore, the primitive

routing algorithm converges slower than the hierarchical routing algorithm. The evaluation results

in Figure 5.4 show that the optimal lookahead for both routing algorithms is 4, with the primitive

outperforming the hierarchical approach.

(a) (b)

Figure 5.3: Training metrics for the lookahead parameter. The shaded area is the standard deviation of every 10 update batches..

Figure 5.4: Circuit reliability versus the lookahead parameter. The shaded area is the 95% confidence interval.

5.1. Optimization 25

5.1.3. Experiment: Number of Trials
How does the number of trials affect routing time and evaluation performance?

The number of trials is set to 1, 2, 4, 8, 16, and 32 with the optimal lookahead parameter (4) from

the previous experiment used. The training data in Figure 5.5 gives a more detailed comparison

of the two routing algorithms with the primitive approach converging slower than the hierarchical

approach but achieving a higher total reward in the end. The evaluation results in Figure 5.6a show

that the circuit reliability increases with the number of trials. Both trained models outperform their

random counterparts, but the primitive action space shows a larger improvement. Additionally, Qiskit

is outperformed by the trained models starting from 8 trials. No significant difference is observed when

using more than 8 trials (𝑝 > 0.05). Figure 5.6b shows a linear increase in routing time with the number

of trials, which is expected.

(a) (b)

Figure 5.5: Training metrics for the number of trials. The shaded area is the standard deviation of every 10 update batches..

(a) (b)

Figure 5.6: Evaluation metrics for the number of trials. The shaded area is the 95% confidence interval. (a) Circuit reliability

versus the number of trials. (b) Routing time versus the number of trials.

5.1.4. Discussion
Across the optimization experiments, it is observed that training circuit size, lookahead, and the number

of trials each significantly influence both the routing performance (circuit reliability) and the training

and runtime overhead.

Effect of circuit gates for training. From Figure 5.1 and Figure 5.2, the overall reliability of both the

primitive and hierarchical approaches is worse than Qiskit when using only 4 gates. However, reliability

improves considerably for both algorithms as the gate count increases to 8 or 16, which emerge as

5.1. Optimization 26

the best-performing configurations (see Table 5.2). At 32 gates, the reliability drops slightly again

and remains below the level at 8 or 16 gates. Regarding training dynamics, the hierarchical approach

generally converges faster than the primitive approach, although the latter may reach a higher total

reward toward the end of training.

Effect of lookahead. Varying the lookahead parameter has a marked effect on both training time and

final performance (Figure 5.3 and Figure 5.4). Increasing lookahead expands the observation space,

which slows training but can improve the agent’s ability to plan. In practice, a lookahead of 4 yields

the best balance: it consistently outperforms lookahead 1 or 2 while avoiding the excessive complexity

at lookahead 8. Thus, for both primitive and hierarchical action spaces, lookahead 4 is chosen as the

optimal setting.

Effect of number of trials. Finally, increasing the number of trials improves circuit reliability for both

routing algorithms (Figure 5.5 and Figure 5.6a). However, Figure 5.6b also shows that routing time

scales roughly linearly with the number of trials. Although 8 trials already achieve most of the reliability

benefits, 16 or 32 trials can offer marginally higher reliability if the increased computational cost is

acceptable.

The results of the optimization experiments are summarized in Table 5.2. The values chosen for the best

performance are shown in bold and are used for the evaluation experiments.

Parameter Action Best Value(s)

Circuit gates

Primitive 8, 16

Hierarchical 8, 16

Lookahead

Primitive 4
Hierarchical 4

Number of trials

Primitive 8, 16, 32

Hierarchical 8, 16, 32

Table 5.2

5.2. Evaluation 27

5.2. Evaluation
After optimizing the training setup, the trained agents are evaluated on different hardware configurations

to investigate their performance in terms of circuit reliability. The parameters chosen are the best

performing from the optimization experiments.

5.2.1. Experiment: Hardware Size
How does the hardware size affect training time and evaluation performance?

The number of timesteps for training is set to 4 × 10
6

for the largest hardware size. The hardware

varies from a grid of 6 to 36 qubits to investigate the effect on training time and evaluation performance.

Figure 5.7 shows primitive routing outperforming hierarchical routing for all topologies less than

16 qubits. Qiskit is only outperformed for circuit smaller than 9 qubits with relative perfromance

decreasing as the number of qubits increases.

Figure 5.7: Circuit reliability versus the number of qubits in the hardware. The shaded area is the 95% confidence interval. Note

the non-linear scale on the x-axis.

5.2. Evaluation 28

5.2.2. Experiment: Topology
How does the topology affect training time and evaluation performance?

The topologies used in this experiment, illustrated in Figure 5.8, are designed to investigate their impact

on both training time and evaluation performance. These topologies vary in connectivity degree 𝑘,

ranging from an average of 2 to 4 connections per node, allowing us to assess how different levels of

connectivity influence routing efficiency and circuit reliability.

IBM’s Falcon and Eagle architectures feature large-cell tessellation, forming loops of various sizes [50].

In contrast, Google’s Sycamore and Willow processors exhibit a connectivity approaching 4 [51], [52].

To maintain compatibility with the smallest topology, random circuits with 15 qubits are used, which

results in some qubits being redundant in larger topologies. Additionally, the diameter 𝛿 of these

topologies ranges from 4 to 8, a factor that may impact routing efficiency.

The results presented in Figure 5.9 indicate that circuit reliability improves with higher node degree,

while the ladder topology exhibits a significant decline in performance. Moreover, the hierarchical

routing algorithm consistently outperforms the primitive routing algorithm across all topologies, likely

due to its more structured approach to path selection. Notably, for the cycle topology, the primitive

routing algorithm fails to converge during training, potentially due to inefficient routing paths or poor

optimization dynamics, leading to a missing value in the results.

(a) Cycle 16 (𝑘 = 2, 𝛿 = 8) (b) Grid 4x4 (𝑘 = 3, 𝛿 = 6) (c) Hexagonal lattice 2x2

(𝑘 = 2.4, 𝛿 = 7)

(d) Ladder 8 (𝑘 = 2.75, 𝛿 = 8) (e) Triangular lattice 4x4

(𝑘 = 4, 𝛿 = 4)

Figure 5.8: Topologies used in the evaluation experiments.

5.2. Evaluation 29

Figure 5.9: Circuit reliability versus the topology. The shaded area is the 95% confidence interval.

5.2. Evaluation 30

5.2.3. Discussion
Effect of hardware size. The results of the hardware size experiment (Figure 5.7) show that the

primitive routing algorithm outperforms the hierarchical routing algorithm for all topologies with fewer

than 16 qubits. Qiskit is only outperformed for circuits smaller than 9 qubits, with relative performance

decreasing as the number of qubits increases. This suggests that the hierarchical routing algorithm may

be more effective for larger circuits, while the primitive routing algorithm is better suited for smaller

circuits.

Effect of topology. The topology experiment (Figure 5.9) reveals that circuit reliability is highest for

topologies with the greatest node degree, while the ladder topology experiences a significant decrease

in performance. The hierarchical routing algorithm consistently outperforms the primitive routing

algorithm across all topologies. Notably, the primitive routing algorithm fails to converge during

training for the cycle topology, leading to a missing value in the results. These findings suggest that the

hierarchical routing algorithm may be more effective for complex topologies with a high node degree,

while the primitive routing algorithm may struggle with simpler topologies.

6
Conclusion

This chapter concludes the report by summarizing the key findings and assessing whether the overarching

research question has been addressed. It then identifies potential avenues for future research that build

on the work presented here.

6.1. Summary of Findings & Research Question
The central goal of this research was to design and evaluate a reinforcement learning (RL) environment

for qubit routing on noisy, near-term quantum hardware. Specifically, the study aimed to explore how

different RL formulations (primitive vs. hierarchical action spaces) and environment configurations

(lookahead, training-circuit sizes, number of trials) influence routing outcomes in terms of circuit

reliability, gate overhead, and routing time.

Environment Design Choices. An environment is proposed that flexibly models hardware constraints

(via coupling graphs and noise parameters) and circuit interactions (via gate dependency graphs).

The environment was equipped with configurable state representations (e.g., interaction matrices and

lookahead windows) and two types of action spaces (primitive and hierarchical).

• Lookahead parameter: The experiments showed that a moderate lookahead (e.g., 4 steps) offered

the best performance—outperforming smaller lookahead values, while avoiding the excessive

complexity associated with a large lookahead.

• Training-circuit size: Training on small circuits (fewer than 4 gates) led to suboptimal mappings for

larger, more complex circuits. Training with 8–16 gates offered a strong balance between learning

speed and generalization performance on larger circuits during evaluation.

RL Policy Formulations. Primitive and hierarchical action spaces are compared in terms of routing

performance, scalability, and robustness:

• Primitive Actions (Swap-based): The agent learned how to insert individual swap gates at each step.

While this approach often converged more slowly, it occasionally achieved a higher total reward

once sufficiently trained, particularly for smaller circuit or hardware sizes.

• Hierarchical Actions (Edge-based): The agent selected an entire path-planning solution (via Dĳkstra’s

or a similar method) for relocating qubits. This method converged faster and performed more

robustly on larger or more complex topologies—though, at times, its ultimate reliability was

slightly below that of the best-tuned primitive approach.

Scalability and Hardware Variation. In extending the environment to different hardware sizes

and topologies (e.g., from a 6-qubit up to a 36-qubit grid, and from ladder-like to highly connected

triangular-lattice topologies), the following trends were observed:

31

6.2. Directions for Future Research 32

• Larger hardware graphs tended to reduce RL’s performance significantly compared to heuristic

transpilers, as the action and state spaces grew exponentially.

• Using hierarchical actions, RL methods were more robust and scalable on complex topologies,

converging faster and achieving higher reliability than primitive approaches.

• Topologies with higher connectivity (i.e., higher node degree) generally allowed both RL ap-

proaches to maintain higher reliability, as they could leverage more diverse routing paths.

Comparison to Standard Compilers. In benchmark tests against Qiskit’s swap-based transpiler passes

(e.g., BasicSwap, SabreSwap, StochasticSwap) on random circuits, the best RL policies were competitive

for smaller (up to 9 qubits) or highly connected topologies. For larger or more linear/ladder-type

devices, Qiskit baselines often performed on par or better, especially with more than 16 physical qubits.

Answer to the Research Question. The study demonstrates that a flexible RL environment, incorpo-

rating hardware noise, gate connectivity constraints, and varied observation spaces, can indeed learn

effective qubit-routing policies—occasionally surpassing or matching standard compiler heuristics

under specific conditions (smaller hardware, moderate circuit size, or higher connectivity). The choice

of action space (primitive vs. hierarchical), lookahead, and training-circuit complexity significantly

affects routing performance and scalability. This confirms that properly designed RL approaches can be

extended to more realistic, noise-aware scenarios on near-term quantum devices, although further work

is needed to make such methods fully competitive on large-scale hardware.

6.2. Directions for Future Research
Although the proposed environment and RL formulations represent an advance in noise-aware,

hardware-adaptive qubit routing, a number of open challenges remain. Below are several promising

directions for future investigation:

1. Integrating Single-Qubit Noise & More Detailed Error Models. The current framework largely

focuses on two-qubit gate noise, assuming single-qubit gates are error-free or have negligible noise.

Incorporating realistic single-qubit error rates, measurement noise, idle errors (decoherence), and

time-dependent calibration data would yield a more comprehensive noise model.

2. Adaptive/Online Noise Tracking. As real quantum devices exhibit time-varying error rates,

particularly for two-qubit gates, an RL agent could be periodically retrained or updated online

with new noise data. Techniques like meta-learning and continual learning may help the policy

adapt quickly to shifts in hardware calibration.

3. Advanced Scheduling & Concurrent Gate Execution. Future work could refine the scheduling

problem to allow parallel gate operations, respecting hardware-specific timing constraints and

crosstalk. Multi-level scheduling, which integrates classical control signals and readout timing,

remains largely unexplored in RL-based routing.

4. Hybrid Heuristic–RL Methods. Combining heuristic-based initial placements or partial solutions

with RL planning might mitigate the large action and state spaces that hamper pure RL. For

instance, short heuristic routes could be used where device connectivity is limited, while the RL

agent handles more complex or globally impactful decisions.

5. Scalability to Large Systems. To push beyond 30–50 qubits, RL frameworks will require

more efficient function approximators (e.g., graph neural networks) and distributed training.

Investigating how RL solutions scale—and how to best represent large coupling graphs—remains

an essential next step. Also reusing by training on smaller subgraphs or subproblems could help

manage the combinatorial explosion of state-action pairs.

6. Benchmarking With Real Hardware Runs. While simulation-based metrics (circuit reliability,

gate counts, etc.) provide insight, verifying the gains on real hardware experiments would

strengthen the case for RL-based routing. Comparing actual circuit success probabilities with

simulator predictions would also validate or refine the noise model.

Pursuing these directions will further clarify the viability of RL-based qubit routing on near-term

quantum devices. As quantum processors expand in size and complexity, robust, noise-aware, and

6.2. Directions for Future Research 33

scalable compilation methods—potentially leveraging advanced RL—are poised to play a key role in

maximizing practical quantum computational power.

References

[1] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1484–1509, Oct. 1997, issn:

0097-5397, 1095-7111. doi: 10.1137/S0097539795293172. arXiv: quant-ph/9508027. [Online].

Available: http://arxiv.org/abs/quant-ph/9508027.
[2] L. K. Grover, “Quantum Computers Can Search Arbitrarily Large Databases by a Single Query,”

Physical Review Letters, vol. 79, no. 23, pp. 4709–4712, Dec. 8, 1997, issn: 0031-9007, 1079-7114.

doi: 10.1103/PhysRevLett.79.4709. arXiv: quant- ph/9706005. [Online]. Available: http:
//arxiv.org/abs/quant-ph/9706005.

[3] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Solving Linear Systems

of Equations,” Physical Review Letters, vol. 103, no. 15, p. 150 502, Oct. 7, 2009, issn: 0031-9007,

1079-7114. doi: 10.1103/PhysRevLett.103.150502. arXiv: 0811.3171 [quant-ph]. [Online].

Available: http://arxiv.org/abs/0811.3171.
[4] J. Preskill, “Quantum Computing in the NISQ Era and Beyond,” Quantum, vol. 2, p. 79, Aug. 6,

2018, issn: 2521-327X. doi: 10 . 22331 / q - 2018 - 08 - 06 - 79. arXiv: 1801 . 00862 [cond-mat,
physics:quant-ph]. [Online]. Available: http://arxiv.org/abs/1801.00862.

[5] G. Li, Y. Ding, and Y. Xie, “Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices,”

May 7, 2019. arXiv: 1809.02573 [quant-ph]. [Online]. Available: http://arxiv.org/abs/1809.
02573.

[6] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and S. Sivarajah, “On the Qubit

Routing Problem,” 2019. doi: 10.4230/LIPIcs.TQC.2019.5. arXiv: 1902.08091 [quant-ph].
[Online]. Available: http://arxiv.org/abs/1902.08091.

[7] A. Sinha, U. Azad, and H. Singh, “Qubit Routing Using Graph Neural Network Aided Monte Carlo

Tree Search,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 9, pp. 9935–

9943, 9 Jun. 28, 2022, issn: 2374-3468. doi: 10.1609/aaai.v36i9.21231. [Online]. Available:

https://ojs.aaai.org/index.php/AAAI/article/view/21231.
[8] G. Pascoal, J. P. Fernandes, and R. Abreu, “Deep Reinforcement Learning Strategies for Noise-

Adaptive Qubit Routing,” in 2024 IEEE International Conference on Quantum Software (QSW),
Jul. 2024, pp. 146–156. doi: 10.1109/QSW62656.2024.00030. [Online]. Available: https://
ieeexplore.ieee.org/abstract/document/10646540.

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th anniversary

edition. Cambridge: Cambridge University Press, 2010.

[10] M. H. Devoret and R. J. Schoelkopf, “Superconducting Circuits for Quantum Information: An

Outlook,” Science, vol. 339, no. 6124, pp. 1169–1174, Mar. 8, 2013. doi: 10.1126/science.1231930.
[Online]. Available: https://www.science.org/doi/10.1126/science.1231930.

[11] H. Haeffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Physics Reports,
vol. 469, no. 4, pp. 155–203, Dec. 2008, issn: 03701573. doi: 10.1016/j.physrep.2008.09.003.
arXiv: 0809.4368 [quant-ph]. [Online]. Available: http://arxiv.org/abs/0809.4368.

[12] C. Monroe and J. Kim, “Scaling the Ion Trap Quantum Processor,” Science, vol. 339, no. 6124,

pp. 1164–1169, Mar. 8, 2013. doi: 10.1126/science.1231298. [Online]. Available: https://www.
science.org/doi/10.1126/science.1231298.

[13] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and

topological quantum computation,” Reviews of Modern Physics, vol. 80, no. 3, pp. 1083–1159,

Sep. 12, 2008, issn: 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.80.1083. [Online]. Available:

https://link.aps.org/doi/10.1103/RevModPhys.80.1083.
[14] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Reports

on Progress in Physics, vol. 75, no. 7, p. 076 501, Jul. 1, 2012, issn: 0034-4885, 1361-6633. doi:

10.1088/0034-4885/75/7/076501. arXiv: 1202.1293 [cond-mat]. [Online]. Available: http:
//arxiv.org/abs/1202.1293.

34

https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/quant-ph/9508027
http://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1103/PhysRevLett.79.4709
https://arxiv.org/abs/quant-ph/9706005
http://arxiv.org/abs/quant-ph/9706005
http://arxiv.org/abs/quant-ph/9706005
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/0811.3171
http://arxiv.org/abs/0811.3171
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/1801.00862
http://arxiv.org/abs/1801.00862
https://arxiv.org/abs/1809.02573
http://arxiv.org/abs/1809.02573
http://arxiv.org/abs/1809.02573
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://arxiv.org/abs/1902.08091
http://arxiv.org/abs/1902.08091
https://doi.org/10.1609/aaai.v36i9.21231
https://ojs.aaai.org/index.php/AAAI/article/view/21231
https://doi.org/10.1109/QSW62656.2024.00030
https://ieeexplore.ieee.org/abstract/document/10646540
https://ieeexplore.ieee.org/abstract/document/10646540
https://doi.org/10.1126/science.1231930
https://www.science.org/doi/10.1126/science.1231930
https://doi.org/10.1016/j.physrep.2008.09.003
https://arxiv.org/abs/0809.4368
http://arxiv.org/abs/0809.4368
https://doi.org/10.1126/science.1231298
https://www.science.org/doi/10.1126/science.1231298
https://www.science.org/doi/10.1126/science.1231298
https://doi.org/10.1103/RevModPhys.80.1083
https://link.aps.org/doi/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/0034-4885/75/7/076501
https://arxiv.org/abs/1202.1293
http://arxiv.org/abs/1202.1293
http://arxiv.org/abs/1202.1293

References 35

[15] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A Quantum

Engineer’s Guide to Superconducting Qubits,” Applied Physics Reviews, vol. 6, no. 2, p. 021 318,

Jun. 1, 2019, issn: 1931-9401. doi: 10.1063/1.5089550. arXiv: 1904.06560 [quant-ph]. [Online].

Available: http://arxiv.org/abs/1904.06560.
[16] R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature, vol. 453, no. 7198,

pp. 1008–1015, Jun. 2008, issn: 0028-0836, 1476-4687. doi: 10 . 1038 / nature07125. [Online].

Available: https://www.nature.com/articles/nature07125.
[17] S. S. Tannu and M. K. Qureshi, “Not All Qubits Are Created Equal: A Case for Variability-

Aware Policies for NISQ-Era Quantum Computers,” Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’19, pp. 987–999, Apr. 4, 2019. doi: 10.1145/3297858.3304007. [Online]. Available: https:
//doi.org/10.1145/3297858.3304007.

[18] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley Series

in Probability and Statistics v.414). Hoboken: John Wiley & Sons, Inc, 2009, 680 pp., isbn: 978-0-

471-72782-8.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. 2015.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization

Algorithms.” arXiv: 1707.06347 [cs]. [Online]. Available: http://arxiv.org/abs/1707.06347,
pre-published.

[21] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–292, May 1,

1992, issn: 1573-0565. doi: 10.1007/BF00992698. [Online]. Available: https://doi.org/10.1007/
BF00992698.

[22] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518,

no. 7540, pp. 529–533, Feb. 2015, issn: 1476-4687. doi: 10.1038/nature14236. [Online]. Available:

https://www.nature.com/articles/nature14236.
[23] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient Methods for Reinforcement

Learning with Function Approximation,” in Advances in Neural Information Processing Systems,
vol. 12, MIT Press, 1999. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html.

[24] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement

learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, 3 May 1, 1992, issn: 1573-0565. doi: 10.1007/
BF00992696. [Online]. Available: https://link.springer.com/article/10.1007/BF00992696.

[25] V. Konda and J. Tsitsiklis, “Actor-Critic Algorithms,” in Advances in Neural Information Processing
Systems, vol. 12, MIT Press, 1999. [Online]. Available: https://papers.nips.cc/paper_files/
paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html.

[26] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierarchical Reinforcement Learning: A Compre-

hensive Survey,” ACM Comput. Surv., vol. 54, no. 5, 109:1–109:35, Jun. 5, 2021, issn: 0360-0300. doi:

10.1145/3453160. [Online]. Available: https://dl.acm.org/doi/10.1145/3453160.
[27] S. Huang and S. Ontañón, “A Closer Look at Invalid Action Masking in Policy Gradient Algorithms,”

The International FLAIRS Conference Proceedings, vol. 35, May 4, 2022, issn: 2334-0762. doi: 10.
32473/flairs.v35i.130584. arXiv: 2006.14171 [cs, stat]. [Online]. Available: http://arxiv.
org/abs/2006.14171.

[28] C.-Y. Tang, C.-H. Liu, W.-K. Chen, and S. D. You, “Implementing Action Mask in Proximal Policy

Optimization (PPO) Algorithm,” ICT Express, vol. 6, no. 3, pp. 200–203, Sep. 2020, issn: 24059595.

doi: 10.1016/j.icte.2020.05.003. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S2405959520300746.

[29] A. Zouitine. “Masking in Deep Reinforcement Learning - Boring Guy. ”[Online]. Available:

https://boring-guy.sh/posts/masking-rl/.
[30] A. Shafaei, M. Saeedi, and M. Pedram, “Qubit Placement to Minimize Communication Overhead

in 2D Quantum Architectures,” in 2014 19th Asia and South Pacific Design Automation Conference
(ASP-DAC), Jan. 2014, pp. 495–500. doi: 10.1109/ASPDAC.2014.6742940.

[31] R. Wille, A. Lye, and R. Drechsler, “Optimal SWAP gate insertion for nearest neighbor quantum

circuits,” in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 2014,

pp. 489–494. doi: 10.1109/ASPDAC.2014.6742939. [Online]. Available: https://ieeexplore.
ieee.org/document/6742939.

https://doi.org/10.1063/1.5089550
https://arxiv.org/abs/1904.06560
http://arxiv.org/abs/1904.06560
https://doi.org/10.1038/nature07125
https://www.nature.com/articles/nature07125
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/nature14236
https://www.nature.com/articles/nature14236
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://link.springer.com/article/10.1007/BF00992696
https://papers.nips.cc/paper_files/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper_files/paper/1999/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://doi.org/10.1145/3453160
https://dl.acm.org/doi/10.1145/3453160
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.32473/flairs.v35i.130584
https://arxiv.org/abs/2006.14171
http://arxiv.org/abs/2006.14171
http://arxiv.org/abs/2006.14171
https://doi.org/10.1016/j.icte.2020.05.003
https://linkinghub.elsevier.com/retrieve/pii/S2405959520300746
https://linkinghub.elsevier.com/retrieve/pii/S2405959520300746
https://boring-guy.sh/posts/masking-rl/
https://doi.org/10.1109/ASPDAC.2014.6742940
https://doi.org/10.1109/ASPDAC.2014.6742939
https://ieeexplore.ieee.org/document/6742939
https://ieeexplore.ieee.org/document/6742939

References 36

[32] A. Lye, R. Wille, and R. Drechsler, “Determining the Minimal Number of Swap Gates for Multi-

Dimensional Nearest Neighbor Quantum Circuits,” in The 20th Asia and South Pacific Design
Automation Conference, Jan. 2015, pp. 178–183. doi: 10.1109/ASPDAC.2015.7059001.

[33] A. A. A. de Almeida, G. W. Dueck, and A. C. R. da Silva, “Finding Optimal Qubit Permutations for

IBM’s Quantum Computer Architectures,” in Proceedings of the 32nd Symposium on Integrated Circuits
and Systems Design - SBCCI ’19, São Paulo, Brazil: ACM Press, 2019, pp. 1–6, isbn: 978-1-4503-6844-5.

doi: 10.1145/3338852.3339829. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3338852.3339829.

[34] M. Bandic et al., Mapping Quantum Circuits to Modular Architectures With QUBO. May 11, 2023.

[35] S. Naito, Y. Hasegawa, Y. Matsuda, and S. Tanaka. “ISAAQ: Ising Machine Assisted Quantum

Compiler.” arXiv: 2303.02830 [quant-ph]. [Online]. Available: http://arxiv.org/abs/2303.
02830, pre-published.

[36] M. Y. Siraichi, V. F. dos Santos, C. Collange, and F. M. Q. Pereira, “Qubit Allocation,” in Proceedings
of the 2018 International Symposium on Code Generation and Optimization, Vienna Austria: ACM,

Feb. 24, 2018, pp. 113–125, isbn: 978-1-4503-5617-6. doi: 10.1145/3168822. [Online]. Available:

https://dl.acm.org/doi/10.1145/3168822.
[37] L. Lao, H. van Someren, I. Ashraf, and C. G. Almudever, “Timing and Resource-Aware Mapping of

Quantum Circuits to Superconducting Processors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 2, pp. 359–371, Feb. 2022, issn: 0278-0070, 1937-4151. doi:

10.1109/TCAD.2021.3057583. [Online]. Available: https://ieeexplore.ieee.org/document/
9349092/.

[38] S. Herbert and A. Sengupta. “Using Reinforcement Learning to find Efficient Qubit Routing

Policies for Deployment in Near-term Quantum Computers.” arXiv: 1812.11619 [quant-ph].
[Online]. Available: http://arxiv.org/abs/1812.11619, pre-published.

[39] M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D. Mullins, “Using Reinforcement Learning

to Perform Qubit Routing in Quantum Compilers,” ACM Transactions on Quantum Computing,

vol. 3, no. 2, 10:1–10:25, May 16, 2022, issn: 2643-6809. doi: 10.1145/3520434. [Online]. Available:

https://dl.acm.org/doi/10.1145/3520434.
[40] P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi. “Noise-Adaptive Compiler

Mappings for Noisy Intermediate-Scale Quantum Computers.” arXiv: 1901.11054 [quant-ph].
[Online]. Available: http://arxiv.org/abs/1901.11054, pre-published.

[41] Qiskit. “Qiskit | Transpiler. ”[Online]. Available: https://qiskit.org/documentation/apidoc/
transpiler.html.

[42] D. Bhattacharjee, A. A. Saki, M. Alam, A. Chattopadhyay, and S. Ghosh, “MUQUT: Multi-

Constraint Quantum Circuit Mapping on NISQ Computers: Invited Paper,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA: IEEE, Nov. 2019,

pp. 1–7, isbn: 978-1-72812-350-9. doi: 10.1109/ICCAD45719.2019.8942132. [Online]. Available:

https://ieeexplore.ieee.org/document/8942132/.
[43] V. Saravanan and S. M. Saeed, “Noise Adaptive Quantum Circuit Mapping Using Reinforcement

Learning and Graph Neural Network,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1–1, 2023, issn: 1937-4151. doi: 10.1109/TCAD.2023.3340608. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/10360454.
[44] P. Zhu, W. Ding, L. Wei, X. Cheng, Z. Guan, and S. Feng, “A Variation-Aware Quantum Circuit

Mapping Approach Based on Multi-Agent Cooperation,” IEEE Transactions on Computers, vol. 72,

no. 8, pp. 2237–2249, Aug. 2023, issn: 1557-9956. doi: 10.1109/TC.2023.3242208. [Online].

Available: https://ieeexplore.ieee.org/document/10035992.
[45] E. W. Dĳkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1,

no. 1, pp. 269–271, Dec. 1, 1959, issn: 0945-3245. doi: 10.1007/BF01386390. [Online]. Available:

https://doi.org/10.1007/BF01386390.
[46] Qiskit. “Qiskit. ”[Online]. Available: https://qiskit.org.
[47] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3:

Reliable reinforcement learning implementations,” Journal of Machine Learning Research, vol. 22,

no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html.
[48] S. van der Linde, W. de Kok, T. Bontekoe, and S. Feld. “Qgym: A Gym for Training and

Benchmarking RL-Based Quantum Compilation.” arXiv: 2308.02536 [quant-ph]. [Online].

Available: http://arxiv.org/abs/2308.02536, pre-published.

https://doi.org/10.1109/ASPDAC.2015.7059001
https://doi.org/10.1145/3338852.3339829
http://dl.acm.org/citation.cfm?doid=3338852.3339829
http://dl.acm.org/citation.cfm?doid=3338852.3339829
https://arxiv.org/abs/2303.02830
http://arxiv.org/abs/2303.02830
http://arxiv.org/abs/2303.02830
https://doi.org/10.1145/3168822
https://dl.acm.org/doi/10.1145/3168822
https://doi.org/10.1109/TCAD.2021.3057583
https://ieeexplore.ieee.org/document/9349092/
https://ieeexplore.ieee.org/document/9349092/
https://arxiv.org/abs/1812.11619
http://arxiv.org/abs/1812.11619
https://doi.org/10.1145/3520434
https://dl.acm.org/doi/10.1145/3520434
https://arxiv.org/abs/1901.11054
http://arxiv.org/abs/1901.11054
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://doi.org/10.1109/ICCAD45719.2019.8942132
https://ieeexplore.ieee.org/document/8942132/
https://doi.org/10.1109/TCAD.2023.3340608
https://ieeexplore.ieee.org/abstract/document/10360454
https://doi.org/10.1109/TC.2023.3242208
https://ieeexplore.ieee.org/document/10035992
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://qiskit.org
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2308.02536
http://arxiv.org/abs/2308.02536

References 37

[49] J. Henstra. “Q-NARR. ”[Online]. Available: https://github.com/jhenstra/Q-NARR.
[50] “IBM Quantum Documentatin | Processor types,” IBM Quantum Documentation. [Online].

Available: https : / / docs . quantum . ibm . com / guides / docs . quantum . ibm . com / guides /
processor-types.

[51] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, Oct. 2019, issn: 1476-4687. doi: 10.1038/s41586-019-1666-5.
[Online]. Available: https://www.nature.com/articles/s41586-019-1666-5.

[52] A. Paetznick et al. “Demonstration of logical qubits and repeated error correction with better-than-

physical error rates.” arXiv: 2404.02280 [quant-ph]. [Online]. Available: http://arxiv.org/
abs/2404.02280, pre-published.

https://github.com/jhenstra/Q-NARR
https://docs.quantum.ibm.com/guides/docs.quantum.ibm.com/guides/processor-types
https://docs.quantum.ibm.com/guides/docs.quantum.ibm.com/guides/processor-types
https://doi.org/10.1038/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://arxiv.org/abs/2404.02280
http://arxiv.org/abs/2404.02280
http://arxiv.org/abs/2404.02280

A
Algorithms

Algorithm 1 sub_actions: Determining sub-actions for hierarchical actions. Uses algorithm 2 for

calculating the distance of a path.

1: Input: action, position, interaction_circuit, edges, placement

2: if state is done then
3: return []

4: end if
5: 𝑞1, 𝑞2← convert action to edge ⊲ get physical qubits from action

6: 𝑣1, 𝑣2← interaction_circuit[position] ⊲ get virtual qubits from state

7: 𝑝1, 𝑝2← placement[𝑣1, 𝑣2] ⊲ get physical qubits from mapping

8: 𝑝𝑎𝑡ℎ_1← get shortest path from 𝑝1 to 𝑞1

9: 𝑝𝑎𝑡ℎ_2← get shortest path from 𝑝2 to 𝑞2

10: 𝑝𝑎𝑡ℎ_3← get shortest path from 𝑝1 to 𝑞2

11: 𝑝𝑎𝑡ℎ_4← get shortest path from 𝑝2 to 𝑞1

12: if distance(𝑝𝑎𝑡ℎ_1) + distance(𝑝𝑎𝑡ℎ_2) > distance(𝑝𝑎𝑡ℎ_3) + distance(𝑝𝑎𝑡ℎ_4) then
13: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_1← convert 𝑝𝑎𝑡ℎ_3 to actions

14: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_2← convert 𝑝𝑎𝑡ℎ_4 to actions

15: else
16: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_1← convert 𝑝𝑎𝑡ℎ_1 to actions

17: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_2← convert 𝑝𝑎𝑡ℎ_2 to actions

18: end if
19: if action is in 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_2 then ⊲ swap actions if the action is in the second path

20: swap 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_1 and 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_2

21: end if
return 𝑎𝑐𝑡𝑖𝑜𝑛𝑠1 || 𝑎𝑐𝑡𝑖𝑜𝑛𝑠2 ⊲ Concatenate actions from both paths.

Algorithm 2 distance: Calculate the distance of a path using edge weights.

1: Input: path, weights

2: distance← 0

3: for each edge in path do
4: distance← distance + weights[edge]

5: end for
return distance

38

	Summary
	Introduction
	Context
	Problem Statement
	Objectives
	Scope
	Significance
	Structure

	Theory
	Quantum Computing
	Hilbert Space and Quantum States
	Qubits
	Qubit Measurement
	Quantum Gates
	Gate Commutation
	Quantum Circuits
	Quantum Hardware
	Quantum Compiling

	Reinforcement Learning
	Markov Decision Process
	Training Process
	Q-Learning
	Function Approximation
	Policy Optimization
	Proximal Policy Optimization
	Hierarchical Reinforcement Learning
	Action Masking

	Literature review
	Related Work
	Rule-based
	Mathematical Optimization
	Heuristic
	Machine Learning
	Noise-aware Methods

	Research Gap

	Methodology
	Definitions
	Quantum Hardware
	Circuit
	Placement
	Swap gates

	Metrics
	Circuit Reliability
	Circuit Depth
	Interaction Count
	Interaction Reliability
	Routing Time

	Problem Formulation
	Routing Problem
	Scheduling Problem
	Mapped Circuit

	Environment
	State
	Initialization
	Actions
	State Transitions
	Observations
	Rewards
	Termination

	Data
	Circuits
	Noise

	Evaluation
	Baseline
	Inference
	Validation

	Implementation

	Results
	Optimization
	Experiment: Circuit Gate Count for Training
	Experiment: Lookahead
	Experiment: Number of Trials
	Discussion

	Evaluation
	Experiment: Hardware Size
	Experiment: Topology
	Discussion

	Conclusion
	Summary of Findings & Research Question
	Directions for Future Research

	References
	Algorithms

