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SUMMARY

The concept of a network, defined as a collection of interconnected nodes or entities,
has become a foundation for a new field of inquiry, namely network science. Despite
the apparent simplicity of the concept, the pairwise representation of interconnecting
nodes has enabled a plethora of insights into the structure of networks and the effects
of interactions on dynamic processes. This generality of the network concept has paved
the way for novel approaches with the aim of understanding complex systems, from so-
cial networks to biological pathways. It has opened up new avenues for research into
the fundamental mechanisms underlying these systems. As such, network science has
become a highly active and dynamic field, driving the development of new theoretical
frameworks, computational tools, and empirical methods that continuously push the
boundaries of knowledge and understanding in numerous science and engineering do-
mains.

The first part of this thesis centres on the structural properties of complex networks
and their practical applications. We demonstrate that the orthogonal eigenvectors of the
adjacency matrix of a simple, unweighted, and undirected graph are sufficient to recover
that graph, albeit potentially not in a unique manner (Chapter 2). This observation led
us to uncover co-eigenvector graphs, which are graphs that share the same eigenvectors
while having distinct eigenvalues. Co-eigenvector graphs are the dual counterparts of
cospectral graphs, which share identical eigenvalues but possess distinct eigenvectors.
In an unweighted graph, the number of walks between node pairs of a particular length
can be expressed in terms of the corresponding power of the adjacency matrix. How-
ever, deriving a similar solution for the number of paths is significantly more intricate
(Chapter 3). We present three distinct analytical solutions in matrix form for computing
the number of paths of any length between node pairs, utilising different types of walks
and leveraging principles from the mathematical field of combinatorics. The computa-
tional complexity of these solutions varies depending on the sparsity of the graph. The
effective resistance metric, which characterises the entire network as perceived from the
vantage point of two given nodes, represents a powerful tool for addressing a wide range
of challenges in network theory. In Chapter 4, we leverage the information contained
in effective resistance to solve the inverse all shortest path problem, wherein a weighted
graph satisfying given upper bounds on the shortest path weights between node pairs
is sought, with sparsity being a critical consideration. Additionally, we propose a novel
graph sparsification algorithm that selectively removes links from an unweighted graph
in a stepwise manner, with the goal of either minimising or maximising the effective re-
sistance of the resultant graph.

The second part of this thesis pertains to linear processes on complex networks, ex-
ploring their properties and applications. Our research reveals that a simple process of
attraction and repulsion between adjacent nodes on a one-dimensional line, based on
the similarity of their neighbourhoods, can effectively group together nodes from the

xiii
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same community (Chapter 5). Our linear clustering process generally produces more
accurate partitions than the most prevalent modularity-based clustering methods in the
literature, requiring a comparable amount of computational complexity. An empiri-
cal part of our research on processes in complex networks became possible thanks to
our network construction based on a unique data set containing each municipality’s
area, population and its geographically adjacent neighbouring municipalities. Thanks
to this network construction, research became possible on a dynamic network of con-
nected municipal nodes at a national level over the period from 1830 to 2019 (Chapter
6). By connecting the population data, area data and municipal merger data of all Dutch
municipalities, we discovered that the logarithm of the municipal area and population
size yields an almost linear difference equation over time. Research into the municipal
merger process over the period 1830-2019 has shown that 873 of the 1228 Dutch mu-
nicipalities have merged into adjacent larger municipalities with a larger population.
Our simulation of municipality mergers based on network effects caused by population
growth by municipality resulted in a county-level predictive accuracy of 91.7 % over a
200-year period. Suppose every node within a network exhibits linear internal dynam-
ics of a specific order, and the dynamic interactions between these nodes are also linear.
In that case, the entire network conforms to a collection of linear differential equations
(Chapter 7). Our study offers an analytical solution for the comprehensive network dy-
namics in state space form, achieved by merging the fundamental topology and internal
linear dynamics of every individual node.



SAMENVATTING

Het concept van een netwerk, gedefinieerd als verzameling van verbonden nodes, is het
fundament geworden voor het domein der netwerkwetenschap. Ondanks de klaarblij-
kelijke eenvoud van dit concept levert de paarsgewijze representatie van verbonden no-
des waardevolle inzichten op over netwerkstructuren en de interactie effecten hiervan
op dynamische processen. Deze generalisatie van het netwerk concept heeft de weg
geopend naar nieuwe onderzoeksmethoden met het doel om complexe systemen te be-
grijpen. Bijvoorbeeld voor sociale, economische en biologische netwerken is onderzoek
mogelijk geworden naar de fundamentele mechanismen onder deze systemen. De net-
werkwetenschap is een dynamisch onderzoeksdomein geworden dat de ontwikkeling
van nieuwe theoretische kaders, rekenhulpmiddelen en empirische methoden oplevert
die continu de grenzen verleggen van kennis en begrip in vele toegepaste onderzoeks-
en engineering domeinen.

Het eerste deel van deze thesis gaat over structuureigenschappen van complexe net-
werken en hun praktische toepassingen. We demonstreren dat het mogelijk is om met
de orthogonale eigenvectoren van de adjacency matrix van een simpele, ongewogen en
ongerichte graaf, deze graaf te reconstrueren, al is het niet altijd op een unieke manier
(hoofdstuk 2). Deze observatie heeft geleid tot onderzoek aan co-eigenvector grafen.
Co-eigenvector grafen hebben gelijke eigenvectoren maar hebben verschillende eigen-
waarden. Co-eigenvector grafen kunnen beschouwd worden als tegenhangers van co-
spectrale grafen, die gelijke eigenwaarden hebben maar verschillende eigen-vectoren
bezitten. In een ongewogen graaf kan het aantal wandelingen van een bepaalde lengte
tussen node paren uitgedrukt worden in termen van de corresponderende kracht van
de adjacency matrix. Echter, het afleiden van een vergelijkbare oplossing voor het be-
palen van het aantal paden is aanzienlijk complexer (hoofdstuk 3). We presenteren drie
verschillende analytische oplossingen in matrix vorm voor het berekenen van het aantal
paden van alle denkbare lengtes tussen node paren, gebruikmakend van verschillende
typen wandelingen waarbij principes uit het wiskundige gebied van de combinatoriek
worden toegepast. De computationele complexiteit van deze oplossingen varieert af-
hankelijk van de dichtheid van een graaf. De metriek van de effectieve weerstand die een
geheel netwerk karakteriseert zoals waargenomen vanuit het gezichtspunt van twee ge-
geven nodes, vertegenwoordigt een krachtig hulpmiddel voor de aanpak van een breed
scala aan uitdagingen in de netwerktheorie. In hoofdstuk 4 benutten we informatie, zo-
als besloten in de effectieve weerstand, om het inverse kortste pad probleem op te los-
sen, waarin een gewogen graaf wordt gezocht die voldoet aan gegeven bovengrenzen van
de gewichten van de kortste paden tussen node paren met netwerk dichtheid als kriti-
sche overweging. In aanvulling stellen we een nieuw graaf dichtheidsalgoritme voor dat
op een stapsgewijze manier selectief linken verwijdert uit een ongewogen graaf met het
doel om de effectieve weerstand van de resulterende graaf te minimaliseren of te maxi-
maliseren.

xv



xvi SAMENVATTING

Het tweede deel van deze thesis gaat over lineaire processen in complexe netwer-
ken en het verkennen van hun eigenschappen en toepassingen. Onze research laat zien
dat een proces van aantrekken en afstoten tussen twee aangrenzende nodes op een
een-dimensionele lijn, gebaseerd op gelijkenis van hun community, de nodes behorend
tot dezelfde community effectief kan groeperen (hoofdstuk 5). Ons lineaire clusterpro-
ces produceert meer accurate partities dan de meeste prevalente op modulariteit geba-
seerde clustermethoden (bekend uit de literatuur) bij vergelijkbare rekencomplexiteit.
Een empirisch deel van onze research op het gebied van processen in complexe net-
werken werd mogelijk dankzij onze netwerkconstructie op basis van een unieke data
set die van elke afzonderlijke gemeente de oppervlakte, de bevolking en de geografisch
aangrenzende buurgemeenten bevat. Dankzij deze netwerkconstructie werd onderzoek
mogelijk aan een dynamisch netwerk van verbonden gemeentelijke nodes op nationaal
niveau over de periode van 1830 tot en met 2019 (hoofdstuk 6). Door van alle Neder-
landse gemeenten de bevolkings data, oppervlakte data en gemeentefusie data te ver-
binden, hebben we ontdekt dat de logaritme van de gemeentelijke oppervlakte en de
bevolkingsomvang een vrijwel lineaire verschil vergelijking over de tijd oplevert. Uit on-
derzoek aan het gemeente fusieproces over de periode 1830-2019 is gebleken dat 873
van de 1228 Nederlandse gemeenten zijn opgegaan in aangrenzende grotere gemeenten
met een grotere bevolksomvang. Onze simulatie van gemeentefusies op basis van net-
werkeffecten die zijn veroorzaakt door bevolkingsgroei per gemeente, resulteerde in een
voorspellende nauwkeurigheid van 91.7 % op provinciaal niveau over een periode van
200 jaar. Stel dat elke node in een netwerk specifieke lineaire interne dynamiek laat zien
en dat de dynamische interactie tussen deze nodes ook lineair is; in dat geval confor-
meert het gehele netwerk zich aan een verzameling lineaire differentiaalvergelijkingen
(hoofdstuk 7). Onze research biedt een analytische oplossing voor de netwerk dynamiek
in state space vorm voor het gehele netwerk, bereikt door samenvoegen van de funda-
mentele topologie en interne lineaire dynamiek van elke individuele node.



1
INTRODUCTION

Of all the frictional resistances,
the one that most retards human movement is ignorance.

Nikola Tesla

N ETWORKS [1, 2] abound and increasingly shape our world, ranging from infrastruc-
tural networks (transportation, telecommunication, power grids, water, etc.) over

social networks to brain and biological networks. In network science, a network gener-
ally consists of the underlying topology, defined by a graph and the dynamic process on
the network.

1.1. TOPOLOGY AND SPECTRUM OF A GRAPH
The inception of modern graph theory can be traced back to Euler’s work on the Konigs-
berg seven-bridge problem [3]. Since then, the concept of a graph has garnered the at-
tention of researchers from a diverse range of disciplines due to its versatility. In this
thesis, we specifically consider simple graphs, which are graphs that do not contain self-
loops or multiple links. The adjacency matrix is the most straightforward way to repre-
sent the topology of a graph. This matrix captures node-pair connections and is known
as the topology domain. When raised to a particular power, the adjacency matrix of an
undirected graph contains information about the number of walks between node pairs
of the corresponding length [4]. Eigenvalue decomposition of the adjacency matrix pro-
vides an equivalent graph representation, referred to as the spectral domain. In the case
of a linear process on a network, the eigenvalues of the governing graph-based matrix
determine how the process evolves along orthogonal directions, defined by the corre-
sponding eigenvectors. Additionally, graph spectra play an essential role in analysing
different nonlinear processes taking place on networks, such as synchronisation [5], epi-
demic spreading [6], and more. In addition to the topology and spectral domains, a third

1
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equivalent representation exists, called the geometric domain. In this domain, each pos-
sibly weighted undirected graph in this domain is a simplex in Euclidean space [7].

The community structure is one of the most crucial topological features of networks.
Identifying communities and their corresponding hierarchical structure in real-world
networks has been a topic of active research for several decades [8] and is essential in
many applications. However, there is no single, precise definition of a community [9,
10]. In network science, a community is defined as a set of nodes that share links pri-
marily with one another, with only a minority of links shared with other nodes in the
network. Modularity, proposed by Newman and Girvan [11], is a commonly used qual-
ity function for a given graph partition. It compares the number of links between nodes
from the same community with the expected number of intra-community links in a net-
work with randomly connected nodes. The clustering problem is very challenging and
remains an active topic of research. Numerous approaches have been proposed based
on modularity optimisation [12–14], spectral decomposition of a graph-related matrix
[15–19], and different processes taking place on networks, such as Potts models [20], su-
perparamagnetic clustering [21], and finding attractors of dynamics [22].

Effective resistance is another key topological feature of networks that has gained
increasing attention from researchers over time [23]. Originating from electrical systems
theory, the concept of effective resistance between a pair of nodes specifies how power
dissipates over the entire network as electrical energy is transmitted between the nodes.
The concept is highly relevant to general network theory because effective resistance, as
a metric, provides a description of the entire network from the perspective of two nodes.
Therefore, effective resistance has found application in numerous graph problems, such
as graph sparsification [24], random walks [25], and clustering [26].

The study of the topological and spectral properties of networks has provided a wealth
of insights into how network topology affects its operation. These findings have also led
to the development of the inverse approach, which involves recovering a network from
its topological features. Inverse graph problems can be addressed when certain informa-
tion about a graph’s topology or spectrum is provided. The inverse shortest path problem
(ISPP) is one such problem, which assumes that the upper bounds of the shortest path
weights between node pairs are known, and aims to reconstruct a weighted graph (with
as few edges as possible) with the same shortest path weight distribution. ISPP is a gen-
erally NP-hard problem. However, if the shortest path weights are computed for a tree
graph, an analytical solution can be obtained using an analogy with the electric network
of resistors [27]. A common approach for solving inverse graph problems is the itera-
tive addition or removal of links. Therefore, graph sparsification approaches are crucial
for inverse graph problems. Graph sparsification involves removing links from a graph
and redistributing link weights in a way that minimises the change in a specific network
metric, such as eigenvalues of the adjacency matrix or effective graph resistance. Various
stochastic approaches have been proposed that utilise either effective resistance [24, 28,
29] or the graph spectrum [30].

1.2. DYNAMIC PROCESSES ON A NETWORK
Newman [31] observed that the progress in analysing the structural properties of the net-
work has been faster than the one related to the dynamics taking place on the network.
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Barzel, Harush et al. [32–34] showed that, while many real networks tend to have similar
(universal) structural properties, there exist classes of dynamical processes that exhibit
fundamentally different flow patterns. During the last two decades, dynamical processes
on complex networks such as phase transitions [35], percolation [36], synchronization
[37], diffusion [38], epidemic spreading [39–42], collective behaviour [43] and traffic [44]
have been intensively researched [45].

The network dynamics depend on the network topology and the type of dynamic
interaction between the nodes. The interplay between the network topology and dy-
namics has been an active field of scientific research in the past two decades [45]. The
dynamics of the real-world networks are non-linear, and their underlying topology is
time-varying [46]. However, complex networks with linear dynamics have been inten-
sively researched recently [47, 48]. Linear processes on networks allow for the analytic
solution of the dynamics evolution over time, using the eigenvalue decomposition. In
addition, networked systems with linear dynamics allow for hierarchical structuring, i.e.
providing the analytic solution for the network’s system dynamics on different aggrega-
tion levels, without losing any information about individual systems dynamics [49].

1.3. NOTATION
The following notation is used throughout this thesis. The N × 1 all-one vector is de-
noted as u, the N × N identity matrix is denoted as I , while the m ×m all-one matrix
is denoted as J . The N × N diagonal matrix diag(x) contains the N × 1 vector x on its
main diagonal. The N ×1 basic vector ei contains only one non-zero element (ei )i = 1.
The Hadamard product of two matrices with the same dimensions is denoted as ◦ and
defines the element-wise product of the two matrices.

A graph G (N ,L ) consists of a set N of N = |N | nodes and a set L of L = |L | links
and is defined by the N ×N adjacency matrix A, where ai j = 1 if node i and node j are
connected by a link, otherwise ai j = 0. The N ×1 degree vector d obeys A ·u, while the
corresponding N ×N degree diagonal matrix is denoted by ∆= diag(d).

1.4. DOCUMENT STRUCTURE
This thesis consists of three parts, further divided into several chapters.

I. Topology and Spectrum of Graphs The first part consists of three chapters and deals
with networks’ topological and spectral properties. In Chapter 2, we demonstrate
that a simple non-empty graph can be recovered, not necessarily uniquely, given
the orthogonal eigenvectors of its adjacency matrix. As a consequence of this
theorem, we introduce co-eigenvector graphs, which share the same eigenvec-
tors but possess different eigenvalues. Co-eigenvector graphs form a duality with
co-spectral graphs that share the same eigenvalues but possess different eigen-
vectors. We also provide an analysis of the properties of co-eigenvector graphs.
Chapter 3 provides three different analytical solutions for the number of paths of
a certain length between node pairs in a matrix form based on different types of
walks. In addition, we propose an iterative algorithm that enumerates all possible
paths between node pairs. A range of insights into how network topology impacts
processes on the network motivates the inverse problem formulation; given the
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desired performance or topological properties, how can we infer a network that
satisfies given constraints? In Chapter 4, we utilise information captured by ef-
fective resistance while solving inverse graph problems. First, we consider graph
sparsification, an iterative procedure or removing links from a graph, such that the
spectrum of the reduced graph is as close as possible to the spectrum of the orig-
inal graph. We propose a deterministic graph sparsification algorithm based on
effective graph resistance, which removes links from a graph by either minimising
or maximising the effective graph resistance of the graph. Another application of
removing links from the graph is while solving the inverse shortest path problem,
where the aim is to reconstruct a graph that satisfies given upper bounds on the
shortest path weights between node pairs. Chapter 4 proposes an iterative algo-
rithm for the inverse shortest path problem, utilising the information captured
by the effective resistance between node pairs. The algorithm begins with the
complete weighted graph, iteratively removes links, and redistributes link weights
as long as given bounds are met. When the upper bounds for the shortest path
weights are generated from a sparse graph, the proposed algorithm achieves phe-
nomenal results by recovering the same weighted graph most of the time.

II. Linear Processes on Networks The second part of this thesis consists of three chap-
ters, which explore dynamic processes on networks at different aggregation scales.
Chapter 5 presents a linear clustering process on a network that governs nodal
positions on a one-dimensional line. This is achieved through attraction and re-
pulsion forces between adjacent nodes, with intensity proportional to the number
of common and different neighbours, respectively. We estimate the number of
clusters and each node’s cluster membership based on their position. Chapter 6
analyses collected macroscopic measurements of population and area per Dutch
municipality in the period 1830−2019. We apply Network Science and reconstruct
the Dutch Municipality Network in each year of the researched period, where two
municipalities are connected if they share a common border. From the evolution
of the population and area distribution over time, we infer the impact of the under-
lying governing processes (such as the municipality merging process, population
increase and people migration process) on the Dutch Municipality Network. In
addition, we propose a model of the Dutch Municipality Network, composed of
linear processes on the network, that achieves phenomenal prediction accuracy
on a province level. In Chapter 7, we present a general solution for aggregating
the dynamics of networked linear systems without losing any information about
the dynamics of individual systems. Therefore, when individual systems perform
linear dynamics and their interactions are linear, we propose an analytical solu-
tion for the dynamics of the networked system at different aggregation scales. Our
solution allows for hierarchical structuring of networked linear systems.
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2
CO-EIGENVECTOR GRAPHS

If we knew what it was we were doing,
it would not be called research, would it?

Albert Einstein

Except for the empty graph, we show that the orthogonal matrix X of the adjacency matrix
A determines that adjacency matrix completely, but not always uniquely. The proof relies
on interesting properties of the Hadamard productΞ= X ◦X . As a consequence of the the-
ory, we show that irregular co-eigenvector graphs exist only if the number of nodes N ≥ 6.
Co-eigenvector graphs possess the same orthogonal eigenvector matrix X , but different
eigenvalues of the adjacency matrix. Co-eigenvector graphs are the dual of co-spectral
graphs, that share all eigenvalues of the adjacency matrix, but possess a different orthog-
onal eigenvector matrix. We deduce general properties of co-eigenvector graph and start
to enumerate all co-eigenvector graphs on N = 6 and N = 7 nodes. Finally, we list many
open problems.

This chapter is based on [50].

7
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2.1. INTRODUCTION
A graph G (N ,L ) is composed of a set N of N = |N | nodes and a set L of L = |L |
links. An undirected and unweighted graph with N nodes can be represented by a N ×N
symmetric adjacency matrix A. The element ai j of the adjacency matrix A equals ai j = 1
if there exists a link between node i and j , else ai j = 0. We exclude self-loops, implying
that A has zero diagonal elements, i.e. a j j = 0 for 1 ≤ j ≤ N . We call a graph simple if it
is undirected without self-loops. Just as any symmetric matrix, the symmetric, zero-one
adjacency matrix A possesses the eigenvalue decomposition

A = XΛX T (2.1)

as reviewed in the introduction of [51] and in Section 2.2. The equality in (2.1) im-
plies that all information at the left-hand side, that we call the topology domain, is also
contained in the right-hand side, that we call the spectral domain. Most insight so far
in graphs is gained in the topology domain that allows a straightforward drawing of a
graph: nodes are interconnected by links and the picture of a graph is attractive and
understandable to humans. The spectral domain, consisting of the set of orthogonal
and normalized eigenvectors x1, x2, . . . , xN stored as columns in the orthogonal eigen-
vector matrix X in (2.1) and the corresponding set of eigenvalues λ1,λ2, . . . ,λN stored in
the eigenvalue vector λ= (λ1,λ2, . . . ,λN ) in Λ = diag(λ), is less intuitive for humans; the
meaning of an eigenvector and eigenvalue of a graph is not obvious. However, as men-
tioned in the preface of [51], the relation A = XΛX T represents a transformation of a
similar nature as a Fourier transform, which suggests that some information is better or
more adequately accessible in one domain and other information in the other domain.
Besides the topology domain and the spectral domain, there exists a third equivalent
representation, called the geometric domain, where each, possibly weighted, undirected
graph is a simplex in the N −1 dimensional Euclidean space [7].

Most of the spectral results are obtained for eigenvalues, in particular, for the largest
eigenvalue or spectral radius [52]. While the number of mathematical results on other
eigenvalues is already considerably less than for the spectral radius, results on eigenvec-
tors are scarce [53, 54].

Earlier, Haemers and Van Dam [55] have conjectured that, when the number of nodes
N →∞, the eigenvalue vector λ= (λ1,λ2, . . . ,λN ) characterizes the graph almost surely,
i.e. the probability that eigenvalue vectorλdetermines the graph tends to 1. The Haemers
and Van Dam conjecture practically means that the eigenvalue vector λ is a fingerprint
of a real-world, large graph, that is comparable to a photoluminescence spectrum of a
material (see e.g. [56]). Here, we present a kind of dual of the Haemers and Van Dam
conjecture and concentrate on the orthogonal eigenvector matrix X in (2.1) rather than
on the eigenvalue vector λ. In particular, in Appendix B.2, we will prove

Theorem 1 The orthogonal eigenvector matrix X of the adjacency matrix A of an undi-
rected, simple graph completely specifies that graph, except for the empty graph.

Theorem 1 should be understood as “Given the orthogonal eigenvector matrix X of
the adjacency matrix A of an undirected, simple (i.e. without self-loops) graph, then
that adjacency matrix A can be retrieved”. Since the empty graph trivially possesses any
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orthogonal X matrix with eigenvalue vector λ= 0, we exclude this extreme case. “Com-
pletely” means that the precise adjacency matrix is recovered, in contrast to a partial or
approximated one as in network inference methods that estimate the most likely under-
lying graph. Section 2.4 discusses consequences of Theorem 1: we will show that co-
eigenvector graphs exist and that the orthogonal eigenvector matrix X does not always
“uniquely” specifies a graph, because different graphs can possess the same orthogonal
eigenvector matrix X .

Before turning to the proof of Theorem 1 in Appendix B.2 and its consequences in
Section 2.4, we briefly review the orthogonal eigenvector matrix X of a symmetric matrix
in Section 2.2, introduce the Hadamard productΞ= X ◦X and derive some properties of
the matrix Ξ in Appendix B.1, which we apply to the adjacency matrix of an undirected
graph in Section 2.3. Section 2.5 deduces general properties of co-eigenvector graphs,
for both regular and irregular graphs. Section 2.6 enumerates nearly all co-eigenvector
graphs on N = 6 and N = 7 nodes. For N < 6, our enumeration algorithm did not find
irregular co-eigenvector graphs. Proceeding with a higher number N of nodes rapidly
becomes computationally challenging due to the huge increase in the number of unla-
beled graph on N nodes. Section 2.7 concludes and poses many open problems.

2.2. EIGENVECTORS AND EIGENVALUES: BRIEF REVIEW
Following the notation of [51], we denote by xk the N ×1 eigenvector of the symmetric
matrix A belonging to the eigenvalue λk , normalized so that xT

k xk = 1. In this Section
2.2, A is any symmetric matrix and not necessarily equal to the adjacency matrix. The
eigenvalues of an N ×N symmetric matrix A = AT are real and can be ordered as λ1 ≥
λ2 ≥ . . . ≥λN . Let X be the orthogonal matrix with eigenvectors of A in the columns,

X = [
x1 x2 x3 · · · xN

]
or explicitly in terms of the m-th component

(
x j

)
m of eigenvector x j ,

X =


(x1)1 (x2)1 (x3)1 · · · (xN )1

(x1)2 (x2)2 (x3)2 · · · (xN )2

(x1)3 (x2)3 (x3)3 · · · (xN )3
...

...
...

. . .
...

(x1)N (x2)N (x3)N · · · (xN )N

 (2.2)

where the element Xi j =
(
x j

)
i .

The relation X T X = I = X X T (see e.g. [51, p. 223]) expresses, in fact, double orthogo-
nality. The first equality X T X = I translates, with the Kronecker delta δkm = 0 if k ̸= m,
otherwise δkm = δmm = 1, to the well-known orthogonality relation

xT
k xm =

N∑
j=1

(xk ) j (xm) j = δkm (2.3)

stating that the eigenvector xk belonging to eigenvalue λk is orthogonal to any other
eigenvector belonging to a different eigenvalue. The second equality X X T = I , which
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arises from the commutativity of the inverse matrix X −1 = X T with the matrix X itself,
can be written as

∑N
j=1

(
x j

)
m

(
x j

)
k = δmk and suggests us to define the row vector in X

as ym = (
(x1)m , (x2)m , . . . , (xN )m

)
. Then, the second orthogonality condition X X T = I

implies orthogonality of the vectors

yT
l y j =

N∑
k=1

(xk )l (xk ) j = δl j (2.4)

The eigenvalue equation Axk = λk xk is written in matrix form for all eigenvectors
as AX = XΛ. After right-multiplying both sides in AX = XΛ by X T and invoking the
orthogonality relation X X T = I , we obtain the matrix equation A = XΛX T in (2.1), where
Λ= diag(λ) is an N ×N diagonal matrix withΛkk =λk .

The N ×N matrix Ξ= X ◦X , where ◦ denotes the Hadamard product1,

Ξ=


(x1)2

1 (x2)2
1 (x3)2

1 · · · (xN )2
1

(x1)2
2 (x2)2

2 (x3)2
2 · · · (xN )2

2
(x1)2

3 (x2)2
3 (x3)2

3 · · · (xN )2
3

...
...

...
. . .

...
(x1)2

N (x2)2
N (x3)2

N · · · (xN )2
N

 (2.5)

will play an important role in this chapter.

2.3. THE MATRIX Ξ= X ◦X OF THE ADJACENCY MATRIX
When applying the general theory in Appendix B.1 to the adjacency matrix A, formula
(B.4) for integer powers f (z) = zk leads to nice formulae. Indeed, for k = 0, we find
from (B.1) the second orthogonality relation (2.4); for k = 1 (since a j j = 0, from which
trace(A) =∑N

j=1λ j = 0)

0 =
N∑

k=1
λk (xk )2

j and 0 =Ξλ (2.6)

that appeared earlier in [51, p. 229], while for k = 2 (since the degree of node j is d j =(
A2

)
j j )

d j =
N∑

k=1
λ2

k (xk )2
j and d =Ξλ2 (2.7)

For any adjacency matrix A without self-loops (i.e. a j j = 0 for each 1 ≤ j ≤ N ), the
instance (2.6)

Ξλ= 0 (2.8)

is the special case of the eigenvalue equation (B.10), where the eigenvalue vector λ =
(λ1,λ2, . . . ,λN ) of the adjacency matrix A is the eigenvector ofΞ corresponding to eigen-
value zero. Lemma 22 states that λT u = 0 or

∑N
j=1λ j = 0. In addition, (B.10) implies that

det(Ξ) = 0, which is equivalent to the fact that rank(Ξ) ≤ N − 1. Thus, the rank of the
matrix Ξ for an adjacency matrix is at most N −1.

1The Hadamard product [57] (entrywise product) of two matrices is (A ◦B)i j = Ai j Bi j . If A and B are both
diagonal matrices, then A.B = A ◦B .
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The general relation (B.7) simplifies for the adjacency matrix A to
1 0 d1 · · · (

Ak
)

11 · · · (
AN−1

)
11

1 0 d2 · · · (
Ak

)
22 · · · (

AN−1
)

22
1 0 d3 · · · (

Ak
)

33 · · · (
AN−1

)
33

...
...

...
. . .

...
. . .

...
1 0 dN · · · (

Ak
)

N N · · · (
AN−1

)
N N

=Ξ.


1 λ1 λ2

1 · · · λk
1 · · · λN−1

1
1 λ2 λ2

2 · · · λk
2 · · · λN−1

2
1 λ3 λ2

3 · · · λk
3 · · · λN−1

3
...

...
...

. . .
...

. . .
...

1 λN λ2
N · · · λk

N · · · λN−1
N

 (2.9)

where
(

Ak
)

j j equals the number of closed walks of length k from node j and back to
node j .

2.3.1. EXAMPLES OF PARTICULAR GRAPHS

(a) In a line topology or path on N nodes, only even closed walks are possible and
(

Ak
)

j j =
0 for odd k. For finite N and even k, symmetry is broken and

(
Ak

)
j j ̸=

(
Ak

)
l l for any pair(

l , j
)

of nodes, due to the end nodes. Since all eigenvalues of the adjacency matrix of a
path graph are distinct [51, p. 124], we deduce from (2.9) and (B.9) that rank

(
Ξpath

) =[ N
2

]
, where [x] is the integer part of the real number x. The same result, rank

(
Ξpath

) =[ N
2

]
, can also be obtained from the explicit analytic expression (e.g. [51, p. 124]) for the

orthogonal eigenvector matrix Xpath.
(b) For a regular graph with degree r , the degree vector is d = r.u and the first and

third column in the non-negative matrix Y in (B.8) are dependent. Hence, rank(Y ) is at
most N −2 for regular graphs, but rank(Ξ) can still be N −1 as shown in (c) below.

(c) The adjacency matrix of the complete graph AKN = J−I , where J = u.uT is the all-
one matrix. For the complete graph KN , the matrix Y – the left-hand side matrix in (2.9) –

can be computed analytically, because
(

Ak
KN

)
j j
= (J − I )k

j j = 1
N

(
(N −1)k − (−1)k

)+(−1)k ,

which is the same for any node j , as

YKN =
[

u 0 (N −1)u · · ·
(

(N−1)k−(−1)k

N + (−1)k
)

u · · ·
(
(J − I )N−1

j j

)
u

]
Since all columns are multiples of the all-one vector u, we find that rank

(
YKN

) = 1. The
adjacency matrix AKN = J − I of the complete graph KN has two eigenvalues: N −1 be-
longing to eigenvector x1 = u and −1 with multiplicity N − 1. Hence, the rank of the
Vandermonde matrix V in (B.7) is rank(V ) = 2 and (B.7) is not effective to determine
rank(Ξ). Fortunately, the orthogonal eigenvector matrix of adjacency matrix AKN = J − I
can be computed analytically, in at least two ways.

The eigenvalue equation for λ = −1 is (J − I ) x = −x, which is equivalent to 0 = J x =
u.uT x. Hence, any set of N − 1 independent vectors {x2, x3, . . . , xN } with a component
sum equal to zero is possible. In other words, there are infinitely many orthogonal X -
matrices for the complete graph KN . Perhaps, the simplest not normalized eigenvector
for the complete graph KN is

x̃ j = e j − 1

j −1

j−1∑
m=1

em for j > 1

where e j is the basic vector with component
(
e j

)
k = δ j k . The eigenvector x̃ j satisfies

the eigenvalue equation (J − I ) x̃ j = −x̃ j or J x̃ j = 0, because Je j = u. In addition, using
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eT
mek = δmk , the scalar product x̃T

j x̃k = δ j k is

x̃T
j x̃k =

(
eT

j − 1

j −1

j−1∑
m=1

eT
m

)(
ek −

1

k −1

k−1∑
l=1

el

)

= eT
j ek −

1

k −1

k−1∑
l=1

eT
j el −

1

j −1

j−1∑
m=1

eT
mek +

1

j −1

1

k −1

j−1∑
m=1

k−1∑
l=1

eT
mel

= δ j k −
1

k −1

k−1∑
l=1

δ j l −
1

j −1

j−1∑
m=1

δmk +
1

j −1

1

k −1

j−1∑
m=1

k−1∑
l=1

δml

= δ j k −
1

k −1
1{ j∈[1,k−1]} −

1

j −1
1{k∈[1, j−1]} +

1

j −1

1

k −1

j−1∑
m=1

1{m∈[1,k−1]}

If j = k, then

x̃T
k x̃k = 1+ 1

(k −1)2

k−1∑
m=1

1{m∈[1,k−1]} = 1+ 1

k −1
= k

k −1

Without loss of generality, we may assume that j < k (else interchange j and k) and then,

with
∑ j−1

m=1 1{m∈[1,k−1]} = j −1, we find

x̃T
j x̃k =− 1

k −1
+ 1

j −1

1

k −1

j−1∑
m=1

1{m∈[1,k−1]} = 0

Hence, the normalized eigenvector x j = x̃ j√
x̃T

j x̃ j
=

√
j−1

j e j − 1p
j( j−1)

∑ j−1
m=1 em and the

corresponding orthogonal eigenvector matrix for the complete graph KN is

XKN =



1p
N

− 1p
2

− 1p
6

− 1
2
p

3
− 1

2
p

5
· · · − 1p

N (N−1)
1p
N

1p
2

− 1p
6

− 1
2
p

3
− 1

2
p

5
· · · − 1p

N (N−1)
1p
N

0
√

2
3 − 1

2
p

3
− 1

2
p

5
· · · − 1p

N (N−1)
1p
N

0 0
p

3
2 − 1

2
p

5
· · · − 1p

N (N−1)
1p
N

0 0 0
√

5
6 · · · − 1p

N (N−1)
...

...
...

...
...

. . .
...

1p
N

0 0 0 0 · · · N−1p
N


(2.10)

and the rank of the corresponding matrixΞKN = XKN ◦XKN is rank
(
ΞKN

)= N −1. Barik et
al. [58] have shown that only regular graphs, such as the complete graph KN , for N = 4k
and k ∈N0, and the regular bipartite graph K2k,2k , are diagonalizable by a Hadamard ma-
trix. An n ×n Hadamard matrix Hn has as elements either −1 and 1 and obeys Hn H T

n =
nIn , where the order n can only be n = 1,2 or n = 4k, subject to the fact that Hadamard’s
conjecture, namely that there exist a Hadamard matrix H4k for each integer k, holds.
Hadamard’s conjecture is still an open, unsolved problem. The normalized matrix Xn =

1p
n

Hn is an orthogonal matrix, from which it follows that det Hn = n
n
2 , which is maximal

among all n ×n matrices with elements in absolute value less than or equal to 1 and the
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latter class includes all orthogonal matrices. Any relabeling (permutation of rows and
columns) of a Hadamard matrix is again a Hadamard matrix; multiplying any row or col-
umn by−1 preserves the Hadamard properties. Following Barik et al. [58], let Hn = [

u|H̃]
so that Hne1 = u. Consider the diagonal matrix D = I −e1eT

1 , then

HnD H T
n = Hn H T

n −Hne1 (Hne1)T = nIn −u.uT = nI − J

Hence, the Laplacian matrix of the complete graph Kn is QKn = nI − J = HnD H T
n . Since

Kn is a regular graph, the eigenvectors of the Laplacian Q and the adjacency matrix A are
the same2. In conclusion, any Hadamard matrix with Hne1 = u provides the orthogonal
matrix for the complete graph Kn . Since Hn◦Hn = J = u.uT , we find that the correspond-
ing rank

(
ΞKn

)= 1, which is the minimum possible rank for any Ξmatrix.
In summary, depending on the choice of the orthogonal eigenvector matrix for the

complete graph KN for N = 4k, we believe that the rank of the corresponding Ξ matrix
may vary over all possible values: 1 ≤ rank

(
ΞKN

) ≤ N − 1. However, we do not have a
proof that rank

(
ΞKN

)
can attain any integer in the interval [1, N ].

2.4. CONSEQUENCES OF THEOREM 1
Our main Theorem 1 is proved in Appendix B.2. Here, we discuss the consequences.

If rank(Ξ) < N − 1, then the proof of Theorem 1 shows that the orthogonal eigen-
vector matrix X may specify more than one undirected graph. Such graphs are called
“co-eigenvector graphs” and possess a same orthogonal eigenvector matrix X , but a dif-
ferent eigenvalue vectorλ, as opposed to co-spectral graphs that have a same eigenvalue
vector λ, but a different orthogonal eigenvector matrix X . Only if rank(Ξ) = N −1, the
eigenvalue equation Ξλ = 0 in (2.8) possesses one eigenvalue vector λ and we find im-
mediately from Theorem 1

Corollary 1 The orthogonal eigenvector matrix X of the adjacency matrix A of an undi-
rected graph only specifies the graph uniquely if rank(Ξ) = N −1.

The proof of Theorem 1 fundamentally relies on the zero-one matrix structure when
rank(Ξ) < N −1 to recover the adjacency matrix A from the orthogonal eigenvector ma-
trix X and thus excludes an extension towards weighted graphs. However, if rank(Ξ) =
N −1, then also a weighted adjacency matrix, apart from a scaling factor β, can be recov-
ered.

Fig. 2.1 shows the metacode of a graph recovery algorithm, based on the proof of
Theorem 1 in Appendix B.2.

If rank(Ξ) = N −n with n > 1 and if n = O
(
Nγ

)
for large N and 0 < γ ≤ 1, mean-

ing that the dimension n ≃ αNγ of the kernel space increases with the number N of
nodes, then the proof of Theorem 1 and the corresponding metacode in Fig. 2.1 looses
computational efficiency, because 2n ∼ 2αNγ

(in the loop in line 6 in Fig. 2.1) increases
non-polynomially fast with size N of the graph, pointing towards (but not proving) the
NP-hard nature of the graph recovery problem in the worst case. In the worst case of

2Indeed, for a regular graph with degree r , the Laplacian is Q = r I − A. If Q = Z M Z T and A = XΛX T , we
observe that Z M Z T = X (r I −Λ) X T , implying that X = Z .
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GRAPH RECOVERY

input: orthogonal matrix X with N orthonormal eigenvectors of A
output: adjacency matrix A

1. Ξ← X ◦X Hadamard product
2. n ← size of the kernel space of Ξ
3. vi with i ∈ {1,2, · · · ,n} ← eigenvectors of Ξ obeying Ξ · vi = 0
4. C({1,2,...,N 2},i ) ← vec(X ·diag(vi ) ·X T ) for i ∈ {1,2, · · · ,n}
5. Mn×n ← n non-zero rows j of C , where j ̸= k(N +1)+1, k ∈ {0,1, . . . , N −1}

such that rank(M) = n

6. For ( j ← 1 to 2n −1) do
7. ân×1 ← binary representation in n digits of j
8. β̂n×1 ← M−1 · â
9. λ̂N×1 ←∑n

i=1 β̂i · vi

10. ÂN×N ← X ·diag(λ̂) ·X T

11. If (Â contains only ones and zeros)
12. return λ̂, Â
13. End If
14. End For

Figure 2.1: Metacode of the algorithm for graph recovery, given the orthogonal eigenvector matrix X

low rank(Ξ) or high n, one might argue that the proof of Theorem 1 is hardly better than
the trivial method of finding the eigenvector λ by inversion of (2.1), i.e. finding the ad-

jacency matrix A that diagonalizes X T AX =Λ, by checking all 2
(N

2

)
possible N ×N adja-

cency matrices. Since X is the orthogonal eigenvector matrix of “a particular” adjacency
matrix, we certainly known that at least one of all possible N × N adjacency matrices
converts X T AX to a diagonal matrix Λ. However, extensive simulations so far indicate
that rank(Ξ) < N −1 occurs for relatively small graphs and is extremely rare for large N .
In other words, for large graphs, nearly always rank(Ξ) = N −1 holds, so that Corollary 1
applies.

Fig. 2.2 and 2.3 exemplify the existence of co-eigenvector graphs.

When X = 1p
n

Hn is given for n = 8, then rank(Ξ) = 1 as shown in Section 2.3.1 and the

algorithm in Fig. 2.1 finds 2n−1 = 128 labeled co-eigenvector graphs, that are all regular
graphs with integer eigenvalues. Indeed, any regular graph has all eigenvectors, except
for the principal eigenvector x1 = u, orthogonal to the all-one vector u and thus shares
a common basis of eigenvectors with the complete graph. Regular graphs are further
examined in Section 2.5.1.

Fig. 2.4 presents some co-eigenvector graphs of the line topology.
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X =




−0.1229 −0.6015 −0.1348 −0.2361 0.3717 0.4237 0.3342 0.3461
−0.1229 0.6015 −0.1348 −0.2361 −0.3717 0.4237 0.3342 0.3461
0.4625 0 −0.2935 −0.5802 0 −0.1881 −0.4653 0.3338
−0.6034 0 −0.2508 0.1914 0 −0.4989 −0.1008 0.5266
0.1581 0 −0.4919 0.5960 0 0.4606 −0.3969 0.0906
0.3665 −0.3717 0.3052 0.2745 −0.6015 −0.0978 0.1584 0.4031
0.3665 0.3717 0.3052 0.2745 0.6015 −0.0978 0.1584 0.4031
−0.3132 0 0.6216 −0.0970 0 0.3542 −0.5850 0.1960




λ1 =
[
−1.9816 −1.6180 −1.2635 −0.1627 0.6180 0.7691 1.4739 2.1648

]

λ2 =
[
−1.8360 0.6180 1.7733 0.4839 −1.6180 −1.8524 −1.2199 3.6511

]

1

2

3

4

5

6

7

8
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5

6

7

8

Figure 2.2: Example of two co-eigenvector graphs

2.5. PROPERTIES OF CO-EIGENVECTOR GRAPHS
Appendix B.2 has demonstrated that co-eigenvector graphs can exist, provided that
rank(Ξ) < N −1. In this Section 2.5, we deduce some properties of two co-eigenvector
graphs G1(N ,L1) and G2(N ,L2) on N nodes, that possess the same eigenvectors, but
a different set of eigenvalues:{

A1 = XΛ1X T =∑N
i=1λi (A1) xi xT

i

A2 = XΛ2X T =∑N
i=1λi (A2) xi xT

i

(2.11)

where the N ×N diagonal matrices Λ1 and Λ2 contain on the main diagonal the eigen-
values of the adjacency matrices A1 and A2, respectively.

First, the sum of the adjacency matrices A1 and A2

A1 + A2 =
N∑

i=1
(λi (A1)+λi (A2)) xi xT

i (2.12)

again represents an adjacency matrix, provided that the graphs G1 and G2 do not share
common links (i.e. |L1∩L2| = 0). In Theorem 3 below, we derive the number of common
links between two co-eigenvector graphs explicitly. Second, the product of the adjacency



2

16 2. CO-EIGENVECTOR GRAPHS

X =




−0.4466 −0.0993 0.4895 0.2580 −0.3541 0.4121 0.0986 −0.4238
−0.5064 −0.1988 −0.4582 −0.0438 0.0923 −0.3272 −0.4012 −0.4643
0.4177 −0.1223 −0.1963 0.4850 −0.3963 −0.4053 0.3262 −0.3303
0.2086 0.5953 −0.2222 0.3117 0.3773 0.3824 −0.1069 −0.3945
0.3275 0.2108 −0.0450 −0.5620 −0.5754 0.1277 −0.3378 −0.2624
0.1740 0.1406 0.6590 0.1150 0.2030 −0.4918 −0.4478 −0.1372
−0.2624 0.4710 0.1052 −0.3990 0.0815 −0.3546 0.5950 −0.2297
0.3460 −0.5434 0.1232 −0.3329 0.4333 0.1695 0.2069 −0.4469




λ1 =
[
−2.9101 −1.4136 −0.6953 −0.3811 0.4548 0.6653 0.8960 3.3841

]

λ2 =
[
−2.5665 −0.7062 0.7428 2.2432 −1.7438 −0.8379 −0.2201 3.0886

]
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Figure 2.3: Example of two other co-eigenvector graphs

matrices A1 and A2

A1 · A2 =
N∑

i=1
λi (A1)λi (A2)xi xT

i , (2.13)

contains the same set of eigenvectors as A1 and A2 due to orthogonality of the eigen-
vectors. Lemma [51, p. 253] indeed tells us that if any two matrices B and C have a
common complete set of eigenvectors, then B and C commute. Relation (2.13) may be
regarded as another demonstration of that Lemma. The diagonal element (A1 · A2)i i =∑N

k=1(A1)i k (A2)i k equals the number of common neighbors of node i in G1 and G2, i.e.
each node k for which (A1)i k = (A2)i k = 1.

The N × N Hadamard product Ac = A1 ◦ A2 represents the adjacency matrix of the
graph Gc (Nc ,Lc ), composed of common links Lc =L1 ∩L2 between G1 and G2,

Ac =
(

N∑
i=1

λi (A1)xi xT
i

)
◦
(

N∑
j=1

λ j (A2)x j xT
j

)
. (2.14)

Using the distributive property of a Hadamard product [57, p. 32], we transform (2.14) as

Ac =
N∑

i=1

N∑
j=1

λi (A1)λ j (A2)
(
xi xT

i

)◦ (
x j xT

j

)
.
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Figure 2.4: Example of co-eigenvector graphs of a line topology on N = 8 nodes.

The Hadamard product of outer products xi xT
i and x j xT

j is written [57] as

(
xi xT

i

)◦ (
x j xT

j

)
= diag(xi )x j xT

j diag(xi ) = (
xi ◦x j

)(
xi ◦x j

)T

simplifying (2.14) further as

Ac =
N∑

i=1

N∑
j=1

λi (A1)λ j (A2)
(
xi ◦x j

)(
xi ◦x j

)T . (2.15)

Definition 2 Two co-eigenvector graphs G1 and G2 are called non-overlapping if they do
not share common links.

Another way to determine the number of common links between G1 and G2 is by
summing the elements of the product A1 · A2 on the main diagonal

2|L1 ∩L2| = trace(A1 · A2) . (2.16)

Theorem 3 Consider two co-eigenvector graphs G1(N ,L1) and G2(N ,L2) on N nodes,
defined by the N ×N adjacency matrices A1 and A2, respectively. Graphs G1 and G2 are
non-overlapping if their eigenvalue vectors are orthogonal.

Proof: Since the graph Gc , with the N × N adjacency matrix Ac defined in (2.15),
is composed of common links between G1 and G2, twice the number of common links
between the co-eigenvector graphs G1 and G2 equals the sum of elements of Ac

2|L1 ∩L2| = uT (A1 ◦ A2)u = uT Ac u (2.17)



2

18 2. CO-EIGENVECTOR GRAPHS

where u denotes the all-one vector. By substituting (2.15) into (2.17) we obtain

2|L1 ∩L2| =
N∑

i=1

N∑
j=1

λi (A1)λ j (A2)uT (
xi ◦x j

)(
xi ◦x j

)T u.

The inner product
(
xi ◦x j

)T u = xT
i x j equals 1 if i = j , otherwise 0, because the eigenvec-

tors of a symmetric adjacency matrix are orthogonal. Thus, the relation (2.17) simplifies
to

2|L1 ∩L2| = (λ(A1))T ·λ(A2). (2.18)

Since “non-overlapping” in Definition 1 means that |L1 ∩L2| = 0, relation (2.18) com-
pletes the proof. □

Theorem 3 states that if two co-eigenvector graphs G1 and G2 do not share common
links, their eigenvalue vectors λ(A1) and λ(A2) are orthogonal. The vectors λ(A1) and
λ(A2) span the kernel space of the N ×N matrixΞ= X ◦X , as shown in the proof of The-
orem 1 in Appendix B.2 provided that rank(Ξ) = N −2. The sum of two non-overlapping
co-eigenvector graphs A1 and A2 is another co-eigenvector graph As = A1 + A2, with the
eigenvalue vector λ(As ) =λ(A1)+λ(A2), as derived in (2.12). Thus, the eigenvalue vector
λ(As ) also lies in the kernel space of the matrix Ξ, and, hence, rank(Ξ) ≤ N −2.

The Hadamard product in (2.15) allows us to determine the number of non-common
links in G1 and G2.

Corollary 2 Consider a pair of co-eigenvector graph G1(N ,L1) and G2(N ,L2) on N
nodes with corresponding adjacency matrices A1 and A2, respectively. The number of
non-common links in G1 and G2 is given by

|L1 \L2|+ |L2 \L1| =
N∑

i=1
(λi (A1)−λi (A2))2 (2.19)

Proof: A graph Gu (N , (L1 \L2)∪ (L2 \L1)) contains only non-common links of G1

and G2 and has the corresponding N ×N adjacency matrix Au = A1+ A2−2(A1 ◦ A2) . By
using the identity A◦A = A, that holds for any zero-one matrix, and importing (2.15), we
obtain

Au = A1 ◦ A1 + A2 ◦ A2 −2(A1 ◦ A2) (2.20)

=
N∑

i=1

N∑
j=1

(
λi (A1)λ j (A1)+λi (A2)λ j (A2)−2λi (A1)λ j (A2)

)(
xi ◦x j

)(
xi ◦x j

)T

from which the number of not-common links in G1 and G2 is computed as the sum of
elements of Au

uT · Au ·u =
N∑

i=1

(
λ2

i (A1)+λ2
i (A2)−2λi (A1)λi (A2)

)
,

which completes the proof. □
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An equivalent way to compute the number of not-common links in G1 and G2 is to
distract twice the number of common links in G1 and G2 from the sum of elements of
A1 + A2

|L1 \L2|+ |L2 \L1| = uT · (A1 + A2) ·u −2 · trace(A1 · A2) , (2.21)

which, after substituting (2.12) and (2.13) again leads to (2.19). The adjacency matrix Au

with only non-common links in G1 and G2 in (2.20), using the distributive property of
the Hadamard product, can be transformed into

Au = (A1 − A2)◦ (A1 − A2), (2.22)

where relation (2.22) holds for adjacency matrices A1 and A2 of any two unweighted
graphs G1 and G2.

2.5.1. REGULAR GRAPHS
In a regular graph Gr on N nodes, defined by the N ×N adjacency matrix Ar , each node
has the same degree r . The complement graph Gc

r of Gr is also a regular graph with
degree q = N −1− r and the N ×N adjacency matrix [51, p. 13] is

Ac
r = J − I − Ar , (2.23)

where the N ×N all-one matrix is denoted by J = u.uT . Since each node in Gr has degree
r , it holds that Ar ·u = dr = r ·u. Thus, the principal eigenvalue λ1(Ar ) = r corresponds
to the principal eigenvector x1 = 1p

N
u. The remaining N −1 eigenvectors of Ar are or-

thogonal to u, implying that uT x j = 0 or

N∑
i=1

(
x j

)
i = 0, (2.24)

where 1 < j ≤ N . The following theorem is also provided in [59, p.15].

Theorem 4 A regular graph Gr on N nodes with degree r and its complement graph Gc
r

compose a pair of co-eigenvector graphs.

Proof: By multiplying the N ×N adjacency matrix Ac
r of the complement graph Gc

r ,
defined in (2.23), with the eigenvector x j of Ar , where j > 1, we obtain

Ac
r · x j = (J − I − Ar ) · x j .

From (2.24) we conclude that J · x j = u ·uT · x j = 0 and the above equation becomes

Ac
r · x j =

(−1−λ j (Ar )
) · x j . (2.25)

Additionally, multiplying the adjacency matrix Ac with the principal eigenvector 1p
N

u

yields

Ac
r ·

1p
N

·u = (J − I − Ar ) · 1p
N

·u = (N −1− r1) · 1p
N

·u
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showing that the adjacency matrix Ac
r shares the same eigenvectors with Ar , which com-

pletes the proof. □
Relation (2.25) shows that the adjacency matrix Ac

r of the complement graph Gc
r of a

regular graph possesses the spectral decomposition

Ac
r =

N −1− r

N
·u ·uT +

N∑
j=2

(−1−λ j (Ar )
)

x j xT
j . (2.26)

Theorem 3 states that the eigenvalue vectors λ(Ar ) and λ(Ac
r ) are orthogonal. Indeed,

the inner product (λ(Ar ))T ·λ(Ac
r ) transforms, after using (2.26), into

(λ(Ar ))T ·λ(Ac
r ) =r · (N −1− r )+

N∑
j=2

λ j (Ar ) · (−1−λ j (Ar )
)

=r ·N −
(

r +
N∑

j=2
λ j (Ar )

)
−

(
r 2 +

N∑
j=2

(λ j (Ar ))2

)
.

(2.27)

The adjacency matrix Ar represents a simple graph without self-loops and thus
trace(Ar ) = ∑N

i=1λi (Ar ) = 0. Further, the sum of squared eigenvalues is
∑N

i=1(λi (Ar ))2 =
r ·N , simplifying (2.27) to (λ(Ar ))T ·λ(Ac

r ) = 0. The following Corollary is proved in [59,
p.15], while we provide another proof.

Corollary 3 The eigenvectors of a regular graph Gr on N nodes and degree r are also
eigenvectors of the complete graph KN on N nodes, implying that a regular graph Gr and
the complete graph KN compose a pair of co-eigenvector graphs.

Proof: The sum of adjacency matrices Ar of a regular graph Gr and Ac
r of its com-

plement graph Gc
r establishes the adjacency matrix J − I = Ar +Ac

r of the complete graph
KN , as directly follows from (2.23). By substituting (2.12) and (2.26), the previous relation
transforms into

J − I =
(

r

N
+ N −1− r

N

)
·u ·uT +

N∑
j=2

(
λ j (Ar )+ (−1−λ j (Ar )

)) · x j · xT
j ,

while after grouping terms, the adjacency matrix of the complete graph KN becomes

J − I = N −1

N
·u ·uT −

N∑
j=2

x j · xT
j , (2.28)

from which we observe that the complete graph KN , together with a regular graph Gr (or
with its complement graph Gc

r ) compose a pair of co-eigenvector graphs, which com-
pletes the proof. □

Corollary 4 Not each set of eigenvectors of the complete graph KN can represent the eigen-
vectors of a regular graph Gr .
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Figure 2.5: Example of pairs of regular co-eigenvector graphs on N = 6 nodes. Each regular graph is enclosed in
a circle, where circles are connected if the two corresponding regular graphs compose a pair of co-eigenvector
graphs.

Proof: In Section 2.3.1, we have shown two orthogonal eigenvector matrices of the
complete graph with extremal different rank(Ξ) = 1 and rank(Ξ) = N − 1. Corollary 1
tells us that the N ×N eigenvector matrix XKN in (2.10) with rank(Ξ) = N −1 determines
the complete graph KN uniquely. In other words, the eigenvectors in (2.10) cannot be
the eigenvectors of a non-complete regular graph Gr , although the eigenvectors of any
regular graph Gr can also be the eigenvectors of the complete graph KN . As illustrated
by XKN in (2.10), the reverse does not always hold, which completes the proof. □

Corollary 3 shows that a regular graph Gr together with the complete graph KN com-
pose a pair of co-eigenvector graphs. However, Corollary 4 informs us that two regular
graphs Gr1 and Gr2 do not form a pair of co-eigenvector graphs, in general. Figure 2.5
presents the pairs of co-eigenvector graphs of size N = 6 that are regular graphs.
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2.5.2. IRREGULAR CO-EIGENVECTOR GRAPHS
The definition of co-eigenvector graphs imposes a strong constraint on the N ×N adja-
cency matrix A of an undirected graph G . The N ×1 all-one vector u is [51, Sec. 3.3] the
only eigenvector, corresponding to the principal eigenvalue λ1 = r of a regular graph Gr

with degree r . Thus, a regular graph Gr and an irregular graph G1 cannot form a pair of
co-eigenvector graphs. Therefore, it is relevant to determine how often co-eigenvector
graphs emerge among irregular graphs.

We consider the N ×N adjacency matrix A1 of a graph G1 and the N ×N adjacency
matrix A2 of a relabeled graph G2, such that

A2 = P T · A1 ·P, (2.29)

where the N × N permutation matrix P [51, p. 21] is an orthogonal matrix, satisfying
P T P = I . In other words, the adjacency matrices A1 and A2 define two isomorphic
graphs. While G1 and G2 are co-spectral graphs and share the same set of eigenvalues,
because a permutation does not influence eigenvalues [51], they are not a pair of differ-
ent co-eigenvector graphs.

Graph relabelling does not affect the eigenvalues of an adjacency matrix. On the
other side, two isomorphic graphs in general do not constitute a pair of co-eigenvector
graphs.

Corollary 5 Consider a pair of co-eigenvector graphs G1 and G2, with the corresponding
N ×N adjacency matrices A1 and A2. When using the same N ×N permutation matrix P,
the relabeled graphs G1 and G2 still compose a pair of co-eigenvector graphs.

Proof: The i -th eigenvector xi corresponds to the i -th eigenvalue λi (A1), but also to
the i -th eigenvalue λi (A2). After permutation with P , the relabeled eigenvector P T · xi

satisfies the eigenvector equation for both relabeled graphs

P T · A1 ·P · (P T · xi ) =P T · A1 · xi =λi (A1) · (P T · xi )

P T · A2 ·P · (P T · xi ) =P T · A2 · xi =λi (A2) · (P T · xi ),

where i ∈N . Thus, relabeled graphs G1 and G2 share eigenvectors, which completes the
proof. □

Corollary 5 is understood geometrically. The N eigenvectors of an adjacency matrix
A define a polytope on N points in the N -dimensional space. If two adjacency matrices
A1 and A2 form a pair of co-eigenvector graphs, the N ×N eigenvector matrix X of both
adjacency matrices contains the same polytope in the N -dimensional space. The per-
mutation matrix P changes the coordinate system, but not the nature of the polytope on
N points.

2.6. IDENTIFYING CO-EIGENVECTOR GRAPHS
We identify pairs of co-eigenvector graphs of different size N . Firstly, for a fixed N , we
create all possible unlabeled graphs. The first co-eigenvector graphs, that are not regular
graphs, occur for N = 6. We present an algorithm, with metacode in Figure 2.6, for iden-
tifying pairs of co-eigenvector graphs, among all possible connected, irregular graphs
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with N nodes based on permutation or relabeling (Section 2.5.2). The N ×N adjacency
matrix A of each possible unlabeled graph with N nodes is provided as input to the al-
gorithm. Using the double for loop (line 2-3), we examine each pair of graphs. Graph
relabeling in (2.29) affects eigenvectors. Therefore, we need to account for each possible
permutation whether a pair of non-isomorphic graphs share the same eigenvectors. In
line 9, we define each possible N ×N permutation matrix P and observe that the matrix(
P ·X j

)T · Ai ·
(
P ·X j

)
is a diagonal matrix only if

(
P ·X j

) = Xi . The proposed algorithm
returns the Nu ×Nu matrix C , whose entry Ci j = 1 if graphs Gi and G j share the same
eigenvectors, otherwise Ci j = 0.

COEIGENVECTORGRAPHS(A1, A2, . . . ANu )

Input: A1, A2, . . . ANu

Output: C
1. C ←ONu×Nu

2. for i ← 1 to Nu −1
3. for j ← i +1 to Nu

4. Xi ← N ×N eigenvector matrix of Ai

5. X j ← N ×N eigenvector matrix of A j

6. m ← 1
7. while

(
Ci j = 0

)
and (m < N !)

8. Pm ← N ×N m-th permutation matrix
9. Ti ← (Pm ·Xi )T · A j · (Pm ·Xi )

10. T j ←
(
Pm ·X j

)T · Ai ·
(
Pm ·X j

)
11. if (I ◦Ti = Ti ) or

(
I ◦T j = T j

)
12. Ci j ← 1, C j i ← 1
13. end if
14. m ← m +1
15. end while
16. end for
17. end for
18. return C

Figure 2.6: Pseudocode for identifying co-eigenvector graphs among all possible unlabeled graphs with N
nodes (in total Nu of them), provided as input.

Computing all Nu unlabeled graphs on N nodes is intractable for large N , because

their number increases as O

(
2(N

2 )
N !

)
. Further, the proposed algorithm cannot guarantee

that each pair of co-eigenvector graphs, for a given network size N , is identified. The lim-
itation is due to the fact that some graphs may contain multiple sets of eigenvectors (i.e.
multiple different orthogonal X -matrices), while the algorithm in Figure 2.6 computes,
for each adjacency matrix Ai , only one N ×N eigenvector matrix Xi (line 4-5).

Some examples of irregular co-eigenvector graphs with N = 6 nodes are drawn in Fig-
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ure 2.7. The algorithm identified two triples of co-eigenvector graphs with N = 6 nodes.
Figure 2.8 overviews of the identified irregular, connected and unlabeled, co-eigenvector
graphs with N = 7 nodes.

Figure 2.7: Pairs of non-regular, unlabeled, co-eigenvector graphs with N = 6 nodes.

2.7. CONCLUSION AND OPEN QUESTIONS
The proof of Theorem 1 relies on the zero-one structure of the adjacency matrix and
reveals that only unweighted graphs can be recovered when rank(Ξ) < N −1. The idea to
reconstruct the unweighted, undirected graph from the orthogonal eigenvector matrix
X of the adjacency matrix A can be extended similarly to the orthogonal eigenvector
matrix Z of the Laplacian Q = ∆− A, as outlined in Appendix B.1.3. The remainder of
the chapter has deduced properties of co-eigenvector graphs. In particular, irregular co-
eigenvector graphs, that are less trivial to find than their regular companions, are found
by a rather exhaustive algorithm, based on Theorem 1 and the rank of the matrix Ξ.

A deeper knowledge of the matrix Ξ is desirable. The meaning of the rank(Ξ) turns
out to be difficult. For example, if the graph is connected, then rank(Ξ) can be smaller
than N −1. The reverse also is observed: if rank(Ξ) = N −1, then the graph can be dis-
connected. The relation between rank(Ξ) and the number of distinct eigenvalues of the
adjacency matrix A is also unclear. The relation to the diameter of the graph needs to be
investigated. It is also unclear whether the matrixΞ is diagonalizable. SinceΞ is doubly-
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stochastic, the underlying associated Markov graph is van2014performance However, an
irreducible matrix may still possess a Jordan block. Another question concerns the num-
ber of co-eigenvector graphs of size N and its relation to rank(Ξ). Simulations suggest
that the less structure or symmetry a graph possesses, the higher the probability that
rank(Ξ) = N −1.

Earlier [60], the reconstructability coefficient θwas defined as the smallest value of m
in Ã = ∑m

k=1λk xk xT
k that allows us to exactly reconstruct the zero-one adjacency matrix

A. Figure 2.9 seems to suggest for small Erdős-Rényi graphs that there is hardly any cor-
relation between the reconstructability coefficient θ and rank(Ξ). Perhaps, other graph
classes or/and larger graphs may reveal a relation?

Furthermore, one may ask whether the confinement to undirected graphs, that pos-
sess a symmetric adjacency matrix, can be relaxed to directed graphs, whose general
eigenvector matrix X may be complex. If that extension is favorable, one may consider
Hermitian matrices, which may open possible applications to quantum mechanics and
quantum computing. Data measured over time on complex networks is often related to
a dynamic process that runs on the underlying graph. If that dynamic process is linear or
proportional to the graph (as e.g. the flow of currents in a resistor or impedance network
[23]), then the eigendecomposition of the graph is reflected by that data and Theorem 1
may provide insight into the underlying topology on which data is collected.

At last, from an information theoretical point of view discussed in [61], Theorem 1 is
not surprising, because the presentation of the orthogonal X matrix needs more digits
(i.e. more information) than the zero-one adjacency matrix.

Acknowledgements We are grateful to Karel Devriendt, Xiangrong Wang and Willem
Haemers for useful comments and to Geert Leus for informing us about the article of
Segarra et al. [62], whose Proposition 1 is related to Theorem 1.
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Figure 2.8: Pairs of non-regular, unlabeled, co-eigenvector graphs with N = 7 nodes.
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Figure 2.9: Correlation between reconstructability coefficient θ and the rank(Ξ) for ER graphs with N = 8 (left-
hand side figures), N = 15 (figures in the middle) and N = 30 nodes (right-hand side figures). The link density

p is varied between p = 3log N
4N and p = 3log N

2N , while 105 connected graphs are generated for each network size
N .





3
NUMBER OF PATHS IN A GRAPH

Make everything as simple as possible,
but not simpler.

Albert Einstein

The k-th power of the adjacency matrix of a simple undirected graph represents the num-
ber of walks with length k between pairs of nodes. As a walk where no node repeats, a
path is a walk where each node is only visited once. The set of paths constitutes a relatively
small subset of all possible walks. We introduce three types of walks, representing subsets
of all possible walks. Considered types of walks allow for deriving an analytic solution for
the number of paths of a certain length between node pairs in a matrix form. Depend-
ing on the path length, different approaches possess the lowest computational complexity.
We also propose a recursive algorithm for determining all paths in a graph, which can be
generalised to directed (un)weighted networks.

This chapter is based on [63].

29
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3.1. INTRODUCTION
Networks emerge naturally in many real-world systems [1, 2]. From a Network Science
perspective, a network consists of an underlying topology, called the graph, and a dy-
namic process taking place on the graph. Examples of real-world networks include in-
frastructural networks (such as road traffic networks, the Internet and the power grid
networks), biological networks (such as the protein interaction network) and social net-
works.

A walk in a graph represents a sequence of nodes, where adjacent nodes in the se-
quence share a common link, as defined below in Definition 5. A path, defined in Defi-
nition 7, is a walk where no node repeats in the sequence. Paths reflect the cost of con-
nections between node pairs in a network, where the cost is quantified by weights of
the links in the paths. If all link weights are constant or unity, then the weight of a path
equals the hopcount [64, Chapter 16], the number of hops or links in the path. A signif-
icant part of the literature on paths in graphs considers the problem of determining the
number of paths, both in random graphs [65] or in special types of graphs [66]. However,
to the best of our knowledge, an explicit solution for the number of paths of a certain
length in a matrix form is not yet known. Our idea is to derive an analytic solution for the
number of length k paths between node pairs by removing those walks traversing a node
multiple times from all possible walks with hopcount k, contained in the k-th power of
the adjacency matrix.

The problem of determining whether there is a path in a graph with at least k links
is NP-complete [67]. Williams proposed in [68] an algorithm for finding paths with hop-
count k, while Schmid et al. proposed an logarithm in [69] for computing Tutte Paths.
A graph is Hamiltonian if there is a path traversing each node in a graph. Bjorklund
proposed in [70] a Monte Carlo algorithm that solves the Hamiltonian problem. Bax in-
troduced an algorithm for the Hamiltonian path problem in [71], based on the inclusion-
exclusion formula. We generalise the approach of Bax in [71] and derive the solution for
the number of paths with any hopcount k.

Section 3.2 introduces the notion of walks and paths. We firstly introduce walks
traversing a node multiple times in Section 3.3 and derive an analytic solution for the
number of paths between node pairs with hopcount k ≤ 4. Section 3.4 analyses walks
traversing a node exactly once, while those walks not traversing a node we examine in
Section 3.5. In Section 3.6, we provide a recursive algorithm that identifies all possible
paths in a graph. Finally, we conclude in Section 3.7.

3.2. WALKS IN A GRAPH
Definition 5 A walk of length k from node i to node j is a sequence of k links of the form
(n0 → n1)(n1 → n2) . . . (nk−1 → nk ), where n0 = i and nk = j .

The length of a walk is the number of links in the walk and is often referred to as the walk
hopcount [51]. The first node in the sequence n0 is the source node, while a walk ends
with the destination node nk . The Definition 5 naturally leads to the question of how
many ways are there to reach node i from node j , in k hops.

Theorem 6 The number of walks of length k from node i to node j is equal to the element(
Ak

)
i j .
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Proof Provided in [51, p. 26] □
The k-th power of the adjacency matrix Ak contains the number of walks of length k

between each pairs of nodes in the graph. Any matrix derived solely from the adjacency
matrix A, either via matrix product or the Hadamard product, carries information about
walks. We denote the set of all possible walks of length k as the k-dimensional walk space
W [k], while the corresponding N ×N walk matrix is Ak . Since a matrix commutes with
itself, it holds that

Ak = Ak−p · Ap = Ap · Ak−p , (3.1)

where p is here an integer between 1 ≤ p ≤ k, although (3.1) holds for any complex p
for which the matrix Ap exists. The relation (3.1) teaches us that a walk can be split into
sub-walks, while the walk matrix can be obtained as the multiplication of walk matrices
of the corresponding sub-walks.

3.2.1. PATHS IN A GRAPH
Definition 7 A path is a walk in which all nodes are different. A path of length k is defined
by a sequence of k +1 node pairs: (n0 → n1)(n1 → n2) . . . (nk−1 → nk ), where nl ̸= nm for
all 0 ≤ l ̸= m ≤ k.

Paths account for a relatively small subset of all possible walks W [k] of length k. We de-
note the set of all possible paths of length k as P [k], where P [k] ⊆W [k], while equality
holds only for k = 1, as shown later in (3.11). The N×N path matrix Pk contains the num-
ber of paths of length k between any pair of nodes, with (Pk )i j denoting the number of
paths between node i and node j , of hopcount k.

In the following sections, we introduce three different types of walk sets: walks with
a node reappearing in the node sequence, walks where a node is not traversed and those
walks traversing a node exactly once. Based on each mentioned type of walks, we derive
an analytic solution for the N ×N path matrix Pk with hopcount k.

3.3. NODE REAPPEARANCE IN A WALK
A walk, introduced in Definition 5, can traverse the same node multiple times, defining
the first walk type we consider in this section.

Definition 8 The set of all possible walks of length k, where the same node appears at least
twice in the node sequence, on positions i and j (i.e. ni = n j ), where j > i +1, is denoted
as W(i , j )[k]. The N ×N walk matrix with the number of such walks between any pair of
nodes is denoted by M(W(i , j )[k]).

From Definition 8, we observe the following identity W(i , j )[k] = W( j ,i )[k], because
ni = n j . The introduced constraint j > i + 1 excludes two trivial cases. When i = j ,
the corresponding set of walks is actually the set of all possible walks of length k, i.e.
W(i ,i )[k] = W [k]. On the other side, when j = i + 1, the corresponding set of walks
W(i ,i+1)[k] =;, because a node cannot be adjacent to itself in a walk sequence, because
there are no self-loops in a simple network. Figure 3.1 illustrates a few examples of walks
where a node is traversed multiple times.

It is of particular interest to consider walks, where the source node is also the desti-
nation node, i.e. the set W(0,k)[k].



3

32 3. NUMBER OF PATHS IN A GRAPH

1 → 2 2 → 3 3 → 1 1 → 5 ∈ 𝒲 0,3 4 1 → 2 2 → 3 3 → 1 1 → 2 2 → 4 ∈ 𝒲 0,3 5

1

2

3

5

4
3

5

4

1

2

Figure 3.1: Examples of walks with node reappearance. Traversed links are colored in red, while arrows follow
labeling in the node sequence.

Definition 9 A closed walk of length k is a walk that starts in node i and returns, after k
hops, to that same node i (i.e. where n0 = nk ). The set of all possible closed walks of length
k is W(0,k)[k]. The corresponding N ×N walk matrix is M

(
W(0,k)[k]

)= I ◦Ak , where I is the
N ×N identity matrix, while ◦ denotes the Hadamard product. The total number of closed
walks of length k in a graph is trace(Ak ) and equals trace(Ak ) = ∑N

i=1λ
k
i , where λ j is the

j -th largest eigenvalue of the adjacency matrix [51].

1 → 2 2 → 3 3 → 1 ∈ 𝒲𝒲 0,3 3 1 → 2 2 → 4 4 → 5 5 → 1 ∈ 𝒲𝒲 0,4 4

1

2

4
3

5

1

2

3
4

5

Figure 3.2: Examples of closed walks. Traversed links are colored in red, while arrows follow labeling in the
node sequence.

A few examples of closed walks are depicted in Figure 3.2. A walk set W(i , j )[k] can be
split into three sub-walks: the set of all possible walks W [i ] of length i , the set of closed
walks W(0, j−i )[ j −i ] of length j −i and the set of all possible walks W [k− j ] of length k− j .
The corresponding N ×N walk matrix M

(
W(i , j )[k]

)
, after applying Theorem 6, Definition
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9 and relation (3.1) becomes

M
(
W(i , j )[k]

)= Ai ·
(
I ◦ A j−i

)
· Ak− j . (3.2)

The N × N walk matrix M
(
W(i , j )[k]

)
in (3.2) is asymmetric, since the order of nodes in

a walk sequence is labelled. In other words, if we label nodes of the walk sequence
in W(i , j )[k] from the destination node to the source node, we obtain the walk matrix
M

(
W(k− j ,k−i )[k]

) = Ak− j · (I ◦ A j−i
) · Ai , which together with (3.2) leads to the following

identity

M
(
W(k− j ,k−i )[k]

)= M T (
W(i , j )[k]

)
. (3.3)

Identity (3.3) holds only for undirected networks, informing us that a walk can be per-
formed from the source towards the destination node, but also in the reverse order, be-
cause all links are undirected.

3.3.1. ANALYTIC SOLUTION FOR THE N ×N PATH MATRIX Pk
Theorem 10 The set of all possible walks W [k] of length k consists of the following subsets

W [k] =
(

k−2⋃
i=0

k⋃
j=i+2

W(i , j )[k]

)
∪P [k]. (3.4)

Proof A walk of length k has either a repeating node in its sequence or represents a path
of length k. Thus, by computing the set union of walk sets, defining walks with all pos-
sible repetitions of a node, and the set of paths, we obtain the set W [k] of all possible
walks of length k in (3.4), which completes the proof. □

A walk of length k is either a path or a node is traversed multiple times. From Defini-
tion 8 and Definition 7, we observe

W(i , j )[k]∩P [k] =;, (3.5)

where 0 ≤ i ≤ k−2 and j ≥ i+2. Based on Theorem 6, equations (3.4) and (3.5), we obtain
a general solution for the N ×N path matrix Pk

Pk = Ak −M

(
k−2⋃
i=0

k⋃
j=i+2

W(i , j )[k]

)
. (3.6)

The double set union in (3.6) defines the union of k·(k−1)
2 walk sets. Thus, the number

of walk sets of the form W(i , j )[k] increases as a square function of the hopcount k. In
general, the sets of walks W(i1, j1)[k] and W(i2, j2)[k] overlap, which complicates the com-
putation of equation (3.6). Therefore, we apply the inclusion-exclusion formula.

3.3.2. INCLUSION-EXCLUSION FORMULA
The inclusion-exclusion formula [64, p. 10] defines the cardinality of the union of sets
and thus transforms the second term on the right-hand side of the equation in (3.6) as
follows
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M

(
k−2⋃
i=0

k⋃
j=i+2

W(i , j )[k]

)
=

k−2∑
i1=0

k∑
j1=i1+2

M
(
W(i1, j1)[k]

)
−

k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

k∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)
+·· ·+

+(−1)k−1
k−2∑
i1=0

k∑
j1=i1+2

· · ·
k−2∑

ik=ik−1

k∑
jk=qk

M

(
k⋂

z=1
W(iz , jz )[k]

)
,

(3.7)

where qm = jm−1 + 2 if im = im−1, otherwise qm = im + 2 with 1 < m ≤ k. Since there
are k·(k−1)

2 different walk sets with a repeating node, the total number of terms in the

inclusion-exclusion formula in (3.7) is 2

(
k·(k−1)

2

)
−1. However, not all walk set intersections

in (3.7) define possible walks, because a node cannot be adjacent to itself in the walk
sequence. Under the assumption that each matrix in (3.6) has an analytic solution, the
complexity of computing the N ×N path matrix Pk with the number of path of length k

between node pairs is O

(
kN 32

k2−k
2

)
.

3.3.3. RECURSIVE SOLUTION FOR THE N ×N PATH MATRIX Pk
In this subsection we reason why an analytic recursive solution for the N×N path matrix
Pk of the hopcount k seems infeasible. From (3.6), we derive the following identity

Pk +M

(
k−2⋃
i=0

k⋃
j=i+2

W(i , j )[k]

)
= Pk−1 · A+M

(
k−3⋃
i=0

k−1⋃
j=i+2

W(i , j )[k −1]

)

from where we conclude that the N ×N path matrix Pk of length k obeys the following
recursion

Pk = Pk−1 · A−Fk , (3.8)

where the N ×N matrix Fk is defined as

Fk = M

(
k−2⋃
i=0

k⋃
j=i+2

W(i , j )[k]

)
−M

(
k−3⋃
i=0

k−1⋃
j=i+2

W(i , j )[k −1]

)
· A. (3.9)

In Appendix C.1, we derive the first two sum terms of the N ×N matrix Fk , that illus-
trate the difficulty to derive a complete closed form solution. To provide an argument
for why the recursive solution does not seem possible, we denote a path pk = (n0 →
n1)(n1 → n2) . . . (nk−1 → nk ) as a node sequence, where nl ̸= nm for all 0 ≤ l ̸= m ≤ k. The
number of paths between node i and node j of length k +1 can be computed as follows

(Pk+1)i j =
∑

pk∈P [k]
1{n0=i }1{nk∈N j }1{n2 ̸= j }1{n3 ̸= j } . . .1{nk−2 ̸= j }, (3.10)

where the set of node j neighbours is denoted as N j , while 1x is the indicator function
that equals 1 if statement x is true, otherwise 1x = 0. On the other side, we observe from
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(3.8) that the first term of the recursive solution

(Pk+1)i j =
N∑

m=1
(Pk )i m ·am j − (Fk )i j

examines only the first two conditions from (3.10), because
∑

pk∈P [k] 1{n0=i }1{nk∈N j } =
(Pk · A)i j . The element (Pk · A)i j contains the number of walks between node i and node
j of length k +1, composed of all paths of length k, from node i to an adjacent node m ∈
N j . However, not each such a walk represents a path. To obtain length k +1 paths, we
need to distract from (Pk · A)i j those paths of length k between node i and node m ∈N j ,
traversing also node j . The N ×N path matrix Pk counts the number of length k paths
between pairs of nodes, without comprising information about traversed nodes per each
path. Therefore, the recursive solution in (3.8) requires manipulating an exponentially
large number of walk matrices, to account for walks in Pk · A that are not paths.

In the following subsections, we derive an explicit form of the N ×N path matrix Pk

up to hopcount k ≤ 4.

3.3.4. PATH MATRIX P1 OF LENGTH k = 1
The N ×N adjacency matrix A, by its definition, defines all paths of length k = 1 and thus
the N ×N path matrix P1

P1 = A, (3.11)

because there is a path of length k = 1 between node i and j only if they share a link (i.e.
if ai j = 1). Only in case k = 1, the set of all walks

W [1] =P [1]

consists of only paths, because there are no self-loops in simple networks.

3.3.5. PATH MATRIX P2 OF LENGTH k = 2

𝒫[2]

𝒲 2

𝒲 0,2 2

Figure 3.3: The set W [2] of all possible walks of length k = 2 and subsets.
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When the hopcount k > 1, walks with repeating nodes emerge, revealing the graph
connectivity patterns. The only possible repetition of nodes in a walk with the hopcount
k = 2 is when n0 = n2, forming the set W(0,2)[2] of closed walks. Since walks of length k = 2
consist of either closed walks or paths, the set W [2] of all possible walks of length k = 2
is as follows

W [2] =W(0,2)[2]∪P [2].

The Venn diagram for the walk space of the hopcount k = 2 is provided on Figure 3.3.
From (3.2) we obtain the N ×N walk matrix M

(
W(0,2)[2]

)
as follows

M
(
W(0,2)[2]

)= I ◦ A2.

By importing the above equation into (3.6), we obtain the N ×N path matrix P2

P2 = A2 − I ◦ A2. (3.12)

3.3.6. PATH MATRIX P3 OF LENGTH k = 3
The set W [3] of all walks with the hopcount k = 3 represents the set union of the walk
sets with any possible node repetition and the path set P [3]. By applying (3.4) for the
hopcount k = 3, we obtain

W [3] =W(0,2)[3]∪W(0,3)[3]∪W(1,3)[3]∪P [3].

By importing (3.6), the above equation transforms

A3 = M
(
W(0,2)[3]

)+M
(
W(0,3)[3]

)+M
(
W(1,3)[3]

)+P3

−M
(
W(0,2)[3]∩W(0,3)[3]

)−M
(
W(0,2)[3]∩W(1,3)[3]

)−M
(
W(0,3)[3]∩W(1,3)[3]

)
+M

(
W(0,2)[3]∩W(0,3)[3]∩W(1,3)[3]

)
.

(3.13)

The set intersection (W(0,2)[3]∩W(0,3)[3]) defines walks where n0 = n2 = n3. Since a
node is not adjacent to itself in a simple network (i.e. ai i = 0), such walks do not exist and
thus (W(0,2)[3]∩W(0,3)[3]) =;. The same reasoning holds for the sets (W(0,3)[3]∩W(1,3)[3]) =
; and (W(0,2)[3]∩W(0,3)[3]∩W(1,3)[3]) =;, which simplifies the relation (3.13)

A3 = M
(
W(0,2)[3]

)+M
(
W(0,3)[3]

)+M
(
W(1,3)[3]

)+P3 −M
(
W(0,2)[3]∩W(1,3)[3]

)
. (3.14)

The set W [3] of all possible walks with the hopcount k = 3, the walk subsets
W(0,2)[3],W(0,3)[3],W(1,3)[3] with a repeating node and the path set P [3] are presented in
Figure 3.4.

A walk of length k = 3 where n0 = n2 and n1 = n3 starts from a node i , visits a neigh-
bouring node j , traverses again the node i and ends in the adjacent node j . Thus, for
a pair of adjacent nodes i and j , there is only one such a path. We denote the N × N
corresponding walk matrix M

(
W(0,2)[3]∩W(1,3)[3]

)
M

(
W(0,2)[3]∩W(1,3)[3]

)= A ◦ A ◦ A = A.

Finally, after importing the above equation and (3.2) into (3.14), we obtain

P3 = A3 − (
I ◦ A2) · A− I ◦ A3 − A · (I ◦ A2)+ A. (3.15)
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𝒫[3]

𝒲 3

𝒲 0,2 3

𝒲 1,3 3

𝒲 0,3 3

Figure 3.4: The set of all possible walks of length k = 3, the subset of paths and subsets of walks with a repeating
node.

3.3.7. PATH MATRIX P4 OF LENGTH k = 4
The set W [4] of all possible walks of length k = 4 represents the set union of the following
sets

W [4] =W(0,2)[4]∪W(0,3)[4]∪W(0,4)[4]∪W(1,3)[4]∪W(1,4)[4]∪W(2,4)[4]∪P [4],

The set W [4] of all walks with the hopcount k = 4, the path set P [4] and the walk sets with
a repeating node are presented in Figure 3.5. Not all defined walk subsets with repeating
nodes overlap, as presented in Figure 3.5.

A4 = P3 +M
(
W(0,2)[4]

)+M
(
W(0,3)[4]

)+M
(
W(0,4)[4]

)+M
(
W(1,3)[4]

)+M
(
W(1,4)[4]

)+M
(
W(2,4)[4]

)
−M

(
W(0,2)[4]∩W(1,3)[4]

)−M
(
W(0,2)[4]∩W(1,4)[4]

)−M
(
W(0,2)[4]∩W(2,4)[4]

)
−M

(
W(0,3)[4]∩W(1,4)[4]

)−M
(
W(0,3)[4]∩W(2,4)[4]

)−M
(
W(0,4)[4]∩W(1,3)[4]

)
−M

(
W(0,4)[4]∩W(2,4)[4]

)−M
(
W(1,3)[4]∩W(2,4)[4]

)
+M

(
W(0,2)[4]∩W(1,3)[4]∩W(2,4)[4]

)+M
(
W(0,2)[4]∩W(1,3)[4]∩W(0,4)[4]

)
+M

(
W(0,2)[4]∩W(0,4)[4]∩W(2,4)[4]

)+M
(
W(0,4)[4]∩W(1,3)[4]∩W(2,4)[4]

)
−M

(
W(0,2)[4]∩W(0,4)[4]∩W(1,3)[4]∩W(2,4)[4]

)
.

(3.16)

In the following part, we derive in sequel the walk matrices of the set intersections with
three and four walk sets from the above relation.

Walk set
(
W(0,2)[3]∩W(1,3)[3]∩W(2,4)[3]

)
defines walks with the hopcount k = 4 where

n0 = n2 = n4 and n1 = n3 originate from node n0, visits node n1, returns to node n0 and
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𝒲 1,3 4
𝒫 4

𝒲 4

𝒲 0,4 4

𝒲 0,2 4

𝒲 2,4 4

𝒲 1,4 4

𝒲 0,3 4

Figure 3.5: The set W [4] of all possible walks of length k = 4, the subset of paths and subsets of walks with
repeating nodes.

repeats the same walk pattern, finishing at node n0.

M
(
W(0,2)[4]∩W(1,3)[4]∩W(2,4)[4]

)= I ◦ (A · (A ◦ A ◦ A)) = I ◦ A2. (3.17)

In addition, walk set
(
W(0,2)[4]∩W(1,3)[4]∩W(0,4)[4]

)
and(

W(0,4)[4]∩W(1,3)[4]∩W(2,4)[4]
)

define walks of length k = 4 where n0 = n2 = n4 and
n1 = n3. Thus, we observe

(
W(0,2)[4]∩W(1,3)[4]∩W(0,4)[4]

)= (
W(0,2)[4]∩W(1,3)[4]∩W(2,4)[4]

)= (
W(0,4)[4]∩W(1,3)[4]∩W(2,4)[4]

)
.

On the contrary, the walk set
(
W(0,2)[4]∩W(0,4)[4]∩W(2,4)[4]

)
defines walks with hop-

count k = 4 where n0 = n2 = n4. Such walks start from a node n0, visits an adjacent node,
returns to node n0, traverses an adjacent node once more and returns again to node n0.
The corresponding N ×N walk matrix M

(
W(0,4)[4]∩W(1,3)[4]∩W(2,4)[4]

)
is as follows

M
(
W(0,2)[4]∩W(0,4)[4]∩W(2,4)[4]

)= (I ◦ (A · A)) · (I ◦ (A · A)) = (
I ◦ A2)2

. (3.18)

The set M
(
W(0,2)[4]∩W(0,4)[4]∩W(1,3)[4]∩W(2,4)[4]

)
defines walks of length k = 4

where n0 = n2 = n4 and n1 = n3 and thus

M
(
W(0,2)[4]∩W(0,4)[4]∩W(1,3)[4]∩W(2,4)[4]

)= M
(
W(0,2)[4]∩W(1,3)[4]∩W(2,4)[4]

)= I ◦ A2.



3.4. WALKS TRAVERSING A NODE EXACTLY ONCE

3

39

Finally, we derive the N ×N path matrix P4 of length k = 4

P4 =A4 − (
I ◦ A2) · A2 − (

I ◦ A3) · A− I ◦ A4 − A · (I ◦ A2) · A− A · (I ◦ A3)− A2 · (I ◦ A2)
+3 · (I ◦ A2)2 +3 · A ◦ A2 + I ◦ (

A · (I ◦ A2) · A
)+2 · A2

−3 · (I ◦ A2)− (
I ◦ A2)2

+(
I ◦ A2) .

(3.19)

Determining walk matrices of all walk subsets in (3.7) with increasing hopcount k
becomes intractable. While we provide above an explicit solution for the N × N path
matrix Pk , with k ≤ 4, already for k = 5, providing the explicit enumeration of the number
of paths between any pair of nodes becomes far more involving.

3.4. WALKS TRAVERSING A NODE EXACTLY ONCE
Applying the inclusion exclusion formula in (3.7) produces an exponential number of
matrix terms, which do not seem to be solvable for a general hopcount k. Instead, we
consider here walks in which a node appears exactly once.

Definition 11 The set of all possible walks with length k, where node i ∈ N is traversed
exactly once, is denoted as W(i )[k]. The corresponding N ×N walk matrix M

(
W(i )[k]

)
with

the number of such walks between node pair equals

M
(
W(i )[k]

)=((
ei ·uT )◦ A

) · (((u −ei ) · (u −ei )T )◦ A
)k−1

+
k−1∑
m=1

((
(u −ei ) · (u −ei )T )◦ A

)m−1 · (A ◦ (
u ·eT

i

)) · (((u −ei ) · (u −ei )T )◦ A
)k−m

+((
(u −ei ) · (u −ei )T )◦ A

)k−1 · ((ei ·uT )◦ A
)

.

The N ×N walk matrix M
(
W(i )[k]

)
consists of k +1 terms, because node i can appear on

k +1 positions in a walk of length k. We illustrate examples of walks traversing a node
exactly once in Figure 3.6.

3.4.1. ANALYTIC SOLUTION FOR THE N ×N PATH MATRIX Pk
Defining the walk sets W(i )[k] with node i ∈ N appearing only once allows us to deter-
mine the set of paths P [k] with hopcount k, not by excluding walks with node reappear-
ance from all possible walks W [k], but instead as the intersection of those walk sets of
the form W(i )[k], i ∈N

P [k] =W(i0∈N )[k]∩W(i1∈N \i0)[k]∩·· ·∩W(ik∈(N \(i0∪i1∪···∪ik−1)))[k]. (3.20)

Theorem 12 The N×N path matrix Pk , whose entries comprise the number of paths with
hopcount k between any pair of nodes is defined as follows

Pk = ∑
i0∈N

∑
i1∈N \i0

· · · ∑
ik∈N \(i0∪i1∪···∪ik−1)

k∏
z=1

((
eiz−1 ·eT

iz

)
◦ A

)
, (3.21)
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1 → 2 2 → 3 3 → 5 ∈ 𝒲𝒲 2 3 2 → 4 4 → 5 5 → 3 3 → 2 ∈ 𝒲𝒲 4 4

1

2

4
3

5

2

4
3

1

5

Figure 3.6: Examples of walks in which a node is traversed exactly once. Traversed links are colored in red,
while arrows follow labeling in the node sequence.

or alternatively

Pk =
N∑

i0=1

N∑
i1=1

· · ·
N∑

ik=1

k∏
z=1

((
eiz−1 ·eT

iz

)
◦ A

)
.

Proof Relation (3.21) examines all possible labeled sequences of k+1 nodes. For each se-
quence (i0, i1, . . . , ik ), we remove all elements from the N ×N adjacency matrix A, except

for the element a(iz−1,iz ) between adjacent nodes in the sequence
(
eiz−1 ·eT

iz

)
◦ A, where

1 ≤ z ≤ k. If a node sequence composes a path of lenth k, the (i0, ik )th element of the

product
∏k

z=1

((
eiz−1 ·eT

iz

)
◦ A

)
equals 1, otherwise 0. □.

The solution for the N ×N path matrix Pk in (3.21) represents a deterministic coun-
terpart to the relation in [65, eq. 6], defining the probability of a path existence between
two nodes. For each possible labelled sequence of k+1 different nodes, in total (k+1)! of
them, relation (3.21) forces all entries of the N ×N adjacency matrix A to zero, expect for
the entries between adjacent nodes in the sequence and provides an element one on the
position (i j ), if the remaining elements compose a path of length k between node i and
node j . By summing over each possible labelled node sequence, we obtain the N × N
path matrix Pk , with complexity O

(
k !kN 3

)
.

3.5. WALKS NOT TRAVERSING A NODE
For a general hopcount k, there are in total k ! matrix terms in (3.21), as each node se-
quence is labelled. Therefore, an explicit enumeration for an arbitrary hopcount k is in-
feasible. However, when computing the N ×N path matrix Pk in a matrix form, labelling
nodes in the sequence is not necessary, because the matrix product naturally preserves
the information about the source and destination node of each walk, as illustrated in
(3.1). In this section we introduce walks where a node is not traversed. Originally, this
type of walks was defined by Bax in [71].
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Definition 13 The set of all possible walks with length k = N −1, where node m ∈ N is
not traversed, is denoted as Wm . The N ×N corresponding walk matrix with the number
of such walks between any pair of nodes equals

M (Wm) = ((
(u −em) · (u −em)T )◦ A

)N−1
,

where ei denotes the N ×1 basic vector with only one non-zero element (ei )i = 1.

Figure 3.7 provides two examples of walks not traversing a node.

1 → 3 3 → 5 5 → 1 1 → 2 ∈ 𝒲𝒲4 2 → 4 4 → 5 5 → 3 3 → 2 ∈ 𝒲𝒲1

1

2

3
4

5

1

2

3

5

4

Figure 3.7: Examples of walks with length k = N−1 in which a node is not traversed. Traversed links are colored
in red, while arrows follow labeling in the node sequence.

3.5.1. HAMILTONIAN PATH MATRIX PN−1
A path of length N −1, also known as a Hamiltonian path, is defined by a sequence of N
nodes

(n0,n1, . . . ,nN−1)

such that nk ̸= nl , for 0 ≤ k ≤ N − 1 and for l ∈ N \ k, where also a(nk ,nk−1) = 1, for
0 ≤ k ≤ N −2. Because a path by definition consists of different nodes in the sequence,
a Hamiltonian path traverses each node in the graph exactly once. Such observation al-
lowed Bax in [71] to define a set of all walks with hopcount k = N −1, where node m ∈N

is not traversed.
Walk sets of the form Wm allow us to define the set of all possible walks of length

k = N −1 as follows

W [N −1] =
N⋃

i=1
Wi ∪P [N −1] (3.22)

Relation (3.22) informs us that either a node is not traversed in a walk of length N − 1
or that walk represents a path, leading to the following general solution for the N × N
Hamiltonian path matrix PN−1

PN−1 = AN−1 −M

(
N⋃

i=1
Wi

)
. (3.23)
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By applying the inclusion-exclusion formula on the set union from the equation above,
Bax obtained

M

(
N⋃

i=1
Wi

)
=

N∑
i1=1

M
(
Wi1

)
−

N−1∑
i1=1

N∑
i2=i1+1

M
(
Wi1 ∩Wi2

)
+

N−2∑
i1=1

N−1∑
i2=i1+1

N∑
i3=i2+1

M
(
Wi1 ∩Wi2 ∩Wi3

)
− . . .

+(−1)N−3
2∑

i1=1

3∑
i2=i1+1

· · ·
N∑

iN=iN−1+1
M

(
N⋂

z=1
Wiz

)
.

(3.24)

A set of intersections from (3.24) defines all possible walks with hopcount N −1, where
multiple nodes are not traversed. The corresponding N ×N walk matrix of such a walk
set is

M
(
Wi1 ∩Wi2 ∩·· ·∩Wim

)= ((
diag

(
u −ei1 −ei2 − . . .eim

)) · A · (diag
(
u −ei1 −ei2 − . . .eim

)))N−1 . (3.25)

By combining (3.23) and (3.25) Bax derived in [71] the N ×N Hamiltonian path matrix
PN−1 as follows

PN−1 =AN−1 −
N∑

i1=1

(
diag

(
u −ei1

) · A ·diag
(
u −ei1

))N−1

+
N−1∑
i1=1

N∑
i2=i1+1

(
diag

(
u −ei1 −ei2

) · A ·diag
(
u −ei1 −ei2

))N−1

− . . .

+(−1)N−3 ·
2∑

i1=1

3∑
i2=i1+1

· · ·
N∑

iN−1=iN−2+1

(
diag

(
u −

N−1∑
z=1

eiz

)
· A ·diag

(
u −

N−1∑
z=1

eiz

))N−1

.

(3.26)

3.5.2. ANALYTIC SOLUTION FOR THE N ×N PATH MATRIX Pk

We here extend the approach of Bax in [71] and derive an analytic solution for the N ×N
path matrix Pk of any hopcount 1 ≤ k ≤ N −1. The idea behind computing the number
of paths with hopcount k between node pairs is to examine all possible unlabeled se-
quences of k +1 nodes, in total

( N
k+1

)
of them. For each node sequence, we remove links

from the graph, not adjacent to any node in the sequence. A path of length k in such a
reduced graph is equivalent to a Hamiltonian path in the original graph, and thus, the
idea of Bax from [71] can be applied.

Theorem 14 The N×N path matrix Pk , whose entries comprise the number of paths with
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hopcount k between any pair of nodes can be computed as follows

Pk =
N−k−1∑

i0=0

N−k∑
i1=i0+1

· · ·
N∑

ik=ik−1+1

[(((
k∑

z=0
eiz

)
·
(

k∑
z=0

eT
iz

))
◦ A

)k

−
k∑

j0=0

(((
k∑

z=0
eiz −ei j0

)
·
(

k∑
z=0

eiz −ei j0

)T )
◦ A

)k

+
k−1∑
j0=0

k∑
j1= j0+1

(((
k∑

z=0
eiz −ei j0

−ei j1

)
·
(

k∑
z=0

eiz −ei j0
−ei j1

)T )
◦ A

)k

− . . .

+(−1)k−2
1∑

j0=0

2∑
j1= j0+1

· · ·
k∑

jk−1= jk−2+1

(((
k∑

z=0
eiz −

k−1∑
q=0

ei jq

)
·
(

k∑
z=0

eiz −
k−1∑
q=0

ei jq

)T )
◦ A

)k ]
.

(3.27)

Proof We examine all possible unlabeled sequences of k +1 nodes. For each such a se-
quence (i0, i1, . . . , ik ) we transform the N×N adjacency matrix A by removing all links not

adjacent to any node in the sequence
((∑k

z=0 eiz

) · (∑k
z=0 eT

iz

))
◦A. The modified adjacency

matrix allows for applying the inclusion exclusion formula Bax derived in [71], because
a path of length k in the modified adjacency matrix is equivalent to a Hamiltonian path
in the N ×N original adjaceny matrix A. □

There are
( N

k+1

) = N !
(k+1)!(N−k−1)! ways to choose k +1 nodes out of N nodes. For each

set of k +1 nodes, relation (3.27) defines in total 2k matrix terms1 and thus computing

the N ×N path matrix Pk implies complexity O
(( N

k+1

)
kN 32k

)
.

3.5.3. COMPLEXITY OF COMPUTING THE N ×N PATH MATRIX Pk
We present three analytic solutions for the N×N path matrix Pk , comprising in its entries
the number of length k paths between node pairs. Figure 3.8 provides complexity of
computing the N × N path matrix Pk , as a function of the hopcount k, for a graph of
N = 20 nodes. Complexity of the solution in (3.6) (blue color), based on walks traversing
a node multiple times, represents the most complex approach for almost the entire range
of hopcount k values. Despite its complexity, for small k, the solution in (3.6) is the most
insightful, from a linear algebra point of view.

Computing the N×N path matrix Pk using (3.21) (red color in Figure 3.8) requires the
least computational effort, for smaller values of the hopcount k, because it examines all
possible labeled sequences of k +1 nodes. In contrast, for smaller values of hopcount k,
the third approach in (3.27) (presented in green color in Figure 3.8)) is far more computa-
tionally demanding, because it applies the inclusion exclusion formula on each possible
unlabeled sequence of k +1 nodes. As the path length k increases, there are less unla-
beled sequences of nodes, allowing the third solution in (3.27) to perform the best, in
terms of complexity.

1Each matrix term in (3.27) represent the k-th power of the adjacency matrix with reduced number of links.
Therefore, complexity of computing a matrix term is O(kN 3).
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Figure 3.8: Computational complexity of computing the N ×N path matrix Pk with different hopcount 1 ≤ k ≤
N −1 using (3.6) (blue color), (3.21) (red color) and (3.27)(green color), where N = 20.

3.6. RECURSIVE ALGORITHM FOR COMPUTING THE NUMBER

OF PATHS

We provide a simple recursive algorithm 3.10 that computes the N × N path matrices
Pk , where 1 ≤ k ≤ N − 1. The proposed algorithm treats each path independently (via
recursions) and prevents repeating nodes in the walk sequence.

The proposed recursive algorithm identifies each possible path in a graph and incre-
ment the corresponding element of the N ×N path matrix Pk , with 1 ≤ k < N . For each
node i ∈N in G , we set the hopcount to 0 and call the recursive procedure, as provided
in line 4 of the pseudocode 3.9. The recursive algorithm 3.10 returns the N −1×N node
i based path matrix T , where the element T j m denotes the number of length j paths
between node i and node m. Therefore, in line 6 we store the j -th row of the N −1×N
node based path matrix T as the i -th row of the N ×N path matrix P j .

The recursive procedure described in Algorithm 3.10 takes the (N −1) × N node-
based path matrix T , the N × N adjacency matrix A, the destination node nk and the
current hop count k as inputs. Firstly, we increment the hop count k in line 1. Next,
in line 2, we identify the neighbors of the destination node j ∈ Nnk . In the subsequent
step, we account for the paths reaching any neighbors in Nnk . A crucial step is to re-
move all links adjacent to the destination node nk , as defined in line 4, to prevent paths
from reaching node nk again. Therefore, within the recursive function, we remove all
links that would lead to the reappearance of a node, allowing us to consider each adja-
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DETERMINEPATHS (A, N )

Input: A, N
Output: P1, P2, . . . , PN−1

1. T ←O(N−1)×N

2. Pk ←ON×N , where 1 ≤ k < N
3. for i ← 1 to N
4. T ← COMPUTEPATHS (O(N−1)×N , A, i , 0)
5. for j ← 1 to N −1
6. Store j -th row of T as the i -th row of P j

7. end for
8. end for
9. return P1, P2, . . . , PN−1

Figure 3.9: Pseudocode for calling the recursive Algorithm for determining all paths in a graph, with the graph
size N and the the N ×N adjacency matrix A as input.

COMPUTEPATHS (T, A, nk , k)

Input: T, A, nk , k
Output: T
1. k ← k +1
2. Nnk ← { j |ank , j = 1, j ∈N }
3. Tk, j ← Tk, j +1, where j ∈Nnk

4. ank , j ← 0 and a j ,nk ← 0, where j ∈Nnk

5. for m ← 1 to |Nnk |
6. if |N jm | > 0
7. T ← COMPUTEPATHS (T, A, jm , k)
8. end if
9. end for
10. return T

Figure 3.10: Metacode of the recursive algorithm for determining all paths in a graph, originating from a singe
node, with the N ×N adjacency matrix A, the (N −1)×N node-based path matrix T , destination node nk and
hopcount k as input. The recursive function returns the (N −1)×N node-based path matrix T .
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cent node of the destination node as a valid extension of the path. After removing the
links, for each neighbor j (line 5) with non-zero degree (line 6), we invoke the recursive
algorithm in line 7, with the incremented hop count and the updated destination node
j . The recursion terminates when a destination node has no neighbors, as defined in
line 6. In appendix C.2, we adjust the proposed recursive algorithm to identify number
of length k paths only, between all node pairs.

By executing Algorithm 3.10 once, we can gather information about every possible
path in a graph. Since the recursive algorithm 3.10 we propose accounts for all possible
paths, its complexity scales linearly with the total number of paths, given by 1

2 ·
∑N−1

i=1 uT ·
Pi · u. Thus, Figure 3.11 illustrates the total number of paths in an Erdős-Rényi (ER)
random graph with N = 6 (left), N = 8 (middle), and N = 10 (right) nodes, respectively,
for different link densities p. It is evident that the complexity of the proposed algorithm,
O(N (1+p)2N ), grows exponentially with the network size N .

Figure 3.11: Total number of paths in Erdős Rényi graph with N = 6 (left figure), N = 8 nodes (middle figure)
and N = 10 nodes (right figure), for different values of the link density p.

3.7. CONCLUSION
We introduce three types of walks: walks with a node reappearing in the sequence, walks
traversing a node exactly once, and those not traversing a node. Based on considered
walk types, we derive analytic solutions for the number of paths of a certain length be-
tween node pairs in a matrix form. Depending on the path length, different solutions
require the least computational effort. We propose a recursive algorithm for determin-
ing all possible paths between node pairs, whose complexity scales linearly with the to-
tal number of paths in a graph. The proposed recursive algorithm applies to a directed
(un)weighted network.
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EFFECTIVE RESISTANCE IN GRAPH

THEORY

It is not knowledge, but the act of learning,
not possession but the act of getting there,

which grants the greatest enjoyment.

Carl Friedrich Gauss

The effective resistance between two nodes is determined by the electrical systems theory,
which explains how electrical energy is dissipated throughout the network while being
transmitted between the nodes. This concept is significant for the general network theory
since the effective resistance metric describes the entire network from the viewpoint of two
nodes. In this chapter, we make use of the information captured by the effective resistance.
We present an iterative algorithm that solves the inverse all-shortest-path problem by be-
ginning with a complete graph and progressively removing links until the given upper
bounds on the shortest path weights are exceeded. Furthermore, we propose an iterative
algorithm for deterministic graph sparsification, which either minimises or maximises the
effective graph resistance, or minimises the Laplacian eigenvalue deviation.

This chapter is partially based on [72].
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4.1. INTRODUCTION

Effective resistance is a key concept in graph theory, which has significant applications
in various areas, including electrical, social, and transportation networks. The effective
resistance between two nodes in an electrical network is the resistance between those
nodes when all other links are removed and replaced with their corresponding resis-
tances [73]. This measure takes into account all possible paths between the two nodes
and is closely related to the concept of electrical resistance in physics. Effective resis-
tance has been extensively studied in the literature, and one of its critical properties is
being a distance matrix and thus obeying the triangle inequality [4]. This property en-
ables the estimation of effective resistances between any pair of nodes using only local
information, making it useful in the analysis of complex networks. Effective resistance
was first introduced by Kirchhoff in 1847 to calculate the electrical resistance of a net-
work of resistors [74]. Since then, effective resistance has found diverse applications in
several fields.

One of the earliest applications of effective resistance was in the study of random
walks on graphs. The commute time between two nodes in an unweighted graph is
proportional to the effective resistance between these two nodes [75]. This result has
been applied in the study of diffusion processes in networks, including social and bio-
logical networks [76]. Conversely, the escape probability - the probability of a random
walk starting from node i and reaching node j before returning to node i - is inversely
proportional to the effective resistance between the two nodes [77]. Furthermore, the
effective resistance between two nodes quantifies a ratio of spanning trees in a graph
that traverses that link [78]. Effective resistance has also been used in the analysis of
epidemic spreading [79]. In recent years, effective resistance has gained significant at-
tention in network science. It has been utilized to identify important nodes or edges in
complex networks [23], such as those with high effective resistance, which play a criti-
cal role in the network’s overall connectivity. Effective resistance has also been applied
in community detection [26], where it can identify communities of nodes with similar
effective resistance properties.

This chapter introduces two applications of effective resistance in graph theory. In
Section 4.2, we propose an iterative algorithm that solves the inverse all shortest path
problem, while in Section 4.3, we propose a deterministic graph sparsification algo-
rithm that removes links from an unweighted graph iteratively, while either minimising
or maximising the effective graph resistance of the resulting graph. Finally, we conclude
in Section 4.4.

4.1.1. THE LAPLACIAN MATRIX Q
The eigenvalue decomposition of the N ×N Laplacian Q =∆− A,

Q = Z ·diag(µ) ·Z T , (4.1)

defines the set of N orthogonal N ×1 eigenvectors zi contained in columns of the N ×N
eigenvector matrix Z and N eigenvalues µ1 ≥µ2 ≥ ·· · ≥µN . Due to double orthogonality
of the eigenvector matrix Z (i.e. Z · Z T = I and Z T · Z = I ), where I is the N ×N identity
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matrix, relation (4.1) can be transformed into a weighted sum of N outer vector products

Q =
N∑

i=1
µi · zi · zT

i . (4.2)

As of any real, symmetric matrix [80], the eigenvalues of Laplacian Q are real and non-
negative because Q is a positive semidefinite matrix [80, p.67]. From Q ·u = 0, we observe
that µN = 0 and zN = u and thus detQ = 0. Consequently, the Laplacian Q is not invert-
ible. However, the pseudoinverse1

Q† =
N−1∑
i=1

1

µi
· zi · zT

i (4.3)

obeys Q† ·Q =Q ·Q† = I − 1
N · J . In this work we consider a weighted graph G , where a link

l between node i and node j is defined by its weight

wi j = wl =
1

rl
,

with rl > 0 denoting link l resistance.

4.1.2. EFFECTIVE RESISTANCE
The effective resistance ωi j between node i and node j is defined as

ωi j =
(
ei −e j

)T ·Q† · (ei −e j
)

, (4.4)

where the N × 1 basic vector ei has only one non-zero element (ei )i = 1. The effective
resistance ωi j quantifies the dissipated power when the current of 1 Ampere is applied
between the nodes i and j . Relation (4.4) can be transformed into a matrix form, defin-
ing the N ×N effective resistance matrix

Ω= ζ ·uT +u ·ζT −2 ·Q†, (4.5)

where the N × 1 vector ζ =
(
Q†

11, Q†
22, . . . , Q†

N N

)
contains the diagonal elements of the

pseudoinverse of Laplacian Q†. The effective resistance ωi j between directly connected
nodes i and j (i.e. ai j = 1), represents the effective resistance of a parallel connection

1

ωi j
= 1

ri j
+ 1

(ωG∗ )i j
(4.6)

between the resistance of a direct link ri j and the effective resistance (ωG∗ )i j between
nodes i and j in the graph G∗ =G \ li j , where the link li j is removed.

Lemma 15 A link li j ∈L of a graph G(N ,L ) connects two disconnected sub-graphs G1

and G2, i.e. L (G1)∪L (G2)∪ li j =L (G) and L (G1)∩L (G2) =; if and only if it holds

ωi j = ri j .
1We restrict the analysis to connected graphs, as the number of zero eigenvalues of Laplacian Q equals the

number of connected components in a graph. More precisely, relation (4.3) does not hold in the case of a
disconnected graph.
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Proof: In case link li j of a graph G connects two disconnected sub-graphs G1 and G2,
the effective resistance of a graph G∗ = G \ li j equals r∗

i j = ∞. Therefore, relation (4.6)

transforms into ωi j = ri j , which completes the proof. □
The effective resistanceωi j between adjacent nodes i and j is upper bounded by the

resistance ri j of the direct link between them

ωi j =
ri j · (ωG∗ )i j

ri j + (ωG∗ )i j
≤ min

(
ri j , (ωG∗ )i j

)
.

Otherwise, when ai j = 0, the effective resistance ωi j is upper bound by the sum of resis-
tances of links forming the shortest path between the nodes. In both cases, if more paths
exist connecting two nodes, then there are more possible paths for the current to flow
simultaneously and thus, the effective resistance lowers. The sum of all elements of the
N ×N effective resistance matrixΩ defines the effective graph resistance

RG = 1

2
·uT ·Ω ·u = N ·

N−1∑
i=1

1

µi
. (4.7)

4.2. INVERSE ALL SHORTEST PATHS PROBLEM
Problem 16 (Inverse All Shortest Path Problem (IASPP)) Given an N×N symmetric de-
mand matrix D with zero diagonal elements but positive off-diagonal elements. Deter-
mine an N ×N weighted adjacency matrix Ã, such that2 the corresponding shortest path
weight matrix S obeys S ≼D

Since an element in the shortest path weight matrix S can be any positive number by
scaling the weighted adjacency matrix, the IASPP generally has infinitely many solutions.
One possibility is to add optimisation criteria, such that the IASPP asks to determine an
N ×N weighted adjacency matrix under the constraints that the corresponding shortest
path weight matrix S obeys S ≼D and minimizes a norm ||D−S||. This instance of IASPP
is called [27] the optimized inverse shortest path problem (OIASPP)[27].

Problem 17 (Optimized Inverse Shortest Path Problem (OIASPP)) Given an N × N
symmetric demand matrix D with zero diagonal elements but positive off-diagonal
elements. Determine an N ×N weighted adjacency matrix Ã, such that the corresponding
shortest path weight matrix S obeys S ≼D and minimizes a norm ||D −S||.

Any topology resulting in a connected graph (i.e. from a tree graph to the complete
graph [27]) can represent the solution of the IASPP problem 16, with appropriate link
weights. Instead, in the following part of the chapter, we consider a variation of the IASPP
problem, where the total link budget b =∑

l∈L wl is fixed.

Problem 18 (Inverse Shortest Path Problem with Link Budget (IASPPB )) Given an N×
N symmetric demand matrix D with zero diagonal elements but positive off-diagonal
elements and a positive link budget b. Determine an N ×N weighted adjacency matrix Ã
with the least number of links L, such that uT ·W ·u = 2b and the corresponding shortest
path weight matrix S obeys S ≼D.

2The notation ≼ is used for componentwise inequality, i.e. S ≼ D means that si j ≤ di j for each i = 1,2, . . . , N
and each j = 1,2, . . . , N .
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With the total link budget b introduced, not each graph topology solves the IASPP
problem. When the number of links LH in the obtained graph H is reduced, the shortest
path weights increase on average because the link weights always sum to b.

4.2.1. OMEGA-BASED LINK REMOVAL (OLR)
A shortest path weight between two nodes is the sum of link weights (i.e. corresponding
elements of the N × N weighted adjacency matrix W ) belonging to that path. On the
contrary, from the electric graph theory point of view, by summing the link weights we
sum the inverse resistance of each link forming the path3 Therefore, to utilise the analogy
between shortest paths and effective resistance, we additionally define the N ×N matrix
Ŵ containing the inverse link weights

ŵi j =
{

1
wi j

if wi j > 0,

0 otherwise,
(4.8)

where i , j ∈N . The corresponding N ×N effective resistance matrix computed using Ŵ
instead of W is denoted as Ω̂.

In Figure 4.1, we propose an iterative algorithm that solves the IASPPB problem by
utilising the information contained in the effective resistance between pairs of nodes.
The OLR algorithm is initialised with the complete graph in line 2 (with the adjacency
matrix A = J − I ), while the link weights equal (line 3) corresponding shortest path
weights in the N ×N demand matrix D , scaled to sum up to b,

W = b

uT · (A ◦D) ·u
· (A ◦D) ,

for two reasons. Firstly, if the proposed OLR algorithm recovers the exact topology as in
the original graph, the link weights would also be the same. Secondly, when additional
links exist in the obtained graph H , their weights exist at the cost of reduced weights
of links from the original graph G , thus still satisfying the bound S ≼ D . To determine
which link should be removed in each iteration, in line 7, we compute the N ×N matrix

R = (
Ω̂−Ŵ

)◦ (D −S)◦ A,

whose elements are dimensionless and denote the inverse effective resistance
(
Ω̂−Ŵ

)
i j

between a pair of neighbouring nodes (i.e. ai j = 1), in case the direct link between them
is removed (as in (4.6)), multiplied by the gap (di j −si j ) between the shortest path weight
between them and the given upper bound in D . We remove the existing link with the
highest value in R (line 8) because the adjacent nodes are easily reachable via the rest of
the graph when the link is removed, and the margin between the current shortest path
weight and the upper bound is relatively high. After updating the adjacency matrix A
(line 9), we redistribute the link weights (line 10) as W = b

uT ·(A◦D)·u · (A ◦D) and update
(line 11) the N ×N shortest path weight matrix S.

Link removal is performed until at least one shortest path weight in the obtained
graph H exceeds the given upper bound in the N ×N demand matrix D . At that point,

3A link weight in the electric graph theory defines the inverse resistance of that link.
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OLR(D, b)

Input: D, b
Output: W, S
1. N ← number of rows (or columns) in D
2. AN×N ← JN×N − IN×N adjacency matrix of a complete graph
3. W ← b

uT ·(A◦D)·u · (A ◦D) weighted adjacency matrix

4. SN×N ← shortest path weight matrix of W
5. do
6. ΩN×N ← effective resistance matrix of Ŵ
7. R ← (

Ω̂−Ŵ
)◦ (D −S)◦ A

8. (i , j ) ← indices of the maximum element in R
9. A ← A−ei ·eT

j −e j ·eT
i

10. W ← b
uT ·(A◦D)·u · (A ◦D)

11. SN×N ← shortest path weight matrix of W
12. while (S ≼D)∧ (Ri j > 0)
13. A ← A+ei ·eT

j +e j ·eT
i

14. W ← b
uT ·(A◦D)·u · (A ◦D)

15. SN×N ← shortest path weight matrix of W
16. return W, S

Figure 4.1: Pseudocode of the proposed OLR algorithm. For a given N ×N symmetric demand matrix D , the
algorithm returns the N ×N weighted adjacency matrix W and the N ×N corresponding shortest path weight
matrix S of the recovered graph G , obeying S ≼D and uT ·W ·u = 2b.

the last removed link is returned (line 13), while the N ×N weighted adjacency matrix W
and the N ×N corresponding shortest path weight matrix S of the obtained graph H are
provided as output (lines 14-16).

In the following subsection, we compare the performance of our OLR algorithm to
that of the DOR algorithm proposed in [72]. The DOR algorithm assumes a complete
graph with the link weights as provided in the demand matrix D and computes the min-
imum spanning tree. Iteratively, DOR adds links between those nodes whose shortest
path weight is below the upper bound, provided in D , by assigning the given shortest
path weight in D as the link weight. Eventually, DOR outputs a weighted graph whose
shortest path weights exactly equal given bounds in the demand matrix D .

4.2.2. SIMULATION RESULTS

In this section, we generate Erdős–Rényi (ER) random graphs Gp (N ), with a different
number of nodes N and a different link density p. We uniformly assign a random weight
to each link in G , thus defining the N×N link weight matrix W and determining the total
link budget b = 1

2 ·uT ·W ·u. For each generated ER graph, we provide the N ×N shortest
path weight matrix D and the link budget b to the algorithm DOR and OLR and obtain
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the resulting graph H , whose N ×N shortest path weight matrix is denoted as S.

To test the performance of the proposed inverse shortest path algorithms, we intro-
duce four complementary criteria: (i) the number LH −LG of additional links in the re-
sulting graph H , (ii) the number 1

2 ·uT ·(A ◦ AH ) ·u of common links in the original graph

G and the resulting graph H and (iii) the norm 1
2

∑
i
∑

j
di j −si j

di j
of the demand matrix D

and the shortest path weight matrix S and (iv) the differences bH−b
b of total budgets be-

tween G and H . For each number of nodes N and different link density p, we execute
100 times simulations and calculate the average of each criterion.

(a) (b)

(c) (d)

Figure 4.2: Performance of the DOR and OLR algorithm on ER graphs with N = 10 nodes and different link
density p.

Figure 4.2 illustrates the results for ER graphs of N = 10 nodes for DOR (red line)
and OLR (blue line). Figure 4.2(a) depicts the difference in the number of links LH −LG

between the recovered graph H and the original graph G . For a small link density p, the
recovered graph H contains almost the same number of links LH as that of the original
graph LG . The difference in the number of links LH −LG increases linearly with the link
density p when H is obtained by OLR, while LH −LG decreases for DOR. Figure 4.2(b)
informs us that the percentage of links in G also recovered in H obtained by OLR, is very
high overall while almost linearly decaying with the link density p. When we recover
graph H using DOR, the percentage of common links between the original graphs G
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and the resulting graph H decreases with link density p increasing because the resulting
graph H generally has fewer links than the original graph G with a higher link density.
Combining insights from Figures 4.2(a) and 4.2(b), we observe that in the case of a sparse
graph G , two algorithms can nearly recover the same graph most of the time.

Figure 4.2(c) illustrates the norm of the matrix D−S, revealing an interesting property

of the IASPP problem. Namely, the norm 1
2

∑
i
∑

j
di j −si j

di j
is minimised for both sparse

and dense graphs when using OLR. However, in the case of a dense graph, the recovered
graph H contains a considerably smaller portion of original links and overall more links
than in G . Still, the matrix D−S norm is minimised, informing us that there are multiple
different topologies, with the shortest path weights between node pairs, as in the original

graph G . DOR always achieves the norm 1
2

∑
i
∑

j
di j −si j

di j
= 0.

We present the difference of total link budgets 1
2 uT WH u−b in Figure 4.2(d). For DOR,

the difference between the total budget of graph H and b decreases with the increment
of link density p, while the graph H obtained by WDOR always has a lower total budget
because WDOR has fewer links than graph H . In contrast, OLR has a fixed link budget
equaling b.

4.3. DETERMINISTIC GRAPH SPARSIFICATION
Spielman [24] proposed a stochastic method for graph sparsification, which employs
effective resistance. In this section, we suggest a deterministic technique for graph spar-
sification, which utilises effective resistance.

Relation (4.6) allows us to formulate an iterative procedure of removing Lr links from
a graph, such that the increase4 in the effective graph resistance RG is minimised (or
maximised). We propose the OGS (Omega-based graph sparsification) - an iterative al-
gorithm for removing links from a graph by minimising the effective graph resistance RG ,
outlined in Figure 4.3.

OGS(A)

Input: A the N ×N adjacency matrix of a graph G
Output: A the N ×N adjacency matrix of a sparsified graph H
1. Ω← the N ×N effective resistance matrix of G
2. R ← A ◦ (

Ω̂− A
)

3. (i , j ) ← indices of the maximum element in R
4. return A ← A−ei ·eT

j −e j ·eT
i

Figure 4.3: Pseudocode of the algorithm for removing a link from a graph G , by minimising the effective graph
resistance RG .

For a given graph G , defined with the N × N adjacency matrix A, we compute the

4Link removal from a graph causes a strictly larger effective graph resistance, i.e. RG
(
G

(
N ,L \ (i , j )

)) >
RG (G), where (i , j ) ∈L .
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N×N effective resistance matrixΩ in line 1, as in (4.5). In the following line, we compute
the N ×N matrix R, representing the inverse of the effective resistance (i.e. the effective
conductance) between adjacent nodes in G , in case that direct link is removed, as in
(4.6). We identify the link with the maximum value in R (line 3) and remove that link
from the graph G (line 4). We denote the proposed algorithm for removing links while
minimising RG as OGS (Omega-based Graph Sparsification). The reasoning behind OGS
algorithm in Figure 4.3 is twofold:

• Lemma 15 teaches us that when ai j =ωi j = 1, the link (i ∼ j ) cannot be removed,
as the resulting graph would become disconnected. Therefore, by performing line
2 of the pseudocode in Figure 4.3 and considering only positive elements in R, we
guarantee that the graph H remains connected.

• We choose link (i ∼ j ) with the maximum value in R to remove from the graph. Di-
rectly connected node pair (i ∼ j ) with high value Ri j is relatively easily reachable
even when the link (i ∼ j ) is removed because a large value Ri j indicates multiple
alternative paths between nodes i and j , via the rest of the network.

Figure 4.4: A graph G with N = 30 nodes and L = 72 links (upper left-hand side). A sparsified graph H with
L(H) = 57 link, using OGS algorithm 4.3 (upper right-hand side). Correlation between eigenvalues of the adja-
cency matrix of the graphs G and H (lower left-hand side), where the red line illustrates the perfect correlation.
The norm of the eigenvalue vector difference λ(A(G))−λ(A(H)) between the original graph G and the sparsi-
fied graph H , for a different number of removed links L(G)−L(H) (lower right-hand side).
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In Figure 4.4, we illustrate the results of a graph sparsification using the proposed
iterative algorithm variant a. From a graph G (upper left-hand side) consisting of N = 30
and L = 72 links, we remove 15 links and obtain the sparsified graph H , whose topology
is depicted in the upper right-hand side of Figure 4.4. The eigenvalues of the adjacency
matrix of the sparsified graph H slightly deviate from those of the adjacency matrix A(G)
of the original graph G , as depicted in the lower left part. Moreover, the norm of the
eigenvalue vector difference λ(A(G))−λ(A(H)) scales linearly with the number of re-
moved links, as shown in the lower right-hand part of Figure 4.4.

4.3.1. EFFECTIVE GRAPH RESISTANCE MINIMISATION (MAXIMISATION) UN-
DER LINK REMOVAL

Another application of the proposed algorithm in Figure 4.3 is to obtain graph topology
for a fixed number of nodes N and links L, such that the effective graph resistance RG

is minimised (or maximised). We, therefore, introduce two other variants for choosing
a link based on effective resistance and denote these as OGSpath and OGSstar5, respec-
tively. OGSpath algorithm is outlined in Figure 4.5. We firstly compute the N ×N matrix
R = (

diag(ζ) · A+ A ·diag(ζ)
)◦ (

Ω̂− A
)

in line 2. The inverse of the effective resistance be-
tween adjacent nodes i and j , in case the direct link is removed (see (4.6)), is scaled by
(ζi +ζ j ), because ζi quantifies how well node i is connected to the rest of the network,
as explained in [23]. OGSpath chooses a link connecting two hardly reachable nodes via
the rest of the network. Therefore, instead of choosing the maximum element, as in line
3 of OGS in Figure 4.3, we identify a link with the minimum positive value in R (line 3).

On the contrary, OGSstar algorithm removes an existing link with the lowest positive
value in the N × N matrix R = (

diag(ζ)−1 · A+ A ·diag(ζ)−1
) ◦ (

Ω̂− A
)
. While algorithms

OGS and OGSstar minimise the effective graph resistance RG at each step, it is maximised
in OGSpath.

OGSPATH(A)

Input: A the N ×N adjacency matrix of a graph G
Output: A the N ×N adjacency matrix of a graph, after removing a link
1. Ω← the N ×N effective resistance matrix of G
2. R ← (

diag(ζ) · A+ A ·diag(ζ)
)◦ (

Ω̂− A
)

3. (i , j ) ← indices of the minimum positive element in R
4. return A ← A−ei ·eT

j −e j ·eT
i

Figure 4.5: Pseudocode of the OGSpath algorithm for removing a link from a graph G , by maximising the effec-
tive graph resistance RG .

Figure 4.7 presents an example wherein we commence with a complete graph (i.e.
the N × N adjacency matrix A = J − I ) with N = 30 nodes, apply OGS, OGSpath and

5The sparsification algorithm OGSpath (OGSstar), when applied to a complete graph, eventually leads to a
path (star) topology, hence the name.
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OGSSTAR(A)

Input: A the N ×N adjacency matrix of a graph G
Output: A the N ×N adjacency matrix of a graph, after removing a link
1. Ω← the N ×N effective resistance matrix of G
2. R ← (

diag(ζ)−1 · A+ A ·diag(ζ)−1
)◦ (

Ω̂− A
)

3. (i , j ) ← indices of the minimum positive element in R
4. return A ← A−ei ·eT

j −e j ·eT
i

Figure 4.6: Pseudocode of the OGSstar algorithm for removing a link from a graph G , by minimising the effec-
tive graph resistance RG .

OGSstar, and eliminate one link at a time until we achieve a tree graph. The OGS al-
gorithm preserves the graph’s regular configuration while sparsifying it, while OGSpath
and OGSstar rapidly adopt path-like and star-like topologies.

OGS

OGSstar

OGSpath

Figure 4.7: Graph H topology with N = 30 nodes and a different number of links L(H) obtained by removing
links from the complete graph G of N = 30 nodes using the OGS (upper part), OGSstar (middle part) and
OGSpath (lower part) algorithm, outlined in Figures 4.3, 4.6 and 4.5, respectively.

For a different number of links L(H) in the sparsified graph H , we compute the ef-
fective graph resistance RG for each proposed algorithm and present it in Figure 4.8.
OGSpath algorithm eliminates links adjacent to a node until the degree of that node re-
duces to one. Then OGSpath continues with links of the remaining neighbour while pre-
serving the connected topology. Eventually, the graph topology reduces to a path graph
with the largest possible effective graph resistance RG of any connected undirected
graphs. As demonstrated in Figure 4.8, the effective graph resistance RG of the OGSpath
algorithm exhibits a stair-like pattern that corresponds to different nodes. Moving from
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left to right, the length of stairs decreases while the spike between stairs increases. The
reduction in the length of stairs6 results from the removal of adjacent links that reduces
the degree of each node after each stair. In contrast, the increase in the spike between
stairs7. is attributed to the graph’s sparser topology, which significantly affects the short-
est paths and, thus, the effective resistance between node pairs. Similarly, the OGSstar
algorithm removes links adjacent to a node until only one neighbour remains. At that
point, the algorithm selects another node, and the only neighbour of the first node be-
comes the sole neighbour of each other node in the graph, resulting in a star topology
when L(H) = N −1.

Figure 4.8: The effective graph resistance RG (H) for a different number of removed links L(H)− L(G) from
the complete graph G of N = 30 nodes, using OGS (blue), OGSpath (red) and OGSstar (yellow) algorithms,
proposed in Figure 4.3, Figure 4.5 and Figure 4.6, respectfully.

The OGS algorithm achieves the lowest effective graph resistance RG for nearly all
values of the number of links L(H), except for the sparse regime. This excellent per-
formance of the OGS algorithm in terms of effective graph resistance RG confirms the
insights gained from (4.6). Removing links from a graph reduces the number of paths be-
tween node pairs, and the effective resistance between a node pair is upper-bounded by
the sum of resistances of links constituting the shortest path between the nodes. There-
fore, by removing a link from the shortest path, the effective resistance increases sub-
stantially. For example, in a cycle graph, where the effective resistance between two ad-
jacent nodes satisfies ωi j < 1, removing a link (i ∼ j ) results in an increase of ωi j by a
factor of N −1.

4.4. CONCLUSION
This chapter utilises the information captured by effective resistance between node pairs
in a network by proposing an iterative algorithm to solve the inverse all shortest path
problem with a fixed link budget. Our OLR algorithm performs best when the pro-
vided upper bounds on the shortest path weights between node pairs are computed for

6In the first stair, N − 2 links adjacent to a node are removed. In the second stair, additional N − 3 links are
removed. Thus, the degree of each node reduces after each stair.

7As the graph topology is more sparse, removing a link affects the shortest paths and thus the effective resis-
tance between node pairs more.
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a sparse graph. Additionally, the effective resistance is used in our algorithms for de-
terministic graph sparsification. We demonstrate that by using effective resistance, we
can identify the link connecting nodes that are relatively easily reachable via the rest
of the network, even without the direct link. Depending on the optimisation criteria,
which may involve either maximising (minimising) the effective graph resistance RG or
minimising the deviation in Laplacian Q eigenvalues of the resulting graph, we either
remove the link or, after removing it, also scale the remaining links, respectively.
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5
LINEAR CLUSTERING PROCESS ON

NETWORKS

The important thing is
to never stop questioning.

Albert Einstein

We propose a linear clustering process on a network consisting of two opposite forces: at-
traction and repulsion between adjacent nodes. Each node is mapped to a position on a
one-dimensional line. The attraction and repulsion forces move the nodal position on the
line, depending on how similar or different the neighbourhoods of two adjacent nodes are.
Based on each node position, the number of clusters in a network and each node’s cluster
membership is estimated. The performance of the proposed linear clustering process is
benchmarked on synthetic networks against widely accepted clustering algorithms such
as modularity, Leiden method, Louvain method and the non-back tracking matrix. The
proposed linear clustering process outperforms the most popular modularity-based meth-
ods on synthetic and real-world networks, such as the Louvain method, while possessing
a comparable computational complexity.

This chapter is based on [81].
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5.1. INTRODUCTION
Networks [1, 2] abound and increasingly shape our world, ranging from infrastructural
networks (transportation, telecommunication, power-grids, water, etc.) over social net-
works to brain and biological networks. In general, a network consists of a graph or
underlying topology and a dynamic process that takes place on the network. Some ex-
amples of processes on a network are percolation [82] and epidemic spreading [6, 39],
that possess a phase transition [35, 83]. While most real-world processes on networks
are non-linear, linearisation allows for hierarchical structuring of processes on the net-
work [49].

The identification of communities and the corresponding hierarchical structure in
real-world networks has been an active research topic for decades [8], although a single,
precise definition of a community does not seem to exist [9, 10]. In network science, a
community is defined as a set of nodes that share links dominantly between themselves,
while a minority of links is shared with other nodes in the network. Newman proposed
in [84] a spectral clustering algorithm that reveals hierarchical structure of a network,
by optimising modularity, a commonly used quality function of a graph partition. Xu et
al. proposed an efficient clustering algorithm in [85], capable of detecting clusters while
differentiating between hub and outlier nodes. A heuristic, modularity-based two-step
clustering algorithm, proposed by Blondel et al. in [14], has proved to be computation-
ally efficient and performed among the best in the comparative study conducted in [86].
Recently, Peixoto proposed in [87] a nested generative model, able to identify nested
partitions at different resolutions, which thus overcomes an existing drawback of a ma-
jority of clustering algorithms, identifying small, but well-distinguished communities in
a large network. Dannon et al. concluded in their comparative study [88] that those clus-
tering algorithms performing the best tend to be less computationally efficient. A class
of clustering algorithms exists, that perform clustering based on a dynamic process on
the network, such as a random walk [89], consensus process [90] or synchronisation [91].
We refer to [8, 92] for a detailed review on existing clustering algorithms.

Our new idea is the proposal of a linear clustering process (LCP) on a graph, where
nodes move in a one-dimensional space and tend to concentrate in groups that lead to
network communities and therefore solve the classical1 community detection problem.
Linear means "proportional to the graph", which is needed because the aim is to cluster
the graph, and the process should only help and not distract from our main aim of clus-
tering. A non-linear process depends intricately on the underlying graph that we want to
cluster and may result in worse clustering! Our LCP leads to a new and non-trivial graph
matrix W in (5.10) in Theorem 19, whose spectral decomposition is at least as good as
the best clustering result, based on the non-back tracking matrix [19]. Moreover, the new
graph matrix W has a more "natural" relation to clustering than the non-back tracking
matrix, that was not designed for clustering initially. Finally, our resulting LCP clustering
algorithm seems surprisingly effective and can compete computationally with any other
clustering algorithm, while achieving generally a better result!

In Section 5.2, we introduce notations for graph partitioning and briefly review basic
theory on clustering such as modularity, normalised mutual information (NMI) measure

1A solution of the classical (or standard) community problem consists of assigning a cluster membership to
each node in a network.
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and different synthetic benchmarks. We introduce the linear clustering process (LCP) on
a network in Section 5.3, while the resulting community detection algorithm is described
in Section 5.4 and Section 5.5. We compare the performance of our LCP algorithm with
that of the non-back tracking matrix, Newman’s, Leiden and the Louvain algorithm and
provide results in Section 5.6, after which we conclude.

5.2. NETWORK OR GRAPH CLUSTERING
The set of neighbours of node i is denoted by Ni = {k | ai k = 1,k ∈ N } and the degree
of node i equals the cardinality of that set, di = |Ni |. The set of common neighbours of
node i and node j is Ni ∩N j , while the set of neighbours of node i that do not belong to
node j is Ni \N j . The degree of a node i also equals the sum of the number of common
and different neighbours between nodes i and j

di =
∣∣Ni \N j

∣∣+ ∣∣Ni ∩N j
∣∣ (5.1)

The number of common neighbours between nodes i and j equals the i j -th element of
the squared adjacency matrix ∣∣Ni ∩N j

∣∣= (
A2)

i j (5.2)

because (Ak )i j represents the number of walks with k hops between node i and node j
(see [51, p. 32]). From (5.1), (5.2) and di = (Au)i = (A2)i i , we have∣∣Ni \N j

∣∣= (
A2)

i i −
(

A2)
i j

and ∣∣Ni \N j
∣∣+ ∣∣N j \Ni

∣∣= (
A2)

i i +
(

A2)
j j −2

(
A2)

i j

The latter expression is analogous to the effective resistance ωi j between node i and
node j ,

ωi j =Q†
i i +Q†

j j −2Q†
i j

in terms of the pseudoinverse Q†
i i of the Laplacian matrix Q = ∆− A (see e.g. [23]), as

derived in (4.5).
Before introducing our linear clustering process (LCP) in Section 5.3, we briefly

present basic graph partitioning concepts, while the overview of the more popular clus-
tering methods is deferred to Appendix D.1.

5.2.1. NETWORK MODULARITY
Newman and Girvan [11] proposed the modularity as a concept for a network partition-
ing,

m = 1

2L
·

N∑
i=1

N∑
j=1

(
ai j −

di ·d j

2L

)
·1{i and j ∈ same cluster}, (5.3)

where 1x is the indicator function that equals 1 if statement x is true, otherwise 1x = 0.
The modularity m compares the number of links between nodes from the same com-
munity with the expected number of intra-community links in a network with randomly
connected nodes. When the modularity m close to 0, the estimated partition is as good
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as a random partition would be. On the contrary, a modularity m close to 1 indicates
that the network can be clearly partitioned into clusters. Optimising the modularity is
proven to be NP-complete [93] and approximated in [4]. Defining the N ×N modularity
matrix C ,

Ci j =
{

1 if nodes i and j belong to the same cluster

0 otherwise,
(5.4)

allows us to rewrite the modularity (5.3) as a quadratic form,

m = 1

2L
·uT ·

(
A ◦C − 1

2L
· (d ·d T )◦C

)
·u, (5.5)

where ◦ denotes the Hadamard product [94]. The number of clusters in a network is de-
noted by c, while the c ×1 vector n = [

n1 n2 . . . nc
]

defines the size of each cluster,
where the number of nodes in cluster i is denoted as ni .

5.2.2. NORMALISED MUTUAL INFORMATION
Danon et al. [88] proposed the normalised mutual information (NMI) metric, based on
a confusion matrix F , whose rows correspond to the original communities, while its
columns are related to estimated clusters. Therefore the element Fi j of the confusion
matrix denotes the number of nodes in the real community i , that also belong to the es-
timated community j . The normalised mutual information metric between the known
P0 and the estimated partition Pe , denoted as In(P0,Pe ), is defined in [88] as follows

In(P0,Pe ) =
−2

c0∑
i=1

ce∑
j=1

Fi j log
(

Fi j N
Fi .F. j

)
c0∑

i=1
Fi . log

(
Fi .
N

)
+

ce∑
j=1

F. j log
(

F. j

N

) , (5.6)

where the known and the estimated number of clusters are denoted as c0 and ce , respec-
tively, the i -th row sum of F is denoted as Fi ., while its j -th column-sum is denoted as
F. j . In case two graph partitions are identical, the corresponding NMI measure equals
1, while tending to 0 when two partitions are independent. The NMI measure has been
extensively used ever since, while analysing the performance of different clustering al-
gorithms [8].

5.2.3. BENCHMARKS
The performance of the clustering methods in this chapter are benchmarked on ran-
dom graphs, generated by the Stochastic Block Model (SBM), proposed by Holland [95].
The SBM model generates a random graph with community structure, where a link be-
tween two nodes exists with different probability, depending on whether the nodes be-
long to the same cluster or not. We provide additional information on the stochastic
block model in Appendix D.2.1.

Girvan and Newman [96] focused on a special case of the SBM model (GN bench-
mark), where the graph consists of N = 128 nodes, distributed in c = 4 communities
of equal size while fixing the average degree E [D] = 16. The GN benchmark has been
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extensively used in literature, despite introducing strong assumptions, such as commu-
nities of equal size, each node having the same degree and fixed graph size. Therefore,
Lancichinetti et al. [97] proposed the LFR benchmark, where both the node degree vec-
tor d and community size vector n follows a power law distribution, a property found
in many real-world networks. Additional details on LFR benchmark are deferred to Ap-
pendix D.2.2.

5.3. LINEAR CLUSTERING PROCESS (LCP) ON A GRAPH

5.3.1. CONCEPT OF THE CLUSTERING PROCESS
Each node i in the graph G is assigned a position xi [k] on a line (i.e. in one-dimensional
space) at discrete time k. We define the N × 1 position vector x[k] at discrete time k,
where the i -th vector component consists of the position xi [k] of node i at time k. We
initialize the N × 1 position vector x[0] by placing nodes equidistantly on the line and

assign integer values from 1 to N to the nodes, thus, x[0] = [
1 2 . . . N

]T
. At last, we

restrict the position xi [k] to positive real values.
We propose a dynamic process that determines the position of nodes over time. The

position difference between nodes of the same cluster is relatively small. On the con-
trary, nodes from different clusters are relatively far away, i.e. their position difference is
relatively high. Based on the position vector x[k], we will distinguish clusters, also called
communities, in the graph G .

The proposed clustering process consists of two opposite and simultaneous forces
that change the position of nodes at discrete time k:

Attraction. Adjacent nodes sharing many neighbours are mutually attracted with a
force proportional to the number of common neighbours. In particular, the attractive
force between node i and its neighboring node j is proportional to α · (∣∣N j ∩Ni

∣∣+1
)
,

where α is the attraction strength and
(∣∣N j ∩Ni

∣∣+1
)

equals the number of common
neighbors plus the direct link, i.e. ai j = 1.

Repulsion. Adjacent nodes sharing a few neighbours are repulsed with a force pro-
portional to the number of different neighbours. The repulsive force between node i
and its neighboring node j is proportional to δ · (∣∣N j \Ni

∣∣−1
)
, where δ is the repulsive

strength and
(∣∣N j \Ni

∣∣−1
)

equals the set of neighbours of node j that do not belong
to node i minus the direct link (that is included in

∣∣N j \Ni
∣∣). Since the force should be

symmetric and the same if i and j are interchanged, we end up with a resultant repulsive
force proportional to 1

2 ·δ ·
(∣∣N j \Ni

∣∣+ ∣∣Ni \N j
∣∣−2

)
.

5.3.2. LCP IN DISCRETE TIME
Since computers operate with integers and truncated real numbers, we concentrate on
discrete-time modeling. The continuous-time description is derived in Appendix D.3.
We denote the continuous-time variables by y (t ) and the continuous time by t , while the
discrete-time counterpart is denoted by y [k], where the integer k denotes the discrete
time or k-th timeslot. The transition from the continuous-time derivative to the discrete-
time difference is

d xi (t )

d t
= lim
∆t→0

xi (t +∆t )−xi (t )

∆t
→ xi (t +∆t )−xi (t )

∆t

∣∣∣∣
∆t=1

def= xi [k +1]−xi [k]
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Figure 5.1: Dependence of the attractive and repulsive force on the number of common neighbours of adja-
cent nodes i and j (left-figure). Directions of the attraction and repulsion forces between the adjacent nodes
(middle-figure). Dependence of the attractive and repulsive force on the absolute position distance between
adjacent nodes i and j (right-figure).

Corresponding to the continuous-time law in Appendix D.3 and choosing the time step
∆t = 1, the governing equation of position xi [k] of node i at discrete time k is

xi [k +1] = xi [k]+ ∑
j∈Ni

(α · (∣∣N j ∩Ni
∣∣+1

)
d j di

−

1
2 ·δ ·

(∣∣N j \Ni
∣∣+ ∣∣Ni \N j

∣∣−2
)

d j di

)
·
(
x j [k]−xi [k]

) (5.7)

where α and δ are, in the discrete-time setting, the strength (in dimensionless units) for
attraction and repulsion, respectively. The maximum position difference at the initial
state is xN [0]−x1[0] = N −1.

Node j attracts an adjacent node i with force proportional to their position differ-
ence (x j [k]− xi [k]). The intensity of the attractive force decreases as nodes i and j are
closer on a line. The attraction is also proportional to the number common neighbours∣∣N j ∩Ni

∣∣ of node i and node j plus the direct link, as nodes tend to share most links with
other nodes from the same cluster. On the contrary, node j repulses node i with a rate
proportional to their position difference (x j [k]− xi [k]) and the average of the number
of node j neighbours

∣∣N j \Ni
∣∣ that are not connected to the node i and, similarly, the

number of node i neighbors,
∣∣N j \Ni

∣∣ that are not connected to the node j . The repul-
sive and attractive force are, as mentioned above, symmetric in strength, but opposite, if
i is interchanged by j .

The directions of both attractive and repulsive forces between two adjacent nodes
i and j as well the dependence of both forces on the number of common neighbours∣∣N j ∩Ni

∣∣ and the absolute position distance
∣∣x j [k]−xi [k]

∣∣ are illustrated in Figure 5.1.
In the continuous-time setting, as provided in Appendix D.9, we eliminate one pa-

rameter by scaling the time t∗ = δt . Because the time step ∆t = 1 is fixed and cannot be
scaled, the discrete-time model consists of two parameters α≥ 0 and δ≥ 0.

So far, we have presented an additive law, derived in the common Newtonian ap-
proach. The corresponding multiplicative law in discrete time is
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xi [k +1] = xi [k] ·
(
1+ ∑

j∈Ni

(α · (∣∣N j ∩Ni
∣∣+1

)
di ·d j

−

1
2 ·δ ·

(∣∣N j \Ni
∣∣+ ∣∣Ni \N j

∣∣−2
)

di ·d j

)
·
(
x j [k]−xi [k]

)) (5.8)

Although the physical intuition is similar, the multiplicative process in (5.8) behaves
differently in discrete time than the additive law in (5.7). Since also the analysis is more
complicated, we omit a further study of the multiplicative law.

We present the analogon of (5.7) in matrix form:

Theorem 19 The discrete time process (5.7) satisfies the linear matrix difference equation

x[k +1] = (
I +W −diag (W ·u)

) · x[k], (5.9)

where the N ×1 vector u is composed of ones, the N ×N identity matrix is denoted by I ,
while the N ×N topology-based matrix W is defined as

W = (α+δ)∆−1 · (A ◦ A2 + A
) ·∆−1 − 1

2
·δ(

∆−1 · A+ A ·∆−1) (5.10)

where ◦ denotes the Hadamard product. In particular,

wi j = ai j

α
(∣∣N j ∩Ni

∣∣+1
)−δ( ∣∣N j \Ni

∣∣+∣∣Ni \N j
∣∣

2 −1
)

di d j
(5.11)

The explicit solution of the difference equation (5.9) is

x[k] = (
I +W −diag (W ·u)

)k x[0] (5.12)

where the k-th component of the initial position vector is (x[0])k = k.

Proof: Appendix D.4.1.
Theorem 19 determines the position of the nodal vector x[k] at time k and shows

convergence towards a state, where the sum of attractive and repulsive forces (i.e. the
resulting force) acting on a node are in balance. Nodes with similar neighbourhoods
are grouped on the line, i.e. in the one-dimensional space, while nodes with a rela-
tively small number of common neighbours are relatively far away. A possible variant
of the proposed linear clustering process may map the nodal position into a higher di-
mensional space, like a circular disk or square in two dimensions, and even with a non-
Euclidean distance metric.

5.3.3. TIME-DEPENDENCE OF THE LINEAR CLUSTERING PROCESS
The N × N matrix I +W − diag(W ·u) in the governing equation (5.9) has interesting
properties. As shown in this section, the related matrix W −diag(W ·u) belongs to the
class of M-matrices, whose eigenvalues have a non-negative real part. The (weighted)
Laplacian is another element of the M-matrix class.
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Property 1 The matrix I +W −diag (W ·u) is a non-negative matrix.

Proof: The governing equation (5.9)

x[k +1] = (
I +W −diag(W ·u)

) · x[k]

holds for any non-negative vector x[k]. Let x[0] = em , the basic vector with components
(em)i = δmi and δmi is the Kronecker delta, then we find that the m-th column

x[1] = (
I +W −diag(W ·u)

)
col (m)

must be a non-negative vector. Since we can choose m arbitrary, we have established
that I +W −diag(W ·u) is a non-negative matrix. □

Property 2 The principal eigenvector of the matrix I+W −diag (W ·u) is the all-one vector
u belonging to eigenvalue 1. All other eigenvalues of matrix I +W −diag (W ·u) are real
and, in absolute value, smaller than 1.

Proof: Appendix D.4.2.
The linear discrete-time system in (5.9) converges to a steady-state, provided

that limk→∞ ||x[k + 1]|| = limk→∞ ||x[k]|| = ||xs ||, which is only possible if the matrix(
I +W −diag(W ·u)

)
has all eigenvalues in absolute value smaller than 1 and the largest

eigenvalue is precisely equal to 1. Property 2 confirms convergence and indicates that
the steady-state vector xs = u in which the position of each node is the same. How-
ever, the steady state solution xs = u is a trivial solution, as observed from the governing
equation in (5.7), because the sum vanishes and the definition of the steady state tells
that x[k +1] = x[k], which is obeyed by any discrete-time independent vector. In other
words, the matrix equation (5.9) can be written as

x[k +1]−x[k] = (
W −diag(W ·u)

) · (x[k]−u)

which illustrates that, if x[k] obeys the solution, then r [k] = x[k]+ s ·u for any complex
number s is a solution, implying that a shift in the coordinate system of the positions
does not alter the physics.

Let us denote the eigenvector yk belonging to the k-th eigenvalue βk of the matrix
W −diag(W ·u), where β1 ≥ β2 ≥ ·· · ≥ βN , then the eigenvalue decomposition of the
real, symmetric matrix is

W −diag(W ·u) = Y diag(β)Y T

where the eigenvalue vector β = (β1,β2, · · · ,βN ) and Y is the N × N orthogonal matrix
with the eigenvectors y1, y2, · · · , yN in the columns obeying Y T Y = Y Y T = I . Sinceβ1 = 0
and y1 = up

N
, it holds for k > 1 that uT yk = 0, which implies that the sum of the compo-

nents of eigenvector yk for k > 1 is zero (just as for any weighted Laplacian [23]). The
position vector in (5.12) is rewritten as

x[k] = Y diag(1+β)k Y T x[0] =
N∑

j=1
(1+β j )k y j

(
yT

j x[0]
)
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Hence, we arrive at

x[k]− uT x[0]p
N

u =
N∑

j=2
(1+β j )k (yT

j x[0]) y j (5.13)

As explained above, the left-hand side is a translated position vector and physically not
decisive for the clustering process. Since −1 < β j < 0 for j > 1, relation (5.13) indicates
that, for k →∞, the right-hand side tends to zero and the steady-state solution is clearly
uninteresting for the clustering process. We rewrite (5.13) as

x[k]− uT x[0]p
N

u = (1+β2)k
(
(yT

2 x[0]) y2 +
N∑

j=3

(
1+β j

1+β2

)k

(yT
j x[0]) y j

)
.

Since |1+β2| > |1+β3|, we observe that

x[k]− uT x[0]p
N

u

(1+β2)k (yT
2 x[0])

= y2 +O

(
1+β3

1+β2

)k

, (5.14)

which tells us that the left-hand side, which is a normalized or scaled, shifted position
vector, tends to the second eigenvector y2 with an error that exponentially decreases
in k. Hence, for large enough k, but not too large k, the scaled shifted position vector
provides us the information on which we will cluster the graph.

The steady state in Property 2 can be regarded as a reference position of the nodes
and does not affect the LCP process nor the N×1 eigenvector y2, belonging to the second
largest eigenvalue (1+β2) of the N ×N “operator” matrix I +W −diag(W ·u), which is
analogous to Fiedler clustering based on the N × N Laplacian Q. While the Laplacian
matrix Q essentially describes diffusion and not clustering, our operator I +W −diag(W ·
u) changes the nodal positions, based on attraction and repulsion, from which clustering
naturally arises.

Property 3 The two parameters in the matrix W in (5.10) satisfy the bounds

0 ≤α ≤ dmax −1

dmax − 1
2

(
1+ dmin

dmax

) ≤ 1 (5.15)

0 ≤ δ ≤ 1

dmax − 1
2

(
1+ dmin

dmax

) (5.16)

Proof: Appendix D.4.3.
The influence of the attraction strength α and the repulsion strength δ on the eigen-

values βk and the N ×1 eigenvector y2 of the N ×N matrix W is analysed in Appendix
D.5.

5.4. FROM THE EIGENVECTOR y2 TO CLUSTERS IN THE NET-
WORK

The interplay of the attractive and repulsive force between nodes drives the nodal po-
sition in discrete time k eventually towards a steady state lim

k→∞
x[k] = u. However, the
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Figure 5.2: Adjacency matrix A of an SSBM network of N = 1000 nodes, c = 4 clusters and parameters bi n = 26,
bout = 0.67 (top-left). Eigenvector y2 components (top-right). Sorted eigenvector ŷ2 components (bottom-
right). Relabeled adjacency matrix Â based on the sorted eigenvector ŷ2 (bottom-left).

scaled and shifted position vector x[k] in (5.14) converges in time towards the second
eigenvector y2 with an exponentially decreasing error. In this section, we estimate the
clusters in network, based on the eigenvector y2.

By sorting the eigenvector y2 to ŷ2, the components of y2 are reordered and the cor-
responding relabeling of the nodes of the network reveals a block diagonal structure of
the adjacency matrix A. We define the N×N permutation matrix R in a way the following
equalities hold:

ŷ2 = R · y2,

ˆ(y2)i =
(
y2

)
ri
≤ ˆ(y2) j =

(
y2

)
r j

, i < j ,
(5.17)

where the N ×1 ranking vector r = R ·w and w = [1,2, . . . , N ], with ri denoting the node
i ranking in the eigenvector y2. The permutation matrix R allow us to define the N ×N
relabeled adjacency matrix Â, the N × 1 relabeled degree vector d̂ of G , and the N × 1
sorted eigenvector ŷ2 as follows: 

Â = RT · A ·R

d̂ = R ·d

ŷ2 = R · y2.

(5.18)

Groups of nodes that have relatively small difference in the eigenvector y2 compo-
nents, while relatively large difference compared to other nodes in the network, compose



5.4. FROM THE EIGENVECTOR y2 TO CLUSTERS IN THE NETWORK

5

73

a cluster. Therefore, the community detection problem transforms into recognizing in-
tervals of similar values in the sorted eigenvector ŷ2.

Figure 5.2 exemplifies the idea, where the adjacency matrix A of a randomly labeled
SSBM network of N = 1000 nodes and c = 4 clusters is presented in the upper-left part, as
a heat map. The eigenvector y2 is drawn in the upper-right part, while the sorted eigen-
vector ŷ2 is drawn on the bottom-right side. Finally, the relabeled adjacency matrix Â,
based on nodal ranking of y2 is depicted on the lower-left side. The sorted eigenvec-
tor ŷ2 reveals a stair with four segments, equivalent to four block matrices on the main
diagonal in relabeled adjacency matrix Â.

The eigenvector y2 represents a continuous measure of how similar neighbours of
two nodes are. There are two different approaches to identify network communities for
a given eigenvector y2:

• Cluster identification based on the sorted eigenvector ŷ2. This approach is ex-
plained in subsection 5.4.1.

• Cluster identification based on the ranking vector r . This approach does not rely
on the eigenvector y2 components, but solely on nodal ranking, as explained in
subsection 5.4.2.

5.4.1. COMMUNITY DETECTION BASED ON NODAL COMPONENTS OF THE

EIGENVECTOR y2
To identify clusters, we observe the difference in eigenvector y2 components between
nodes with adjacent ranking. If

(
ŷ2

)
i+1 −

(
ŷ2

)
i < θ, where θ denotes a predefined thresh-

old, then the nodes ri and ri+1 belong to the same cluster, else the nodes ri and ri+1 are
boundaries of two adjacent clusters. The resulting cluster membership function is

Cri+1,ri =
{

1
(
ŷ2

)
i+1 −

(
ŷ2

)
i < θ

0 otherwise,
(5.19)

where the threshold value θ is determined heuristically. The cluster estimation in (5.19)
can be improved by using other more advanced approaches, such as the K-means algo-
rithm.

5.4.2. MODULARITY-BASED COMMUNITY DETECTION
By implementing (5.4) and (5.18) into (5.3) we obtain:

m = 1

2L
·uT ·

(
Â ◦ Ĉ − 1

2L
· (d̂ · d̂ T )◦ Ĉ

)
·u, (5.20)

where Ĉ = RT ·C ·R. As shown in Figure 5.2, the network relabeling based on the ranking
vector r reveals block diagonal structure in Â. Thus, the relabeled modularity matrix Ĉ
has the following block diagonal structure:

Ĉ =


Jn1×n1 On1×n2 . . . On1×nc

On2×n1 Jn2×n2 . . . On1×nc

...
... . . .

...
On1×n1 Onc×n2 . . . Jnc×nc

 , (5.21)
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where c denotes number of clusters in network, where the i -th cluster is composed of ni

nodes. We highlight that relation (5.21) holds only in the case of a classical community
problem, i.e. when each node belongs to exactly one community.

Algorithm 1 Recursive algorithm for cluster estimation

Require: Â and d̂ are the relabeled adjacency matrix A and the degree vector d (5.18),
while L denotes number of links. The modularity threshold is denoted by θ. The
function returns the c ×1 vector b, whose elements are cluster borders in a relabeled
graph.

1: function ESTIMATECLUSTERS(Â, d̂ , N , L, θ)
2: d f ,db , p, q ←ON×1

3:
(
d f

)
1 ← d̂1

4: (db)N ← d̂N

5: p1 ←− d̂ 2
1

(2L)2

6: qN ←− d̂ 2
N

(2L)2

7: for i ← 2 to N do
8: l ← N − i
9:

(
d f

)
i ←

(
d f

)
i−1 + d̂i

10: (db)N−i+1 ← (db)N−i+2 + d̂N−i+1

11: s ←
∑i

j=1 âi j

L − 2·d̂i ·(d f )i−1+d̂ 2
i

(2L)2

12: t ←
∑i

j=1 âN− j+1,l+1

L − 2·d̂l+1·(db )l+2+d̂ 2
l+1

(2L)2

13: pi ← pi−1 + s
14: ql+1 ← ql+2 + t
15: end for
16: r ← argmaxN

(
p +q

)
17: if (p +q)r > θ then
18: Â1, d̂1, N1 ← sub-matrix(vector) corresponding to the first cluster {1,2, . . . ,r }
19: Â2, d̂2, N2 ← sub-matrix(vector) corresponding to the second cluster {r +1,r +

2, . . . , N }

20: return b̂ ←
EstimateClusters(Â1, d̂1, N1,L, pr )

r,
EstimateClusters(Â2, d̂2, N2,L, qr )


21: else
22: return b̂ ←;
23: end if
24: end function

We define the N ×1 vectors êi for i = {1,2, . . . ,c} as

êi =
[

O(
1×∑i−1

j=1 n j

) u(1×ni ) O(
1×∑N

j=i+1 n j

)]T
, (5.22)
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that allows us to redefine Ĉ =∑c
i=1 êi · êi

T and further simplify (5.20):

m = 1

2L
·

c∑
i=1

êi
T ·

(
Â− 1

2L
· (d̂ · d̂ T )) · êi . (5.23)

Since the vector êi consists of zeros and ones, the equation (5.23) represents the sum of
elements of the matrix

(
Â− 1

2L · (d̂ · d̂ T
))

corresponding to each individual cluster.
We estimate clusters for a given ranking vector r by recursively optimising the mod-

ularity m. In the first iteration, we examine all possible partitions of the network in two
clusters and compute their modularity. The partition that generates the highest modu-
larity is chosen. In the second iteration, we repeat for each subgraph the same procedure
and find the best partitions into two clusters. Once we determine the best partitions for
both subgraphs, we adopt them if the obtained modularity of the generated partition
exceeds the modularity of a parent cluster from the previous iteration. The recursive
procedure stops when the modularity m cannot be further improved, as described by
pseudocode (1). This version of the proposed process is denoted as LCP in section 5.6.

5.4.3. MODULARITY-BASED COMMUNITY DETECTION FOR A KNOWN NUM-
BER OF COMMUNITIES

The algorithm 1 also applies for graph partition with a known number of communities c.
In that case, instead of stopping the recursive procedure described in algorithm 1 when
the modularity m cannot be further improved, we stop at iteration (log2 c +1). In each
iteration, the partition with the maximum modularity is accepted, even if negative.

As a result, we obtain 2c estimated clusters with the 2c × 2c aggregated modularity
matrix Mc :

(Mc )g h = ∑
i∈g , j∈h

(
Â− 1

2L
· d̂ · d̂ T

)
i j

, (5.24)

where g ,h ∈ {1,2, . . . ,2c} denote estimated communities. The aggregated modularity ma-
trix Mc allows us to merge adjacent clusters, until we reach c communities in an iterative
way. We observe the (2c −1×1) vector µ, where µg = (Mc )g ,g+1. The maximum element
of µ indicates which two adjacent clusters can be merged, so that modularity index m
is negatively affected the least. By repeating this procedure c times, we end up with the
graph partition in c clusters. This version of the proposed process is denoted as LCPc in
Section 5.6.

5.4.4. NON-BACK TRACKING METHOD VERSUS LCP
Angel et al. [98, p.12] noted that the 2N non-trivial eigenvalues of the 2L ×2L non-back
tracking matrix B from (D.6) are contained in eigenvalues of the 2N ×2N matrix B∗:

B∗ =
[

A I −∆
I O

]
, (5.25)

where the N ×N matrix with all zeros is denoted as O. The 2N ×2N matrix B∗, written as

B∗ =
[

I + (A−∆)+ (∆− I ) − (∆− I )
I O

]
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can be considered as a state-space matrix of a process on a network, similar to our LCP
process in (5.7), with the last N states storing delayed values of the first N states. The
2N × 2N matrix B∗ defines the set of N second-order difference equations, where the
governing equation for the node i position is

xi [k +1] = xi [k]+ ∑
j∈Ni

(x j [k]−xi [k])+ (di −1) · (xi [k]−xi [k −1])

We recognize the second term in (5.26) as an attraction force between neighbouring
nodes with uniform intensity, while in our LCP (5.7) the attraction force intensity is pro-
portional to the number of neighbours two adjacent nodes share. Further, while we pro-
pose a repulsive force between adjacent nodes in (5.7), node i in (5.26) is repulsed from
its previous position xi [k] in direction of the last position change (xi [k]−xi [k −1]).

We implement the weighted intensity of the attractive force as in (5.7), ignoring the
repulsive force by letting δ= 0, and define the 2N ×2N matrix W ∗, corresponding to B∗,

W ∗ =
[

I +α ·
(

A ◦ A2 + A−diag
((

A ◦ A2 + A
) ·u

))+ (∆− I ) − (∆− I )

I O

]
. (5.26)

We estimate the number of clusters c in a network from W ∗ similarly as in the non-back
tracking method in Sec. D.1.4 by counting the number of eigenvalues in W ∗ with real
component larger than

√
λ1(W ∗). This approach is denoted as LCPn in Section 5.6.

5.5. REDUCING INTENSITY OF FORCES BETWEEN CLUSTERS
The idea behind a group of methods in community detection, called divisive algorithms,
consists of determining the links between nodes from different clusters. Once these links
have been identified, they are removed and thus only the intra-community links remain
[96]. We invoke a similar idea to our linear clustering process.

An outstanding property of our approach is that the LCP defines the nodal position
as a metric, allowing us to perform clustering in multiple ways. The position distance
between any two, not necessarily adjacent nodes indicates how likely the two nodes be-
long to the same cluster. Then, the position metric also allows us to classify links as
either intra- or inter-community. Thus, we iterate the linear clustering process (5.7) and,
in each iteration, we identify and scale the weights of the inter-community links.

The attraction and repulsive forces are defined as linear functions of the position
difference between two neighbouring nodes, as presented in Figure 5.1. While linear
functions greatly simplify the complexity and enable a rigorous analysis, the linearity
of forces introduces some difficulties in the process. Firstly, as two adjacent nodes are
further away, both the attractive and the repulsive force between them increase in in-
tensity. Similarly, as the neighbouring nodes are closer on a line, both forces decrease in
intensity and converge to zero as the nodes converge to the same position. Secondly, the
attractive force between any two neighbouring nodes is always of higher intensity than
the repulsive force, causing the process to converge towards the trivial steady-state.

Non-linearity in the forces can be introduced in the proposed linear clustering
process iteratively by scaling the weights of inter-community links between iterations,
which artificially decreases the strength of forces between the two nodes from different
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Figure 5.3: Adjacency matrix A of an SSBM network of N = 1000 nodes, c = 5 clusters of equal size, with pa-
rameters bi n = 26 and bout = 2.25 (top-left). The following 4 subfigures present the relabeled adjacency matrix
based on the ranking vector r in iterations 1,5,7 and 12, respectively. In each iteration, the weights of 2% links
are scaled (red colour). The weight of each link is allowed to be scaled once. The relabelled adjacency matrix
Â after 15 iterations of scaling weights of links between clusters (bottom-right).

clusters. In other words, we reduce the importance of links between nodes from different
clusters based on the partition from the previous iteration.

5.5.1. SCALING THE WEIGHTS OF INTER-COMMUNITY LINKS

The difference |(y2
)

i −
(
y2

)
j | in the eigenvector y2 components of nodes i and j indi-

cates how similar neighbourhoods of these nodes are. A normalized measure for the
difference in neighbouring nodes i and j is the difference

(|ri − r j |
)

of their rankings in
the sorted eigenvector ŷ2. Thus, links that connect nodes with the highest ranking dif-
ference are most likely inter-community links. We define the N ×N scaling matrix S as
follows:

si j =
{

1, if |r j − ri | < θr

υ, otherwise ,
(5.27)

where the i j -th element equals 1 if the absolute value of the ranking difference between
nodes i and j is below a threshold θr , otherwise some positive value 0 ≤ υ≤ 1. Based on
the N ×N scaling matrix S in (5.27), we update the governing equation as follows:

x[k +1] = (
I +W̃ −diag

(
W̃ ·u

)) · x[k],
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where W̃ = S ◦W . Scaling the link weights in (5.27) only impacts the clustering pro-
cess in (5.9), as defined in the equation above. However, modularity-based community
detection, explained in Section 5.4.2, operates on the N ×N adjacency matrix A in each
iteration. Therefore, our implementation of scaling the weights of inter-community con-
nections in network helps the process to better distinguish between clusters (i.e. eventu-
ally provides better relabeling in (5.18)), without modifying the N ×N adjacency matrix
A and, hence, without negatively affecting the modularity m optimisation in Algorithm
1. An example of removing links (i.e. υ= 0) is depicted on Figure 5.3, where in each iter-
ation weights of 15

4 % identified inter-cluster links are scaled. Scaling the weights of links
between clusters significantly improves the quality of the identified graph partition.

5.6. BENCHMARKING LCP WITH OTHER CLUSTERING METH-
ODS

Computational complexity of the entire proposed clustering process equals O(N ·L), as
derived in Appendix D.6. In this section, we benchmark the linear clustering process
(5.7) against popular clustering algorithms (introduced in Appendix D.1), both on syn-
thetic and real-world networks. The non-back tracking algorithm (Appendix D.1.4) and
our LCPn (Sec 5.4.4) estimate only number of clusters, Newman’s method (Appendix
D.1.3), the Leiden method (Appendix D.1.2) the Louvain method (Appendix D.1.1) and
our LCP (Sec 5.4.2) estimate both number of clusters and the cluster membership of each
node, while LCPc (Sec 5.4.3) requires the number of communities c to perform graph
partitioning. The attractive strength α = 0.95 and the repulsive strength δ = 10−3 are
used in all simulations. Weights of 60% links in total are scaled using (5.27), evenly over
30 iterations, where in i -th iteration scaled weight is 0.05·i

30 .

5.6.1. CLUSTERING PERFORMANCES ON STOCHASTIC BLOCK GENERATED

GRAPHS

We compare the clustering performance of our LCP with that of clustering methods in-
troduced in Appendix D.1, on the same graph generated by the symmetric stochastic
block model (SSBM) with clusters of equal size. All graphs have N = 1000 nodes. We
vary the parameters bi n and bout using (D.7) in a way to keep the average degree dav = 7
fixed. For each SSBM network, we execute the clustering methods 102 times and present
the mean number of estimated clusters and mean modularity of produced partitions in
Figures (5.4-5.5).

The clustering performance on SSBM graphs with c = 2 clusters (c = 4 clusters) is pre-
sented on the left-hand side (right-hand side) of Figure 5.4, respectively. The non-back
tracking algorithm and our LCPn achieve the best performance in estimating the number
of communities c, as shown in the upper part of Figure 5.4. Further, our LCP outperforms
each considered modularity-based method in identifying the number of communities c
and in modularity m. Furthermore, when clusters are visible (i.e. above the detectabil-
ity threshold), the NMI value (presented in the bottom figures) of our LCP and our LCPc

significantly outperforms other clustering algorithms. Figure 5.4 illustrates a significant
difference in performance between our LCP and the non-back tracking matrix (NBT)
method. Our LCP (in blue) and the other three modularity-based methods perform
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Figure 5.4: The estimated number of clusters (upper figures) in SSBM graphs with N = 1000 nodes, average
degree dav = 7, c = 2 (left-hand side) and c = 4 (right-hand side) clusters, respectively, for different values of
parameters bi n and bout . The modularity of the estimated partitions is presented in the central figures, while
the NMI measure per each clustering algorithm is provided at the bottom figures. The vertical dashed line
indicates the clustering detectability threshold.
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poorly in recognising the number c of clusters for a wide range of bi n −bout (around and
below the detectability threshold). Poor performance occurs because modularity-based
methods generate partitions of higher modularity than the original network (in black)
but with different communities! Consequently, the NMI measure deteriorates in these
regimes. Our LCPn (in red), for a given number of communities c, identifies partitions
with higher modularity m than of the original network, even within the theoretically de-
tectable regime.

Figure 5.5 illustrates results for SSBM graphs of N = 1000 nodes, with c = 8 (left-hand
side) and c = 20 (right-hand side) clusters. Our LCP consistently outperforms the other
three methods in estimated modularity m over the entire range of bi n −bout values. Ex-
cept for bi n−bout values around and below the detectability threshold, the NMI measure
of our LCP is superior to the other three methods (bottom figures).

5.6.2. CLUSTERING PERFORMANCES ON LFR BENCHMARK GRAPHS

Figure 5.6 illustrates clustering results on LFR benchmark graphs of N = 500 nodes with
c = 5 (left-hand part) and c = 11 (right-hand part) communities. Compared to Newman,
Louvain and Leiden algorithm, our LCP is among the best in estimating the number
of clusters c (upper figures) while outperforming each considered method in estimated
modularity m (middle figures). In addition, our LCP provides the highest NMI measure
when the clusters are visible (i.e. for low µ value). For relatively large values of µ, our LCP
identifies partitions different from the original one but with considerably higher modu-
larity. Therefore, the NMI measure deteriorates in this regime (lower figures). When a
graph is generated by the LFR benchmark, the non-backtracking method (NBT) and our
LCPn fail to estimate the number of clusters c.

5.6.3. CLUSTERING PERFORMANCES ON REAL-WORLD NETWORKS

Table 5.6.3 summarises the clustering performance of our LCP and those considered ex-
isting algorithms on seven real-world networks of different sizes, number of links and
community structure. In five out of seven cases, our LCP provides partition with the
highest modularity m, compared to other algorithms. LCP’s superiority in achieved
modularity m aligns with the results obtained on synthetic benchmarks. While the es-
timated number of clusters c of each method cannot be judged as the ground truth is
unknown, LCP’s estimated number of communities c is, on average, the closest to that
of the non-back tracking matrix, known as one of the best predictors in the literature.

5.7. CONCLUSION
In this chapter, we propose a linear clustering process (LCP) on a network consisting of
an attraction and repulsion process between neighbouring nodes, proportional to how
similar or different their neighbours are. Based on nodal positions, we are able to es-
timate both the number c and the nodal membership of communities. Our LCP out-
performs modularity-based clustering algorithms, such as Newman’s, Leiden and the
Louvain method, on both synthetic and real-world networks while being of the same
computational complexity. The proposed LCP allows estimating the number c of clus-
ters as accurately as the non-back tracking matrix in case of SSBM graphs. A potential
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Figure 5.5: The estimated number of clusters (upper figures) in SSBM graphs with N = 1000 nodes, average
degree dav = 7, c = 8 (left-hand side) and c = 20 (right-hand side) clusters, respectively, for different values of
parameters bi n and bout . The modularity of the estimated partitions is presented in the central figures, while
the NMI measure per each clustering algorithm is provided at the bottom figures. The vertical dashed line
indicates the clustering detectability threshold.
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Figure 5.6: The estimated number of clusters (upper figures) in LFR benchmark graphs of N = 500 nodes with
the average degree dav = 12, consisting of c = 5 (left-hand side, with γ = 1 and β = 2) and c = 11 (right-hand
side with γ = 2 and β = 3) clusters, respectively, for different values of parameter µ. The modularity of the
estimated partitions is presented in the central figures, while the NMI measure per each clustering algorithm
is provided at the bottom figures.
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Table 5.1: Clustering performance of our LCP and considered existing clustering algorithms on real-world
networks.

Real-world networks LCP Louvain Leiden Newman NBT LCPc

Network name N L c m c m c m c m c c
Karate Club 34 78 3 0.3922 4 0.3565 4 0.3729 5 0.3776 2 1

Dolphins 62 159 4 0.5057 4 0.4536 5 0.5105 6 0.4894 2 2
Polbooks 105 441 3 0.5160 4 0.4897 4 0.5026 8 0.4160 3 2
Football 115 613 7 0.5894 7 0.5442 7 0.5635 11 0.4623 10 5

Facebook 347 2519 8 0.4089 16 0.3726 18 0.3792 23 0.3770 8 4
Polblogs 1490 19090 19 0.4224 7 0.3385 11 0.3117 4 0.3459 8 1

Co-autorship 1589 2742 40 0.9296 272 0.9423 270 0.9410 28 0.7393 23 16

improvement of the proposed linear clustering process lies in a more effective way of
scaling inter-community link weights between successive iterations.

The linear clustering process LCP is described by a matrix I +W −diag(W ·u), which
can be regarded as an operator acting on the position of nodes, comparable to quantum
mechanics (QM). In QM, an operator describes a dynamical action on a set of particles.
Since quantum mechanical operators are linear, the dynamics are exactly computed via
spectral decomposition. In a same vein, our operator I +W −diag(W ·u) is linear and
describes via attraction and repulsion a most likely ordering of the position of nodes that
naturally leads to clusters, via spectral decomposition, in particular, via the eigenvector
y2 in Section 5.3.3.





6
TIME DYNAMICS OF THE DUTCH

MUNICIPALITY NETWORK

Science is the poetry of reality.

Richard Dawkins

Based on data sets provided by Statistics Netherlands and the International Institute of So-
cial History, we investigate the Dutch municipality merging process and the survivability
of municipalities over the period 1830−2019. We examine the dynamics of the popula-
tion and area per municipality and how their distributions evolved during the researched
period. We apply a Network Science approach, where each node represents a municipality
and the links represent the geographical interconnections between adjacent municipali-
ties via roads, railways, bridges or tunnels which were available in each specific yearly net-
work instance. Over the researched period, we find that the distributions of the logarithm
of both the population and area size closely follow a normal and a logistic distribution
respectively. The tails of the population distributions follow a power-law distribution, a
phenomenon observed in community structures of many real-world networks. The dy-
namics of the area distribution are mainly determined by the merging process, while the
population distribution is also driven by the natural population growth and migration
across the municipality network. Finally, we propose a model of the Dutch Municipality
Network that captures population increase, population migration between municipalities
and the process of municipality merging. Our model allows for predictions of the popula-
tion and area distributions over time.

This chapter is based on [99].
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6.1. INTRODUCTION
The process of urbanization by which large numbers of people permanently resided in
cities1 has marked our history. The technological changes that enabled the urbaniza-
tion and industrialization of our society took centuries to shape our cities, villages and
rural areas. Identifying relevant governing factors and understanding the influence of
different processes, such as population evolution, people migration, and urban growth,
is essential for urban planning and policy-making.

Marchetti revealed in [100] how people’s movements and commuting time depend
on technological innovations in transport. In addition, Gonzales et al. [101] observed
that human motion is characterised by both temporal and spatial regularity while obey-
ing simple, reproducible patterns. Human movement is often modelled as a random
walk, known as a Levy flight [102], where the distribution of travelling distance follows a
power law [103]. In contrast to human mobility patterns, job-related and socioeconomic
well-being variables govern migration flows of people [104], whose trends can be age-
specific, as observed by Johnson and Fuguitt in [105]. Migration patterns further shape
the development of urban and rural areas. Makse et al. [106] proposed a percolation-
based model for city growth, following the principle that urban area development leads
to further development. In addition, they found that the area distribution of towns sur-
rounding a city follows a power law in the case of Berlin and London in years 1920,1945
and 1981 respectively. Schlapfer et al. [107] empirically confirmed the scale-invariant
increase of interactions between humans with city size.

When researching phenomena related to geographical urban areas, most often cities
are considered [106, 108–111] as a basic unit, thus limiting the analysis to only a part of
the entire urbanization spectrum of a country. Consequently, the geographical influence
between neighbouring areas cannot be adequately considered [112]. In this research, a
set of municipal2 units is chosen rather than cities, for two reasons:

1 City boundaries are unofficial and often ambiguously defined compared to mu-
nicipalities that enclose their localities and rural area situated on a particular part
of national land and account for their particular part of the total national popula-
tion.

2 All cities belonging to one country do not cover together the entire national sur-
face and do not comprise the entire national population. In contrast, municipali-
ties together constitute an entire country in terms of land surface and population,
allowing for analysis of a country as a network of interconnected municipalities.
To the best of our knowledge, the evolution of municipalities over time has not
been analysed from a network perspective before.

A large system of elements (nodes) and their interactions or relations (links) can be
represented by a network. The characterization of networks has been extensively in-
vestigated for classification purposes and for understanding the effects of the network

1Urbanization|Britannica.
2A municipality is a city or a town or a set of localities having a dedicated local government (Municipal-

ity|Cambridge Dictionary).

https://www.britannica.com/topic/urbanization
https://dictionary.cambridge.org/dictionary/english/municipality?q=Municipality
https://dictionary.cambridge.org/dictionary/english/municipality?q=Municipality
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structure on its functioning [2, 113, 114]. From a network science perspective, this re-
search focuses on understanding the underlying processes that influence the evolution
and survivability of geographical areas of a country.

This chapter concentrates on the population and area size distributions at the mu-
nicipality level and the processes that change their characteristics over time. We argue
that the population and area size, together with the underlying topology, sufficiently
correlate with the probability of a municipality being annexed by a neighbouring mu-
nicipality. We demonstrate that the municipality merging process changes the area
size distribution. The population distribution is also influenced by the continuous (in-
ter)national migration of people across the municipality network. Regarding migration
we distinguish two different types of migration flows:

• People moving from small(er) to large(r) municipalities in terms of population
size. This migration flow occurs due to more attractive characteristics such as
urban infrastructure, better facilities, employment and economic opportunities
available in large(r) municipalities [107, 109],

• People moving from municipalities with a large(r) population to municipalities
with small(er) population. This migration flow, enabled by mass-commuting3

since the 1960s, occurs due to a more attractive cost of living, more space per per-
son and affordable housing, thus avoiding the drawbacks of densely populated
urban municipalities.

These two opposite migration flows take place simultaneously and shape the migration
patterns across the municipality network. These migration flows can be regarded as an
optimisation process in which people aim to obtain advantages of both small(er) and
large(r) municipalities as much as they can. People tend to live close enough to large
urban areas to enjoy the benefits but, on the contrary, distant enough to also enjoy the
additional living space and nature in smaller localities. Consequently, individual citi-
zens decide about the trade-off between their commuting time [100] and geographical
distance4 between their specific household situation and their work locations. As a result
of all these individual decisions, the two migration flows directly govern the population
distribution while indirectly influencing the merging process, the topology change and
area distribution over time.

After collecting and combining approximately 200 years of Dutch statistical data into
one large multi-layer network where each layer contains both the population and area
per municipality per year, we focus on the Netherlands and we design a method and
model allowing for quantitative network analysis. However, our research approach can
be applied to any urbanized country if lengthy time series of statistical data are available
from the respective national statistical offices.

From densely populated urban areas to the smallest villages in The Netherlands,
more than 2000 localities are grouped into municipalities. Continuing today, a major

3The increase of the number of privately owned cars in The Netherlands is described in the 2019 publication
of Statistics Netherlands; De groei van het Nederlandse personenautopark [115].

4While in 1947 only 15% of working population in The Netherlands worked outside the municipality where
they lived, in 2006 that percentage reached 56% [115].
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Figure 6.1: Classification of the Dutch municipalities in five categories of population.

development observed from recorded population-related time series5 is the municipal-
ity merging process, also referred to as municipal restructuring [116]. Figure 6.1 shows a
classification of all Dutch municipalities in five6 population categories. Although some-
times newly established municipalities occur in municipal restructuring, due to coali-
tions, renaming and in a few cases creating land from water, in this chapter, we use the
term municipality merging process for all processes influencing CBS-codes (explained in
Appendix E.3). The number of Dutch municipalities decreased since the beginning of in-
dustrialization (the end of the first half of the 19th century), while the population steadily
increased. For example, at the beginning of the industrial revolution, The Netherlands
consisted of 1228 mainly rural municipalities, gradually decreasing to 1016 in 1947 to-
wards 355 mainly urbanized municipalities in 2019. In the meantime, the national pop-
ulation density tripled between 1905 and 2010. According to the Ministry of Interior
Affairs, The Netherlands has 9 shrinking areas7 and 11 anticipation areas8 as shown in
Figure 6.1. A shrinking area [116] is defined as an area where the population is expected
to decrease by at least 12.5% until 2040, while the decrease in the number of households
is expected at least 5%. Areas, where the population is declining less rapidly, are called
anticipation areas. In anticipation areas, the population is forecast to decrease by at least
2.5% until 2040.

In Section 6.2 we define the Dutch Municipality Network. We analyse over time its
topology changes: how its population and area sizes evolved at the national, province
and municipality level. Section 6.3 examines the governing processes behind population
and area distribution changes over time from which we propose a model for the Dutch
Municipality Network in Section 6.4. In Section 6.5 we conclude.

6.2. DUTCH MUNICIPALITY NETWORK
We construct the Dutch Municipality Network (DMN) from a dataset consisting of ge-
ographical municipality-related polygons for each year between 1830 and 2019. As a
result, Figure 6.2 shows examples of the planar graphs for the years 1830, 1924 and 2019,

5Population development; live births, deaths and migration by region| CBS
6Areas of shrinkage and anticipation areas|CBS
7In Dutch: krimpgebieden or krimpregio’s
8In Dutch: anticipeergebieden or anticipeerregio’s

https://opendata.cbs.nl/statline/CBS/nl/dataset/37259ned/table?ts=1638870604154
https://opendata.cbs.nl/statline/CBS/nl/dataset/37259ned/table?ts=1638870604154
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in which the position of a node is determined by the geographic coordinates of the town
hall of the corresponding municipality. The set of Dutch municipalities in year k con-
stitutes a temporal network G (N [k],L [k]), defined by the set N [k] of N [k] = |N [k]|
nodes and set L [k] of L[k] = |L [k]| links. Each municipality in year k is represented by
a unique node and the underlying topology is defined by the N [k]×N [k] symmetric ad-
jacency matrix A[k]. Nodes i and j share a link (i.e. ai j [k] = 1) if there are geographical
interconnections between adjacent municipalities i and j via roads, railways, bridges or
tunnels9, which were available in year k, otherwise ai j [k] = 0.

1830 1924 2019

Figure 6.2: Dutch Municipality Network topology in the years 1830, 1924 and 2019.

In addition to the set of DMN graphs, a DMN research construct10 was setup, con-
taining the municipality area size, the population size and the merging data. Appendix
E.1 describes the datasets used in this research. We applied two complementary mu-
nicipality identification coding schemes to connect the yearly instances, as explained in
Appendix E.2. The time series of data containing the population and area per munici-
pality were collected from the International Institute of Social History11 recorded in the
Historical Database of Dutch Municipalities [117] and from Statistics Netherlands12.

To better understand the survivability of Dutch municipalities, we analyse different
underlying governing processes of the Dutch Municipality Network over time. Subsec-
tion 6.2.1 analyses the municipality network topology evolution per year, while the time

9If a pair of adjacent municipalities is exclusively connected in year k via water, we record ai j = 0 in A[k].
Although there can be a ferry service connecting two adjacent municipalities, we record ai j = 0 because a
ferry service can connect more than two municipality nodes in contrast to one link exclusively connecting two
nodes. Another characteristic that complicates analysis is the fact that some ferry services are not available
during an entire year k.

10The DMN research construct comprises: (I) from 1830 on, the municipality area and merging data for each
year k, (II) from 1851 on, the population vectors for each year k and (III) two population vectors derived from
the 1809 and 1830 censuses.

11In Dutch: Internationaal Instituut voor Sociale Geschiedenis.
12In Dutch: Centraal Bureau voor de Statistiek (CBS).
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dynamics of the area and population distribution per municipality are inspected in sub-
sections 6.2.2 and 6.2.3, respectively.

6.2.1. TOPOLOGY EVOLUTION OVER TIME

Figure 6.3: Number of nodes N [k] (upper left-hand side), number of links L[k] (upper right-hand side) and
average degree dav [k] (lower part) in the DMN during the period 1830−2019.

When municipality i merges into an adjacent municipality j in year k, municipal-
ity node i disappears and becomes inactive in the k + 1 instance of the DMN. When
a new municipality is created in year k, an additional municipality node appears and
becomes active in the k + 1 instance of the DMN. The upper left-hand side of Figure
6.3 shows a decrease of 873 municipality nodes N [k] as a results of municipality merg-
ing process between 1830 and 2019. In addition, the right-hand side of Figure 6.3 de-
picts the number of links L[k] evolution over the researched period. The average degree
dav [k] = 1

N [k]

∑N [k]
j=1 d j [k] = 2 L[k]

N [k] , with d j [k] =∑N [k]
i=1 ai j [k] denoting the degree of the j -

th node in year k, remained almost unchanged during the research period, as depicted
in the lower part of Figure 6.3

dav [k] ≈ 5, k ∈ {1830, . . . ,2019}. (6.1)

In other words, a typical Dutch municipality in the period 1830−2019 was surrounded
by five neighbouring municipalities on average. Appendix E.4 provides a conservation
law for the average degree dav [k] on a planar geographical network. The conservation



6.2. DUTCH MUNICIPALITY NETWORK

6

91

equation (E.1) explains the changes in dav [k] over the year k as shown in the lower part
of Figure 6.3. When pairs of municipalities merge, the average degree dav [k] slightly in-
creases. Upward spikes in dav [k] occur in the DMN when newly built infrastructure13

connects pairs of municipalities which were previously separated by water. However,
in the period after 1960, the merging process intensified and often took place in waves
which involved multiple municipalities per merger. As shown in Appendix E.4, the con-
servation relation (E.2) indicates a decreasing trend in dav [k], when mergers of clusters
of three or more municipalities occur. As a result, dav [k] started decreasing after 1975.

6.2.2. AREA PER DUTCH MUNICIPALITY
In this subsection, we consider area measurements per municipality in the period 1830−
2019 as realisations of the area random variable S of a municipality and examine how the
area distribution per municipality changed over time. We show that the random area per
municipality on a logarithmic scale, denoted by Y = logS, allows for better insight into
the underlying governing processes compared to a linear scale.

The area of each Dutch municipality in year k is a component of the N [k]×1 vector
s[k], where si [k] denotes the area of municipality i in year k. The average area per Dutch
municipality in year k is denoted as sav [k]

sav [k] = 1

N [k]
·

N [k]∑
i=1

si [k] = 1

N [k]
·uT · s[k], (6.2)

where uT = [1,1, · · · ,1] is the all-one vector. The N [k]×1 vector y[k] contains the loga-
rithm of area per municipality:

y[k] = [
log(s1[k]) log(s2[k]) . . . log(sN [k][k])

]T
. (6.3)

The total land surface of The Netherlands increased due to the process of building
dikes, creating polders and draining land from the North sea and (after 1932) the IJs-
selmeer14. Figure 6.4 shows that the national area size has increased by 9% between
1830 and 2019.

AREA DISTRIBUTION

The logarithm Y of the area of a typical Dutch municipality closely follows a Gaussian
or normal distribution and a logistic or Fermi-Dirac15 distribution [118], which are re-
viewed in Appendix E.5. Instead of applying lognormal and log-logistic distributions on
the area random variable S[k] in year k, the fitting accuracy with a normal and logistic
distribution of the logarithm of the area random variable Y [k] = log(S[k]) is higher. In
Appendix E.6.1, we apply the Anderson-Darling (AD) and the Kolmogorov-Smirnov (KS)
statistical tests to examine to which extent the hypothesis, that the random variable Y [k]
follows a Gaussian or a logistic distribution, holds.

13Due to road and railway infrastructure development the number of nodes in disconnected components of
the DMN decreased from 191 in the year 1830 to only 5 disconnected island municipalities in the Waddenzee
in the year 2019.

14The Flevoland province, established in 1986, has been created almost entirely from water and includes the
municipalities of Almere, Zeewolde, Dronten, Lelystad, Noordoostpolder and the former island Urk.

15The Fermi-Dirac distribution was introduced to describe energy states of particles.
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Figure 6.4: The total land surface of The Netherlands as the summation of the square kilometres from all mu-
nicipalities over the period 1830−2019.

Figure 6.5: The probability density function fY [k](y) of the logarithm of the measured area Y [k] per Dutch
municipality (blue bars), fitted with a normal distribution (defined in (E.4); red colour) and a logistic distribu-
tion (defined in (E.9); green colour) for the years 1830, 1924 and 2019 (upper part). The mean yav [k] (lower
left-hand side) and variance Var[y[k]] (lower right-hand side) of the measured logarithm of area vector y[k]
versus the mean and the variance by the normal fit (red colour) and the logistic fit (green colour) in the period
1830−2019.

The upper part of Figure 6.5 illustrates the probability density function fY [k](y) of the
logarithm of measured area per municipality (blue bars), fitted with a normal (red) and a
logistic (green) distribution, for the years 1830, 1924 and 2019. The mean µn[k] and the
variance σ2

n[k] of the normal distribution (defined in Section E.5.1), together with the
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mean µl [k] and variance σ2
l [k] = 1

3π
2s2[k] of the logistic distribution (defined in Sec-

tion E.5.3), per year k, are compared with the measured mean yav [k] and the variance
Var(y[k]) in the lower part of Figure 6.5. The mean E [Y [k]] of the logarithm of area Y [k]
is estimated equally precisely with a normal and logistic distribution. On the contrary,
the variance Var[Y [k]] is better fitted with a normal distribution. The lognormal distri-
bution (defined in Sec E.5.2) possesses a weaker right tail than a log-logistic distribution
(defined in Sec E.5.4), which follows more realistically the geographical boundary that
areas of municipalities obey. In general, the area of a municipality can increase only at
the cost of another municipality annexation, because the total area is almost16 constant
over time.

As will be derived in (6.11) in Section 6.3.2, the mean17 yav [k] monotonically in-
creases over time due to the merging process, with a pace depending on the merging
rate and the area of abolished municipalities. The variance Var(y[k]) mainly decreases
over time, except in the last two decades, where fluctuations occur. The decreasing trend
of Var(y[k]) with time k reveals the nature of the merging process. In order to visualise
how the merging process affected the distribution of the logarithm of the area, the prob-
ability density function fY [k](y) of the logistic distribution fit (left-hand side of Figure
6.6) of the logarithm of random area Y [k] and the probability density function fS[k](s) of
the log-logistic distribution fit (right-hand side of Figure 6.6) of the area random variable
S[k] for each year k in the period 1830−2019.

Figure 6.6: Probability density functions fY [k](y) of the logistic fit of the logarithm of the area distribution in
the period 1830−2019 (left-hand part). Probability density functions fS[k](s) of the log-logistic fit of the area
distribution in the period 1830−2019 (right-hand part).

The left-hand side of Figure 6.6 reveals that due to the merging process, municipal-
ities are predominantly abolished from the left-hand side of the distribution curve and
were annexed by a neighbouring municipality with a larger area. As a result, the left-
hand side of the distribution curve is constantly shifting towards the right-hand side

16Total area of the mainland of The Netherlands is constant over time, except for the newly built land, as
presented in Figure 6.4.

17The mean yav [k] = 1
N [k] ·

∑N [k]
i=1 log(si [k]) = log

(∏N [k]
i=1 (si [k])

1
N [k]

)
represents the logarithm of the geometric

mean of the N [k]×1 area vector s[k].
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at a faster pace than the right-hand side of the distribution18. Therefore, the variance
Var(y[k]) decreases, while the mean yav [k] increases over time. The merging process
reduces the diversity of municipalities in area size, while the fluctuations in Var(y[k])
indicate the outliers (such as island municipalities) on the left tail.

6.2.3. POPULATION PER DUTCH MUNICIPALITY
In this subsection, we analyse the population distribution per municipality over time,
where the collected population values per municipality are considered a realisation of
the population random variable. Similar to the area size in Section 6.2.2, we find that
the population random variable P reveals less information about underlying governing
processes than its logarithm Z = logP .

The population of Dutch municipalities in year k is represented by the N [k]×1 vector
p[k], where the population of municipality i in year k is denoted by pi [k]. The total
Dutch population T [k] in year k is obtained by summing the population of each active
municipality

T [k] =
N [k]∑
i=1

pi [k], (6.4)

or T [k] = uT p[k]. The N [k]×1 vector z[k] contains the logarithm zi [k] = log(pi [k]) of
the population of municipality i in year k,

z[k] = [
log(p1[k]) log(p2[k]) . . . log(pN [k][k])

]T
. (6.5)

Figure 6.7: Population development of The Netherlands (left-hand side figure) and population development
per Dutch province (right-hand side figure) in the period 1830−2019.

In 1830, The Netherlands had a population of 2.33 million people living in 1048 mu-
nicipalities, which increased to 17.41 million citizens in 2019. Although the total popu-
lation of The Netherlands, shown in Figure 6.7, has steadily increased during the period

18While the left distribution tail is shifted towards the right-hand side over time because municipalities with
the relatively small area are abolished, the right distribution tail is shifted due to the increase in the area of
municipalities that absorbed the abolished ones.
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1830−2019, the population increase per province significantly varies (right-hand side of
Figure 6.7). The impact of the Second World War on the population per Dutch province
also varies in intensity: the population of the provinces South Holland19 and North Hol-
land20 temporarily decreased most significantly.

POPULATION DISTRIBUTION

The logarithm of the Dutch municipality population random variable Z [k] closely fol-
lows a normal and a logistic distribution in the period 1830−2019. Similarly, the pop-
ulation random variable P [k] follows a lognormal and a log-logistic distribution. The

Figure 6.8: The probability density function of the logarithm of the population vector Z [k] per Dutch munic-
ipality (blue bars), fitted with a normal distribution (defined in (E.4); red colour) and a logistic distribution
(defined in (E.9); green colour) for the years 1830, 1914 and 2019 (upper part). Mean zav [k] (left-lower part)
and variance Var[z[k]] (right-lower part) versus the mean and the variance by the normal fit (red colour) and
the logistic fit (green colour) in the period 1830−2019.

upper part of Figure 6.8 depicts the probability density function fZ [k](z) of the logarithm
of the population per Dutch municipality Z [k] (blue bars), fitted with a normal (red) and
a logistic (green) distribution, for the years 1830, 1914 and 2019. In Appendix E.6.2, we
apply the Anderson-Darling (AD) and the Kolmogorov-Smirnov (KS) statistical tests to
examine to which extent the hypothesis of the random variable Z [k] following a normal
or a logistic distribution holds.

To understand how the population distribution evolved over the researched period,
we analyse the mean E [Z [k]] and the variance E

[
(Z [k]−E [Z [k]])2] trends over time.

19In Dutch: Zuid-Holland
20In Dutch: Noord-Holland
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The lower left-hand side of Figure 6.8 illustrates the average logarithm of the popula-
tion zav [k] = 1

N [k]

∑N [k]
i=1 zi [k] in the period 1830−2019, together with the mean E [Z [k]]

of the normal fit µn[k] (red colour) and the logistic fit µl [k] (green colour). Both consid-
ered distributions precisely fit the measured mean zav [k] over time. The monotonically
increasing mean zav [k] reveals the national population growth, but also comprises the
effects of the migration and merging process, as will be discussed in Section 6.3.

The variance Var(z[k]) = 1
N [k] ·

∑N [k]
i=1 (zav [k]− zi [k])2 over time is compared in the

lower right-hand side of Figure 6.8 with the expected variance E
[
(Z [k]−E [Z [k]])2] of

the normal fit σ2
n[k] (red colour) and of the logistic fit 1

3π
2σ2

l [k] (green colour). Different
trends of the variance Var(z[k]) over time reveal opposite migration patterns21 across the
geographical network of municipalities, which is derived in Section 6.3.

Figure 6.9: Probability density functions fZ [k](z) of the logistic fit of the logarithm of the population distribu-
tion in the period 1830−2019 (left-hand part). Probability density functions fP [k](p) of the log-logistic fit of
the population distribution in the period 1830−2019 (right-hand part).

The left-hand side of Figure 6.9 illustrates the probability density functions fZ [k](z),
from annual logistic fits of the logarithm of the population Z [k] in the period 1830−2019.
On the right-hand side of Figure 6.9, we provide the probability density functions fP [k](p)
of the log-logistic annual fit of the population random variable P [k]. Figure 6.9 reveals
the following general trends:

• The mode of the probability density function mode( fZ [k](z)) = 1
σl [k] is inversely

proportional to the square root of variance
p

Var(Z [k]), as the enclosed surface
under an bell-shaped curve obeys

∫ ∞
−∞ fZ [k](z)d z = 1. Therefore, the increasing

mode( fZ [k](z)) over time reflects a decreasing diversity in population on a loga-
rithmic scale.

• Both probability density functions fZ [k](z) and fP [k](p) are continuously shifted
to the right-hand side during the entire researched period, reflecting an almost 8
times increase in the total population of The Netherlands between 1830 and 2019
(see left-hand side of Figure 6.7).

21We refer here to two opposite migration flows, from small(er) to large(r) municipalities and from large(r) to
small(er) municipalities, as defined in the Introduction.
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Since the mean E [Z [k]] and the variance Var[Z [k]] of the logarithm of the random
population Z [k] = logP [k] are fitted precisely by both distributions, the difference lies in
the deep tails, where normal and logistic distributions behave considerably different. As
derived in (E.14), the probability density function fZ [k](z) of a logistic distribution on a
double logarithmic scale decays linearly with population p, while the probability density
function fZ [k](z) of a normal distribution decreases as a square function of the popula-
tion p, as derived in (E.15). Linear decay in the probability density function fZ [k](z) of
the logistic distribution indicates that the population distribution in the deep tail follows
a power-law distribution.

POWER-LAW FITTING

The population per random municipality P [k] in year k follows a power law if it obeys
the distribution function FP [k](p) = Pr(P [k] ≥ p) obeys

FP [k](p) =
(

p

pmi n[k]

)−τ[k]+1

, (6.6)

where the distribution parameter τ[k] in year k is known as the exponent or scaling pa-
rameter, while pmi n[k] denotes the minimum population value in year k that obeys the
power law. In empirical datasets, a power law often fits only a subset of a vector, explain-
ing the rare occurrence of large outcomes [119]. The corresponding probability density

function fP [k](p) = dFP [k](p)
d p of the power-law distribution in (6.6) is as follows

fP [k](p) =C [k] ·p−τ[k], (6.7)

where C [k] = (τ[k]−1) ·pmi n[k](τ[k]−1) denotes the normalisation constant in year k. For
each year k in the period 1830−2019, the distribution function FP [k](p) = Pr(P [k] ≥ p) is
fitted by a power-law distribution for a subset of medium and larger municipalities and
the power law exponent τ[k] is estimated. Figure 6.10 shows the distribution function
FP [k](p) = Pr(P [k] ≥ p) for the years 1851, 1960 and 2019 on the left-hand side, while the
percentage of the total number of municipalities, that approximately follow a power law
over time, is drawn on the upper right-hand part. In the lower right-hand part of Figure
6.10, the power law exponent τ[k] ∈ (2.1,2.7) roughly decreases up to 1960 and increases
after 1960. Apparently, during the Dutch urbanisation period, featured by a dominant
migration flow of people towards large(r) municipalities, the power law exponent τ[k]
decreased towards about τ[1961] = 2,17 at 1961. Subsequently, the opposite migration
flow dominated after 1960 and caused an increasing trend in the power law exponent
τ[k]. Probability functions in years 1851, 1960 and 2019, presented on the left-hand side
of Figure 6.10, depict the effect of different migration flows on the population distribu-
tion per municipality.

In this section, we showed that the average degree dav [k] slightly increases when two
municipalities are merged while dav [k] decreases due to a merger of more than two mu-
nicipalities. Irrespective of the merger type, the average area size per municipality on a
logarithmic scale yav [k] monotonically increased. In contrast, the variability in the area
size Var(y[k]) decreased over the entire research period. Multiple underlying processes
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Figure 6.10: Distribution function Pr(P [k] ≥ p) of the population per municipality in years 1851, 1960 and
2019 (left-hand side). The percentage of the N [k]×1 vector p[k] that is fitted by a power-law fit in the period
1851−2019 (upper right-hand part). Estimated exponent τ[k] of the power-law fit of population distribution
per municipality in the period 1851−2019 (lower right-hand part).

govern the time dynamics of the population. The increasing trend of the average loga-
rithm zav [k] of population per municipality reveals a national population increase, but
also the opposite trends of variability in population size Var(z[k]).

6.3. DYNAMIC PROCESSES ON THE DUTCH MUNICIPALITY

NETWORK
In this section, we identify underlying processes in the Dutch municipality network and
how they impacted population and area distribution in the period 1830−2019. Overall,
we show that taking the logarithmic of the relevant quantities simplifies the analysis of
the governing processes, which is a quite remarkable observation22. While both popu-
lation and area distributions are heavy-tailed on a linear scale, they are bell-shaped on
a logarithmic scale. Thus, we find that the mean and variance on a logarithmic scale
describe the population and area distribution more precisely than on a linear scale.

6.3.1. MUNICIPALITY MERGING PROCESS

At the end of each year k, a number – possibly none – of municipalities is abolished and
annexed by one or more neighbouring municipalities. We denote the set of abolished
municipalities at the end of year k as A [k], with the number of abolished municipali-
ties denoted by Na[k] = |A [k]|. The evolution of the number of abolished municipalities

22Often human behaviour seems to follow a lognormal distribution as in Twitter [120] and online social plat-
forms like Digg [121]. To the best of our knowledge, there is no rigorous theory of why the logarithm of
quantities related to human behaviour (as here population and area) appears so often.
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Figure 6.11: Number of municipalities per each of the 12 Dutch provinces in the period 1830− 2019 (upper
left-hand side). The total number of Dutch municipalities N [k] in the period 1830−2019 (upper right-hand
side). Number of abolished Na [k] (lower left-hand side) and newly established municipalities Nn [k] (lower
right-hand side) in the period 1830−2019.

Na[k] over time is depicted in the lower left-hand side of Figure 6.11. Appendix E.3 pro-
vides an overview of the merger types in the Dutch Municipality Network during the
research period. The merging process became most intensive in the second part of the
20th century, decreasing population and area diversity while increasing the average size
per municipality.

Newly established municipalities additionally modify the Dutch Municipality Net-
work topology over time. The total area of The Netherlands increased since 1830 due
to the reclaimed land from the sea on which new municipalities have been established.
We denote the number of newly established municipalities at the end of year k as Nn[k].
The lower right-hand side of Figure 6.11 depicts how often new municipalities were es-
tablished in the period 1830−2019. The evolution of the number of municipalities N [k]
over time, as presented in the upper left-hand side of Figure 6.11, obeys the following
conservation law

N [k +1] = N [k]+Nn[k]−Na[k]. (6.8)

However, since very few new municipalities23 have been established during 1830−2019,

23As presented in the lower right-hand side of Figure 6.11, since 1830 until 2019 in total
∑2019

i=1830 Nn [i ] = 19
new municipalities have been established.



6

100 6. TIME DYNAMICS OF THE DUTCH MUNICIPALITY NETWORK

the municipality merging process predominantly drives the changes in the DMN topol-
ogy. Thus, for the following analysis, we approximate (6.8) as

N [k +1] ≈ N [k]−Na[k]. (6.9)

The difference equation (6.9) appears commonly in literature and can be solved by itera-
tion24 over k. The general exact solution is found via generating functions (see, e.g. [122,
p. 123]).

6.3.2. GOVERNING PROCESSES OF THE AREA DYNAMICS
The area distribution per municipality evolves due to merging and establishing new mu-
nicipalities. Since the latter occurs relatively rarely, we focus on how the merging process
impacts the area distribution. We show that the area dynamics on a linear scale depend
solely on the number of abolished municipalities Na[k], while the analysis on a logarith-
mic scale reveals additional information about the merging process.

In Figure 6.12, we provide the mean sav [k] (upper left-hand side) and the variance
Var(y[k]) (lower left-hand side) of the N [k]×1 area vector s[k], as well as the mean yav

(upper right-hand side) and the variance Var(y[k]) (lower right-hand side) of the N [k]×1
logarithm of area vector y[k] in the period 1830−2019.

Figure 6.12: Mean sav [k] (upper left-hand part) and Variance Var(s[k]) (lower left-hand part) of the N [k]×1
area vector s[k] in the period 1830−2019. Mean yav [k] (upper right-hand part) and Variance Var(y[k]) (lower
right-hand part) of the N [k]×1 logarithm of area vector y[k] in the period 1830−2019.

24By iteration over k, we obtain N [k] = N [m]−∑m−1
j=p Na [ j ], where we assume that year m < k is known or is

the initial condition.



6.3. DYNAMIC PROCESSES ON THE DUTCH MUNICIPALITY NETWORK

6

101

We consider a merger case where Na[k] = |A [k]| abolished municipalities in year
k are annexed by an existing municipality η ∈ N [k]. The set of municipalities in the
following year becomes N [k+1] =N [k]\A [k], where \ denotes the set difference. As a
result of a municipality merger, the area of the annexing municipality η grows as sη[k +
1] = sη[k]+∑

i∈A [k] si [k] in the next year k+1. The average area sav [k+1] in the following
year k +1 evolves as follows

sav [k +1] =
(
1+ Na[k]

N [k]−Na[k]

)
· sav [k]. (6.10)

The mean sav [k] over time is presented in the upper right-hand side of Figure 6.12. From
combining (6.9) and (6.10), we observe that the mean sav [k] in year k is inversely pro-
portional to the number of municipalities N [k]

sav [k +1]

sav [k]
= N [k]

N [k +1]
,

thus revealing solely the information about the intensity of the merging process over
time. On the contrary, the conservation law for the average yav [k] of the N [k]×1 vector
y[k] = log(s[k]) of the area s[k] per Dutch municipality in year k is

yav [k +1] =
(
1+ Na[k]

N [k]−Na[k]

)
· yav [k]+ 1

N [k]−Na[k]
log


∑

i∈η∪A [k]
si [k]∏

j∈η∪A [k]
s j [k]

 , (6.11)

as derived in Appendix E.7.1. The second term in (6.11) reveals additional information
about the mergers, compared to the conservation law in (6.10). The increase of the mean
yav [k] over time, as depicted in the upper right-hand side of Figure 6.12, is bounded by
the second term in (6.11). From the left-hand side of Figure 6.6, we observe that the
left distribution tail of the logarithm of the area Y [k] is impacted mostly after 1960, in-
dicating that the municipalities with the smallest areas were often abolished. Mergers
involving municipalities from the left distribution tail cause the second term in (6.11)
to increase in value and consequently increase the mean yav [k] at a larger pace than
before 1960. From the upper right-hand side of Figure 6.12, we clearly distinguish two
linear patterns over time, until and after 1960.

From the decreasing trend of the variance Var(y[k]) over time, presented in the lower
right-hand side of Figure 6.12, we observe that the merging process continuously low-
ered the area size diversity of Dutch municipalities on a logarithmic scale. In other
words, the area size of a municipality negatively correlates with the probability of its
abolishment, taking into account the increasing trend of the mean yav [k]. Therefore,
the municipality area could be considered a predictor of the probability of municipality
abolishment.

Since the area and population distribution per Dutch municipality follow the same
distribution model, the insights into how the merging process impacted the area distri-
bution also hold for the population, allowing for recognising the impact of other govern-
ing processes, such as population growth and people migration.
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6.3.3. GOVERNING PROCESSES OF THE POPULATION DYNAMICS

In this section, we analyse how the population increase, population migration between
municipalities and the process of municipality merging determined the population dis-
tribution per municipality.

In Figure 6.13, we present the mean pav [k] (upper left-hand side) and the variance
Var(p[k]) (lower left-hand part) of the N [k]×1 population vector p[k]. In addition, we
depict the mean zav [k] (upper right-hand side) and the variance Var(p[k]) (lower right-
hand side) of the N [k]×1 logarithm of the population vector z[k] in the period 1830−
2019.

Figure 6.13: Mean xav [k] (upper left-hand part) and Variance Var(x[k]) (lower left-hand part) of the N [k]×1
population vector x[k] in the period 1830−2019. Mean zav [k] (upper right-hand part) and Variance Var(z[k])
(lower right-hand part) of the N [k]×1 logarithm of population vector z[k] in the period 1830−2019.

The trends of both the mean zav [k] and the variance Var(z[k]) in Figure 6.13 can be
approximated by a two-segment linear function of time k, before and after 1960. Further,
the variance25 of the logarithm of the population vector Var(z[k]) peaks around 1960 and
starts decreasing afterwards, revealing a change in the dynamic pattern of the underlying
processes. A decreasing trend of the variance Var(z[k]) coincides with the intensified
municipality merging process that took place after 1960, as presented in Figure 6.11.
Another underlying process governing both the mean zav [k] and the variance Var(z[k])
over time is the population evolution per municipality.

25The variance Var(z[k]) spikes in the year k = 1944 due to the Second World War, and this year represents an
outlier in the time dynamics of the DMN population distribution.
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POPULATION RANK-SIZE DISTRIBUTION

The population distribution of a country’s large(r) cities often follows Zipf’s Law, which
reveals a relationship between the frequency and size of a set [123]. We analyse the rank-
size distribution of the population per Dutch municipality in the period 1830 − 2019.
In each year k, the population vector p[k] rank-size distribution is fitted with a linear
function on a double logarithmic scale. The absolute value of the slope of the population
rank-size distribution we denote as the population rank-size slope β[k]. In the upper
part of Figure 6.14, we provide the population rank-size distribution per municipality,
together with the fitted line on a double logarithmic scale for the years 1830, 1920 and
2010. In addition, we depict the slope β[k] of the linear fit (lower left-hand part) and the
population of Amsterdam p A[k] in the period 1830−2019.

Figure 6.14: Population rank-size distribution per municipality and the linear fit in double logarithmic scale, in
years 1830, 1920 and 2010 (upper part). Estimated slope of the population rank-size distribution in the period
1809−2019 (lower left-hand part). Population of Amsterdam in the period 1830−2019 (lower right-hand part).

A general trend of vertical movement26 of the point cloud in the upper part of Fig-
ure 6.14 reflects the population increase over time, as we explain in Section 6.4.1. The
rank-size distribution slope β[k] over time reveals two opposite dynamic trends of the
population evolution per Dutch municipality in the period 1851−2019. Since 1851, the
rank-size slope β[k] continuously increased and peaked at β[1960] = 0.846 in 1960, from
when it started decreasing. The population rank-size slope β[k] in year k can be approx-
imated as

β[k] ≈ b1 ·k +b2, (6.12)

26A vertical movement of the dots in the upper part of Figure 6.14 is similar to the horizontal movement of the
logistic probability density function fZ [k](z) over time, presented in Figure 6.9.
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where the parameters b1 and b2 are estimated for the periods 1851−1960 and 1960−2019
as follows

b1 =2 ·10−3, b2 =−3.23,k ∈ {1851,1959} (6.13)

b1 =−3.4 ·10−3,b2 = 7.47, k ∈ {1960,2019}.

A positive increase in the population rank-size slope β[k + 1]−β[k] between two con-
secutive years k and k +1 in the period 1851−1960 informs us that larger municipalities
increased in population size faster than smaller municipalities on a logarithmic scale.
Here we introduce an assumption important for the following analysis. We assume that
the population of each municipality approximately follows Zipf’s Law. Therefore, from
the rank-size distribution in Figure 6.14, the logarithm of municipality i population zi [k]
in year k can be approximated as

zi [k] ≈ zA[k]−β[k] · logri [k], (6.14)

where i ∈ N [k] and municipality i ranking in the N [k] × 1 population vector p[k] in
year k is denoted as ri [k], while the logarithm of the population in Amsterdam (i.e. the
largest Dutch municipality by population) in year k is denoted as zA[k] = log(p A[k]).
When assuming that the ranking of municipality i in the N [k]×1 population vector p[k]
does not change ri [k + 1] = ri [k] in two consecutive years k and k + 1, we obtain the
following governing equation

pi [k +1]

pi [k]
= (ri [k])−b1 · p A[k +1]

p A[k]
, (6.15)

as derived in Appendix E.7.2. The governing equation (6.15) of the population increase
per municipality, for different values of the linear fit parameter b1 in (6.13), reveal two
opposite trends of people migration. Until 1960, people predominantly migrated from
small(er) to large(r) municipalities. Consequently, municipalities with a large(r) popula-
tion grew faster. In contrast, in the period after 1960, the largest municipalities in popu-
lation no longer grew at a dominant pace, revealing the migration flow towards small(er)
municipalities in population size. The two dynamic trends are also observable from the
population of Amsterdam p A[k], presented on the lower right-hand side of Figure 6.14.
Based on the governing equation (6.14), we derive the impact of the rank-size slope β[k]
over time onto the mean zav [k] of the logarithm of population vector z[k]

zav [k] = zA[k]−β[k] · log
(
N [k]!

1
N [k]

)
. (6.16)

which can be further simplified using Stirling’s approximation [124, p. 257] of the
Gamma function

zav [k] ≈ zA[k]−β[k] ·
(
log(N [k])− log(e)+ 1

2N [k]
· log(2πN [k])

)
. (6.17)

Relation (6.16) explains two linear patterns in the mean zav [k] evolution over time, pre-
sented in the upper right-hand side of Figure 6.13. In the period 1830− 1960, the in-
crease in Amsterdam population dominantly impacted the mean zav . In the next period
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1960−2019, Amsterdam population saturated on a logarithm scale zA[k]. However, both
the rank-size distribution slope β[k] and the number of municipalities N [k] monotoni-
cally decreased in value, keeping the increasing trend of the mean zav [k].

The assumption introduced in (6.14) allows to derive the variance Var(z[k]) as pro-
vided in Appendix E.7.2

Var(z[k]) =β2[k] · g (N [k]), (6.18)

where

g (N [k]) = 1

N [k]

N [k]∑
i=1

(
log

N [k]!
1

N [k]

i

)2

,

explaining the behaviour of the Variance Var(z[k]) over time. Since 1830 until 1960, the
slope β[k] monotonically increased, causing an increase of the variance Var(z[k]). On
the contrary, the decreasing trend of the slope β[k] after 1960, together with the decreas-
ing number of municipalities N [k] due to the merging process, caused the Var(z[k]) to
decrease. Moreover, the aggressive merging process that took place after 1960 amplified
the decreasing rate of the variance Var(z[k]).

In Appendix E.7.3, we derive an explicit relation between the exponent of the power-
law probability density function (depicted in Figure 6.10) and the rank-size distribution
slope β[k] (provided in the lower left-hand side of Figure 6.14)

β[k] = 1

τ[k]−1
. (6.19)

EVOLUTION OF MUNICIPALITIES ACROSS FIXED POPULATION SIZE CATEGORIES

To better understand how the population distribution changed over time, we analyse
the evolution of municipalities over time across fixed population size categories. The
first size category contains municipalities with less than 200 inhabitants. On the other
side, the last category includes municipalities with more than 200.000 inhabitants. In
between, we define equidistant intervals of the population size on a logarithmic scale for
a given number of intervals. For each year k in the period 1830−2019, we correlate the
percentage of the total population in The Netherlands with the ratio of the total number
of municipalities per population size category. The correlation is presented in the upper
part of Figure 6.15.

Except for the largest municipalities (i.e. those with more than 200.000 inhabitants),
we observe a consistent correlation pattern in the two-dimensional space. A fixed pop-
ulation size category initially27 contains no municipalities until their population sizes
reach values determining the size category. Each category draws a path in the clockwise
direction, as presented in Figure 6.15, and eventually tends back to the coordinate ori-
gin. On the contrary, a municipality advances upwards through adjacent categories as
population size increases. When advancing, a municipality is the largest in the current
category while becoming the new smallest element in the next larger category. There-
fore, the impact of a municipality leaving the current category is negative and of consid-
erably higher intensity than a municipality’s positive impact upon entering the adjacent

27Under the assumption, we find an adequate time instant. However, for a given time instant, different cate-
gories are in different regions of their respective paths.
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Figure 6.15: Correlation between the relative number of municipalities and the relative population per
logarithmic equidistant population size category in the periods (lower part, from left to right-hand side)
1830− 1900, 1900− 1960, 1960− 2000 and 200− 2019, and during the entire researched period 1830− 2019
(upper part).

larger category. Consequently, the correlation patterns in Figure 6.15 must always de-
scribe paths in the clockwise direction.

In the lower part of Figure 6.15, we present correlation patterns in different periods
to analyse the impact of different underlying processes. The merging process negatively
affects the abolished municipality’s category, as its annexation is equivalent to removing
that municipality from the corresponding group. On the contrary, the annexing munici-
pality either positively influences the path of its size category or advances to a (possibly
non-adjacent) larger-size group of municipalities. Indeed, the trajectory of smaller-size
categories in the period 1830−1900 (first plot from the left) is considerably shorter than
the trajectory in the following periods 1900−1960 (second plot) and 1960−2000 (third
plot), respectively, which coincides with the merging intensification over time, as pre-
sented in Figure 6.11.

The dominant increase in the population ratio of the largest municipalities in the
period 1830−1900 indicates an intensive migration of people from small(er) to large(r)
municipalities, as presented in the lower left-hand side of Figure 6.15. On the con-
trary, the largest municipalities significantly decreased in population size in the period
1960−2000. The migration flow from large(r) to small(er) municipalities became dom-
inant in this period. In addition, an intensive merging process took place, degrading
small(er) size categories while further reinforcing the population increase of municipal-
ities of large(r) sizes.

Finally, trajectories in Figure 6.15 enclose an area. Such phenomena can be ex-
plained by the fact that the distribution of the logarithm of population per municipality
follows Gaussian distribution consistently over time, as depicted in Figure 6.8. In other
words, the probability density function fZ [k](z) defines a bell-shaped curve, being hori-
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zontally shifted over time. Therefore, a population-size category of municipalities firstly
increases in the number of municipalities (and thus population ratio), peaks and starts
decreasing, explaining the trajectories in Figure 6.15.

6.4. MODEL OF THE DUTCH MUNICIPALITY NETWORK
This section proposes a model which captures the time dynamics of the DMN. The pur-
pose of the model is not to explain the evolution of a single Dutch municipality over time
but rather to describe the evolution of the population and area distribution per Dutch
municipality. The DMN model consists of three sequential sub-models:

1. Population increase model per municipality,

2. Inter-municipal migration model, and

3. Merging model,

6.4.1. POPULATION INCREASE MODEL
Available measurements of the population per municipality in the period 1830− 2019
reveal a consistent correlation pattern between the population pi [k] of municipality i in
year k and its increase pi [k +1]−pi [k], which a linear function on a double logarithmic
scale can approximate. In the upper part of Figure 6.16, we present the correlation28

between values pi [k+1]−pi [k] and pi [k], where i ∈N [k], on a double logarithmic scale
in years 1852, 1936 and 2019, respectively. A positive correlation can be approximated as
follows

E
[
log(P [k +1]−P [k])

]= c1[k] ·E [Z [k]]+ c2[k], (6.20)

where coefficients c1[k] and c2[k] represent the slope and additive constant of the linear
fit in year k, as presented in the lower part of Figure 6.16. While the slope c1[k] slightly
oscillates around 1 for a period of 130 years, the additive constant c2[k] decreases over
time, allowing us to introduce the following approximations

c1[k] ≈ 1

c2[k] ≈ 9.27−5.8 ·10−4 ·k.
(6.21)

By choosing c1[k] = 1 and adopting the stronger assumption that the difference equa-
tion (6.20) holds not only for the mean, but also for the random variables themselves, i.e.
log(P [k +1]−P [k]) = Z [k], we deduce that Cov

[
log(P [k +1]−P [k]) , Z [k]

] = Var[Z [k]],
meaning that the variability in the difference (an increase of population in a random mu-
nicipality P [k]) equals that of P [k]. The governing equation for the population increase
model per municipality is obtained by importing (6.21) into (6.20):

E [P [k +1]] ≈
(
1+ec2[k]

)
·E [P [k]]. (6.22)

The slope c1[k] and the additive constant c2[k] values considerably oscillate in the last
two decades of the researched time series. A reason that causes such behaviour is an

28A minor percentage of municipalities with negative population increase is not presented in Figure 6.16.
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Linear fitMeasured

Figure 6.16: Population per municipality p[k] in year k, versus population increase (p[k + 1]− p[k]) in the
following year k + 1, on a double logarithmic scale for the years 1852, 1936 and 2019, together with a fitted
linear function (upper-part). Time dynamics of the slope c1[k] and the additive constant c2[k] of a fitted line
(lower part).

intensified merging process (see lower left-hand part of Fig 6.11) that took place in the
mentioned period, as a result of which certain municipalities (in most cases with a rel-
atively small population) are being abolished and annexed by a neighbour municipality
with a larger population. Consequently, the population increase of annexing municipal-
ities in the following year spikes. Indeed, on a closer look at Figure 6.16, the slope c1[k]
(additive constant c2[k]) exhibit only positive (negative) spikes during the last 20 years
of the researched period, respectively, and return to the previous state in the subsequent
year.

Under the assumption that the number of municipalities remains unchanged within
two consecutive years, N [k + 1] = N [k], the mean zav [k] evolves due to the proposed
population increase model in (6.22) as follows

zav [k +1] = 1

N [k]

N [k]∑
i=1

(
log

(
1+ec2[k]

)
+ zi [k]

)
= log

(
1+ec2[k]

)
+ zav [k],

because a multiplicative increase on a linear scale is equivalent to an additive increase
on a logarithmic scale. On the contrary, the variance Var(z[k])

Var(z[k +1]) = 1

N [k]
·

N [k]∑
i=1

(
zav [k +1]− log

(
1+ec2[k]

)
− zi [k]

)2 = Var(z[k]),
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is invariant to the population increase model in (6.22). An argument behind neglect-
ing the slope c1[k] deviations around value 1 and adopting (6.21) is the idea of decou-
pling two population processes that occur on the DMN, namely the population increase
and population migration. We argue that the variability in multiplicative population in-
creases per municipality is a consequence of the people migrating between municipali-
ties. Thus, in the following subsection, we introduce the migration model on a network
that complements the population increase model (6.22).

6.4.2. INTER-MUNICIPAL MIGRATION MODEL
The population increase model in (6.22) reveals a common trend in population in-
crease per Dutch municipality. Other simultaneous processes on the DMN are immi-
gration/emigration and internal migration of people. In this subsection, we introduce a
migration model of people on a geographical network and apply it to the Dutch Munici-
pality Network.

We propose a linear model that captures the migration of people across a geograph-
ical network of municipalities and complements the population increase model. The
proposed migration model is a diffusion-like process founded on the assumption that
there are two opposite migration flows taking place simultaneously on a network:

• Forward migration: People moving from small(er) to large(r) municipalities in
terms of population size, denoted as the forward migration flow with forward mi-
gration rate α. This migration flow became dominant during the urbanisation pe-
riod, from approximately 1850 until 1960 (see Figure 6.18).

• Backward migration: People moving from large(r) to small(er) municipalities, de-
noted as the backward migration flow with backward migration rate δ. This mi-
gration flow became dominant after 1960.

We define the N [k]×N [k] migration matrix M [k], with elements mi j [k]

mi j [k] = ai j [k]1{
E [pi [k]]<E [p j [k]]

}, (6.23)

with the indicator function denoted as 1x , which is defined as 1 if the statement x is
true, otherwise equals 0. Relation (6.23) transforms the undirected DMN into a directed
network, in which each link points to the adjacent municipality with a larger population,
from where we conclude

A[k] = M [k]+M T [k].

The N [k]×N [k] migration matrix M [k] allows for introducing a model of people migrat-
ing on a municipality network

E [P [k +1]] = (
I +α ·M T [k]+δ ·M [k]−α ·diag(M [k] ·u)−δ ·diag

(
M T [k] ·u

)) ·E [P [k]],
(6.24)

where the N [k]×N [k] matrix I denotes the identity matrix. Each matrix term in (6.24)
allows for a physical interpretation. The N ×N identity matrix I indicates that the pro-
posed migration model describes an additive process. The second term α · M T [k] cal-
culates arrivals of people per municipality due to the forward migration flow (i.e. from
smaller to larger adjacent municipality). The same migration flow, away from a smaller
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adjacent municipality, is accounted for in the matrix term α ·diag
(
M [k]T ·u

)
. The third

matrix term δ ·M [k] computes the arrivals of people per municipality due to backward
migration (i.e. from large(r) to small(er) adjacent municipality). As each migration flow
has an origin and a destination municipality, the number of departures due to the back-
ward migration is accounted for by δ ·diag(M [k] ·u). The sum of the opposite forward
and backward migration flows provides the resulting migration flow from municipality i
to a larger adjacent municipality j (i.e. p j [k] > pi [k])α·pi [k]−δ·p j [k]. In the particular
case when α= δ, the governing equation (6.24) describes a diffusion process

E [P [k +1]] = (I −α ·Q[k]) ·E [P [k]] ,

where the N ×N Laplacian Q = diag(d)− A. Properties of the proposed migration model
in (6.24) are provided in the Appendix E.8.

6.4.3. MERGING MODEL
The merging dynamics of the Dutch Municipality Network is a complex, government-
controlled process that depends on numerous factors, such as economics, politics and
social aspects, to name a few. Instead, we argue that all these aspects correlate with the
population and area of municipalities. Thus, we model the Dutch municipal merging
process by considering the population and area measurements per municipality and the
network effect.

Figure 6.17: Correlation between the first and the second term of the Abolishment Likelihood index xi [k] per
abolished municipality (i.e. i ∈ A [k]) in the year of their abolishment (left-hand side figure). Distribution
of the Abolishment Likelihood index p[k] per abolished municipality in the year of their abolishment versus
distribution of the Abolishment Likelihood index vector xi [k] per each municipality in year k = 2019 (right-
hand side figure).

We propose an Abolishment Likelihood index per municipality that estimates the
set of abolished municipalities A [k] in year k. The Abolishment Likelihood index of
municipality i in year k, denoted as xi [k], is defined as

xi [k] = 1

di [k] ·pi [k]

∑
j∈Ni [k]

ai j [k] ·p j [k]+ 1

3
· sav [k]

si [k]
, (6.25)
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with Ni [k] denoting the set of the node i neighbours in year k (i.e. Ni [k] = { j | j ∈
N [k], ai j [k] = 1}). The first term of the Abolishment Likelihood index xi [k] in (6.25)
compares the population pi [k] of municipality i with the mean population of its direct
neighbours 1

di [k]·pi [k] ·
∑

j∈Ni [k] ai j [k]·p j [k], while the second term in (6.25) compares the
area si [k] of municipality i with the mean area sav [k] per Dutch municipality in year k.
The set of abolished municipalities in year k, denoted by A [k], is determined as Na[k] =
|A [k]| municipalities with highest ranking in the N [k]×1 Abolishment Likelihood index
vector x[k].

On the left-hand side of Figure 6.17, we correlate terms of the Abolishment Likeli-
hood index xi [k] in (6.25) per each abolished municipality i , in the year of its abolish-
ment. The absence of correlation confirms the validity of our choice to consider both
population and area size per municipality. In addition, the two box-whisker plots (abol-
ished versus existing municipalities) on the right-hand side of Figure 6.17 are clearly
shifted with respect to each other, confirming that the Abolishment Likelihood index
indeed captures the abolishment likelihood.

6.4.4. MODEL VALIDATION
By combining the assumption from (6.21), the proposed migration model (6.24) and the
merging model (6.25), we obtain a complete model for the time dynamics of the Dutch
Municipality Network. The model is initialized by the (N [k]×N [k]) adjacency matrix
A[k] of the DMN, the (N [k]×1) population vector p[k] and the (N [k]×1) area vector s[k]
from year k = 1851. Starting from k = 1852, the input to the model is the total population
of The Netherlands T [k] and the number of abolished municipalities Na[k] in each year
k in the period (1851−2019). The DMN model is iteratively applied for each year k in the
following order

• Based on the assumption in (6.21), update the population vector as p[k + 1] =
T [k+1]

T [k] ·p[k].

• Apply the migration model, defined in (6.24).

• Compute the Likelihood Abolishment index x[k] per municipality, as in (6.25). De-
termine Na[k] municipalities with the highest ranking in the sorted index vector
x[k]. Assign the population and area of each abolished municipality to an adjacent
municipality closest in the ranking in the sorted vector x[k].

• Update the N [k+1]×N [k+1] adjacency matrix A[k+1] of the DMN, the N [k+1]×1
population vector p[k +1] and the N [k +1]×1 area vector s[k +1].

For the migration model in (6.24), the used values of the forward migration rateα[k] and
the backward migration δ[k] rate per year k are provided in Figure 6.18. The migration
rates are determined heuristically, motivated by observations in Section 6.3.3. In the
following subsection, we analyse the DMN model prediction accuracy.

6.4.5. PREDICTION ACCURACY OF THE DMN MODEL
The measured population distribution per municipality is compared with the predicted
population distribution by the DMN model. The measured and predicted population
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Figure 6.18: Forward migration rate α[k] (blue colour) and the backward migration rate δ[k] (red colour) over
time k.

Figure 6.19: Measured versus predicted population distribution per municipality in years 1852, 1960 and 2019
(upper part). Measured versus predicted population rank-size distribution per municipality in years 1852, 1960
and 2019 (lower part).

distributions are compared for the years 1852, 1960 and 2019 in the upper part of Figure
6.19. Further, the lower part of the Figure provides the rank-size distribution of both the
measured and predicted population vector.
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The distribution of the predicted population vector per Dutch municipality closely
follows the distribution of the measured population vector over time during the entire re-
search period. With the proposed decoupling of the population dynamics into an equal
increase per municipality in (6.21) and the migration process in (6.24), we can explain
how the Dutch population distribution evolved in the last 170 years.

Figure 6.20: Kolmogorov-Smirnov divergence between the measured and predicted population distribution in
the period (1852−2019) (upper figure). Predicted versus measured population rank-size slope in the period
(1852−2019) (lower figure).

To quantify the precision of the predicted population distribution over time, we com-
pute the Kolmogorov-Smirnov divergence between the predicted and measured popu-
lation distribution and provide the results in the upper part of Figure 6.20. The diver-
gence value remains relatively low during the entire researched period, indicating that
the adopted values for the forward migration rate α[k] and the backward migration rate
δ[k] indeed reveal the migration flows in The Netherlands.

The predicted versus the measured population rank-size distribution slope β[k] is
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provided in the lower part of Figure 6.20. The rank-size slope of the predicted population
vector depends solely on the migration process in (6.24) and, thus, on the forward α and
the backward δ migration rate, provided in Figure 6.18. Opposite trends in migration
rates α[k] and δ[k] until and after 1960 marked a dynamic transition in the rank-size
slope β[k] of the population vector.

In Figure 6.21, we compare the distribution of all abolished municipalities in the pe-
riod (1851−2019) per Dutch province with predicted mergers by the DMN model. The
proposed DMN model achieves a fantastic precision of 91,7%. The DMN topology in
1851 initialises the DMN model. However, the road bridges and dikes built after 1851
connected many isolated components of the Dutch Municipality Network to the main-
land, as discussed in Appendix E.4. Consequently, the number of isolated components
in the DMN monotonically decreased over time, which is not taken into account in the
DMN model. For example, the entire province of Zeeland remains disconnected from
the mainland in the DMN model, which is not the case in reality. We argue that the
model precision could be even higher if the topology changes of the DMN after 1851
were taken into account in the proposed DMN model.

Figure 6.21: Predicted versus the measured number of abolished municipalities per Dutch province in the
period 1851−2019.

6.5. CONCLUSION
Linking the data sets collected by Statistics Netherlands and the International Institute
of Social History enabled us to investigate the Dutch municipality merging process and
the survivability of municipalities over the period 1830-2019. In a geographic sense, a
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municipality can vary from a densely populated urbanized (city) area to a set of sparsely
populated localities29 in a rural area. In a governmental sense, a municipality is a highly
autonomous administrative unit serving its population at the local government level and
interacting with the overarching levels of the provincial and national government. All
1467 Dutch domestic municipalities that have ever existed between 1830 and 2019 are
captured in a research construct referred to as the Dutch Municipality Network (DMN).

Compared to the first 160 years of the researched time series, the last three decades
reveal considerable fluctuations, such as in the observed values of the slope of the pop-
ulation increase per municipality (see section 6.4.1). Can these recent fluctuations be
solely attributed to the accelerated decrease in the number of Dutch municipalities due
to the intensified merging process? What do these fluctuations mean for a country as a
whole?

Over the entire research period, we have observed the amazing property that the
logarithm of population size and municipality area features an almost linear difference
equation over the years. This underlying "log-linearity" in the evolution process resulted
in a predictive accuracy of 91.7% at the province level (see section 6.4) in spite of all mu-
nicipality mergers and dynamic population fluctuations that took place in reality. The
remarkable "log-linearity" in population size and municipality area asks for a scientific
explanation. The collected data researched here are macroscopic statistical observa-
tions derived from many individual movements. Just as for interacting particle systems
in physics, we think that the macroscopic observations can be explained if the rules or
laws on the microscopic level, i.e. on individual human level, are known. Unfortunately,
human behaviour is far more complicated than the already exceedingly complex inter-
acting physical systems in nature, because the latter obey physical laws, while the gov-
erning laws – expressed in differential equations to allow computations – of human be-
haviour are yet unknown. Many complex networks (flock of birds, synchronization of
fire-flies or heart muscles, interacting particle systems at atomic or molecule level, epi-
demics, etc.) possess reasonably simple local rules at the nodal or individual level, but
the multitude of the interacting local rules gives rise to a surprisingly complex emerging
behaviour, often characterized by phase transitions. Ab-initio calculation of a possible
phase transition for the ‘packing’ of humans is therefore out of reach.

Nevertheless, we hypothesize on the observations of "log-linearity". The scale free
power law behaviour, i.e. the linear relationship of population and area of municipalities
as a function of rank-order in double logarithmic plots (figure 6.14), could be a manifes-
tation that the system of human habitation is in a self-organised critical state, typically
associated with phase transitions. The population in the Netherlands over the past 200
years has remained at or near a certain phase transition. The distribution function of the
population over municipalities has similar long power-law tails (figure 6.10), although, of
course, there is a cut-off at population sizes (which are too small to justify the existence
of a municipality). One might speculate that a ‘fully solid’ phase for human habitation
occurs when the entire population of the Netherlands lives in households occupying a
minimum acceptable amount of space. Trying to squeeze more humans will cause repul-
sive forces. On the other hand, a ‘fluid/gas phase’ would be a fully dispersed population,
in which inhabitants have a comfortable individual living space. However, the benefits

29In 2019, 2168 population localities were grouped into 355 Dutch domestic municipalities.
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of being close to other people for social interaction as well as the mutual exchange of
goods or services constitutes an attraction for humans, that pulls them towards the ‘fully
solid’ phase. Therefore, the sketched hypothetical human packing process shares some
qualitative properties with known dynamics in complex networks in which phase tran-
sitions occur, making it worthwhile to explore the possibility of phase transitions in the
habitation of people.



7
NETWORKED SYSTEMS WITH

LINEAR DYNAMICS

Science is a way of thinking
much more than it is a body of knowledge.

Carl Sagan

This chapter studies the dynamics of complex networks with a time-invariant underlying
topology, composed of nodes with linear internal dynamics and linear dynamic interac-
tions between them. While graph theory defines the underlying topology of a network, a
linear time-invariant state-space model analytically describes the internal dynamics of
each node in the network. By combining linear systems theory and graph theory, we pro-
vide an explicit analytical solution for the network dynamics in discrete-time, continuous-
time and the Laplace domain. The proposed theoretical framework is scalable and allows
hierarchical structuring of complex networks with linear processes while preserving the
information about network, which makes the approach reversible and applicable to large
scale networks.

This chapter is based on [49].
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7.1. INTRODUCTION
Networks are everywhere. Real-world examples of networks are electric power networks,
transportation networks, water networks, economic networks, the Internet, the World
Wide Web, social networks and biological networks. Dorfler et al. [125, 126] applied net-
work concepts on electrical networks. Van Mieghem et al. [23] examined resistive net-
works and provided best spreaders, based on a weighted Laplacian matrix, while Ceti-
nay et al. [127] analysed the vulnerability of power networks under targeted attacks.
Guimera et al. [128] found that the world-wide air transportation network is a small-
world network, while Dunne et al. [129] discovered that food-web networks are generally
not small-world networks. Newman et al. [43] used the theory of random graphs with
arbitrary degree distribution to model the behavior of a collaboration network of scien-
tists. Topology of the Internet and the World Wide Web was discovered by Faloutsos et al.
[130]. In the past two decades, the network topology has been deeply studied, for which
we refer to the books by Newman [31]; Boccaletti et al. [131] and by Van Mieghem [51].

Each network is defined by its underlying topology and the dynamics that take place
on the network. The interplay between the network topology and dynamics has been
an active field of scientific research in the past two decades [45]. However, Newman
[31] observed that the progress in analyzing the structural properties of the network has
been faster than the one related to the dynamics taking place on the network. Barzel,
Harush et al. [32–34] showed that, while many real networks tend to have similar (uni-
versal) structural properties, there exist classes of dynamical processes that exhibit fun-
damentally different flow patterns. The network dynamics depend on both the network
topology and the type of dynamic interactions between the nodes.

During last two decades, dynamical processes on complex networks such as phase
transitions [35], percolation [36], synchronization [37], diffusion [38], epidemic spread-
ing [39–42], collective behavior [43] and traffic [44] have been intensively researched [45].
The dynamics of the real-world networks are non-linear and their underlying topology
is time-varying [46]. However, complex networks with linear dynamics have been inten-
sively researched recently [47, 48], which can be motivated in several ways. Firstly, non-
linear dynamics on the networks can be approximated [132] or bounded [39] by the lin-
ear dynamics, in most cases. Secondly, the notion of controlling complex networks has
become an important research question [48, 133]. In system theory, non-linear system
control is a difficult problem, which has been developed on previously well-established
linear system control theory [134]. An analogous order of research development is no-
ticeable in network control theory. Several names for the complex networks with lin-
ear dynamics have been used in literature, such as networks of agents (dynamical sys-
tems) [135], networked multi-input-multi-output (MIMO) systems [136] and complex
networked dynamical systems [47]. Mentioned approaches define models of the net-
work with linear processes from the system/control theory point of view.

Here, a general framework for a complex network with linear processes is pro-
posed, where nodes perform heterogeneous, higher-order linear dynamics, with multi-
dimensional input and output vectors. The framework is based upon two assumptions:
(1) The internal dynamics of the nodes, as well their interactions, are linear and (2) The
underlying topology of the network is time-invariant. The framework allows each dy-
namic interaction between the nodes to be defined locally and independently and re-
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sults in the most general description of a network of linear processes available in the
literature, to our best knowledge. We provide the analytic solution (both in discrete-
time, continuous-time and the Laplace domain) for the network dynamics as a whole,
in terms of the internal dynamics of the nodes and the underlying graph that couples
these linear processes. Thus, we preserve the network perspective. A major novelty is
the hierarchical structuring of linear dynamics, in which the lowest level in the hierarchy
describes individual linearly interacting processes. After a certain clustering, subnetting
or grouping of linear processes (i.e. nodes on the lowest hierarchical level), these clus-
ters can be aggregated on the next higher level of the hierarchy again as a linear process,
though with a different linear dynamics. The key property of such nodal aggregation
is that no information by condensation is lost! In other words, the aggregated node pre-
cisely shows the same linear dynamics as the lower level group of individual nodes. Thus,
the linearity preserves information, but allows to shield the lower level interconnection
details and enables very large networks to be condensed into a smaller network of inter-
acting aggregated nodes that preserves exactly the linear dynamics! In fact, a network
with linear processes of any size can be iteratively condensed into a set of hierarchical
layers, in which each layer still presents a desired, aggregated network structure. An ex-
ample is traffic flows (steered by a linear process) in a small neighbourhood, condensed
into a city, while cities can be condensed to countries etc. Another example are dif-
ferent measurement techniques of a same phenomenon, where each technique has its
own granularity. As long as those techniques are linear, finer-detail measurement can be
aggregated with coarser ones by choosing the proper hierarchical layer that combines
them. Although the spread of Corona has not a linear dynamics (but can be linearized
[137]), mobile individual traces can be combined with aggregated flows measured by
sensor, telecom base-stations, WIFI hotspot and so on.

The present work does not directly contribute to the control theory. However, the
proposed model preserves the network perspective in developing the governing equa-
tions. The generality of the proposed model (i.e. the type of one-node dynamics and
the interactions between nodes), the reversible scalability of the hierarchical structuring
as well the network perspective based governing equations are novelties of this chap-
ter. Another important application of the proposed model for networks with linear pro-
cesses is identification. Suppose that input and output sequences can be measured at
certain places in the network during a long enough time period. Linear system identi-
fication then allows to determine the exact governing equations (see [138]). Our gen-
eral framework for linear networked processes hierarchically groups the subnetworks
between measurement nodes and the aggregated linear dynamics of these subnetworks
can be identified.

The chapter is structured as follows. Section 2 introduces basic terminology and no-
tations, while the network dynamics and hierarchical structuring are analysed in Section
3. The concept of Extended graph is introduced in Section 4, while the analytical solution
for the network dynamics in the discrete-time domain is provided in Section 5. Finally,
we conclude in Section 6.
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7.2. BASIC NOTATIONS
Complex networks have two general features: a graph and a service or function, specified
by dynamic processes [139].

7.2.1. NETWORK TOPOLOGY
The underlying structure (topology) of the network is assumed to be time-invariant and
is represented by a graph G(N ,L ). The graph G is defined by a set N of N = |N | nodes,
representing N systems1, and by a set L of L links, that interconnect the systems. The
link existence of the graph G is specified by the N×N adjacency matrix W , where wi j = 1
means that there exists a link between node i and node j , otherwise wi j = 0. The graph
G is assumed to be directed, which implies that the adjacency matrix W is not symmetric
in general, i.e. W ̸=W T .

A node i of the graph G can also be connected to external nodes. We distinguish two
types of external nodes: input and output nodes. The input nodes provide links to the
nodes of the graph G and have zero in-degree, while the output nodes receive links from
the nodes of the graph G and have zero out-degree. In contrast to external nodes, we call
the nodes and the links of the graph G internal nodes and internal links, respectively.

There are r input nodes, defined by the set M . The input nodes connect to the inter-
nal nodes via input links, specified by the r ×N matrixΦ:

Φ=


φ11 φ12 . . . φ1N

φ21 φ22 . . . φ2N
...

...
...

...
φr 1 φr 2 . . . φr N

 (7.1)

where φi j = 1 defines the existence of an input link between the i -th input and j -th
internal node, otherwise φi j = 0.

There are q output nodes, defined by the set P . We refer the links connecting the
internal and output nodes output links. The existence of the output links is defined by
the N ×q matrixΨ:

Ψ=


ψ11 ψ12 . . . ψ1q

ψ21 ψ22 . . . ψ2q
...

...
...

...
ψN 1 ψN 2 . . . ψN q

 (7.2)

where element ψi j indicates whether the i -th internal node provides an output link to
the j -th output node (ψi j = 1), or not (ψi j = 0).

Finally, each input node can be directly connected to an output node as well. We
refer to such a link as external link and define their existence with the r ×q matrix Z :

Z =


z11 z12 . . . z1q

z21 z22 . . . z2q
...

...
...

...
zr 1 zr 2 . . . zr q

 (7.3)

1In this work, the words node and system have been used interchangeably
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Figure 7.1: Different types of nodes and links, in case of a network of 10 nodes

where element zi j defines whether there is an external link between the input node i
and the output node j (zi j = 1) or not (zi j = 0).

The in-degree of the i -th output node is (uTΨ)i + (uT Z )i , while the j -th input node
has the out-degree (Φu) j + (Z u) j , where u is the all-one vector. All types of nodes and
links defined above are presented in Fig. 7.1 and labelled by a different colour, for a graph
G of 10 nodes, with additional 5 input and 4 output nodes.

7.2.2. PROCESSES ON THE NETWORK
Each node in the network is a linear time-invariant (LTI) system, whose dynamics are
defined by a discrete-time linear state space (DLSS) model [140]. The dynamics within
the i -th node/system obey the DLSS governing equations:{

xi [k +1] = Ai · xi [k]+Bi ·ui [k]

yi [k] =Ci · xi [k]+Di ·ui [k]
(7.4)

where the discrete time is modelled by k. The ni ×ni state matrix Ai defines how the
ni × 1 state vector xi depends on its previous value, while the ni ×mi input matrix Bi

determines the relation between the state vector xi and the previous value of the mi ×1
input vector ui . The relation between the pi × 1 output vector yi and the state vector
xi is defined by the pi ×ni output matrix Ci . Finally, direct relation between the output
vector yi and the input vector ui is defined by the pi ×mi feedforward matrix Di .

The interconnected DLSS dynamics are sketched in Fig. 7.2, in case of a network
with three nodes. We define the N ×1 vector n, containing the number of states for each
node/system of the network:

n = [
n1 n2 . . . ni . . . nN

]T
(7.5)
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Figure 7.2: DLSS dynamics of a simple network with N = 3 nodes/systems

Similarly, we define the N ×1 vector m that contains the dimension of the input vector
ui for each system (i ∈N ):

m = [
m1 m2 . . . mi . . . mN

]T
(7.6)

where mi represents the dimension of the input vector ui of the node/system i . Analo-
gously, the N ×1 vector p defines the dimension of the output vector yi for each system
in the network (i ∈N ):

p = [
p1 p2 . . . pi . . . pN

]T
(7.7)

where pi represents the dimension of the output vector yi of the i -th system.
The input vector ui of the i -th system of the network can be composed of the output

vectors from other systems (due to interconnections) and of the external input vectors.
In other words, only internal and input links can be connected to an internal node.

The i -th external input vector is denoted by ηi and has dimension µi ×1. We define
the r ×1 vector µ that contains the dimension of each external input vector:

µ= [
µ1 µ2 . . . µi . . . µr

]T
(7.8)

In addition, we define the M ×1 vector η, by concatenating r external input vectors:

η= [
η1 η2 . . . ηi . . . ηr

]T
(7.9)

where M =∑r
j=1µ j .



7.2. BASIC NOTATIONS

7

123

An external output vector can be composed of the output vectors of the systems from
the network, as well as of the external input vectors. The i -th external output vector is
denoted by ξi and has dimension ρi × 1. We define the q × 1 vector ρ containing the
dimension of each external output vector ξi (i ∈P ):

ρ = [
ρ1 ρ2 . . . ρi . . . ρq

]T
(7.10)

In addition, we define the P ×1 vector ξ, composed by concatenating q external output
vectors:

ξ= [
ξ1 ξ2 . . . ξi . . . ξq

]T
(7.11)

where P =∑q
j=1ρ j . We introduce the N ×1 vectors lφ and lw , as well as the q ×1 vectors
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(c) A realization of an 
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discrete time 𝑘

m1

Figure 7.3: Network topology, processes and time realization of a process

lz and lψ as follows:

lφ =ΦT ·ur×1 lw =W T ·uN×1

lz = Z T ·ur×1 lψ =ΨT ·uN×1
(7.12)

where (lw )i defines the number of internal links connected to the internal node i , while
the number of input links that internal node i receives is defined by (lψ)i . Additionally,
the output node i receives (lψ)i links from the internal nodes, as well as (lz )i external
links. Total number of the internal, input, output and external links is defined as follows:

Lw = (
lw

)T ·uN×1 Lφ = (
lφ

)T ·uN×1

Lψ = (
lψ

)T ·uq×1 Lz =
(
lz

)T ·uq×1
(7.13)
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respectively.
A graph G of 5 nodes, together with the one input and one output node is presented

in Fig. 7.3(a). The processes within the first and second node of G are sketched in Fig.
7.3(b). Finally, a realization of the output vector of the first node is presented in Fig.
7.3(c).

The dimension mi of the input vector ui of each node in G (i ∈N ) must obey:

m =W T ·p +ΦT ·µ (7.14)

Analogously, the dimension ρi of each external output vector ξi (i ∈P ) must obey:

ρ =ΨT ·p +Z T ·µ (7.15)

Relations (7.14) and (7.15) can be written together in a matrix form:2[
mN×1

ρq×1

]
=

[
W T

N×N ΦT
N×r

ΨT
q×N Z T

q×r

]
·
[

pN×1

µr×1

]
(7.16)

7.3. NETWORK DYNAMICS
A complex network is composed of N nodes/systems, with internal DLSS dynamics de-
fined by (7.4). We now would like to find the dynamics between the aggregated external
output vector ξ defined in (7.11) and the aggregated external input vector η defined in
(7.9), by following DLSS governing equations:

𝑥𝑒 𝑘 + 1 = 𝐴𝑒𝑥𝑒 𝑘 + 𝐵𝑒𝜂 𝑘

𝜂 =

𝜂1
⋮
𝜂𝑟

𝑥𝑖 𝑘 + 1 = 𝐴𝑖 ∙ 𝑥𝑖 𝑘 + 𝐵𝑖 ∙ 𝑢𝑖 𝑘

𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝐷𝑖𝑆𝑖

𝑆1 𝑢𝑖 𝑘 𝑦𝑖 𝑘
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. . .

. . .
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𝜉 𝑘
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Figure 7.4: Underlying topology vs linear processes on the complex network

2Determining the rank of the matrix in (7.16) is a problem similar to the problem of determining the rank of
the adjacency matrix of a directed graph, see e.g. [141].
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{
xe [k +1] = Ae · xe [k]+Be ·η[k]

ξ[k] =Ce · xe [k]+De ·η[k]
(7.17)

where the
∑N

j=1 n j ×1 vector xe contains states of each system in the network:

xe [k] =


x1[k]
x2[k]

...
xN [k]

 (7.18)

The matrices Ae , Be , Ce and De will be determined in terms of network topology and the
dynamics of individual nodes/systems.

7.3.1. HIERARCHICAL STRUCTURING OF COMPLEX NETWORKS
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Figure 7.5: Hierarchical Structuring of Complex Networks with Linear Processes

The underlying topology of the network, together with the input and output links is
sketched in the left lower part of Fig 7.4, while the processes within each node/system of
the network are presented in the right lower part. By determining the DLSS process in
(7.17), we determine the network dynamics. Thus, we can abstract the network dynam-
ics with a DLSS process, as provided in the right upper part of Fig 7.4. This abstraction is
analogous to abstracting the network topology by a node, as shown in the left upper part
of Fig 7.4.

An example of hierarchical structuring is provided in Fig 7.5. We use three layers of
abstraction, namely Layer L0, Layer L1 and Layer L2. A network G1 of N interconnected
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nodes with internal dynamics is presented in the Layer L1. The dynamics of the network
G1 are abstracted by the dynamics within the node 2 of the network G2, in a higher ab-
straction layer L2. There are two additional nodes in G2 and they abstract the dynamics
of another two networks from the Layer L1. An external impact on the network dynamics
from the layer L1 represents an interconnection between the nodes/abstracted networks
in G2.

In the same time, the internal dynamics of a node from G1 abstract the dynamics of
a network from a lower abstraction layer L0, as presented in Fig 7.5. An external impact
on the dynamics of a network in abstraction layer L0 represents an interconnection in
abstraction layer L1 and a mode of the dynamics within a node from abstraction layer
L2.

Thus, the proposed theoretical framework allows the hierarchical structuring of
complex networks with linear processes. By using the same type of governing equa-
tions (DLSS governing equations) to describe both the internal dynamics within a
node/system from the network and the network dynamics, we enable hierarchical struc-
turing of complex networks.

7.4. EXTENDED GRAPH

𝐺𝑒(𝒩𝑒 , ℒ𝑒)

𝐺(𝒩, ℒ)

Figure 7.6: Concept of the extended graph Ge

The underlying topology of the network is defined by a graph G . Beside nodes of the
graph G , input and output nodes are also defined, as source of input and external links
and as destination of output and external links, respectively. Therefore, we introduce the
extended graph Ge (Ne ,Le ), that is composed of Ne = |Ne | nodes:

Ne = r +N +q Ne =M ∪N ∪P (7.19)

and of Le links:
Le = Lφ+Lw +Lψ+Lz (7.20)
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The relation between the graph G and the extended graph Ge is presented in Fig. 7.6.
The input nodes of the extended graph Ge are labelled first, before the internal nodes,
while the output nodes are labelled as the last q nodes of Ge . Extended graph Ge from
Fig. 7.6 with labelled nodes is presented in Fig. 7.7.

5

𝐺𝑒(𝒩𝑒 , ℒ𝑒)
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Figure 7.7: Labelled nodes of the extended graph Ge from Fig. 7.6

The adjacency matrix We of the extended graph Ge has a block structure:

We =
Or×r Φr×N Zr×q

ON×r WN×N ΨN×q

Oq×r Oq×N Oq×q

 (7.21)

Since the input nodes have zero in-degree, the first block column of We is composed of
zero block matrices. Similarly, since the output nodes have zero out-degree, the third
block row contains zero block matrices as well.

The links whose destination is the first internal node of Ge are labelled first, in as-
cending order, relative to the source node. Next, the links connected to the second in-
ternal node are labelled. After labelling all the incoming links to the internal nodes, links
whose destination is the first output node are labelled, in ascending order, relative to
the source node. Then the incoming links of the second output node are labelled, in as-
cending order relative to the source node. The incoming links of the q-th output node
are labelled last. The links of the extended graph Ge from Fig. 7.6 have been labelled by
our convention and presented in Fig. 7.8.

We introduce the Ne ×Le incidence matrixΛ of extended graph Ge in block form:

Λ=


(
Λ11

)
r×(Lw+Lφ)

(
Λ12

)
r×(Lψ+Lz )(

Λ21
)

N×(Lw+Lφ)

(
Λ22

)
N×(Lψ+Lz )(

Λ31
)

q×(Lw+Lφ)

(
Λ32

)
q×(Lψ+Lz )

 (7.22)

The first block column of Λ refers to the links whose destination is an internal node.
There are Lw +Lφ such links. The second block column of Λ refers to the links whose
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Figure 7.8: Labelled links of the extended graph Ge from Fig. 7.6

destination is an output node. There are Lψ + Lz such links. The first block row of Λ
refers to the r input nodes. Further, the second block row is related to the N internal
nodes, while the third block row regards the q output nodes.

We define the Le ×Ne matrix Γ as follows:

Γ= ΛT +|ΛT |
2

(7.23)

where |ΛT | denotes the absolute value of each element ofΛT . Matrix Γ has a block struc-
ture:

Γ=
[(
Γφ

)
(Lw+Lφ)×r

(
Γw

)
(Lw+Lφ)×N O(Lw +Lφ)×q(

Γz
)

(Lψ+Lz )×r

(
Γψ

)
(Lψ+Lz )×N O(Lψ+Lz )×q

]
(7.24)

where each block element of Γ is of same dimensions as the according block element of
transposed incidence matrixΛT of Ge . The negative entries ofΛT define the destination
node for each link of Ge and are not contained in Γ. Therefore, the third block column of
Γ that is related to output nodes, contains zero block matrices. We observe that matrix
Γ is a zero-one matrix. Each row of Γ regards certain link in Ge and contains exact one
non-zero component, that refers to the source node of that link.

We further introduce the (Lw +Lφ)×1 vectors sφ and sw , as well as the (Lψ+Lz )×1
vectors sz and sψ as follows:

[(
sφ

)
(Lw+Lφ)×1

(
sw

)
(Lw+Lφ)×1(

sz
)

(Lψ+Lz )×1

(
sψ

)
(Lψ+Lz )×1

]
= Γ ·

 µr×1 Or×1

ON×1 pN×1

Oq×1 Oq×1

 (7.25)

where (sw )i defines the dimension of the i -th internal link, (sφ)i defines the dimension
of the i -th input link, while (sψ)i and (sz )i define the dimensions of the i -th output and i -
th external link, respectively. The total number of links that are connected to the internal



7.4. EXTENDED GRAPH

7

129

nodes is Lφ+Lw , while Lψ+Lz is the total number of links that have the output nodes
as destination. Total dimensions Sw , Sφ, Sψ and Sz of all internal, input, output and
external links, respectively, are defined as follows:

Sw = sT
w ·u(Lw+Lφ)×1 Sφ = sT

φ ·u(Lw+Lφ)×1

Sψ = sT
ψ ·u(Lψ+Lz )×1 Sz = sT

z ·u(Lψ+Lz )×1
(7.26)

Since the input and internal links are connected to internal nodes, while the output and
external links have output nodes as a destination, next identities hold:

Sw +Sφ =∑N
i=1 mi Sψ+Sz =∑q

i=1ρi (7.27)

Additionally, we define the diagonal block matrices containing DLSS matrices of each
system of the network, namely

(
Ad

)∑N
i=1 ni×

∑N
i=1 ni

,
(
Bd

)∑N
i=1 ni×

∑N
i=1 mi

,
(
Cd

)∑N
i=1 pi×

∑N
i=1 ni

and
(
Dd

)∑N
i=1 pi×

∑N
i=1 mi

: 

Ad = diagonal
[

A1 A2 . . . AN

]
Bd = diagonal

[
B1 B2 . . . BN

]
Cd = diagonal

[
C1 C2 . . . CN

]
Dd = diagonal

[
D1 D2 . . . DN

] (7.28)

Matrices Ad , Bd , Cd and Dd enable us to define the dynamics of each system of the
network in a compact block diagonal form:{

xe [k +1] = Ad · xe [k]+Bd ·ud [k]

yd [k] =Cd · xe [k]+Dd ·ud [k]
(7.29)

where the
∑N

i=1 mi ×1 aggregated input vector ud and the
∑N

i=1 pi ×1 aggregated output
vector yd are defined as follows:

ud =


u1

u2
...

uN

 yd =


y1

y2
...

yN

 (7.30)

Definition 20 The aggregated input vector ud , aggregated output vector yd , aggregated
external input vector η and the aggregated external output vector ξ are related as follows:{

ud [k] = Fw · yd [k]+Fφ ·η[k]

ξ[k] = Fψ · yd [k]+Fz ·η[k]
(7.31)

where the (Sw+Sφ)×∑N
i=1 pi matrix Fw , the (Sw+Sφ)×M matrix Fφ, the (Sψ+Sz )×∑N

i=1 pi

matrix Fψ and the (Sψ+Sz )×M matrix Fz , are composed of (Lw +Lφ)×N , (Lw +Lφ)× r ,
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(Lψ+Lz )×N and (Lψ+Lz )× r block elements, respectively, that are defined as follows:

(
Fw

)
i j =

{
I(sw+sφ)i if

(
Γw

)
i j = 1

O(sw+sφ)i×p j otherwise

(
Fφ

)
i j =

{
I(sw+sφ)i if

(
Γφ

)
i j = 1

O(sw+sφ)i×µ j otherwise

(
Fψ

)
i j =

{
I(sψ+sz )i if

(
Γψ

)
i j = 1

O(sψ+sz )i×p j otherwise

(
Fz

)
i j =

{
I(sψ+sz )i if

(
Γz

)
i j = 1

O(sψ+sz )i×µ j otherwise

(7.32)

The definition is elaborated in Appendix F.2. Matrices Fw , Fφ, Fψ and Fz are defined
similarly as the Kronecker products. However, each block element of these matrices is
of different dimensions, which is not the case in the Kronecker product. Dimensions
of the block elements vary because each vector in the network is in general of a differ-
ent dimension, which is thoroughly explained in [49]. Furthermore, in Appendix F.4, we
analyse homogeneous networks with identical dynamic interactions, which is a special
case of the network, that allows applying the Kronecker product. Therefore, governing
equations for the time dynamics of the entire network are based on the Kronecker prod-
uct.

7.5. MAIN RESULTS
Theorem 21 The matrices Ae , Be , Ce and De from the DLSS governing equations in (7.17):{

xe [k +1] = Ae · xe [k]+Be ·η[k]

ξ[k] =Ce · xe [k]+De ·η[k]

provided the matrix (I −Dd ·Fw ) is non-singular or (Dd ·Fw ) has not an eigenvalue 1, are
explicitly determined as follows:

Ae = (Bd ·Fw ) · (I −Dd ·Fw )−1 ·Cd + Ad

Be =(Bd ·Fw ) · (I −Dd ·Fw )−1 · (Dd ·Fφ)+Bd ·Fφ
Ce = Fψ · (I −Dd ·Fw )−1 ·Cd

De = Fψ · (I −Dd ·Fw )−1 · (Dd ·Fφ)+Fz

(7.33)

Proof. Appendix F.3

Corollary 6 When there is no direct interaction between the input vector ui and the out-
put vector yi of each system in the network (i.e. Di =Opi×mi , i ∈N ), the matrices Ae , Be ,
Ce and De are explicitly determined as follows:

Ae = Bd ·Fw ·Cd + Ad

Be = Bd ·Fφ
Ce = Fψ ·Cd

De = Fz

(7.34)

When the feedforward matrix Di of each node/system of G is a non zero matrix (i.e.
Di ̸=Opi×mi , i ∈N ), the state vector xi impacts the state vector x j (i.e.

(
Ae

)
j i ̸=On j ×ni )

if and only if there is a path from the node i to the node j in G (i.e. iff
(∑N

k=1 W k
)

i j > 0).
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On the other side, when there is no direct relation between the input vector ui and
the output vector yi for each node/system of the network (i.e. Di = Opi×mi , i ∈ N ),
the state vector xi influences the state vector x j (i.e.

(
Ae

)
j i ̸= On j ×ni ) if and only if the

node/system i and node/system j are direct neighbours (i.e. wi j = 1). Thus, the relation
(7.34) is significantly simpler than the solution of the general case (7.33). The further
explanation of the matrices Ae , Be , Ce and De in terms of paths in Ge is provided in [49].

The analysis of the continuous-time process on complex networks is provided in Ap-
pendix F.5. The solution for the network dynamics is provided both in the time domain
and in the complex Laplace domain.

7.5.1. A NUMERICAL EXAMPLE
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Figure 7.9: Network topology and the block diagram of the network dynamics, where N = 5, r = 2, q = 2

We provide a numerical example of a network model with linear processes, on
which we apply the results of the chapter. Therefore, we provide a network of N = 5
nodes/systems, with r = 2 input nodes and q = 2 output nodes. Further, the N ×N adja-
cency matrix W , the r ×N matrixΦ, the N×q matrixΨ and the r ×q matrix Z are defined
as follows:

W =


0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 1 0

 Ψ=


0 0
0 0
1 0
1 0
0 1



Φ=
[

1 1 0 0 0
0 0 0 1 1

]
Z =

[
0 0
0 0

]
(7.35)

Further, the N×1 vector p containing output dimensions of each system, the N×1 vector
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n with number of states for each system and the r ×1 vector µ that contains the dimen-
sion of external inputs are defined as follows:

p = [
1 1 1 1 1

]
n = [

2 2 2 2 2
]

µ= [
1 1

]
(7.36)

while the N ×1 vector m with dimensions of inputs per each node/system and the q ×1
vector ρ containing dimensions of external outputs are computed using (7.16):

m = [
2 2 2 3 2

]
ρ = [

2 1
]

(7.37)

Parameters of the DLSS model of each node of the graph are defined below:

A1 =
[

0.1227 −0.0733
0.0733 0.1227

]
B1 =

[
0.0232 0.1070
0.1019 0.1026

]
C1 = [

0.6547 0.1913
]

D1 = [
0 0.5000

]
A2 =

[
0.3796 −0.3920
0.3920 0.3796

]
B2 =

[
0.2371 0.1215
0.4789 0.3491

]
C2 = [

0.0089 0.1603
]

D2 = [
0.5000 0

]
A3 =

[−0.3438 −0.2597
−0.2597 −0.7647

]
B3 =

[
0.0597 0.3568
0.4729 0.7413

]
C3 = [

0.0664 0.2628
]

D3 = [
0.5000 0.3394

]
A4 =

[−0.3773 −0.0779
−0.0779 −0.9613

]
B4 =

[
0.7038 0.6134 0.4158
0.2989 0.1345 0.5020

]
C4 = [

0.4997 0.2145
]

D4 = [
0 0.5000 0

]
A5 =

[
0.5796 −0.0619
−0.0619 0.7033

]
B5 =

[
0.1072 0.6859
0.4328 0.1584

]
C5 = [

0.1089 0.0430
]

D5 = [
0.5000 0

]

(7.38)

Network topology, with input and output nodes, is presented in the lower-left part of
Fig. 7.9, while the network dynamics in from of the interconnected block diagrams are
presented in the upper-left part of the Figure. By applying Theorem 21 we provide the
dynamics of the entire network in the form of a DLSS system, as presented in the upper-
right part of the Figure. Finally, the Theorem 21 allows representing entire network topol-
ogy as a node, on a higher hierarchy level.

Ae =



0.1402 −0.0682 0.0002 0.0029 0.0040 0.0158 0.0601 0.0258 0 0
0.0901 0.1276 0.0002 0.0028 0.0038 0.0152 0.0577 0.0248 0 0
0.0895 0.0261 0.3797 −0.3903 0.0020 0.0080 0.0341 0.0147 0 0
0.2571 0.0751 0.3922 0.3843 0.0058 0.0229 0.0981 0.0421 0 0
0.0440 0.0128 0.0032 0.0580 −0.3428 −0.2558 0.0168 0.0072 0 0
0.3483 0.1017 0.0069 0.1253 −0.2518 −0.7336 0.1329 0.0570 0 0
0.2259 0.0660 0.0021 0.0375 0.0458 0.1813 −0.3006 −0.0451 0.0453 0.0179
0.0495 0.0145 0.0005 0.0082 0.0100 0.0398 −0.0611 −0.9541 0.0547 0.0216
0.5052 0.1476 0.0005 0.0093 0.0114 0.0451 0.1928 0.0827 0.5796 −0.0619
0.1167 0.0341 0.0001 0.0022 0.0026 0.0104 0.0445 0.0191 −0.0619 0.7033


Be =



0.0323 0
0.1106 0
0.2423 0
0.4937 0
0.1809 0
0.3907 0
0.1171 0.9117
0.0257 0.5499
0.0291 0.1072
0.0067 0.4328



Ce =
[

0.3683 0.1076 0.0034 0.0612 0.0747 0.2956 0.1406 0.0603 0 0
0.1841 0.0538 0.0017 0.0306 0.0374 0.1478 0.5622 0.2413 0 0

0 0 0 0 0 0 0 0 0.1089 0.0430

]
De =

[
0.1909 0
0.0954 0

0 0.5000

]
(7.39)
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7.6. CONCLUSION
In this chapter, we propose a general theoretical framework for modeling complex net-
works with time-invariant topology, composed of nodes with linear internal dynamics
and with linear interactions between them.

Nodes perform heterogeneous higher-order internal dynamics, with multi-
dimensional input and output vectors. The proposed framework allows to indepen-
dently define each dynamic interaction between the nodes. Proper notations have been
introduced for network topology and the internal dynamics of nodes. The external pro-
cesses that influence the network dynamics are included in the proposed framework.
The analytic solution for the network dynamics is provided in the discrete-time domain,
continuous-time domain and the Laplace domain.

The assumption about linear processes on networks allows scalability of the pro-
posed model to large-scale networks and preserves network information. Finally, the
reversible hierarchical structuring of complex networks with linear processes is intro-
duced.





8
CONCLUSION

This thesis aims to enhance understanding of the impact of connections between node
pairs on network properties and their functioning through the analysis of various topo-
logical and spectral properties of networks, as well as linear processes taking place on
networks. The new knowledge presented in this thesis highlights the generality and sig-
nificance of the network concept, as well as how complex interactions at a network level
arise from simple node pair connections. Our findings indicate that linear processes on
networks, which are proportional to the underlying graph, can be successfully used to
deduce the topological properties of networks.

8.1. MAIN CONTRIBUTIONS
Our findings in Chapter 2 demonstrate that every undirected graph, with the exception
of the empty graph, can be retrieved from the orthogonal eigenvectors of its correspond-
ing adjacency matrix, though not necessarily in a unique manner. This non-uniqueness
arises from the presence of co-eigenvector graphs that we have identified. These graphs
possess the same set of eigenvectors, yet they have different eigenvalues. Moreover, our
findings reveal that regular graphs are instances of co-eigenvector graphs, and the first
non-regular pair of co-eigenvector graphs arises for N = 6.

As previously established, the adjacency matrix raised to a certain power contains
the number of walks between node pairs of that length. Encouraged by this straightfor-
ward solution, we endeavoured to find an equivalent solution for the number of paths
between node pairs, where a path entails a walk with no repeated nodes. In Chapter 3,
our research provides three matrix-based analytical solutions for the number of paths
of a certain length between node pairs. These solutions utilise different types of walks
and offer varying degrees of computational efficiency depending on the sparsity of the
graph. However, unlike the number of walks, a simple analogue to the solution for the
number of paths does not appear to exist.

Effective resistance measures the dissipation of energy transmitted between two
nodes over the network. Originating from electrical system theory, this graph metric

135
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provides a comprehensive view of the network from the perspective of the two nodes.
In Chapter 4, we utilise the information conveyed by effective resistance to propose an
iterative algorithm that solves the inverse all shortest path problem while adhering to a
fixed link budget. Our approach commences with the complete graph and iteratively
eliminates links until the upper bound on the shortest paths is exceeded. Our algo-
rithm demonstrates superior performance when the given shortest path weight bounds
are calculated for a sparse graph. Furthermore, we propose iterative algorithms for de-
terministic graph sparsification with the goal of minimising or maximising the effec-
tive graph resistance or minimising deviations in the eigenvalues of the corresponding
Laplacian Q.

The second part of this thesis examines linear processes on complex networks at dif-
ferent aggregation levels. In Chapter 5, we demonstrate that a simple node embedding
on a one-dimensional line can accurately identify clusters, surpassing the performance
of the most effective modularity-based and spectral clustering algorithms in the litera-
ture, such as Louvain, Leiden, and Newman, while having comparable computational
complexity. Our proposed node embedding is generated through a linear process of at-
traction and repulsion between adjacent nodes, based on the similarity of their neigh-
bourhoods. Nodes converge to the eigenvector corresponding to the second-largest
eigenvalue of the governing matrix of our linear clustering process before reaching a triv-
ial steady state. We estimate the number of clusters and the cluster membership of each
node by optimising modularity using double recursion based on this eigenvector.

Chapter 6 considers the time dynamics of a country as a network of interconnected
municipalities. Using data sets containing population and area size information for
Dutch municipalities from the period spanning 1830-2019, we observe that the loga-
rithm of both area and population adheres to a normal and logistic distribution through-
out the entire period studied. Furthermore, in the tails, the population distribution con-
forms to the power law, a phenomenon previously noted in the literature for the largest
cities of a country. The changes in area distribution are mainly attributed to the merg-
ing process, whereby neighbouring municipalities are merged. Meanwhile, population
distribution over time is also influenced by the processes of population increase and mi-
gration across the country. We investigate each of these processes using empirical mea-
surements and propose the Dutch Municipality Network model, which involves three
iterative steps: modelling population increase, population migration, and merging. Re-
markably, the proposed model achieves high accuracy in predicting municipality merg-
ers on a province level over a span of two centuries.

Chapter 7 examines the scenario where each node in a network exhibits internal lin-
ear dynamics, which is characterised by a state space model of a particular order, and the
dynamic interactions between nodes are linear. In this context, we propose an analytic
solution for the governing equation at the network level by merging the linear systems
associated with individual nodes according to the underlying topology. We demonstrate
that merging interconnected linear systems into a set of master governing equations is
feasible without losing any information regarding the individual dynamic processes of
each node. Thus, the hierarchical structuring of a network is achievable if each node
exhibits linear dynamics.
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8.2. DIRECTIONS FOR FUTURE WORK
In Chapter 2, we uncover the existence of co-eigenvector graphs, which are graphs that
possess the same set of eigenvectors while having different eigenvalues. Using the algo-
rithm outlined in Figure 2.6, we discover the first pairs of co-eigenvector graphs for N = 6
among non-regular graphs. However, it remains unclear why co-eigenvector graphs do
not appear for N < 5 and how the number of pairs of co-eigenvector graphs scales with
the increasing size of the network, N .

The linear clustering process on networks, proposed in Chapter 5, involves cluster-
ing based on the eigenvector y2, which corresponds to the second largest eigenvalue
of the N ×N matrix W −diag(W ·u), as motivated by (5.14). To enhance the clustering
performance of our linear clustering process, we adopt an iterative approach that in-
volves computing the N × 1 eigenvector y2, estimating the partition by optimising the
modularity m (Section 5.4.2), classifying the links, and scaling down the weights of inter-
community links (Section 5.5). The efficacy of our linear clustering process heavily relies
on the scaling step, making an improved scaling approach a promising avenue for fur-
ther research.

In Chapter 7, we present the solution for the dynamics of the entire network under
the assumption that each node exhibits internal linear dynamics and the interactions
between nodes are also linear. This result motivates the opposite approach: identify-
ing the dynamics of each node separately from the given input-output measurements.
Given a known underlying topology and estimated dynamics for each node, we employ
Theorem 21 to obtain the estimated dynamics of the entire network. One possible real-
world scenario where Theorem 21 can be applied is highway road networks. In such
networks, each road segment can be abstracted as a node, and speed and the number of
vehicles per unit of time can be used as corresponding measurements.
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A
HADAMARD PRODUCT IN GRAPH

THEORY

Spectral decomposition of the adjacency matrix A of an undirected graph G with N
nodes, defined in (2.1), consists of N eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λN , contained in the
N ×1 vector λ andΛ= diag(λ). The N ×N eigenvector matrix X comprises N orthogonal
eigenvectors x1, x2, · · · , xN in the columns. The double orthogonality of the eigenvec-
tors, derived in (2.3) and (2.4), implies that X T X = X X T = I , allowing to rewrite (2.1) as
follows

A =
N∑

i=1
λi · xi · xT

i . (A.1)

The orthogonality of the eigenvectors of A can be rewritten as I = X · I · X T , leading to
an alternative representation of the identity matrix I using eigenvectors of the adjacency
matrix A

I =
N∑

i=1
xi · xT

i . (A.2)

Furthermore, any set of N orthogonal eigenvectors with unity eigenvalues define the
identity matrix I . Because the N ×N identity matrix I is composed of ones on the main
diagonal and zeros elsewhere, it holds that I = I ◦ I , leading to an alternative representa-
tion:

I =
N∑

i=1

N∑
j=1

(
xi ◦x j

) · (xi ◦x j
)T .

The N ×1 all-one vector u = I ·u, after importing the above relation, translates into

u =
N∑

i=1

N∑
j=1

(
xi ◦x j

) · (xi ◦x j
)T ·u.

143



A

144 A. HADAMARD PRODUCT IN GRAPH THEORY

The inner product
(
xi ◦x j

)T ·u = xT
j · xi equals 0 if i ̸= j , otherwise 1, transforming the

relation above further

u =
N∑

i=1
(xi ◦xi ) . (A.3)

The equation (A.3) can be formulated as Ξ ·u = u, which is already derived in Appendix
(B.1), because the N×1 all-one vector u is an eigenvector of the N×N Hadamard product
Ξ= X ◦X , corresponding to eigenvalue 1. Finally, the N ×N all-one matrix J = u ·uT can
be obtained from (A.3)

J =
N∑

i=1

N∑
j=1

(xi ◦xi ) · (x j ◦x j
)T . (A.4)

A.1. GRAPH WALKS AND PATHS
The adjacency matrix A of an undirected, unweighted graph is composed of either zeros
or ones, from where it follows that A = A ◦ A, which after importing (A.1) transforms into

A =
N∑

i=1

N∑
j=1

λi ·λ j ·
(
xi ◦x j

) · (xi ◦x j
)T . (A.5)

The k-th power of the adjacency matrix A,

Ak = X ·Λk ·X T =
N∑

i=1
λk

i · xi · xT
i . (A.6)

comprises the number of length k walks between node pairs, as proved in Theorem 6,
where (Ak )i j denotes the number of length k walks between node i and node j . Diagonal
elements (Ak )i i define the number of closed walks of length k (see Definition 9) and
compose the N ×1 vector

diag(Ak ) =
(
I ◦ Ak

)
·u.

After importing (A.2) and (A.1) into the relation above, we obtain

diag
(

Ak
)
=

N∑
i=1

λk
i · (xi ◦xi ) . (A.7)

Using the Hadamard product Ξ= X ◦ X , defined in (2.5), we provide an alternative rep-
resentation of (A.7)

diag
(

Ak
)
=Ξ ·λk . (A.8)

On the other side, the Hadamard product Ak ◦ Am of the k-th power Ak and the m-th
power Am of the adjacency matrix A,

Ak ◦ Am =
N∑

i=1

N∑
j=1

λk
i ·λm

j · (xi ◦x j
) · (xi ◦x j

)T ,
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after right multiplying with the all-one vector u and using the orthogonality of eigenvec-
tors, transforms into (

Ak ◦ Am
)
·u =

N∑
i=1

λk+m
i · (xi ◦xi ) . (A.9)

By comparing the right-hand side of relation (A.7) and relation (A.9), we conclude

diag(Ak ) =
(

Ak−m ◦ Am
)
·u, (A.10)

where 0 < m < k. A straightforward explanation of the above relation is that the number
of closed walks of length f for node i equals the sum of the number of length k −m
walks from node i to another node j , times the number of length m walks in the opposite
direction, i.e. from node j to node i .

A.2. LAPLACIAN MATRIX Q
In this section we try to connect the eigenvectors of the N ×N Laplacian matrix

Q =∆− A

to those of the adjacency matrix A. Similar to the spectral decomposition of the adja-
cency matrix A in (A.1), the Laplacian Q has the following spectral decomposition

Q = Y ·diag(µ) ·Y T , (A.11)

where the N orthogonal eigenvectors y1, y2, . . . yN are contained in the N×N eigenvector
matrix Y , while the N ×N diagonal matrix diag(µ) contains eigenvalues µ1 ≥ µ2 ≥ . . .µN

on its main diagonal. Due to orthogonality of eigenvectors of the Laplacian Q, relation
(A.11) can be transformed as follows

Q =
N∑

i=1
µi · yi · yT

i . (A.12)

The degree diagonal matrix ∆= I ◦ A2, after importing (A.1) and (A.2), transforms into

Q =
N∑

i=1

N∑
j=1

1

2
· (λi −λ j

)2 · (xi ◦x j
) · (xi ◦x j

)T (A.13)

and can be further transformed as follows

Q = 0 ·
N∑

i=1
(xi ◦xi ) · (xi ◦xi )T +

N−1∑
i=1

N∑
j=i+1

·(λi −λ j
)2 · (xi ◦x j

) · (xi ◦x j
)T

that, after importing (A.3), translates into

Q = 0 ·u ·uT +
N−1∑
i=1

N∑
j=i+1

(
λi −λ j

)2 · (xi ◦x j
) · (xi ◦x j

)T . (A.14)
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Since it holds ∆= I ◦Q and ∆= I ◦ A2, we obtain

N∑
i=1

N∑
j=1

µi ·
(
yi ◦x j

) · (yi ◦x j
)T =

N∑
i=1

N∑
j=1

λ2
i ·

(
xi ◦ y j

) · (xi ◦ y j
)T . (A.15)

Table A.1 provides and overview of derived identities using Hadamard product and spec-
tral decomposition of graph-related matrices.
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Table A.1: List of derived identities using Hadamard product and spectral decomposition of graph-related
matrices.

A = X ·diag(λ) ·X T A =
N∑

i=1
λi · xi · xT

i

A = A ◦ A A =
N∑

i=1

N∑
j=1

λi ·λ j ·
(
xi ◦x j

) · (xi ◦x j
)T

Ak = X ·diag(λ)k ·X T A =
N∑

i=1
λk

i · xi · xT
i

Ak ◦ Am Ak ◦ Am =
N∑

i=1

N∑
j=1

λk
i ·λm

j · (xi ◦x j
) · (xi ◦x j

)T

(
Ak ◦ Am

) ·u
(

Ak ◦ Am
) ·u =

N∑
i=1

λk+m
i · (xi ◦xi )

uT · (Ak ◦ Am
) ·u uT · (Ak ◦ Am

) ·u =
N∑

i=1
λk+m

i

I = X · I ·X T I =
N∑

i=1
xi · xT

i

diag
(
diag

(
Ak

))= I ◦ (
Ak

)
diag

(
diag

(
Ak

))= N∑
i=1

N∑
j=1

λk
i ·

(
xi ◦x j

) · (xi ◦x j
)T

diag
(

Ak
)= (

I ◦ (
Ak

)) ·u diag
(

Ak
)= N∑

i=1
λk

i · (xi ◦xi )

trace
(

Ak
)= uT · (I ◦ (

Ak
)) ·u trace

(
Ak

)= N∑
i=1

λk
i

I = I ◦ I I =
N∑

i=1

N∑
j=1

(
xi ◦x j

) · (xi ◦x j
)T

u = I ·u u =
N∑

i=1
(xi ◦xi )

J = u ·uT J =
N∑

i=1

N∑
j=1

(xi ◦xi ) · (x j ◦x j
)T

O = A ◦ I O =
N∑

i=1

N∑
j=1

λi ·
(
xi ◦x j

) · (xi ◦x j
)T

D = I ◦ A2 D =
N∑

i=1

N∑
j=1

λ2
i ·

(
xi ◦x j

) · (xi ◦x j
)T

Q = Y ·diag(µ) ·Y T Q =
N∑

i=1
µi · yi · yT

i

Q = D − A Q =
N∑

i=1

N∑
j=1

1
2 ·

(
λi −λ j

)2 · (xi ◦x j
) · (xi ◦x j

)T

Q =Q ◦ (A+ I ) Q =
N∑

i=1

N∑
j=1

µi ·
(
λ j +1

) · (yi ◦x j
) · (yi ◦x j

)T

D =Q ◦ I D =
N∑

i=1

N∑
j=1

µi ·
(
yi ◦x j

) · (yi ◦x j
)T

A = (−Q)◦ A A =
N∑

i=1

N∑
j=1

(−µi ) ·λ j ·
(
yi ◦x j

) · (yi ◦x j
)T
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B.1. FUNCTION OF A SYMMETRIC MATRIX AND THE STOCHAS-
TIC MATRIX Ξ

From the general relation for diagonalizable matrices (see e.g. [142, p. 526]),

f (A) =
N∑

k=1
f (λk ) xk xT

k (B.1)

valid for a function f defined on the eigenvalues {λk }1≤k≤N of the N ×N symmetric ma-
trix A, the element for node j equals

(
f (A)

)
j j =

N∑
k=1

f (λk ) (xk )2
j (B.2)

Written in matrix form for all 1 ≤ j ≤ N results in

(
f (A)

)
11(

f (A)
)

22(
f (A)

)
33

...(
f (A)

)
N N

=


(x1)2

1 (x2)2
1 (x3)2

1 · · · (xN )2
1

(x1)2
2 (x2)2

2 (x3)2
2 · · · (xN )2

2
(x1)2

3 (x2)2
3 (x3)2

3 · · · (xN )2
3

...
...

...
. . .

...
(x1)2

N (x2)2
N (x3)2

N · · · (xN )2
N




f (λ1)
f (λ2)
f (λ3)

...
f (λN )

 (B.3)

We write (B.3) in matrix form as ψ=Ξχ with the vectors

ψ=



(
f (A)

)
11(

f (A)
)

22(
f (A)

)
33

...(
f (A)

)
N N

 and χ=


f (λ1)
f (λ2)
f (λ3)

...
f (λN )


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where the N ×N matrix Ξ= X ◦X is defined in (2.5).
Since Ξu = u and ΞT u = u, by “double orthogonality” of (2.3) and (2.4), and since

each element 0 ≤ (xk )2
j ≤ 1, the matrix Ξ with squared eigenvector components of a di-

agonalizable matrix A is doubly1-stochastic [51] with largest eigenvalue equal to 1. The
latter property follows from the Perron-Frobenius Theorem of non-negative matrices.
The product2 of two doubly-stochastic matrices is also a doubly-stochastic matrix. The
doubly-stochastic matrix Ξ also provides a vehicle to generate sharp inequalities, for
which we refer to the book of Marshall et al. [143].

The N ×N doubly-stochastic matrix Ξ in (2.5) can have a rank that is lower than N ,
in contrast to the N ×N orthogonal eigenvector matrix X , whose rank always equals N .
The fact that Ξ is not necessary of full rank, i.e. det(Ξ) = 0 is possible, is exploited in the
proof of Theorem 1 in Appendix B.2 for graph recovery.

B.1.1. THE FUNCTION f (z) = zk

Let us denote the vector λk = (
λk

1 ,λk
2 , . . . ,λk

N

)
so that, for the function f (z) = zk in (B.3)

where k is a non-negative integer, we can write (B.3) as

diag

((
Ak

)
j j

)
u =Ξλk (B.4)

where u = (1,1, . . . ,1) is the all-one vector. From (B.4) and uTΞ = uT , we find the well-

known trace relation [51], namely that uT diag
((

Ak
)

j j

)
u = trace

(
Ak

)= uTλk =∑N
j=1λ

k
j .

If the inverse Ξ−1 of Ξ exists, then it holds, for any integer k, that

λk =Ξ−1diag

((
Ak

)
j j

)
u (B.5)

Thus, the eigenvalue λm of a symmetric matrix A to any, non-negative integer power k
can be written as a linear combination of the diagonal elements of Ak ,

λk
m =

N∑
i=1

(
Ξ−1)

mi

(
Ak

)
i i

whereasΛk = X T Ak X shows that

λk
m =

N∑
i=1

N∑
j=1

(
Ak

)
i j

(xm)i (xm) j (B.6)

1Sinkhorn’s theorem (1964) states that any matrix with strictly positive entries can be made doubly-stochastic
by pre- and post-multiplication by diagonal matrices.

2Indeed, let Ξ and Ψ be two N ×N doubly-stochastic matrices. Then, left-multiplying both sides in Ξu = u
by Ψ and using Ψu = u yields ΨΞu = u. Similarly, left-multiplying both sides in ΨT u = u by ΞT and using
ΞT u = u yields (ΨΞ)T u = u. Finally, an element ofΨΞ equals

0 ≤ (ΨΞ)i j =
N∑

k=1
Ψi kΞk j ≤ min

(
max

1≤k≤N
Ψi k , max

1≤k≤N
Ξk j

)
≤ 1

which demonstrates the property.
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We can write (B.4) for integers k ranging from k = 0 up to k = N −1,
1 a11

(
A2

)
11 · · · (

AN−1
)

11
1 a22

(
A2

)
22 · · · (

AN−1
)

22
1 a33

(
A2

)
33 · · · (

AN−1
)

33
...

...
...

. . .
...

1 aN N
(

A2
)

N N · · · (
AN−1

)
N N

=Ξ.


1 λ1 λ2

1 · · · λN−1
1

1 λ2 λ2
2 · · · λN−1

2
1 λ3 λ2

3 · · · λN−1
3

...
...

...
. . .

...
1 λN λ2

N · · · λN−1
N

 (B.7)

where the right-hand side matrix is an N × N Vandermonde matrix V = V (λ), whose
determinant is detV (λ) =∏

j>i (λ j −λi ) =∏N
i=1

∏N
j=i+1(λ j −λi ). The Hadamard product

V (λ) ◦V (λ) = V
(
λ2

)
is again a Vandermonde matrix. If we denote the left-hand side

N ×N matrix in (B.7) by

Y =
[

1 diag
(
(A) j j

)
u diag

(
(A)2

j j

)
u · · · diag

(
(A)N−1

j j

)
u

]
then the matrix form of (B.7) is

Y =Ξ.V (B.8)

From the rank property of a product of matrices, it follows that

rank(Y ) ≤ min(rank(Ξ) , rank(V )) (B.9)

The determination of rank(Ξ) based on (B.7) is, however, not obvious. Only if all eigen-
values of the matrix A are distinct, then detV ̸= 0 and Ξ = Y .V −1, which shows that
rank(Ξ) = rank(Y ), because V is of full rank, i.e. rank(V ) = N .

B.1.2. EIGENSTRUCTURE OF THE MATRIX Ξ
Let us denote the eigenvalue equation of the asymmetric3 N ×N matrix Ξ by

Ξw j = ξ j w j (B.10)

Double-stochasticity combined with the Perron-Frobenius theorem tells us that ξ1 = 1 ≥∣∣ξ j
∣∣ for any j > 1 and w1 = u. Each eigenvalue ξ j of the asymmetric matrix Ξ thus

lies within the unit circle and is either real on [−1,1] or occurs in complex conjugate
pairs, i.e. if Imξ j ̸= 0, then existence of ξ j implies existence of its complex conjugate
ξ∗j . The corresponding eigenvector w∗

j of ξ∗j follows by taking the complex conjugate of

the eigenvalue equation (i.e. replacing i by −i ), thus Ξw∗
j = ξ∗j w∗

j . All eigenvalues of

Ξm , i.e. ξm
j for 1 ≤ j ≤ N and for any positive integer m, lie within the unit circle and

the largest eigenvalue ξ1 = 1 possesses the all-one vector u as eigenvector. This fact fol-
lows from (a) the above eigenvalue equation and (b), separately, from the property that
the product of two doubly-stochastic matrices is also a doubly-stochastic matrix. The

trace of the matrix Ξ is trace(Ξ) =∑N
j=1

(
x j

)2
j ≥ 0, implying that the sum of the eigenval-

ues of Ξ is non-negative. It follows from trace
(
Ξ2

)=∑N
j=1 ξ

2
j =

∑N
i=1

∑N
k=1 (xk )2

i (xi )2
k that∑N

k=1 (Reξk )2 ≥∑N
k=1 (Imξk )2.

3Since symmetric orthogonal eigenvector matrices exist [144], their corresponding symmetricΞmatrices have
real eigenvalues in the interval [−1,1].
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Since the matrix Ξ is asymmetric, the eigenvectors are not necessarily orthogonal,
but only independent (provided that Ξ is not defective and that there exist N inde-
pendent eigenvectors). We find from the eigenvalue equation (B.10) that (a) wT

k Ξw j =
ξ j wT

k w j and (b) wT
j Ξwk = ξk wT

j wk and subtraction(
ξ j −ξk

)
wT

k w j = wT
k Ξw j −wT

j Ξwk = wT
k

(
Ξ−ΞT )

w j

indicates that orthogonality between wk and w j , for j ̸= k, only holds for symmetric
matrices. Thus, wT

j wk is not necessarily zero if k ̸= j .

Lemma 22 All eigenvectors w j of a doubly-stochastic matrix Ξwith j > 1 are orthogonal
to w1 = u.

Proof: Right-multiplying the transpose of the eigenvalue equation (B.10) by the all-
one vector yields wT

j Ξ
T u = ξ j wT

j u. After using ΞT u = u, we find that 0 = (
ξ j −1

)
wT

j u,

which implies that any eigenvector w j , except for w1 = u belonging to ξ1 = 1, is orthog-
onal to the all-one vector u. □

A consequence of Lemma 22 is that the sum of the components of an eigenvector w j

with j > 1 of a doubly-stochastic matrix is zero.

B.1.3. APPLICATION TO THE LAPLACIAN
The Laplacian matrix Q =∆−A is a symmetric, semi-definite matrix [51]. The eigenvalue
equation Qz j = µ j z j defines the normalized eigenvector z j belonging to the eigenvalue
µ j . The set of Laplacian eigenvalues is ordered as 0 = µN ≤ µN−1 ≤ ·· · ≤ µ1. The matrix
equation (B.4) for k = 1 relates the degree vector d = (d1,d2, . . . ,dN ) of the graph to the
eigenvalue vector µ= (

µ1,µ2, . . . ,µN
)
,

d =ΞQµ (B.11)

where the stochastic matrix ΞQ in (2.5) consists of column vectors(
(z1)2

j , (z2)2
j , . . . , (zN )2

j

)
, where (zk ) j is the j -th component of the k-th eigenvector

of Q belonging to µk . The general relation (B.7) simplifies for the Laplacian matrix
Q =∆− A to

1 d1
(
Q2

)
11 · · · (

QN−1
)

11
1 d2

(
Q2

)
22 · · · (

QN−1
)

22
1 d3

(
Q2

)
33 · · · (

QN−1
)

33
...

...
...

. . .
...

1 dN
(
Q2

)
N N · · · (

QN−1
)

N N

=ΞQ .


1 µ1 µ2

1 · · · µN−1
1

1 µ2 µ2
2 · · · µN−1

2
1 µ3 µ2

3 · · · µN−1
3

...
...

...
. . .

...
1 0 0 · · · 0


Analogously to the adjacency matrix, also for the Laplacian Q the matrix ΞQ is sin-

gular, i.e. detΞQ = 0. This follows from orthogonality (2.3) of eigenvectors and the fact
that zN = 1p

N
u, because the sum of the first N −1 columns in ΞQ in (2.5) is a multiple

of the last column. Hence, besides the largest eigenvalue at 1, ΞQ (and ΞT
Q ) has also a

zero eigenvalue. The obvious consequence is that ΞQµ= d in (B.11) cannot be inverted.
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However, when deleting the last column corresponding to µN = 0 and last row, the re-
sulting (N −1)× (N −1) matrix Ξ̃Q (a minor of ΞQ ) can be inverted and the (N −1)× 1
eigenvalue vector µ̃= (

µ1,µ2, . . . ,µN−1
)

can be determined,

µ̃= (
Ξ̃Q

)−1
d̃ (B.12)

where the vector d̃ = (d1,d2, . . . ,dN−1). With µN = 0, the entire eigenvalue vector µ is
found as a linear function µ (d) of the unknown degree vector d , where element dN =
2L−uT d̃ follows from uTµ= 2L, where L denotes the number of links in the graph.

Given the orthogonal eigenvector matrix Z of the Laplacian, the Laplacian eigen-
value vector µ is obtained from (B.12) as a linear combination in the unknown degrees
d1,d2, . . . ,dN−1,dN and we can compute

Q = Z diag
(
µ (d)

)
Z T

Similar as in the proof of Theorem 1, the off-diagonal Laplacian elements qi j = −ai j

are zero-one elements, from which the unknown degree vector d̃ = (d1,d2, . . . ,dN−1),
where the integer degree di ∈ [0, N −1], can be determined by enumeration. In con-
trast to (B.11) for the Laplacian Q, the zero-diagonal property of the adjacency matrix A,
equivalent to Ξλ = 0 in (2.8), significantly simplifies the graph recovery process, espe-
cially when rank(Ξ) is high.

B.2. PROOF OF THEOREM 1
Section 2.3.1 has illustrated that the minimum rank(Ξ) = 1 can appear in the complete
graph. We now prove our main result.

Proof of Theorem 1: Given the orthogonal eigenvector matrix X of the adjacency
matrix A of an undirected graph, the Hadamard product Ξ= X ◦ X in (2.5) can be com-
puted.

If the matrix Ξ has n ≥ 1 eigenvectors belonging to the zero eigenvalue, then
rank(Ξ) = N −n and the dimension n of the kernel or null space obeys 1 ≤ n ≤ N − 1,
because 1 ≤ rank(Ξ) ≤ N −1. The kernel space corresponding to Ξ is spanned by n lin-
early independent, real vectors v1, v2, . . . , vn and each vector vm of the kernel space is
orthogonal to all the row vectors of the matrix Ξ. The eigenvalue vector λ, which obeys
Ξλ= 0 in (2.8), can thus be written as a linear combination of the n independent kernel
vectors

λ=
n∑

m=1
βm vm (B.13)

where βm for 1 ≤ m ≤ n are real, unknown numbers. The adjacency matrix A = XΛX T is
constructed with (B.13) as

A =
n∑

m=1
βm X diag(vm) X T (B.14)

and each element is ai j =∑n
m=1βm

(
X diag(vm) X T

)
i j .
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We remark that
(
X diag(vm) X T

)
j j = 0 for any 1 ≤ j ≤ N . Indeed, using

X diag
(
q
)

X T =∑N
k=1 qk xk xT

k and
(
xk xT

k

)
i j
= (xk )i (xk ) j , yields

(
X diag(vm) X T )

j j =
(

N∑
k=1

(vm)k xk xT
k

)
j j

=
N∑

k=1
(vm)k (xk )2

j

Row j of the eigenvalue equation (B.10) in Section B.1.2 of the matrixΞ (withΞi j =
(
x j

)2
i )

equals
∑N

k=1 (wl )k (xk )2
j = ξl (wl ) j . Since each vector vm of the kernel space belongs to

eigenvalue ξl = 0 with multiplicity n in (B.10), we find that
(
X diag(vm) X T

)
j j = 0. Thus,

the information that the diagonal elements, a j j = 0 for 1 ≤ j ≤ N , cannot be used to de-
termine the unknowns β1,β2, . . . ,βn . Hence, we must invoke the off-diagonal elements
of the adjacency matrix.

Any selection of n off-diagonal elements ai j = ∑n
m=1βm

(
X diag(vm) X T

)
i j , where

i ̸= j , can be chosen. Without loss of generality, we confine ourselves to n off-diagonal
elements that lie on a particular row r , but also n elements ai j on an upper-diagonal
(with j = i + k and k > 0) may be considered. Row r of the adjacency matrix A, up to
column n, is written as the linear set, in which ar r is omitted as equation and replaced
by that of element ar ;n+1,

(
X diag(v1) X T

)
r 1

(
X diag(v2) X T

)
r 1 · · · (

X diag(vn) X T
)

r 1(
X diag(v1) X T

)
r 2

(
X diag(v2) X T

)
r 2 · · · (

X diag(vn) X T
)

r 2
...

...
. . .

...(
X diag(v1) X T

)
r n

(
X diag(v2) X T

)
r n · · · (

X diag(vn) X T
)

r n



β1

β2
...
βn

=


ar 1

ar 2
...

ar n

 (B.15)

The linear set (B.15) is sufficient to determine all remaining unknowns β1,β2, . . . ,βn ,
provided that the rank of the left-hand side n ×n matrix, say M , is n, else a row dif-
ferent from r of the adjacency matrix A must be taken (or generally a different selec-
tion of n off-diagonal elements). The n × n matrix M with rank(M) = n can be in-
verted and the unknowns β1,β2, . . . ,βn can be expressed in terms of the partial row
vector (ar 1, ar 2, . . . , ar n). The only complicating factor is that the partial row vector
(ar 1, ar 2, . . . , ar n) is not precisely known, only that each element is either zero or one. A
recipe for any chosen row 1 ≤ r ≤ N is to (i) create all 2n−1 possible partial, zero-one row
vectors (ar 1, ar 2, . . . , ar n), excluding all zeros, (ii) determine all unknowns β1,β2, . . . ,βn

by solving the set (B.15) and (iii) compute the eigenvalue vector λ from (B.13) and (iv)
check whether the resulting matrix X diag(λ) X T is a zero-one matrix, which is a possi-
ble adjacency matrix corresponding to the orthogonal eigenvector matrix X . Equation
Ξλ= 0 in (2.8) ensures that there must at least be one partial row vector (ar 1, ar 2, . . . , ar n)
out of the 2n −1 possible combinations that leads to a zero-one matrix.

We cannot exclude, however, that only one adjacency matrix is retrieved. In other
words, it may happen that l > 1 different adjacency matrices of l different undirected
graphs are found, that all possess the same orthogonal eigenvector matrix X , but a dif-
ferent eigenvalue vector λ. □
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C.1. N ×N MATRIX Fk

We derive the first two sum terms of the N ×N matrix Fk in (3.8). Firstly, we split the first
term in (3.7) into two sum terms, where for the second sum term it holds j2 = k

k−2∑
i1=0

k∑
j1=i+2

M
(
W(i1, j1)[k]

)= k−3∑
i1=0

k−1∑
j1=i1+2

M
(
W(i1, j1)[k]

)+ k−2∑
i2=0

M
(
W(i2,k)[k]

)
.

Because the counters i1 < k and j1 < k of the first sum terms in the equation above are
always smaller than k, we import (3.2) and further transform the equation above

k−2∑
i1=0

k∑
j1=i+2

M
(
W(i1, j1)[k]

)− k−3∑
i1=0

k−1∑
j1=i1+2

M
(
W(i1, j1)[k −1]

) · A =
k−2∑
i2=0

Ai2 ·
(
I ◦ Ak−i2

)
.

Similarly, we transform the second sum term in (3.7) by excluding the case j2 = k from
the sum term

k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

k∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)= k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

k−1∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)
+

k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

M
(
W(i1, j1)[k]∩W(i2,k)[k]

) (C.1)

We further exclude the case j1 = k from both sum term on the right-hand side of (C.1)
and obtain
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k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

k∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)= k−2∑
i1=0

k−1∑
j1=i1+2

k−2∑
i2=i1

k−1∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)
+

k−2∑
i1=0

k−2∑
i2=i1

k−1∑
j2=q2

M
(
W(i1,k)[k]∩W(i2, j2)[k]

)
+

k−2∑
i1=0

k−1∑
j1=i1+2

k−2∑
i2=i1

M
(
W(i1, j1)[k]∩W(i2,k)[k]

)
+

k−2∑
i1=0

k−2∑
i2=i1

M
(
W(i1,k)[k]∩W(i2,k)[k]

)
(C.2)

The first sum term can be split in two sub walks as in (3.1), transforming (C.2) as
follows

k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

k∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)= k−3∑
i1=0

k−1∑
j1=i1+2

k−3∑
i2=i1

k−1∑
j2=q2

M
(
W(i1, j1)[k −1]∩W(i2, j2)[k −1]

) · A

+
k−2∑
i1=0

k−2∑
i2=i1

k−1∑
j2=q2

Ai1 ·
(
I ◦

(
Ai2−i1 ·

(
I ◦ A j2−i2

)
· Ak− j2

))
+

k−2∑
i1=0

k−1∑
j1=i1+2

k−2∑
i2=i1

M
(
W(i1, j1)[k]∩W(i2,k)[k]

)
+

k−4∑
i1=0

k−2∑
i2=i1+2

Ai1 ·
(
I ◦ Ai2−i1

)
·
(
I ◦ Ak−i2

)
(C.3)

The third sum term on the right-hand side of the relation above can be split into three
sum terms, where i2 < j1, secondly i2 = j1 and finally where i2 > j1, allowing us to trans-
form (C.3) as follows

k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

k∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)= k−3∑
i1=0

k−1∑
j1=i1+2

k−3∑
i2=i1

k−1∑
j2=q2

M
(
W(i1, j1)[k −1]∩W(i2, j2)[k −1]

) · A

+
k−2∑
i1=0

k−2∑
i2=i1

k−1∑
j2=q2

Ai1 ·
(
I ◦

(
Ai2−i1 ·

(
I ◦ A j2−i2

)
· Ak− j2

))

+
k−2∑
i1=0

k−1∑
j1=i1+2

j1−1∑
i2=i1

M
(
W(i1, j1)[k]∩W(i2,k)[k]

)
+

k−2∑
i1=0

k−1∑
j1=i1+2

M
(
W(i1, j1)[k]∩W( j1,k)[k]

)
+

k−2∑
i1=0

k−1∑
j1= j1+2

k−2∑
i2=i1

M
(
W(i1, j1)[k]∩W(i2,k)[k]

)
+

k−4∑
i1=0

k−2∑
i2=i1+2

Ai1 ·
(
I ◦ Ai2−i1

)
·
(
I ◦ Ak−i2

)
.

(C.4)
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Finally, the second sum term of the N ×N matrix Fk is defined as follows

k−2∑
i1=0

k∑
j1=i1+2

k−2∑
i2=i1

k∑
j2=q2

M
(
W(i1, j1)[k]∩W(i2, j2)[k]

)= k−3∑
i1=0

k−1∑
j1=i1+2

k−3∑
i2=i1

k−1∑
j2=q2

M
(
W(i1, j1)[k −1]∩W(i2, j2)[k −1]

) · A

+
k−2∑
i1=0

k−2∑
i2=i1

k−1∑
j2=q2

Ai1 ·
(
I ◦

(
Ai2−i1 ·

(
I ◦ A j2−i2

)
· Ak− j2

))

+
k−2∑
i1=0

k−1∑
j1=i1+2

j1−1∑
i2=i1

Ai1 ·
(

Ai2−i1 ◦ A j1−i2 ◦ Ak− j1
)

+
k−4∑
i1=0

k−2∑
j1=i1+2

Ai1
(
I ◦ A j1−i1

)
·
(
I ◦ Ak− j1

)
+

k−2∑
i1=0

k−1∑
j1=i1+2

k−2∑
i2= j1+1

Ai1 ·
(
I ◦ A j1−i1

)
· Ai2− j1 ·

(
I ◦ Ak−i2

)
+

k−4∑
i1=0

k−2∑
i2=i1+2

Ai1 ·
(
I ◦ Ai2−i1

)
·
(
I ◦ Ak−i2

)
.

(C.5)
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DETERMINEKPATHS (A, N , k)

Input: A, N , k
Output: P
1. P ←ON×N

2. for i ← 1 to N
3. T ← COMPUTEKPATHS (ON×1, A, i , 0, k)
4. Store T as the i -th row of P
5. end for
6. return P

Figure C.1: Metacode for calling the recursive algorithm for determining the number of length k paths between
node pairs in a graph, with the graph size N , hopcount k and the N×N adjacency matrix A as input. Algorithm
returns the N ×N path matrix Pk

Compared to the recursive algorithm shown in Figure 3.10, the modified recursive
function in Figure C.2 increments the N × 1 node-based path vector T by considering
the neighbours j of the destination node nh (line 4). This is done only if the hop count
h of these paths matches the input hop count k (line 3). If they match, the recursion
ends and the path vector T is returned (line 5). Otherwise, the recursion is called for any
neighbour j of the destination node nh (line 10) that has a non-zero degree (line 9), after
removing all links adjacent to the destination node nh (line 7).

The adjusted recursion is called as outlined in Algorithm C.1, where initially the N×N
length k path matrix Pk is initialised as a zero matrix (line 1). Next, the recursive function
is called for each node (line 3), while the N ×1 node-based path vector T , obtained for
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COMPUTEKPATHS (T, A, nh , h, k)

Input: T, A, nh , h, k
Output: T
1. h ← h +1
2. Nnh ← { j | j ∈N , anh , j = 1}
3. if h = k
4. T j ← T j +1, where j ∈Nnh

5. return T
6. else
7. anh , j ← 0 and a j ,nh ← 0, where j ∈Nnh

8. for m ← 1 to |Nnk |
9. if |N jm | > 0
10. T ← COMPUTEKPATHS (T, A, jm , h, k)
11. end if
12. end for
13. end if
14. return T

Figure C.2: Metacode of the recursive algorithm for determining all length k paths in a graph, with the N ×N
adjacency matrix A, the (N −1)×N node-based path matrix T , destination node nk and hopcount k as input.
The recursive function returns the (N −1)×N node-based path matrix T .

node i is stored as the i th row of Pk (line 4).
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D.1. CLUSTERING ALGORITHMS

D.1.1. LOUVAIN METHOD
The Louvain method is a simple, yet powerful heuristic clustering algorithm, proposed
by Blondel et al. [14]. The method is based on an iterative, unsupervised, two-step pro-
cedure that optimizes modularity m. Initially, a directed graph G with an N×N weighted
adjacency matrix M is partitioned in N clusters, where each node constitutes its own
cluster or community.

In the first stage, the algorithm examines how the graph modularity m changes if a
node i would be assigned to a community of its neighbouring node j ∈ Ni . The modu-
larity gain ∆m in case node i is assigned to community h of adjacent node j has been
determined in [14] as

∆m =
(∑

in+2
∑

l :Cl j =1 Mi l

2L
−

(∑
tot+di

2L

)2
)
−(∑

in

2L
−

(∑
tot

2L

)2

−
(

di

2L

)2)
,

(D.1)

where the sum of the weights of intra-community links in h is
∑

in, while
∑

tot denotes the
sum of the weights of all links in G incident to any node in community h. Node i is as-
signed to the community with the largest positive gain in modularity m. In case all com-
puted gains∆m are either negative or smaller than a predefined small positive threshold
value, node i remains in its original community. The first stage ends when modularity
m cannot be further increased by re-assigning nodes to communities of neighbours.

In the second stage of an iteration, the weighted graph from the first stage is trans-
formed into a new weighted graph, where each community is presented by a node. The
link weight between two nodes h and g equals the sum of weights of all links between
communities h and g in the graph from the first stage. Furthermore, the weight of a self-
loop of node g in the new graph equals the sum of weights of all intra-community links
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in cluster g of the graph from the previous stage. The new graph is provided to the first
stage in the next iteration. The algorithm stops when modularity m cannot be increased
further. The time complexity of the Louvain method is linear in the number of links O(L)
on sparse graphs [14].

D.1.2. LEIDEN METHOD
The Louvain method, while being one of the most popular clustering algorithms in the
literature, suffers from identifying poorly connected or even disconnected communi-
ties. This defect was first discovered by Traag et al., who proposed the Leiden algorithm
in [145], an improvement of the Louvain method that estimated graph partition while
guaranteeing connected communities. The Leiden algorithm consists of three iterative
steps:

1 Local moving of nodes, an improved version of the first step of the Louvain
algorithm, described in (D.1). Louvain algorithm visits each node randomly until
modularity cannot be improved by moving a node to a different community. While
doing so, Louvain also visits nodes that cannot be moved. On the contrary, the
Leiden algorithm visits only those nodes whose adjacent nodes have been moved.
It is achieved by placing nodes in a queue and iteratively checking whether it is
possible to improve the quality function by updating the cluster membership of
a node. When a node is moved to another community, its neighbours from other
communities are placed in the queue.

2 Refinement of the partition, where each node is assigned its own community.
Nodes are only locally merged, i.e. within communities estimated in the previous
stage. Two nodes from the same community are merged only in case both nodes
are well connected to the community from the previous stage. At the end of
the refinement stage, partitions from the first stage are often split into multiple
communities.

3 Aggregation of the network, based on the refined partition from the previous step,
as in the second stage of the Louvain algorithm.

The Leiden algorithm performs clustering faster than the Louvain algorithm while pro-
viding in general between partitions [145]. In Section 5.6, we compare the performance
of the Leiden algorithm with the proposed linear clustering process on both synthetic
and real-world networks.

D.1.3. NEWMAN’S METHOD OF OPTIMAL MODULARITY
Newman [84] proposed a clustering algorithm that is based on modularity optimisation.
The algorithm starts with estimating the bisection of a graph G , generating the highest
modularity m from (5.3), that can be rewritten as follows:

m = 1

4L
yT ·M · y, (D.2)
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where the N ×1 vector y is composed of values 1 and −1, denoting cluster membership
of each node, while the N × N modularity matrix M = A − 1

2L ·d ·d T has the following
eigenvalue decomposition

M =
N∑

i=1
ζi · zi · zT

i , (D.3)

where the N ×1 eigenvector zi corresponds to the i -th eigenvalue ζi . Further, the vector
y = ∑N

j=1(zT
j · y) · z j can be written as a linear combination of eigenvectors {zi }1≤i≤N ,

which transforms (D.2) to

m = 1

4L

N∑
i=1

ζi · (zT
j · y)2. (D.4)

In order to maximise the modularity m, Newman [84] proposed to define yi = 1, in case
(z1)i > 0, otherwise yi =−1. In a next iteration, the same procedure of spectral division
into two partitions is repeated on both sub-graphs. However, using only the block sub-
matrix of M , corresponding to cluster g in next iteration would not take into account
inter-community links. Instead, for the estimated cluster g , the modularity matrix Mg is
updated as

Mg = mi j −
(∑

k∈g
mi k

)
·δi j , (D.5)

where Kronecker delta δi j = 1 if i = j , otherwise δi j = 0. The algorithm stops when the
modularity m cannot be further improved.

D.1.4. NON-BACK TRACKING MATRIX

The non-back tracking clustering method estimates the number of clusters in a network,
based on the spectrum of the non-back tracking matrix B , that contains information
about 2-hop directed walks in a network G , that are not closed [19]. Given an undirected
network G(N ,L ), for each link i ∼ j between nodes i and j , two directed links (i → j )
and ( j → i ) are created. By transforming each link in G into a bi-directional link pair, we
compose in total 2L links. The 2L×2L non-back tracking matrix B is defined as follows:

B(u→v),(w→z) =
{

1 if v = w and u ̸= z

0 otherwise,
(D.6)

where v, w, z ∈ N . Since the non-back tracking matrix B is asymmetric, its eigenvalues
are generally complex. Furthermore, a vast majority of eigenvalues lie within a circle
in complex plain, with centre at the origin and with radius equal to the square root of
the largest eigenvalue. Krzakala et al. [19] hypothesized that the number of clusters
in G equals the number of real-valued eigenvalues outside the circle. Computing the
eigenvalues of the non-back tracking matrix B is of computational complexity O(L3).
However, the complexity can be reduced to O(N 3), as explained in [9, p. 20]. The non-
back tracking matrix method is denoted as NBTM in Section 5.6.
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D.2. RANDOM GRAPH BENCHMARKS

D.2.1. STOCHASTIC BLOCK MODEL
In this paper, we focus on the symmetric stochastic block model (SSBM), where only
two different link probabilities are defined. Two nodes are connected via a link with
probability pi n if they belong to the same cluster, otherwise, the direct link exists with
probability pout . Communities emerge when the link density within clusters is larger
than the inter-community link probability pi n > pout . Furthermore, we restrict clusters
to be of the same size:

ni = N

c
, i ∈ {1, 2, . . . ,c},

which causes the expected degree to be the same for each node:

E [D] = bi n + (c −1) ·bout

c
, (D.7)

irrespective of its cluster membership. We further consider a sparse and assortative
SSBM. The SBMM is called sparse and assortative when the link probabilities pi n = bi n

N

and pout = bout
N are defined upon positive constants bi n > bout that stay constant when

N →∞. Decelle et al. [146, 147] found that when the difference bi n −bout is above the
detectability threshold

bi n −bout > c ·
√

E [D], (D.8)

it is theoretically possible to recover cluster membership of the nodes; otherwise, the
community structure of a network is not distinguishable from randomness. The thresh-
old (D.8) marks a phase transition between the undetectable and the theoretically de-
tectable regime of the SSBM.

D.2.2. LFR BENCHMARK
Lancichinetti et al. proposed in [97] the LFR benchmark, providing more realistic ran-
dom graphs with a built-in community structure than SSBM graphs. Opposite to SSBM
graphs (where each node has the same expected degree), the authors argue that the de-
gree distributions in real-world networks are usually heterogeneous. Furthermore, the
tails of degree distributions often obey the power law [148]. Next, by restricting clusters
to be the same size, we neglect the observed properties of community size distribution
in real-world networks that are often heavy-tailed [149]. Therefore, the LFR benchmark
produces a graph with the following characteristics:

1 Each node has a degree sampled from a power law distribution, whose exponent
equals the input parameter γ.

2 The size of each community is sampled from a power law distribution, whose
exponent equals the input parameter β.

3 A fraction 1−µ of each node’s links are intra-community.

In addition to the above-introduced parameters, the LFR benchmark assumes the net-
work size N , the average degree dav and the number of communities c as inputs.
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D.3. LCP IN CONTINUOUS TIME
We explain the physical intuition of our clustering process in continuous time t , where
the position xi (t ) of a node i is assumed to change continuously with time t . The change
xi (t +∆t )− xi (t ) in position of node i at time t for small increments ∆t is proportional
to the sum over neighbours j of the difference x j (t )− xi (t ) in position weighted by the
resultant force between attraction and repulsion:

d xi (t )

d t
= ∑

j∈Ni

(α · (∣∣N j ∩Ni
∣∣+1

)
d j di

−

1
2 ·δ ·

(∣∣N j \Ni
∣∣+ ∣∣Ni \N j

∣∣−2
)

d j di

)
·
(
x j (t )−xi (t )

) (D.9)

where α and δ are, in the continuous-time setting, the rates (with units s−1) for attrac-
tion and repulsion, respectively. The law (D.9) of the nodal positioning xi (t ) for each
i ∈ N deviates from physical repulsion between charged particles, where the force is

proportional to
(
x j (t )−xi (t )

)−b for some positive number b. The important advantage
of the law (D.9) is its linearity that allows an exact mathematical treatment. The linear
dynamic process (D.9) is proportional to the underlying graph, which we aim to cluster;
a non-linear law depends intricately on the underlying graph and may result in a lesser
clustering. The drawback of the linear dynamic process (D.9), as investigated below in
Section 5.3.3, lies in the steady state, where the attractive and repulsive forces are pre-
cisely in balance.

After dividing both sides by δ,

d xi (t )

d (δt )
= ∑

j∈Ni

( α
δ · (∣∣N j ∩Ni

∣∣+1
)

di d j
−

1
2 ·

(∣∣N j \Ni
∣∣+ ∣∣Ni \N j

∣∣−2
)

di d j

)
·
(
x j (t )−xi (t )

)
and defining the normalized time by t∗ = δt and the effective attraction rate τ = α

δ , the
governing equation (D.9) reduces to

d xi (t∗)

d t∗
= ∑

j∈Ni

(
τ · (∣∣N j ∩Ni

∣∣+1
)

di d j
−

( ∣∣N j \Ni
∣∣+∣∣Ni \N j

∣∣
2 −1

)
di d j

)
·
(
x j (t∗)−xi (t∗)

)
(D.10)

The position xi (t∗) of node i is now expressed in the dimensionless time t∗, where the
actual time t = t∗

δ is measured in units of 1
δ . By scaling or normalizing the time, the

repulsion strength or rate δ has been eliminated, illustrating that the clustering process
only depends upon one parameter, the effective attraction rate τ. Relation (5.1) indicates
that the weight of the position difference

wi j =
τ · (∣∣N j ∩Ni

∣∣+1
)− ( ∣∣N j \Ni

∣∣+∣∣Ni \N j
∣∣

2 −1
)

di d j

lies in the interval

(
−

di +d j
2 −1

di d j
, τ

di

)
and that the elements wi j = w j i define the symmetric

N×N weight matrix W , which is specified in (5.10). Although symmetry is physically not
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required 1, the analysis below is greatly simplified, because eigenvalues and eigenvectors
of a symmetric matrix are real.

We rewrite the law (D.10) as

d xi (t∗)

d t∗
= ∑

j∈Ni

wi j x j (t∗)−xi (t∗)
∑

j∈Ni

wi j

N∑
j=1

ai j wi j x j (t∗)−xi (t∗)vi

where vi = ∑
j∈Ni

w j =∑N
j=1 ai j wi j is independent of time t∗. The cluster positioning law

(D.9) for the vector x(t∗) in continuous time is, in matrix form,

d x(t∗)

d t∗
= (A ◦W −diag(v))x(t∗) (D.11)

where the Hadamard product [94] is denoted by ◦ and the vector v = (A ◦W )u. The
corresponding solution of (D.11) is [150, eq. (6)]

x(t∗) = e(A◦W −diag((A◦W )u))t∗x(0) (D.12)

which illustrates that a steady state is reached, provided that the real part of the largest
eigenvalue of the matrix H = (A ◦W −diag((A ◦W )u)) is not positive.

D.4. PROOF OF THEOREMS

D.4.1. PROOF OF THEOREM 19
Similarly as in Section D.3, we rewrite the sum over all neighbours in the governing equa-
tion (5.7) in terms of the elements of the N ×N adjacency matrix A:

xi [k +1]−xi [k] =
N∑

j=1

ai j

di d j

(
x j [k]−xi [k]

)(
α

∣∣N j ∩Ni
∣∣− 1

2
δ

(∣∣N j \Ni
∣∣+ ∣∣Ni \N j

∣∣)).

(D.13)
Firstly, we denote the N ×1 vector d̃ =∆−1 ·u composed of the inverse nodal degrees:

d̃ =
[

1
d1

1
d2

. . . 1
dN

]T
(D.14)

In the sequel, we will deduce the corresponding matrix form of (D.13). With (5.1) and
(5.2), the degree di of node i distracted by the number of common neighbours between
nodes i and j (5.2), equals the number of node i neighbours, not adjacent to node j :∣∣Ni \N j

∣∣= (
d ·uT − A2)

i j . (D.15)

Similarly, the number of node j neighbours that do not share link with node i has fol-
lowing matrix form: ∣∣N j \Ni

∣∣= (
u ·d T − A2)

i j . (D.16)

1The process described by

d xi (t )

d t
= ∑

j∈Ni

α ·
(∣∣∣N j ∩Ni

∣∣∣+1
)
−δ ·

(∣∣∣N j \Ni

∣∣∣−1
)

d j di
·
(
x j (t )−xi (t )

)
also works.
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Finally, the position difference (x j [k]−xi [k]) between nodes i and j at time k equals the
i j -th element of the matrix below:(

x j [k]−xi [k]
)= (

u · xT [k]−x[k] ·uT )
i j , (D.17)

while dividing by node i ( j ) degree di (d j ) is equivalent to product with the i j -th element
of the N ×N matrix (d̃ ·uT )i j and (u · d̃ T )i j , respectively. By implementing matrix nota-
tions (5.2), (D.15), (D.16) and (D.17) into the governing equation (D.13) and by applying
the distributive property of the Hadamard product [94, p. 477] we obtain:

x[k +1]−x[k] =
((

u · xT [k]−x[k] ·uT )◦ A◦(
u · d̃ T )◦ (

d̃ ·uT )◦ (
(α+δ) · (A2 + A

)−
1

2
δ · (u ·d T +d ·uT ))) ·u.

(D.18)

We define the N ×N topology-based matrix W as follows:

W =A ◦ (
u · d̃ T )◦ (

d̃ ·uT )◦(
(α+δ) · (A2 + A

)− 1

2
δ

(
u ·d T +d ·uT ))

.
(D.19)

Using the distributive property of a Hadamard product [94, p. 477], we develop the equa-
tion (D.19) further:

W = (α+δ) ·
((

u · d̃ T )◦ (
d̃ ·uT )◦ A ◦ (

A2 + A
))−

1

2
δ
(

A ◦ (
u · d̃ T )◦ (

d̃ ·uT )◦ (
u ·d T ))−

1

2
δ
(

A ◦ (
u · d̃ T )◦ (

d̃ ·uT )◦ (
d ·uT ))

.

(D.20)

Since the Hadamard product is commutative [94, p. 477], we can reorder the products
in previous equation. The Hadamard product

(
u · d̃ T

)◦ (
u ·d T

)
equals all-one matrix J .

Similarly, the product
(
d̃ ·uT

)◦(
d ·uT

)= J . We further transform the Hadamard product
of

(
A ◦ A2 + A

)
and the outer products

(
u · d̃ T

)
and

(
d̃ ·uT

)
into product with diagonal

matrices ∆−1 · (A ◦ A2 + A
) ·∆−1. Thus, equation (D.20) transforms to (5.10). Substituting

(D.19) into (D.18) yields

x[k +1]−x[k] =
((

u · xT [k]−x[k] ·uT )◦W
)
·u. (D.21)

The Hadamard product of a matrix with an outer product of two vectors is equivalent to
the product with diagonal matrices of vectors composing the outer product [94, p. 477].
Thus, we further transform the governing equation (D.21):

x[k +1]−x[k] =W ·diag(x[k]) ·u −diag(x[k]) · (W ·u) , (D.22)

where the last term diag(x[k]) · (W ·u) represents the Hadamard product of two vectors,
x[k] ◦ (W ·u) and can be presented as diag(W ·u) · x[k]. Thus, the equation transforms
into (5.9) which completes the proof. □
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D.4.2. PROOF OF PROPERTY 2
We observe that

W ·u −diag(W ·u) ·u = 0

implying that the all-one vector u is an eigenvector of the matrix W −diag(W ·u) be-
longing to the zero eigenvalue. Therefore, the N ×N matrix I +W −diag(W ·u) has an
eigenvalue 1 corresponding to the all-one vector u.

By the Perron-Frobenius theorem [4] for a non-negative matrix, the principal eigen-
vector, belonging to the largest eigenvalue, has non-negative components. Since the
eigenvector u has non-negative components and all eigenvectors of a symmetric matrix
are orthogonal, it follows that the all-one vector u is the Perron or principal eigenvector
belonging to the largest eigenvalue 1 of the matrix I +W −diag(W ·u) and, thus, all other
real eigenvalues are, in absolute value, smaller than 1. □

D.4.3. PROOF OF PROPERTY 3
The non-negativity of the matrix I +W −diag(W ·u) implies that wi j ≥ 0 for i ̸= j and
1+wi i −∑N

k=1 wi k ≥ 0, hence,

1 ≥
N∑

k=1;k ̸=i
wi k ≥ 0

Equivalently, the symmetric matrix W −diag(W ·u) has positive off-diagonal elements,
but negative diagonal elements, similarly to the infinitesimal generator of a Markov
chain (which is minus a weighted Laplacian [64]). Introducing the explicit expression
(5.11) and requiring that each element wi j is non-negative,

wi j = ai j

α · (∣∣N j ∩Ni
∣∣+1

)−δ · ( ∣∣N j \Ni
∣∣+∣∣Ni \N j

∣∣
2 −1

)
di d j

≥ 0

leads to

α

δ
≥ 1

2
·
(∣∣N j \Ni

∣∣+ ∣∣Ni \N j
∣∣−2

)(∣∣N j ∩Ni
∣∣+1

)
which holds for any i , j ̸= i ∈ N . With (5.1), (5.2) and di = (Au)i = (A2)i i , the condition
for the ratio α

δ becomes

α

δ
≥ max

i , j ̸=i∈N

1

2
·
(∣∣N j \Ni

∣∣+ ∣∣Ni \N j
∣∣−2

)(∣∣N j ∩Ni
∣∣+1

)
= max

i , j ̸=i∈N

di +d j

2
(
(A2)i j +1

) −1

which simplifies to
α

δ
≥ dmax −1 (D.23)
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We write
∑N

k=1;k ̸=i wi k with (5.11) as

N∑
k=1;k ̸=i

wi k = 1

di

N∑
k=1

ai k

(α · (|Nk ∩Ni |+1)

dk

−
δ
2 · (|Nk \Ni |+ |Ni \Nk |−2)

dk

)
Introducing (5.1) and (5.2),

N∑
k=1;k ̸=i

wi k = 1

di

N∑
k=1

ai k
α · ((A2)i k +1

)− δ
2 · (di +dk −2

(
(A2)i k +1

))
dk

= α

di

N∑
k=1

ai k

(
(A2)i k +1

)
dk

− δ

2di

N∑
k=1

ai k

(
di

dk
+1− 2

(
(A2)i k +1

)
dk

)
leads, with di =∑N

k=1 ai k , to

N∑
k=1;k ̸=i

wi k = α+δ
di

N∑
k=1

ai k

(
(A2)i k +1

)
dk

− δ

2
− δ

2

N∑
k=1

ai k

dk

The second condition
∑N

k=1;k ̸=i wi k ≤ 1,

α+δ
di

N∑
k=1

ai k

(
(A2)i k +1

)
dk

− δ

2
− δ

2

N∑
k=1

ai k

dk
≤ 1

must hold for all i ∈N , which translates to

1 ≥ max
i∈N

(
α+δ

di

N∑
k=1

ai k

(
(A2)i k +1

)
dk

− δ

2
− δ

2

N∑
k=1

ai k

dk

)

≥ (α+δ)max
i∈N

1

di

N∑
k=1

ai k

(
(A2)i k +1

)
dk

− δ

2
− δ

2
min
i∈N

N∑
k=1

ai k

dk

With
(
(A2)i k +1

) ≤ dk if ai k = 1, we have 1
di

∑N
k=1 ai k

((A2)i k+1)
dk

≤ 1, while di
dmin

≥∑N
k=1

ai k
dk

≥ di
dmax

. Hence, the second condition becomes

1 ≥α+ δ

2

(
1− dmin

dmax

)
(D.24)

illustrating that α ≤ 1. Combining the two conditions (D.23) and (D.24) into a linear set
of inequalities {

0 ≥−α+δ (dmax −1)

1 ≥α+ δ
2

(
1− dmin

dmax

)
or in matrix form, where ⋟ denotes componentwise inequalities [151, p. 32, 40][

0
1

]
⋟

[ −1 (dmax −1)

1 1
2

(
1− dmin

dmax

) ][
α

δ

]
yields, after inversion, the bounds (5.15) and (5.16). □
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D.5. INFLUENCE OF α AND δ ON THE EIGENVALUES βk AND

THE EIGENVECTOR y2

Figure D.1: Gapβ2−β3 between the second and the third largest eigenvalue of the N×N matrix W −diag(W ·u),
for different values of the attractive α and repulsive δ strength (left-hand side figure). Relative difference
β3−β2
β3

, for different values of the attractive α and repulsive δ strength (right-hand side figure). An SSBM net-

work with N = 1000 nodes, c = 5 clusters is used for both plots, with bi n = 25 and bout = 2.5.

Figure D.1 shows that influence of the attractive and repulsive strength α and δ on
the eigenvalue gap β2−β3 is relatively small if α and δ are not too small and obeying the
bounds (5.15) and (5.16). While the difference increases when the attraction strength α

is increasing, the repulsive strength δ has no visible influence on the eigenvalue gap.
The eigenvalue β2 depends on the community structure of a graph. Figure D.2 re-

veals positive correlation between the eigenvalue β2 and the modularity index m of a
graph. As the modularity index increases, the eigenvalue β2 approaches value 1. In the
limit case, when there are only intra-community links in the network, β2 = 1, indicating
the eigenvector y2 represents a steady state.

Figure D.3 reveals that the repulsive strength δ does not affect the eigenvector y2

components significantly. Eigenvector y2 components of nodes from the same cluster
are better distinguished from the remaining components of y2 for smaller values of re-
pulsive strength δ.
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Figure D.2: The eigenvalue β2 versus the modularity index m of an SSBM graph of N = 999 nodes and c = 3
clusters, and an SSBM graph of N = 1000 nodes, with c = 4,10 clusters, respectively. The parameters bi n
and bout are varied, while keeping average degree dav = 7 fixed. For each combination of bi n and bout , the
modularity index m and the eigenvalueβ2 are computed. The correlation is presented in case only interactions
between direct neighbours are allowed (left-hand side figure) and in case interactions between each pair of
nodes are allowed (right-hand side figure).

α = 0.05 α = 0.5

Figure D.3: Sorted eigenvector ŷ2 components for different values of the repulsive strength δ, in case of a SSBM
network of N = 100 nodes, c = 4 clusters and with parameters bi n = 25 and bout = 1. The attraction rate equals
α= 0.05 (left-hand side figure) andα= 0.5 (right-hand side figure), while the repulsive strengthδ obeys bounds
in (5.16).

D.6. COMPLEXITY OF LCP

The computational complexity of LCP consists of three parts: the computation of (i) the
N ×N matrix W in (5.10), (ii) the N ×1 eigenvector y2 of the matrix W −diag(W u) and
(iii) the identification of the clusters based on the sorted eigenvector ŷ2.
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Algorithm 2 Computation of the N ×N matrix A ◦ A2 .

Require: A denotes the adjacency matrix, N denotes number of links, while the set of
node i neighbours is denoted by Ni .

1: As ←ON×N

2: for i ← 1 to N do
3: for j ←Ni do
4: for m ← (

N j \ {1,2, . . . , i }
)∩Ni do

5: (As )i ,m ← (As )i ,m +1 ▷ Account for the 2-hop walk (i → j → m)
6: end for
7: end for
8: end for
9: As ← As + AT

s
10: return As

D.6.1. COMPUTING THE N ×N MATRIX W
The N ×N matrix A ◦ A2 in (5.10) requires the highest computational effort. Generally,
computing the square of a matrix involves O(N 3) elementary operation, but the zero-
one structure of the adjacency matrix significantly reduces the operations. We provide
below an efficient algorithm for the computation of A ◦ A2, whose entries determine the
number of 2-hop walks between any two direct neighbours in the network.

We initialize the N ×N matrix A ◦ A2 with zeros and only compute elements above
the main diagonal, because A◦A2 is symmetric. The algorithm identifies all 2-hop walks
between any two direct neighbours and accordingly updates the matrix. Let us consider
a node i with di neighbours, denoted as Ni . For a neighbouring node j ∈ Ni , we in-
crement the elements

(
A ◦ A2

)
i m by 1, where m ∈ (

N j \ {1,2, . . . , i }
)∩Ni , accounting for

2-hop walks i → j → m. By repeating the procedure for each node, we compute all the
elements above the main diagonal. Finally, we sum the generated matrix with its trans-
pose to obtain A ◦ A2. Since the algorithm 2 is based on incrementing the matrix entries
per each 2-hop walk between direct neighbours, the number of operations equals the
sum s = uT · (A ◦ A2

) ·u of all elements of A ◦ A2

s =
N∑

i=1

N∑
j=1

λi ·λ2
j ·uT (

xi ◦x j
) · (xi ◦x j

)T u (D.25)

The eigenvectors of the adjacency matrix A are orthogonal. Therefore
(
xi ◦x j

)T ·u =
xT

i · x j = 0 if i ̸= j , otherwise it equals 1 and (D.25) further simplifies to

s =
N∑

i=1
λ3

i , (D.26)

which equals 6 times number of triangles in the network [51, p. 31], because a 2-hop walk
between adjacent nodes i and j over a common neighbour m is equivalent to a triangle
i → m → j → i . The computational complexity of A ◦ A2 thus reduces to O (dav ·L), as
presented in Figure D.4. For a given matrix A ◦ A2, the computational complexity of the
N×N matrix W is O(L), because (5.10) can be transformed into Hadamard product terms
(i.e. element-based operations).
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Figure D.4: Sum of the cubed eigenvalues λ of the adjacency matrix A (blue circles) and product of the average
degree dav and number of links L (red line), for an Erdős–Rényi random graph with N = 300 nodes, versus the

relative mean degree dav
N (left-hand side figure) and dav ·L (right-hand side figure).

D.6.2. COMPUTING THE N ×1 EIGENVECTOR y2
The eigenvector y2 corresponds to the second largest eigenvalue β2 of the N ×N matrix
W −diag(W ·u). The largest eigenvalue β1 = 1 corresponds to the eigenvector y1 = 1p

N
u.

Computing the eigenvector y2 is equivalent to computing the largest eigenvector of the
matrix W −diag(W ·u)− 1

N ·u ·uT , which can be executed using the power method [51],
for a given matrix W , with computational complexity O (L).

D.6.3. COMPUTING THE CLUSTER MEMBERSHIP FUNCTION
We apply the recursive algorithm 1 to identify communities based on the N×1 eigenvec-
tor y2. The number of iterations of the algorithm ideally equals T = log2 c, while in worst
case scenario there are c iterations. Given a fixed number c of communities, the compu-
tational complexity within an iteration is O (L), as shown in pseudocode 1. The number
of clusters c may depend upon N and is in worst case equal to N . Thus, computational
complexity increases in worst case to O(N ·L).

D.6.4. SCALING THE INTER-COMMUNITY LINKS
Between two iterations of the linear clustering process, we identify inter-community
links and scale their weights, as defined in (5.27). The computational complexity of this
step is O (L), as the ranking difference of neighbouring nodes is computer over each link.

Finally, computational complexity of the entire proposed clustering process equals
O(N ·L), because dav =O(N ).
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E.1. DATASETS DESCRIPTION
Since 1809, the nature and evolution of the Dutch society and economy were recorded in
national statistics such as municipality-related population and surface measurements.
From this data we selected three datasets which together describe the national year-on-
year dynamics at the municipality level:

1 Population measurements of each municipality,

2 Digital geometries representing the area of each municipality,

3 Municipality merging.

Population measurements have been collected from two different sources. In period
(1809−1960) the population data set is obtained from the Historical Database of Dutch
Municipalities1 (HDNG), collected by the International Institute of Social History, which
is part of the Royal Netherlands Academy of Arts and Sciences. Further, the number of
inhabitants per Dutch municipality in period (1960−2019) is obtained from the Statistics
Netherlands 2 (CBS).

The other two datasets are collected from the online repositories of the CBS website.
While digital geometries and the municipality merging datasets exist for each year in the
period (1830− 2019) consistent in time, population data sets cover in total more than
two centuries, but with varying time resolution. A detailed overview of the availability of
data sets over time is provided in Figure E.1.

E.2. CODING SCHEMES IDENTIFYING MUNICIPALITIES
In this research, two complementary coding schemes are used to identify municipalities
and their geographic area, namely the four digit Central Bureau of Statistics code (CBS

1Historische Database Nederlandse Gemeenten
2Centraal Bureau voor de Statistiek
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Figure E.1: Datasets Overview.

code) and the five digit Amsterdam code (AMS code). The CBS code identifies munici-
palities that existed since 1830, while the Amsterdam code can be traced back to Dutch
municipalities that existed since 1812. The CBS code identifies specific administrative
entities (municipality names), while the Amsterdam code identifies specific geographi-
cal areas on which municipalities are/were located.

22509

Figure E.2: Municipality merging example of Alphen aan den Rijn in 1918.

Whenever municipal restructuring leads to a municipality merger or a name change,
a new CBS code is generated and assigned to the new municipality. However, the new
municipality is assigned an existing Amsterdam code that belonged to one of the mu-
nicipalities that were involved in the merging process, in order to ensure the historical
continuity of the geographical area. As exemplified in Figure E.2, the municipality with
the largest population passes on its Amsterdam code to the newly formed municipal-
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ity. For example, when a municipality annexes an adjacent municipality, the Amsterdam
code of the annexing municipality is preserved and the Amsterdam code of an annexed
municipality is abolished, while all their CBS codes are abolished. The CBS code can be
considered a unique identifier for a municipality, because it uniquely specifies a munic-
ipal entity that exists (or has existed) for a certain defined time period. The Amsterdam
code, however, is not a unique municipality identifier; it has been designed in such a way
that all Dutch municipalities possess an Amsterdam code that can be traced back to an
Amsterdam code of a Dutch municipality which existed in 1812.

E.3. MUNICIPALITY MERGING
During the researched period (1830 − 2019) we analysed the process of municipality
merging and municipality name changing. We distinguish five event types, of which
each involves discontinuation of the CBS code of the municipalities involved. In case of
a merging/renaming event, the CBS code is abolished (becomes inactive) at the end of
year k, and the administrative change takes place at the beginning of the following year
k +1. The five event types (A-E) are explained below:

• Type A (Annexation): the abolished municipality is annexed by an existing (usually
adjacent) municipality at the end of year k. This process is officially called ‘light
merger’ (in Dutch: lichte samenvoeging) and the CBS code of the abolished
municipality becomes inactive in year k+1. This reclassification type has occurred
542 times in total during the studied time period (1830-2019).

• Type B (Border split): the area of the abolished municipality is split among an
existing municipality and a newly formed municipality. This reclassification type
is a combination of Type A and Type C, as both processes occur at the same
time within the former municipality’s boundaries. This reclassification type has
occurred 10 times during the studied time period (1830-2019).

• Type C (Coalition): the abolished municipality, along with other neighboring
municipalities which are abolished at the end of the same year k, form a coalition
by creating a new municipality. The new municipality is assigned a new CBS code
at the beginning of year k+1, and the CBS codes of the merger participants become
inactive at the end of year k. This process is officially called ‘regular merger’ (in
Dutch: Reguliere samenvoeging). This reclassification type has occurred 502
times during the studied time period (1830-2019).

• Type D (Dutch and/or Frisian Name-change): only the official name of a mu-
nicipality is changed in Dutch or Frisian language, while its borders remain
unchanged. The municipality is assigned a new CBS code at the beginning of year
k+1, and the old CBS code of the municipality becomes inactive at the end of year
k. A main difference between the Amsterdam and CBS coding schemes is that
the municipality retains its Amsterdam code when undergoing a name-change. A
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municipality name-change has occurred 56 times during the studied time period
(1830-2019).

• Type E (Exchanged internationally): the area of a municipality is exchanged be-
tween a neighboring country and the Netherlands. In case a municipality is allo-
cated to a neighboring country, it is recorded in statistics to be no longer part of the
Netherlands in year k+1. This reclassification type has occurred 2 times during the
studied time period (1830-2019). The municipalities Tudderen (Drostambt) and
Elten, both annexed after the Second World War by Germany in 1963.

E.4. MUNICIPALITY MERGING PROCESS DEMONSTRATED ON A

PLANAR GRAPH
Although the municipality merging process introduced in Section 6.3.1 changed the
topology significantly, the average degree of the DMN remained almost unchanged,
dav [k] ≈ 5. Figure E.3 shows a planar graph with two examples of centrally positioned
merging municipality nodes, each having a degree 5. On the right-hand side of the Fig-
ure E.3 the different of the two merger examples are given.

Before merger

After merger

After merger

Figure E.3: Two merging process examples demonstrated on a planar graph.

Two adjacent nodes i and j can have either |Ni [k]∩N j [k]| = 2 or |Ni [k]∩N j [k]| = 3
common neighbours. When nodes i and j are merged into one node, the number of
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nodes N [k +1] and number of links L[k +1] in the next year k +1 change as follows

L[k +1] =L[k]−|Ni [k]∩N j [k]|−1

N [k +1] =N [k]−1.

We perform the merging of two adjacent municipalities and provide the updated topol-
ogy on the right-hand side of Figure E.3. The conservation law on the average degree
dav [k +1], when nodes i and j are merged at the end of the year k, can be obtained by
importing dav [k] = 2 L[k]

N [k] into the above equation

dav [k +1] =
(
1+ 1

N [k]−1

)
·dav [k]−2

|Ni [k]∩N j [k]|−1

N [k]−1
. (E.1)

We further consider a case when three municipalities i , j and m are merged into one,
at the end of year k. The newly formed municipality in the following year k +1 is con-
nected to another municipality if either municipality i , j or m was connected to that
municipality in year k. Therefore, the degree of the newly formed municipality equals
|Ni ∪N j ∪Nm |. To determine the number of removed links L[k +1]−L[k] in the DMN
due to the merger, we apply the inclusion-exclusion formula (see for example [64, p.10])
and obtain

|Ni ∪N j ∪Nm | = |Ni |+|N j |+|Nm |−|Ni ∩N j |−|Ni ∩Nm |−|N j ∩Nm |+|Ni ∩N j ∩Nm |,
from where we derive the number of nodes N [k +1] and the number of links L[k +1] in
the year k +1

L[k +1] =L[k]−|Ni ∩N j |− |Ni ∩Nm |− |N j ∩Nm |−ai j [k]−ai m[k]−a j m[k]+|Ni ∩N j ∩Nm |
N [k +1] =N [k]−2,

leading to the following conservation law of the average degree dav [k]

dav [k +1] =
(
1+ 1

N [k]−2

)
·dav [k]−

2
|Ni ∩N j |+ |Ni ∩Nm |+ |N j ∩Nm |+ai j [k]+ai m[k]+a j m[k]−|Ni ∩N j ∩Nm |

N [k]−2
.

(E.2)

In case three municipalities merge into one municipality, the average degree dav [k]
slightly decreases in time, which is the opposite effect of when two municipalities merge.
During the period 1960− 2000, mergers involving more than two municipalities were
common, causing a decreasing trend in the average degree dav [k], as visible in the lower
part of Figure 6.3.

E.5. DIFFERENT DISTRIBUTIONS

E.5.1. NORMAL DISTRIBUTION

A Gaussian random variable X = N
(
µ,σ2

)
is a continuous random variable with an ex-

tent over the entire real axis and is defined [64] by the distribution function FX (x) =
Pr[X ≤ x] as

FX (x) = 1

σ ·p2π

x∫
−∞

exp

(
−

(
t −µ)2

2σ2

)
d t , (E.3)
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with the mean E [X ] = µ and with the variance Var[X ] = σ2. The corresponding proba-
bility density function fX (x) = d

d x Pr[X ≤ x] is

fX (x) = e−
(x−µ)2

2σ2

σ ·p2π
. (E.4)

E.5.2. LOGNORMAL DISTRIBUTION

A lognormal random variable is defined as Y = e X , where X = N
(
µ,σ2

)
is a Gaus-

sian or normal random variable [64]. The distribution function FY (y) = Pr
[
Y ≤ y

] =
Pr

[
X ≤ log y

]
follows from (E.3), for non-negative real values of y , as

FY (y) = 1

σ
p

2π

log y∫
−∞

exp

[
−

(
t −µ)2

2σ2

]
d t , (E.5)

The corresponding probability density function fY (y) = dFY (y)
d y of a lognormal random

variable Y follows by differentiation of (E.5) as

fY (y) =
exp

[
− (log y−µ)2

2σ2

]
σ ·p2π · y

, (E.6)

The mean E [Y ] and the variance Var(Y ) can be computed [64, Sec. 3.5.5] as

E [Y ] =e

(
µ+ σ2

2

)
Var[Y ] =

(
eσ

2 −1
)
·e(2µ+σ2).

(E.7)

E.5.3. LOGISTIC DISTRIBUTION
A logistic random variable X , also known as a Fermi-Dirac random variable [64, Sec.
19.6.2], has the distribution function

FX (x) = 1

1+e−
x−µ

s

= 1

2
+ 1

2
tanh

( x −µ
2s

)
, (E.8)

The probability density function (pdf) of a logistic random variable X again follows by
differentiation of (E.8) as

fX (x) = 1

4s
sech2

( x −µ
2s

)
. (E.9)

It is more convenient to consider the normalized Fermi-Dirac random variable Z = X−µ
s

that obeys3 FZ (z) = Pr[Z ≤ z] = 1
1+e−z = 1− 1

1+ez . The probability generating function
(pgf) φ(w) = E

[
e−w Z

] = ∫ ∞
−∞ e−w t fZ (t )d t is the double-sided Laplace transform [64, p.

20] of fZ (t ) and equals

ϕ (w) =
∫ ∞

−∞
e−w t d

d t

1

1+e−t d t

3Indeed, after letting z =− x−µ
s in (E.8), we have 1

1+e−z = Pr[X ≤µ+ sz] = Pr[
X−µ

s ≤ z].
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Partial integration leads to

ϕ (w) = e−w t

1+e−t

∣∣∣∣∞−∞+w
∫ ∞

−∞
e−w t

1+e−t d t

and the first term vanishes, provided that 0 < Re(w) < 1 holds, with Re(w) denoting the
real part of w . Let u = e−t and t =− logu, then

ϕ (w)

w
=

∫ ∞

0

uw−1

1+u
du

One of the Beta function integrals, B
(
x, y

) = ∫ ∞
0

t x−1

(1+t )x+y d t = Γ(x)Γ(y)
Γ(x+y) , valid for Re(x) > 0

and Re
(
y
)> 0, shows that, for 0 < Re(w) < 1,

ϕ (w) = Γ (w)Γ (1−w) = πw

sinπw

where the last equality is the reflection formula of the Gamma function Γ(w), valid for
all complex numbers w . The pgf ϕ (w) = E

[
e−w Z

] = ∑∞
n=0

(−1)n

n! E [Z n] wn contains all
moments, whereas the Taylor series of πw

sinπw around w = 0 equals

πw

sinπw
= 1+

∞∑
n=1

(
21−2n −1

)
(2π)2n B2n

(−1)n w2n

(2n)!

where Bn is the n-th Bernoulli number. By equating the corresponding powers of w in
πw

sinπw = E
[
e−w Z

]
, we find all even moments, for n > 0

E
[

Z 2n]= (
21−2n −1

)
(2π)2n (−1)nB2n

and while all odd E
[

Z 2n+1
]= 0 for n ≥ 0. Since Z = X−µ

s is a normalized random variable,
the mean E [Z ] = 0 and thus the mean E [X ] =µ. The variance Var[Z ] = E

[
(Z −E [Z ])2

]=
E

[
Z 2

]= π2

3 , because B2 = 1
6 . Hence,

E

[(
X −µ

s

)2]
= 1

s2 Var[X ] = π2

3

resulting in Var[X ] =σ2 = π2s2

3 .

E.5.4. LOG-LOGISTIC DISTRIBUTION

A log-logistic random variable, defined by Y = e X where X is a logistic random variable
with mean µ and variance σ, has the probability function

FY (y) = 1

1+e−
log(y)−µ

s

= 1

2
+ 1

2
tanh

(
log(y)−µ

2s

)
, (E.10)

with the corresponding probability density function

fY (y) = 1

4s · y
sech2

(
log y −µ

2s

)
. (E.11)
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We concentrate first on the normalized log-logistic random variable. The probability
distribution of a log-logistic random variable Y = e X , which is always positive, is

Pr
[
Y ≤ y

]= Pr
[
e X ≤ y

]= Pr
[

X ≤ log y
]= Pr

[
X −µ

s
≤ log y −µ

s

]
which, in terms of the normalized logistic random variable Z with log z = log y−µ

s (and

thus z = (
ye−µ

) 1
s and z > 0) is

Pr
[

Z ≤ log z
]= 1

1+e− log z
= z

z +1
= 1− 1

z +1

and the pdf is

fZ (z) = 1

(z +1)2

The moments

E
[

Z k
]
=

∫ ∞

0

t k

(t +1)2 d t = Γ (k +1)Γ (1−k) = πk

sinπk

do not exist for integers k ≥ 1.
With a little more effort, we compute the moments directly for a log-logistic random

variable Y ,

E
[

Y k
]
= 1

4s

∫ ∞

0

t k−1

cosh2
(

log t−µ
s

)d t

We modify this integral by a series of substitutions. First, let u = log t , then

E
[

Y k
]
= 1

4s

∫ ∞

−∞
eku

cosh2 ( u−µ
s

)du

followed by the substitution w = u−µ
s yields

E
[

Y k
]
= ekµ

4

∫ ∞

−∞
eksw

cosh2 (w)
d w

illustrating that the integral exists provided −1 < ks
2 < 1, thus, the integer k < 2

s . Next, let
p = ew , then

E
[

Y k
]
= ekµ

∫ ∞

0

pks+1(
p2 +1

)2 d p

A last substitution t = p2 reveals again the above Beta function integral

E
[

Y k
]
= 1

2
ekµ

∫ ∞

0

t
ks
2

(t +1)2 d p

= 1

2
ekµΓ

(
ks

2
+1

)
Γ

(
1− ks

2

)
= 1

2
ekµ π ks

2

sinπ ks
2
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Hence, provided that − 2
s < Reα< 2

s where α is now a complex number, the α−moments
of the log-logistic random variable exists

E
[
Y α

]= 1

2
eαµ

παs
2

sin παs
2

.

The mean E[Y ] and the variance E[Y 2]− (E[Y ])2 are
E [Y ] = 1

4 ·eµ · πs
sin( πs

2 ) If s < 2

Var[Y ] = 1
4 ·e2µ ·

(
2πs

sin(πs) − 1
4 · π2s2

sin2( πs
2 )

)
If s < 1.

(E.12)

E.5.5. TAIL DISTRIBUTIONS
The probability density function fZ [k](z) of the logistic distribution model in (E.9) can
be transformed as follows

fZ [k](z) = 1

4s
· e

z−µ
s(

e
z−µ

s +1
)2 . (E.13)

We introduce the logarithm of the probability density function as Ll (z) = log( fZ [k](z))
and obtain from (E.13)

Ll (z) =− log(4s)+ z −µ
s

−2log
(
e

z−µ
s +1

)
.

Since we are interested in tail distribution, it holds e
z−µ

s >> 1, allowing us to introduce

the approximation e
z−µ

s +1 ≈ e
z−µ

s , simplifying the above equation as follows

Ll (z) =− log(4s)− z −µ
s

.

Finally, by importing z = log p, we obtain

log( fZ [k](z)) = µ

s
− log(4s)− 1

s
log(p), (E.14)

informing us that the probability density function fZ [k](z) of the logistic distribution
model in (E.9), decays linearly on a double logarithmic scale, for z >> µ. Therefore,
the subset of the largest municipalities in population follows a power-law distribution,
as discussed in Section 6.2.3.

Further, we define the logarithm of the probability density function Ln(z) =
log( fZ [k](z)) of a normal distribution in (E.4) and obtain

Ln(z) =− log
(
σ
p

2π
)
−

(
z −µ)2

2π2 .

The above equation further transforms after importing z = log p

log( fZ [k](z)) =− log
(
σ
p

2π
)
−

(
log p −µ)2

2π2 , (E.15)

teaching us that the probability density function fZ [k](z) of the normal distribution in
(E.4) decreases on a double logarithmic scale as a square function of the population p.
Tail distribution in (E.15) better fits the area per Dutch municipality, given the constraint
that the sum of area per municipality

∑N [k]
i=1 si [k] remains relatively constant in time.
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E.6. GOODNESS-OF-FIT TESTS

The goodness-of-fit tests Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) [152,
Ch. 14] are used, as shown in Figure E.4, to determine the plausibility of the hypoth-
esis that the logarithm of the area per Dutch municipality follows either a normal or a
logistic distribution. Both tests provide a p value that answers how likely the hypothesis
holds. These tests are based on measuring the difference (distance) between the hypoth-
esized and measured distributions. Artificial datasets are created using the same model,
and the distance is computed. Finally, the p value represents the ratio of the artificial
distance larger than the measured distance from the empirical data. If the computed p
value is close to 0, the measured data does not agree with the hypothesized distribution,
whereas p close to 1 confirms the hypothesis.

E.6.1. AREA DISTRIBUTION

Both the AD and KS tests indicate that, from 1830 until 1918, the logarithm of the area
of a typical Dutch municipality follows a logistic distribution rather than a normal dis-
tribution, while from 1918 until 1990, the opposite holds. The AD and the KS test do not
favour any distribution consistently during the last three decades.

Figure E.4: Anderson-Darling test (left-hand side) and Kolmogorov-Smirnov test (right-hand side) results of
the normal distribution fit (red colour) and a logistic distribution fit (green colour) of the logarithm of the area
Y distribution in the period 1830−2019.

E.6.2. POPULATION DISTRIBUTION

The p value of the AD and KS goodness-of-fit tests is shown for both the normal and
logistic distribution of the logarithmic of the population in Figure E.5. Over the entire
period (1809− 2019), the p value of the AD and the KS goodness-of-fit tests indicates
that the logarithm of population Z [k] per municipality follows the logistic distribution
more closely than the normal distribution.
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Figure E.5: The p value of the Anderson-Darling test (left-hand side) and Kolmogorov-Smirnov test (right-
hand side) for the hypothesis that the logarithm of population vector Z [k] follows the normal (red colour) and
logistic (green colour) distribution model in the period 1809−2019.

E.7. CONSERVATION LAWS OF POPULATION AND AREA

E.7.1. AREA EVOLUTION
In this section, we analyse a merger case when Na[k] = |A [k]| municipalities are abol-
ished at the end of year k and annexed by an existing municipality η ∈N [k]. The mean
yav [k] of the N [k]×1 logarithm of area vector y[k] evolves after the merger as follows

yav [k] = 1

N [k]

∑
i∈N [k]

yi [k] = 1

N [k]
log

( ∏
i∈N [k]

si [k]

)
, (E.16)

while in the next year k +1, after abolishing Na[k] municipalities into a single new mu-
nicipality η with area sη[k +1] = sη[k]+∑

j∈A [k] s j [k] in year k +1, we obtain

yav [k +1] = 1

N [k]−Na[k]
log

( ∏
j∈N [k]\(η∪A [k])

s j [k]

)
+ 1

N [k]−Na[k]
log

( ∑
i∈η∪A [k]

si [k]

)
.

By adding and subtracting the term 1
N [k]−Na [k]

∑
j∈η∪A [k] log(s j [k]) from the above rela-

tion, we obtain

yav [k +1] = N [k]

N [k]−Na[k]
yav [k]− 1

N [k]−Na[k]

∑
j∈η∪A [k]

log(s j [k])+

1

N [k]−Na[k]
log

( ∑
i∈η∪A [k]

si [k]

)
,

from where the governing equation for the average of logarithm of the area vector
yav [k] is as follows

yav [k +1] = yav [k]+ Na[k]

N [k]−Na[k]
· yav [k]+ 1

N [k]−Na[k]
log


∑

i∈η∪A [k]
si [k]∏

j∈η∪A [k]
s j [k]

 . (E.17)
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E.7.2. POPULATION EVOLUTION
Based on the revealed rank size distribution of population per municipality, presented
in Figure 6.14, municipality i population in year k can be approximated as

zi [k] ≈−β[k] · logri [k]+ zA[k], (E.18)

where zA[k] = log(xA[k]) denotes the logarithm of Amsterdam population in year k. By
assuming that the ranking of a municipality i does not change ri [k +1] = ri [k] between
years k and k +1, we obtain

zi [k +1] =−β[k +1] · logri [k]+ log
(
p A[k +1]

)
. (E.19)

By combining (6.14) and (E.19), the difference zi [k +1]− zi [k] in logarithm of the popu-
lation of the i -th municipality in two consecutive years k and k +1 follows

zi [k +1]− zi [k] =−(
β[k +1]−β[k]

) · logri [k]+ (zA[k +1]− zA[k]) .

After importing (6.12), the relation above translates into

log

(
pi [k +1]

pi [k]

)
=−b1 · logri [k]+ (

log
(
p A[k +1]

)− log
(
p A[k]

))
.

Finally, we obtain the population increase of municipality i in year k

pi [k +1]

pi [k]
= (ri [k])−b1 · p A[k +1]

p A[k]
.

By assuming that each municipality follows the rank-size distribution in the equation
above, we derive the mean zav [k] as follows

zav [k] = 1

N [k]
·

N [k]∑
i=1

(−β[k] · logri [k]+ zA[k]
)=−β[k] · log

(
N [k]!

1
N [k]

)
+ zA[k]. (E.20)

After importing (E.18) and (E.20) into the definition of the variance Var(z[k]), we obtain

Var(z[k]) = 1

N [k]
·

N [k]∑
i=1

(
zA[k]+β[k] · log

(
N [k]!

1
N [k]

)
−β[k] · logri [k]− zA[k]

)2
.

that further simplifies as follows

Var(z[k]) =β2[k] · g (N [k]), (E.21)

where

g (N [k]) = 1

N [k]

N [k]∑
i=1

(
log

N [k]!
1

N [k]

ri

)2

= 1

N [k]

N [k]∑
i=1

(
log

N [k]!
1

N [k]

i

)2

,

when the sum terms are ordered in descending order. Equation (E.21) teaches us that,
for a given N [k], the variance Var(z[k]) is a square function of the rank-size distribution
slope β[k].
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E.7.3. RANK-SIZE DISTRIBUTION VERSUS POWER-LAW DISTRIBUTION
Under the assumptions introduced in Section 6.3.3, we derive the following probability
distribution function

Pr(X [k] > xi ) = ri

N [k]
. (E.22)

From (6.14), we obtain

ri [k] =
(

xi [k]

xA[k]

)− 1
β[k]

,

transforming further relation (E.22)

Pr(X [k] > xi ) = 1

N [k]
·
(

xi [k]

xA[k]

)− 1
β[k]

.

On the other side, probability distribution function of the power-law distribution is

Pr(X [k] > xi ) = x−(τ[k]−1)
i .

By comparing the last relation with (E.22), we obtain

1

β[k]
≈ τ[k]−1,

leading to the dependece between the rank-size distribution slope β[k] and the expo-
nent of the power-law distribution τ[k]

β[k] = 1

τ[k]−1
.

E.8. PROPERTIES OF THE MIGRATION MODEL
Theorem 23 The proposed migration model (6.24) does not change the total population
over time, but internally redistributes the population among neighbouring municipali-
ties:

T [k] = T [0],k > 0 (E.23)

Proof Total population in year k is denoted as T [k] = uT · p[k]. The total population
T [k +1] in the following k +1 is as follows:

T [k +1] = uT ·p[k +1].

By implementing (6.24) we obtain:

T [k +1] = uT · (I +α ·M T [k]+δ ·M [k]−δ ·diag
(
M T [k] ·u

)−α ·diag(M [k] ·u)
) ·p[k].

We further group terms of the previous equation

T [k +1] = T [k]

+
(
δ · (M T ·u

)T −δ · (M T ·u
)T

)
·p[k]

+ (
α · (M ·u)T −α · (M ·u)T ) ·p[k],

(E.24)

from where we conclude T [k +1] = T [k] or T [k] = T [0], which completes the proof. □
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Theorem 24 The proposed migration model, defined in (6.24), is in a steady state if the
following condition holds for each node i ∈N [k]:

pi [k] =
∑

j∈N +
i

[k]
δ·p j [k]+ ∑

m∈N −
i

[k]
α·pm [k]

α·d+
i +δ·d−

i

(E.25)

where N +
i [k] = { j | j ∈ Ni [k] pi [k] > p j [k] } defines a set of neighbours of node i , that

have a larger population, while the set of smaller neighbours is given by N −
i [k] = { j | j ∈

Ni [k], pi [k] < p j [k] }.

Proof We transform the governing equation (6.24) of the migration model into a node-
level governing equation:

pi [k +1] = pi [k]

+ ∑
j∈N +

i [k]

δ ·p j [k]+ ∑
m∈N −

i [k]
α ·pm[k]

− ∑
j∈N +

i [k]

α ·pi [k]− ∑
m∈N −

i [k]
δ ·pi [k]

(E.26)

We implement the steady state equality pi [k +1] = pi [k] into (E.26) and obtain: ∑
j∈N +

i [k]

α+ ∑
m∈N −

i [k]
δ

 ·pi [k] = ∑
j∈N +

i [k]

δ ·p j [k]+ ∑
m∈N −

i [k]
α ·pm[k], (E.27)

from where we conclude

pi [k] =

∑
j∈N +

i [k]
δ ·p j [k]+ ∑

m∈N −
i [k]

α ·pm[k]

α ·d+
i +δ ·d−

i

, (E.28)

which completes the proof. □

E.9. LIST OF NOTATIONS
Four tables with the list of used notations in the paper are provided below.
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Table E.1: Notations used in the paper for the Dutch Municipality Network

Notation Explanation
k Year k

N [k] Number of active municipalities in year k
Na[k] Number of abolished municipalities in year k
Nn[k] Number of newly established municipalities in year k
N [k] Set of active municipalities in year k
A [k] Set of abolished municipalities at the end of year k
Ni [k] Set of municipality i neighbouring municipalities in year k
N +

i [k] Set of municipality i neighbours with larger population in year k
N −

i [k] Set of municipality i neighbours with smaller population in year k
di [k] Degree of node i in year k
d+

i [k] Number of municipality i neighbours with larger population in year k
d−

i [k] Number of municipality i neighbours with smaller population in year k
dav [k] Average degree of the DMN in year k

L[k] Number of links in the DMN in year k
L [k] Set of links in the DMN in year k
A[k] Adjacency matrix of the DMN in year k

ai j [k] i j -th element of the adjacency matrix A[k] in year k

Table E.2: Notations used for the analysis of population dynamics

Notation Explanation
pi [k] Population of municipality i in year k
p A[k] Population of Amsterdam in year k
zi [k] Logarithm of the population size of municipality i in year k
zA[k] Logarithm of the population size of municipality Amsterdam in year k
p[k] The N [k]×1 vector of the population per municipality in year k
z[k] The N [k]×1 vector of logarithm of the population size per municipality in year k

pav [k] Average population per municipality in year k
zav [k] Average logarithm of the population per municipality in year k
P [k] Population random variable in year k
Z [k] Logarithm of the population random variable in year k
T [k] Total population of The Netherlands in year k
M [k] The N [k]×N [k] migration matrix of the DMN in year k

mi j [k] i j -th element of the migration matrix M [k] in year k
α[k] Forward migration rate in year k
δ[k] Backward migration rate in year k
c1[k] Estimated slope of the population increase in year k
c2[k] Estimated additive constant of the population increase in year k
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Table E.3: Notations used for the area and the merging process

Notation Explanation
si [k] Area size of municipality i in year k
yi [k] Logarithm of the area size of municipality i in year k
s[k] The N [k]×1 vector of area size per municipality in year k
y[k] The N [k]×1 vector of logarithm of the area size per municipality in year k

sav [k] Average area size per municipality in year k
yav [k] Average logarithm of the area size per municipality in year k
S[k] Area random variable in year k
Y [k] Logarithm of the area random variable in year k
xi [k] Abolishment Likelihood index of municipality i in year k
x[k] The N [k]×1 vector with an Abolishment Likelihood index per municipality in year k

Table E.4: Notations used for distribution functions

Notation Explanation
µn[k] Shape parameter of the normal distribution in year k
σn[k] Scale parameter of the normal distribution in year k
µl [k] Shape parameter of the logistic distribution in year k
σl [k] Scale parameter of the logistic distribution in year k
β[k] Population rank-size distribution slope in year k
b1[k] First parameter of a linear fit of β[k]
b2[k] Second parameter of a linear fit of β[k]
τ[k] Exponent of the power-law distribution in year k
C [k] Normalisation constant of the power-law distribution in year k
E [P ] Expectation of the random variable P

Var(P ) Variance of the random variable P
Cov(P ) Covariance of the random variable P

p p value of a goodness-of-fit test
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F.1. LIST OF NOTATIONS

Table F.1: Notations for the graph G and DLSS models

Notation Explanation

G Graph
N Set of N nodes of graph G
L Set of L links of graph G
N Number of nodes in graph G
L Number of links in graph G

W Adjacency matrix of graph G
Ai State matrix of a DLSS model of node/system i
Bi Input matrix of a DLSS model of node/system i
Ci Output matrix of a DLSS model of node/system i
Di Feedforward matrix of a DLSS model of node/system i
Ad Diagonal block matrix composed of Ai matrices, i ∈N

Bd Diagonal block matrix composed of Bi matrices, i ∈N

Cd Diagonal block matrix composed of Ci matrices, i ∈N

Dd Diagonal block matrix composed of Di matrices, i ∈N

Ae State matrix of a DLSS model of the network
Be Input matrix of a DLSS model of the network
Ce Output matrix of a DLSS model of the network
De Feedforward matrix of a DLSS model of the network

189
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Table F.2: Notations for the links in Ge

Notation Explanation

lw Vector with number of internal links connected to each internal node in Ge

lφ Vector with number of input links connected to each internal node in Ge

lψ Vector with number of output links connected to each output node in Ge

lz Vector with number of external links connected to each output node in Ge

Lw Total number of internal links in Ge

Lφ Total number of input links in Ge

Lψ Total number of output links in Ge

Lz Total number of external links in Ge

sw Vector with number of components of each internal link in Ge

sφ Vector with number of components of each input link in Ge

sψ Vector with number of components of each output link in Ge

sz Vector with number of components of each external link in Ge

Sw Total number of components of all internal links in Ge

Sφ Total number of components of all input links in Ge

Sψ Total number of components of all output links in Ge

Sz Total number of components of all external links in Ge

F.2. ELABORATION OF DEFINITION 20
We recall the definition of the matrix Γ:

Γ=
[(
Γφ

)
(Lw+Lφ)×r

(
Γw

)
(Lw+Lφ)×N O(Lw+Lφ)×q(

Γz
)

(Lψ+Lz )×r

(
Γψ

)
(Lψ+Lz )×N O(Lψ+Lz )×q

]

Matrix Γ preserves information of the source node of each link in Ge . Each row of the
matrix Γ contains exactly one non-zero element and this element is equal to 1.

When
(
Γw

)
i j = 1, it means that j -th internal node provides the i -th link of Ge . In case(

Γφ
)

i j = 1, we conclude that the i -th link of Ge originates from the j -th input node. The
links connected to the internal nodes are defined with the matrices Γw and Γφ. There
are Lw +Lφ such links (i.e. internal and input links).

Remaining Lψ+Lz links of Ge are connected to the output nodes and they are defined
by the matrices Γψ and Γz (i.e. output and external links). For

(
Γψ

)
i j = 1, we conclude

that the (Lw +Lφ+ i )-th link of Ge originates from the j -th internal node. Analogously,(
Γz

)
i j = 1 indicates that the j -th input node provides the (Lw +Lφ+ i )-th link of Ge .

In case all the links in Ge are one-dimensional, i.e. pi = 1 and µ j = 1, where i ∈ N ,
j ∈M , the following relations hold:{

ud [k] = Γw · yd [k]+Γφ ·η[k]

ξ[k] = Γψ · yd [k]+Γz ·η[k]

The definitions of the matrices Fw , Fφ, Fψ and Fz represent the generalization of the
matrices Γw , Γφ, Γψ and Γz , respectively, in case when not all the links in Ge are one-
dimensional.
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Table F.3: Notations for the processes in Ge

Notation Explanation

k Discrete time variable
t Continuous time variable
s Complex variable

ni Number of states of i -th node/system in G
n Vector with number of states of each node/system in G

mi Dimension of the input vector ui of the i -th node/system in G
m Vector with dimension of the input vector ui of each node/system in G (i ∈N )
pi Dimension of the output vector yi of the i -th node/system in G
p Vector with dimension of the output vector yi of each node/system in G (i ∈N )
xi State vector of the i -th node/system in G
xe State vector of entire network

Xe (s) Laplace transform of the state vector xe (t )
ui Input vector of the i -th node/system in G
ud Aggregated input vectors ui of each node/system in G (i ∈N )

Ud (s) Laplace transform of the aggregated input vector ud (t )
yi Output vector of the i -th node/system in G
yd Aggregated output vectors yi of each node/system in G (i ∈N )

Yd (s) Laplace transform of the aggregated output vector yd (t )
M Set of input nodes in Ge

r Number of input nodes in Ge

µi Dimension of the i -th external input vector ηi

µ Vector with dimension of the external input vector ηi of each input node in Ge (i ∈M )
M Sum of elements of the vector µ
ηi The i -th external input vector in Ge

Hi (s) Laplace transform of the i -th external input vector ηi (t )
η Aggregated external input vector

H(s) Laplace transform of the aggregated external input vector η(t )
P Set of output nodes in Ge

q Number of output nodes in Ge

ρi Dimension of the i -th external output vector ξi in Ge

ρ Vector with dimension of the external output vector ξi of each input node in Ge (i ∈P )
P Sum of elements of the vector ρ
ξi The i -th external output vector in Ge

Ξi (s) Laplace transform of the i -th external output vector ξi (t )
ξ Aggregated external output vector

Ξ(s) Laplace transform of the aggregated external output vector ξ(t )
Hi (s) Matrix of transfer functions of the i -th node/system in G
Gd (s) Diagonal matrix composed of matrices Hi (s) of each node/system in G (i ∈N )
Ge (s) Matrix of transfer functions of the entire network

F.3. PROOF OF THEOREM 21
After substituting the first relation from (7.31) into the second relation from (7.29) we
obtain:

yd [k] =Cd · xe [k]+Dd ·Fw · yd [k]+Dd ·Fφ ·η[k]
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Table F.4: Notations for the extended graph Ge

Notation Explanation

Ge Extended graph
Ne Set of Ne nodes of extended graph Ge

Le Set of Le links of extended graph Ge

Ne Number of nodes in extended graph Ge

Le Number of links in extended graph Ge

We Adjacency matrix of extended graph Ge

Λ Incidence matrix of extended graph Ge

Γ Transposed incidence matrixΛwith all negative entries set to 0
Γw Internal sub-matrix of Γ
Γφ Input sub-matrix of Γ
Γψ Output sub-matrix of Γ
Γz External sub-matrix of Γ
Φ Matrix that defines the input links existence
Ψ Matrix that defines the output links existence
Z Matrix that defines the external links existence
F Extension of the matrix Γ for higher-dimensional vectors in Ge

Fw Internal topology matrix, defined upon Γw

Fφ Input topology matrix, defined upon Γφ
Fψ Output topology matrix, defined upon Γψ
Fz External topology matrix, defined upon Γz

Under the assumption det(I −Dd ·Fw )−1 ̸= 0, we further obtain:

yd [k] = (
I −Dd ·Fw

)−1 ·Cd · xe [k]+ (
I −Dd ·Fw

)−1 · (Dd ·Fφ) ·η[k] (F.1)

After substituting relation (F.1) into first relation from (7.31), we obtain the expression
for the aggregated input vector ud :

ud [k] = Fw · (I −Dd ·Fw
)−1 ·Cd · xe [k]+

(
Fw · (I −Dd ·Fw

)−1 · (Dd ·Fφ)+Fφ
)
·η[k] (F.2)

Further, after substituting relation (F.2) into first relation from (7.29), we obtain:

xe [k +1] =
(

Ad +Bd ·Fw · (I −Dd ·Fw
)−1 ·Cd

)
· xe [k]+

(
Bd ·Fw · (I −Dd ·Fw

)−1 ·Dd ·Fφ+Bd ·Fφ
)
·η[k]

from where we recognize the matrices Ae and Be :{
Ae = Ad + (Bd ·Fw ) · (I −Dd ·Fw

)−1 ·Cd

Be = (Bd ·Fw ) · (I −Dd ·Fw
)−1 · (Dd ·Fφ)+Bd ·Fφ

Finally, after substituting expression for the aggregated output vector yd from (F.1) into
second relation from (7.31), we obtain:

ξ[k] = Fψ · (I −Dd ·Fw
)−1 ·Cd · xe [k]+Fψ · (I −Dd ·Fw

)−1 ·Dd ·Fφ ·η[k]+Fz ·η[k]
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Hence, we find: {
Ce = Fψ · (I −Dd ·Fw )−1 ·Cd

De = Fψ · (I −Dd ·Fw )−1 · (Dd ·Fφ)+Fz

which completes the proof. □

F.4. HOMOGENEOUS NETWORK WITH IDENTICAL INTERAC-
TIONS BETWEEN THE NODES

In the following subsection, we examine the simplest network with linear processes, i.e. a
homogeneous network (a network with nodes that perform identical internal dynamics)
with identical dynamic interactions between the nodes/systems. Consequently, dimen-
sions of the external input (7.8) and external output (7.10) vectors, as well of the input
(7.6) and output vectors (7.7) are the same:

mi = p j =µl = ρv = p1 i , j ∈N l ∈M v ∈P (F.3)

Node/system i performs internal dynamics defined by (7.4), where the ni ×ni state ma-
trix A, the ni×mi input matrix B , the pi×ni output matrix C and the pi×mi feed-forward
matrix D are identical for each node/system in the network. For identical interactions,
instead of stacking incoming vectors of a certain node into an input/external output vec-
tor as in (7.16), they are summed:

ui [k] = ∑
j∈N ,w j i=1

y j [k]+ ∑
l∈M ,φl i=1

ηl [k]

ξi [k] = ∑
j∈N ,ψ j i=1

y j [k]+ ∑
l∈M ,zl i=1

ηl [k]
(F.4)

Therefore, Definition 20 for a homogeneous network with identical interactions reduces
to: {

ud [k] = (
W T ⊗ Ip1×p1

) · yd [k]+ (
ΦT ⊗ Ip1×p1

) ·η[k]

ξ[k] = (
ΨT ⊗ Ip1×p1

) · yd [k]+ (
Z T ⊗ Ip1×p1

) ·η[k]
(F.5)

Analogously to the Theorem 21, we provide the parameters of the DLSS model for the
time dynamics of the entire network:

Ae =
(
W T ⊗B

) · (IN p1×N p1 −W T ⊗D
)−1 · (IN ⊗C )+ (IN×N ⊗ A)

Be =
(
W T ⊗B

) · (IN p1×N p1 −W T ⊗D
)−1 · (ΦT ⊗D

)+ (
ΦT ⊗B

)
Ce =

(
ΨT ⊗ Ip1×p1

) · (IN p1×N p1 −W T ⊗D
)−1 · (IN×N ⊗C )

De =
(
ΨT ⊗ Ip1×p1

) · (IN p1×N p1 −W T ⊗D
)−1 · (ΦT ⊗D

)+ (
Z T ⊗ Ip1×p1

) (F.6)

while, in the case, the p1 ×p1 feed-forward matrix D =Op1×p1 , the solution for parame-
ters of the governing model (7.34) becomes considerably simpler:

Ae =
(
W T ⊗B ·C)+ (IN×N ⊗ A)

Be =
(
ΦT ⊗B

)
Ce =

(
ΨT ⊗C

)
De =

(
Z T ⊗ Ip1×p1

) (F.7)
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F.5. CONTINUOUS-TIME LINEAR PROCESSES ON COMPLEX

NETWORKS

F.5.1. TIME-DOMAIN ANALYSIS
The continuous-time linear dynamics of the i -th node/system of the network obey a
similar governing equation as (7.4):{

d xi (t )
d t = Ai · xi (t )+Bi ·ui (t )

yi (t ) =Ci · xi (t )+Di ·ui (t )
(F.8)

where t denotes continuous time. We revise the definition of the
∑N

i=1 mi ×1 aggregated

input vector ud from (7.30), the
∑N

i=1 pi ×1 aggregated output vector yd from (7.30), the
M × 1 aggregated external input vector η from (7.9) and the P × 1 aggregated external
output vector ξ from (7.11) as follows:

ud (t ) =


u1(t )
u2(t )

...
uN (t )

 yd (t ) =


y1(t )
y2(t )

...
yN (t )



η(t ) =


η1(t )
η2(t )

...
ηr (t )

 ξ(t ) =


ξ1(t )
ξ2(t )

...
ξq (t )


(F.9)

The aim is to determine the dynamics between the aggregated external output vector
ξ(t ) and the aggregated external input vector η(t ), by following governing equations:

d xe (t )

d t
= Ae · xe (t )+Be ·η(t )

ξ(t ) =Ce · xe (t )+De ·η(t )
(F.10)

where the
∑N

i=1 ni state vector xe (t ) is defined as follows:

xe (t ) =


x1(t )
x2(t )

...
xN (t )

 (F.11)

The direct continuous-time analogy of Theorem 21 in discrete-time domain is as follows:

Theorem 25 The matrices Ae , Be , Ce and De from the DLSS equations in (F.10),

d xe (t )

d t
= Ae · xe (t )+Be ·η(t )

ξ(t ) =Ce · xe (t )+De ·η(t )
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provided the matrix (I −Dd ·Fw ) is non-singular or (Dd ·Fw ) has not an eigenvalue 1, are
explicitly determined as follows:

Ae = (Bd ·Fw ) · (I −Dd ·Fw )−1 ·Cd + Ad

Be = (Bd ·Fw ) · (I −Dd ·Fw )−1 · (Dd ·Fφ)+Bd ·Fφ
Ce = Fψ · (I −Dd ·Fw )−1 ·Cd

De = Fψ · (I −Dd ·Fw )−1 · (Dd ·Fφ)+Fz

(F.12)

while Corollary 1 remains the same.

F.5.2. LAPLACE-DOMAIN ANALYSIS
The unilateral (one-sided) Laplace transform, denoted as L { f (t )}, of a continuous-time
function f (t ) that is defined for all real numbers t ≥ 0 is the complex function F (s) de-
fined as follows:

F (s) =L { f (t )} =
∞∫

0

e−st f (t )d t (F.13)

where s is a complex variable. In case the function f (t ) is defined also for negative real
numbers, the bilateral (two-sided) Laplace transform is defined as en extension of (F.13),
where the limits of the integral become entire real axis:

F (s) =L { f (t )} =
∞∫

−∞
e−st f (t )d t (F.14)

The inverse Laplace transform, denoted as L −1{F (s)} is defined by:

f (t ) =L −1{F (s)} = 1

2πi
lim

T→∞

∮ γ+i T

γ−i T
e st F (s)d s (F.15)

where the real number γ defines the contour path of integration, that belongs to the
region of convergence of F (s).

The governing equations of the i -th node/system in continuous-time domain from
(F.8) can be transformed into transfer functions using Laplace transform:

Yi (s) =Gi (s) ·Ui (s) =
(
Ci · (sI − Ai )−1 ·Bi +Di

)
·Ui (s) (F.16)

where the pi ×1 complex output vector Yi (s) and the mi ×1 complex input vector Ui (s)
are the Laplace transforms of the output vector yi (t ) and the input vector ui (t ), respec-
tively. The pi ×mi complex matrix Gi (s) is a matrix of transfer functions between the
complex vectors Yd (s) and Ud (s), where the

(
Gi (s)

)
j k transfer function defines the dy-

namics between the j -th component of the complex output vector
(
Yi (s)

)
j and the k-th

component of the complex input vector
(
Ui (s)

)
k .

The Laplace transforms of the aggregated input vector ud (t ), aggregated output vec-
tor yd (t ), aggregated external input vector η(t ) and aggregated external output vector
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ξ(t ) from (F.9) are defined as follows, respectively:

Ud (s) =


U1(s)
U2(s)

...
UN (s)

 Yd (s) =


Y1(s)
Y2(s)

...
YN (s)



H(s) =


H1(s)
H2(s)

...
Hr (s)

 Ξ(s) =


Ξ1(s)
Ξ2(s)

...
Ξq (s)


(F.17)

By defining the
∑N

i=1 pi ×∑N
i=1 mi complex matrix Gd (s) as a block diagonal matrix, com-

posed of the transfer functions Gi (s) of each individual node/system (i.e. i ∈N ):

Gd (s) = diagonal
[
G1(s) G2(s) . . . GN (s)

]=Cd · (sI − Ad )−1 ·Bd +Dd (F.18)

we are able to define the dynamics between the complex aggregated output vector Yd (s)
and complex aggregated input vector Ud (s) in a compact form:

Yd (s) =Gd (s) ·Ud (s) (F.19)

The aim of this subsection is to determine the P × M complex matrix Ge (s) of transfer
functions between the complex aggregated external output vectorΞ(s) and the complex
aggregated external input vector H(s):

Ξ(s) =Ge (s) ·H(s) (F.20)

where the P ×1 complex aggregated external output vector Ξ(s) and the M ×1 complex
aggregated external input vector H(s) are Laplace transforms of the aggregated external
input vector ξ(t ) and the aggregated external input vector η(t ), respectively.

The Laplace transform of the direct continuous-time analogy of Definition 1 in
discrete-time domain is as follows:{

Ud (s) = Fw ·Yd (s)+Fφ ·H(s)

Ξ(s) = Fψ ·Yd (s)+Fz ·H(s)
(F.21)

Theorem 26 The complex matrix Ge (s) of transfer functions from (F.20) is explicitly de-
termined as follows:

Ge (s) = Fψ ·
(
I −Gd (s) ·Fw

)−1 ·Gd (s) ·Fφ+Fz (F.22)

Proof. We provide two different proofs of the Theorem 26. The first proof is based upon
(F.21).

1) After substituting first relation from (F.21) into (F.19), we obtain:

Yd (s) =Gd (s) ·Fw ·Yd (s)+Gd (s) ·Fφ ·H(s)
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from where, under the assumption det(I −Fw ·Gd (s)) ̸= 0 we express the complex
aggregated output vector Yd (s):

Yd (s) =
(
I −Gd (s) ·Fw

)−1 ·Gd (s) ·Fφ ·H(s) (F.23)

Next, we substitute (F.23) into second relation from (F.21) and obtain:

Ξ(s) =
(
Fψ · (I −Gd (s) ·Fw

)−1 ·Gd (s) ·Fφ+Fz

)
·H(s)

which completes the proof.

2) In Theorem 25, the dynamics between the aggregated external output vector ξ(t )
and the aggregated external input vector η(t ) are determined by the governing
equations in (F.10). Hence, the Laplace transform of the governing equations from
(F.10) is actually the complex matrix Ge (s) of transfer functions between the com-
plex aggregated external output vector Ξ(s) and the complex aggregated external
input vector H(s):

Ge (s) =Ce ·
(
sI − Ae

)−1 ·Be +De (F.24)

After substituting (F.12) into (F.24), we obtain:

Ge (s) =Fψ · (I −Dd ·Fw
)−1 ·Cd ·

(
sI − (

Bd ·Fw
) · (I −Dd ·Fw

)−1 ·Cd − Ad

)−1

·
(
(Bd ·Fw ) · (I −Dd ·Fw

)−1 · (Dd ·Fφ
)+Bd ·Fφ

)
+Fψ · (I −Dd ·Fw

)−1 · (Dd ·Fφ
)+Fz

(F.25)

We right multiply the inverse term (sI −Ae )−1 from (F.25) with (sI −Ad )·(sI −Ad )−1

(i.e. with identity matrix) and regroup the terms inside the same term:

Ge (s) =Fψ · (I −Dd ·Fw
)−1 ·Cd ·

((
sI − Ad

)− (
Bd ·Fw

) · (I −Dd ·Fw
)−1 ·Cd

)−1

· (sI − Ad
) · (sI − Ad

)−1 ·
((

Bd ·Fw
) · (I −Dd ·Fw

)−1 · (Dd ·Fφ
)+Bd ·Fφ

)
+Fψ · (I −Dd ·Fw

)−1 · (Dd ·Fφ
)+Fz

(F.26)

After applying the property of a matrix inverse onto the product (sI − Ae )−1 · ((sI −
Ad )−1

)−1 from (F.26) we obtain:

Ge (s) =Fψ · (I −Dd ·Fw
)−1 ·Cd ·

(
I − (

sI − Ad
)−1 · (Bd ·Fw

) · (I −Dd ·Fw
)−1 ·Cd

)−1

·
((

sI − Ad
)−1 · (Bd ·Fw

) · (I −Dd ·Fw
)−1 · (Dd ·Fφ

)+ (
sI − Ad

)−1 · (Bd ·Fφ
))

+Fψ · (I −Dd ·Fw
)−1 · (Dd ·Fφ

)+Fz

(F.27)

We define the
∑N

i=1 ni ×∑N
i=1 pi complex matrix K (s) as follows:

K (s) = (
sI − Ad

)−1 · (Bd ·Fw
) · (I −Dd ·Fw

)−1 (F.28)
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and observe the following matrix product from (F.27):

Cd · (I −K (s) ·Cd
)−1 (F.29)

We claim the next identity holds:

Cd · (I −K (s) ·Cd
)−1 = (

I −Cd ·K (s)
)−1 ·Cd (F.30)

where the identity matrix I from the left-hand side is of dimensions
∑N

i=1 ni ×∑N
i=1 ni and the identity matrix from the right-hand side of (F.30) has dimensions∑N
i=1 pi ×∑N

i=1 pi . We prove (F.30) by contradiction.

We denote the difference between the left-hand and the right-hand side of (F.30)
as a complex matrix E(s) of dimensions

∑N
i=1 pi ×∑N

i=1 ni :

E(s) =Cd · (I −K (s) ·Cd
)−1 − (

I −Cd ·K (s)
)−1 ·Cd (F.31)

After left multiplying with
(
I −Cd ·K (s)

)
and right multiplying with

(
I −K (s) ·Cd

)
both sides of (F.31) we obtain:(

I −Cd ·K (s)
) ·E(s) · (I −K (s) ·Cd

)=O

Left side of last equation is always zero, thus we conclude E(s) =O. We import the
proven identity (F.30) into (F.27) and obtain:

Ge (s) =Fψ · (I −Dd ·Fw
)−1 ·

(
I −Cd · (sI − Ad

)−1 · (Bd ·Fw
) · (I −Dd ·Fw

)−1
)−1

·
(
Cd · (sI − Ad

)−1 · (Bd ·Fw
) · (I −Dd ·Fw

)−1 · (Dd ·Fφ)

+Cd · (sI − Ad
)−1 · (Bd ·Fφ

))+Fψ · (I −Dd ·Fw
)−1 · (Dd ·Fφ

)+Fz

(F.32)

We regroup the terms inside the fourth product term of (F.32) in such a way to build
a matrix, whose inverse appears as the third product term in (F.32):

Ge (s) =Fψ · (I −Dd ·Fw
)−1 ·

(
I −Cd · (sI − Ad

)−1 · (Bd ·Fw
) · (I −Dd ·Fw

)−1
)−1

·
(
−

(
I −Cd · (sI − Ad

)−1 · (Bd ·Fw
) · (I −Dd ·Fw

)−1
)
· (Dd ·Fφ

)
+ (

Dd ·Fφ
)+Cd · (sI − Ad

)−1 · (Bd ·Fφ
))

+Fψ · (I −Dd ·Fw
)−1 · (Dd ·Fφ

)+Fz

(F.33)

After multiplying the third and the fourth product terms from (F.33), we obtain:

Ge (s) =−Fψ · (I −Dd ·Fw
)−1 · (Dd ·Fφ

)+Fψ · (I −Dd ·Fw
)−1·(

I −Cd · (sI − Ad
)−1 · (Bd ·Fw

) · (I −Dd ·Fw
)−1

)−1

·
(
Cd · (sI − Ad

)−1 · (Bd ·Fφ
)+ (

Dd ·Fφ
))

+Fψ · (I −Dd ·Fw
)−1 · (Dd ·Fφ

)+Fz

(F.34)
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The first and the third sum terms from (F.34) are the same, but with opposite signs.
Hence, we obtain:

Ge (s) =Fψ · (I −Dd ·Fw
)−1 ·

(
I −Cd · (sI − Ad

)−1 · (Bd ·Fw
) · (I −Dd ·Fw

)−1
)−1

·
(
Cd · (sI − Ad

)−1 · (Bd ·Fφ
)+ (

Dd ·Fφ
))+Fz

(F.35)

Finally, after applying the property of a matrix inverse onto the product of the sec-
ond and third product terms in (F.35), we obtain the final form for Ge (s):

Ge (s) =Fψ ·
(
I −

(
Cd · (sI − Ad

)−1 · (Bd ·Fw
)+Dd ·Fw

))−1

·
(
Cd · (sI − Ad

)−1 · (Bd ·Fφ
)+Dd ·Fφ

)
+Fz

(F.36)

which equals (F.22) and completes the proof. □





BIBLIOGRAPHY

[1] Albert-László Barabási. “Network science”. In: Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 371.1987
(2013), p. 20120375.

[2] Mark Newman. Networks. Oxford university press, 2018.

[3] Leonhard Euler. “Solutio problematis ad geometriam situs pertinentis”. In: Com-
mentarii academiae scientiarum Petropolitanae (1741), pp. 128–140.

[4] Piet Van Mieghem et al. “Spectral graph analysis of modularity and assortativity”.
In: Physical Review E 82.5 (2010), p. 056113.

[5] Alex Arenas et al. “Synchronization in complex networks”. In: Physics reports
469.3 (2008), pp. 93–153.

[6] Romualdo Pastor-Satorras et al. “Epidemic processes in complex networks”. In:
Reviews of modern physics 87.3 (2015), p. 925.

[7] Karel Devriendt and Piet Van Mieghem. “The simplex geometry of graphs”. In:
Journal of Complex Networks 7.4 (2019), pp. 469–490.

[8] Santo Fortunato. “Community detection in graphs”. In: Physics reports 486.3-5
(2010), pp. 75–174.

[9] Gabriel Budel and Piet Van Mieghem. “Detecting the number of clusters in a net-
work”. In: Journal of Complex Networks 8.6 (2020), cnaa047.

[10] Mark EJ Newman. “Communities, modules and large-scale structure in net-
works”. In: Nature physics 8.1 (2012), pp. 25–31.

[11] Mark EJ Newman and Michelle Girvan. “Finding and evaluating community
structure in networks”. In: Physical review E 69.2 (2004), p. 026113.

[12] Mark EJ Newman. “Fast algorithm for detecting community structure in net-
works”. In: Physical review E 69.6 (2004), p. 066133.

[13] Sune Lehmann and Lars Kai Hansen. “Deterministic modularity optimization”.
In: The European Physical Journal B 60.1 (2007), pp. 83–88.

[14] Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In:
Journal of statistical mechanics: theory and experiment 2008.10 (2008), P10008.

[15] Luca Donetti and Miguel A Munoz. “Detecting network communities: a new sys-
tematic and efficient algorithm”. In: Journal of Statistical Mechanics: Theory and
Experiment 2004.10 (2004), P10012.

[16] Ingve Simonsen. “Diffusion and networks: A powerful combination!” In: Physica
A: Statistical Mechanics and its Applications 357.2 (2005), pp. 317–330.

201



202 BIBLIOGRAPHY

[17] Nelson A Alves. “Unveiling community structures in weighted networks”. In:
Physical Review E 76.3 (2007), p. 036101.

[18] Andrea Capocci et al. “Detecting communities in large networks”. In: Physica A:
Statistical Mechanics and its Applications 352.2-4 (2005), pp. 669–676.

[19] Florent Krzakala et al. “Spectral redemption in clustering sparse networks”. In:
Proceedings of the National Academy of Sciences 110.52 (2013), pp. 20935–20940.

[20] Fa-Yueh Wu. “The potts model”. In: Reviews of modern physics 54.1 (1982), p. 235.

[21] Marcelo Blatt, Shai Wiseman, and Eytan Domany. “Superparamagnetic cluster-
ing of data”. In: Physical review letters 76.18 (1996), p. 3251.

[22] I Ispolatov, I Mazo, and A Yuryev. “Finding mesoscopic communities in sparse
networks”. In: Journal of Statistical Mechanics: Theory and Experiment 2006.09
(2006), P09014.

[23] Piet Van Mieghem, Karel Devriendt, and H Cetinay. “Pseudoinverse of the Lapla-
cian and best spreader node in a network”. In: Physical Review E 96.3 (2017),
p. 032311.

[24] Daniel A Spielman and Nikhil Srivastava. “Graph sparsification by effective re-
sistances”. In: Proceedings of the fortieth annual ACM symposium on Theory of
computing. 2008, pp. 563–568.

[25] Prasad Tetali. “Random walks and the effective resistance of networks”. In: Jour-
nal of Theoretical Probability 4.1 (1991), pp. 101–109.

[26] Vedat Levi Alev et al. “Graph clustering using effective resistance”. In: arXiv
preprint arXiv:1711.06530 (2017).

[27] Piet Van Mieghem. “A tree realization of a distance matrix: the inverse shortest
path problem with a demand matrix generated by a tree”. In: TU Delft report
20211012 (Nov. 2022), pp. 1–16.

[28] Daniel A Spielman and Shang-Hua Teng. “Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems”. In: Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing. 2004,
pp. 81–90.

[29] Kook Jin Ahn and Sudipto Guha. “Graph sparsification in the semi-streaming
model”. In: International Colloquium on Automata, Languages, and Program-
ming. Springer. 2009, pp. 328–338.

[30] Joshua Batson et al. “Spectral sparsification of graphs: theory and algorithms”.
In: Communications of the ACM 56.8 (2013), pp. 87–94.

[31] Mark EJ Newman. “The structure and function of complex networks”. In: SIAM
review 45.2 (2003), pp. 167–256.

[32] Baruch Barzel and Albert-László Barabási. “Universality in network dynamics”.
In: Nature physics 9.10 (2013), p. 673.

[33] Uzi Harush and Baruch Barzel. “Dynamic patterns of information flow in com-
plex networks”. In: Nature communications 8.1 (2017), pp. 1–11.



BIBLIOGRAPHY 203

[34] Baruch Barzel, Yang-Yu Liu, and Albert-László Barabási. “Constructing minimal
models for complex system dynamics”. In: Nature communications 6 (2015),
p. 7186.

[35] Alejandro D Sánchez, Juan M López, and Miguel A Rodriguez. “Nonequilibrium
phase transitions in directed small-world networks”. In: Physical review letters
88.4 (2002), p. 048701.

[36] Remco Van Der Hofstad, Gerard Hooghiemstra, and Piet Van Mieghem. “First-
passage percolation on the random graph”. In: Probability in the Engineering and
Informational Sciences 15.2 (2001), pp. 225–237.

[37] Steven H Strogatz. “From Kuramoto to Crawford: exploring the onset of synchro-
nization in populations of coupled oscillators”. In: Physica D: Nonlinear Phenom-
ena 143.1-4 (2000), pp. 1–20.

[38] Naoki Masuda, Mason A Porter, and Renaud Lambiotte. “Random walks and dif-
fusion on networks”. In: Physics reports 716 (2017), pp. 1–58.

[39] Bastian Prasse and Piet Van Mieghem. “The viral state dynamics of the discrete-
time NIMFA epidemic model”. In: IEEE Transactions on Network Science and En-
gineering 7.3 (2019), pp. 1667–1674.

[40] Zhidong He and Piet Van Mieghem. “Optimal Induced Spreading of SIS Epi-
demics in Networks”. In: IEEE Transactions on Control of Network Systems (2018).

[41] Cheng-yi Xia et al. “Effects of delayed recovery and nonuniform transmission on
the spreading of diseases in complex networks”. In: Physica A: Statistical Mechan-
ics and its Applications 392.7 (2013), pp. 1577–1585.

[42] Chengyi Xia et al. “A new coupled disease-awareness spreading model with mass
media on multiplex networks”. In: Information Sciences 471 (2019), pp. 185–200.

[43] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. “Random graphs with
arbitrary degree distributions and their applications”. In: Physical review E 64.2
(2001), p. 026118.

[44] M Van den Berg et al. “A macroscopic traffic flow model for integrated control
of freeway and urban traffic networks”. In: 42nd IEEE International Conference
on Decision and Control (IEEE Cat. No. 03CH37475). Vol. 3. IEEE. 2003, pp. 2774–
2779.

[45] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical processes
on complex networks. Cambridge university press, 2008.

[46] Steven H Strogatz. “Exploring complex networks”. In: nature 410.6825 (2001),
p. 268.

[47] Linying Xiang et al. “Advances in Network Controllability”. In: IEEE Circuits and
Systems Magazine 19 (2019), pp. 8–32.

[48] Yang-Yu Liu and Albert-László Barabási. “Control principles of complex sys-
tems”. In: Reviews of Modern Physics 88.3 (2016), p. 035006.
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[99] Ivan Jokić et al. “Time Dynamics of the Dutch Municipality Network”. Manuscript
submitted for publication. 2022.

[100] C. Marchetti. “Anthropological invariants in travel behavior”. In: Technological
Forecasting and Social Change 47.1 (Sept. 1994), pp. 75–88.

[101] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. “Understanding
individual human mobility patterns”. In: nature 453.7196 (2008), pp. 779–782.

[102] Rosario N. Mantegna and H. Eugene Stanley. “Stochastic Process with Ultraslow
Convergence to a Gaussian: The Truncated Lévy Flight”. In: Physical Review Let-
ters 73.22 (Nov. 1994), pp. 2946–2949.



BIBLIOGRAPHY 207

[103] D. Brockmann, L. Hufnagel, and T. Geisel. “The scaling laws of human travel”. In:
Nature 2006 439:7075 439.7075 (Jan. 2006), pp. 462–465.

[104] Stefan Rayer and David L. Brown. “Geographic diversity of inter-county migra-
tion in the united states, 1980–1995”. In: Population Res. Policy Rev. 20.3 (2001),
pp. 229–252.

[105] Kenneth M. Johnson and Glenn V. Fuguitt. “Continuity and change in rural mi-
gration patterns, 1950–1995”. In: Rural Sociol. 65.1 (2000), pp. 27–49.

[106] Hernán A. Makse, Shlomo Havlin, and H. Eugene Stanley. “Modelling urban
growth patterns”. In: Nature 1995 377:6550 377.6550 (Oct. 1995), pp. 608–612.

[107] Markus Schläpfer et al. “The scaling of human interactions with city size”. In:
Journal of The Royal Society Interface 11.98 (Sept. 2014).

[108] Vincent Verbavatz and Marc Barthelemy. “The growth equation of cities”. In: Na-
ture 587.7834 (Nov. 2020), pp. 397–401.

[109] Luís M.A. Bettencourt et al. “Growth, innovation, scaling, and the pace of life in
cities”. In: Proc. Natl Acad. Sci. 104.17 (Apr. 2007), pp. 7301–7306.

[110] Luís M.A. Bettencourt. “The origins of scaling in cities”. In: Science 340.6139
(2013), pp. 1438–1441.

[111] A. Schneider and C. M. Mertes. “Expansion and growth in Chinese cities,
1978–2010”. In: Environ. Res. Lett.s 9.2 (2014), p. 024008.

[112] Rolf Bergs. “Spatial dependence in the rank-size distribution of cities – weak but
not negligible”. In: PLOS ONE 16.2 (Feb. 2021), e0246796.

[113] M. E. J. Newman. “The Structure and Function of Complex Networks”. In: SIAM
Review 45.2 (Jan. 2003), pp. 167–256.

[114] Albert-László Barabási. “Network science introduction”. In: Network science
(2016), pp. 1–27.

[115] Hermine Molnár-in ‘t Veld. De groei van het Nederlandse personenautopark. 2019.

[116] Josje J. Hoekveld. “Urban decline within the region: Understanding the intra-
regional differentiation in urban population development in the declining re-
gions Saarland and Southern-Limburg”. PhD thesis. University of Amsterdam,
2014, p. 181.

[117] Onno Boonstra and Rick Mourits. Historical Database of Dutch Municipalities
(Historische Database Nederlandse Gemeenten (HDNG)) - dataLegend - Druid.

[118] Pandu R. Tadikamalla and Norman L. Johnson. “Systems of Frequency Curves
Generated by Transformations of Logistic Variables”. In: Biometrika 69.2 (Aug.
1982), p. 461.

[119] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-Law Distri-
butions in Empirical Data”. In: SIAM Review 51.4 (Nov. 2009), pp. 661–703.

[120] Christian Doerr, Norbert Blenn, and Piet Van Mieghem. “Lognormal Infection
Times of Online Information Spread”. In: PLoS ONE 8.5 (May 2013). Ed. by Alain
Barrat.



208 BIBLIOGRAPHY

[121] P. Van Mieghem, N. Blenn, and C. Doerr. “Lognormal distribution in the digg
online social network”. In: The European Physical Journal B 83.2 (Sept. 2011),
pp. 251–261.

[122] Piet. Van Mieghem. “Data communications networking”. In: (2010), p. 414.

[123] Matthieu Cristelli, Michael Batty, and Luciano Pietronero. “There is More than a
Power Law in Zipf”. In: Scientific Reports 2012 2:1 2.1 (Nov. 2012), pp. 1–7.

[124] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions.
Revised 9. Dover Publications, June 1968, pp. 1–1046.

[125] Florian Dorfler and Francesco Bullo. “Kron reduction of graphs with applications
to electrical networks”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 60.1 (2012), pp. 150–163.

[126] Florian Dörfler, John W Simpson-Porco, and Francesco Bullo. “Electrical net-
works and algebraic graph theory: Models, properties, and applications”. In: Pro-
ceedings of the IEEE 106.5 (2018), pp. 977–1005.

[127] Hale Cetinay, Karel Devriendt, and Piet Van Mieghem. “Nodal vulnerability to
targeted attacks in power grids”. In: Applied network science 3.1 (2018), p. 34.

[128] Roger Guimera et al. “The worldwide air transportation network: Anomalous
centrality, community structure, and cities’ global roles”. In: Proceedings of the
National Academy of Sciences 102.22 (2005), pp. 7794–7799.

[129] Jennifer A Dunne, Richard J Williams, and Neo D Martinez. “Food-web structure
and network theory: the role of connectance and size”. In: Proceedings of the Na-
tional Academy of Sciences 99.20 (2002), pp. 12917–12922.

[130] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. “On power-law re-
lationships of the internet topology”. In: ACM SIGCOMM computer communica-
tion review. Vol. 29. 4. ACM. 1999, pp. 251–262.

[131] Stefano Boccaletti et al. “Complex networks: Structure and dynamics”. In: Physics
reports 424.4-5 (2006), pp. 175–308.

[132] Gang Yan et al. “Network control principles predict neuron function in the
Caenorhabditis elegans connectome”. In: Nature 550.7677 (2017), p. 519.

[133] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. “A survey of multi-agent
formation control”. In: Automatica 53 (2015), pp. 424–440.

[134] Johan Schoukens and Lennart Ljung. “Nonlinear System Identification: A User-
Oriented Roadmap”. In: arXiv preprint arXiv:1902.00683 (2019).

[135] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. “Consensus and coopera-
tion in networked multi-agent systems”. In: Proceedings of the IEEE 95.1 (2007),
pp. 215–233.

[136] Linying Xiang et al. “Controllability of Directed Heterogeneous Networked MIMO
Systems”. In: arXiv preprint arXiv:1812.03302 (2018).

[137] Bastian Prasse and Piet Van Mieghem. “Time-dependent solution of the NIMFA
equations around the epidemic threshold”. In: Journal of mathematical biology
81.6-7 (2020), pp. 1299–1355.



BIBLIOGRAPHY 209

[138] Bart De Moor et al. “A geometrical strategy for the identification of state space
models of linear multivariable systems with singular value decomposition”. In:
IFAC Proceedings Volumes 21.9 (1988), pp. 493–497.

[139] P Van Mieghem et al. “A framework for computing topological network robust-
ness”. In: Delft University of Technology, Report20101218 (2010).

[140] Michel Verhaegen and Vincent Verdult. Filtering and system identification: a least
squares approach. Cambridge university press, 2007.

[141] S Akbari, PJ Cameron, and GB Khosrovshahi. “Ranks and signatures of adjacency
matrices”. In: preprint (2004).

[142] Carl D Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.

[143] Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of ma-
jorization and its applications. Vol. 143. Springer, 1979.

[144] Piet Van Mieghem. “Graph eigenvectors, fundamental weights and centrality
metrics for nodes in networks”. In: arXiv preprint arXiv:1401.4580 (2014).

[145] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. “From Louvain to Lei-
den: guaranteeing well-connected communities”. In: Scientific reports 9.1 (2019),
p. 5233.

[146] Aurelien Decelle et al. “Inference and phase transitions in the detection of mod-
ules in sparse networks”. In: Physical Review Letters 107.6 (2011), p. 065701.

[147] Aurelien Decelle et al. “Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications”. In: Physical Review E 84.6
(2011), p. 066106.

[148] Lev Muchnik et al. “Origins of power-law degree distribution in the heterogeneity
of human activity in social networks”. In: Scientific reports 3.1 (2013), p. 1783.

[149] Gergely Palla et al. “Uncovering the overlapping community structure of complex
networks in nature and society”. In: nature 435.7043 (2005), pp. 814–818.

[150] P Van Mieghem. “Approximate formula and bounds for the time-varying
susceptible-infected-susceptible prevalence in networks”. In: Physical Review E
93.5 (2016), p. 052312.

[151] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[152] Erich Leo Lehmann, Joseph P Romano, and George Casella. Testing statistical hy-
potheses. Vol. 3. Springer, 2005.





CURRICULUM VITÆ

Ivan JOKIĆ
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