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Abstract

The human sensorimotor system can be seen as a complex network in which the brain plays an important
role, resulting in a difficult-to-understand relation between proprioceptive stimuli and cortical responses.
However, understanding this relationship is of added value for understanding various diseases which cause
dysfunctionality. In recent years, a variety of studies have been conducted towards finding the non-linear
relationship between the cortical responses and wrist joint manipulation. This research is dedicated to pro-
viding an initial set-up to create models that are able to provide accurate predictions despite noisy data. The
relationship between wrist joint manipulation and the cortical response is assumed to be non-linear and
the corresponding identification method is categorized in a two-step process, namely the model structure,
i.e. Volterra series, and stochastic identification method, i.e. Bayesian Inference. To understand the work-
ing principle of the proposed algorithm, the method is first applied to a set of computer models. Finally, an
attempt is made to model the cortical responses evoked by wrist joint manipulations.
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1
Introduction

Many diseases which cause dysfunctionality are nowadays primarily diagnosed by common symptoms and
have no objective method that can either deny or confirm the disease. Like many others, Parkinson’s disease
(Fig. 1.1) causes a variety of disorders such as tremor of extremities and reducing arm movement, which is
caused by the break down of nerve cells in the brain. However, even though it is suspected that the disease
is due to gene mutations, the exact origin of it is still unknown. Understanding the human sensorimotor
system can aid in comprehending several movement disorders and may lead to earlier detection of these
disorders. Furthermore, the mechanism in the brain underlying the control of joints is complicated and is so
far too unknown to be applied to control robotic systems. Understanding this mechanism offers opportunity
to incorporate more intelligent control algorithms, in order to achieve tasks which are considered to be very
difficult to date. The Defence Advance Research Projects Agency (DARPA) hosts a variety of challenges to
field human-like robotics in practical applications. One of the tasks requires the robotic systems to open and
close doors (Fig. 1.2), which unfortunately often does not yield to satisfactory results. Researching the human
sensorimotor system advances the field of human supervised control of robotic systems.

Studying the dynamic relation between the wrist joint manipulation and the electrical activity of the
brain requires a proprioceptive stimulus of the joint and a cortical measurement technique, such as elec-
troencephalography (EEG). The corresponding device consists of an arbitrary number of electrodes, which
measures the voltage fluctuations on the scalp caused by ion-activity of the neurons in the brain. Thus, it
is a non-invasive medical method that is relatively accessible and cheap compared to alternatives such as
functional Magnetic Resonance Imaging (fMRI). Additionally, EEG can accurately detect activity in a high
resolution, making it suitable for signal analysis used for studying the brain.

However, difficulties arise when processing EEG data. The electrical activity produced by the brain is of
the order 10µV , making it sensitive to ambient external electric sources either present in the human body (e.g.
facial muscle artifacts) or in the room (e.g. electrical wiring). In addition, the brain is continuously involved
in multiple processes, resulting in extra noise signals irrelevant for one’s experiment. Hence, the acquired

Figure 1.1: Common symptoms for Parkinson’s disease Figure 1.2: DARPA Challenge
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2 1. Introduction

Figure 1.3: The dominant cortical response of six different participants evoked by the same input signal (top-left). The figure substanti-
ates the non-linear characteristics of EEG signals and shows the oscillatory behaviour which may be caused by noise corruption.

cortical response’s signal-to-noise ratio (SNR) is not satisfactory. Moreover, a recent study has shown that
only 10% of the brain activity could be explained using a best linear approximation, meaning that over 80%
of the response is caused by non-linear behaviour [35]. Non-linear system identification techniques are often
less well developed and it requires a more complex approach, making it computationally challenging. Fig. 1.3
illustrates the most dominant signal of the brain’s activity (highest SNR) of six different participants evoked
by the same input signal.

The non-linear relationship between the somatosensory system, i.e. the part of the brain that processes
proprioceptive stimuli, and wrist joint manipulation has been a topic of interest in system identification.
Tian et al. [32] tried to use a Non-linear Auto-Regressive Moving Average with eXogenous input (NARMAX)
model in combination with a Hierarchical Neural Network (HNN) to capture the dynamics of the human
sensory system. The NARMAX-HNN model generates satisfactory results, giving a mean Variance Accounted
For (VAF) of 92.33% over ten subjects with standard deviation of 1.57%. This research was based on an earlier
study by Vlaar et al. [36], who conducted the experiments as shown in Fig. 1.4 where he obtained the input
and output data needed to describe the relationship between wrist joint manipulation and cortical response.
Vlaar et al. [36] identified a regularized zeroth and second order Volterra series model combined with a Best
Linear Approximation model and managed to find a mean VAF of 46.20% with a standard deviation of 8.32%
over the participants.

Although this implies that the NARMAX-HNN model is preferable to the Volterra model, there are some
important comments to report. To begin with, the Volterra model is linear with regard to the parameters,
meaning that the resulting minimization problem is convex and can be solved using linear optimization
techniques. The NARMAX-HNN however is a combination of two non-linear functions, resulting in a non-
convex optimization problem that requires more sophisticated algorithms. Moreover, the NARMAX function
includes sampled auto-regressive terms, accounting for possible closed loop behaviour. The Volterra model
does not take that into account. Secondly, the NARMAX-HNN model is presented as a dual-input-single-
output model. Based on neuroanatomical connections, Tian et al. [32] used both the perturbation signal
as well as its first derivative as input signal, providing the algorithm with more information. Consequently,
this complicates the model structure. On the contrary, Vlaar et al. [36] only considers the perturbation signal,
which contributes to the simplicity of the model. Besides, one of the main advantages of Volterra series is that
no prior knowledge is required regarding the true underlying structure of the system. Finally, in the NARMAX-
HNN model a conscious decision was made to include a neural network to accommodate for higher order
dynamics, whereas the Volterra model only captures zeroth, first and second order dynamics. Low order
dynamic models are unable to explain high frequency behaviour generated by higher order dynamics.

A commonality among the two approaches is that both ought to find a single mathematical relationship
to explain the EEG data and to make subsequent predictions. This model selection procedure is based on the
VAF, where after the best performing model is selected for validation. However, in both studies, there is no
clear substantiation as to why a model is given full preference, while there remains uncertainty which model
outperforms the other models. Additionally, VAF is unable to detect a bias between the true and modeled
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Figure 1.4: The experimental setup conducted by Vlaar [35, 36]. The participants were instructed to gaze at a static screen, while the
rightforearm and hand are fixated such that the right wrist joint is aligned with the robotic manipulator, as shown in the lower-right
image.The manipulator excites a sequence of three different multisine realizations subsequently, as shown in the top-right image. Each
real-ization consists only odd harmonic frequencies ranging from 1 to 23 Hz. One of the example realizations is depicted in the lower-
leftimage.

output. Besides, EEG is usually highly corrupted with noise, which affects the level of uncertainty of the
involved parameters. Conventional methods, as applied in [32, 36], do not include this uncertainty in the
model selection procedure, which may lead to false conclusions which model performs best.

This motivates the use of Bayesian Inference, which allows one to incorporate uncertainty information
while comparing different models [4]. This concept relies on conventional probabilistic theory and it is suit-
able for estimating parameters from posterior distributions. This distribution is a result of Bayes’ rule, i.e.
combining prior knowledge with obtained data. The technique has been investigated thoroughly in EEG ap-
plications, although all are focused on solving inverse problems. This class of problems applied on EEG data
is from a mathematical point of view ill-posed, since the number of neurons present in the brain causing the
electric activity is greatly larger than the number of sensors attached on one’s scalp [33]. Having said that,
past studies primarily distinguish themselves from each other by taking different assumptions on the prior
distribution, resulting in different regularization techniques. Among others, well known prior distributions
are the Gaussian [33], Bernoulli-Laplacian [8] and Gibbs [19] distributions.

Furthermore, Bayesian Inference allows one to combine the predictions of a variety of candidate model
classes, which is known as Bayesian Model Averaging (BMA). Where conventional system identification meth-
ods select a single model class based on a arbitrary performance index, BMA combines the model classes
by summing predictions weighted by its relative level of significance. It is shown by Beck [3] and Trujillo-
Barreto et al. [33] that averaging over the competitive model class set may lead to a better predictive ability
by reducing the expected squared error with respect to single chosen model, which would be accepted us-
ing conventional methods. The Bayesian Inference approach is summarized in a three-level process [20, 33],
namely:

1. Given assumptions H and the available data D, the posterior probability of the parameters θ is calcu-
lated, according to Bayes’ rule.

2. Again, according to Bayes’ rule and given the data D, different alternative assumptions H are com-
pared.

3. The uncertainty is taken into account when subsequent predictions are made. The prediction about
some quantity t is obtained by summing over different assumptions H.

1.1. Thesis Objective
The experiments in this report are intended to provide a better understanding of non-linear Bayesian system
identification using Volterra series and its effects in making subsequent predictions. This has been done
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for the following two reasons. First, existing studies provide a method to explain EEG data evoked by wrist
joint manipulations, however, Tian et al. [32], Vlaar et al. [36] did not incorporate any uncertainties while
performing parameter estimation, which affects the model selection process. By taking this into account
through Bayesian Inference, it is expected to make a difference in the relative performance between models.
Second, the current studies seek to find a single best model for making predictions, however, it has been
demonstrated (i.e. by Hoeting et al. [15], Raftery et al. [25]) that this approach may lead to overconfident
forecasts. Bayesian Model Averaging mitigates this overconfidence by averaging over the competitive model
set when making predictions.

Understanding the performance of Bayesian Inference using Volterra Series on the system identification
of cortical responses evoked by wrist joint manipulations is a difficult process, as the actual brain waves
cannot be measured. For this reason, this study first applies the algorithms on a set of computer models.
This provides a more objective picture of the advantages and disadvantages of the proposed approach, as the
modeled outputs can be compared with the underlying ground truth signal, which are unknown investigating
brain waves.

Having said this, the main objective of this thesis is:

The Development of Non-Linear Bayesian System Identification of the Cortical Response Evoked by
Wrist Joint Manipulation Using Volterra Series

To achieve this, the following sub-objectives are formulated that are applied to both the computer models
as well as the cortical response data.

Sub-objective 1. Understanding the effect of incorporating uncertainty on the parameter estimation and the
model selection process.

Sub-objective 2. Examining whether it is beneficial to perform Bayesian Model Averaging compared to con-
ventional methods while modeling.

Sub-objective 3. Understanding the effect of imposing different prior Gaussian distributions on the perfor-
mance of the algorithm.

This research is innovative for the following two reasons. First of all, Bayesian Inference has not previously
been used for the system identification of cortical responses evoked by wrist joint manipulations. Second,
Bayesian Inference in conjunction with Volterra Series has not been studied before.

1.2. Thesis Outline
The body of this study is subdivided in three parts. First, chapter 2 introduces the theory needed to under-
stand the work that has been done. Second, the algorithm is applied on two types of computer models in
chapter 3, namely a Volterra System and a Neural Network. In chapter 4, the method is applied to model the
cortical responses evoked by wrist joint manipulations. Then, chapter 5 provides a reflection on the acquired
results and recommends techniques for future work. Finally chapter 6 concludes this study.



2
Volterra Series System Identification: A

Bayesian Approach

This chapter provides the theory needed to understand the work that has been done in this study. Section 2.1
discusses the theory behind Volterra Series, i.e. the non-linear model structure. Section 2.2 is devoted to
the three levels of Bayesian Inference, which include system identification, model comparison and predictive
analysis. Finally, section 2.3 discloses the techniques used to evaluate the output of a system and to evaluate
the performance of the modeled systems.

2.1. Volterra Series
The Volterra Series is a model for non-linear systems of which the output of the system depends on all past in-
puts, given that the energy of excited input signal is limited. The discrete-time, non-linear and time-invariant
Volterra Series for single-input single-output (SISO) systems can be represented as:{

q(n) = h0 +∑D
d=1 qd (n)

qd (n) =∑L
τ1=1 · · ·

∑L
τd=1 hd (τ1, . . . ,τd )

∏d
i=1 u(n −τi ).

(2.1)

Here, d , D and L denote the order, degree and maximum lag of the Volterra series respectively. Note the dif-
ference between order and degree: a third degree Volterra Series (D = 3) contains Volterra kernels of order
0, 1, 2 and 3. Furthermore, hd (τ1, . . . ,τd ) represents each real valued d-th order symmetric Volterra kernel
consisting the parameters to be determined, u(n −τi ) represents the lagged input of the system, q(n) is the
modeled output and τ1, . . . ,τd denote the lag variables. The model structure in eq. (2.1) is linear in the param-
eters, meaning that it is suitable for linear optimization techniques. The following example aids in finding the
general SISO linear model structure, which follows the procedure well described by Batselier et al. [2].

Example 1. Consider the second degree SISO Volterra Series with lag 2, which is described by

q(n) =h0

+h1(1)u(n −1)+h1(2)u(n −2)

+h2(1,1)u(n −1)2 +h2(1,2)u(n −1)u(n −2)+h2(2,2)u(n −2)2.

(2.2)

Here it is assumed that all the higher order (d > 1) Volterra kernels are symmetric. Equation (2.2) can alterna-
tively be written as:

q(n) = h0 +hT
1 un +hT

2 (un ⊗un) , (2.3)

which illustrates the contribution of each d-th order Volterra system. Here, ⊗ denotes the Kronecker product,
un ∈R2 is a vector with its entries given by lagged inputs and h0 ∈R, h1 ∈R2 and h2 ∈R4 contains the vectorized
zeroth, first and second order kernel coefficients respectively, such that:

un = [
u(n −1) u(n −2)

]T
,

hT
1 = [

h1(1) h1(2)
]

,

hT
2 = [

h2(1,1) h2(2,1) h2(2,1) h2(2,2)
]

.

5
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The Kronecker product in eq. (2.3) represents the multiplication of each element of the first matrix with each
element of the second matrix. In the current example, this product yields:

un ⊗un = [
u(n −1)2 u(n −1)u(n −2) u(n −2)u(n −1) u(n −2)2] . (2.4)

Note that the kernel coefficient h2(2,1) is repeated in the Volterra Kernel due to the symmetry of the product,
i.e. u(n −1)u(n −2) = u(n −2)u(n −1). This approach leads to the general linear model structure for a second
degree Volterra series with lag 2:

q(n) = [
h0 hT

1 hT
2

] 1
un

un ⊗un

 . (2.5)

The approach of example 1 can be extended for D-th degree Volterra series with memory L, such that eq. (2.1)
can be written as:

q(n) = [
h0 hT

1 . . . hT
D

]


1
un

...
un ⊗D un

= HT Un
H ∈R1+L+...+LD

Un ∈R1+L+...+LD
. (2.6)

Here, un⊗D un denotes the D-th order Kronecker product, i.e. un⊗D un = un⊗1un⊗2 . . .⊗D−1un . Furthermore,
hd denotes each d-th order vectorized Volterra kernel and un ∈RL is defined as:

un = [
u(n −1) u(n −2) . . . u(n −L)

]
.

Subsequently, duplicate columns in HT corresponding to duplicate rows in Un are being removed in order
to reduce the computational effort of the simulations, leaving only unique Volterra kernel parameters. The
number of unique parameters nhd

in each d-th order Volterra kernel can be calculated via [6]:

nhd
=

{( 1
d !

)∏d−1
i=0 (L+1− i ), if L > 1

1, L = 1
. (2.7)

Equation (2.7) is essentially a binomial coefficient. This coefficient describes the number of ways of picking
unordered outcomes from possibilities in a list. In Volterra sense, this list is defined by un . Having said this,
the number of unique parameters in each Volterra kernel in eq. (2.7) can alternatively be written as:

nhd
=


(

L+d −1

d

)
= (L+d−1)!

d ! (L−1)! L > 1

1 L = 1

. (2.8)

Consequently, the total number of unique parameters is defined as nH = 1+nh1 +nh2 + . . .+nhD .
Figure 2.1 illustrates the growth of the unique parameters among the first, second, third and fourth order

Volterra series. In the figure, both axes are shown logarithmic. The number of parameters involved in the first
order Volterra kernel h1(τ1) (blue line) grows linearly with the lag, hence showing a straight line. Knowing this,
it can be seen that the number of parameters of the higher order Volterra kernels grow exponentially with the
lag, where with increased order the growth of the parameters increases more exponentially. This curse of
dimensionality requires more attention when it comes to modeling Volterra series of a higher degree, since,
depending on the available data size, it may happen that the number of unique parameters to be determined
exceeds the number of observations. This will lead to an ill-posed problem with infinitely many solutions. In
this situation, there is no proper method in distinguishing the quality of every solution, which means that no
judgement can be made about which solution fits the data the best. Fortunately, Bayesian Inference offers a
method to incorporate prior knowledge, which mitigates this issue. The concept of prior knowledge is further
explained in section 2.2.1

Finally, a stochastic variable ε is included in the model structure which represents the error, due to model
discrepancy and noise corruption. This results in the following model structure:

y(n) = q(n)+ε(n). (2.9)
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Figure 2.1: The number of unique parameters up to the fourth order Volterra series

Here, at time instance n, y(n) ∈ R denotes the measured output and q(n) ∈ R is the modeled output, i.e. the
output which follows from eq. (2.6). Combining eq. (2.6) with eq. (2.9), the standard linear equation for SISO
systems can be derived as

YN = UT H+ε (2.10)
y(1)
y(2)

...
y(N )

=


UT

1
UT

2
...

UT
N

H+


ε(1)
ε(2)

...
ε(N )

 , (2.11)

where the vector YN ∈ RN incorporates the N observed output samples and U ∈ RnH×N is the regression
matrix with its entries given by (the multiplication of) lagged inputs. Furthermore, this report uses the general
notation MD,L to describe the Volterra Series model class defined by the degree D and lag L.

2.2. Bayesian Inference
Conventional system design techniques usually use a single mathematical model to predict the dynamic re-
sponse of a system. However, no model is expected to return the perfect predictions for the following reasons.
To begin with, the computer model is commonly an approximate representation of the real system behaviour
due to complex dynamics. Moreover, since the measurements of the real system are often corrupted with
noise, it ensures uncertainty regarding the identified parameters involved in the mathematical model. This
motivates the explicit quantification of modeling uncertainty in the response predictions. Bayesian Inference
has already been successfully applied in solving inverse problems in EEG applications [19, 33] and has also
proven its worth in different fields, such as image processing [31] and a variety of simulation models [4, 13].
So far, Bayesian Inference has not been applied to the system identification of Volterra series.

Bayesian Inference is a mathematical framework that updates hypotheses in a probabilistic manner as
more information becomes available. The method relies on the theory of stochastic dynamics, however this
does not mean that the world is seen as a stochastic changing nature. The probabilities quantify a degree
of belief about different hypotheses. The framework underlying Bayesian Inference is Bayes’ rule, which is
defined as:

p(H|D) = p(D|H)p(H)

p(D)
. (2.12)

Here, p(H) denotes the prior Probability Density Function (PDF) regarding the hypothesesH and p(D|H) ex-
presses the likelihood of observing the informationD conditionally on the hypotheses. Furthermore, p(H|D)
describes the posterior PDF and p(D) is the normalization constant.

Bayesian inference not only provides a method to determine parameters, it also equips a mechanism
for comparing models and making predictions. This approach has been summarized by Mackay [20] in the
following three-level process.
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Level 1. Given the available measurements and the defined model class, the posterior PDF of the parameters
is found according to Bayes’ rule.

Level 2. Again, according to Bayes’ rule, different alternative model classes are compared based on the avail-
able measurements.

Level 3. The uncertainty is taken into account when subsequent predictions are made, which is obtained by
summing over the model class set each weighted by its level of significance.

The three levels of Bayesian Inference are discussed in sequence in sections 2.2.1 to 2.2.3.

2.2.1. Parameter Estimation
The first level of inference aims at finding the posterior parameter PDF. Doing so, the following points should
be kept in mind.

1. The product of two Gaussian PDFs yields in another Gaussian PDF [20].

2. The evidence in eq. (2.12), i.e. p(D), is a scaling factor, hence it does not alter the statistical properties
of the numerator.

Having said this, it is assumed in this study that both the likelihood as well as the prior are Gaussian dis-
tributed. By making this assumption, one can find the statistical properties of the posterior parameter PDF
by calculating the properties of the numerator in eq. (2.12). The statistical properties of the latter, such as
the mean and the variance, do not change when the distribution scales, which matches therefore the statis-
tical properties of the posterior parameter PDF. In the following sections, the definitions of the Likelihood,
Prior, and Evidence are further explained. Finally, the last section provides the calculation for the posterior
parameter PDF.

The Likelihood
The Likelihood expresses the probability of observing the measurements YN , given the input sequence UN

and the chosen model structure MD,L including the parameters H. Mathematically, this is denoted as:

Likelihood = p(YN |UN ∩H∩MD,L).

Defining the Likelihood requires making assumptions regarding the statistical properties of the prediction-
error term ε in eq. (2.10). In this study it is assumed that ε at time instance n is described by a zero mean
Gaussian distribution with a variance σ2. Therefore, the Likelihood of observing the data YN conditional on
the input data UN , parameter vector H and the model structure MD,L is defined as:

p
(
y(n)|u(n)∩H∩MD,L

)∼N
(
UT

n H,σ2)
= 1p

(2π)σ
exp

(
− 1

2σ2

(
y(n)−UT

n H
)T (

y(n)−UT
n H

))
.

(2.13)

Assuming that each observation is identically distributed and mutually independent, the Likelihood for a full
data sequence is written as as a multivariate Gaussian distribution, i.e.:

p(YN |UN ∩H∩MD,L) =
N∏

n=1

(
y(n)|u(n)∩H∩Mi

)
= 1

(2π)N /2σN
exp

(
− 1

2σ2 (YN −UT H)T (YN −UT H)

)
.

(2.14)

This method assumes that the noise variance is constant throughout the data sequence (i.e. ε ∼N(0,σ2IN ),
where IN is the N-dimensional identity matrix). The general Likelihood for ε∼N(0,Σε) is:

p(YN |UN ∩H∩MD,L) ∼N(UT H,Σε)

= 1

(2π)N /2|Σε|N /2
exp

(
−1

2
(YN −UT H)TΣ−1

ε (YN −UT H)

)
.

(2.15)

Here | · | represents the determinant function.
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The Prior
The Prior express the prior belief regarding the parameters of interest H given the chosen model structure
MD,L . In mathematical notation, the Prior is described as:

Prior = p(H|MD,L).

Note that in this notation the assumptions are made without observing any data YN and UN . Therefore,
the Prior sums up the available knowledge regarding the parameters of interest H a priori. Since it assumed
that the Likelihood in eq. (2.15) is a Gaussian distribution and knowing that the product of two Gaussian
distributions yields a Gaussian distribution, it is assumed that the Prior is as well a Gaussian distribution with
an arbitrary mean µp and variance Σp , mathematically described as:

p(H|MD,L) ∼N
(
µp ,Σp

)
. (2.16)

The following sections go into more detail about designing the mean µp and the variance Σp in eq. (2.16).

Imposing prior knowledge The choice of the prior is driven by informativeness. In this study, the terms
informative and uninformative are used to express the amount of information embedded in the prior that
is specifically designed for the underlying system. An informative prior contains definite and substantive
information regarding the variable of interest, which are substantiated from certain properties of the system.
An uninformative prior only expresses general information and is often the first starting point for modeling
an arbitrary system. In order to understand the influence of different priors, this study will test on both an
informative and an uninformative prior.

The uninformative prior is described by a zero-mean Gaussian distribution with finite varianceΣp =αInH ,
i.e.

p(H|MD,L) ∼N
(
0,αInH

)
. (2.17)

Restricting this distribution to a zero mean inherently means that the parameters are presumed to be around
0 a priori, while the choice of the covariance matrix then describes the degree of (un)certainty of this as-
sumption. The prior mean is set to zero and if the observations provide sufficient amount of information, the
posterior parameter PDF is set to a different value. However, the more certainty is expressed in advance, the
more information the observations should contain [28]. The scaling constant α is used to describe this prior
certainty and is yet to be determined. Furthermore, InH denotes the nH dimensional identity matrix.

However, by describing the covariance matrix with an identity matrix, it is assumed that there is no mutual
correlation between the parameters. In addition, one is also limited in imposing prior information on specific
parameters, since the variance is by definition equal for all the parameters. The informative prior is described
in such a way to not only distinguish between parameters but also to describe correlations between them.
This approach follows the procedure introduced by Birpoutsoukis et al. [6], who assumed that the Volterra
kernels hold the properties of decaying and smooth. The informative prior is defined as a zero mean Gaussian
distribution with finite variance Σp = blkdiag(P0,P1, . . . ,PD ), where Pd denotes the d-th order Volterra kernel
variance.

Birpoutsoukis et al. [5, 6] define the covariance matrix of the first kernel (P1 = E[h1(τ1)h1(τ1)T ]) as follows:

P1,T C = c1α
max(i , j )
1 , (2.18)

which is knows as the Tuned-Correlated matrix, also known as the Stable Spline kernel [23, 30]. Here, c1 ≥ 0
is a scaling factor and 0 ≤α< 1 controls the exponential decay.

The second order covariance matrix is constructed in a similar fashion. Birpoutsoukis et al. [5] define the
following properties

Property 1. The Volterra kernel decays along any direction and neigbouring coefficients are correlated.

Property 2. The second order kernel is symmetric, meaning that h2(τ1,τ2) = h2(τ2,τ1) ∀τ1,τ2.

Property 3. The covariance matrix P2 should be constructed to be a symmetric, positive-semidefinite matrix.

To maintain these properties, a rotated coordinate system is introduced as shown in fig. 2.2. Fig. 2.2a il-
lustrates the decaying and smoothness properties along the green and red directions, which correspond to
the directions of the new coordinate system. Figure 2.2b shows the top view of a part of the Volterra kernel.
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(a) 3D view of a second order Volterra Kernel (b) Zoomed top view of the Volterra Kernel

Figure 2.2: An example of a second-order Volterra kernel [5] including the rotated coordinate system.

The new coordinate system 〈V,U〉 is rotated 45◦ with respect to the old coordinate system 〈τ1,τ2〉, which is
mathematically described as: [

U

V

]
=

[
cos(45◦) −sin(45◦)
sin(45◦) cos(45◦)

][
τ1

τ2

]
. (2.19)

This new coordinate system is chosen since it makes the properties of exponential decaying and smoothness
more understandable. Subsequently, the prior information is imposed along the new axes. The resulting
covariance matrix then yields:

P2(i , j ) = c2α
max(Ui ,U j )
u α

max(Vi ,V j )
v . (2.20)

Estimation of the hyperparameters The informative covariance matrix of a 2nd-degree Volterra kernel
depends on 6 hyperparameters, e.g. θhp = [c0,c1,c2,α1,αu ,αv ]. The hyperparameters define the structure of
the prior knowledge, hence determining the values plays a crucial role in the estimation performance of the
model. The Maximum Likelihood approach, also known as Empirical Bayes, maximizes the joint density of
the output measurements and the impulse response. The estimated hyperparameters are defined as [24],

θ̂hp , argmax
θhp

p(YN |θhp )

= argmin
θhp

YT
NΣ

−1
Y YN + log |ΣY |, (2.21)

where ΣY = UTP(θhp )U+σ2IN corresponds to the covariance matrix of the measured data and | · | represents
its determinant. Furthermore, c0,c1,c2 > 0 and 0 < α1,αu ,αv < 1. IN denotes the N-dimensional identity
matrix and σ2 is the noise variance. Note that σ2 is typically not known in advance and thus included in
θhp . Recall that U ∈ RnH×N and P ∈ RnH×nH . The objective function in equation (2.21) is non-convex in the
hyperparameters, therefore a non-linear optimization solver and a multi-start program to avoid local minima
are required.

The Evidence
The Evidence in Eq. (2.12) acts as a normalization constant, such that the total probability of the posterior
parameter PDF equals one. The Evidence expresses the probability of observing the output YN given the
input sequence UN and the model class MD,L , mathematically noted as:

Evidence = p(YN |UN ∩MD,L).

Note that in this notation there is no dependency on the parameters H. The equation for the Evidence is
found by marginalizing the product of the Likelihood and the Prior over the parameters H, ensuring that
the posterior parameter PDF has a total probability of 1. According to the Total Probability Theorem, this is
defined as:

p(YN |UN ∩MD,L) =
∫

H
p(YN |UN ∩H∩MD,L)p(H|MD,L)dH. (2.22)
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Here, H can be of different dimensions per model structure MD,L . The subscripts D,L are omitted since the
structure of H is inherently defined by MD,L . Although the Evidence is a scaling factor and hence does not
affect the shape of the distribution function, it will play an important role in the model averaging process, as
described in section 2.2.2.

However, since usually H being a high dimensional vector, the integral in Eq. (2.22) is often intractable,
meaning that alternatives methods are needed in order to calculate the integral in Eq. (2.22). Well known
estimation methods are Markov Chain Monte Carlo [11, 26, 31] or Laplace’s Approximation methods [4], how-
ever, provided that the Likelihood and the Prior are Gaussian distribution functions, p(YN |UN ∩MD,L) can be
computed analytically. Consider the general model structure in Eq. (2.10), with ε∼N(0,Σε), and the posterior
distribution given in Eq. (2.16). The statistical properties of p(YN |UN ∩MD,L) can be found via:

p(YN |UN ∩MD,L) ∼N(µev,Σev) (2.23)

µev = E [YN ] = E[
UT H+ε

]
= UT E [H]+E [ε]

= UTµp +0 (2.24)

Σev = E
[
(YN −E [YN ]) (YN −E [YN ])T ]

= E
[(

UT H+ε−UTµp
)(

UT H+ε−UTµp
)T

]
= UT E

[
HHT ]

U+����
�

UT E
[
HεT ]−UT E [H]µT

p U

+�����E
[
εHT ]

U+E[
εεT ]−����E [ε]µT

p U

−UTµpE
[
HT ]

U−�����UTµpE [ε]+UTµpµ
T
p U

= UT
[
Σp +µpµ

T
p

]
U−UTµpµ

T
p U+Σε

= UTΣp U+Σε. (2.25)

Here, the following relation is used to decompose E
[
HHT

]
:

var(X , X ) = E [X X ]−E [X ]E [X ] . (2.26)

Furthermore, it is assumed that the parameters H and the noise vector ε are uncorrelated, i.e. E
[
εHT

] =
E
[
HεT

]= 0.

Computing the posterior parameter PDF
So far, the definitions are given for the Likelihood, Prior and Evidence, which are needed to build the equation
for the first level of Bayesian Inference. According to Bayes’ theorem, the first level is defined as:

p(H|D∩MD,L) = p(YN |UN ∩H∩MD,L)p(H|MD,L)

p(YN |UN ∩MD,L)
. (2.27)

However, since it is known that both the Likelihood and the Prior are Gaussian distributions and the Evi-
dence is a scaling factor, the statistical properties of the posterior parameter PDF are found by evaluating
the numerator in eq. (2.27). In other words, the posterior parameter PDF is proportional to the numerator in
eq. (2.27), i.e.

p(H|D∩MD,L) ∝ p(YN |UN ∩H∩MD,L)p(H|MD,L). (2.28)

This offers opportunity to find the statistical properties of the posterior parameter PDF, such as the mean
and variance. Since scaling does not affect the shape of the distribution and therefore does not alter the
statistical properties of the distribution of interest, knowing the statistical properties of the scaled distribution
inherently yields the statistical properties of the posterior distribution. It can be shown that the product of
the Likelihood and the Prior, therefore the posterior parameter PDF as well, holds the following properties
[27, 33]:

p(H|D∩MD,L) ∼N
(
µpost,Σpost

)
µpost =

(
Σ−1

p +UΣ−1
ε UT

)−1 (
UΣ−1

ε YN +Σ−1
p µp

)
Σpost =

(
Σ−1

p +UΣ−1
ε UT

)−1

. (2.29)
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Equation (2.29) allows us to understand the meaning of an informative prior and informative training data.
First, Σpost is positively correlated with both Σp and Σε, meaning that Σpost will increase with the prior uncer-
tainty (variance) and the measurement noise variance. Second, on the other hand, Σpost is inversely corre-
lated with UUT . This means that if the regression matrix U contains little information, therefore UUT as well,
the posterior distribution in eq. (2.29) becomes more dependent on the specific choice of the prior. In other
words, as well described by Ljung [18], Verhaegen [34], the input signal UN should contain enough informa-
tion such that the regression matrix U is full rank. This mathematical notion is well known as persistency of
excitation. Similarly, in situations where the output is highly corrupted with noise, UΣ−1

ε UT becomes small
and forces Σpost to be relatively large on its own. To prevent this, the prior needs to contain enough informa-
tion such that Σp small enough to compensate for the high noise environment and to keep the variance on
the parameters relatively low.

2.2.2. Model Comparison
This section provides the second level of Bayesian Inference, which compares different alternative model
classes based on the available data. Suppose a model class set M contains nm different model classes. Again,
by using Bayes’ Theorem, the probability of an arbitrary model class MDi ,Li conditionally on the available
data can be computed via:

p[MDi ,Li |YN ∩UN ] = p(YN |UN ∩MDi ,Li )p[MDi ,Li ]

p(YN |UN )
. (2.30)

Here, p(YN |UN ∩MDi ,Li ) denotes the evidence as described in equation (2.27), which is weighted by the prior
probability p[MDi ,Li ]. The latter is a pre-assigned probability for the model class with which preferences
can be expressed for certain models structures, without involving the data. Subsequently, the probability in
eq. (2.30) can be used to calculate the Bayes’ factor, which quantifies the support for a model MDi ,Li over
another model MD j ,L j . The Bayes’ factor is given as:

Bi , j =
p[MDi ,Li |D]

p[MD j ,L j |D]
= p(YN |UN ∩MDi ,Li )p[MDi ,Li ]

p(YN |UN ∩MD j ,L j )p[MD j ,L j ]
. (2.31)

Here, p(YN |UN ∩MD,L) represents the evidence of eqs. (2.23) to (2.25) evaluated at YN . Regarding the prior
model probability p

[
MDi ,Li

]
, a reasonable approach would be to consider all model classes equally plausible

a priori, i.e.,

p
[
MD,L

]= 1

nm
∀ D ∈ D , L ∈ L. (2.32)

Consequently, the probability of a model in the prior MCD is dominated by the evidence, which is given in
eqs. (2.23) to (2.25).

The posterior distribution of MDi ,Li conditionally on the data D and the model class set M is found by
calculating the Bayes’ factor with respect to M0 and marginalizing over the model class set. This is formally
defined as [33]:

p[MDi ,Li |D∩M] = Bi ,0∑nm
m=0 Bm,0

. (2.33)

It is worth noting that the model comparison step is a prior act, which does not require any posterior distri-
butions of the parameters. This can be deduced from the calculation of the evidence in eq. (2.23), which is
only dependent on the prior distribution p(H|MD,L), the noise distribution Σε and the regression matrix U.
For that reason, the distribution in eq. (2.33) is referred to as the prior Model Class Distribution (MCD).

Furthermore, from a computational point of view, it would be advantageous to perform model compari-
son first before computing any posterior parameter PDFs, so that the candidate models that have no added
value can be excluded from the model class set M. However, in this report the performance of the complete
model class set are examined during both modeling and validation, hence no model class is left out.

2.2.3. Predictive Analysis
Bayesian Inference differentiates itself from traditional methods in making subsequent predictions regarding
some arbitrary quantity y. In conventional methods, a parameter class is tested and only one parameter vec-
tor H is accepted at some level of significance. However, this approach ignores model uncertainty, which may
lead to over-confident decisions. Bayesian predictive analysis incorporates this probabilistic information in
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the Robust Predictive PDF, which is known as Posterior Robust Predictive Analysis. In addition to the best
estimates (the mean of the PDF), this distribution also offers the uncertainty intervals of the predictions of
the system. This is formed by the parameter uncertainty and the noise corruption, which corresponds to the
variance of the Robust Predictive PDF.

However, this approach is implied by a single model class MD,L ∈ M. Using similar reasoning, rather than
picking one single model class, Bayesian Hyper Robust Predictive Analysis obtains predictions by summing
over the complete model set M weighted by each model class probability. By doing this, the means and
variances of all Robust Predictive PDFs are weighted by its level of significance and are merged together into
one robust predictive PDF, namely the Hyper Robust Predictive (HRP) PDF [3].

Robust Predictive Analysis
Given a model class MD,L , one is interested in estimating the quantity yN+1, which is defined as:

yN+1 = (UN+1)T H+ε(N +1). (2.34)

Similarly as in eqs. (2.23) to (2.25), the distribution of yN+1, i.e. p(yN+1|D∩MD,L) can be calculated analyti-
cally (given that the prior and likelihood are both Gaussian distributions). Gaussian Prior and Likelihood con-
sequently means that the posterior of H is normally distributed. This allows one to rewrite p(yN+1|D∩MD,L)
as a sum of Gaussian distributions. Consider the following posterior parameter PDF and noise distribution:

p(H|D∩MD,L) ∼N(µpost,Σpost)

ε(n) ∼N(0,σ2
ε ) ∀n.

Here it is assumed that the noise distribution is stationary and therefore constant throughout all time in-
stances. Following the derivation in eqs. (2.23) to (2.25), the Robust Predictive PDF yields:

p(yN+1|D∩Mi ) ∼N(µy ,σy )

µy = (UN+1)Tµpost

σy = (UN+1)TΣpost(UN+1)︸ ︷︷ ︸
Parameter Uncertainty

+ σ2
ε︸︷︷︸

Noise Corruption

. (2.35)

Equation (2.35) shows that both the parameter uncertainty and the noise corruption have an effect on the
variance of the Robust Predictive PDF.

Hyper Robust Predictive Analysis
Hyper Robust Predictive Analysis provides a systematic mechanism to combine different model classes in
making predictions. This method includes model uncertainty and it is demonstrated by, among others, Hoet-
ing et al. [15], Raftery et al. [25] that this approach may result in a decrease in prediction error.

Consider the competitive model class set

MD,L = {V (D,L) : D ∈ D,L ∈ L} , (2.36)

where V (D,L) denotes the Volterra model structure as described in section 2.1. Furthermore, the first N
observations are stored in D, i.e. D = (YN ,UN ). The posterior PDF is found by using the Total Probability
Theorem, i.e.,

p(yHRP|D∩M) = ∑
D,L

p(yN+1|D∩MD,L)p[MD,L |D∩M]. (2.37)

Here, each Robust Predictive PDF is weighted by p[MD,L |D∩M] from Eq. (2.33), which represents the relative
level of significance per model class. The Robust Predictive PDF p(yN+1|D∩MD,L) is found using eq. (2.35).
This method was verified by Trujillo-Barreto et al. [33], who applied the Bayesian formulation to the inverse
problem of finding the posterior current density in the brain to locate brain activity. The following example
helps in finding the generic expression for eq. (2.37)

Example 2. Consider the case with two model classes as described in Sec. 2.2.1 for yN+1:

M1 : y1 = UT
1 H1 +ε (2.38)

M2 : y2 = UT
2 H2 +ε, (2.39)
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with ε ∼N
(
0,σ2

)
considered to be stationary, H1 ∼N

(
µH1,ΣH1

)
and H2 ∼N

(
µH2,ΣH2

)
. For the ease of nota-

tion, the subscript N +1 is omitted in yi and Ui . To clarify, y1 = yN+1 and UT
1 = UT

N+1 defined by model class
MD1,L1 . Equivalently, y2 = yN+1 and UT

2 = UT
N+1 defined by model class MD2,L2 . The HRP PDF in eq. (2.37) can

then be written as:

p(yHRP|D∩M) = p(y1|D∩MD1,L1 ) p[MD1,L1 |D∩M]︸ ︷︷ ︸
β1

+p(y2|D∩MD2,L2 ) p[MD2,L2 |D∩M]︸ ︷︷ ︸
β2

, (2.40)

such thatβ1 = p[MD1,L1 |D∩M] andβ2 = p[MD2,L2 |D∩M]. Using equivalent reasoning as described in eqs. (2.23)
to (2.25), the statistical properties of p(yHRP|D∩M) can be found via:

p(yHRP|D∩M) ∼N(µHRP,σHRP) (2.41)

µHRP = E[
β1

(
UT

1 H1 +ε
)+β2

(
UT

2 H2 +ε
)]

=β1UT
1 µH1 +β2UT

2 µH2

σHRP = E[(
β1

(
UT

1 H1 +ε
)+β2

(
UT

2 H2 +ε
)−β1UT

1 µH1 −β2UT
2 µH2

)
(· · · )T ]

=β2
1UT

1 E
[
H1HT

1

]
U1 +β2

2UT
2 E

[
H2HT

2

]
U2 −β2

1UT
1 E[H1]µT

H1U1

−β2
2UT

2 E[H2]µT
H2U2 + (β1 +β2)2︸ ︷︷ ︸

=1

E[εεT ]

=β2
1UT

1

[
ΣH1 +����µH1µ

T
H1

]
U1 +β2

2UT
2

[
ΣH2 +����µH2µ

T
H2

]
U2

−(((((
((

β2
1UT

1 µH1µ
T
H1U1 −(((((

((
β2

2UT
2 µH2µ

T
H2U2 +σ2

ε

=β2
1UT

1 ΣH1U1 +β2
2UT

2 ΣH2U2 +σ2
ε .

Here, it is assumed that E[H1HT
2 ] = E[H1]E[HT

2 ] (independence). This assumption is not substantiated with
representative literature, however this simplifies the expression for the HRP PDF. This is discussed further in
section 5.1.1.

Having said this, the generic expression for HRP using Volterra Series is defined as:

p(yHRP|D∩M) ∼N
(
µHRP,σHRP

)
µHRP = ∑

D,L

(
p

[
MD,L |D∩M

]
UT

N+1µpost

)
σHRP = ∑

D,L

(
p

[
MD,L |D∩M

]2 (UN+1)TΣpost(UN+1)
)

︸ ︷︷ ︸
Parameter uncertainty

+ σ2
ε︸︷︷︸

Noise Corruption

. (2.42)

Here, the subscripts D,L are omitted in UN+1,µpost andΣpost, since its shape and values are inherently defined
by MD,L in p

[
MD,L |D∩M

]
. Furthermore, µpost and Σpost describe the mean and variance respectively of the

posterior parameter PDF in eq. (2.29). Equivalently as shown in the Robust Predictive PDF in eq. (2.37), from
eq. (2.42) it can be deduced that the variance of the HRP PDF is driven by two terms. On the one hand the
parameter uncertainty involved each model class and on the other hand the uncertainty caused by noise
corruption.

Note that in eq. (2.42) the variance of the noise corruption σε is considered to be stationary among dif-
ferent model classes. In practice, this value might be found via the non-linear optimization as discussed in
section 2.2.1, yielding in a different value per model class. In this situation, eq. (2.42) displays a simplified
representation.

2.3. Model Evaluation
During this study a variety of techniques will be used to evaluate the output of the system or to evaluate
the performance of the modeled system. First, the Signal-to-Noise Ratio (SNR) is elaborated. Second, the
conventional methods used in existing studies to evaluate the performance of a system is explained, including
the Root Mean Squared Error (RMSE) and the Variance Accounted For (VAF). Finally, the posterior MCD is
disclosed, which is used to evaluate the validation of the Predictive PDFs.
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Signal-to-Noise ratio
The Signal-to-Noise Ratio describes a ratio of the power in the ground truth signal with respect to the added
noise in decibel. This value can therefore only be calculated for the computer models, since the true noiseless
signal is not known for the cortical response data. The SNR is mathematically described as:

SNR = 20log10

(‖YN,true‖2

‖εN‖2

)
. (2.43)

Here, εN denotes the noise sequence for N time instances en ‖ ·‖2 denotes the 2-norm.

Root-Mean-Squared-Error
The Root-Mean-Squared-Error describes a measure of the difference between an estimator and the true val-
ues. It represents the root of the quadratic mean of these differences. The RMSE is mathematically described
as:

RMSE =
√

1

N

∑
n

(
ŷ(n)− ytrue(n)

)2. (2.44)

Here, ŷ(n) denotes the modeled output at time instance n and ytrue(n) is its corresponding true value. Fur-
thermore, N represents the sample size.

Variance-Accounted-For
The Variance-Accounted-For is used to evaluate the performance of a model by comparing the variance of the
output of the modeled system and the observations. The output is a percentage of the similarity in variance.
The VAF is mathematically described as:

VAF = 100% ·
(
1− var(ŷ − ytrue)

var(ytrue)

)
. (2.45)

Here, var(ŷ−ytrue) represents the variance of the difference between the modeled output and the true output.
Thus, having a constant difference yields a VAF of 100%.

Posterior Model Class Distribution
The posterior Model Class Distribution evaluates the performance of a single model class with respect to the
competitive model class set. The evaluation of a single model class is based on the Posterior Likelihood Fit
(PLF), which is described as:

p(YN |UN ∩MD,L)PLF =
∫

H
p

(
YN |UN ∩H∩MD,L

)
p

(
H|D∩MD,L

)
dH. (2.46)

Subsequently, the statistical properties of the are found in a similar fashion as described in eq. (2.23), which
yields:

p(YN |UN ∩MD,L)PLF ∼N
(
µPLF,ΣPLF

)
µPLF = UTµpost

ΣPLF = UTΣpostU+Σε.

(2.47)

By evaluating eq. (2.47) YN one finds a probability of observing the measurements given the model structure
and the posterior parameter PDFs. Logically, the greater the probability is, the better the proposed model
class fits the ground truth model, however this number itself does not say much since there is no maximum
which represents a perfect data fit (such as 100% VAF or 0 RMSE). In addition, the probability not only de-
pends on the average fit, but also on the length of the sample size. For this reason, the relative probability
between model classes in the model class set is found by computing the posterior Model Class Distribution,
which follows the procedure as described in section 2.2.2.

Doing so, however, one should be aware that no claim is being made regarding the performance of the
model with the highest probability in the posterior MCD with respect to the true underlying system. The only
statement made is that the relative performance of the model class with respect to the competitive model
class.





3
Computer Simulations

This chapter is devoted to the implementation of the discussed theory on two types of computer models,
namely the Volterra system and the Neural Network. First, section 3.1 discusses the different experimental
setups and introduces the two different ground truth models. Second, the modeling approach is explained
in section 3.2. Section 3.3 presents the acquired results of the discussed theory on the two different ground
truth models. Finally, section 3.4 concludes this chapter.

3.1. Experimental Setups
This section provides an overview of the experimental setups used for the computer simulations. First, sec-
tion 3.1.1 elaborates the Volterra ground thruth model structure. Second, the Neural Network ground truth
system is explained in section 3.1.2.

3.1.1. Volterra
In this experiment, the ground truth system is modeled as a second degree Volterra series with lag 20 (D = 2,
L = 20 in eq. (2.6)). The kernel parameters, i.e. h0, h1(τ1), h2(τ1,τ2) are drawn from a zero mean Gaussian
distribution with finite variance Σ. Here, Σ is constructed according to the theory proposed by Birpoutsoukis
et al. [6], as discussed in section 2.2.1. The corresponding hyperparameters are shown in table 3.1.

Table 3.1: Volterra ground truth: Hyperparameters used to construct the prior variance matrix

θhp Value
c0 0.95
c1 0.08
α1 0.32
c2 0.59
αu 0.72
αv 0.65

The resulting Volterra kernels are illustrated in fig. 3.1. Here, fig. 3.1a illustrates the first order Volterra kernel.
The x-axis denotes the lag variable τ1 and the y-axis depicts the corresponding value of the kernel. Figure 3.1b
illustrates the second order kernel. Here, the x-axis and y-axis denote the lag variables τ1 and τ2 respectively
and the z-axis denotes the corresponding Volterra kernel value. Furthermore, the zeroth order Volterra kernel
is drawn from the distribution N(0,0.95). The output of the Volterra system Ytrue is exposed to mild noise
circumstances, such that ε∼N (0,IN ). This value is chosen so that the SNR is around 20 dB. This results in the
observation vector YN .

This experiment has the following objectives:

• Given that the ground truth model structure is included in the competitive model candidate set, the
first objective is to test the Bayesian Inference algorithm whether it is able to reconstruct the ground
truth model.

17
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(a) First order Volterra system (b) Second order Volterra system

Figure 3.1: Ground truth Volterra model. Left: h1(τ1), right: h2(τ1,τ2).

• As shown in eq. (2.27), in low SNR systems the posterior distribution becomes more dependent on the
specific choice of the prior. The second objective is to expose the contribution of an informative prior
on the performance of the model averaging process in low SNR systems with respect to an uninforma-
tive prior.

3.1.2. Noisy Neural Network
In this experiment, the ground truth system is modeled as a Neural Network as illustrated in fig. 3.2. The
neural network contains of one input layer of size 11, one hidden layer of size 10 and one output layer of size 1.
The nodes of the layers all have a linear activation function and the weight matrices M1 and M2 include a bias
B1 and B2, of which its corresponding values are uniformly drawn from U (0,5). The true output of the system
y(n)true is first exposed to mild noise circumstances, i.e. ε ∼ N(0,IN ). Subsequently, the understand the
influence of noise corruption, in the second part the system is highly corrupted with noise, i.e. ε∼N(0,70·IN ).
Doing so, the SNR is around −30dB.

Having said this, the experiment has the following objectives:

• The first goal is to investigate the consequences of the Bayesian Inference using Volterra Series algo-
rithm when applied to a ground truth model that differs from the competitive model class set.

• It is expected that noise corruption will affect the uncertainty margins of the parameters, consequently
playing an important role in the model averaging process. The second objective is to understand the
effect of high noise environments (low SNR) on performance of the model averaging process.

3.2. Modeling approach
In this section the modeling approach is elaborated. First, the competitive model class set is explained in
section 3.2.1. Second, the chosen excitation signal is elaborated in section 3.2.2.

3.2.1. Competitive Model Class Set
To deal with the uncertainty of which model class is most capable to represent the systems dynamic be-
haviour, a set of competitive model classes is chosen. Here, M represents a set containing the candidate
model classes, which is mathematically defined as:

MD,L = {
V (D,L) : D ∈ D,L ∈ L

} ∈ M. (3.1)

Here, V (D,L) denotes the Volterra model structure as discussed in section 2.1. D,L represents the two dimen-
sional space in which the candidate models lie, which is defined as:

D = {1,2}

L = {10,20,30,40,50,60} .
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Hence, the candidate model class set contains of 12 different model classes (nM = 12).
Throughout the experiments, the candidate model classes are constructed with either an uninformative

or an informative prior. When designing the uninformative prior, we seek a balance in the freedom the algo-
rithm is given to tune the parameters. Lowering the variance forces the system to describe the input-output
relationship with fewer parameters, since one is relatively certain a priori that the parameters lie around 0.
Equivalently, when the variance of the prior is greater, it gives the algorithm freedom to describe the system
with more parameters. Hence, the choice of variance influences the sparsity of the posterior parameter PDF.
Having said this, the uninformative prior is defined as

p(H|MD,L) ∼N
(
0,0.1 · InH

)
, (3.2)

where InH ∈ RnH×nH denotes the identity matrix and 0 ∈ RnH is a zero vector. The subscripts D,L are omitted
here, since the value of nH is inherently defined by MD,L . The scaling factor 0.1 (α in eq. (2.17)) is found by
experimenting and is chosen sufficiently small enough such that sparsity is supported.

The informative prior is constructed according to the method proposed by Birpoutsoukis et al. [6] and
described in section 2.2.1. The hyperparameters are found using the non-linear optimization solver Sequen-
tial Least Squares Programming (SLSQP) in Python. Although the objective function of the hyperparameter
optimization is neither linear nor convex and therefore requires a multi-start optimization technique, during
the research it appeared that this makes a minimal difference. Therefore, to reduce computational effort, the
hyperparameters were found with a single run.

3.2.2. Excitation Signal
According to Ljung [18], the input sequence UN should contain enough information in order to identify par-
ticular input-output relations of the system of interest. It is of importance, because as the regression matrix
U less information and thus UUT contains less information, the posterior distribution in eq. (2.29) becomes
more dependent on the specific choice of the prior. The amount of information incorporated in the regres-
sion matrix is described by the notion of persistency of excitation [34]. The singular value decomposition
(SVD) allows one to factorize the regression matrix in order to reveal the singular values, which represent a
quantification the persistency of excitation.

Figure 3.3 illustrates the singular values of the regression matrix U for six different Volterra model struc-
tures as discussed in section 2.1. The input sequence UN is constructed in two different ways. The first (blue
line) input sequence is constructed with a multisine signal as proposed by Vlaar et al. [36], who used the
odd frequencies in the range of 1 Hz to 23 Hz to generate the signal. This input signal is also been used in
the dataset provided for this study. Alternatively, the excitation sequence is constructed as a Gaussian White
Noise (GWN), i.e. u(n) ∼N(0,1) (orange dotted line).

In fig. 3.3, it is shown that the singular values decrease significantly towards zero as the degree of the
Volterra series increases for multisine input realizations. Consequently, the eigenvalues of UUT in eq. (2.29)
decrease significantly towards zero, which means that the regression matrix U becomes less decisive with

Figure 3.2: The ground truth Neural Network model structure
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Figure 3.3: The singular values of the regression matrix U for six different model structures constructed with both a multisine input and
a GWN input.

respect to the posterior distribution of the parameters compared to the prior distribution. In situations like
this, it is important that the prior distribution contains definite and substantive information regarding the
parameters of interest. Although fig. 3.3 illustrates a similar decrease in singular values for GWN inputs, it
turns out that the singular values are generally significantly higher than the singular values of U constructed
with a multisine input, indicating that the regression matrix contains more information.

A side note should be made. Theoretically, a GWN input signal is ideal, but in practice this is often not
possible due to hardware limitations. This combined with the fact that the dataset has already been made
available with the multisine input, the latter is used in this study. One should be aware that this may nega-
tively affect the performance of the candidate model class set.

3.3. Results
This section provides the results of the experiments done. First, in section 3.3.1 the algorithm is tested on a
Volterra ground truth system. Second, the results of the approach applied on the ground truth Neural Net-
work are provided in section 3.3.2.

3.3.1. Volterra
Figure 3.4 shows the predictions of the system identification phase during the final 250 time steps for the
twelve model classes. The posterior parameter PDF is obtained with an uninformative prior and the system
acts in a low noise environment, i.e. ε(n) ∼ N (0,1) ∀ n. The figure illustrates the high probability regions
of the predictions of each model class obtained with the posterior parameter distribution functions. The
probability margins are acquired with the variance at time instance n, i.e. σn , and σ, 2σ and 3σ denote the
68.2%, 27.2% and 4.4% probability margins respectively. Furthermore, YN is the noise corrupted observation
sequence. The corresponding prior model class distribution is illustrated in fig. 3.5.

The following is observed from fig. 3.4 and fig. 3.5:

Observation 1. In fig. 3.4, the first degree candidate model classes M1,· cannot cope with the ground truth
model complexity, which means that the noisy observation sequence YN acts in low probability regions.
This corresponds to the first six model classes in the prior model class distribution in fig. 3.5, where it
can be seen that all the first degree model classes have zero probability.

Observation 2. At first sight, it seems that the second degree candidate model classes perform equally well.
That is, the observations YN are in the high probability regions in fig. 3.4, however fig. 3.5 shows that
only M2,20 has a probability in the model class distribution.

The second observation is in line with the study by Muto and Beck [22], who stated that the log-evidence can
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Figure 3.4: The performance of the competitive model class set while modeling the final 250 time steps of the Volterra ground truth
system

Figure 3.5: The prior MCD of the competitive model obtained with an uninformative prior
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Figure 3.6: Relative Entropy vs. log-datafit of the second degree model classes

Table 3.2: Volterra ground truth: evaluation of the Log-Evidence for the second degree model classes

M2,10 M2,20 M2,30 M2,40 M2,50 M2,60

ln p[YN |UN ∩MD,L] -2324.98 -1608.34 -1624.11 -1626.43 -1701.80 -1748.55

be rewritten as:

ln
[
p(YN |UN ∩MD,L)

]
︸ ︷︷ ︸

Log-Evidence

=
∫

ln
[
p(YN |UN ∩H∩MD,L)

]
p(H|D∩MD,L)dH︸ ︷︷ ︸

Posterior Log-Likelihood fit

−
∫

ln

[
p(H|D∩MD,L)

p(H|MD,L)

]
p(H|D∩MD,L)dH︸ ︷︷ ︸

Relative Entropy

.
(3.3)

Here, the first part represents the posterior data fit of the log-likelihood function and the second part rep-
resents the information gained from D to update the parameters H, also known as the Relative Entropy or
Kullback-Leibler Divergence [17, 29]. The log evidence is therefore a combination of a data fit term and a
penalty term for models that extract more information from the data. Regarding the Relative Entropy, it rep-
resents how different a PDF is relative to a reference distribution. The exact mathematical equation for two
arbitrary Gaussian distributions in Rn , P1 ∼N(µ1,Σ1) and P2 ∼N(µ2,Σ2), is derived by Duchi [9] and is given
by:

D(P1||P2) = E
[
logP1 − logP2

]
= 1

2

(
log

detΣ2

detΣ1
−n + tr(Σ−1

2 Σ1)+ (µ2 −µ1)TΣ−1
2 (µ2 −µ1)

)
.

(3.4)

Figure 3.6 illustrates the comparison between the Relative Entropy and the log-data fit of the second de-
gree candidate model classes. Here, the orange bar graph is found by evaluating the posterior log-likelihood,
i.e. eq. (2.47), for the measured values YN . While modeling, this represents the fit of each model class. The
blue bar graph denotes the Relative Entropy per model class. In fig. 3.6, it can be seen that the Relative Entropy
increases as the model structures become more complex (except M2,10), which acts as a penalty in eq. (3.3).
Although the posterior datafit increases as the model structures become more complex, it appears that the
relative entropy increases faster than the data fit term, consequently meaning that M2,20 is the most probable
model structure. This is substantiated in table 3.2. The table depicts the evaluation of the log-evidence as
defined in eq. (3.3) set out per model class, where it also appears that M2,20 performs best. This results in the
model class distribution as shown in fig. 3.5.

Figure 3.7 shows a simplified representation of the posterior parameter PDF of model class M2,20. In
fig. 3.7a, the orange line denotes the true parameters of the ground truth system and the blue line represents
the mean of the posterior parameter PDF. Figure 3.7b shows the variance matrix of the posterior parameter
PDF, i.e. Σpost in eq. (2.29). The axes denote the parameters involved in the model class, such that the di-
agonal entries represent the variance of the parameters and the off-diagonal entries depict the covariance
between parameters. Figure 3.7b shows that the off-diagonal entries of the variance of the posterior distri-
bution change only minimally due to the acquired observations. For this reason, the uncertainty interval in
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(a) Comparison between the true and estimated parameters (b) Variance of the estimated parameters

Figure 3.7: The posterior parameter PDF compared with the ground truth parameters obtained with an uninformative prior

fig. 3.7a, which illustrates the uncertainty associated with the identification of the parameters, is determined
using the diagonal entries of the variance of the multivariate posterior distribution. Although the ground
truth parameters do not match the mean of the posterior parameter PDF, it remains within the σ-interval
(µ±σ), which corresponds to a 68.2% probability. Knowing that the posterior distribution is a Gaussian, this
region contains the parameters with the highest probability. However, looking at fig. 3.7a, this area is rel-
atively stretched compared to the mean of the distribution, which means that the mean automatically lies
in a lower probability region compared to situations when there is less uncertainty present about what the
parameters are. This uncertainty affects subsequent predictions in eq. (2.35), hence closing this interval is
advantageous for making predictions and the uncertainty involved.

A proper method to do this is by imposing informative prior knowledge. Here, the method discussed in
section 2.2.1 introduced by Birpoutsoukis et al. [6] is applied. Figure 3.8 illustrates the resulting prior MCD
and fig. 3.9 depicts the comparison between the posterior parameter PDF obtained with an informative prior
and the ground truth parameters. The following is observed from this:

Observation 1. Not only is the average fit of the parameters better in fig. 3.9a compared to fig. 3.7a, the un-
certainty has also decreased significantly. By suppressing the parameter uncertainty, the forecast un-
certainty also remains low in eq. (2.35).

Observation 2. By including an informative prior, the model class distribution is no longer as decisive as it
was with the obtained parameters with an uninformative prior in fig. 3.5.

The second observation builds on the earlier discussed arguments following eq. (3.3), more specifically the
Relative Entropy. The Relative Entropy is outlined in fig. 3.10 for the twelve different candidate model classes.
Here, the blue bar graph denotes the Relative Entropy of the model classes obtained with an uninformative

Figure 3.8: Prior MCD obtained with an informative prior
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(a) Comparison between the true and estimated parameters (b) Variance of the estimated parameters

Figure 3.9: The posterior parameter PDF compared with the ground truth parameters obtained with an informative prior

Figure 3.10: Relative Entropy of the twelve candidate model classes compared between the informative and uninformative prior

prior and the orange bar graph represents the Relative Entropy of the model classes obtained with an informa-
tive prior. The figure shows that the modelsM2,10-M2,60 have an increasing Relative Entropy for model classes
constructed with an uninformative prior, meaning that the relative entropy compensates for the amount of
information gained from the data in eq. (3.3). In contrast, the Relative Entropy remains at a comparable level
for the candidate model classes found with an informative prior, which means that the information obtained
between the prior and posterior from the data is relatively low. This can be explained because during the hy-
perparameter optimization procedure as much information as possible was already extracted from the data
and embedded in the prior knowledge, by maximizing the marginal likelihood. So the prior contains a cer-
tain amount of information so that Bayesian Inference updates the parameters only minimally. Thus, in the
current situation, imposing an informative prior influences the prior MCD negatively.

So far, an analysis has been done how different priors influence the uncertainty of the estimated parame-
ters and how this affects the prior MCD. The next section examines how this affects making forecasts.

Predictive Analysis
Figure 3.11 illustrates the posterior MCD for the competitive model class set obtained with an uninformative
prior evaluated for the validation dataset. The graph shows two different PDFs. First, the blue bar graph
displays the relative probability of the competitive model class set excluding the HRP. This bar graph is used
to understand the performance of the separate model classes with respect to each other. The orange bar
graph displays the MCD including the HRP. This graph is used to understand the performance of the HRP
compared to the competitive model class set. In addition, table 3.3 depicts the performance of the mean of
the competitive model class set and the HRP. The RMSE and VAF are found by comparing the mean of the
respective distribution with the true value of the validation set Ytrue,val.

From fig. 3.11 it is observed that the posterior MCD is in line with the prior MCD in fig. 3.5, indicating
that, given the circumstances, Bayesian Inference using Volterra Series is a reliable method to reconstruct
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Figure 3.11: Predictive posterior MCD obtained with an uninformative prior

Table 3.3: Volterra ground truth: performance of candidate models obtained with an uninformative prior

M1,10 M1,20 M1,30 M1,40 M1,50 M1,60 M2,10 M2,20 M2,30 M2,40 M2,50 M2,60 HRP
RMSE 6.08 6.08 6.09 6.1 6.07 6.08 0.59 0.11 0.18 0.2 0.25 0.26 0.11

VAF [%] 36.02 36.04 35.9 35.68 36.21 36.13 99.4 99.98 99.95 99.93 99.89 99.88 99.98

the ground truth model structure, which subsequently performs best during the validation phase. This is
supported by table 3.3, where it is found that M2,20 performs best in terms of RMSE and VAF, namely 0.11 and
99.98% respectively.

Equivalently, fig. 3.12 illustrates posterior MCD of the competitive model class set obtained with an in-
formative prior. Here it can be seen that the second degree model classes with lag 20 and onward perform
(almost) equally well in the posterior MCD. This is in contrast with the model classes obtained with an unin-
formative prior, where M2,20 is strongly favored by the data. Hence, while using an uninformative prior PDF,
the model classes M2,30 −M2,60 are noticeable overfitted during modeling. Imposing an informative prior
prevents the too complex model classes from being overfitted during modeling.

This is also supported by table 3.4. The table shows the fit of the mean of the respective distribution by
evaluating the RMSE or the VAF for the true underlying signal Ytrue,val. It can be seen that both the RMSE and
the VAF remain at a comparable level while increasing the model complexity more than necessary. In con-
trast, the performance of the RMSE and VAF decrease as the model complexity increases for the model classes
obtained with an uninformative prior in table 3.3. This supports the argument that these model classes are
overfitted.

The mentioned results are a direct consequence of the way the prior distribution is determined. The mini-
mization of the objective function in eq. (2.21) is constrained by a zero-mean prior distribution, which means
that the optimization algorithm pre-tunes the parameters towards zero, i.e. low variance, based on the input-
output relationship available. This is substantiated by fig. 3.13. The figure shows the mean of the posterior
parameter PDFs for the second degree model classes including the uncertainty levels. For each subfigure, the
x-axis denotes the parameters involved in the Volterra kernel and the y-axis denotes its corresponding value.
Here, it can be seen that the mean of the posterior p(H|D∩MD,L) is steered towards zero as the lag becomes
larger. The non-zero parameters that remain are those that correspond to the model structure of M2,20.

The HRP PDFs obtained with an uninformative and informative prior are illustrated in figs. 3.14a and 3.14b

Figure 3.12: Predictive posterior MCD obtained with an informative prior
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Table 3.4: Volterra ground truth: performance of candidate models with an informative prior

M1,10 M1,20 M1,30 M1,40 M1,50 M1,60 M2,10 M2,20 M2,30 M2,40 M2,50 M2,60 HRP
RMSE 6.08 6.08 6.09 6.1 6.08 6.07 0.54 0.09 0.1 0.1 0.1 0.1 0.09

VAF [%] 36.04 36.04 35.97 35.68 36.05 36.35 99.49 99.99 99.98 99.98 99.98 99.98 99.99

Figure 3.13: Posterior parameters of the second degree model classes

and the corresponding MCDs are illustrated in figs. 3.11 and 3.12 respectively. As expected from fig. 3.5, the
HRP obtained with an uninformative prior performs equally well in a Bayesian sense as M2,20. This is also
reflected in terms of RMSE and VAF in table 3.3, where both outperform the other candidate models, having
a RMSE and VAF of 0.11 and 99.98% respectively. The HRP PDF obtained with an informative prior, however,
has a lower probability in the MCD in fig. 3.12 compared with the averaged model classes M2,20 −M2,60, in-
dicating that, given the circumstances, averaging over the model class distribution leads to false confidence.
This is supported in table 3.4, since the model classes with which M2,20 is averaged perform slightly worse in
terms of RMSE and VAF.

(a) Uninformative prior (b) Informative prior

Figure 3.14: Hyper Robust Predictions
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This experiment has shown that averaging over the model class set does not necessarily lead to improved
results. In the situation where the uninformative prior was used, it turned out that Bayesian Inference was
well capable of reconstructing the ground truth model structure (p

[
M2,20|D∩M

] = 1), therefore only aver-
aging over a single model class. During validation this model class, as well as the HRP, performed best in
terms of RMSE, VAF and the predictive MCD. In contrast, using an informative prior HRP has had a negative
influence on the performance of the forecast, where it turned out that it is less likely that the noisy observa-
tions YN,val are produced by the HRP with respect to M2,20 −M2,60. In retrospect, it would have been wise
to continue with the model that performed best in the model class distribution (M2,20 in fig. 3.8), as it also
performed best in the validation phase.

There are, however, some important comments to report regarding the ground truth model structure
with respect to EEG signals. It is well known that EEG signals are usually highly corrupted with noise. Con-
sequently, increasing noise corruption may disrupt the model class distribution in figs. 3.5 and 3.8, such that
the best performing model class does not necessarily outperform the other model classes during the valida-
tion phase. Furthermore, the experiments are done knowing that the ground truth model structure is part of
the model class set. However, in reality, it is not plausible that the relation between wrist joint manipulations
and the cortical responses behaves like a Volterra Series. Having said this, in the next experiment the ground
truth system is modeled as a Neural Network and throughout the experiment the noise is increased.

3.3.2. Noisy Neural Network
The previous experiment assumed that the system of interest was in a low noise environment. However, it
is well known that EEG signals have a poor SNR, ranging between -10db and -40db [35, 36]. In addition, in
section 3.3.1 it was assumed that the ground truth system has a Volterra structure, however, it is not likely that
the underlying model has the same structure as the candidate models. In order to mimic the human nervous
system, the ground truth system is adjusted such that it exhibits non-Volterra and non-linear dynamics and
is highly corrupted with noise. First, the system is considered under mild conditions. This is to examine the
performance of the Bayesian Inference algorithm knowing that the ground truth system structure does not
match any of the models in the model class set. Second, the system is considered under tough conditions,
meaning that the noise corruption is increased such that the SNR ranges between 0dB and -30dB.

Mild conditions
Figure 3.15 illustrates the prior MCD obtained with an uninformative prior for the NN ground truth system in
low-noise conditions, i.e. ε(n) ∼N(0,1) ∀ n. Furthermore, table 3.5 depicts the corresponding performance
of the mean of the respective model class expressed in terms of the VAF and the RMSE and fig. 3.16 illustrates
the posterior MCD, both evaluated during the validation phase.

In contrast to the system identification of the Volterra ground truth system, using the current modeling
approach, Bayesian Inference is not able to find the model class in the prior MCD that performs best during
the validation phase. In table 3.5, M1,20−M1,60 and M2,20 perform equally well, having an approximate RMSE
and VAF of 0.77 and 99.33% respectively. The prior MCD, however, indicates full confidence for M2,60, which
performs worse in terms of RMSE and VAF, respectively 1.53 and 97.67%. This misconception is supported
in fig. 3.16, which shows that the first degree model classes M1,20 −M1,60 have a higher probability in the
posterior MCD.

Furthermore, comparing table 3.5 with fig. 3.16 reveals an additional advantage using Bayesian Infer-

Figure 3.15: Prior MCD obtained with an uninformative prior
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Table 3.5: NN ground truth: performance of candidate models with an uninformative prior

M1,10 M1,20 M1,30 M1,40 M1,50 M1,60 M2,10 M2,20 M2,30 M2,40 M2,50 M2,60 HRP
RMSE 0.85 0.77 0.77 0.77 0.77 0.77 0.84 0.77 0.8 0.95 1.23 1.53 1.53

VAF [%] 99.2 99.33 99.33 99.33 99.33 99.33 99.22 99.35 99.32 99.09 98.49 97.67 97.67

Figure 3.16: Predictive posterior MCD obtained with an uninformative prior

ence for model evaluation. Based on the RMSE and VAF with respect to Ytrue,val, table 3.5 indicates that the
model classes M1,20 −M1,60 and M2,20 perform equally well, however, these calculations do not include ei-
ther parameter or noise uncertainty. Besides, the true noiseless output measurements Ytrue,val are often not
available. The predictive MCD in fig. 3.16 not only calculates the model probability based on the noisy ob-
servations YN,val, it also includes uncertainty regions that are used to determine the relative model fit. Con-
sequently, it is more certain that the model class M1,60 followed by M1,40 corresponds with the ground truth
model compared to the model class set.

In section 3.3.1 it is discussed that the specific choice for the prior distribution influences the model dis-
tribution as well as the performance of the algorithm. While modeling the Volterra ground truth system, the
chosen prior distribution, i.e. p(H|MD,L) ∼N (0,0.1IN ), appeared to contain sufficient information to find the
model class in the prior MCD which subsequently performed best during validation. In the current situation,
the algorithm is not provided with a sufficient amount of information during modeling to detect the right
model class which performs best during validation. In figs. 3.15 to 3.16, the model class M2,60 is clearly over-
fitted during modeling and it requires a penalty in order to move the probability in the prior MCD towards the
first degree model classes. Recall that the Relative Entropy in the evidence, as described in section 3.3.1, acts
as a penalty in order to compensate the Log-Likelihood fit for complex models for the amount of information
transferred from the prior parameter PDF to the posterior parameter PDF. Since the more complex model
classes contain more parameters and can therefore transfer more information from the prior to the posterior
parameter PDF, it is expected that by raising the prior variance the Relative Entropy increases faster for more
complex model classes, since it provides the algorithm more freedom in tuning the parameters.

In the following experiment the prior variance is altered slightly in order to resolve the issues mentioned
above. Here, the prior PDF is defined as:

p(H|MD,L) ∼N
(
0,0.4 · InH

)
. (3.5)

Figure 3.17: Prior MCD obtained with the altered prior p(H|MD,L ) ∼N
(
0,0.4 · InH

)
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Figure 3.18: Predictive posterior MCD obtained with the altered prior p(H|MD,L ) ∼N
(
0,0.4 · InH

)
Table 3.6: NN ground truth: performance of candidate models obtained with the altered prior p(H|MD,L ) ∼N

(
0,0.4 · InH

)
M1,10 M1,20 M1,30 M1,40 M1,50 M1,60 M2,10 M2,20 M2,30 M2,40 M2,50 M2,60 HRP

RMSE 0.81 0.76 0.77 0.77 0.77 0.77 0.81 0.76 0.76 0.78 0.84 0.92 0.76
VAF [%] 99.24 99.33 99.33 99.33 99.33 99.33 99.25 99.34 99.34 99.31 99.22 99.08 99.33

Figure 3.17 illustrates the prior MCD with the altered prior variance and table 3.6 and fig. 3.18 show the corre-
sponding performance during the validation phase. It can be seen that the favoured prior model class M1,20

performs equally well as the model classes M2,20 and M2,30 in terms of RMSE and VAF, respectively 0.76 and
99.33%. However, the model classes M1,40 and M1,60 remain the best performing model classes in terms of
the posterior MCD in fig. 3.18. This indicates that these model classes describe the output signal with more
certainty.

Here, the assumption was made that by raising the prior variance the Relative Entropy increases faster for
more complex model classes. Figure 3.19 illustrates the comparison of the Relatieve Entropy between the two
different priors. The blue and the orange graph denote the Relative Entropy for p(H|MD,L) ∼N

(
0,0.1 · InH

)
and p(H|MD,L) ∼ N

(
0,0.4 · InH

)
respectively. Here, σp denotes the scaling factor for the variance. First of

all, it can be seen that the Relative Entropy for σp = 0.1 is in general higher than the Relative Entropy for
σp = 0.4. This indicates that in the initial situation the algorithm updates the prior PDF more rigorously
compared to the second situation. Second, as the model classes become more complex, the Relative Entropy
decreases for σp = 0.1, while it increases for σp = 0.4. Intuitively, the latter makes more sense, given that
it imposes a penalty on more complex models. The graph shows that there are inaccuracies present in the
former situation, which comes to light by evaluating the prior and posterior MCD.

However, in none of the experiments done led Bayesian Model Averaging to improved results. In both the
Neural Network experiments the prior MCD was decisive, providing full probability to a single model class.
It was demonstrated in section 3.3.1 that imposing an informative prior influences the prior MCD in a sense

Figure 3.19: The Relative Entropy comparison for two different prior variances
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that it is less decisive. In these situations the question, however, is which preconditions must be established
such that model averaging yields in more certain predictions. This is explained in the following illustrative
example.

Example 3. Consider the two Gaussian distribution functions predicting an arbitrary value y as shown in
fig. 3.20. Here, the blue line represents an arbitrary model class which performs best in the MCD (e.g. M2,20 in
fig. 3.8) and the orange line represents the HRP, which is averaged over at least two model classes.

Figure 3.20: Two normal distributions

It is known that both PDFs have an equal mean µ (0) and a different variance, such that σMD,L > σHRP. To
make sure that the HRP is in favour with respect to MD,L , the measured value of y should lie in between the
intersections of both distributions, since then p(y)HRP > p(y)MD,L (green line). Having said this, the distance
between the mean of the prediction µ and the measured value is bounded by half the distance between the
intersections.

For two zero-mean normal distributions, it can be shown that this intersection equals:

yintersect =
σHRP σMD,L

√
2ln

(σMD,L
σHRP

)
√
σ2
MD,L

−σ2
HRP

. (3.6)

Here, σHRP and σMD,L denote the standard deviation of HRP and MD,L respectively. During the following
experiment it is assumed that the parameter uncertainty does not change with different values for noise cor-
ruption, therefore, according to eq. (2.42), the difference between the value of the variance of the HRP and MD,L

Figure 3.21: Relation between σHRP and yintersect
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remains the same as the noise variance increases. Having said this, the variance of MD,L can be written as:
σMD,L =σHRP +β, where β denotes the constant difference in variance. Equation (3.6) then becomes:

yintersect =
(
σ2

HRP +βσHRP
)√

2ln
(
1+ β

σHRP

)
β

. (3.7)

Since it is assumed that the uncertainty parameter does not change as the noise increases, σHRP increases lin-
early with the noise variance. The corresponding relation between σHRP and yintersect is illustrated in fig. 3.21.

The figure shows the exponential increase of yintersect with respect to σHRP for various values of β. It can be
seen that yintersect increases asβ decreases. Furthermore, yintersect grows exponentially asσHRP increases linearly.
Therefore, it is expected that model averaging yields more confident results in environments with increased
uncertainty.

Noisy conditions
In the current situation, the NN ground truth system is exposed to noisy conditions, i.e. ε ∼ N (0,50) ∀ n.
First, the model classes are obtained with the prior p(H|MD,L) ∼ N

(
0,0.1 · InH

)
. Figure 3.22 illustrates the

prior MCD and fig. 3.23 and table 3.7 display the performance of each model class based on the validation
data. Similarly as described for the Neural Network exposed under mild conditions, the model classM2,60 has
incorrectly been assigned the highest probability in fig. 3.22, since it does not perform best during validation
with respect to the model class set. In fig. 3.23, it is most certain that the observed noise corrupted output
data is generated byM2,50. It is difficult to assign a best performing model class based on table 3.7, since none
of the model classes outperforms the model class set both in terms of RMSE and VAF. In addition, the over-
all performance of the mean of the model classes has decreased significantly compared to the experiments
under mild conditions in table 3.5.

This deterioration in performance can be traced back to the calculation of the posterior parameter PDF
in eq. (2.29), specifically the balance between the prior variance Σp and the influence of the acquired data
UΣ−1

ε UT . It is discussed in section 3.2.2 that the regression matrix U is close to singular for higher degree
Volterra model classes. With increasing noise corruption, Σε increases and therefore the amount of informa-
tion embedded in UΣ−1

ε UT decreases even further. Consequently, the dependency of the specific choice of
the prior rises. During this experiment an attempt was made to improve the results by adjusting the factor
that scales the identity matrix of the prior variance, but this was unsuccessful. This means that the identity
matrix is not sufficient and an alternative method must be used to design the prior. Therefore, in the fol-
lowing experiment the method proposed by Birpoutsoukis et al. [6] as described in section 2.2.1 is applied to
design the informative prior.

Figure 3.24 illustrates the prior MCD obtained with an informative prior and table 3.8 and fig. 3.25 depict
the corresponding performance of the model class set based on the RMSE, VAF and posterior MCD respec-
tively during the validation phase. It appears from the prior MCD in fig. 3.24 that M2,50 is most likely to match

Figure 3.22: Prior MCD in noisy conditions obtained with an uninformative prior

Table 3.7: NN ground truth: performance of candidate models in noisy conditions obtained with an uninformative prior

M1,10 M1,20 M1,30 M1,40 M1,50 M1,60 M2,10 M2,20 M2,30 M2,40 M2,50 M2,60 HRP
RMSE 22.63 22.34 22.36 22.39 22.3 22.31 16.9 14.1 13.0 13.65 14.25 14.49 14.49

VAF [%] 52.07 62.05 61.95 61.53 61.91 61.88 -4.35 22.21 22.6 -16.18 -42.78 -67.74 -67.74
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Figure 3.23: Predictive posterior MCD in noisy conditions obtained with an uninformative prior

the system identification data, followed byM2,60, M2,40 andM2,10. Using conventional methods, M2,50 would
have been picked for validation yielding in a RMSE and a VAF of 2.84 and 94.37% respectively. However, look-
ing at table 3.8, excluding M2,10, M2,50 is the worst performing model class in terms of RMSE and VAF. This is
also reflected in fig. 3.16, where it appears that M2,50 is the least likely to match the observed output data. In
such cases, it makes sense to be able to average the worst-performing model class with better model classes,
so that the HRP ultimately performs better.

This is supported by the RMSE and VAF of the HRP in table 3.8 and the posterior MCD in fig. 3.25. The
HRP performs better in terms of RMSE and VAF, namely 2.67 and 95.12% to 2.84 and 94.37% respectively.
The posterior MCD in fig. 3.25 also favors the HRP over M2,50, however, the algorithm still has trouble finding
the best model class during system identification which performs best during validation, since the HRP is
outperformed by the model classesM1,10−M1,60, both in terms of RMSE and VAF in table 3.8 and the posterior
MCD in fig. 3.25.

Furthermore, based on the RMSE and VAF, it can be seen that imposing an informative prior yield a sig-
nificant improvement in performance in table 3.8 compared to table 3.7. These results confirm that the prior
has more influence on the performance of the competitive model class set when the information embed-
ded in UΣ−1

ε UT decreases, either caused by increased noise corruption or an excitation signal which is not
persistent for the degree for the model class to be determined.

3.4. Conclusion
In this chapter, the Bayesian Inference algorithm is applied on two different computer models. First, given
that the ground truth system is a Volterra system and the model class set is obtained with an uninformative
prior, the algorithm was able to reconstruct the ground truth model. The respective model class appeared to
be most likely in the posterior MCD obtained with the validation dataset and also performed best in terms

Figure 3.24: Prior MCD in noisy conditions obtained with an informative prior

Table 3.8: NN ground truth: performance of the candidate models in noisy conditions obtained with an informative prior

M1,10 M1,20 M1,30 M1,40 M1,50 M1,60 M2,10 M2,20 M2,30 M2,40 M2,50 M2,60 HRP
RMSE 2.28 2.13 2.13 2.14 2.14 2.14 2.93 2.41 2.39 2.58 2.84 2.59 2.67

VAF [%] 96.64 97.45 97.49 97.45 97.41 97.4 93.2 96.03 96.19 95.33 94.37 95.32 95.12
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Figure 3.25: Predictive posterior MCD in noisy conditions obtained with an informative prior

of RMSE and VAF. By imposing an informative prior, the respective model class performed slightly better,
however this action distorted the prior MCD, making it less decisive in the most probable model classes.

Second, the algorithm was applied on a Neural Network ground truth system while increasing the noise
corruption. It appeared that under mild noise conditions, the prior variance had an significant influence on
which model class experienced the highest probability in the prior MCD. However, by adjusting the variance
it was possible to improve the performance of the model classes. With increased noise corruption, adjust-
ing the prior variance did not yield satisfactory results. By imposing the informative prior as discussed in
section 2.2.1, the performance of the model classes improved significantly.

One of the main objectives of this study was to investigate whether Bayesian Model Averaging yield sat-
isfactory results. It is shown that under mild conditions while imposing an uninformative prior, model av-
eraging did not matter, since in all the experiments a single model class was given full preference. However,
when an informative prior was imposed, the prior MCD became less decisive. Unfortunately, in this situation
averaging over the candidate model class did not outperform the single model classes. This is in contrast to
the noisy conditions, where averaging across the model class has been shown to led to better performance.





4
Cortical Responses

This chapter is devoted to the implementation of the discussed theory on the cortical responses evoked by
wrist joint manipulations. First of all, in section 4.1 the experimental setup is elaborated briefly as performed
by Vlaar et al. [35, 36]. Second, the modeling approach is explained in section 4.2. Finally, the results are
shown in section 4.3.

4.1. Experimental Setup
The data is recorded from ten different participants (six men, four women) and the experiment is approved
by the Human Research Ethics Committee of the Delft University of Technology. The participants were in-
structed to gaze at a static screen, while having their hand strapped to a robotic manipulator used to evoke
the wrist joint (see fig. 1.4). Furthermore, EEG is used to measure the cortical activity using a 128-channel
cap, which is subsequently digitized at 2048 Hz and stored.

Figure 4.1 illustrates a schematic overview of the system identification problem of interest. The human
nervous system is excited with a robotic manipulation input sequence UN and the resulting cortical activity
measurements YN are subsequently used to model the nervous system of the ten participants. The wrist
joint of each participant is evoked with seven different multisine input realizations, constructed with odd
frequencies ranging from 1 Hz to 23 Hz. For each participant, the first six input realizations are used for
modeling and the seventh is used for validation.

To extract the main cortical source activity needed for system modeling, Vlaar et al. [35, 36] used indepen-
dent component analysis (ICA). The independent components are subsequently filtered with an ideal filter
to remove wiring noise (50 Hz) and to remove all frequencies from 100 Hz onward. Finally, the signals are
resampled to 256 Hz and the signal with the highest SNR is used for subsequent modeling. For each trial, the
first and last three seconds are removed to reduce the effect of transient dynamics. The reader is referred to
[35, 36] for a more detailed explanation of the data.

This experiment has the following objectives:

• The previous study performed by Vlaar et al. [35, 36] used an informative prior covariance matrix to
estimate the involved parameters, which requires one to solve the non-convex minimization of the
non-linear function described in eq. (2.21). This optimization, however, is a time consuming process
and there is a possibility that the algorithm gets stuck in a local minimum. The first objective is to find a
best performing (set of) model class(es) obtained with an uninformative prior during modeling which
performs best during validation.

Figure 4.1: Schematic representation of the nervous system

35
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• The Marginal Likelihood approach in eq. (2.21) not only finds a proper prior variance matrix, it provides
as well a method to estimate the noise variance σε based on the model structure and the input-output
data by including it as a hyperparameter during optimization. While avoiding this minimization, the
prior and the noise variance will have to be estimated in advance. Therefore, the second objective is to
understand the effect of different values of the noise and prior variance during validation.

• The final objective is to compare the results of the model classes obtained with an uninformative prior
with the model classes obtained with an informative prior.

4.2. Modeling Approach
This section provides the modeling approach of the cortical responses. First, in section 4.2.1 the modeling
approach is elaborated for a single participant. This experiment is first done to understand how the algorithm
responds to the cortical data. Second, in section 4.2.2 the general modeling method is elaborated for all the
participants available in the dataset provided by Vlaar et al. [35, 36].

4.2.1. Single participant
During this experiment, the Bayesian Inference algorithm is applied to the first participant available in the
dataset provided by Vlaar et al. [35, 36]. The competitive model class set is chosen in a similar fashion as
described in section 3.2. That is, the model class set M is described as:

MD,L = {
V (D,L) : D ∈ D,L ∈ L

} ∈ M (4.1)

D = [1,2]

L = [10,20,30,40,50,60] .

Here, V (D,L) denotes the Volterra model structure as described in section 2.1. First, the algorithm will be
applied in an uninformative setting, which means that the prior and noise PDFs are estimated in advance
and are defined as:

ε(n) ∼N (0,0.5) (4.2)

p(H|MD,L) ∼N
(
0,5 · InH

)
. (4.3)

Here, ε(n) denotes the noise corruption at time instance n and is considered to be stationary. Furthermore,
InH denotes the nH -dimensional identity matrix, where nH corresponds to the number of unique parameters
in the Volterra kernel. Subsequently, the model classes are obtained with an informative prior as presented
in section 2.2.1.

It is already been elaborated in section 3.2.2 that the used input sequence may cause problems in solving
the Bayesian Inference. The goal of this experiment is to understand whether this has a influence on the
performance of the model class set.

4.2.2. All participants
During this experiment, the Bayesian Inference using Volterra series algorithm is applied on the ten different
participants of the dataset provided by Vlaar et al. [35, 36]. The competitive model class set is defined as:

MD,L = {
V (D,L) : D ∈ D,L ∈ L

} ∈ M (4.4)

D = [1]

L = [10,20,30,40,50,60] .

Here, the second degree Volterra model classes are omitted with respect to eq. (4.1), which is further ex-
plained in section 4.3.1. The algorithm will be applied in an informative setting. The hyperparameters
θhp = [c0,c1,α1,σε] in eq. (2.21) are obtained using the multi-start (5 times) non-linear optimization tech-
nique Sequential Least Squares Programming (SLSQP) in Python.

The goal of this experiment is to examine the plausibility whether a first degree Volterra system, which
corresponds to a Finite Impulse Response (FIR), is able to explain and predict cortical response data.
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4.3. Results
This section provides the results of the Bayesian Inference algorithm on the cortical response data. First, sec-
tion 4.3.1 provides the results of the algorithm on a single participant. Second, the results on all participants
are given in section 4.2.2.

4.3.1. Single participant
This section provides the results of the Bayesian Inference algorithm on a single participant. First, the system
is imposed with an uninformative prior. Subsequently, the model class set is obtained with an informative
prior.

Uninformative Prior
Figure 4.2 illustrates the prior MCD for a single participant and fig. 4.3 shows the corresponding posterior
MCD during validation. It can be seen that M2,60 performs best during modeling and validation, however,
there is no claim being made that M2,60 is the actual true underlying system. This is because of the follow-
ing reasons. First, the prior MCD strongly depends on the chosen values for the noise and prior variance.
However, defining different values leads to a discrepancy between the prior MCD during system identifica-
tion and the posterior MCD during validation, which means that the best performing model during modeling
does not perform best during validation, indicating that this model class is overfitted. Second, with the cur-
rent method, nothing can be said about the performance of the algorithm. The only statement being made
is the relative probability of the model class M2,60 with respect to the competitive model class set. Despite
that, it can be said that Bayesian Inference is able to find a model class during system identification which
performs best during validation.

For reading purposes, fig. 4.4a depicts the final 250 time steps of M2,60 during the system identification
phase and fig. 4.4b illustrates the predictions during validation. In both figures, the grey area denotes the
σ, 2σ and 3σ uncertainty intervals. While modeling, the Volterra model structure is capable of tracking the
cortical responses to a certain level of significance (fig. 4.4a), having a VAF of 69.69% and a RMSE of 0.54,
and the observations YN remain within the uncertainty margins of the model. In contrast, M2,60 fails to track
the cortical responses during validation, having a VAF of -45% and a RMSE of 1.33, and the measured output
values lie in the low probability regions. These unstable results cast doubt on the credibility of model M2,60

being the true underlying system.

Figure 4.2: Prior MCD obtained with an uninformative prior

Figure 4.3: Predictive posterior MCD obtained with an uninformative prior



38 4. Cortical Responses

(a) Final 250 steps during system identification (b) Validation sequence

Figure 4.4: Perforamce of M2,60

In section 3.3.2 it turned out that imposing the algorithm with an informative prior contributed signifi-
cantly to the performance of the system. For that reason, in the next part the performance of the algorithm
imposed with an informative prior is tested.

Informative Prior
An alternative method is to obtain the model class using an informative prior. Figures 4.5 and 4.6 illustrate the
prior MCD during modeling and the posterior MCD during validation respectively. Equivalently as illustrated
in fig. 4.2, using the informative prior, the prior MCD in fig. 4.5 is decisive in such a way that M2,60 is given
full preference. However, looking at fig. 4.6, the first degree Volterra model classes, particularly M1,10, M1,50

and M1,60, appear to fit the validation data best compared to the model class set.
The provided results demonstrate the instability of the dataset which has been made available. It is dis-

cussed in section 3.2.2 that the input sequence UN should contain enough information so that the Bayesian
Inference algorithm does not depend much on the chosen prior. Figure 4.7 illustrates the singular values of U

Figure 4.5: Prior MCD obtained with an informative prior

Figure 4.6: Predictive posterior MCD during validation
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(a) Singular values U (b) Singular values UUT

Figure 4.7: Singular values of the regression matrix of M2,60

(fig. 4.7a) and UUT (fig. 4.7b) for the model class M2,60. It can be seen that both matrices are close to singular,
consequently meaning that the optimization problem does not yield an unique set of parameters.

Table 4.1 depicts the rank of the matrix U set out per model class. It turns out that this problem continues
appearing for the model class M2,20 onward, since for each model class the regression matrix U is not full
rank. Imposing an informative prior as proposed by Birpoutsoukis et al. [5, 6] and performed by Vlaar et al.
[35, 36] has proven its success, however it requires the solution of the minimization of the non-linear and
non-convex objective function as described in section 2.2.1. This objective function can include many local
minima, which requires the optimization algorithm to be restarted several times. Even when this is done,
there is no assurance that the global optimum has been found.

Having said this, the experiments for all the participants only include the first degree model classes in the
model class set imposed with an informative prior. The hyperparameters of the prior variance in eq. (2.18)
are obtained using a multi-start (5 times) non-linear optimization.

4.3.2. All participants
Tables 4.2 and 4.3 depict the prior and posterior MCD of the ten different participants respectively. The first
column denotes the ten different subjects and each row represents the MCD for that subject, which sum up
approximately to 1 (due to rounding errors). Each entry denotes the probability of the respective model class
for that specific participant. The last column denotes the probability of the HRP. Recall that there is no claim
being made that one of the model classes is the true underlying system. The numbers represent a relative
probability with respect to the model class set. From tables 4.2 and 4.3 the following is observed:

Observation 1. During validation, HRP does not yield positive results for any of the participants compared

Table 4.1: Rank of U per model class

Model Class Kernel size Rank U
M1,10 11 11
M1,20 21 21
M1,30 31 31
M1,40 41 41
M1,50 51 51
M1,60 61 61
M2,10 66 66
M2,20 231 202
M2,30 496 309
M2,40 861 408
M2,50 1326 491
M2,60 1891 555
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Table 4.2: Cortical responses: performance of candidate models obtained with an informative prior

# M1,10 M1,20 M1,30 M1,40 M1,50 M1,60

1 0.00 0.00 0.00 0.00 0.30 0.70
2 0.00 0.13 0.21 0.22 0.22 0.22
3 0.17 0.17 0.17 0.17 0.17 0.17
4 0.00 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 0.17 0.47 0.36
6 0.17 0.17 0.17 0.17 0.17 0.17
7 0.00 0.00 0.61 0.00 0.39 0.00
8 0.00 0.00 0.55 0.00 0.00 0.45
9 0.00 0.00 0.00 0.00 0.00 1.00

10 0.17 0.17 0.17 0.17 0.17 0.17

Table 4.3: Cortical responses: performance of candidate models obtained with an informative prior

# M1,10 M1,20 M1,30 M1,40 M1,50 M1,60 HRP
1 0.00 0.00 0.00 0.01 0.83 0.16 0.00
2 0.92 0.02 0.02 0.02 0.02 0.02 0.00
3 0.17 0.17 0.17 0.17 0.17 0.17 0.00
4 0.00 0.00 0.00 0.00 0.38 0.25 0.37
5 0.13 0.14 0.13 0.31 0.15 0.13 0.00
6 0.17 0.17 0.17 0.17 0.17 0.17 0.00
7 0.00 0.00 0.56 0.00 0.44 0.00 0.00
8 0.01 0.01 0.48 0.01 0.01 0.49 0.00
9 0.00 0.00 0.00 0.23 0.12 0.32 0.32

10 0.17 0.17 0.17 0.17 0.17 0.17 0.00

to continuing with the best performing model class during modeling.

Observation 2. The model classes with the highest probability while modeling for the participants 1,2, 5 and
8 are not the best performing model classes during validation. This indicates that these model classes
are overfitted with false confidence.

Observation 3. The prior MCD for the participants 3 and 6 are indecisive.

Observation 4. For the participants 4,7 and 9, the Bayesian Inference algorithm manages to find the model
class during modeling which performs best during validation, namely M1,50, M1,30 and M1,60 respec-
tively.

Having a best performing model class while modeling which performs best during validation gives confi-
dence that the modeled system approaches the true underlying nervous system, however, fig. 4.4 has shown
that this is not necessarily true. To test the plausibility of the results, the performance of model classes M1,50

and M1,60 of participants 4 and 9 respectively are further examined.
Figure 4.8 illustrates the validation sequence of M1,50 and M1,60 of the fourth and ninth participant re-

spectively. Here, the dark, medium and light grey areas represent the σ, 2σ and 3σ uncertainty intervals
respectively. The blue line represents the measured values YN,val and the orange line denotes the mean of
the predictive distribution. In both figures, it can be seen that the algorithm predicts a clear nonzero signal,
where the measured values YN,val remain within the uncertainty regions of the predictor. The question, how-
ever, is whether the residuals, that is the difference between the measured values YN and the mean of the
predictions, exhibit the noisy behaviour as estimated during the hyperparameter optimizations. If the resid-
ual distribution approaches the noise distribution, it makes it plausible that the modeled system resembles
the true underlying system. While modeling, it was assumed that the cortical responses are corrupted with
white noise, which is defined as a normal distribution with stationary and finite varianceσε. This distribution
has the following properties:

Property 1. The residuals are normally distributed with zero mean and finite variance σε.
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(a) Validation participant 4 for M1,50 (b) Validation participant 9 for M1,60

Figure 4.8: Validation sequence of the best performing models of participants 1 and 7

Property 2. The residuals have a constant spectrum, which means that the autocorrelation function is an
impulse at lag zero. This is mathematicall defined as:

E [ε(n)ε(n −τ)] =
{
σ2
ε , τ= 0

0, otherwise.
(4.5)

Property 3. The residuals and the input vector UN are uncorrelated, which means that the relationship be-
tween the input and output data is fully embedded in the model class.

In figs. 4.9 to 4.11 the residuals are further investigated. The method used goes against the Bayesian phi-
losophy,since the residuals are found by taking the difference of the mean of the predictive PDF and the
measured values YN , which yields a deterministic value. From a Bayesian perspective, the analysis of the
residuals should be done in terms of distribution functions, as all residuals are a distribution functions. How-
ever, this frequentist approach has been used because it provides a good indication of how the best estimate
of the distribution function is performing.

Figure 4.9 illustrates the comparison between the distribution of the residuals and the modeled noise PDF.
Here, the x-axis denotes the different values of the residuals and the blue histogram illustrates the number of
appearances per value. The red line represents the modeled noise PDF and the green line depicts the fitted
distribution of the residuals during the validation. Furthermore, fig. 4.9a and fig. 4.9b illustrate the analysis
for participant 4 and 9 respectively. From the figure it can be seen that, although the fitted PDF approaches
the modeled noise distribution, both do not fully match. This indicates that there are dynamics active in the
measured output signal YN,val which does not come from the noise.

This finding is substantiated in fig. 4.10. The figure illustrates the autocorrelation of the residuals for the
two participants. In an ideal situation, the autocorrelation should have an peak at τ= 0 with the height of the
modeled variance of the noise and the correlation should maintain within the red 95% confidence bounds
elsewhere. This interval represents the range of residual values that are for 95% insignificant and is found via
[21]:

conf =±
p

2erf−1(0.95)p
N

, (4.6)

where N denotes the sample length. For both participants, there is a clear spike at τ= 0 in the autocorrelation
function. This corresponds to an expected noise signal, however there are clear spikes present that exceed
the confidence intervals. This indicates that there still remains a correlation between the residuals, therefore
it can be said that the residual signal is not white.

Finally, the cross correlation between the input vector UN and the residuals are illustrated in fig. 4.11. In
an ideal situation, the autocorrelation function in the figures remain within confidence intervals, implying
that the information embedded in the input sequence is fully captured by the model classes. However, it can
be seen in fig. 4.11 that the cross correlation function exceeds the confidence intervals for both participants.
When examining the outliers, keep in mind of the following points [18].
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1. The correlation between ε(n) and UN (n−τ) for negative τ, that is that the current residual affect future
inputs, is an indication of output feedback. This does not mean that the model is faulty.

2. The correlation between ε and UN (n − τ) for positive τ means that there are traces of the past input
present in the current residuals, which indicates that the model class needs improvement.

For both participants, the confidence intervals are exceeded for positive lag, which means that the model
class need improvement. During this study, experiments were done by extending the maximum lag of the
proposed model classes, however similar results were obtained. Therefore it is assumed that higher order
dynamics are present in the system.

4.4. Conclusion
This experiment has shown that with the current dataset it is difficult to design higher order Volterra model
classes that are well able to predict the cortical response data, since the regression matrices are close to singu-
lar. The nervous system was then approached as a linear problem. Although it is not necessarily believed that
a first degree Volterra Series can accurately describe the relationship between wrist joint manipulations and
cortical responses, fig. 4.8a indicates the potential of the method used, as the noise corrupted observations
YN maintain within the uncertainty intervals.

The experiments provided a method to analyse the plausibility of the chosen model classes, by examining
the residuals. It is shown that the chosen model structures do not meet the complexity of the nervous system,
because after modeling there was still a correlation between the input sequence and the residuals. While

(a) Participant 4 (b) Participant 9

Figure 4.9: Autocorrelation of the residuals

(a) Participant 4 (b) Participant 9

Figure 4.10: Autocorrelation of the residuals
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(a) Participant 4 (b) Participant 9

Figure 4.11: Cross correlation of the residuals with the input vector UN

redoing the experiments, it is of importance that the excitation signal is persistent for higher degree Volterra
systems.
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Discussion and Recommendations

5.1. Discussion
In this section the acquired results are discussed. First, section 5.1.1 discusses the independency of the model
classes. Second, the specific choice for the input signal is evaluated in section 5.1.2. This section also provides
an alternative input signal. The reflections on model averaging and the modeling approach are discussed
in section 5.1.3 and section 5.1.3 respectively. Finally, the relation between the current study and previous
studies is reviewed in section 5.1.5.

5.1.1. Independency of the Model Classes
While deriving the general equation for the HRP PDF, it is assumed that the parameters of two arbitrary differ-
ent Volterra model classes in the competitive model class set are independent, i.e. E

[
H1HT

2

] = E [H1]E
[
HT

2

]
.

However, this is a questionable assumption, since each higher degree Volterra series contains the lower de-
gree Volterra Series with equivalent lag in its model structure. The same holds for the Volterra series with
varying lag and constant degree; the Volterra Series with more lag contain the Volterra series with less lag in
the model structure. According to the general equation for the covariance

cov
(
H1,HT

2

)= E[
H1HT

2

]−E [H1]E
[
HT

2

]
, (5.1)

by ignoring this dependency, the covariance term is missing from the final derivation for the variance of the
HRP PDF, consequently leading to false confidence.

5.1.2. Choice of Input Sequence
Capturing the non-linear dynamics using Volterra Series requires a different input sequence to perturb the
wrist joint, such that the regression matrix U avoids singularity. It is shown in fig. 3.3 that a Gaussian White
Noise input sequence contains a sufficient amount of information so that the higher order regression matri-
ces avoid singularity, however, doing practical experiments one is often bounded by the physical limitations
of the setup. For example, the actuator is not able to track high frequency components and the wrist joint has
a certain range of motion. This makes it difficult to use a GWN as an input sequence in practice.

Figure 5.1a shows an alternative input sequence. This signal is defined as:

un =N (un−1,0.1) u−1 = 0. (5.2)

It is assumed that the robotic manipulator used by Vlaar et al. [35, 36] is able to track references up to 23 Hz,
therefore the signal in eq. (5.2) is subsequently filtered with an ideal filter from 23 Hz onward. Finally, the
input signal is scaled to (−1,1) such that it remains within the physical range of motion of the wrist joint.

Figure 5.1b illustrates the singular values of the proposed input sequence for the regression matrix of
the second degree Volterra systems. It can be seen that the regression matrices contain more information
compared to the regression matrix constructed with the input sequence proposed by Vlaar et al. [35, 36] (e.g.
fig. 4.7). This provides more possibilities that the algorithm is able to find a relation between the cortical
responses and the wrist joint manipulations.

45
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(a) Random walk input sequence (b) Singular Values of the Regression Matrix U

Figure 5.1: Alternative random walk input sequence

5.1.3. Reflection on Bayesian Model Averaging
This study has shown that Bayesian Model Averaging does not necessarily lead to improved results. Only
when modeling the noise corrupted Neural Network, averaging over the competitive model class set led to
improved performance during validation. However, repeating this experiment in which the noise sequence
is regenerated, different results were obtained. This shows that Bayesian Model Averaging is unstable in the
current setup, however this does not throw off its principle completely. As explained by Beck and Taflanidis
[4], given that two model classes react similarly to a specific excitation sequence, does not imply that a differ-
ent excitation signal yield in similar results. Therefore, when the experiment is repeated with a randomized
input sequence, it cannot be ruled out that model averaging will yield better results.

Furthermore, it is shown as increasing noise corruption occurs, it is more likely that HRP is useful. The
dataset used contained averaged input and output signals in order to reduce the noise corruption. By doing
this, a lot of information was lost which was present in the averaged signals. It may be possible to avoid this
step, however an alternative Bayesian parameter updating technique is needed described by Mackay [20],
explained further in section 5.1.4. Doing this leads to more available information to construct the model
parameters and an increased noise corruption.

5.1.4. Reflection on Modeling Approach
In the current study, the uninformative model class set is constructed by varying the degree and maximum lag
of the Volterra Series. The Prior PDF and noise PDF variance must be determined in advance, which is difficult
to estimate. While doing experiments, it appeared that the variance of the noise corruption influences the
prior MCD, in a sense that lowering the variance inherently shifts the prior MCD favouring the Volterra Series
of higher degree. Vice versa, this also meant increasing the noise variance shifts the probability to the model
classes of lower degree. During the experiment it was assumed that the settings where the best performing
prior model class corresponds with the best performing posterior model class is the most plausible. However,
it would make sense to define to competitive model class set by varying the degree, lag, prior variance and
noise variance, hence yielding a four dimensional model class set.

Second, the dataset is acquired by averaging the input and output signals across periods, in order to re-
duce the noise corruption. In addition, the original signals are resampled from 2048 Hz to 256 Hz. The
original signal hence contains significantly more data samples, which makes it computationally expensive
to compute posterior distributions, due to the inversion of large matrices. However, Mackay [20] provided a
method to perform Bayesian model updating, which relies on the following updating rule for the posterior
parameter PDF:

p(H|D∩MD,L) ∼N
(
µk ,Σk

)
µk = (

Σ−1
k−1 +UΣ−1

ε UT )−1 (
UΣ−1

ε YN +Σ−1
k−1µk−1

)
Σk = (

Σ−1
k−1 +UΣ−1

ε UT )−1

. (5.3)

Here µk and Σk denote the mean and variance at time instance k respectively. This model updating method
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allows one to use the extended dataset while suppressing the computational effort.
Third, in this study, it is assumed that the Volterra kernel is a Gaussian distribution a priori. This assump-

tion ensured that the posterior distribution functions can be computed analytically, since the noise is nor-
mally distributed and the summation or multiplication of two Gaussian distributions yield another Gaussian
distribution. However, it cannot be ruled out that the Volterra kernels are distributed differently. However, if
one decides to alter the distribution type, different sampling techniques are required in order to find poste-
rior distributions. This complicates the modeling process and increases the computational effort. Alternative
distributions are for example a Laplacian, which is more sharpened around the mean compared to a Gaus-
sian, consequently favoring the mean increasingly in advance. The interested reader is referred to [8, 19] for
examples in Bayesian Inference using different prior distribution functions.

5.1.5. Relation with Previous Performed Studies
The results obtained in this study are different compared to previous studies performed by Vlaar et al. [36]
and Tian et al. [32], which evaluated the model class performance during validation based on the VAF. First,
Tian et al. [32] managed to obtain a model class which explained the validation data up to 95% (VAF). This
model included lagged auto-regressive terms and both position and velocity as input to mimic the neuronal
circuit. Furthermore, a Neural Network was implemented to cope for higher order dynamics. First, Tian
et al. [32] specifically designed the model structure based on the human nervous system. In this study, the
model classes were designed such that no prior knowledge is needed regarding the underlying structure of the
system of interest. This choice ensures that the system contains less information and may result in decreased
performance. Second, It has been shown that the excited input signal is not suitable for modeling second
degree or higher Volterra models. Therefore, the assumption is made that the true underlying system is linear,
which means that a larger portion of the measured signal is caused by noise. This suppresses the maximum
achievable VAF. For this reason, the two studies are difficult to compare in terms of performance.

Vlaar et al. [36] obtained a second order Volterra Series combined with a Best Linear Approximation and
managed to explain the validation data up to 60% (VAF). During this study, an attempt was made to mimic
the results of Vlaar et al. [36] with the proposed method, based on the mean of the predictive PDF. However,
the results fluctuated around 0% (VAF) and thus did not come close to the results obtained by Vlaar et al.
[36]. The exact cause of this cannot be said with certainty, however the following difference between both
approaches may contribute. The informative prior constructed in this study is less complex than the prior
constructed by Vlaar et al. [36]. The latter designed the prior with more hyperparameters, which introduced
an extra degree of freedom in the U-axis in fig. 2.2. However, this increases the chance that the optimization
algorithm gets stuck in a local minimum, hence requiring to restart the algorithm an increasing number of
times in order to find a global minimum. During this study, the optimization algorithm is restarted with five
different initial values, which might not be sufficient in order to find the global optimum.

Furthermore, Vlaar et al. [36] specifically mentioned that the choice of which 6 multisine realizations to
use for modeling the model classes has had a significant impact on performance, which reveals the instability
of the dataset. It is believed that the singular regression matrices play a major role in this.

5.2. Recommendations
This section contains the recommendations for future research. First, section 5.2.1 proposes a Tensor decom-
position method in order to cope with the high dimensional parameters. Second, approaching the problem
in the frequency domain is presented in section 5.2.2.

5.2.1. Tensor Decomposition for Higher Order Volterra Series
The number of parameters involved in the Volterra Series model structure grow exponentially with order. This
means that the regression matrix U grows exponentially with order, making the calculation of the posterior
PDFs computationally expensive. Batselier et al. [2] proposed the tensor decomposition method for Volterra
Series, which allowed one to estimate approximately 1e9 parameters in 1.5 seconds.

Tensors represent multi-dimensional arrays that extend general matrix theory to higher orders. A d-way
tensor A is described as A ∈ Rn1×n2×...×nd . The study executed by Batselier et al. [2] rephrased the system
identification problem such that the Volterra tensors are never explicitly constructed, but stored in a effective
Tensor Network. It appeared that both methods proposed by Batselier et al. [2] are highly effective, so it has
the potential to be applied on Volterra series to model the cortical responses. Furthermore, tensor decompo-
sitions has proven its effectiveness in different fields, e.g. [1, 10].
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Bayesian Inference is already applied to tensor factorization (e.g. [14]), however, to the best of my knowl-
edge, Tensor based Bayesian Inference using Volterra Series has not been researched before. This would be
an interesting topic to delve further into.

5.2.2. Bayesian Inference for Frequency Analysis
In the current study, all predictions are made in the time domain. However, existing studies partition EEG ac-
tivity in the predefined frequency bands, such as the, among others, delta (1.5-3.5 Hz), theta (3.5-7.5 Hz) and
alpha (7.5-12.5 Hz) [7] bands. Therefore, it would make sense to approach the problem in the frequency do-
main in stead of the time domain, which was also applied by Vlaar et al. [36], who used the frequency domain
representation of the model class to relate the performance of the model to underlying ideas of physiological
origin.

This method requires a general expression for the Volterra series in the frequency domain, which is al-
ready studied extensively in the literature (e.g. [12, 16]). Bayesian Inference applied in the frequency domain
is a lesser known subject. The interested reader is referred to [37] for a more extensive explanation of the
techniques to be used. To the best my, Bayesian Inference using Volterra Series to explain EEG data in the
frequency domain is not been studied before.

5.2.3. Estimating the Model Class Distribution
During this study, the MCD is found by first defining a discrete competitive model class set. Subsequently, the
model classes with the highest probability are used to make predictions. The found model classes, however,
are always part of the initial competitive model class set, therefore if one does not pre-define this model class
set a priori correctly, there is a good chance that the performance of the predictions will be disappointing,
regardless of how the prior is designed, because the model class is not able to explain the complex dynamics.

Having said this, it would be interesting to investigate whether it is possible to either interpolate or ex-
trapolate the knowledge we have of the discrete model class set so that we can conclude something regarding
model classes that were initially not included in the competitive set. To the best of my knowledge, this topic
is not researched so far.
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Conclusion

The goal of this study was to obtain a Bayesian Volterra model capable of explaining cortical activity evoked
by wrist joint manipulations. In order to achieve this, the study was subdivide in three sub-objectives.

Sub-objective 1. Understanding the effect of incorporating uncertainty on the parameter estimation
and the model selection process.

It turned out that the Bayesian model selection process was well able to reconstruct the ground truth model,
as it assigned a decisive probability of 1 in the prior MCD to the corresponding model class. This model class
performed as well best during validation, which was confirmed by the VAF, RMSE and the posterior MCD.
In situations where the ground truth model structure was not included in the competitive model class, the
algorithm did not manage to find the model class in the prior MCD which performed best during validation.
In addition, the VAF and RMSE decreased significantly, namely 99.98% to 97.67% and 0.11 to 1.53 respectively.

Sub-objective 2. Examining whether it is beneficial to perform Bayesian Model Averaging compared to
conventional methods.

While modeling the Volterra ground truth system, Bayesian model averaging was not an issue, as only a sin-
gle model was given full preference in the prior MCD (probability of 1). However, given that the ground truth
system was not a Volterra Series, Bayesian Model Averaging yielded worse results, having a zero probability in
the posterior MCD compared to the competitive model class set. It is shown that with increasing noise cor-
ruption, the chance of Bayesian Model Averaging leading to improved results increases. This is substantiated
with the noisy Neural Network ground truth model, where the HRP model yielded higher probability in the
posterior MCD compared to the single model class chosen with conventional methods.

Sub-objective 3. Understanding the effect of imposing different prior Gaussian distributions on the
performance of the algorithm.

During this study, different prior distributions were imposed to understand the effect on both the model se-
lection process as well as the predictive performance. It appeared that, while modeling the Volterra ground
truth system, imposing an informative prior led to improved results with respect to the uninformative prior
in terms of VAF and RMSE. However, doing so distorted the prior MCD in such a way that it was no longer
decisive. While modeling the Neural Network, it is shown that the prior has a major influence on the per-
formance of the algorithm. By increasing the variance by a factor of 4, the Bayesian model selection process
found a model class with increased performance in terms of RMSE, VAF and posterior MCD.

Main objective The Development of Non-Linear Bayesian System Identification of the Cortical Re-
sponse Evoked by Wrist Joint Manipulation Using Volterra Series.

In this study, it is proven to be difficult to design a non-linear model to describe the cortical responses evoked
by wrist joint manipulations. Due to the multisine input sequence combined with the Volterra model struc-
ture, it is difficult to design an accurate second degree or higher Volterra system, since the respective regres-
sion matrices U are close to singular. In this study, it is shown that in these situations the algorithm is more
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dependent on the specific choice of the prior. However, it has been shown that an informative prior does not
guarantee successful results. For that reason a linear Volterra system has been modeled, which have shown
the potential of the method used. The validation sequence for the first participant maintained within the un-
certainty intervals of the predictive PDF, which offers opportunity to detect abnormalities in the brain waves
based on the modeled output. On the other hand, by performing residual analysis, it has been shown that
a higher order model is more likely to yield improved results, but this requires the experiment to be redone
with an alternative input sequence, such as the proposed random walk input.
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