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Hardware-Accelerator Design by Composition:
Dataflow Component Interfaces With Tydi—Chisel

Casper Cromjongh™, Yongding Tian™, H. Peter Hofstee ™, Member, IEEE, and Zaid Al-Ars™, Member, IEEE

Abstract— As dedicated hardware is becoming more prevalent
in accelerating complex applications, methods are needed to
enable easy integration of multiple hardware components into
a single accelerator system. However, this vision of composable
hardware is hindered by the lack of standards for interfaces
that allow such components to communicate. To address this
challenge, the Tydi standard was proposed to facilitate the
representation of streaming data in digital circuits, notably pro-
viding interface specifications of composite and variable-length
data structures. At the same time, constructing hardware in
a Scala embedded language (Chisel) provides a suitable envi-
ronment for deploying Tydi-centric components due to its
abstraction level and customizability. This article introduces
Tydi-Chisel, a library that integrates the Tydi standard within
Chisel, along with a toolchain and methodology for designing
data-streaming accelerators. This toolchain reduces the effort
needed to design streaming hardware accelerators by raising
the abstraction level for streams and module interfaces, hereby
avoiding writing boilerplate code, and allows for easy integration
of accelerator components from different designers. This is
demonstrated through an example project incorporating various
scenarios where the interface-related declaration is reduced
by 6-14 times. Tydi—-Chisel project repository is available at
https://github.com/abs-tudelft/Tydi-Chisel.

Index Terms— Big data acceleration, data types, HW design,
streaming interfaces, testing.

I. INTRODUCTION

N THE past decade, hardware accelerators [such as

GPUs and field-programmable gate arrays (FPGAs)] have
emerged as next-generation alternative computing platforms
to meet the ever-increasing computing demands in various
compute-intensive application domains, especially in fields,
such as machine learning and big data analytics [2], [3]. This
resulted in the rise of heterogeneous computing platforms,
where multiple accelerators can cooperate to address the
computationally intensive parts of an application. However,
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there is a big difference in the development effort required for
these accelerators, where hardware development for FPGAs
stands out for being exceptionally difficult to design, optimize,
and debug.

Tool frameworks do exist that attempt to reduce this
challenge of high field-programmable gate array (FPGA)
design effort, such as high-level synthesis (HLS), OpenCL [4],
and HLS4ML [5]. However, the continued increase in the
abstraction level that software developers use to program their
applications limits the effectiveness of such tool frameworks,
especially in application domains, such as big data analyt-
ics [6], where developers can typically write a few lines of
SQL to execute a query, whereas translating the same query
to FPGAs requires thousands of lines of hardware description
code. Sampson [7] accentuates this disparity, advocating for
a transition from hardware description language (HDL) to
accelerator design language (ADL). Constructing hardware
in a Scala embedded language (Chisel) has emerged as a
promising way to achieve this transition.

Chisel [8] aims at lowering design complexity by provid-
ing designers with more powerful design tools. These tools
empower designers to craft highly parameterized generator
components, seamlessly manipulate complex aggregate sig-
nals, and utilize high-level programming paradigms. Since
Chisel is intended for general hardware design, however, it is
possible to further refine the design process through a domain-
specific strategy, particularly for data-streaming accelerators.

A central challenge in designing data-streaming accelerators
is related to the transfer of structured and dynamically sized
data between components in a flexible manner. However,
there is no open-source hardware development framework that
is able to address this challenge, including classical HDLs
and contemporary ones (e.g., Clash, Chisel, and Spatial).
These HDLs do support compound types, but lack support
for dynamically sized aggregate types for data streaming [9].
The languages allow expressing composite signals in space,
but a strategy for transferring variable-length data, where the
time domain is incorporated, is left to the designer.

To address these issues, the idea for typed dataflow interface
(Tydi) was proposed [9]. Fig. 1 aims to illustrate the advan-
tages Tydi offers by showing a metaphorical representation of
a raw data stream, handshaked stream, and Tydi stream.

Without a common interface standard, such as Tydi, design-
ers are often left designing their own communication protocol.
While, in simple cases, this is often trivial, design complexity
frequently increases during development and optimization.
With increasing complexity, communication solutions will
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Fig. 1. Comparison of stream types represented as checkout conveyor belts.
The Tydi stream has n = 3 lanes and a dimensionality of d = 2. stai,
endi, and strb relate to data-lane validity. last transfers dimensionality
information.

become more specific and divergent. When adopting IP or
working between projects, this creates a lot of unnecessary
overhead in specification and conversion. Debugging and inter-
preting the communication flow easily become very difficult.
Standards and tooling can help alleviate hardship in design
choices, implementation effort, and debugging and interpreta-
tion. Tydi aims to be a standard that can offer this. In this
article, we show how to create a Tydi-based communication
flow specification for complex structured data and how Chisel
is a suitable implementation platform using Tydi—Chisel.

This article is organized as follows. Section II provides
an overview of related work on streaming design and
accelerator design. In Section III, a background on Tydi
and Chisel is given. In Section IV, a Tydi-driven design
workflow is explained with a minimal example use case.
In Section V, an example is examined resembling a real-world
data-processing system. With this example, various integration
methods are highlighted. Additional Tydi—Chisel features are
covered in Section VI, notably the stream-complexity con-
verter component that allows connecting components with
differing stream protocol complexity levels. A discussion
about the role of Tydi-lang and Tydi—Chisel and the utility
of language features is presented in Section VII. Section VIII
ends with the conclusion.

II. RELATED WORK

A stream-based processing system generally consists
of interconnected computation kernels/modules  that
communicate through streaming channels. Such a system,
therefore, has three components. There is the compute
implementation, the communication between modules, and the
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composition/hierarchy of the modules. The communication
model can be subdivided into the protocol and the payload
data structure.

From the software side, the field of stream processing has
been the subject of extensive research across varied contexts.
This research trajectory has culminated in the development
of multiple languages and frameworks for software-oriented
stream design [10], [11], [12], [13] on multithreaded CPUs
and GPUs. Thies et al. [14] proposed the holistic language
Streamlt, crafted for universal streaming logic. With soft-
ware’s flexibility, specifying implementation, hierarchy, and
communication with complex, variable-length data types is
straightforward, even in lower level languages, such as C.

For hardware design, the landscape is more fractured,
and tools generally focus on one or two of the mentioned
aspects. Neuendorffer and Vissers [15] provide an overview
of differences between streaming in hardware and software.
In hardware, various studies have demonstrated the perfor-
mance advantage of streaming dataflow systems, especially in
signal-processing tasks. Some of these [16], [17], [18], [19]
have focused on tools for development of such FPGA-oriented
dataflow systems. Thomas et al. [19] also use Chisel as the
language for module implementation. These dataflow systems
focus on developing implementations of stream-processing
modules, rather than streams from an interface perspective.

Hormati et al. [20] created a framework that does both
with Optimus [14], utilizing the aforementioned StreamlIt lan-
guage. They define macro- and micro-functionality: “macro-
functional concerns address how components (modules) are
assembled to implement larger more complex applications.
Micro-functional issues deal with synthesis issues of the
module internals.” Thereby, Optimus combines module imple-
mentation with the module composition that Tydi promotes.

The interfaces that are used in hardware generally use some
variation of a ready-valid handshaked connection protocol,
with bit stream data. Such a handshaked connection mech-
anism is built into Chisel in the form of DecoupledIO.
Several industry standards for handshaked streaming con-
nections have been established [21], [22], [23]. These
standards help address the challenges posed by component
interface compatibility, but are rather simplistic, often requir-
ing a custom adaptation that negates the adaptation effort
advantage. Frameworks, such as the dsptools [24] and Clash-
Protocols [25] libraries, can help by allowing one to abstract
the underlying signaling interface away in Chisel and Clash,
respectively.

For interaction with host software, other tools have been
designed that help with communicating with the host in a
streaming manner [26], [27], [28]. Among these is Fletcher,
which is mentioned in Section III-A.

Yet, these standards, frameworks, and studies primarily
address simple data transfer at the bit stream level, commonly
not supporting complex data structures with inner lists, which
is required by the complexity and dynamic nature of the data
from the software side, where it comes naturally.

In conclusion, though efforts have been made to improve
the ease of implementation and usage of simple stream com-
munication as well as the composition of modules, no general
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purpose standard or tool exists that focuses on the transfer
of complex data structures (with variable-length sequences
and nesting). Though Tydi and Tydi—Chisel also do not cover
all aspects of a streaming system, many tools exist that
allow a designer to create an implementation, catering to
various contexts and needs. Tydi was, therefore, conceived as
a language-agnostic standard, allowing designers to choose the
implementation tool themselves or work with the existing IP.
Tydi leads to interface-driven design, a successful concept in
software development.

III. BACKGROUND
A. Fletcher and vh1lib

The Fletcher project [26] was developed to facilitate the
delivery of in-memory Apache Arrow data to hardware accel-
erators. To achieve this, Fletcher offers an automated toolset
capable of generating VHDL components directly from data
schemas. Complementarily, it provides a software framework
tailored for efficient data delivery to these generated com-
ponents. At its core, Fletcher serves as a comprehensive
framework, designed to bridge FPGA accelerators with soft-
ware tools and frameworks that employ Apache Arrow [29].
In the hardware design, Fletcher uses vhlib [30] streams,
which can be seen as a predecessor to Tydi streams, approxi-
mately equal to Tydi streams with protocol complexity C < 5.
Despite Fletcher’s capabilities in generating components for
memory data access, the challenge of designing a system to
transfer more complexly structured data remained, akin to the
in-memory data structures that tend to be both complex and
dynamic. This gave rise to the development of Tydi.

B. Tydi Specification

The Tydi specification was first introduced in [9]. This initial
version defines a methodology for representing composite,
dynamically sized data structures along with the physical-level
streaming protocol. Later, a refined version of Tydi spec-
ification was released [31]. Based on this refined version,
Tian et al. [32] proposed a high-level HDL to raise the abstrac-
tion level of typed streaming hardware and reduce the design
effort for hardware designer. In addition, Reukers et al. [33]
developed an intermediate representation tailored for hardware
circuit design using the Tydi framework, accompanied by a
compiler for VHDL translation. The terms utilized within the
Tydi intermediate representation and their meanings are sum-
marized in Table 1. For a broader perspective, a comparative
study between Tydi and prevalent protocols, such as AXI and
Avalon, can be consulted in [9, Table IV].

The basic data types used in Tydi intermediate representa-
tion are Null, Bits, Group, and Union. The Stream type is a
wrapper of basic data types, adding the streaming properties,
such as complexity, dimension, and throughput. These are
explained next. Group, Union, and Stream support nesting of
other types to create arbitrary data structures.

1) Complexity: Denotes the intricacy of the physical pro-
tocol. In other words, how orderly or flexibly the data
elements can be sent over the stream bus. The present
Tydi specification delineates eight distinct complexity
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Fig. 2. Stream-complexity property [33].

levels, ranging from 1 to 8. A lower complexity value
imposes more rules for stricter transfer continuity. This
implies more straightforward data reception, yet, cor-
respondingly, the source component may necessitate
increased complexity to guarantee the availability of the
data in the required form. Fig. 2 visually represents the
protocol of complexities at levels 1 and 8. Because lower
complexities are more restrictive and higher complexi-
ties more flexible, a source port with a lower complexity
is able to connect to a sink port of the same or higher
complexity.

2) Dimension: Indicates the number of dimensions of
data. Consider the representation of the phrase ‘“she
is a dolphin” in terms of data dimensions as it tran-
sits between components. Conceptually, this phrase can
be parsed as a 2-D array: [ [s,h,e], [i,s],
[al, [d,o0,1,p,h,i,n] 1. Given that each char-
acter requires 8 bits for representation, the appropriate
streaming type for this data structure would be desig-
nated as Stream (Bit (8), dimension=2).

3) Throughput: Indicates the designed throughput. Refer-
ring back to the streaming sentence example, if the
throughput is specifically designed to be 3, then the
total data lane would be 24 bits (8 bits per character
multiplied by 3).

Tydi’s design flexibility promotes teamwork in engineering,
enabling one group to concentrate on the source component
and another on the sink. This adaptability in design also means
components can be easily used in different setups without
needing extra steps, such as manual protocol conversion.

C. Tydi Ecosystem

Several projects have emerged that utilize Tydi-related
methodologies. Among these, Tydi-JSON [34] is a collection
of Tydi-interfacing hardware components that can be used to
create a JSON parser written in VHDL. Building upon the
foundations laid by [33] and [34], JSON-TIL [35] examines
a provided JSON reference input, subsequently generating
the requisite Tydi-IR (TIL) and VHDL files. This process
facilitates the creation of a comprehensive JSON parser tai-
lored to the specific JSON schema in question. In addition,
the VHDL-regex match generator [36] incorporates Tydi
interfaces. This initiative enables the generation of hardware
blueprints for regular expression matchers that operate on
UTF-8-encoded strings.

D. Chisel

Chisel [8] is an open-source hardware construction language
developed to facilitate the design of highly parameterized
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TABLE I
TyDI TERMS AND CORRESPONDING DEFINITIONS
[ Term | Type [ Software equivalent | Chisel equivalent [ Definition |
Null Tydi logical type Null Bits(0) Empty data, a stream of Null type will be optimized out.
Bits Tydi logical type Any primary data type | Any non-aggregate Data object Represents data that requires x hardware bits to represent.
L A tuple of several other logical types. Total hardware width would
Group Tydi logical type Struct Bundle be the sum of child elements.
. L . ] A union of several other logical types. The active field can
Union Tydi logical type Union Bundle & tag be selected with the tag. This field can also be a stream.
Represents a stream of a Tydi logical type. The stream can also
Stream Tydi logical type Bus - specify the data dimension, protocol complexity, hardware
synchronicity, and throughput.
. L .. Represents the port map of a component. This term is almost
Streamlet | Tydi hardware element Interface Trait with IO definitions . o .
the same as the “entity” term in VHDL.
Impl Tydi hardware element | Class with functionality Module impl” is the abbrewat}on of “implementation”, representing
the inner structure of a component.
. ) df.filter (col ("value") >= 0).agg(
. lSoﬂwarg Apache Arrow min("value") .as ("min_value"),
imp emjeplat.lon U R schemas max ("value") .as("max_value"),
specification " " " "
sum ("value") .as ("sum_value"),
avg ("value") .as ("avg_value")
Write Fletcher )
Listing 1. Example spark code.
Tyd'lj\anlg VHDL interface
specification

Transpile using
Tydi-lang-2 &

Generated

Chisel code

Write Module

implementations based

on generated interfaces
& connections

Add primitive types

Implementation

Chisel code Chisel code

~J

>

Chisel runtime

Re-iterate :Write test:

\_| Testing &
verification code

[€<— FIRRTL

CIRCT compiler

Tools

B Tydi related Verilog

Combined system

Fig. 3. Tydi toolchain components.

hardware components. Traditional HDLs primarily focus on
the structures and interconnections of hardware components.
Chisel allows designers to leverage Scala’s built-in features,
such as high-level abstraction and type inference features
to describe components more efficiently. This allows for
the creation of sophisticated hardware modules with reduced
development effort. Importantly, designs written in Chisel
are ultimately translated to low-level Verilog code, ensuring
compatibility with existing digital design flows.

IV. CHISEL EXTENSION WITH TYDI

This section describes how Tydi, Tydi—Chisel, and Chisel
can be used to develop a hardware design that operates on
a streaming dataflow. This design flow is illustrated with an
example.

Filter
non-negative
numbers

Reduce
Calculate
statistics

Numbers
input

Statistics

TN—> —TN>

output

Fig. 4. Number pipeline structure. TN: timestamped number. ST: statistics.

A. Conceived Design Pipeline

In this scenario, desired is a hardware design for a
stream-processing problem that already has a software imple-
mentation. A step-by-step pipeline going from a software
specification to a hardware design would look like the fol-
lowing.

1) Idea/software definition.

2) Write interface specifications in Tydi-lang code.

3) Describe additional communication specification.

4) Transpile with Tydi-lang-2 and Tydi-lang-2—Chisel.

5) Write component functionality in Chisel with generated
interfaces.

6) Test with testing utilities.

7) Synthesize using vendor tools.

These steps and relevant toolchain projects are depicted in
Fig. 3.

B. Number Pipeline Example

To illustrate the aforementioned pipeline, we work with a
minimal example. This example is purposefully kept simple.
Section V investigates a more advanced example that better
shows the advantage of Tydi’s ecosystem. In this section’s
example, we take in a stream of numbers with timestamps
attached. This stream first gets filtered on value > 0 and then
reduced to statistics: min value, max value, sum of values,
and average. The block schedule for this system is given in
Fig. 4. In Apache Spark, one could execute this process as in
Listing 1.
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#### package packO; MyTypes {
UInt_64_t = Bit(64); // UInt<64> /x+ Bit (64) type, defined in package [[Pack0]] =/
SInt_64_t = Bit (64); // SInt<64> UInt_64_t: UInt = UInt (64.W)
assert ( .UInt_64_t.getWidth == 64)
Group NumberGroup {
value: SInt_64_t; /x+ Bit (64) type, defined in package [[Pack0]] =/
time: UInt_64_t; SInt_64_t: UInt = UInt (64.W)
} assert ( .SInt_64_t.getWidth == 64)

Group Stats {

average: UInt_64_t; /** Group element, defined in package [[PackO]]. =/
sum: UInt_64_t; NumberGroup Group {
max: UInt_64_t; time = MyTypes.UInt_64_t
min: UInt_64_t; value = MyTypes.SInt_64_t

} }

NumberGroup_stream = Stream(NumberGroup, t=1.0, d=1, c=1); /** Group element, defined in */
Stats_stream = Stream(Stats, t=1.0, d=1, c=1); Stats Group {
average = MyTypes.UInt_64_t
#### package packl; max = MyTypes.UInt_64_t
use pack0; min = MyTypes.UInt_64_t

sum = MyTypes.UInt_64_t
streamlet NumsFilter_interface { }
std_out : packO.NumberGroup_stream out;

std_in : packO.NumberGroup_stream in; /*+ Stream, defined in package [[PackO0]]. =*/
} NumberGroupStream PhysicalStreamDetailed (e=
NumberGroup, n=1, d=1, c=1, r= , u=Null ()

impl NonNegativeFilter of NumsFilter_interface {}
NumberGroupStream {

streamlet NumsToStats_interface ({ apply () : NumberGroupStream = Wire (
std_out : packO.Stats_stream out; NumberGroupStream() )
std_in : packO.NumberGroup_stream in; }
} // ... other stream definitions
impl Reducer of NumsToStats_interface {} /** Streamlet, defined in package [[Packl]]. =/
NumsFilter_ interface TydiModule {
impl PipelineExample of NumsToStats_interface { /*x Stream of [[in]] with input direction. x/
instance filter (NonNegativeFilter); inStream = StatsStream() .flip
instance reducer (Reducer) ; /** 10 of [[inStream]] with input direction. =*/
filter.std_out => reducer.std_in; in = inStream.toPhysical
reducer.std_out => self.std_out; /*x Stream of [[out]] with output direction. =x/
self.std_in => filter.std_in; outStream = NumberGroupStream ()
} /** I0 of [[outStream]] with output direction. =/
. . out = outStream.toPhysical
Listing 2. Example Tydi-lang source code. }
/** Streamlet, defined in package [[Packl]]. =/
NumsToStats_interface TydiModule {
. . . 7 // code for NumberGroup i Stats out
C. Tvdi-Lang Specification and Transpiling ) ZEEE S s o
. . . // ... other interface and implementation definitions
As explained before, Tydi-lang was designed to close the
gap between software and hardware design. Listing 2 shows /++ Implementation, defined in package [[Packl]]. «/
. . NonNegativeFilter NumsFilter_interface {}
Tydi-lang code for our example. Connections between compo-
nents can be specified within Tydi-lang, and components that ~/** Implementation, defined in package [[Packl]]. =/
. . . . . . PipelineExample NumsToStats_interface {
require practical implementations are left empty. Tydi—Chisel // Modules
code for this specification can be obtained by first running Filier = Modhlle (= NomVeemidverilies)
. .. .. . reducer = Module ( Reducer)
Tydi-lang, obtaining a JSON description that is used to gen-
erate the Chisel code with Tydi-lang-2—Chisel. // Connections
. . . . . .. reducer.in := filter.out
A snippet of the generated Chisel code is given in Listing 3. out := reducer.out
The code shows the transformed Element datatypes, interface EdlEezodm 8= dm

. . . . }
specifications (from streamlets), and implementation skeletons.

Since Tydi focuses on the structure of the data, not the prim-
itive data types, after code generation, the correct primitive
types must be substituted for the UInt placeholders. The code

Listing 3. Chisel output code from Tydi-lang transpilation.

. . NonNegativeFilter NonNegativeFilter_interface
includes an assert to check if the used datatype adheres to {
the specified bit width. After finishing the specification with outSitrean 8= lmtresm

. . . . outStream.strb := inStream.strb(0) && inStream.el.value
primary types, implementations for modules must be written, >= 0.5

following the streamlet _interface definitions. A simple !

implementation of the filter function is given in Listing 4, Listing 4. Example implementation of single-lane filter.

where the data lane is turned off for filtered items. The

cost of this simple implementation is that the output stream

complexity is raised to C > 7. The next component must do

work to realign the items when the sequence is required. for a discussion about the library’s role. Next to syntax, care
Tydi—Chisel’s library was designed for ease of use both in is given to the implementation of Tydi—Chisel’s components.

new projects and in converting existing code; see Section VII  This implementation in Chisel consists of a few parts.
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1) Tydi Element Types:
The Element types are implemented as superclasses of
Chisel’s Bundle class.

2) Tydi Stream Implementation:
A Stream is from Tydi’s perspective also an Element
and is, therefore, also implemented as a Bundle. This
allows nesting streams and using the stream directly for
IO.

a) Connecting streams is done using Chisel’s direc-
tional := notation.

3) TydiModule Base Module:
This module has methods and overrides to allow Chisel
— Tydi-lang transpilation.
By staying close to Chisel’s normal components and
paradigms, it is expected that working with Tydi—Chisel will
feel familiar to Chisel programmers, and adapting it should be
easy and intuitive for new and existing projects.

D. Communication Specification

The Tydi specification establishes a standard for communi-
cating data over streams. It also specifies how data structures
can be formed by combining different data elements through
nesting. It does not specify how communication between com-
ponents should take place, just like the Internet protocol does
not specify how TCP packets should be sent. In other words,
low-level data transfer in specified, not data-packet communi-
cation. The difference is not immediately visible when looking
at a single stream transferring a sequence. Instead, the differ-
ence is notable when working with multiple streams. In Tydi,
streams can be nested to describe their hierarchical semantic
relation. In the Verilog compiled representation, however, these
streams end up as parallel streams. Inherently, nested streams
are separate communication channels to transfer data related
to the parent stream. Tydi specifies a basic order-of-operations
and allowed dependencies mechanism to prevent deadlocks,
but, otherwise, leaves coherency up to the user. Since, for
this example, all components have only one input stream
and one output stream without nested streams, no further
communication specification need be made.

E. Component Implementation

The fifth step in the given design pipeline is to acquire
or build the component implementations. There are currently
three types of implementations in two categories. An imple-
mentation is usually a wrapper component, routing signals
between its IO and inner instances, or an implementation
component containing logic.

Wrapper or interconnect components can be fully defined by
their Tydi-lang definitions and are included in the generated
code. Implementation components can be expressed in two
ways: internal and external. An internal component means that
the logic will be defined in Chisel and included in the Chisel
— Verilog compilation. An external component will be emit-
ted as a (subclass of) ExtModule. Chisel will then consider
the component a black box, and the emitted Verilog code will
just use the component without including an implementation,
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test ( PipelineWrap) { c
// Initialize si
c.in.initSource ()
c.out.initSink ()

gnals

// Generate list of random numbers
nums = randomSeqg(n = 50)
stats = processSeqg(nums) // Software impl.

// Test component

parallel ({
((elem, 1) nums.zipWithIndex) {
c.in.enqueueElNow (_.time -> i.U, _.value -> elem.S)
}
c.in.enqueueEmptyNow (last = Some(c.in.lastLit (0->1.U)))

oA
c.out.waitForValid()
// Utility for comprehensively printing stream state
println(c.out.printState (statsRenderer))
c.out.expectDequeue (_.min -> stats.min.U, _.max ->
stats.max.U, _.sum —-> stats.sum.U, _.average —>
stats.average.U)

})

Listing 5. Testing a TydiModule.

assuming it will be available. An ExtModule can only have
IO defined and no wires or logic.

For the lines of code analysis, each component is treated as
external, such that the overhead of signal definitions can be
clearly established.

FE Testing Utilities

When testing high-level, data-driven circuits, it is unde-
sirable to poke and peek individual wires at set times.
Instead, a more asynchronous approach of enqueueing data
on the input streams and waiting for and checking the validity
of the data that is dequeued at the output stream(s) is a
more functional approach. To aid designers with writing these
functional tests for Tydi-interface using components, a test
driver was developed for Tydi stream signals. This driver is
based on the DecoupledIO driver from the chisel-test
package. An example of a test for our Tydi-based module can
be seen in Listing 5.

All Tydi—Chisel utilities and Tydi compliance have been
verified. Details can be found in the project repository or
thesis [37].

V. ILLUSTRATIVE EXAMPLE

After establishing the general concept of Tydi, Tydi-lang,
and Tydi—Chisel, a more challenging system can be examined
that more closely resembles a real-world scenario. The system
presented in this section contains several sections that each
execute a common function in data processing. Fig. 5 depicts
the system. From a macroscopic viewpoint, this example
system processes a compressed set of records about students
and their grades for different courses and computes their
similarity vectors. Specifically, the data flow and manipulation
in the system are as follows.

1) Take in snappy compressed data.

2) Decompress these data.

3) Parse the JSON records containing the info about the

students.

4) Filter the parsed records based on some criteria.

5) Encode the student record in a similarity encoder.
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6) Output the similarity vector.

Each part of the system is successively described in this
section. This description contains details about intended func-
tionality, stream data types and IO, and integration in the
system. Together, the parts used in the example serve to
illustrate the following.

1) Usage of Tydi-lang to create a high-level description of
the dataflow in the system.

2) How an existing component without Tydi interface can
be easily wrapped to allow usage from within Tydi-lang.

3) How a custom JSON parser can automatically be gener-
ated by using Tydi-interfaced components and included
in the design.

4) How Tydi—Chisel can be used to more easily write a
component’s functionality.

The schema for the data used in this example is illustrated
by the following sample JSON; see Listing 6.

The sources for this example are available online at
https://github.com/ccromjongh/Tydi-TVLSI-example together
with instructions.

A. Decompression

The first block of the example system is the data-
decompression component. This component has a single input
stream with snappy compressed bytes and a single output
stream with decoded bytes. Listing 7 shows the Tydi-lang
definition of these streams and the component.

One of the goals of this example is to show how existing IP
can be integrated into a system with Tydi dataflow. The Snappy
decompressor IP in question is vhsnunzip [38], by Van
Straten. The strategy to include such an IP is to simply create a
wrapper for it that has Tydi interfaces. To this end, an internal
implementation of the desired streamlet definition is created,
VhSnUnzipUnbufferedWrap. The Chisel code that is
generated can then be filled in with the wrapping functionality.
The IP itself, vhsnunzip in this case, can be specified as
an ExtModule with IO matching the component. When this
wrapper is created, instances of the implementation can be
used anywhere in the design. Since the vhsnunzip compo-
nent uses vh1lib [30] streams, as mentioned in Section III-A,
a predecessor to Tydi, creating the wrapper is in this case
trivial.

B. JSON Parser

The second block of the example system is the JSON parser
component, responsible for converting the JSON character
stream into streams of values of the field types. This block
consists of a top-level component with various subcomponents
each operating parsing a specific part of the data. The top-
level component has a single input stream consisting of the
decoded bytes and one output stream per field. The generation
of the Tydi-lang code for this component and its dependencies
is done automatically by the JSON-Analyzer tool, further
described in Sections III-C and VI-F. Listing 8 shows snippets
of the generated Tydi-lang definition of these streams, the
components, and usage.
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C. Filter

The filter block’s function is twofold. First, it consolidates
the separated output streams from the JSON parser into
a single stream with a hierarchical data structure. Second,
it filters the data entries based on some criteria. The exact
filter criterion and implementation are arbitrary and outside the
scope of this example. This block aims to showcase different
data representations. Listing 9 shows the Tydi-lang definition
of the data structure, mirroring the JSON sample of Listing 6.

D. Similarity Encoder

The final block of the system is a placeholder for a compo-
nent that encodes the data entry for a student in a similarity
vector. Such a similarity vector could be used to gain insights
into patterns in the data. In this example case, the performance
of various types of students for specific courses could be
analyzed.

This component takes in the structured student data stream
from the filter component and has an output stream that
consists of 32-bit floating points. We do not focus on the
exact representation and translation of the data in vector
space, but rather on how such a component can be integrated
into a system. For example, the throughput parameter can be
chosen, such that it matches the desired system throughput
of records. Listing 10 shows the Tydi-lang definition of the
stream, streamlet, and externally defined implementation.

E. IO

The diagram shown in Fig. 5 describes the construction
of a data-processing system but has unspecified data input
and output blocks. The authors wish to emphasize details
of how Tydi and the related tools can be used to realize a
system with different kinds of components. Of course, in the
end, the input and output streams cannot be left unconnected.
Implementation specifics will be platform-dependent, likely
revolving around some form of direct memory access.

F. Effort Analysis

Providing a comprehensive estimate of the reduction of
development effort that can be achieved by the introduction
of new tools can be challenging. A general statistic that is
often included in code transformation and generation research
is lines of code of input and output. The number of lines of
code for various representations of the systems discussed in
this section is analyzed. Table II shows the results.

The source material consists of a total of 99 project-
specific lines of Tydi-lang (snappy.td and example.td), the
JSON schema for the parser generation (student_schema.json),
and 48 lines to wrap the existing decompressor component
(DecompressorWrap.scala). After going through transpila-
tion to Scala (ExampleMain.scala and GenerateExampleV-
erilog.scala) and compilation by Chisel, a Verilog output
file is produced (example.v). For this analysis, Tydi-lang-
2—Chisel was run with the option to only emit “external”
implementations, as defined in Section IV-E. This method
produces an output consisting only of module and interconnect
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JSON
data parser

Snappy

decompressor

Fig. 5. Pipeline structure for example.

"student_number": "S123456789",
"name": "John Doe",

"birthdate": "2000-05-15",
"study_start": "2021-05-15",
"study_end": null,
"study": "Computer Science"
"email": "john.doe@example.com",
"exams": [

{

"course_code": "CS101",
"course_name": "Introduction to Computer Science",
"exam_date": "2023-12-10",

"grade": 80
b
{
"course_code": "MATH201",
"course_name": "Calculus",
"exam_date": "2023-12-15",
"grade": 60
}
]
}
Listing 6. JSON sample of student entry.

byte = Bit (8);

byte_stream = Stream(byte, t=8.0, d=1, c=1);

streamlet decompressor {
# Compressed data #
co: byte_stream in;
# Decompressed data #
de: byte_stream out;
}
impl VhSnUnzipUnbufferedWrap of decompressor ({}

Listing 7. Data, streams, streamlet, and implementation definition for the
snappy decompressor.

routing code, without implementation logic. This gives the
best indication of a complete interconnect file in Verilog,
as no signals are left out through optimization by Chisel’s
compilation framework. Using this methodology, the resulting
Verilog lands at over 2300 lines of code. The majority of this
consists of routing of the stream signals for the JSON parser,
as it has a lot of components. Compiling the Verilog for the
parser as the top-level component results in 1772 lines (74%),
giving us an “overhead” of 611 lines (26%) for the rest of
our system. The ratio between the source code size and the
output code size for the JSON parser is such that one would
not write this by hand, the chance of error being very high.
However, even assuming the parser component is available,
the effort saved in interconnect routing is considerable. This
only increases as systems become more complex, as a nested
stream (commonly used for streams) adds up to seven extra
IO signals to route.

In conclusion, the added value of using Tydi and the tools
and utilities of this document are encountered at various stages
of development and not solely quantifiable in lines of code
of generated boilerplate. Indeed, alongside facilitating easier
implementation, the analysis shows a considerable reduction in
lines to write, up to several times the code’s size. Eventually,
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Similarity encoder

Filter
(map)

Data out
vectors

streamlet t <d: int> {
JSONStream = Stream/(

Bit (8),
throughput = 4.0,
dimension = d,
synchronicity = "Sync",
complexity = 8

)i

IntParserStream = Stream(

Bit (64),
throughput = 1.0,
dimension = d,
synchronicity =
complexity = 2

"Sync",
)i
}

streamlet int_parser_L4_00 ({
NESTING_LEVEL = 3;

t<NESTING_LEVEL+1>.JSONStream in;
t<NESTING_LEVEL>.IntParserStream out;

input:
output:
}

impl int_parser_L4_ 00_impl of int_parser_L4_ 00 Q@External {
}

streamlet grade_matcher_L3_00 {
input: t<0>.MatcherStrStream in;
output: t<0>.MatcherMatchStream out;
}

impl grade_matcher_L3_00_impl of grade_matcher_ L3_00
@External { }

streamlet top {
input: t<1>.JSONStream in;

output_string_parser_Ll1_00_inst: t<2>.JSONStream out;

output_int_parser_L4 00_inst: t<3>.IntParserStream out;

}

impl top_impl of top {
instance string_parser_L1l_00_inst (
string_parser_L1_00_impl);

self.input => record_parser_Ll_00_inst.input;

}
Listing 8.
JSON parser.

Data, streams, streamlet, and implementation snippets for the

the value provided by this methodology will manifest itself
through the lack of research required in custom communica-
tion solutions.

Naturally, designers will need to familiarize themselves with
the Tydi protocol and Tydi-related tooling. By staying close
to familiar syntax and concepts of Chisel and C, it is expected
that learning tool usage is easy. Protocol implementation may
be harder, but will not exceed a custom solution.

VI. ADDITIONAL UTILITIES AND TOOLS

To prevent unnecessary verbosity in common use cases,
several helper components and utilities were developed.
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Char = Bit (8);
n = 4.0;
String = Stream(Char, t=n, d=1, c=8);
Group Exam {
course_code: String;
course_name: String;
exam_date: String;
grade: Bit (7);

}

Group Student {
student_number:
name: String;
birthdate: String;
study_start: String;
study_end: String;
study: String;
email: String;
exams: Stream(Exam,

String;

t=1.0, d=1);

}
StudentStream = Stream(Student, t=1.0, d=1);
streamlet StudentFilterInterface {
input_string_parser_L1_00_inst:
<2>.JSONStream in;

student_schema_parser.t

input_int_parser_L4_00_inst: student_schema_parser.t
<3>.IntParserStream in;

output: StudentStream out;

}

impl StudentFilterImpl of StudentFilterInterface {}

Listing 9. Data, streams, streamlet, and implementation snippets for the filter
block.

Float32 = Bit (32);

SimilarityVectorStream = Stream(Float32, t=64.0, d=1, c=1);

streamlet SimilarityEncoderInterface {

# Student data structure input. #
student_input: StudentStream in;
# Student similarity vector output. #

similarity_output: SimilarityVectorStream out;

}
impl SimilarityEncoderImpl of SimilarityEncoderInterface
@External {}

Listing 10.
encoder.

Data, streams, streamlet, and implementation for the similarity

TABLE I

LINES OF CODE COMPARISON; VERILOG IS GENERATED USING ONLY
“EXTERNAL” IMPLEMENTATIONS TO SEE INTERCONNECT OVERHEAD.
ITALICS INDICATE GENERATED CODE.* AUTOGENERATED SCALA
CODE Is NOT OPTIMAL. HAND-WRITTEN CODE WOULD BE
MUCH SHORTER

[ File | Lines of code |
student_schema.json 18
snappy.td 13
example.td 86
student_schema_parser.td 546
ExampleMain.scala 3455*
DecompressorWrap.scala 48
GenerateExampleVerilog.scala 25
example.v 2381

A. Stream-Processing Modules

The generated code expressed in Listing 3 of Section IV-C
is a functional representation of the hardware that is described
for the pipeline and does not need to be altered if an
interconnecting implementation is desired. When writing a
component’s implementation in Chisel, it is rather verbose,
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PipelineExampleModule (bufferSize: Int)

SimpleProcessorBase ( NumberGroup, Stats) {

out := in.processWith ( NonNegativeFilter)
.convert (bufferSize)
.processWith ( Reducer ()
}
Listing 11. Compositing of advanced pipeline in Chisel.

however, and seems far off from the original software example
(Listing 1) that uses method chaining, a paradigm used by
many big-data frameworks because of its convenience and
conciseness. Therefore, a pipeline notation was developed to
more naturally formulate a data-stream processing pipeline
and provide a better overview of what is happening to a
data stream. This notation is shown in Listing 11. The
processWith method instantiates the module it gets passed,
connects the input stream of the module to the referenced
output stream, and returns the module’s output stream for
further chaining. The convert method does this with a
stream-complexity converter with specified buffer size.

At the time of writing, this notation is not used in automatic
generation. Since this notation is not as of yet used in Tydi-
lang, additional analysis would be required to implement this.

B. Stream-Complexity Converter

Section III-B briefly explains the stream-complexity system
for physical streams in Tydi. Connections with complexi-
ties Csink = Csource are compatible for a lower C, which
is a more bounded version of a higher C. Connecting a
high-complexity source to a low-complexity sink, Cgpx <
Csources does not satisfy this requirement and, thus, requires
changing the components or doing a conversion. A stream-
complexity converter component is developed that can perform
this stream-complexity conversion for an arbitrary physical
stream (i.e., it takes in an incoming high-complexity stream
and outputs a low-complexity outgoing stream). To offer one
solution that fits all situations, the component has a Csoyree =
8 and Cgpx = 1 and is parameterizable for element width (e),
dimensionality (d), and number of lanes (7).

In general, it can be said that the high-complexity input
signal can be more fragmented, and the low-complexity output
must be less fragmented as dedicated by the stream-complexity
rules. Higher complexity streams are not required to send the
data in one continuous cascade. Instead, they can use the stai
(C = 6), endi (C = 5), and strb (C > 7) signals to turn
individual lanes off. At C > 3, valid can go low in the
middle of a sequence, effectively pausing the input stream.
In addition, for complexities C > 4, the last flag can be
postponed, i.e., sent after the element data. For C < 4, this is
not allowed, which means the complexity converter component
should be able to realign the dimensionality information with
the element data.

Based on these requirements, the component takes in the
data and dimensionality information at Cgoyree, buffers and
compresses it, and outputs the information again at the
required Cghx. As shown in Fig. 6, the execution of these
tasks is split up into three stages: input processing, buffer
management, and output generation.
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Fig. 6. Visual explanation of complexity converter operation.

1) Input processing consists of realigning and reducing
optional delayed dimensional data, concluding when an
empty element/sequence occurs, and computing where
all element data should go. The order of the elements is
also important here.

2) For the buffer, it is important that the data are coherently
stored, in the right order. New data are coming in, and
stored data are going out when at least one finished
sequence is stored. Since the input and output are
uncoupled, this can happen in the same clock cycle.

3) Output generation consists of the logic to form a valid
C =1 stream.

The most challenging part of the stream-complexity con-
verter design is the input processing. At C = 8, dimensionality
information can be delayed with respect to the element data.
In addition, an empty sequence of 1 < dyeq < d dimen-
sions can be transmitted by closing asserting last bits on
inactive element data lanes. Simply executing a reduction of
the dimensionality information from one valid data lane to
the next is, therefore, not possible. While this problem is
inherently stateful, it can, nevertheless, be solved combina-
tionally by utilizing a structure similar to a ripple-carry adder.
Based on the (reduced) last information of the previous
lane and the data-lane validity and last information of the
respective input lane, the element computes the reduced last
information and whether a new sequence starts based on
dimensionality information alone. This process is displayed
in Fig. 7.

C. Multilane Slicing

Another utility component that can help insert a component
into a design with specific requirements is the multiprocessing
or interleaving component. This component can be used to
split a multilane stream into multiple components operating

Shift all items 5 places
@ next clock

on a single stream. In effect, this creates a component that
operates on a multilane stream. This can be used to easily
scale up throughput if the data elements can be processed on
an element-by-element basis. For an overview, see [37, Ch. 4].

D. Stream Duplicator and Voider

The stream duplicator and stream voider are standard com-
ponents that were already introduced in [32]. The stream
duplicator copies one output stream onto multiple output
streams. Receiving components have independent sinks with
ready signals. A transfer must logically not happen before
all components are ready to receive data. The ready pulse is,
therefore, only sent to the source when all sinks are ready.
The stream voider simply consumes all data that are sent to it
by always presenting a high ready signal. This component
is mainly used to connect unused (sub-)streams, avoiding
unconnected signal errors.

E. Reverse Transpilation

The design pipeline in Section IV-A assumes a situation
where a complete reference implementation or blueprint is
already available. In reality, it often happens that specifications
change during a project, or influencing factors are overlooked
at the start. To facilitate a more design cycle, such as workflow,
a “reverse” transpiler is also available, as seen in Fig. 3. This
functionality allows generating Tydi-lang code from a Chisel
definition of a Tydi Element or TydiModule, including its
dependencies. This simplifies making changes to the Tydi-lang
spec or generating a first draft spec when converting the
existing projects. See Section VII for a more intricate analysis
between Tydi—Chisel and Tydi-lang.
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Fig. 7. Last sequence processor component schematic.

F. Updates to JSON-TIL

Section V-B describes the JSON parser block of the illustra-
tive example system. To make this work, some updates to the
JSON-TIL project [35] were required. JSON-TIL, as the name
implies, was created with Tydi-IR as output target, to be further
compiled by the til tool to VHDL. While this could have
been used in the example by including the top-level component
in Tydi-lang as external, Tydi-IR is currently not under active
development and misses the functionality to easily duplicate
streams. Tydi-lang has a sugaring feature that automatically
inserts stream duplicator components with the required number
of output ports between the output and input ports when the
output stream is used multiple times. For these two reasons,
the JSON-Analyzer code of the JSON-TIL project was updated
to output Tydi-lang code.

VII. DISCUSSION

Most snippets given in Section V are in Tydi-lang-2 dialect,
not in Chisel/Scala. This representation was chosen for a few
reasons. Tydi-lang was historically meant as the front-end
description for Tydi using dataflow systems. Its syntax was
chosen to clearly describe Tydi concepts. In addition, Tydi-
lang features sugaring features, such as automatic insertion
of stream duplicator and voider components, where they are
necessary, which is essential to the JSON parser generation.

The Tydi—Chisel library was developed with two goals in
mind: support Tydi logic types (these include the streams)
in Chisel and easily compose systems. In that sense, it was
built to either work with generated code or standalone, without
requiring any separate tooling than Chisel’s. In fact, systems
can sometimes be described more efficiently in Chisel when
making use of in-place definitions of data types and/or Tydi—
Chisel’s module shorthands and utilities. Both these things will
not happen when generating code, simply because the exact
purpose of definitions is not known in Tydi-lang and because
Tydi-lang is target-language agnostic.

Regarding this reasoning, two main differences stand out
between Tydi-lang and Tydi—Chisel. Tydi-lang’s generality
prevents the systems it describes from being as concise and
specific as with Tydi—Chisel. On the other hand, the generality
allows it to evaluate to other HDLs as ()utput.1 There is,

ISince, at the time of writing, til [33] is not maintained anymore, Chisel is
the only target language. However, others can easily be supported based on
previous work, either by introducing a Tydi library or by more verbose code
generation.

Processor element New seq at ijst LSB < ired LSB

thus, a tradeoff in specificity. A concept that cannot easily
be implemented in Chisel is the automatic insertion of stream
duplicators. This would require advanced runtime introspec-
tion and administration, where the power of Scala lies in
its strong compile-time type checking. Tydi-lang can, thus,
be said to be more suitable for implementing advanced design
checks and modifications. An interesting question is what the
ideal language, or languages and toolchain would look like for
Tydi-based hardware development and what standard utilities
it should contain.

VIII. CONCLUSION

This article introduced Tydi—Chisel, a library that integrates
the Tydi standard within Chisel, along with a toolchain and
methodology for designing data-streaming accelerators. This
toolchain reduces the effort needed to design streaming hard-
ware accelerators and allows for easy integration of accelerator
components from different designers.

Tydi’s standard and specification abilities allow software
and hardware designers to work together better in an interface-
driven approach. It also allows hardware designers to avoid
the pitfalls of designing or working with custom dataflow
communication solutions.

Through this and previous projects, the tools developed
encompass specification of dataflows in the design, creation
of hardware design boilerplate code from this specification,
utilities for writing the implementations, testing, and generat-
ing software—hardware interfaces for communication through
Apache Arrow. Tydi—Chisel plays an essential role in the
development process for Tydi interface-based systems pre-
sented in this work. In the future, Tydi-related tooling can
be expanded to aid developers in various stages of accelerator
development. Tydi—Chisel could gain more advanced testing
tools for data en-/de-queueing, data transfer visualization, and
stream protocol compliance verification. Interoperability with
the existing streaming protocols could be developed, alongside
more real-world examples.

Eventually, the authors envision an ecosystem of IP com-
ponents with Tydi interface specifications. Designers working
on a data-streaming hardware design project could then use
these IP components, needing to concern themselves only
with the data communication specification, which is easy to
implement, and not the component’s implementation, avoiding
implementation-dependent design.
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