
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 12-03

Efficient Pricing of Asian Options under Lévy Processes
based on Fourier Cosine Expansions

Part II Early–Exercise Features and GPU Implementation

B. Zhang J.A.M.van der Weide C.W. Oosterlee

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2012

Copyright  2012 by Department of Applied Mathematical Analysis, Delft,
The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission from Department of Applied
Mathematical Analysis, Delft University of Technology, The Netherlands.

Efficient Pricing of Asian Options under Lévy

Processes based on Fourier Cosine Expansions

Part II Early–Exercise Features and GPU

Implementation

B. Zhang∗ J.A.M.van der Weide† C.W. Oosterlee‡

May 23, 2012

Abstract

In this article, we propose an efficient pricing method for Asian options
with early–exercise features. It is based on a two–dimensional integration and
a backward recursion of the Fourier coefficients, in which several numerical
techniques, like Fourier cosine expansions, Clenshaw–Curtis quadrature and
the Fast Fourier transform (FFT) are employed. Rapid convergence of the
pricing method is illustrated by an error analysis. Its performance is further
demonstrated by various numerical examples, where we also show the power
of an implementation on the Graphics Processing Unit (GPU).
Keywords: Early–exercise Asian option; arithmetic average; Fourier cosine
expansion; chain rule; Clenshaw–Curtis quadrature; exponential convergence;
graphics processing unit (GPU) computation.

1 Introduction

An Asian option is a special type of exotic option, introduced in Japan, in 1987.
Because the contract description (i.e. the pay-off function) is based on geometric
or arithmetic averages of the underlying stock price at monitoring dates, rather
than just on the present asset price, this exotic option is also called path-dependent.
The number of monitoring dates can be finite (so-called discretely–monitored Asian
options) or infinite (continuously–monitored Asian options). Asian options are pop-
ular, because averages typically move in a more stable way than individual asset
prices, and the volatility, inherent in asset prices, is reduced due to the averag-
ing feature, so that Asian option holders may pay lower prices for these contracts,
compared to plain European options.

There is not much information on early-exercise Asian option products in the
present markets. We may encounter them in the commodity market, and variants
in the equity market are so-called American options with an Asian tail (meaning
that the final part of the contract time is based on averaged asset prices rather than
on plain assets). In the academic literature, important contributions [6, 2] have

∗Delft University of Technology, Delft Institute of Applied Mathematics, email:
Bowen.Zhang@tudelft.nl

†Delft University of Technology, Delft Institute of Applied Mathematics, email:
J.A.M.vanderWeide@tudelft.nl

‡CWI – Centrum Wiskunde & Informatica, Amsterdam, the Netherlands, email:
C.W.Oosterlee@cwi.nl, and Delft University of Technology, Delft Institute of Applied Mathemat-
ics.

1

been presented, when pricing these Asian options by partial differential and partial
integro-differential equations (PDEs and PIDEs, respectively). In [6], for example,
a semi–Lagrangian time-stepping method was used to solve the P(I)DE in a time-
stepping procedure. The method worked particularly well for American-style Asian
options under a jump–diffusion model.

In [12], European-style Asian options were priced by means of Fourier cosine
expansions (as in the COS method [7]) and Clenshaw–Curtis quadrature. The
method was named the Asian cosine method (ASCOS). This new pricing method can
be seen as an efficient alternative to Fast Fourier Transform (FFT) and convolution
methods, as in [4, 9, 1, 10], for pricing European–style Asian options under Lévy
processes.

In this paper, which is the Part II paper of the European Asian option paper [12],
we propose an efficient version of the ASCOS pricing method for early–exercise
Asian options, again based on Fourier expansions, Fast Fourier Transform (FFT)
and Clenshaw–Curtis quadrature. In the 2D ASCOS method the option price is
calculated based on two dimensions of uncertainty, i.e. the uncertainty in the asset
process, as well as in the averaged asset process over time. The risk–neutral formula
then becomes a two–dimensional integration, based on which the continuation value
is approximated at each time step. By application of the chain rule from probabil-
ity theory, the joint conditional density function in the risk–neutral formula can be
factorized into two marginal conditional density functions that are approximated
by Fourier cosine expansions. To calculate the option price, we need to recur-
sively recover the Fourier coefficients with the help of Fourier cosine expansions and
Clenshaw–Curtis quadrature. The FFT is used to accelerate the algorithm. The
computational complexity of our pricing method for Asian options, with M early–
exercise dates, is O((M− 1)nqN1N2 log2N2), with N1, N2 the number of Fourier
cosine terms in the expansions for the density functions of the asset and the aver-
aged asset price, respectively, and nq the number of terms in the Clenshaw-Curtis
quadrature.

Exponential convergence in the option price, with respect to nq, N1, N2, is ob-
tained for most Lévy processes, for which we give an error analysis, combined with
numerical examples. The 2D method is presented in Section 4, followed by an error
analysis in Section 5. Numerical results are given in Section 6, where the efficiency
and accuracy of the pricing methods are presented. Implementation has taken place
on the Graphics Processing Unit (GPU). It may be interesting to see that this com-
puter architecture improves the pricing speed drastically when pricing arithmetic
Asian options with early-exercise features.

We start, however, in Section 3, with another, alternative Asian pricing method,
which is only accurate in the case of a large number of early–exercise dates. It has
a reduced computational cost of O((M− 1)nqN

2), with N the number of terms
in a 1D Fourier cosine expansion. The approximation error appearing from the
approximations in this alternative method converges to zero only when the number
of early–exercise dates tends to infinity.

2 Early-exercise Asian options under Lévy pro-
cesses

In this article the underlying asset, St, is assumed to be an exponential function of
a Lévy process, Lt, i.e. St = S0 exp(Lt). Lévy process, Lt, with initial condition
L0 = 0, has independent and stationary increments and is stochastically continuous.
For any s < t, and ∀ε > 0, we have

lim
s→t

P(|Lt − Ls| > ε) = 0.

2

The (conditional) probability density function is not known for many relevant Lévy
asset processes. However, its Fourier transform, the (conditional) characteristic
function, φYm|Ym−1(·), is often available, for example, by the Lévy-Khinchine theo-
rem for underlying Lévy processes. Our pricing algorithm is based on this Fourier
transform.

In this paper, we deal with early–exercise options in which the contract function
at each exercise date is a function of the averaged underlying asset price, up to that
date. Early-exercise implies that the option may be exercised prior to the expiration
date. Let t0 denote the initial time and T = {t1, · · · , tM} be the collection of all
exercise dates with ∆t := (tm − tm−1), t0 < t1 < · · · < tM = T , and assume that
the early–exercise dates and the monitoring dates of the Asian options are the same.

We focus on arithmetic averaging, as it is mathematically more challenging, and
on fixed–strike Asian options, with payoff functions defined by

g(S, tm) =


max(1

m+ 1

m∑
j=0

Sj −K, 0), for a call,

max(K − 1
m+ 1

m∑
j=0

Sj , 0), for a put,

These payoff functions change from time step to time step, due to the averaging
feature.

3 A first Asian pricing method (for M→∞)

We present here a first pricing algorithm for early–exercise arithmetic Asian options,
which is only accurate for a large number of early-exercise dates, as we will proof
in the subsection to follow.

The pricing formula for an early–exercise Asian option with M exercise dates
then reads, for m = M,M− 1, . . . , 2: c(ym−1, tm−1) = e−r∆t

∫
R
v(ym, tm)f(ym|ym−1)dym,

v(ym−1, tm−1) = max (g(ym−1, tm−1), c(ym−1, tm−1)) ,
(1)

followed by

v(y0, t0) = e−r∆t

∫
R
v(y1, t1)f(y1|y0)dy1. (2)

Here, ym is the state variable at time step tm, and v(x, t), c(x, t) and g(x, t) are
the option value, the continuation value and the payoff at time t, respectively.
v(S, tM) = g(S, tM) is the payoff function at final time, tM = T . Function
f(ym|ym−1) is the conditional density of ym given ym−1. Interest rate r is assumed
to be constant here.

In the risk–neutral formula (1) the continuation value is computed at each time
step as the discounted expected value of the option price at a next time step. More-
over, to avoid arbitrage opportunities, the option value at each time step cannot be
less than the payoff of the option, which is the second equation in (1).

In [7, 8] the COS method was developed for the computation of continuation
value c(ym−1, tm−1) and option price v(y0, t0), for vanilla (i.e. non-path dependent)
Bermudan options, under the assumption that the characteristic function of the
underlying Lévy asset price process is known.

The pricing algorithm for early–exercise arithmetic Asian options in this section
can be seen as a generalization of the COS method for Bermudan options (a general
2D pricing algorithm will be presented in Section 4).

3

Here, we define

Ym := log(
S1

S0
+
S2

S0
+ · · ·+ Sm

S0
), m = M,M− 1, · · · , 1. (3)

Based on this variable, the payoff function is given by

g(ym, tm) =


(
S0(1 + eym)
m+ 1

−K)+, for a call,

(K − S0(1 + eym)
m+ 1

)+, for a put,
(4)

After truncation of the integration range in (1) and (2), from R to [a, b], we ap-
proximate the conditional density function in terms of its characteristic function,
via a Fourier cosine expansion. For m = M− 1, · · · , 1 the continuation value is
approximated by Fourier cosine expansions, as

ĉ(ym−1, tm−1) = e−r∆t

N−1∑′

k=0

Re

(
ϕ̂Ym|Ym−1(

kπ

b− a
; ym−1,∆t)e−ikπ a

b−a

)
V̂k(tm), (5)

where ĉ, V̂ , φ̂ indicate that these are numerical approximations. The prime at the
sum symbol indicates that the first term in the summation is weighted by one-half.
Conditional characteristic function ϕ̂Ym|Ym−1(u; ym−1,∆t), in (5), will be derived in
Subsection 3.1. The Fourier cosine coefficients of the option price at tm in (5) are
defined by

V̂k(tm) =
∫ b

a

v̂(ym, tm) cos(kπ
ym − a

b− a
)dym, (6)

The target option price is obtained by computing

v̂(y0, t0) = e−r∆t

N−1∑′

k=0

Re

(
φY1|Y0(

kπ

b− a
; y0,∆t)e−ikπ a

b−a

)
V̂k(t1), (7)

where for arithmetic Asian options under Lévy processes, φY1|Y0 is known analyti-
cally.

Based on the conditional characteristic function for Ym in (3), the early–exercise
arithmetic Asian option value can be calculated by a backward recursion on the
Fourier coefficients, V̂k(tm), as defined in (6). Then, the option price is obtained by
inserting the value of V̂k(t1) into (7).

At maturity time, tM, the option value equals the payoff, and Fourier coeffi-
cients, Vk(tM), read:

Vk(tM) =


2

b− a
(S0
M+ 1χk(y∗M, b) + (S0

M+ 1 −K)ψk(y∗M, b)), for a call,

2
b− a

((K − S0
M+ 1)ψk(a, y∗M)− S0

M+ 1χk(a, y∗M)), for a put,
(8)

with y∗M = log(K(M+1)
S0

− 1), the value for which the payoff is nonzero, and

ψj(yl, yu) :=
∫ yu

yl

cos
(
jπ

y − δn
b2 − δn

)
dy, (9)

and

χj(yl, yu) :=
∫ yu

yl

ey cos
(
jπ

y − δn
b2 − δn

)
dy. (10)

At recursion step tm,m = M− 1, · · · , 1, as a first step in the algorithm, the
so-called early–exercise point, y∗m, for which c(y∗m, tm) = g(y∗m, tm), is determined

4

by Newton’s method, as the derivatives of the continuation value and the payoff
function, with respect to ym, can be easily derived. Based on this, we can split
Vk(tm), as follows

Vk(tm) =

{
Ck(a, y∗m, tm) +Gk(y∗m, b, tm), for a call,

Gk(a, y∗m, tm) + Ck(y∗m, b, tm), for a put,

where Ck, Gk are Fourier cosine coefficients of the continuation value and payoff at
tm, respectively. Coefficients Gk are of the form

Gk(tm, yl, yu) =
2

b− a

∫ yu

yl

g(y, tm) cos(kπ
y − a

b− a
)dy, (11)

where for a call, [yl, yu] = [y∗m, b], and for a put, [yl, yu] = [a, y∗m]. Inserting (4)
into (11) gives us

Gk(tm) =
2

b− a


S0

m+ 1
χk(y∗m, b) + (

S0

m+ 1
−K)ψk(y∗m, b), for a call,(

K − S0
m+ 1

)
ψk(a, y∗m)− S0

m+ 1χk(a, y∗m), for a put.

Coefficients Ck, approximated by Ĉk, defined as

Ĉk(yl, yu, tm) =
2

b− a

∫ yu

yl

ĉ(y, tm) cos(kπ
y − a

b− a
)dy, (12)

are computed numerically. In the subsection to follow, we will show that, ∀u ∈ R,
the conditional characteristic function ϕYm|Ym−1(u; ym−1,∆t) can be approximated
by

ϕ̂Ym|Ym−1(u; ym−1,∆t) ≈ (1 + eYm−1)iuφZ(u;∆t), (13)

and that the error from approximation (13) converges to zero only when M goes
to infinity. The distribution of Z is identical to that of the logarithm of increment
between (any) two consecutive time steps of a Lévy process.

Applying (5) and (13) in (12), gives us

Ĉk(yl, yu, tm) =
∫ yu

yl

ĉ(ym, tm) cos(kπ
ym − a

b− a
)dym (14)

= e−r∆tRe

N−1∑′

j=0

φZ(
jπ

b− a
;∆t)e−ijπ a

b−a V̂j(tm+1)Hk,j(yl, yu)

 ,

where function Hk,j(yl, yu) is given by

Hk,j(yl, yu) =
2

b− a

∫ yu

yl

(1 + ey)i jπ
b−a cos(kπ

y − a

b− a
)dy. (15)

With Ĉ(yl, yu, tm) := {Ĉk(yl, yu, tm)}N−1
k=0 , Equation (14) can be written in

matrix–vector multiplication form, as

Ĉ(yl, yu, tm) = e−r∆tRe(H · u), (16)

with H := {Hk,j}N−1
k,j=0, u := {uj}N−1

j=0 , and

u0 =
1
2
φZ(0;∆t)V̂0(tm+1),

uj = φZ(
jπ

b− a
;∆t)e−ijπ a

b−a V̂j(tm+1), (j 6= 0). (17)

5

Integral Hk,j(yl, yu) in (15) can be rewritten in terms of Beta functions, however,
the calculation of these Beta functions, with complex-valued arguments for all k, j,
is computationally expensive. Therefore, as in [12], we will use the Clenshaw–Curtis
quadrature rule to calculate the integrals Hk,j(yl, yu) in (15).

By recursion, we get the V̂k(t1)-coefficients, and the value of an early–exercise
arithmetic Asian option is given by

v̂(y0, t0) = e−r∆t

N−1∑′

k=0

Re(φ
log(

S1
S0

)
(
kπ

b− a
;∆t)e−ikπ a

b−a)V̂k(t1),

where y0 = log(S0) and φ
log(

S1
S0

)
(u; t), ∀u, t, is known analytically for most Lévy

processes.
At each time step the computational complexity is O(nqN

2) and O(N) to com-
pute the Ĉk- and Ĝk-terms, respectively, where nq denotes the number of terms
in the discrete cosine expansion of the Clenshaw–Curtis quadrature. In total,
O((M − 1)nqN

2) computations are required for early-exercise arithmetic Asian
options under Lévy processes.

Remark 3.1 (Error Analysis). With the conditional characteristic function well
approximated, the error in the option price propagates basically in the same way
as for a plain vanilla Bermudan option, for which we refer to [8], where a detailed
error analysis was given.

3.1 Characteristic function of the first pricing method

The fact that the pricing method explained is only highly accurate for M→∞ will
be presented in this section, where we derive the conditional characteristic function.

First, we give two lemmas which will be used later in our analysis.

Lemma 3.1. A conditional characteristic function, ϕY |X(u;x, t), satisfies, ∀X,Y
with X and Y −X independent, and ∀u ∈ R,

ϕY |X(u;x, t) = eiuXφZ(u; t),

where Z and Y −X are identically distributed, that is, Zd
=Y −X.

Proof. From the definition, we have

ϕY |X(u;x, t) = E(eiuY |X) = eiuXE(eiu(Y−X)|X).

With the notion of independence of X and Y −X, it follows that:

eiuXE(eiu(Y−X)|X) = eiuXE(eiu(Y−X)) = eiuXφY−X(u; t) = eiuXφZ(u; t),

which proves the lemma.

Lemma 3.2. For random variables X,Y , with a bijective and bi-measurable func-
tion h : R → R, we have that, ∀u ∈ R,

ϕY |X(u;x, t) = ϕY |h(X)(u;h(x), t). (18)

Proof. The proof is straightforward as the σ-fields generated by X and h(X) coin-
cide.

6

As a consequence of the Lemmas 3.2 and 3.1, we find that, for random variables
X,Y and bijective function h : R → R, with h(X) and Y − h(X) independent,

ϕY |X(u;x, t) = eiuh(X)φZ(u; t), ∀u ∈ R (19)

where Zd
=Y − h(X).

The basis for the efficient 1D Asian pricing algorithm is in the following lemma,
which describes a relation between the characteristic functions of the state variables
at consecutive time steps tm and tm−1, for Lévy processes.

Lemma 3.3. If we define

Ym := log(
S1

S0
+
S2

S0
+ · · ·+ Sm

S0
), m = M,M− 1, · · · , 1,

then, at time step tm, m = M, · · · , 2, we have, ∀u ∈ R, in the case of a Lévy
process, St, that

φYm(u; t) = φlog(1+eYm−1)(u; t)φZm(u; t), (20)

where
Zm := log(

Sm

Sm−1
). (21)

Proof. For all u ∈ R, we have

Ym = log(1 + eWm−1) + Z1,

with
Wm−1 := log(

S2

S1
+
S3

S1
+ · · ·+ Sm

S1
).

Note that Wm−1 and Z1 are independent, as Lévy processes are defined by the
property of independent increments. Therefore, ∀u ∈ R,

φYm(u; t) = φlog(1+eWm−1)(u; t)φZ1(u; t).

Moreover, a Lévy process has stationary increments, which implies that, ∀u,m,
φZ1(u; t) = φZm(u; t), so that we find

φYm(u; t) = φlog(1+eWm−1)(u; t)φZm
(u; t).

Now, we only need to prove that, ∀u ∈ R,

φlog(1+eYm−1)(u; t) = φlog(1+eWm−1)(u; t). (22)

Here, eYm−1 and eWm−1 can be rewritten as follows

eYm−1 = eZ1 + eZ1+Z2 + · · ·+ eZ1+···+Zm−1 ,

eWm−1 = eZ2 + eZ2+Z3 + · · ·+ eZ2+···+Zm ,

where Zm is defined in (21). For a Lévy process all Zj , j = 1, · · · ,M, are identi-
cally and independently distributed, so that eYm−1

d
=e

Wm−1 , and ∀u, φeYm−1 (u; t) =
φeWm−1 (u; t).

Equation (22) can be proved by the fact that for any two random variables, X,Y ,
if we have φX(u; t) = φY (u; t), ∀u ∈ R, then, for any bijective and bi–measurable
function h : R → R, we have

φh(X)(u; t) = φh(Y)(u; t). (23)

This concludes the proof.

7

From (20) and since Ym−1 and Zm are independent variables, as we work with
Lévy processes, we have

φYm(u; t) = φlog(1+eYm−1)+Zm
(u; t),∀u, t,

which implies that Ym and log(1 + eYm−1) + Zm are identically distributed, i.e.
Ym

d
= log(1 + eYm−1) + Zm.
Let

Ȳm := log(1 + eYm−1) + Zm,

so that Ym
d
= Ȳm. Conditional characteristic function ϕȲm|Ym−1

(u; ym−1,∆t) is
known in closed form, that is, we set h(Ym−1) := log(1 + eYm−1), and, from (19),
∀ym−1, u ∈ R, we find

ϕȲm|Ym−1
(u; ym−1,∆t) = ϕȲm|h(Ym−1)(u;h(ym−1),∆t)

= eiuh(Ym−1)φȲm−h(Ym−1)(u;∆t)

= (1 + eYm−1)iuφZm(u;∆t). (24)

Our aim is to approximate the conditional characteristic function of Ym, given Ym−1,
in terms of the conditional characteristic function in (24). Both Ym and Ȳm can be
decomposed in terms of the increments between consecutive time steps, as follows

Ym = log(
m∑

j=1

(Πj
l=1

Sl

Sl−1
)),

Ȳm = log(
m−1∑
j=1

(Πj
l=1

Sl

Sl−1
) + 1) + log(

Sm

Sm−1
).

These increments are identically and independently distributed, depending only on
the model parameters and ∆t. Therefore, Ym and Ȳm are both functions of ∆t. In
the following lemma we will show that as M→∞, that is, as ∆t goes to zero, we
have Ym → Ȳm, ∀m = 1, · · · , and we can use ϕȲm|Ym−1

(u; ym−1,∆t) to approximate
ϕYm|Ym−1(u; ym−1,∆t) at each time step.

Lemma 3.4. As ∆t→ 0, that is, as tk − tk−1 → 0, ∀k = 1, · · · ,M, we have that,
∀m = 1, · · · ,M,

log(
m∑

j=1

(Πj
l=1

Sl

Sl−1
)) → log(

m−1∑
j=1

(Πj
l=1

Sl

Sl−1
) + 1) + log(

Sm

Sm−1
).

In other words, as M→∞, then, Ym → Ȳm, ∀m = 1, · · · ,M.

Proof.

exp(Ym)− exp(Ȳm) = (
S1

S0
− Sm

Sm−1
) + (

S2

S1
− Sm

Sm−1
)
S1

S0

+ (
S3

S2
− Sm

Sm−1
)
S2

S0
+ · · ·+ (

Sm−1

Sm−2
− Sm

Sm−1
)
Sm−2

S0

=
m−1∑
j=1

(
Sj

Sj−1
− Sm

Sm−1
)
Sj−1

S0
. (25)

The mean and variance of log(Sj/Sj−1), j = 1, · · · ,M, under a Lévy process,
are of the form Jµ∆t and Jσ∆t, where Jµ, Jσ are constants, independent of ∆t.

8

Therefore, as M → ∞, ∆t → 0, the mean and variance of log(Sj/Sj−1) will tend
to zero, so that log(Sj/Sj−1) → 0.

Function exp(x), x ∈ R, is a continuous function with respect to x, therefore, we
have Sj/Sj−1 → 1, ∀j = 1, · · · ,M, and thus

Sj

Sj−1
− Sm

Sm−1
→ 0,∀j. (26)

Moreover, the term Sj−1
S0

is independent of the term Sj

Sj−1
− Sm

Sm−1
, so that, from (25),

we find
exp(Ym)− exp(Ȳm) → 0,

or, in other words, exp(Ym) → exp(Ȳm) as M → ∞, and we can conclude that
Ym → Ȳm, because log(x) is a continuous function in x > 0.

This concludes the proof.

As an approximation, we can thus use

ϕ̂Ym|Ym−1(u; ym−1,∆t) ≈ ϕȲm|Ym−1
(u; ym−1,∆t)

= (1 + eYm−1)iuφZm(u;∆t). (27)

For Lévy processes all Zm-terms are identically distributed. Thus

φZm
(u; t) =: φZ(u; t),

and we replace φZm(u; t) by φZ(u; t) in (27).
This concludes our discussion of the first pricing method. Numerical exper-

iments, comparing the performance of this method with that of the 2D method
presented in the section to follow, for a small and large number of early-exercise
dates, will be presented in the section with numerical experiments.

4 The 2D ASCOS method for early-exercise Asian
options

In this section we present a 2D pricing algorithm for early–exercise Asian options,
which can be used for all Lévy processes with any number of early–exercise dates.
Calculations of the continuation value and the Fourier coefficients at each time step
are discussed, respectively, in Subsections 4.1 and 4.2. The method appears to be
more robust than the method from the previous section, but also somewhat more
expensive.

4.1 Continuation value

At each time step m = M, · · · , 1, we use in this case the variables

ym :=
S1

S0
+ · · ·+ Sm

S0
, xm := log(

Sm

S0
),

and we have
ym = ym−1 + exm . (28)

From the risk–neutral evaluation formula, where the continuation value is derived
as the discounted expected option price at the next time step, we now use a 2D
version, as follows, for m = M, · · · , 1,

c(ym−1, xm−1, tm−1) = e−r∆tE(v(ym, xm, tm)|ym−1, xm−1) (29)

= e−r∆t

∫
R

∫ +∞

exp(xm)

v(ym, xm, tm)f(ym, xm|ym−1, xm−1)dymdxm.

9

where the integration range of ym comes from (28) and that ym−1 ≥ 0.
Truncating the integration range, gives us

ĉ(ym−1, xm−1, tm−1) = e−r∆t

∫ b1

a1

∫ b2

exp(xm)

v(ym, xm, tm)f(ym, xm|ym−1, xm−1)dymdxm,

(30)
where [a1, b1] and [exp(xm), b2] are the integration ranges for xm and ym, respec-
tively. Integration range [a1, b1] is calculated the same way as presented in [8], and
the calculation of b2 will be explained in Subsection 4.4. By applying the chain rule
to the joint conditional density function in (30), we find

f(ym, xm|ym−1, xm−1) = f(ym|xm, ym−1, xm−1) · f(xm|ym−1, xm−1)
= f(ym|xm, ym−1) · f(xm|xm−1). (31)

By inserting (31) into (30), the risk–neutral formula becomes

ĉ(ym−1, xm−1, tm−1) =

e−r∆t

∫ b1

a1

∫ b2

exp(xm)

v(ym, xm, tm)f(ym|xm, ym−1) · f(xm|xm−1)dymdxm.(32)

Although the conditional density function is not known analytically for many Lévy
processes, the corresponding characteristic function is. Based on this, we approxi-
mate the conditional density function by a truncated Fourier cosine expansion based
on the characteristic function, as follows,

f̂(xm|xm−1) =
2

b1 − a1

N1−1∑′

k=0

Re

(
φxm−xm−1(

kπ

b1 − a1
;∆t)·

exp (ikπ
xm−1 − a1

b1 − a1
)
)

cos(kπ
xm − a1

b1 − a1
), (33)

and

f̂(ym|xm, ym−1) =
N2−1∑′

j=0

2
b2 − exp(xm)

Re

(
exp (i

jπ

b2 − exp(xm)
ym−1)

)
cos(jπ

ym − exp(xm)
b2 − exp(xm)

). (34)

where (34) is based on Equation (28). Note that for Lévy processes, defined by
independent and identical increments, the (unconditional) characteristic functions
of all increments of consecutive time steps, i.e. φxm−xm−1(u;∆t), are the same,
for all time steps, and are known analytically 1. Therefore, we use the notation
φ(u;∆t) := φxm−xm−1(u;∆t) for all time steps.

By replacing the two density functions in (32) by their approximations in (33)

1Compared to the previous section and the 1D pricing method, we have reduced the number of
arguments for φ(·) from three to two. So, for the conditional characteristic function we have used
φ(u; x, t), whereas for the unconditional characteristic function, or if we deal with independent
increments, as in the present section, we use φ(u; t).

10

and (34), and then interchanging the order of summation and integration, we obtain,

ĉ(ym−1, xm−1, tm−1) = e−r∆t 2
b1 − a1

N1−1∑′

k=0

N2−1∑′

j=0

∫ b1

a1

∫ b2

exp(δn)

v̂(ym, xm, tm) ·

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)

cos(kπ
xm − a1

b1 − a1
) ·

2
b2 − exp(xm)

Re

(
exp (i

jπ

b2 − exp(δn)
ym−1)

)
cos(jπ

ym − exp(xm)
b2 − exp(xm)

)dymdxm

= e−r∆t 2
b1 − a1

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)
·

Re

(∫ b1

a1

2
b2 − exp(xm)

exp (i
jπ

b2 − exp(xm)
ym−1) cos(kπ

xm − a1

b1 − a1
)·

∫ b2

exp(δn)

v̂(ym, xm, tm) cos(jπ
ym − exp(xm)
b2 − exp(xm)

)dymdxm

)
. (35)

For the integration over xm in (35) numerical approximation is required, for
which Clenshaw–Curtis quadrature is employed here. Function

2
b2 − exp(xm)

exp (i
jπ

b2 − exp(xm)
ym−1) cos(kπ

xm − a1

b1 − a1
) cos(jπ

ym − exp(xm)
b2 − exp(xm)

)

is smoothly varying2 in xm and the same is true for the option value, v̂(ym, xm, tm),
for all m < M. At tM = T , v(yM, xM, tM) is only a function of yM, i.e.
v(yM, xM, tM) ≡ g(yM, tM). Because of these properties, we expect an exponential
convergence for this quadrature.

Note that both the Clenshaw–Curtis and Gaussian quadrature rules exhibit ex-
ponential convergence for the integral under consideration, however, the Clenshaw–
Curtis quadrature appears to be computationally somewhat cheaper. The weights
and nodes of the Clenshaw-Curtis quadrature are easy to calculate and they form
a nested sequence. We refer the reader to [5] and [3] for more information about
Clenshaw–Curtis quadrature.

In detail, for the approximation by Clenshaw–Curtis quadrature, we have∫ b1

a1

2
b2 − exp(xm)

exp (i
jπ

b2 − exp(xm)
ym−1) cos(kπ

xm − a1

b1 − a1
)∫ b2

exp(δn)

v̂(ym, xm, tm) cos(jπ
ym − exp(xm)
b2 − exp(xm)

)dymdxm

≈ b1 − a1

2

nq+2∑
n=1

wn
2

b2 − exp(δn)
exp (i

jπ

b2 − exp(δn)
ym−1) cos(kπ

δn − a1

b1 − a1
)

·
∫ b2

exp(δn)

v̂(ym, δn, tm) cos(jπ
ym − exp(δn)
b2 − exp(δn)

)dym,

where

δn =


b1 − a1

2
cos(

nπ

nq
) +

b1 + a1

2
, n = {0, · · · , nq/2},

a1 − b1
2

cos
(

(n− (nq/2 + 1))π
nq

)
+
b1 + a1

2
, n = {nq/2 + 1, · · · , nq + 1}

(36)
2That is, the function is countinuous in xm and so its derivatives with resepct to xm.

11

and w is an (nq + 2)-vector, defined as w := {wn}
nq+2
n=1 = [DT d;DT d], with D an

(nq

2 + 1)× (nq

2 + 1)-matrix, with elements

D(n1, n2) =
2
nq

cos
(

(n1 − 1)(n2 − 1)π
nq/2

)
·

{
1/2, n2 = {1, nq/2 + 1},

1, otherwise,

and vector d reads

d = (1,
2

1− 4
,

2
1− 16

, · · · , 2
1− (nq − 2)2

,
1

1− n2
q

)T .

Note that, ∀k, j,m, the values of δn, wn are the same, in other words, they only
need to be calculated once and can be used for all k, j and for all time steps.

Inserting (36) in (35) gives us the formula for the continuation value at each
time step, as follows

ĉ(ym−1, xm−1, tm−1) = e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)

· Re

(
nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym−1) cos(kπ

δn − a1

b1 − a1
)

·
∫ b2

exp(δn)

v̂(ym, δn, tm) cos(jπ
ym − exp(δn)
b2 − exp(δn)

)dym

)
.

By denoting

V̂n,j(tm) :=
∫ b2

δn

v̂(ym, δn, tm) cos(jπ
ym − exp(δn)
b2 − exp(δn)

)dym, (37)

with δn as in (36), we have

ĉ(ym−1, xm−1, tm−1) = e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)
·

Re

(
nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym−1) cos(kπ

δn − a1

b1 − a1
)V̂n,j(tm)

)
.

(38)

From (37) we see that the computational complexity to compute the continuation
value at each time step is O(N1N2nq).

The 2D pricing algorithm is based on backward recursion of the Fourier coeffi-
cients V̂n,j(tm), defined in (37). The early–exercise Asian option price, v̂(x0, t0) =
ĉ(y0, x0, t0) is obtained by taking m = 1 and inserting V̂n,j(t1) in (38). In the
next subsection we will show that the Vn,j(tM) are known analytically. For m =
M− 1, · · · , 1, V̂n,j(tm) can be recovered from V̂n,j(tm+1).

4.2 Fourier coefficients

At maturity time, tM = T , the option value equals the payoff, so that ∀n, j,

Vn,j(tM) :=
∫ b2

exp(δn)

g(yM, tM) cos(jπ
yM − exp(δn)
b2 − exp(δn)

)dyM,

12

where, ∀m = 1, · · · ,M,

g(ym, tm) =


(
S0(1 + ym)
m+ 1

−K)+, for a call,

(K − S0(1 + ym)
m+ 1

)+, for a put.
(39)

Thus, the Fourier coefficients at maturity read

Vn,j(tM) =


S0

M+ 1 ςj(y
∗
M,n, b2) + (S0

M+ 1 −K)ψj(y∗M,n, b2), for a call,

(K − S0
M+ 1)ψj(exp(δn), y∗M,n)− S0

M+ 1 ςj(exp(δn), y∗M,n), for a put,
,

(40)
where y∗M,n ≡

K(M+1)
S0

− 1, ψj(yl, yu) is as in (9), and

ςj(yl, yu) =
∫ yu

yl

y cos
(
jπ

y − exp(δn)
b2 − exp(δn)

)
dy. (41)

Both ψj(yl, yu) and ςj(yl, yu) are known analytically, and so is Vn,j(tM). The
recursive step is presented in the following result.

Result 4.1. For tm,m = M− 1. · · · , 1, the continuation value, c(ym, xm, tm), and
the Fourier cosine coefficients, Vn,j(tm), can be obtained from Vn,j(tm+1). By this
approach, the Fourier coefficients Vn,j(t1) are recovered recursively.

Proof. For m = M− 1. · · · , 1, first of all, the early–exercise points, y∗m,n, for which
c(y∗m,n, δn, tm) = g(y∗m,n, tm), δn as in (36), need to be determined by means of New-
ton’s method. Here, the payoff function is calculated in (39), and the continuation
value is derived via

ĉ(ym, δn, tm) = (42)

e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

δn − a1

b1 − a1
)
)
·

Re

(
nq+2∑
p=1

2
b2 − exp(δp)

wp exp (i
jπ

b2 − exp(δp)
ym) cos(kπ

δp − a1

b1 − a1
)V̂p,j(tm+1)

)
.

which is directly obtained from (38). Furthermore, the derivative of the continuation
value and that of the payoff function with respect to ym can be easily computed
by (42) and (39). From [8] we know that typically after approximately five Newton
iterations, the error in y∗m,n is O(10−10).

As a next step, V̂n,j(tm) is split by means of these early–exercise points, as
follows

V̂n,j(tm) =

{
Ĉn,j(exp(δn), y∗m,n, tm) +Gn,j(y∗m,n, b2, tm), for a call,

Gn,j(exp(δn), y∗m,n, tm) + Ĉn,j(y∗m,n, b2, tm), for a put,
(43)

where Ĉn,j , Gn,j are Fourier cosine coefficients of the continuation value and payoff
at tm, respectively. Coefficient Gn,j is of the form,

Gn,j(tm) =


S0

m+ 1 ςj(y
∗
m,n, b2) + (S0

m+ 1 −K)ψj(y∗m,n, b2), for a call,

(K − S0
m+ 1)ψj(exp(δn), y∗m,n)− S0

m+ 1 ςj(exp(δn), y∗m,n)), for a put,
(44)

13

and coefficient Ĉk, defined by

Ĉn,j(yl, yu, tm) =
∫ yu

yl

ĉ(ym, δn, tm) cos(jπ
ym − exp(δn)
b2 − exp(δn)

)dym, (45)

with integration range [yl, yu] ∈ [δn, b2], is computed numerically.
By substituting for ĉ(ym, δn, tm) in (45) its expression in (42) and interchanging

integration and summation, we obtain

Ĉn,j(yl, yu, tm) =

e−r∆t

N1−1∑′

k=0

N2−1∑′

l=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

δn − a1

b1 − a1
)
)

· Re

(
nq+2∑
p=1

Λ(k, l, p)
∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

)
,

(46)

where
Λ(k, l, p) :=

2
b2 − exp(δp)

wp cos(kπ
δp − a1

b1 − a1
)V̂p,l(tm+1). (47)

The integral in (46) is known analytically. We have, ∀yl, yu, l, j, j, l = 0, · · · , N2−
1, j 6= l, ∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

=
1

j2 − l2
d− c

π
(exp (

ilπ

b2 − exp(δp)
yu) sin(jπ

yu − exp(δp)
b2 − exp(δp)

)

− exp (
ilπ

b2 − exp(δp)
yl) sin(jπ

yl − exp(δp)
b2 − exp(δp)

)

+ il(exp (
ilπ

b2 − exp(δp)
yu) cos(jπ

yu − exp(δp)
b2 − exp(δp)

)− exp (
ilπ

b2 − exp(δp)
yl)

· cos(jπ
yl − exp(δp)
b2 − exp(δp)

))),

and, if j = l, j 6= 0, l 6= 0,∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

=
exp (ilπ exp(δp)

b2−exp(δp))

2
(yu − yl) + (− i

π
)
b2 − exp(δp)

2
exp (ilπ

exp(δp)
b2 − exp(δp)

) ·

exp(i(j + l)yu−exp(δp)
b2−exp(δp) π)− exp(i(j + l)yl−exp(δn)

b2−exp(δp)π)

j + l
,

and, finally, for l = j = 0,∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym = yu − yl.

Therefore, Fourier coefficients Ĉn,j(yl, yu, tm) can be calculated directly from (46)
without additional numerical techniques.

From (42) and (46) we can observe that the continuation value as well as the
Fourier coefficients at tm,m = M− 1, · · · , 1, can be recovered from the Fourier
coefficients at tm+1. This concludes the proof and the Vn,j(t1), ∀n, j are recovered
at the end of backward recursion.

14

The value of the Asian option with early-exercise features is then obtained by
inserting Vn,j(t1) into (38).

4.3 Computational complexity and Fast Fourier Transform

Newton’s method is applied to determine the y∗m,n-values with n = 1, · · · , nq + 2.
For this purpose the continuation value ĉ(ym, δn, tm) must be computed by (42).
Term

Re

(
nq+2∑
p=1

2
b2 − exp(δp)

wp exp (i
jπ

b2 − exp(δp)
ym) cos(kπ

δp − a1

b1 − a1
)V̂p,j(tm+1)

)
.

in (42) is calculated once and can be reused in all iteration steps and for all δn.
Therefore, we perform O(N1N2nq) computations to determine y∗m,1, and to compute
y∗m,n, n = 2, · · · , nq + 2, only O(N1N2) computations are needed. We end up with
O(N1N2nq) compuations to determine all the early–exercise points.

Furthermore, to compute Ĉn,j(yl, yu, tm) each time step we perform O(N1N2nq)
computations, as the integration in (46) has an analytically known solution. We
need to calculate Ĉn,j(yl, yu, tm) for each value of n and j. Term

Re

(
nq+2∑
p=1

Λ(k, l, p)
∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

)
(48)

in (46) need not be re–computed for different n, and we have O(N1N2nq) compu-
tations in total for all values of n, with n = 1, · · · , nq + 2. To determine all Fourier
coefficients, Ĉn,j(yl, yu, tm), with j = 0, · · · , N2−1, we require in total O(N1N

2
2nq)

computations, at each time step.
We need to repeat all the computations for time steps, m = M − 1, · · · , 1,

so that the overall computational complexity for the pricing technique is O((M−
1)N1N

2
2nq).

The Fast Fourier Transform (FFT) can however be employed to reduce this
computational complexity. Equation (46) can be rewritten, ∀k, p, as

Ĉk,p
n,j = e−r∆t

N2−1∑′

l=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

δn − a1

b1 − a1
)
)

· Re

(
Λ(k, l, p)

∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

)
,

(49)

If we denote vector Ĉk,p
n := {Ĉk,p

n,j }
N2−1
j=0 , then it is well-known, that,

Ĉk,p
n =

e−r∆t

π
Re(φ(

kπ

b1 − a1
;∆t) exp (ikπ

exp(δn)− a1

b1 − a1
))

Im((Hc(yl, yu) +Hs(yl, yu))u), (50)

where Im(·) denotes taking the imaginary part of the input argument, and

u = Λ(k, l, p) exp (
ilπ exp(δp)
b2 − exp(δp)

).

Moreover, Hc and Hs have a Hankel and Toeplitz structure, respectively, with

15

elements as follows,

Hc
j,l(x1, x2) =



(x2 − x1)πi
b2 − exp(δp)

, if j = l = 0,

1

(l + j)

[
exp

(
((l + j)x2 − (l + j) exp(δp))πi

b2 − exp(δp)

)
−

exp
(

((l + j)x1 − (l + j) exp(δp))πi
b2 − exp(δp)

)]
, otherwise,

(51)
and

Hs
j,l(x1, x2) =



(x2 − x1)πi
b2 − exp(δp)

, if j = l = 0,

1

(l − j)

[
exp

(
((l − j)x2 − (l − j) exp(δp))πi

b2 − exp(δp)

)
−

exp
(

((l − j)x1 − (l − j) exp(δp))πi
b2 − exp(δp)

)]
, otherwise.

(52)
From [8] we know that the FFT can be used to calculate matrix–vector multiplica-
tions in (50).

To compute vector Ĉk,p
n for each pair of (k, p), with k = 0, · · · , N1 − 1, p =

1, · · · , nq + 2, O(N2 log2N2) computations are performed. Therefore in total we
need O(N1N2 log2N2nq) computations to compute Ĉk,p

n for all k, p. Furthermore,
term Im((Hc + Hs)u) can be reused for all n, with n = 1, nq + 2, and in total,
O(N2 log2N2) computations are needed for all Fourier coefficients.

At the final stage of the algorithm, we need to add up all k× p elements, that is

Ĉn,j(yl, yu, tm) =
N1−1∑′

k=0

nq+2∑
p=1

Ĉk,q
n,j (yl, yu, tm), (53)

with Ĉk,q
n,j (yl, yu, tm) defined in (49) and computed by (50).

Define from (50) that

A1(k, n) :=
e−r∆t

π
Re(φ(

kπ

b1 − a1
;∆t) exp (ikπ

exp(δn)− a1

b1 − a1
))

A2(k, p) := Im((Hc(yl, yu) +Hs(yl, yu))u)

and (53) can be computed in an efficient way as summarized below.

Algorithm: Efficient computation of (53)

For j = 0, · · · , N2 − 1, compute

• Step 1: Compute

A2(k) :=
nq+2∑
p=1

A2(k, p)

.

• Step 2: For n = 1, · · · , nq + 2, compute

Ĉn,j :=
N1−1∑′

k=0

A1(k, n) ∗A2(k)

.

16

For each j, with j = 0, · · · , N2− 1, we have O(nq) computations for step 1, and
O(N1nq) computations for step 2. Therefore in total, O(N1N2nq) computations are
needed for summation (53). By the use of the FFT, the computational complexity
at each time step is then reduced to O(N1N2 log2N2nq).

The overall 2D ASCOS pricing algorithm is summarized below.

ASCOS Algorithm: Pricing early–exercise arithmetic Asian options.

Initialization

• For n = 1, · · · , nq + 2, j = 0, · · · , N2 − 1, compute Vn,j(tM) from (40).

Main Loop to Recover V̂n,j(tm): For m = M− 1 to 1,

• Determine the early–exercise points, y∗m,n, for n = 1, · · · , nq + 2, with
ĉ(y∗m,n, δn, tm) = g(y∗m,n, tm), by Newton’s method. Continuation value
and payoff function are given by (42) and (39) , respectively.

• Compute the Fourier coefficients V̂n,j(tm).

– For k = 0, · · · , N1 − 1, compute each column of matrix Ĉk
n :=

{Ĉk
n,j}

N2
j=0 by (50) with the help of Fast Fourier Transform.

– Compute Ĉn,j(tm), ∀n, j, from (53).

– Compute Gn,j(tm), ∀n, j, from (44).

– Calculate the Fourier coefficients V̂n,j(tm) by inserting Ĉn,j(tm) and
Gn,j(tm) into (43).

Final step:

• Compute the early–exercise Asian option value, v̂(x0, t0), by inserting
V̂n,j(t1) in (38).

4.4 Integration range of Ym

Here we explain how to determine the upper bound b2, so that the truncation error
in Ym, with integration range [exp(xm), b2] can be controlled. First of all, we derive
the integration range for log(Ym) and after that the range for Ym. From [7, 8], we
know that a suitable integration range for log(Ym) can be determined by means of
the cumulants, as follows

[`, υ] ≈
[
(ξ1(log(Ym))− L

√
ξ2(log(Ym)) +

√
ξ4(log(Ym)) ,

ξ1(log(Ym)) + L

√
ξ2(log(Ym)) +

√
ξ4(log(Ym)))

]
, (54)

and the integration range of Ym at tm can then be set to [exm , eυ]. By ξn(X), we
denote the nth cumulant of X, computed via

ξn(X) :=
1
in
∂n(tΦ(u))

∂un
|u = 0,

where tΦ(u) is the exponent of the characteristic function, φ(u; t), i.e.

φ(u; t) = etΦ(u).

For arithmetic Asian options, it is however expensive to calculate these cumulants,
and therefore we propose another integration range for the arithmetic case, which

17

is very similar to that in (54). For a Lévy process, the cumulants of any increment,
log(Sl/Sk), ∀l > k, are linearly increasing functions of (l − k)∆t, so that, for all
Ym, m = 1, · · · ,M, we have

ξ1(log(m
S1

S0
)) ≤ ξ1(log(Ym)) ≤ ξ1(log(m

Sm

S0
)),

0 ≤ ξ2(log(Ym)) ≤ ξ2(log(m
Sm

S0
)), 0 ≤ ξ4(log(Ym)) ≤ ξ4(log(m

Sm

S0
)).

and we will use the integration boundaries

` := ξ1(log(m
S1

S0
))− L

√
ξ2(log(m

Sm

S0
)) +

√
ξ4(log(m

Sm

S0
)),

υ := ξ1(log(m
Sm

S0
)) + L

√
ξ2(log(m

Sm

S0
)) +

√
ξ4(log(m

Sm

S0
)). (55)

Interval [`, υ] from (55) will be the integration range for log(Ym).
Note that the cumulants of log(mS1

S0
) and log(mSm

S0
) in (55) are known in

closed form for Lévy processes, as for n = 1, we have ξ1(log(mS1
S0

)) = log(m) +
ξ1(R), ξ1(log(mSm

S0
)) = log(m)+mξ1(R), and for n ≥ 2, ξn(log(mS1

S0
)) = ξn(R), ξn(log(mSm

S0
)) =

mξn(R). Here, parameter R denotes the logarithm of the increment between any
two consecutive time steps of a Lévy process.

From [7, 8] we know that with L ≈ 10, the integration range ensures highly
accurate option prices for most Lévy processes. With a wider integration range
[`, υ], the error will be smaller, but an increasing number of Fourier cosine terms
may need to be used (which makes it more costly). Adaptation of parameter L for
very short term, or very long term options is easily possible.

Integration range of Ym at tm is then taken as [exm , eυ].

5 Error analysis

Here, we give a detailed error analysis of the 2D ASCOS method for early–exercise
arithmetic Asian options from Section 4. We identify three different types of errors,
for which we first introduce some notation.

The truncation error, εT , for any random variable, Z, with integration range
[a, b], is defined as

εT (Z; [a, b]) :=
∫
R\[a,b]

fZ(z)dz, (56)

and it decreases as the integration range [a, b] increases. In other words, for a
sufficiently large integration range, this error won’t dominate the total error in the
arithmetic Asian option price.

For Ym we truncate one side of the integration range, and the truncation error
reads

εT (Ym; b2) :=
∫ +∞

b2

fYm(y)dy, (57)

The error due to the number of terms used in the Fourier cosine expansion is
denoted by εF . We know, from [7], that for fZ(z) ∈ C∞[a, b], this error can be
bounded by

|εF (Z;N)| ≤ P ∗(N) exp(−(N − 1)νF), (58)

with νF > 0 a constant and a term P ∗(N), which varies less than exponentially with
respect to N . Note that, although the upper bound of εF is not a function of the

18

underlying state variable Z, the state variable still appears as an input argument,
because the smoothness of the density function influences the convergence behavior.

When the probability density function has a discontinuous derivative, the error
can be bounded by

|εF (Z;N)| ≤ P̄ ∗(N)
(N − 1)β−1

,

where P̄ ∗(N) is a constant and β ≥ 1.
Error εF thus decays either exponentially with respect to N , if the density

function f(z) ∈ C∞[a, b], or otherwise algebraically.
We denote the error from the Clenshaw–Curtis quadrature (36) by εq. From [12]

we know that for integrands belonging to C∞[a, b], which is the case here, error εq
decays exponentially, i.e.,

|εq(nq)| ≤ P (nq) exp(−(nq − 1)νq), (59)

with νq > 0 a constant and a term P (nq), which varies less than exponentially with
respect to nq.

Note that the value of the averaged underlying price, ym, ∀tm, does not influence
the smoothness of the density function of the underlying process. In fact, it can be
recursively proved that if f(xj), j = 1, · · · ,M is smooth then f(yj), j = 1, · · · ,M,
with yj =

∑j
i=1 exp (xi) is also smooth, so that it does not influence the convergence

speed negatively.
We further denote by ε(ĉ(ym, xm, tm)), ε(Vn,j(tm)) and ε∗m,n, the errors in the

continuation value, in the Fourier coefficients and in the early–exercise points, y∗m,n,
at time step tm, respectively.

Our error analysis is based on backward recursion, i.e. first of all we analyze
the error in the continuation value, ĉ(yM−1, xM−1, tM−1), in Subsection 5.1, after
which the error propagation throughout the time steps tm,m = M− 2, · · · , 1 is
discussed in Subsection 5.2.

5.1 Initial error

In this subsection, the error from (29) to (35) is discussed. At tM−1, Eqns. (29)
and (35) can be rewritten, respectively, as

c(yM−1, xM−1, tM−1) = (60)

e−r∆t

∫
R

∫ +∞

exp(xM)

v(yM, xM, tM)f(yM|xM, yM−1)f(xM|xM−1)dyMdxM,

and

ĉ(yM−1, xM−1, tM−1) = e−r∆t

∫ b1

a1

∫ b2

exp(xM)

v(yM, xM, tM)f̂(yM|xM, yM−1)

· f̂(xM|xM−1)dyMdxM, (61)

where f̂(xM|xM−1) and f̂(yM|xM, yM−1) are defined in (33) and (34), respectively.
Then, the error, which we denote by ε̃, consists of two parts, that is, ε̃ := εI +εII ,

with

εI := e−r∆t

∫
R

∫ +∞

exp(xM)

v(yM, xM, tM)f(yM|xM, yM−1)dyMf(xM|xM−1)dxM

− e−r∆t

∫
R

∫ b2

exp(xM)

v(yM, xM, tM)f̂(yM|xM, yM−1)dyMf(xM|xM−1)dxM,

(62)

19

and

εII := e−r∆t

∫ b2

exp(xM)

∫
R
v(yM, xM, tM)f̂(yM|xM, yM−1)f(xM|xM−1)dxMdyM

− e−r∆t

∫ b2

exp(xM)

∫ b1

a1

v(yM, xM, tM)f̂(yM|xM, yM−1)f̂(xM|xM−1)dxMdyM.

(63)

We use the notation εcos to denote the error of one step of the COS method [7],

εcos(XM) :=
∫

R
v(yM, xM, tM)f(xM|xM−1)dxM

−
∫ b1

a1

v(yM, xM, tM)f̂(xM|xM−1)dxM,

and

εcos(YM) :=
∫ +∞

exp(xM)

v(yM, xM, tM)f(yM|xM, yM−1)dyM

−
∫ b2

exp(xM)

v(yM, xM, tM)f̂(yM|xM, yM−1)dyM.

The first part of the error (62) then reads

εI = e−r∆tεcos(YM)
∫

R
f(xM|xM−1)dxM = e−r∆tεcos(YM). (64)

To compute the second part of the error, in (63), first of all, from (34) we have
that ∀yM ∈ [exp(xM), b2],

|f̂(yM|xM, yM−1)| ≤
2

b2 − exp(xM)
N2 ≤

2
b2 − exp(a1)

N2.

Then, εII , in (63), can be written as

|εII | ≤ e−r∆t 2N2

b2 − exp(a1)
|
∫ b2

exp(xM)

(
∫

R
v(yM, xM, tM)f(xM|xM−1)dxM

−
∫ b1

a1

v(yM, xM, tM)f̂(xM|xM−1)dxM)dyM|

≤ e−r∆t2N2|εcos(XM)| (65)

We will now use the common notation ε(x) = O(ς), ∀x ∈ R, if Q > 0 exists, so that
|ε(x)| ≤ Q|ς|.

We then have εII = O(N2εcos(XM)).
From [7] we know that ∀Z, a, b,N , εcos(Z) = O(εT (Z; [a, b])) + εF (Z;N), and

a similar analysis can be performed for a one–side truncated variable YM, then,
from (64) and (65), we obtain

ε̃ = εI + εII = O(N2(εT (XM; [a1, b1]) + εF (XM;N1)) +
εT (YM; b2) + εF (YM;N2)),

(66)

which is the error made up to Eq. (35).

20

At tM−1, the Fourier coefficients of the option value, Vn,j(tM) are known ana-
lytically. Therefore, the error from Eq. (35) to Eq. (38) is only due to approxima-
tion (36), where the Clenshaw–Curtis quadrature was used. For each j, k the error
in the approximated integration is O(εq(nq)), with εq defined in (59). Thus, the
error in (38) is found to be ε̃ + O(N1N2εq(nq)), with ε̃ in (66). Summarizing, the
error in the continuation value, ĉ(yM−1, xM−1, tM−1), is found to be

ε(ĉ(yM−1 , xM−1, tM−1)) = O(N2(εT (XM; [a1, b1]) + εF (XM;N1))
+ εT (YM; b2) + εF (YM;N2) +N1N2εq(nq)). (67)

With integration ranges [a1, b1] and b2 carefully chosen, truncation errors εT (XM; [a1, b1])
and εT (YM; b2) will not be the dominant parts of error (67). For a smooth density
function of XM (f(XM) ∈ C∞), it can be proved that the density function of YM
is also smooth, and that the error in the continuation value decays to zero exponen-
tially, with respect to N1, N2, nq. In detail, inserting (58) and (59) into (67) gives
us

|ε(ĉ(yM−1 , xM−1, tM−1))| ≤ P ∗(N1, N2, nq)(exp(−(N1 − 1)ν1)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)), (68)

where P ∗(N1, N2, nq) is a term which varies less than exponentially with respect to
N1, N2, nq.

If the density of XM is not smooth, then the error converges exponentially to
zero with respect to nq and algebraically with respect to N1 and N2.

5.2 Error propagation

Regarding the propagation of the error through time, we state the following lemma:

Lemma 5.1 (Error propagation). For m = M− 2, · · · , 0, assuming that at time
step tm+1, ∀ym+1, xm+1,

|ε(ĉ(ym+1, xm+1, tm+1))| ≤ P (N1, N2, nq)(exp(−(N1 − 1)ν1) (69)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)),

where P (N1, N2, nq) is a term which varies less than exponentially with respect to
N1, N2, nq, then, at time step tm, we can show that, ∀ym, xm,

|ε(ĉ(ym, xm, tm))| ≤ P̄ (N1, N2, nq)(exp(−(N1 − 1)ν1) (70)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)),

where P̄ (N1, N2, nq) is a term which varies less than exponentially with respect to
N1, N2, nq.

Proof. This is a proof based on mathematical induction.
First, we compute the error in the Fourier coefficients, V̂n,j(tm+1), after which

we analyze the error in ĉ(ym, xm, tm).
Error ε(V̂n,j(tm+1)) consists of two parts, the error in the Fourier cosine coef-

ficients of the continuation value, and the error due to an incorrect value of the
early–exercise point. Without loss of generality, we consider a call option with a
positive-valued error in the early–exercise points. The analysis of the error prop-
agation for other cases (negatively-valued error, put option) goes similarly. For a

21

call option, with ε∗m+1,n > 0, we have

ε(V̂n,j(tm+1)) = (Cn,j(exp(δn), y∗m+1,n, tm+1)− Ĉn,j(exp(δn), y∗m+1,n, tm+1))

+ (Gn,j(y∗m+1,n, y
∗
m+1,n + ε∗m+1,n, tm+1)− Ĉn,j(y∗m+1,n, y

∗
m+1,n + ε∗m+1,n, tm+1))

=
∫ y∗m+1,n

exp(δn)

ε(ĉ(ym+1, δn, tm+1)) cos
(
jπ
ym+1 − exp(δn)
b2 − exp(δn)

)
dym+1

+
∫ y∗m+1,n+ε∗m+1,n

y∗m+1,n

(g(ym+1, tm+1)− ĉ(ym+1, δn, tm+1)) cos
(
jπ
ym+1 − exp(δn)
b2 − exp(δn)

)
dym+1,

(71)

with g(ym+1, tm+1) defined in (39).
The error in continuation value ĉ(ym, xm, tm) is composed of two parts, ε(ĉ(ym, xm, tm)) :=

eI + eII , where error eI is the part in which ε(V̂n,j(tm+1)) has not yet been consid-
ered. It is derived similarly as the error at tM−1 (in Subsection 5.1). We find

eI := O(N2(εT (Xm+1; [a1, b1]) + εF (Xm+1;N1)) (72)
+ εT (Ym+1; b2) + εF (Ym+1;N2) +N1N2εq(nq)).

Error eII is the additional error with ε(V̂n,j(tm+1)) taken into consideration,

eII := e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm − a1

b1 − a1
)
)
·

Re

(
nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym) cos(kπ

δn − a1

b1 − a1
)

ε(V̂n,j(tm+1))
)
.

To analyze these errors, we define a European option, vα, from tm to tm+1, with
payoff function

vα(ym+1, xm+1, tm+1, L1, L2) :=

{
1, if ym+1 ∈ [L1, L2],

0, otherwise,

so that the option value at tm, ∀L1, L2 ∈ [exp(xm+1),+∞], can be written as

vα(ym, xm, tm, L1, L2) = e−r∆t

∫
R

∫ +∞

exp(xm+1)

v(ym+1, xm+1, tm+1, L1, L2)

· f(ym+1, xm+1, tm+1|ym, xm)dym+1dxm+1

= e−r∆t

∫
R

∫ L2

L1

f(ym+1, xm+1, tm+1|ym, xm)dym+1dxm+1

≤ e−r∆t

∫
R

∫
R
f(ym+1, xm+1, tm+1|ym, xm)dym+1dxm+1

= e−r∆t

22

and its approximation, by using (38), reads

v̂α(ym, xm, tm, L1, L2)

= e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm − a1

b1 − a1
)
)
·

Re

(
nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym) cos(kπ

δn − a1

b1 − a1
)

∫ L2

L1

cos(jπ
ym+1 − exp(δn)
b2 − exp(δn)

)

)
.,

from which it follows that, ∀L1 ≤ L2 ≤ L3,

v̂α(ym, xm, tm, L1, L2) + v̂α(ym, xm, tm, L2, L3) = v̂α(ym, xm, tm, L1, L3). (73)

The value of v̂α can bounded, as

v̂α(ym, xm, tm, L1, L2) ≤ vα(ym, xm, tm, L1, L2) + |ε(vα(ym, xm, tm, L1, L2))|
= e−r∆t +O(|eI |), (74)

where the last step is because the error from approximation (38) at tm is of the
same order as eI .

Inserting (71) into (73), then using (69) and (73), gives us

|ε(ĉ(ym, xm, tm))| ≤ |eI |+ P (N1, N2, nq)(exp(−(N1 − 1)ν1) + exp(−(N2 − 1)ν2)
+ exp(−(nq − 1)νq))v̂α(ym, xm, tm, exp(δn), y∗m+1,n)
+ max

n
|g(ζn, tm+1)− ĉ(ζn, δn, tm+1)|

· v̂α(ym, xm, tm, y
∗
m+1,n, y

∗
m+1,n + ε∗m+1,n), (75)

based on Lagrange’s mean value theorem, with ζn ∈ (y∗m+1,n, y
∗
m+1,n + ε∗m+1,n).

For a call option, with ζn ∈ (y∗m+1,n, y
∗
m+1,n + ε∗m+1,n), we then have ∀n,

|g(ζn, tm+1)− ĉ(ζn, δn, tm+1)| = ĉ(ζn, δn, tm+1)− g(ζn, tm+1)
≤ ĉ(y∗m+1,n, δn, tm+1)− g(y∗m+1,n, tm+1)
= ĉ(y∗m+1,n, δn, tm+1)− c(y∗m+1,n, δn, tm+1)
= ε(ĉ(y∗m+1,n, δn, tm+1)). (76)

Inserting (76) in (75), and using (69) and (73), gives us

|ε(ĉ(ym, xm, tm))| ≤ |eI |+ P (N1, N2, nq)(exp(−(N1 − 1)ν1) + exp(−(N2 − 1)ν2)
+ exp(−(nq − 1)νq))v̂α(ym, xm, tm, exp(δn), y∗m+1,n + ε∗m+1,n).

(77)

Finally, by using (74) and (72) in (77), and then inserting (58) and (59), we reach
the conclusion that if [a1, b1], b2 are carefully chosen, then the truncation errors
εT (Xm+1; [a1, b1]) and εT (Ym+1; b2) will not be the dominant parts of error (72),
and we obtain

|ε(ĉ(ym, xm, tm))| ≤ P̄ (N1, N2, nq)(exp(−(N1 − 1)ν1)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)),

where P̄ (N1, N2, nq) is a term which varies less than exponentially with respect to
N1, N2, nq. This concludes the proof.

In the case of put options or negative-valued errors in the early–exercise points,
a similar error expression as in (77) can be derived, by a very similar analysis.

23

6 Numerical results

In this section we perform experiments with two different Lévy processes, the Black-
Scholes (BS) and the Normal Inverse Gaussian (NIG) processes. We will present
numerical results for the two methods presented. Reference values are derived by
our 2D version of the ASCOS method, with N1 = N2 = (nq/2) + 1 = 4096. When
increasing the values of M, N1, N2, nq in the numerical experiments, the 2D ASCOS
method gives the same American Asian option values for the BS model as the values
in [6] (in the accuracy given in the reference, which is 10−4).

The same model parameters, as used in [9] for pricing European-style Asian
options, are also used here:

• BS: r = 0.0367, σ = 0.178;

• NIG: r = 0.0367, σ = 0.178, α = 6.188, β = −3.894, δ = 0.1622.

Two types of processors, a CPU (Central Processing Unit), and a GPU (Graph-
ics Processing Unit) with double precision are used and compared to obtain the
numerical ASCOS results. On the CPU, an Intel(R) Core(TM)2 Duo CPU E6550
(@ 2.33GHz Cache size 4MB), the algorithm is implemented in MATLAB 7.7.0. On
the GPU, a Tesla C2070 GPU with 6GB memory, we coded in Compute Unified
Device Architecture (CUDA) [11]. Computing time is recorded in seconds.

In this section, the notation ‘first method’ and ‘2D method’ refer to the pricing
methods proposed in Section 3 and Section 4, respectively.

Remark 6.1 (Data transfer). Data transfer between the GPU and the CPU is the
bottleneck for most GPU implementations. However, in our GPU implementation,
we code in such a way that, no matter the size of the problem, only one number
needs to be transferred between the CPU and the GPU, which is the option price
and we transfer it back to the CPU at the end of the computations. As the size of
the problem increases, there will be no extra burden of data transfer.

6.1 GPU implementation and acceleration

A GPU is an SIMT (Single Instruction, Multiple Threads) machine. In other words,
the same command can be executed simultaneously for each data element on each
thread on the GPU. Therefore, GPU processing is advantageous for problems that
can be expressed in the form of data–parallel computations.

In both early-exercise ASCOS algorithms we proceed from time step to time
step sequentially, however, there are certain parts of the algorithms for which par-
allelization is possible. For instance, in the first method, the integrals (15), for all
k, l, can be computed independently of each other, and in the 2D method, the early–
exercise points, y∗m,n, can also be calculated independently for each na−value. The
Fourier coefficients, that represent a vector in the first method and a matrix in the
2D method, are computed simultaneously on the GPU at each time step.

In both methods we need to perform matrix–vector multiplications, that result
in O(N2) computations for the first method, and result in O(nqN2) computations
with the 2D method. In these operations, the summation in each row must be
done sequentially. Two techniques can however be used to accelerate the GPU
computation of a summation. First of all, we can sum up each row in a pairwise
fashion, that is, we split the vector into two parts and add up the two sub–vectors
simultaneously on the GPU. This process is repeated until we reach vector sizes of
one element, being the sum of all elements of the original vector. A second way
to accelerate the process is to use the shared–memory within each block, which
significantly reduces the data–communication time on the GPU.

24

As an example, Table 1 presents the error and the GPU speedup, compared to
the CPU implementation, when pricing an early–exercise arithmetic Asian option
with M = 2 using the 2D method. A speedup factor between 30 and 300 is achieved
on the GPU. When the problem size increases, an even higher GPU speedup is
expected, since then option pricing will be computationally more intensive and the
advantages of parallelization are more profound. When the number of early–exercise
dates increases, the GPU as well as the CPU times will increase linearly.

All further numerical experiments will be performed on the GPU.

N1 = N2 = (nq/2) + 1 128 256 512
abs.error 1.2134e-01 4.6379e-06 1.3043e-08

GPU speedup 30.4 139.6 341.0

Table 1: GPU speedup for Bermudan Asian options, BS model, M = 2, S0 =
100,K = 100.

6.2 Arithmetic Asian options on the GPU

Error convergence of early–exercise arithmetic Asian options under the NIG model,
with 10 and 50 early–exercise dates, using the 2D ASCOS method, are presented
in Figure 1. The horizontal axis presents index d, where in Figure 1(a), N1 = N2 =
32d, (nq/2)+1 = 256, and in Figure 1(b), we use N1 = N2 = 64d, (nq/2)+1 = 512.
The vertical axis shows the logarithm of the absolute error. For M = 10 as well as
M = 50 an exponential convergence is observed: When N1 and N2 increase linearly,
the logarithm of the error in the option price decreases accordingly.

(a) M = 10 (b) M = 50

Figure 1: 2D ASCOS error convergence for early–exercise arithmetic Asian options
with different numbers of early–exercise dates, NIG model, S0 = 100,K = 110.

When comparing the two plots in Figure 1, we see that with an increasing num-
ber of early–exercise dates we require larger values for N1, N2 and nq to reach the
same level of accuracy. With smaller time steps, ∆t, the conditional density function
between consecutive time steps tends to be peaked, and an accurate approximation
by means of cosine expansions then requires an increasing number of terms. The
need for a larger value of nq comes from the fact that the error of the Clenshaw–
Curtis quadrature is observed in each term of (38) and there are N1N2-terms in

25

total. Therefore, larger values for N1 and N2 give rise to a larger nq-value to ensure
the accuracy.

Tables 2 and 3 present the convergence behavior and computing time for the
NIG model with M = 10, 50, respectively, with the performance of both pricing
methods presented. From Table 2 we see that when M = 10, due to the error of
the first method with a small number of exercise dates, the option price does not
converge to the reference value with the first method. On the other hand, the first
method is significantly faster than the 2D method. The first method exhibits a
reduced computation complexity, by a factor O(log2N2), and the GPU speedup is
higher when implementing the first method, as with the 2D method, there is an N1

by M loop in the CUDA code.

First method
N1 = N2 = (nq/2) + 1 128 192 256

abs.error 3.3236e-01 3.1511e-01 3.1641e-01
GPU time 0.28 0.53 0.87

2D method
N1 = N2 = (nq/2) + 1 256 384 512

abs.error 1.4213e-04 3.1444e-07 2.2129e-09
GPU time 4.76 9.05 31.25

Table 2: Convergence and computation time of early-exercise arithmetic Asian put
options, under the NIG model, with M = 10, S0 = 100 (time in seconds).

As M increases, as shown in Table 3, the error in the first method gets much
smaller, and the option prices gradually converges to the reference value. This is
consistent with our analysis.

First method N1, N2 = 256 N1, N2 = 512 N1, N2 = 768
(nq/2) + 1 = 256 (nq/2) + 1 = 512

abs.error 1.7165e-02 1.4364e-03 4.4992e-05
GPU time 1.52 9.40 9.64

2D method N1, N2 = 256 N1, N2 = 512 N1, N2 = 768
(nq/2) + 1 = 256 (nq/2) + 1 = 512

abs.error 3.8746e-03 1.0809e-04 4.8980e-07
GPU time 20.0 160.7 399.5

Table 3: Convergence and computation time of early-exercise arithmetic Asian put
options, under the NIG model with M = 50, S0 = 100 (time in seconds).

7 Conclusions

In this article, we have developed an efficient pricing method for Asian options with
early–exercise features for arithmetic averages, based on a two-dimensional risk–
neutral formula. As an alternative, especially for a large number of exercise dates,
a 1D pricing method based on the approximation of the conditional characteristic
functions, is proposed, which can be used for very frequently exercised Asian options
at a reduced amount of computations. Both methods are based on Fourier cosine
expansions and Clenshaw–Curtis quadrature, and, depending on the smoothness of
the density function, may give rise to exponential error convergence. The conver-
gence behavior of the 2D ASCOS method is supported by a detailed error analysis,

26

as well as by various numerical experiments. The flexibility and robustness of the
2D pricing method for different Lévy models and different numbers of early–exercise
dates is shown in the numerical experiments. In particular, the Graphics Process-
ing Unit, which supports parallel computing, turns out to be very efficient for the
computation of arithmetic Asian option values. The speedup on the GPU is high
as there are many ”parallel” computations and not much data transfer.

References

[1] Benhamou, E., Fast Fourier Transform for Discrete Asian Options. J. Com-
putational Finance. 6, 49–61, 2002.

[2] Bermúdez, A., Nogueiras, M.R., Vázquez, C., Numerical solution of vari-
ational inequalities for pricing Asian options by high order Lagrange-Galerkin
methods. Applied Num. Math. 56: 1256-1270, 2006.

[3] Boyd, J. P., Chebychev and Fourier Spectral Methods, 2nd ed., Dover, New
York, 2001.

[4] Carverhill, A., and Clewlow L., Flexible Convolution, From Black Sc-
holes to Black Holes, 165–171, 1992.

[5] Clenshaw, C. W., Curtis, A. R., A method for numerical integration on
an automatic computer, Numer. Mathematik 2: 197–205. 1960.

[6] D’Halluin, Y., Forsyth, P. A., Labahn, G., A semi–Lagrangian approach
for American Asian options under jump diffusion. SIAM J. Sci. Comput. 27,
315–345, 2005.

[7] Fang, F., Oosterlee, C.W., A novel option pricing method based on Fourier
cosine series expansions. SIAM J. Sci. Comput. 31(2), 826-848, 2008.

[8] Fang, F., Oosterlee, C.W., Pricing early-exercise and discrete barrier op-
tions by Fourier cosine series expansions. Numer. Mathematik 114: 27-62, 2009.

[9] Fusai, G., Meucci, A., Pricing discretely monitored Asian options under
Lévy processes. J. Banking and Finance. 32, 2076–2088, 2008.

[10] Lemmens, D., Liang, L. Z. J., Tempere, J., De Schepper, A., Pricing
bounds for discrete arithmetic Asian options under Lévy models. Physica A:
Statistical Mechanics and its Applications. Vol. 389, Issue 22: 5193–5207, 2010.

[11] NVIDIA CUDA Programming Guide, Version 4.0, 2011.

[12] Zhang, B., Oosterlee, C. W., Efficient Pricing of Asian Options under
Lévy Processes based on Fourier Cosine Expansions Part I: European-Style
Products, submitted and available as TU Delft DIAM report 11–11.

27

