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Abstract

In Ghana, flash floods are often triggered by severe storms. Flood Early Warning Systems (FEWS)
can mitigate flood impacts but require accurate, near real-time rainfall data. Implementing FEWS in
Ghana is challenging due to sparse ground-based data and a lack of accurate, rainfall data with short
latency. While satellite-based rainfall products offer a promising alternative, they often show significant
discrepancies compared to ground observations, limiting their use for effective FEWS.

The Meteosat satellite images provide a valuable source of data for near-real-time applications, due to
its short latency (within 15minutes) and relatively high temporal (15-minute) and spatial resolution of (3 x
3 km at sub-satellite point). This study explores the use of Earthformer, a space-time transformer model,
to improve rainfall intensity estimates with minimal latency, using data from the Meteosat satellite. By
evaluating the potential of Earthformer to create rainfall estimates, this research aims to contribute
to more reliable FEWS, ultimately strengthening disaster risk management in flood-prone regions of
Ghana.

The Earthformer model is trained on IMERG-Final, a satellite-based rainfall product known for its rel-
ative high accuracy but with delayed availability of several months. With the application of FEWS in
mind, it was investigated whether the model could be adapted to improve the estimation of higher rain-
fall intensities. Two model setups were tested: one using a mean squared error (MSE) loss function
during the training of the model and another with a balanced weighting loss function to emphasize
higher intensities.

The model’s accuracy was first evaluated by comparing its outputs with IMERG-Final on a test dataset,
and secondly with ground station observations from the Trans-African Hydro-Meteorological Observa-
tory (TAHMO), and Ghana Meteorological Services (GMET) for the year 2022. IMERG-Early was used
as a benchmark for near real-time performance. The comparison with IMERG-Final revealed that both
Earthformer models outperformed IMERG-Early for lower rainfall intensities in terms of probability of
detection (POD), success rate (SUCR) and the Critical Succes Index (CSI) and that the balanced loss
model also outperformed IMERG-Early for higher intensities. However, as rainfall intensity increased,
the performance of both Earthformer models and IMERG-Early decreased.

Further comparisons with ground station data highlighted weak correlations at 30-minute intervals be-
tween all satellite rainfall estimates and ground observations (including IMERG-Final, IMERG-Early
and both Earthformer models). However, when the data was aggregated to daily intervals, correlations
improved significantly, suggesting that timing errors could play a role, however, further investigation is
needed to quantify their impact.

Additional analysis revealed that peak rainfall was often underestimated, while lower intensities were
overestimated. This discrepancy could be explained by several factors: the coarser spatial resolution
of satellite estimates compared to gauge stations, the displacement of rainfall from observed clouds,
and difficulty in capturing warm rain processes. Additionally, it was concluded that capturing spatial
variability within Mesoscale Convective Systems (MCSs) is challenging. This is potentially due to anvil
cloud tops obstructing the satellite’s view, similar cloud-top temperatures for different rainfall intensities,
and strong wind shear increasing the risk of rainfall misallocation.

This research demonstrates the potential of a space-time transformer model for near real-time rainfall
estimation as it shows improved performance for most intensities when compared to IMERG-Early, with
IMERG-Final set as the reference truth. However, the reduced performance at higher intensities and
discrepancies with ground observations of all satellite based products underscore the need for further
model development to improve extreme rainfall detection and better align satellite estimates with ground
truth data. These improvements are essential for the model’s utility in FEWS and contributing to more
effective disaster risk management in flood-prone regions.
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1
Introduction

The prediction of extreme weather events in Africa is becoming increasingly important due to climate
change. It is expected that climate change will lead to more frequent and intense extreme weather
events in the sub-Saharan region, outpacing the population’s capacity to cope with the resulting dis-
asters (Codjoe and Atiglo, 2020). These events are anticipated to have a severe impact on various
socio-economic factors, including health and well-being, education, access to clean water and sani-
tation, and the sustainability of communities and cities (Codjoe and Atiglo, 2020). Atiah et al. (2023)
states that flood-related fatalities and associated economic losses have already increased in Southern
West Africa, with Ghana as one of their main examples. Ansah et al. (2020) show an increasing trend
of annual daily maximum rainfall in Accra.

Flood Early Warning Systems (FEWS) have proven effective in reducing flood-related damages and
casualties (Perera et al., 2019). Since floods in African urban environments are often triggered by
extreme rainfall (Ansah et al., 2020), gaining insights into when and where these events will occur can
help mitigate damage and save lives. Nowcasting, an algorithm integrated into FEWS, is a relatively
new meteorological method that uses current weather data to forecast weather conditions over the next
0 to 6 hours. However, implementing such systems in Africa is challenging due to the limited spatial
coverage and high temporal resolution of accurate rainfall observations, which is essential for the quality
of real-time observations (Estébanez-Camarena, Curzi, et al., 2023). Remote sensing techniques from
satellites offer a potential solution to the sparsely available ground-based data, but the latency, defined
as the time between observation and the availability of data, often makes satellite-derived products
unsuitable for real-time nowcasting. TheMeteosat satellite offers the potential to overcome this issue. It
is a geostationary satellite that observes visible light reflectances and infrared brightness temperatures
using the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over both Europe and Africa. With
its relatively short latency of 15 minutes, high temporal resolution of 15 minutes, and spatial resolution
of 3 x 3 km at sub-satellite point, it holds great potential for nowcasting purposes.

A study by Glas (2024) focused on developing a nowcasting model for flash floods in urban areas of
Ghana. However, after completing the research, Glas (2024) identified the satellite rainfall estimates as
one of the factors contributing to the low accuracy of the nowcasting model. This conclusion was drawn
from a comparison between multiple satellite-based rainfall products and observations from the Trans-
African Hydro-Meteorological Observatory (TAHMO) stations, which showed a significant discrepancy.
The discrepancy between gauge stations and multiple satellite rainfall products shows a potential to
improve spatial rainfall estimates for near real-time purposes from space.

To leverage the potential of the Meteosat satellites, the goal of this research is to develop a low-
latency rainfall retrieval model that can support an effective FEWS using SEVIRI channel data from the
Meteosat satellites, while agreeing with the ground observations. Instead of prioritizing precise rainfall
rate estimates, an effective FEWS requires rainfall estimates that can enhance accurate predictions on
whether extreme rainfall might lead to flooding, thereby improving preparedness and enabling timely
warnings.

1



1.1. Research questions 2

Machine learning techniques provide a computationally efficient approach for rainfall retrieval from satel-
lite images. Many studies use deep learning techniques to estimate rain rates from satellite images,
some showing promising results (Estébanez-Camarena, Curzi, et al., 2023; Estébanez-Camarena,
Taormina, et al., 2023; Gao et al., 2022; Hong and Hsu, 2004; Küçük, Atencia, and Dabernig, 2024;
Wang et al., 2021). From these models the Earthformer model architecture adapted by Küçük, Atencia,
and Dabernig (2024) is selected as the main method of this study, as it outperforms the state of the art
model architecture U-Net (Gao et al., 2022; Küçük, Atencia, and Dabernig, 2024), which is frequently
used in other studies to estimate rainfall (D’Adderio et al., 2023; Han et al., 2022; Rahimi et al., 2023;
Wang et al., 2021; Yang et al., 2021) (Section 3.1).

To train the model, IMERG-Final (Huffman et al., 2023) is chosen as the target dataset because it is rec-
ognized for its relatively high accuracy compared to other satellite-based rainfall products (Dezfuli et al.,
2017; Pradhan et al., 2022). IMERG-Final incorporates gauge-based corrections using Global Precipi-
tation Climatology Centre (GPCC) observations (Schneider et al., 2013), ensuring better alignment with
ground observations. IMERG is part of the Global Precipitation Measurement (GPM) mission, which
integrates observations using passive microwave (PMW) data from Low Earth Orbiting (LEO) satel-
lites with the high temporal resolution data of geostationary (GEO) satellites like Meteosat. It provides
gridded rainfall estimates at 30-minute intervals, making it one of the most widely used precipitation
datasets for research (Pradhan et al., 2022). However, IMERG-Final has a latency of approximately
3.5 months (Huffman et al., 2023), prohibiting its use in near-real-time applications. This delay creates
a gap for operational forecasting, where timely rainfall estimates are essential.

To achieve the goal of this research, this study investigates whether the Earthformer transformer
model (Gao et al., 2022) adapted by Küçük, Atencia, and Dabernig (2024) can be used to approxi-
mate IMERG-Final’s accuracy using only Meteosat satellite images as input. Using the high temporal
resolution and low latency of the Meteosat satellite data, the study aims to reduce the latency from
3.5 months to less than 15 minutes while trying to maintain similar accuracy and ultimately support
FEWS purposes. The study further evaluates how well these satellite-derived rainfall estimates corre-
spond to local gauge station observations, using data from the Ghana Meteorological Agency (GMET)
and TAHMO. By comparing model outputs with ground observations, this research aims to guide the
future development of high-accuracy, low-latency rainfall retrieval models for West Africa, improving
Meteosat-based rainfall products.

1.1. Research questions
Main Research Question:

How can the Earthformer transformermodel be applied to improve the accuracy of rainfall rate estimates
across different intensities for near real-time applications using SEVIRI channel data from the Meteosat
Second Generation satellite in Ghana?

Subquestions:

• How accurately does the Earthformer transformer model retrieve rainfall rate estimates for dif-
ferent rainfall rates from the SEVIRI channels of the Meteosat Second Generation satellite in
Ghana?

• What modifications can be made to the Earthformer transformer model to improve the accuracy
of high-intensity rainfall estimates?

• How do satellite based rainfall rate estimates relate to ground station observations?



2
Theoretical background

This chapter provides the necessary background knowledge for understanding the research. Section
2.1 discusses various space-based observation strategies for rainfall and their key advantages. Sec-
tion 2.2 explains the mechanisms responsible for rainfall formation. Finally, Section 2.3 highlights the
important climatic factors affecting Africa, with a specific focus on Ghana.

2.1. Rainfall observation satellites
Satellites play an important role in monitoring global weather patterns, including the retrieval of rainfall
data, since they provide spatial coverage of weather patterns (Prigent, 2010). The provided data can be
valuable for forecasting, water management and climate research. The used satellites for estimating
rainfall can be divided in two categories; Low Earth Orbit (LEO) satellites and Geostationary Earth
Orbit (GEO) satellites. Each of these satellites have different spatial coverage and contain different
measurement equipment to observe the rainfall from space.

Low Earth Orbit (LEO) satellites orbit around the earth at an relative low altitude. Because they orbit
around the entire earth the satellites can cover a wide area, however they revisit the exact same location
only about once every few hours to once in a few days. In contrary, since they orbit relatively close
to the earth’s surface they can observe the earth in great detail. A LEO satellite used to observe
rainfall is typically equipped with either or both a Passive Microwave Radiometers and/or an Active
Microwave radar. The Passive Microwave Radiometers detects the natural emission of microwaves
by the atmosphere and the earth’s surface, while active radar actively sends out radar pulses and
measures the return signal. Both measurement techniques are sensitive to the presence of rainfall
and cloud structure, but the Active Microwave provides the most accurate and direct measurement
of rainfall, compared to the passive microwaves. However, since LEO satellites cannot provide data
at a high temporal resolution in a single location, it makes them less useful for short-term weather
monitoring. Therefore it is not suitable for tracking fast-changing weather patterns, such as convective
rainfall (see section 2.3). They are, however, relatively accurate estimations from rainfall on a global
scale (Fischer and Winterrath, 2021; Sun et al., 2018).

GEO satellites can in its turn provide data at a high temporal resolution, because they have the same
rotational speed as the earth and observe the earth from a fixed position when looking from the earth’s
surface. Because of its high temporal resolution they are suitable for fast changing weather systems,
such as convective rainfall. However, because the GEO satellites are located much farther from the
earth compared to LEO satellites, their spatial resolution is also lower and they can not directly measure
rainfall. On board of the satellites are Visible and Infrared Imagers that can monitor rainfall related
parameters, such as cloud cover, humidity and temperature. From these parameters the actual rainfall
can be estimated. This is however an indirect method and can therefore result in substantial variability
between different retrieval products from VIS/IR sensors (Fischer and Winterrath, 2021; Sun et al.,
2018). Some GEO satellites also have a Lightning detector on board. This can be useful for observing
heavy rainfall and severe storms associated with convective storms. The Meteosat Third Generation

3



2.2. Cloud dynamics 4

is equiped with such a system.

So where LEO satellites can provide more accurate and detailed information about rainfall, GEO satel-
lites provide less accurate rainfall estimates, but on a higher temporal resolution. To overcome the
limitations of both satellites some retrieval products integrate the two techniques, combining the higher
temporal resolution of VIS/IR with the more direct precipitation estimates from microwave sensors (EU-
METSAT, 2019; Fischer and Winterrath, 2021; Sun et al., 2018).

Table 2.1: Comparison of LEO and GEO Satellites for rainfall monitoring.

Feature LEO Satellites GEO Satellites

Altitude with respect to
the Earth’s surface

Relatively low High

Spatial coverage Global coverage, revisits the same
location every few hours to days

Fixed location, taking observations from the
same location

Temporal resolution Low (less frequent revisits of the
same location)

High (relatively frequent observations of the
same location)

Spatial resolution Lower Higher
Measurement equipment Passive Microwave Radiometers,

Active Microwave Radar
Visible/Infrared Imagers, Geostationary
Lightning Mapper

Rainfall measurement
technique

Direct (microwave sensors) Indirect (inferred from cloud cover, humidity,
temperature)

Strengths Accurate and detailed rainfall data High temporal resolution, ideal for fast-
changing weather

Weaknesses Low temporal resolution Less accurate rainfall estimates

2.2. Cloud dynamics
Precipitation and cloud formation occur when air becomes fully saturated and can no longer hold water,
a condition known as reaching the dew point (National Weather Service La Crosse, 2014). When air
is cooled beyond this point, it must release its moisture in the form of clouds or fog. As warm air rises
and typically cools with altitude, clouds form.

There are three main mechanisms that cause cloud formation: The first one is heating. The sun warms
the Earth’s surface, which in turn heats the air above it. As the air warms, it rises, and when it reaches
its dew point, clouds begin to form. If this mechanism results in rainfall it is called convective rain. This
normally covers smaller areas of rain and can result in heavy rainfall. They are quite unpredictable,
because of ground surface variations. The air close to the earth is heated at different rates, resulting
in rainfall that can pop up anywhere and blown around by the wind directions. The second mechanism
that forms rain, is frontal movement and occurs when cold air meets warm air. The movement of the air
masses pushes the warm air over the cold air fronts, which forces the warm air to rise and form clouds.
If this results in rainfall it is called frontal rain. A similar process happens when air is forced to rise over
geographical features, like mountains, As it ascends and cools to its dew point, clouds form. This is
called Orographic Lifting. When resulting in rainfall it is called orographic rain.

Clouds can be categorized into three main types: cumulus, stratus, and cirrus (Manishsiq, 2024), as
shown in Figure 2.1.Cumulus clouds are formed when warm, moist air is forced upward. If the at-
mospheric conditions are unstable, the cumulus clouds can develop into thunderstorms. The Stratus
clouds are formed by the lifting of large air masses. Typically they are precipitation-free, though they
might produce light drizzle. Cirrus clouds are formed at high-altitudes and are made out of ice crystals.
They usually indicate the direction of the wind at their altitude.
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Figure 2.1: The atmosphere can be divided in three different levels; low-level, mid-level and high-levels. Each level has its
own characteristics, such as temperature and pressure, resulting in different cloud structures. Large cumulus clouds can form

heavy precipitation, while low stratiformal clouds can result in light drizzle (Manishsiq, 2024).

Precipitation formation is a combination of large scale processes, such as lifting air masses and small
scale interactions within the cloud itself, which is called themicro-physical cloud dynamics. Precipitation
within the clouds is formed by two different main micro-physical processes (Kikuchi et al., 2023). In
’warm clouds’ no ice particles are present. With collision and coalescence cloud droplets of different
sizes collide and merge into larger droplets. As these droplets grow larger, they become heavier and
fall faster. Once they reach a size that the cloud can no longer hold, they fall as rain. The warm rain
process is therefore strongly related to the droplet size. The other process is the ice-crystal process,
which typically takes place within ’cold-clouds’. When both ice crystals and water droplets are present
in a cloud, the water vapor from the droplets is attracted to the ice crystals and deposits directly onto the
them. This causes the ice-crystals to grow. Once they become large enough, the ice crystals fall. On
their downfall they collide with other crystals and droplets, increasing their particles seize. If the surface
temperature is cold enough, this precipitation falls in the form of snow. However, when temperatures
are high, the particles melt and fall as rain.

2.3. African climate
As described in the previous section the type of cloud has a significant effect on the precipitation forma-
tion. There exist a great difference between cloud formation around the equator in arid areas compared
to cloud formation in cooler and moist areas.

Africa consists of eight distinct climatic regions: hot desert, semiarid, tropical wet and dry, equatorial
(tropical wet), Mediterranean, humid subtropical, marine warm temperate upland, and mountain re-
gions. The differences between climates are caused by the movement of different air masses over the
continent. The location of the Intertropical Convergence Zone (ITCZ) is a key driver in the timing of the
rainy seasons (Middleton et al., 2024).

The ITCZ is formed by the sun heating up the Earth’s surface. This effect is intensified near the equator
as this location receives the most direct sunlight. This causes the air to heat up more quickly and rise.
The rising air creates low-pressure areas, enhancing the formation of convective rainfall. Thus, the
ITCZ is defined as a low-pressure zone across the equator of the earth, which is often associated with
convective rainfall. North and south of the ITCZ, the surface is heated more slowly, as the sunlight it
receives is more indirect. In contrast to warm air the cooler air sinks, causing little to no rainfall.

Due to the Earth’s tilt, the region that receives the most direct sunlight shifts throughout the year. For
half of the year, regions just north of the equator receive the most direct sunlight, while for the other
half, the area south of the equator experiences maximum heating. This movement of the ITCZ causes
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the alternating rainy and dry seasons (as shown in Figure 2.2). Additionally, because the land heats
more quickly than the ocean, the ITCZ is not a straight line and moves faster upwards or downwards
overland compared to oversea.

Figure 2.2: The Inter Tropical Convergence Zone (ITCZ) is a zone close to the equator, receiving he most direct sunlight,
which causes extreme precipitation. Due to the tilt of the earth the location of the ITCZ changes with the time of the year,

resulting in wet and dry seasons in areas around the equator. (Nikolaj Vinicoff, 2021)

As seen in Figure 2.2, in West Africa, the ITCZ is located where the continent meets the ocean in
January. Maritime air from the Gulf of Guinea moves toward the ITCZ, as this is a low-pressure area.
The air is heated by the Earth’s surface and begins to rise. Another air mass, originating from the
Sahara Desert, is dry and also rises. However, as the air rises, the moisture in the air mass coming
from the Gulf of Guinea begins to condensate, often causing heavy precipitation. If the ITCZ moves
further north, the air mass from the sea is forced to travel over land. This brings moisture to the dry
areas in the north, but as it moves farther from its moisture source, it becomes less humid. This results
in less intense rainfall in the northern regions of Ghana, caused by the ITCZ alone.

In addition to this pattern, there are also effects from El Niño and La Niña. El Niño and La Niña years
are caused by changes in trade winds over the Pacific Ocean. Normally, these winds move from east
to west. The winds push the warm surface water towards the west, near East Asia and Australia. Here
the warm water piles up. In contrast, in the east, near Central and South America, the warm surface
water is pushed away from its location, which allows cold water to well up. On one side, the air is heated
by the relatively warm ocean, while on the other side, it is cooled by the ocean. In warmer parts of the
ocean, the additional heating of the air by the warm ocean causes it to rise, and because it contains
moisture, this results in precipitation. In contrast, at the cooler part of the ocean the air is cooled and
sinks. Together, this reinforces the Easterly winds.

During an El Niño event, the intensity of the trade winds decreases or even reverses due to slight
changes in Pacific weather systems or slow shifts in ocean currents around the equator. The decreased
intensity of the trade winds result in less warm water being pushed westward, which in turn reduces
the upwelling of cold water in the east. As a result, the eastern part of the ocean warms up, making
the normal temperature gradient less pronounced. A larger portion of the ocean experiences warm
temperatures and therefore releases more heat into the atmosphere, contributing to an increase in
global temperatures. Additionally, the warmest part of the ocean shifts eastward, carrying moisture
and warmth with it. This changes precipitation patterns and wind directions on a global scale.

In contrast to an El Niño event, the La Niña event is caused by the intensification of the normal trade
winds. This pushes the warm water even more westward and increases the upwelling of cold water in
the east. The cooled ocean reduces global temperatures and causes opposite effects of the El Niño.
The El Niño and La Niña effects are also present in Africa, causing extreme precipitation and flooding
or severe droughts (Amediegwu, 2024).



2.3. African climate 7

Figure 2.3: During El Niño years additional energy is available in the atmosphere, generally resulting an increased
temperature and a drier climate in the largest part of Africa. During La Niña years, the effects are opposite as the El Niño years

and result in colder temperatures and a wetter climate in Africa. (Amediegwu, 2024).

.

2.3.1. Climate of Ghana
Ghana is located in West Africa along the Guinea Coast, between latitudes 4° and 12° N. Due to it
location near the equator, Ghana experiences a tropical climate with one or two rainy seasons each
year, depending on the region. These rainy seasons are driven by the movement of the Intertropical
Convergence Zone (ITCZ) over Ghana, as illustrated in Figure 2.2. As the ITCZ oscillates between
the northern and southern tropics, it crosses Ghana’s northern region once a year, resulting in a single
rainy season there. In contrast, the ITCZ passes over the southern region twice a year, creating two
rainy seasons.

In general, the primary rainy season in the southern region occurs from March to July, followed by a
shorter wet season from September to November. In the northern region, the rainy season typically
begins in April and ends in October, as shown in Figure 2.4. The highest rainfall levels are recorded
between June and August (Lizcano et al., 2008).
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Figure 2.4: Long-term montly mean of rainfall for the period 1976–2018 for (a) cluster 1 (northern region) (b) cluster 2
(transition cluster between northern and central region) (c) cluster 3 (central region) and (d) cluster 4 (coastal region) (Bessah

et al., 2022).

However, the timing, movement, and intensity of the ITCZ are also influenced by the El Niño–Southern
Oscillation (ENSO). During El Niño years, West Africa tends to experience drier conditions (Figure 2.3),
while La Niña years bring wetter conditions (Lizcano et al., 2008).

Based on climatological characteristics such as rainfall, minimal temperature, maximum temperature
and relative humidity Bessah et al. (2022) identifies three climatological zones in Ghana that share
similar characteristics: the northern, central, and coastal regions (Figure 2.5). The rainfall patterns are
largely influenced by latitude (Bessah et al., 2022).
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Figure 2.5: Climatic zones of Ghana-based on rainfall, relative humidity and temperature records from 1976 to 2018 (Bessah
et al., 2022)

2.3.2. Squall lines and Mesoscale Convective systems over Ghana
In Ghana, complex interactions between wind patterns and the Earth’s heating influence weather sys-
tems. Peters and Tetzlaff (1988) investigated the formation of squall lines, which are organized bands
of thunderstorms, over West Africa. As previously explained, the ITCZ is a zone near the equator where
the northeasterly trade winds from the Northern Hemisphere meet the southeasterly trade winds from
the Southern Hemisphere. The winds move to the low pressure area of the ITCZ, which result in the
convergence of these winds and when the ITCZ moves land inwards, brings moisture to the region.

At the same time, the strong temperature gradient between the hot, dry Sahara and the cooler, humid
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Figure 2.6: The formation of a thunderstorm structure. Due to the vertical wind shear the warm air is pushed over the cold air
and rises, causing the formation of thunderstorms (Kreider, 2024).

Gulf of Guinea leads to the formation of the African Easterly Jet (AEJ) at mid-level altitudes and flows
from east to west (Peters and Tetzlaff, 1988). When the AEJ is disturbed, it creates wave like motions
of the jet, which are called the African Easterly Waves (AEWs) (Estébanez-Camarena, Curzi, et al.,
2023; Peters and Tetzlaff, 1988). These waves result in alternating low- and high-pressure areas that
move westward along with the AEJ. The low-pressure regions (thoughts) of these waves also cause
convergence and helps thunderstorms to develop. The AEJ itself creates vertical wind shear (changing
wind speed with height), which sets favourable conditions for thunderstorms to develop.

The time of day also influences convective storm formation. During the day, the surface is heated,
which allows air to rise more rapidly. Many of the strongest storms in West Africa are initiated in the late
afternoon or early evening when surface temperatures peak and the lifting of the air is at its maximum
(Klein et al., 2018). Subsequently, during the evening hours, the wind is intensified and the air is cooled
down. The intensified wind increases the lifting of the air, while cooled air releases more moisture into
the atmosphere. This helps long-lived convective systems, such as squall lines, to intensify during the
nighttime.

When the moist air from the Gulf of Guinea condensates, it releases heat to the atmosphere and helps
the air to rise even further. Air masses that rise upward are called convective cells (Kreider, 2024). The
AEJ helps them to merge into larger cells, eventually growing into large thunderstorms. Once reaching
the tropopause (the air layer on top of the troposphere where vertical motion is less active), the air
spreads out horizontally, instead of increasing more upward (Figure 2.6). Frequently, the part with the
strongest convective energy can escape this equilibrium causing an overshooting top.

Mesoscale Convective Systems (MCSs) are large storm systems that include multiple convective cells.
When an MCS organizes into a long, narrow band, it is classified as a squall line (M. Zhang, 2022).
These systems are common in Ghana, particularly in the northern regions, where stronger AEW activity,
drier air intrusions from the Sahara, and greater wind shear create an environment favorable for their
formation (Peters and Tetzlaff, 1988). The effect of the AEJ is more pronounced in the north, making
squall lines more frequent compared to the south.

2.3.3. Challenges in capturing rainfall patterns in Africa
Although the rain rate and cloud top temperature are strongly related, estimating exact intensities still
introduces some challenges. Klein et al. (2018) explores the relationship in West Africa between cold
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cloud tops and extreme rain rates and shows a strong relationship of cloud tops colder than -80°C with
extreme rainfall (≥30 mm/h).

Geerts and Dejene (2005) pointed out that the convective storms over Africa are typically deeper com-
pared to the ones in the Amazon. The deeper the system, the higher the cloud rises and themore rainfall
potentially falls from it. This relationship can be partially captured with the cloud top temperature as
observed with IR imagery, since higher altitudes correspond to colder temperatures. However, when
systems rise beyond the troposphere and reach the tropopause (the air layer above the troposphere
where vertical motions of air are weaker), the cloud-top temperatures do not decrease as significantly
with height as they do in the troposphere. Therefore for very deep convective systems the cloud top
temperature is a less relevant indicator of the depth of the system and thus, for the exact intensity of
extremer rainfall as well.

Additionally, instead of vertically rising the air spreads out horizontally, making it more difficult to identify
the core of the convective system from the cloud top temperature only. As explained in Section 2.3.2,
an overshooting top often occurs, indicating the region of strongest vertical motion within the cloud.
However, due to wind shear, the convective core of the cloud underneath it may be displaced horizon-
tally relative to the overshooting top, making it difficult to identify the exact location of extreme rainfall
when using only information on the cloud top temperatures. Besides, the anvil top (horizontally spread
out top of the cloud) makes it difficult to see what happens underneath it. If multiple convective cores
are active, which is the case with MCS often occurring in West Africa (Atiah et al., 2023; Estébanez-
Camarena, Curzi, et al., 2023; Klein et al., 2018; Peters and Tetzlaff, 1988), some of these may be
covered up underneath the anvil cloud top. However, with the water vapour channels the Meteosat
satellites are able to look a bit deeper down into the clouds and observe convective motions within the
cloud (Estébanez-Camarena, Curzi, et al., 2023). The complex interactions of the AEJ, the movement
of ITCZ and converging trade winds at different levels of the atmosphere also contribute to the complex
relation between the satellite observations and rainfall rates on the ground.

Aditionally, Geerts and Dejene (2005) points out how climate top temperatures and rain rate relations
vary with climatological factors. The IMERG product was mostly developed and validated over Con-
tinental Unites States (CONUS) (Huffman et al., 2023), with different climatological factors compared
to Africa and especially Ghana. The rainfall rate in Africa may correspond to different cloud top tem-
peratures than over the CONUS. These differences in climatological conditions and satellite calibration
might explain why higher rainfall rates are underestimated in satellite observations. However, Li et al.
(2024) observed the underestimation of peak events over the CONUS as well.

Analysis also shows that light rainfall is overestimated at the temporal boundaries of rainfall events.
Mccollum et al. (2000) names two potential reasons for the overestimation of rainfall in Africa. the
winds from the Sahara bring more dust particles in the air, leading to a higher concentration of Cloud
Condensation Nuclei (CNN), resulting in smaller droplets that struggle to grow and fall as rainfall and
the fact that convective clouds form at higher altitudes in dry conditions and thus allow for more rainfall
to evaporate before reaching the ground.

Research by Peinó et al. (2025) found that accurate rainfall estimates are typically associated with high
Cloud Optical Thickness (COT) and Liquid Water Path (LWP) values, whereas lower values correspond
to higher false alarm ratios, indicating poorer performance in estimating rainfall from warm clouds.
These clouds, common in humid regions such as coastal Ghana, are a challenge for satellite-based
rainfall detection. Prigent (2010) attributes the underestimation of warm rainfall to relatively warm and
spatially homogeneous cloud-top temperatures, which show little distinction between raining and non-
raining areas. However, the multispectral bands of the SEVIRI installation may help mitigate this issue.
Still, as discussed in Section 2.2, warm rain processes primarily depend on droplet size. However,
only the 1.6 µm near infrared channel can distinguish between ice and water clouds (Schmetz et al.,
2002). Consequently, observing warm rain processes solely from Meteosat imagery remains difficult,
particularly at night.



3
Literature review

This chapter justifies the selection of two key aspects of this research through a literature review. Sec-
tion 3.1 examines various Machine Learning model architectures. As most machine learning models
require target data to train to, Section 3.2 explores different potential sources to train the model on.

3.1. Machine Learning model architectures
Machine learning is a common method for retrieving rainfall from satellite data. The U-Net architecture,
a type of Convolutional Neural Network (CNN), is widely used for rainfall retrieval, as shown in the
literature (D’Adderio et al., 2023; Han et al., 2022; Rahimi et al., 2023; Wang et al., 2021; D. Zhang
et al., 2023). In the domain of ML-based models for IR/VIS satellite data, the PERSIANN-CCS prod-
uct is considered one of the most reliable for rainfall retrieval (Estébanez-Camarena, Taormina, et al.,
2023; Wang et al., 2021). This product follows four key steps: first, it identifies cloud patches; second,
it extracts features from these patches, such as area and minimum temperature; third, it uses an unsu-
pervised learning technique using a Self-Organizing Feature Map (SOFM) to classify the cloud patches
into 400 different classes; finally, these classifications are used as input to estimate rainfall rates (Hong
and Hsu, 2004).

Temporal consistency is important for nowcasting purposes. Nowcasting algorithms identify cloud
groups and track their movement over time to derive motion vectors. If the changes in values and
shape between time steps are too large, the algorithm may fail to identify and track these groups ac-
curately, leading to incorrect motion vectors and incorrect forecasting. To address this challenge, a
convolutional Long Short-Term Memory (ConvLSTM) network is considered, as it is designed to cap-
ture both spatial and temporal relationships. However, prior research indicates that including temporal
relations does not improve rainfall estimates significantly, although it may reduce the number of model
parameters required (Estébanez-Camarena, Taormina, et al., 2023).

The perceptron architecture is also considered for this research. It is one of the most straightforward
deep-learning architectures. Unlike the LSTM or CNN, a perceptron does not capture the spatial and
temporal relationships between pixels. This can be a drawback since cloud and rainfall formations
are spatiotemporal phenomena. However, the simplicity of the perceptron architecture makes training
faster and more efficient. Research by Taravat et al. (2015) demonstrated that a Multi-Layer Perceptron
(MLP) could identify clouds with 88.96% accuracy during daylight conditions using the 0.6, 0.8, 1.6,
3.9, 6.2, and 10.8 μm channels. Since MLPs are often used as classifiers, and the PERSIANN-CCS
product showed significant improvements through the introduction of a classification step compared
to the earlier PERSIANN model (Hong and Hsu, 2004), including an MLP as a classifier could be an
interesting way to improve the model in the future.

Recent developments in Transformer models show considerable potential (Gao et al., 2022; Küçük,
Atencia, and Dabernig, 2024; Vaswani et al., 2017). Earthformer, developed by Amazon, is a space-
time transformer model specifically designed to handle high-dimensional spatiotemporal data (Gao et
al., 2022). It was created for Earth forecasting systems and is based on the Transformer architecture.

12
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The Transformer, a relatively recent innovation in deep learning, allows for significantly more paral-
lelization during training, enhancing efficiency (Vaswani et al., 2017). Although originally designed for
Natural Language Processing, the Transformer architecture has been adapted for other applications,
such as video prediction (Gao et al., 2022). Applying Transformer models to Earth systems, which are
often chaotic and high-dimensional, remains computationally intensive. Therefore, Earthformer has
been further developed to address these challenges (Gao et al., 2022).

The Earthformer model has outperformed state-of-the-art architectures such as U-Net and ConvLSTM
(Gao et al., 2022). Küçük, Atencia, and Dabernig (2024) developed the Earthformer for INCA model by
adapting the Earthformer model for rainfall predictions from satellite images, radar images and station
data, using radar images as reference data, and reported promising results.

Model architecture selection
From the literature review the Earthformer model (Gao et al., 2022) adapted by Küçük, Atencia, and
Dabernig (2024) is viewed as the most promising and thus selected for this research. Appendix A
provides an elaborate explanation of the model.

3.2. Potential target data source
The target source must be available in the region of Ghana and should be a gridded rainfall product,
which is often the case with satellite-based products (Section 3.2.1). However, ground observations
also have their advantages, as described in Section 3.2.2.

3.2.1. Satellite based products
Integrated Multi-Satellite Retrievals for GPM (IMERG), provides global precipitation data between 60°N
and 60°S (Huffman et al., 2023). Its performance depends on regional factors such as season, climate,
and topography. While few studies have examined IMERG’s performance in Africa (Pradhan et al.,
2022), existing research indicates variability in accuracy influenced by these factors (Dezfuli et al.,
2017).

IMERG combines precipitation estimates from various satellite instruments into a global dataset (Huff-
man et al., 2023). It is part of the Global Precipitation Measurement (GPM) mission, an international
collaboration led by NASA and JAXA to improve global precipitation estimates. IMERG integrates data
from low Earth orbit (LEO) satellites, which measure precipitation using passive microwave (PMW)
sensors (Figure 3.1, and geostationary (GEO) satellites, which provide visible and infrared (VIS/IR)
imagery. The GPM Core Observatory, equipped with the Dual-frequency Precipitation Radar (DPR),
plays an important role by providing highly accurate PMW and radar data for intercalibration.

Figure 3.1: The GPM constellation with its LEO satellites on the left and the GPM core observatory on the right (Sun et al.,
2018)

IMERG has a 30-minute temporal resolution and 0.1° × 0.1° spatial resolution, and merges data from
multiple satellite sources. The core processing steps involve gridding, inter-calibration with the GPM
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Combined Radar Radiometer Analysis product, and aggregation into half-hourly fields (Huffman et al.,
2023). Since PMWdata can be sparse in certain regions, IMERG supplements it with estimates derived
from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN)-like algorithm, which utilizes GEO satellite VIS/IR data. The Climate Prediction Center
Morphing-Kalman Filter (CMORPH-KF) then refines precipitation estimates by tracking cloud and rain
system movement, improving temporal alignment.

The IMERG dataset contains three main versions:

• IMERG-Early ( 4-hour latency) is primarily used for near-real-time applications, using only satellite
based estimates.

• IMERG-Late ( 14-hour latency), uses only satellite based estimates as well, but includes a back-
ward pass in the morphing algorithm, to correct timing errors.

• IMERG-Final ( 3.5-month latency), is designed for research and incorporates Global Precipitation
Climatology Centre (GPCC) monthly gauge analysis for bias correction. For the years before
2020, the GPCC full reanalysis was used, while for the other years, the the monitoring product of
GPCC, as the full analysis product is not availabel yet for these years (Huffman et al., 2023).

The GPM core observatory provides the most accurate estimates of precipitation as it also has the
DPR on board (Huffman et al., 2023). Using this as a target is however challenging as it normally
revisits the same location only within the order of magnitude of days (Brasjen, 2014). D’Adderio et al.
(2023) used the DPR product (GPM 2BCMB) as a reference for their machine-learning model to retrieve
rainfall estimates over the full disk of the Meteosat satellite. However, for this study focusing on Ghana,
the usability of GPM 2BCMB depends on LEO satellite overpass frequency, which can result in low
temporal resolution and may provide not enough data for this research.

D. Zhang et al. (2023) used IMERG Early MWprecipitation (before called HQprecipitation) as reference
data to train their model. The MWprecipitation field in IMERG provides a global, gridded, half-hourly
dataset (0.1° × 0.1° resolution) that merges precipitation estimates from multiple LEO satellites. While
this approach ensures spatial and temporal coverage, the data quality may suffer in areas with low
satellite coverage, leading to gaps in the data as well (Huffman et al., 2023).

Table 3.1: Overview of IMERG and intermediate products.

IMERG Product Temporal Resolution Data Sources Corrections Applied

IMERG Early 30 min PMW (LEO) + IR (GEO) +
DPR

No correction on gauge stations

IMERG Late 30 min PMW (LEO) + IR (GEO) +
DPR

Inclusion of a backward pass in the morphing
algorithm correcting timing errors, no correc-
tion on gauge stations

IMERG Final 30 min PMW (LEO) + IR (GEO) +
DPR + GPCC Gauge Data

Inclusion of a backward pass in the morph-
ing algorithm correcting timing errors, monthly
bias correction using gauge data

GPM 2BCMB (DPR) one in a few days GPM core observatory No correction on gauge stations or integration
with other products

IMERG MWprecipita-
tion (HQprecipitation)

30 min, global, but con-
tains gaps

PMW (LEO) from multiple
sensors

Merged multi-satellite precipitation field of MW
satellites. No correction on gauge stations.

3.2.2. In-situ observations
All satellite measurements are essentially indirect estimates of surface rainfall (Fischer and Winterrath,
2021). Therefore, using direct observations from gauge station data as a target can also be beneficial.
Moraux et al. (2019) trained their model directly on gauge station data both as a reference and as input.
They however had access to a dense network of gauge stations. Converting data from gauge stations
into a spatial dataset in less dense areas poses a challenge. It can be done through interpolation be-
tween the stations, but when too few stations are available, the interpolation may provide an inaccurate
representation of reality (Estébanez-Camarena, Taormina, et al., 2023). Training a model on such data
is thus risky. Estébanez-Camarena, Taormina, et al. (2023) addressed this issue by using point-based
instead of grid-based estimations of rainfall for each TAHMO station cell. However, this method does
not result in a spatial database that can be used for nowcasting purposes.
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Target selection
Considering the challenges of using the ground-based observations directly as a target, IMERG-Final
is selected for this research as it includes the stations through a monthly bias correction method and it
has consistent temporal resolution, unlike the PMW or DPR product only.



4
Data description

This chapter provides a description of the data used in this research. Section 4.1 discusses the target
data used for model training and the ground observations for validation. Section 4.2 outlines the input
data provided to the model. Finally, Section 4.3 examines the benchmark products.

4.1. Target data
4.1.1. IMERG-Final
In 3.2 IMERG-Final (V07B) was selected as the target of the model. The section already described the
used satellites and the algorithm behind it. As explained before, the satellite estimates are corrected
on a monthly scale using the GPCC data. The bias correction is done by inverse variance weighting
of the satellite estimates and GPCC gauge stations (Huffman et al., 2023). The exact number of used
stations varies per month, but an example map with the number of stations included over Ghana is
provided in Figure 4.1.

Figure 4.1: Number of stations per grid cell of 1° x 1° used in the GPCC Monitoring Product Version 2022 for July 2022
(Deutscher Wetterdienst, n.d.).

16
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4.1.2. Ground observations
A relative large portion of the ground stations contains data gaps (Figure 4.2). The cumulative rainfall
per month for the year 2022 (see Appendix B) was compared to Figure 2.4, to check whether the
station aligned with local rainfall patterns. A considerable amount of data did not align with local rainfall
patterns, often reporting only zeros, indicating the stations were malfunctioning or clogged. These
stations were removed from the validation set to ensure a more reliable analysis. The used stations
and their locations are displayed in Figure 4.3.

(a) GMET stations (b) TAHMO stations.

Figure 4.2: Data availability of the ground stations. The blue lines indicate when data is available.

Ghana Meteorological Service (GMET) stations
Part of the ground station data was received from the Ghana Meteorological Service (GMET). The in-
struments used to measure the rainfall per station by GMET are unknown to the author of this research.

Trans-African Hydro-Meteorological Observatory (TAHMO) stations
The Trans-African Hydro-Meteorological Observatory (TAHMO) is an initiative that aims to cover the
sub-saharian region in Africa with a dense network of hydro-meteorological monitoring stations (van
de Giesen et al., 2014). TAHMO uses Atmos 41 gauge stations to measure different meteorological
variables, one of them being rainfall. The rainfall is collected with a funnel and drips the water onto an
electrode, which counts the amount of droplets. The funnel makes sure that every droplet has the same
size for easy conversion of droplet count towards mm rainfall. However, when the station is not placed
perpendicular to the ground, droplets could miss the electrode. Currently, this effect is not corrected in
the data. The available data used in this research could be seen in Figure C.2.
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Figure 4.3: The used ground stations for this research plotted on the map in Ghana.

4.2. Input data
4.2.1. Meteosat Satellites equipped with Spinning Enhanced Visible and Infrared

Imager (SEVIRI)
The Meteosat satellites are GEO satellites. This research focuses on the second generation of Me-
teosat satellites, which have a latency time of approximately 15 minutes, a spatial resolution of approx-
imately 3 x 3 km at sub-satellite point, a temporal resolution of 15 minutes and primarily covers Europe
and Africa (Schmetz et al., 2002).

The Meteosat Second Generation (MSG) satellite is equipped with the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) system. SEVIRI takes observations of the Earth every 15 minutes using 11
spectral channels, along with a high-resolution visible (HRV) channel. While the 11 spectral channels
cover the full disk of the Earth, the HRV channel only covers half of the full disk in the east-west direction
but the entire disk in the north-south direction. The scanning process occurs from east to west and south
to north. SEVIRI includes eight thermal infrared channels and three solar channels.
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Figure 4.4: . Coverage with SEVIRI on MSG, in its nominal position at 0° lon, for a repeat cycle of 15 min for channels 1–11
(see Table 1). The full disk image has 3712 × 3712 pixels. The HRV (right-hand side of figure) covers only half of the earth in
the E–W direction with 11 136 × 5568 pixels; however, the area of imaging can be selected. Scanning of SEVIRI is from east to

west and south to north. (Schmetz et al., 2002)

A complete image of the Earth’s full disk is 3712 x 3712 pixels for channels 1-11 (Schmetz et al., 2002).
The SEVIRI channels observe radiance in mW∙m�²∙sr�¹∙(cm�¹)�¹. For the visual channels (1 t/m 3
and HRV) this is converted to the Bidirectional Reflectance Factor (Equation 4.1) (Eumetsat, 2012)
and for the infrared channels (4 t/m 11) to Brightness Temperature (K) (Equation 4.2) (Eumetsat, 2005).
This conversion is already applied, when downloading the Native formatted files from the EUMETSAT
database. Therefore, to provide the model with richer physical data, the Native files are used.

rλi =
πRλi

d2(t)

Iλicos(θ(t, x))
(4.1)

In which i is the channel number, Rλi is the measured radiance (mW∙m�²∙sr�¹∙(cm�¹)�¹), d(t) is
the Sun-Earth distance in AU at time t, Iλi

the band solar irradiance for the channel λi at 1 AU in
mW∙m�²∙sr�¹∙(cm�¹)�¹ and θ(t, x) is the Solar Zenith Angle in Radiances at time t and location x.
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c
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−B]

A
(4.2)

In which Tb is the Brightness Temperature (K). The constants C1 = 2hc2 and C2 = hc
k in which c is the

speed of light (299792458 ms−1), h the Planck constant (6.62606876 10−34Js) and k the Boltzmann
constant 1.380650324 10−23JK−1. vc is the central wavenumber of the channel and A and B are pa-
rameters found from a non-linear regression pre-calculated lookup table that can be found in Eumetsat
(2005).

The channels are selected to provide detailed information on clouds, the Earth’s surface, water vapor,
and ozone (Table 5.1). Combining several channels can offer additional insights, such as analyzing
atmospheric instability (Schmetz et al., 2002). Below an overview is provided of the SEVIRI channels.

• VIS0.6 and VIS0.8: mainly used for cloud tracking, scene identification, aerosol and land surface
and vegetation monitoring (Schmetz et al., 2002).

• NIR1.6: used to distinguish between snow and cloud, ice and water clouds and also provides
aerosol information (Schmetz et al., 2002). The channel is chosen centered around a wavelength
for which the absorption for ice particles is much larger that the absorption for water particles
(Brasjen, 2014).

• IR3.9: mainly used for cloud and fog detection. It also helps with land and sea surface temper-
ature measurements at night. Additionally it increases the low level wind coverage from cloud
tracking (Schmetz et al., 2002).
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• WV6.2 and WV7.3: Are used for observing the water vapor and winds. Additionally it also
supports height allocation of semitransparent clouds (Benas et al., 2017). In the research of
Estébanez-Mendez et al. (2023) the channel 6 (WV 7.3 µm) was used in combination with chan-
nel 9 (IR10.8) to improve a model for binary rain/no rain classification, since this channel could
look deeper into the cloud compared to channel 9, and in Ghana mostly deep convective clouds
form (Estébanez-Camarena, Curzi, et al., 2023). Earlier research showed that additional infor-
mation about water vapour can improve the performance of a ML model (Estébanez-Camarena,
Taormina, et al., 2023; Wang et al., 2021). Other research uses the difference between the
WV 6.2 - WV7.3 µm, because higher differences are associated with a warmer higher upper tro-
poshere and thus contains more moisture and therefore could be associated with higher changes
of rainfall rates (Brasjen, 2014).

• IR8.7: Provides information for thin cirrus clouds and supports distinguishing between ice and
water clouds (Schmetz et al., 2002).

• IR9.7: Observes absoprtion by the ozone, which can be used for numerical weather prediction
(NWP), wind motion in the lower stratosphere and monitoring the evolution of the total ozone field
(Schmetz et al., 2002).

• IR10.8 and IR12.0 are important channels to retrieve sea, land surface and cloud-top temper-
atures. They can be used for the detection of cirrus clouds and volcanic ash clouds as well
(Schmetz et al., 2002). IR10.8 corresponds to the top of the cloud and is one of the most im-
portant channels for convective rainfall retrieval, due to a strong relationship between cloud top
temperatures and rainfall and little affection of adsorption (Brasjen, 2014; Estébanez-Camarena,
Taormina, et al., 2023; Schmetz et al., 2002). As a rule of thumb, the colder the infrared cloud
top temperature, the higher the rainfall rate (Brasjen, 2014). This is however quite a simplifica-
tion, since the formation of rainfall is not only dependent on the temperature of the cloud. Al-
though channel 9 provides important information for cloud rainfall, it doesn’t capture the internal
cloud structure, since it can only look at the top of the cloud (D’Adderio et al., 2023; Estébanez-
Camarena, Curzi, et al., 2023; Estébanez-Camarena, Taormina, et al., 2023; Hong and Hsu,
2004; Wang et al., 2021). Therefore it is useful to also account for other factors. Such as the fact
that clouds in humid environments produce more rainfall than clouds in dry atmospheric condi-
tions (Brasjen, 2014; Mccollum et al., 2000).

• IR13.4: This channel can be used for improving height allocation of tenuous cirrus clouds and in
cloud-free areas to investigate atmospheric stability (Schmetz et al., 2002).

Table 4.1: Channel Characteristics of Main Gaseous Absorbers or Windows (Schmetz et al., 2002).

No. Spectral Band λcen (µm) λmin (µm) λmax (µm) Main Absorber/Window
1 VIS0.6 0.635 0.56 0.71 Window
2 VIS0.8 0.81 0.74 0.88 Window
3 NIR1.6 1.64 1.50 1.78 Window
4 IR3.9 3.90 3.48 4.36 Window
5 WV6.2 6.25 5.35 7.15 Water vapor
6 WV7.3 7.35 6.85 7.85 Water vapor
7 IR8.7 8.70 8.30 9.10 Window
8 IR9.7 9.66 9.38 9.94 Ozone
9 IR10.8 10.80 9.80 11.80 Window
10 IR12.0 12.00 11.00 13.00 Window
11 IR13.4 13.40 12.40 14.40 Carbon dioxide
12 HRV Broadband (about 0.4 – 1.1) Window/Water vapor

The channels 1 - 11 serve as input for the model, assuming that the model will learn meaningful patterns
by only attending to the visual channels during daytime.
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4.2.2. Auxiliary data
Besides from the SEVIRI channels the model is also provided with additional information about the
region. This includes the Digital Elevation Model (DEM) obtained from the NASA dastabase, the time
of the day and hour of the day as well as the latitude longitude grid in WGS84 projection of the earth.

4.3. Benchmark products
IMERG-Early
As explained in Section 3.2, IMERG-Early is a precipitation product part of the Global Precipitation
Mission, specifically suitable for operational purposes, such as flood forecasting, due to its short la-
tency (4h̃). Unlike IMERG-Final, it doesn’t incorporate intensive corrections on gauge stations and
only includes a forward pass in the morphing algorithm to define the motion vectors from the VIS/IR
channels (Huffman et al., 2023). IMERG-Late also includes a backward pass, but has a latency of
approximately 14h, thus is not as real-time as IMERG-Early. Therefore IMERG-Early is selected as a
suitable benchmark. The latest version (V06) available through the GPM-API python library is used.



5
Methodology

This Chapter explains the methods used for this research, aiming to address the limitations of current
near real-time rainfall retrieval algorithms by adapting a deep learning approach for estimating rainfall
from the Meteosat satellite. Additionally, it seeks to validate the model output on local gauge station
data, to guide future research.

The study follows a systematic approach, involving a series of steps that combine various input and
reference data sources. The first step ensures the spatial and temporal alignment of the reference and
input data, as described in Section 5.1. The model’s architecture builds on the Earthformer for INCA
model, originally developed by Amazon (Gao et al., 2022) and later adapted by Küçük, Atencia, and
Dabernig (2024), as outlined in Section 5.2.1. How the model is trained is explained in Section 5.2.2.

To determine the accuracy of the model (Section 5.3), the model is validated both on IMERG-Final and
the ground observations. The test dataset is compared to the target IMERG-Final and benchmarked
on IMERG-Early and explained in Section 5.3.1. The validation on the ground observations is outlined
in Section 5.3.2.

An overview of the entire research setup can be found in Figure 5.1.
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Figure 5.1: Overview of the methodology of the research. The research consists out of three main steps; pre-processing of the
data, building the model and validating and optimizing the model output.

5.1. Data preprocessing
5.1.1. Aligning data
The SEVIRI data is retrieved from the EUMETSAT database, using the customization process from
the Eumdac Python library. The data is then reprojected from the geostationary projection to WGS84
projection, using the Satpy Python library. The IMERG-Final data is retrieved from the ges-disc using
the GPM-API Python library.
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The Meteosat data and the IMERG-Final data are aligned by regridding and resampling the IMERG-
Final data to the Meteosat grid using nearest neighbor resampling. The coverage of both the Me-
teosat and IMERG-Final data is longitude (3.658607 W, 1.308607 E) and latitude (4.541295547 S,
11.28623482 N) in WGS84 projection and has 248 number of grid cells in latitude direction and 184
grid cells in longitude direction, resulting in a resolution of approximately 0.027° x 0.027°/ 3 x 3 km.

The data is aligned in time by grouping the data in event files of a timespan of 2 hours. The IMERG-
Final data in the given timespan, is the target data and corresponds to the SEVIRI data available every
15 minutes two hours prior to the event.

The Digital Elevation model is downloaded from the NASA database and resampled to the same grid
using bi-linear interpolation.

The time of the day and hour of the day are transformed into sine and cosine wave signals (Equations
5.1, 5.2, 5.3, 5.4)) a strategy taken over from Küçük, Atencia, and Dabernig (2024).

DoYsintrans = sin(
DoY ∗ 2π
365.2425

) (5.1)

DoYcostrans = cos(
DoY ∗ 2π
365.2425

) (5.2)

ToDsintrans = sin(
ToD ∗ 2π
365.2425

) (5.3)

ToDcostrans = cos(
ToD ∗ 2π
365.2425

) (5.4)

In which the ToD is the time of the day and DoY , the day of the year.

For benchmarking on IMERG-Early, the same spatial boundaries and temporal timestamps as the test
dataset were selected to compare it with IMERG-Final.

5.1.2. Selecting data
Machine learning models often struggle with datasets dominated by zeros, as they may achieve good
loss scores while failing to represent reality, leading to underestimation of extreme rainfall and low
detection probabilities.

Therefore, to estimate extreme rainfall for flood early warning systems, the dataset of the years 2020
- 2023 is conditioned on a minimum spatial coverage of 2% ( 8,214 km2) with at least 1 mm/h rainfall
and a minimum maximum rainfall rate of 20 mm/h, retrieved from IMERG-Final. Samples with missing
SEVIRI data are excluded, resulting in 7,676 samples. Due to seasonal variability in Ghana, differences
in file distributions per month occurred (Figure 5.2).

A less strict selection criterion (1% spatial coverage, 5 mm/h minimum maximum) produced 25,940
samples but resulted in worse model performance, probably due to the high representation of zeros in
the data set. Therefore, it was not explored further.
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(a) 2020 (b) 2021

(c) 2022 (d) 2023

Figure 5.2: The number of samples selected for each month for each year with a condition of a spatial coverage of rainfall rate
> 1 mm/h > 2% and a maximum rainfall rate > 20 mm/h.

5.1.3. Splitting data
A stratified method is used to split the data into training, test and validation datasets. The entire dataset
is split into 70% training 21% validation and 9% testing. The spatial averaged (IMERG-Final) rainfall of
each sample in the conditioned dataset is calculated and divided into 20 equally spaced bins between
the minimum and maximum value of the mean rainfall. The distribution of the samples across each bin
is persevered in a training, test and validation dataset.

Since the most extreme rainfall sample was rare in the dataset and resulted in only one count in the
last bin, the dataset couldn’t be split equally. Therefore the sample in the last bin was merged with the
nearest bin with a lower mean rainfall eventually resulting into 19 bins (Figure: 5.3).



5.1. Data preprocessing 26

Figure 5.3: The binned distribution of the spatial averaged rainfall (mm/h) calculated from the target data (IMERG-Final) for all
the values in the conditioned (spatial coverage of rainfall > 1 mm/h > 2% and maximum rainfall > 20 mm/h) dataset.

5.1.4. Normalizing data
To address the skewed distribution of the IMERG-Final rainfall data the data is logtransformed, using
the strategy of Küçük, Atencia, and Dabernig (2024) and Leinonen et al. (2023) (Equation 5.5). The
discontinuity of the transformed rainfall gives the model a clear distiction of rain and no rain values.

f(RR) =

{
log10 RR if RR ≥ 0.1 mm h−1,

log10 0.02 if RR < 0.1 mm h−1.
(5.5)

In which f(RR) is the transformed rain rate and RR is the rain rate.

The other data sources are normalized (Equation 5.1.4) over all the grid cells using the global mean
of all the grid cells for calculating the standard deviation (Equation 5.6) of all the grid cells in the entire
dataset.

σglobal =

√√√√ 1

N ·M

N∑
i=1

M∑
i=j

(xi,j − µglobal)2 (5.6)

In whichN is the total number of frames for the given data source in the selected data set. M is the total
number of grid cells in a specific frame of the given data source and xi,j the value of each individual
grid cell.

zi =
xi − µglobal

σglobal
(5.7)

In which zi is the normalized value of each individual grid cell in the selected dataset.

Normalizing the log transformed rainfall values was tested, but gave similar results as the log trans-
formed values were already quite close to normalized values.
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5.2. Model building
5.2.1. Defining model configuration
An extensive description of the model architecture can be found in Appendix A. To enable the division
of the input tensor for patch and merging in the downsampling layers, the borders are padded on the
right with zero values when necessary. The Earthformer for INCA model from Küçük, Atencia, and
Dabernig (2024) has been adapted to allow unequal padding across multiple dimensions.

The configuration of the model has been left mostly the same and is described more specifically in
Appendix A. More gradual downsampling of the convolutional downsampling layers was tested by in-
creasing the number of downsampling layers from two to three and increasing the channel dimensions
more gradually each layer to 16, 64 and 128 respectively. However, this did not improve model perfor-
mance.

The number of heads was increased from 16 to 32, so the model could focus on an increased number of
structures in the data simultaniously (Appendix A.1). The model was adapted so it would only estimate
one rainfall frame and in such a way it could handle the provided input data of this research.

5.2.2. Training and selecting hyperparameters
During the training phase, the hyperparameters are specified. To prevent the model from converging
too rapidly when updating weights, a learning rate schedule with a warm-up phase is applied, ensuring
gradual adjustments at the start.

A one cycle learning rate scheduler (Appendix A.2.6) with warm-up percentage of 22% is introduced to
ensure the model learns meaningful attention patterns at the beginning of training (Figure 5.4). Over
22% of the total training steps the learning rate is increased from an initial value 25 times smaller than
the maximum learning rate (8.0e-5), until the maximum learning rate is reached. This gradual increase
prevents oscillations or divergence during the early training phase. To further refine the model after
meaningful patterns have been learned the learning rate is gradually decreased over the remaining
steps using Cosine decay with a final learning rate 10 times smaller than the initial learning rate.

Figure 5.4: The learning rate against the trainingsstep during training of the Earthformer model with MSE loss.
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Additionally, to prevent exploding gradients, gradient clipping using an L2-norm is applied (Appendix
A.2.3). When a gradient exceeds the L2-norm threshold, it is clipped to the defined limit, which in this
model is set to 1.0.

Early stopping (Appendix A.2.5) and an AdamW optimizer with weight decay (Appendix A.2.4) are used
to prevent overfitting. The training is stopped if the validation loss doesn’t improve for 20 epochs. The
best performing weights for the validation set were selected as the optimal parameters after training.
The weight decay was set to 1.0e-5.

The choice of the loss function could potentially influence the model’s performance. The loss function
should be selected based on the specific objectives of the model. For this research two different loss
functions are explored; theMean Squared Error (MSE) loss function is employed, as defined in Equation
5.8 and the balanced loss function with weighting similar to Shi et al. (2017) as defined in Equation 5.10.
The last loss function assigns greater importance to extreme values.

MSE =
1

n

n∑
i=1

(RRi − R̂Ri)
2 (5.8)

In which n is the total number of grid cells, RRi, the estimated output of the model in grid cell i and
R̂Ri the target value in grid cell i.

Loss = BMSE +BMAE (5.9)

BMSE =
1

n

n∑
i=1

wi(RRi − R̂Ri)
2 (5.10)

BMAE =
1

n

n∑
i=1

wi|RRi − R̂Ri| (5.11)

wi =


1 if RRi ≥ 1 mm h−1,

Ri if < RRi ≥ 30 mm h−1

30 if RRi > 1 mm h−1,

(5.12)

The model is trained on an NVIDIA-SMI 535.183.01 GPU with 9.77 GiB of available memory. Using a
GPU significantly accelerates training due to the parallelizable nature of deep learning computations.
However, GPU memory now limits the model performance. To address issues such as out of memory,
several strategies are implemented in the model: data is loaded in batches of four using the PyTorch
Lightning library to conserve memory, while gradient accumulation (Appendix A.2.2) allows weight up-
dates after processing 32 samples, simulating a batch size of 32. Additionally, mixed-precision training
(Appendix A.2.1), which uses both 32-bit and 16-bit precision for weights, further reduces memory us-
age. The training of the model on a GPU with 9.77 GiB took about 2 days and was stopped after 114
epochs for the MSE loss function with an early stopping criterium of 20 epochs and the model with the
balanced loss function fully used the 120 maximum epochs.

5.3. Model validation
5.3.1. Validating on IMERG-Final
After the training phase, the model is tested on the test dataset. The model generates rainfall estimates
based on the given input data and is compared to the reference data (IMERG-Final). The model’s
outputs are gridded estimations of rainfall in mm/h averaged over 30 minutes, which are compared to
the gridded rainfall rates of IMERG-Final. Based on this comparison, the test metrics are calculated for
specific thresholds.
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Keeping the final integration into a FEWS in mind, the performance of the model is assessed. A FEWS
requires accurate spatial estimates of rainfall rates, focusing more on correctly identifying extreme
rainfall locations than on precise intensity values. The Earthformer model, which translates satellite
images into rainfall rate estimates, is assessed, while this aspect is kept in mind. Important indicators
that quantify the trade-off between the false alarms and misses are the Probability of Detection (POD)
(Equation 5.13), Critical Success Index (CSI) (Equation 5.14), Bias (Equation 5.15) and the Success
Ratio (SUCR) (Equation 5.16).

The performance indicators are assessed for the thresholds 1.2, 3.4, 5.4 10, 16.8 and 30 mm/h av-
eraged over 30 minutes, with 30 mm/h being the 99th percentile in West Africa (Klein et al., 2018).
Defining a clear threshold for ’extreme’ rainfall causing flooding, helps assessing the performance of
the model. However, whether extreme rainfall results in flooding is not only dependent on the inten-
sity, but also on local factors such as the topography, land use, and drainage infrastructure, making it
difficult to establish a threshold for the whole of Ghana.

POD =
hits

hits+misses
(5.13)

CSI =
hits

hits+misses+ falsealarm
(5.14)

Bias =
hits+ falsealarms

hits+misses
(5.15)

SUCR =
hits

hits+ falsealarm
(5.16)

The number of hits corresponds to the number of cells where both the model and the target detect
rainfall exceeding the threshold. Misses represent the number of cells where the target detects rainfall
exceeding the threshold, but the model does not. False alarms refer to the number of cells where the
model detects rainfall exceeding the threshold, but the target does not. These values are calculated
separately for each threshold.

The POD indicates the probability of detecting rainfall. A POD value of 1 represents a perfect score.
The CSI is an indicator of the overall performance of the model; the closer the CSI is to 1, the better
the performance. Bias measures the tendency of the model to overestimate or underestimate rainfall
detection by evaluating the number of false alarms relative to hits and misses. A score higher than 1
indicates overdetection and a score below 1 underdetection. The perfect score is 1, but this doesn’t
necessarily indicate good performance of the model. The Success Ratio evaluates how much of the
model’s predicted rainfall corresponds to rainfall in the target dataset and tells something about the
precision of the model. Again 1 reflects a perfect score.

To asses the performance against other near real-time satellite products the computed metrics from
comparison to the target IMERG-Final are compared to the the metrics computed from IMERG-Early to
IMERG-Final. IMERG-Early is compared to IMERG-Final for the same timestamps as the test dataset
and for the same spatial boundaries. However, the comparison of IMERG-Early to IMERG-Final is in
the original resolution of IMERG (0.1 x 0.1 degrees), while the output of the model is compared to the
resampled resolution of the Meteosat satellite images (0.027 x 0.027 degrees).

To visually assess the performance of the model, the root mean square error (RMSE) (mm/h) averaged
over 30 minutes is calculated for each pixel individually with Equation 5.17.

RMSE =

√√√√ 1

n

n∑
i=1

(RR− R̂R)2 (5.17)

In which n is the number of frames/ timesteps within the test dataset RR, the value of IMERG-Final in
the pixel and R̂R the value of either the output of the model or IMERG-Early in the pixel.
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5.3.2. Validating on local ground stations
After the model’s output has been spatially compared to the target data, the model’s output is compared
to the individual gauge stations of both GMET and TAHMO. The GMET and TAHMO data is aggregated
over 30min intervals to compare to the rain rate (mm/h) averaged over 30 min of the satellite products.
To convert the rain rate into an accumulative rainfall value over 30 min (mm), the rain rate is divided by
two. The comparison is drawn between the nearest grid cell to the station location and the station data
itself. The Pearson correlation coefficient (Equation 5.18) is used to calculate the correlation between
the stations and the nearest grid cell. For the analysis zero data is excluded. Other correlation coef-
ficients such as Spearman and Kendall rank correlation gave similar results. The Pearson correlation
coefficient seemed most suitable, as this is the quantification of a linear correlation.

r =
[(
∑n

i=1 xiyi)−
∑n

i=1 xi

∑n
i=1 yi]√

[(
∑n

i=1 x
2)− (

∑n
i=1 xi)2][(

∑n
i=1 y

2
i )− (

∑n
i=1 yi)

2]
(5.18)

In which xi are the independent variables, yi the dependent variables and n the sample size.

The same performance calculations used for the spatial comparison, as described in Section 5.3.1, are
applied here. Given that the primary objective of this research is to predict extreme rainfall, the model’s
performance is also assessed across various rainfall intensities.

In this research rainfall intensities are classified as follows:

Table 5.1: Rainfall intensities classification.

Class Intensity (mm/h) Cumulative rainfall (mm) fallen within 30 minutes
Light rain 0.1 - 2.7 0.1 - 1.3

Moderate rain 2.8 - 8.6 1.4 - 4.3
Heavy rain 8.6 - 50 4.4 - 25
Extreme rain ≥ 50 ≥ 25

Ansah et al. (2020) investigated the meteorological causes of extreme rainfall and analyzed two flood
events in Accra and Kumasi. Their study reported daily rainfall totals of 124.8 mm, 90.1 mm, and
109.0 mm at different stations in Accra during an 8-hour flood event. This suggests that rainfall rates of
approximately 15 mm/h can contribute to flooding, although the duration and peak intensities of rainfall
also play an important role.

To establish appropriate thresholds for evaluating model performance, the 99th percentile of observed
rainfall of the ground stations was analyzed for different time intervals. For 30-minute intervals, the 99th
percentile of rainfall (≥ 0.1 mm) across all available station data ranged from 16.57 mm to 31.96 mm,
with one outlier at Tarkwa station (52.36 mm). For daily intervals, the 99th percentile varied between
37.6 mm and 93.5 mm, except for TA00120 and Tarkwa stations, which recorded 107.9 mm and 165.5
mm, respectively.

Based on these findings and to ensure alignment with the validation on IMERG-Final, the following
threshold values were chosen:

30-minute intervals: 0.6, 1.4, 4.3, 10, 15 and 25 mm
Daily intervals: 5, 10, 15, 30, 40, and 60 mm

As the comparison of IMERG-Final was in mm/h averaged over 30 minutes and the comparison of the
ground stations is in mm rainfall fallen within 30 minutes.

This comparison is also conducted for both the IMERG-Early and IMERG-Final product to evaluate
and compare the performance of these products to the model performance, when validated on gauge
stations.

To further investigate the relationship between satellite-based rainfall estimates and ground stations, a
time series analysis is conducted. Additionally, the conditional probability of the brightness temperature
of channel 9, given rainfall ≥ 1 mm, is visualized to identify which rainfall processes are in place.
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Results

In this chapter, the results of the research are presented. Section 6.1 provides a visual representation
of the model results for different events. In Section 6.2, the model outputs are compared to IMERG-
Final, which serves as the reference truth. Lastly, in Section 6.3, the satellite estimates are validated
against ground station observations.

6.1. Visual representation output results
Figure 6.1 shows three seperate example rainfall events from the test dataset as estimated from satel-
lites. The first row shows the rainfall estimates of IMERG-Final, the target to which the model is trained.
In the second row the estimates of IMERG-Early are displayed, which is the rainfall product on which
the output of the product is benchmarked. The third row shows the output of the Earthformer model
with MSE loss and the last row shows the model with balanced loss. A brief visual inspection already re-
veals that both the Earthformer model with MSE loss and the model with balanced loss tend to smooth
out rainfall patterns compared to IMERG-Final.

The first event (Figure 6.1a) shows how IMERG-Early misplaces the areas of higher rainfall intensity,
while both Earthformer models provide a more accurate estimation. However, both Earthformer models
tend to under detect light rainfall, whereas IMERG-Early over detects it.

In the second event (Figure 6.1b), the Earthformer model with MSE loss fails to capture the most
intense rainfall, whereas the model with balanced loss successfully detects it. Despite the smoothing
effect, the Earthformer model’s output closely resembles IMERG-Final. While IMERG-Early also shows
similarities to IMERG-Final in terms of the shape, its estimates underestimate the intensities.

In the third event (Figure 6.1c), the Earthformer model with MSE loss underestimates the intensity of
a small cluster of rainfall cells in the lower part of the figure but successfully detects light rainfall in
the upper right corner. In contrast, the Earthformer model with balanced loss misses this light rainfall
entirely, but observes the higher intensities of rainfall in the lower part of the Figure. IMERG-Early
observes the small rainfall cells correctly, but in the large cell both overestimates and underestimates
the rainfall intensity, although getting the overall shape correctly.
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(a) Event 1 (b) Event 2 (c) Event 3

Figure 6.1: Different examples of rainfall events in Ghana of the test dataset; event 1 (2020-04-26 13.00), event 2 (2022-04-24
17.30) event 3 (2020-05-17 10.00). From top to bottom: IMERG-Final, IMERG-Early, Earthformer with MSE loss, and

Earthformer with balanced weighting loss. The colours indicate the different rainfall intensities.



6.2. Comparison to IMERG-Final (target) 33

6.2. Comparison to IMERG-Final (target)
6.2.1. Performance indicators comparison
Figure 6.2 compares the performance of the Earthformer model, trained with different loss functions,
against IMERG-Early using various rainfall rate thresholds, with IMERG-Final serving as the reference
(’truth’). The metric scores are derived by comparing the test dataset’s output frames to IMERG-Final,
while IMERG-Early is evaluated over the same time steps and spatial boundaries (see Section 5.3.1
for details on metric computation).

The x-axis represents increasing rainfall thresholds, while the y-axis shows the corresponding perfor-
mance scores. CSI, POD, and SUCR range from 0 to 1, with higher values indicating better perfor-
mance. Bias ranges from 0 to +∞, where 1 is ideal; values below 1 indicate underestimation (more
missed detections), while values above 1 suggest overestimation (more false alarms).

Figure 6.2: The figure shows the metric scores for varying intensities of the Earthformer models and IMERG-Early, compared
to IMERG-Final. The top left panel displays the Bias (perfect score = 1), the top right shows the Critical Success Index (perfect
score = 1), the bottom left presents the Probability of Detection (perfect score = 1), and the bottom right illustrates the Success

Rate (perfect score = 1).

Looking at the Critical Success Index (CSI), which is the performance indicator to show the overall
performance of the model, the Earthformer model with balanced loss obtains a higher score compared
to the model with MSE loss, especially at higher rainfall rate thresholds. However, when examining the
biases, the balanced loss function’s emphasis on higher rainfall rates leads to slightly more frequent
rainfall detections, at the cost of overestimating the presence of rainfall for lower thresholds. In contrast,
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the MSE loss model shows a slight under detection for smaller thresholds. This results in a higher POD
for the balanced loss model, but a lower SUCR at smaller thresholds.

The Earthformer model with balanced loss generally outperforms IMERG-Early across all metrics. On
the other hand, the Earthformer model with MSE loss performs better in terms of SUCR for lower and
mid thresholds. However, looking at the CSI, as the thresholds increase, its performance becomes
more similar to IMERG-Early, since it struggles to detect higher rainfall rates and strong decrease in
POD.

Both Earthformer models tend to miss rainfall more frequently at higher thresholds (Bias below 1 and
decreasing POD), while the Bias of IMERG-Early increases as the threshold rises, indicating that for
higher thresholds a larger proportion of its detected rainfall is a false detection. The Earthformer models
on the other hand tend to miss rainfall for higher thresholds more frequently. It is important to note that
all the satellite estimates show a decreasing performance trend as the rainfall threshold increases.

6.2.2. Spatial RMSE comparison
Figure 6.3 presents a spatial comparison of RMSE (mm/h) within the study area, comparing the Earth-
former model outputs for the test dataset against IMERG-Final. IMERG-Early is similarly evaluated
against IMERG-Final for the same time steps and spatial boundaries (a detailed explanation is found
in Section 5.3.1).

IMERG-Early exhibits an RMSE ranging from approximately 1.5 to 3, while both Earthformer models
show lower errors, generally between 0.5 and 1.5 across most of the domain. The Earthformer models
with MSE and balanced loss produce similar results, though the MSE loss model shows slightly higher
errors, particularly over coastal regions. This increased error over coastal areas is likely due to higher
observed rainfall rates in these regions.

(a) RMSE IMERG-Early (b) RMSE Earthformer MSE loss function (c) RMSE Earthformer balanced loss function

Figure 6.3: The RMSE (mm/h) averaged over 30 minutes calculated for each grid cell individually.

6.3. Comparison to ground stations
The comparison between the satellite outputs and the ground stations is done for the year 2022 by
comparing the nearest grid cells to the gauge station observations (both GMET and TAHMO). However,
it is important to note that approximately 8% of this dataset are estimates from the training dataset.

6.3.1. Correlation coefficient
The Pearson correlation is calculated by comparing the nearest grid cells to gauge station observations
(both GMET and TAHMO) for the year 2022, with zero-data points excluded (see Section 6.3 for details).
An analysis including zero-data, as well as separate evaluations for GMET and TAHMO stations, and
comparison only on the test dataset can be found in Appendix D.

Figure 6.4 presents a boxplot of Pearson correlations of each satellite product with all the used stations
(Figure 4.3). The line within each box represents the median, while the box boundaries indicate the first
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and third quartiles. Whiskers extend to the minimum and maximum values, excluding outliers, defined
as points beyond 1.5 times the interquartile range (IQR). Correlations at a 30-minute interval are shown
on the left (Figure 6.4a), while daily interval correlations appear on the right (Figure 6.4b).

For short 30-minute intervals, the correlation across all rainfall products is relatively low, with quite
some variation between stations. When aggregated to daily intervals, the correlation increases, but
the spread between stations remains relatively high and even increases. This suggests that either the
accuracy of the satellite rainfall products vary by region or that the accuracy of station measurements
differs across stations. The Figure also shows that the Earthformer models achieve a similar correlation
with gauge stations as IMERG-Final.

(a) 30 min time interval (b) daily time interval

Figure 6.4: Pearson correlation coefficient by comparing the nearest grid cell to the ground station observations of both GMET
and TAHMO. Each boxplot represents the Pearson correlation among different stations for different models.

To assess which stations show higher correlations relative to others, their locations are visually mapped
in Figure 6.5 and Figure 6.6. The same analysis, but with inclusion of zero data can be found in Ap-
pendix C. From visual inspection, stations situated in the Savannah climate region (Figure 2.5) generally
show higher correlations compared to those in the coastal or forest climatic zones. Additionally, sta-
tions that show weaker correlations at the 30-minute interval also tend to show weaker correlations at
the daily interval, and vice versa.

Notably, some stations show particularly low correlations across all satellite-based estimates. These
include Tolon, Enchi, TA00113, and TA00391, indicating potential challenges in capturing rainfall vari-
ability at these locations.
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Figure 6.5: The Pearson correlation for each used ground station in Ghana, plotted on the map for a 30 minute interval. The
top left shows the correlation of the Earthformer model with MSE loss, the top right the correlaiton of the Earthformer with
balanced loss, the bottom left the correlation with IMERG-Final and the bottom right the correlation with IMERG-Early.

Figure 6.6: The Pearson correlation for each used ground station in Ghana, plotted on the map for a daily interval. The top left
shows the correlation of the Earthformer model with MSE loss, the top right the correlaiton of the Earthformer with balanced

loss, the bottom left the correlation with IMERG-Final and the bottom right the correlation with IMERG-Early.
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6.3.2. Performance indicators compared to ground stations
Figure 6.7 presents the performance indicators calculated from comparing the nearest satellite pixel
to all available ground stations over 30-minute intervals in 2022, for multiple satellite rainfall products
and various thresholds, again using a boxplot to show the performance score among different stations.
Figure 6.8 shows the performance indicators at a daily timestep. A separate comparison of satellite
rainfall products with GMET and TAHMO stations is available in Appendix E.

From Figures 6.7 and 6.8, it is clear that all satellite rainfall products perform worse at higher rainfall
intensities when compared to ground observations.

When comparing the Earthformer model with balanced loss to the Earthformer model with MSE loss,
the balanced-loss model shows a slightly higher POD across most thresholds. However, it also demon-
strates a slightly lower SUCR (Figures 6.7c and 6.8c). Both Earthformer models perform similarly to
IMERG-Final, the dataset on which they were trained, and seem to outperform IMERG-Early at the
30-minute interval. However, for a cumulative rainfall threshold of ≥15 mm over 30 minutes, only
IMERG-Early shows notable performance, even when compared to IMERG-Final. This suggests that
IMERG-Final rarely estimates higher rainfall rates, a bias that the Earthformer models seem to take
over.

While the Earthformer model with balanced loss consistently underperforms compared to the MSE-
loss version in terms of SUCR when validated against ground stations (Figures 6.7 and 6.8), its overall
performance is slightly better for higher thresholds (Figures 6.8b and 6.8b). This is due to its higher
POD (Figures 6.7a and 6.8a).

When examining the bias (Figures 6.7d and 6.8d), all satellite products tend to generate more false
alarms for lower rainfall thresholds relative to missing rainfall events. However, for higher thresholds,
they are more likely to miss rainfall rather than falsely detect it. IMERG-Early overdetects rainfall for
lower thresholds, just like IMERG-Final. However, the Earthformer model with balanced loss shows
the highest over-detection for lower thresholds of rainfall, suggesting it is overly sensitive to light and
moderate rain. In contrast, the MSE model shows the least over-detection at higher thresholds but
tends to under-detect heavy rainfall more often than the other satellite products.
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(a) POD 30min interval (perfect score = 1)

(b) CSI 30 min interval (perfect score = 1)

(c) SUCR 30 min interval (perfect score = 1)

(d) Bias 30 min interval (perfect score = 1)

Figure 6.7: Metrics of mm rainfall calculated of the year 2022 over a 30min time interval by comparing gauge station
measurements with the nearest pixel estimate of satellite products.
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(a) POD daily interval (perfect score = 1)

(b) CSI daily interval (perfect score = 1)

(c) SUCR daily interval (perfect score = 1)

(d) Bias daily interval (perfect score = 1)

Figure 6.8: Metrics of mm rainfall calculated of the year 2022 over a daily time interval by comparing gauge station
measurements with the nearest pixel estimate of satellite products.
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6.3.3. Time series analysis of peak events
To further investigate the low correlation between station observations and satellite rainfall estimates,
several extreme rainfall events are examined over time. Figure 6.9 illustrates a peak event where
the Akim Oda and Akuse stations of GMET report more than 40 mm of rainfall within 30 minutes,
occurring just 2 hours apart, despite being 123 km apart. Interestingly, none of the satellite rainfall
products capture this event at either station. To explore this further, nearby stations are checked to see
if they also experienced similar extreme rainfall. However, none of the other stations, even those much
closer to one of the affected locations, report such extreme rainfall. This suggests either very localized
convective activity in the region or potential errors in the station data, although the last one is less likely
the case, when we further investigate the events observed from space.
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(a) Akim Oda (distance to Akuse +- 122 km) (b) Akuse

(c) Akosombo (distance to Akuse +- 23 km) (d) TA00045 (distance to Akuse +- 45 km)

(e) TA00302 (distance to Akuse +- 42 km)

Figure 6.9: Time series of the day 2022-10-07 for stations located relatively nearby. Akuse and Akim Oda both show a peak
rainfall event of more than 40 mm of rainfall fallen in 30 minutes. However, when compared to other neighboring stations,

which are even closer located, these peaks are completely invisible. Satellite rainfall products don’t observe the peak as well.
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Figure 6.10: 2022-10-07 16.00 - 17.30. Spatial distribution of rainfall observed from space from Figure 6.9.

This is further analyzed by observing the rainfall event from space and examining its spatial distribution
(Figure 6.10). Visually, it can be concluded that an organized line of convective cells (a squall line)
is moving westward over the group of stations. Figure 6.11 provides a closer view of these stations,
revealing that Akim Oda and Akuse are located near different convective cores within the squall line.

IMERG-Final exhibits greater spatial variability within these convective cores, whereas IMERG-Early
and the Earthformer models display a more uniform rainfall distribution. The peak intensity of the rainfall
is located at slightly different locations by the different satellite estimate products. Neighboring grid cells
of the stations show higher rainfall intensities, but none capture the peak intensities observed at the
Akuse and Akim Oda stations. Furthermore, none of the satellite products detect high intensity rainfall
moving over the Akuse station, suggesting both spatial misplacement of the rainfall distribution when
observed from space and an underestimation of peak intensities.
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Figure 6.11: 2022-10-07 16.00 - 17.30. Spatial distribution of rainfall observed from space zoomed in on the group of stations
from Figure 6.9.

Figure 6.12 presents a group of stations in the Accra region. Three of the four stations report high rainfall
accumulation within 30 minutes, exceeding 15 mm, while the TA00016 station records an extreme
peak of over 60 mm in just 30 minutes. In contrast, the TA00118 station does not report any peak
event. All satellite estimates underestimate the peak intensities, whereas lower intensities are slightly
overestimated.
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(a) Tema (distance to TA00016 +- 28 km) (b) TA00016

(c) TA00391 (distance to TA00016 +- 21 km) (d) TA00118 (distance to TA00016 +- 27 km)

Figure 6.12: Time series of the day 2022-05-21 for stations located relatively nearby in the region of Accra. TA00016 shows a
very extreme peak of more than 60 mm rainfall fallen in 30 min at 21.00. Both the Tema station and TA00391 show high

intensities of more than 15 and more than 30 mm respectively, however at different timing (19.00 and 17.00). The TA00118
station, although located only 1.8 km from the Tema station shows no such peak.

The rainfall event from Figure 6.12 and its spatial distribution are also analyzed (Figures 6.13 and 6.14).
The rainfall is observed moving southwestward over Ghana, forming a MCS (Figure 6.13).

In Figure 6.14, at the peak of the TA00016 station at 20:30, the highest rainfall rates within the area are
attributed to this location. However, none of the satellite products capture rainfall of such high intensity
as observed by the station itself in this region. Earlier, at 19:00, the peak rainfall recorded at the Tema
station suggests that, from a satellite perspective, the station is near the boundary of a rainfall cell. This
may explain why TA00118 does not record any rainfall at that time. It could be just outside the active
precipitation area. At the same time (19:00), the most extreme rainfall is located near the TA000391
station, yet no rainfall was recorded by the station itself.

These observations suggest multiple possibilities as the cause of the underestimation of rainfall from
satellite images: (1) an overall underestimation of rainfall intensities within this convective cell, (2)
very localized rainfall, as TA00018 does not record a peak, while the Tema station does and (3) a
misplacement of the system’s core, when looking from space, although at 20.30 the highest rainfall
intensity within the area seems to be attributed to the correct location.
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Figure 6.13: 2022-05-21 18.00 - 19.30. Spatial distribution of rainfall observed from space on the group of stations from Figure
6.12.
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Figure 6.14: 2022-05-21 18.00 - 19.30. Spatial distribution of rainfall observed from space zoomed in on the group of stations
from Figure 6.12.

Figure 6.15 displays rainfall data from the Nakpamboni and Yendi stations, located in the Central region
of Ghana, at a distance of 23.6 km from each other. Both stations record a peak of approximately 25
mm one hour apart from each other, which is underestimated by most satellite products. IMERG-Early
is the only product that correctly captures the peak intensity at Yendi, though it misplaces the timing.
However, for Nakpamboni, also IMERG-Early fails to detect the peak intensity.

(a) Nakpamboni(distance to Yendi +- 23 km) (b) Yendi

Figure 6.15: Time series for 2022-07-22 showing rainfall at two stations in central Ghana, located within 23 km of each other.
Both stations recorded a peak rainfall event exceeding 25 mm one hour apart from each other. All satellite estimates fail to

capture the peak, smoothing it out over time, except for IMERG-Early, which detects it but with a timing offset.

Figures 6.16 and 6.17 show the spatial distribution of rainfall during the event recorded by the Nakpam-
boni and Yendi stations in Figure 6.15. Once again, a large mesoscale convective system (MCS) is
observed moving southwestward over the stations.

The first peak is recorded at 00:00 by the Nakpamboni station, which is located northeast of the Yendi
station. During this peak, the satellite products do not estimate such high rainfall intensities. However,
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at 01:00, when the Yendi station records its peak rainfall, the satellite products show higher intensities,
but still not as high as the station’s observed peak.

One hour later, IMERG-Early detects very extreme rainfall matching the peak recorded earlier by the
Yendi station. However, at this time, the Yendi station itself does not observe any extreme rainfall.
The satellite-based estimates indicate a widespread area of intense rainfall across different time steps.
However, ground stations suggest a much more localized rainfall pattern.

Figure 6.16: 2022-07-23 00.00 - 01.30. Spatial distribution of rainfall observed from space on the group of stations from Figure
6.15.
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Figure 6.17: 2022-07-23 00.00 - 01.30. Spatial distribution of rainfall observed from space zoomed in on the group of stations
from Figure 6.15.

The Axim station, located in Ghana’s coastal region, records an extreme peak of over 40 mm of rainfall
in 30 minutes (Figure 6.18). Interestingly, neighboring stations do not observe this peak event. While
satellite-based products detect significant rainfall in the area, they miss the extreme peak, instead they
spread it out over multiple time steps. However, for the other stations, the satellite estimates also report
lower rainfall amounts, aligning with the station observations.
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(a) TA00120 (distance to Axim +- 15 km) (b) Axim

(c) TA00121 (distance to Axim +- 74 km)

Figure 6.18: Time series of 2022-04-24 located in the coastal region of Ghana. The Axim station observed a peak event of
more than 40 mm, while the station relatively nearby only observed a peak less than 20 mm. IMERG-Final and the Earthformer

with balanced loss observe rainfall of approximately 20 mm, but smoothens the peak out in time.

When observed from space, once again a MCS is visible moving over the station group in Figure 6.18
(Figure 6.19) at the corresponding time steps.

At 17:00, the peak rainfall recorded by the Axim station (Figure 6.18b) corresponds to a peak observed
in one of the nearby grid cells of IMERG-Final in Figure 6.20, though not in the nearest grid cell. All
other satellite-based estimation products underestimate this peak rainfall.

As time progresses, the satellite rainfall products continue to detect intense rainfall, whereas the Axim
station does not. At 17:00, the satellite-based rainfall estimates align with the intensity recorded at
the TA00120 station, but at 16:30, all products fail to capture its peak. While all satellite products
correctly detect the absence of rainfall at TA00120 initially, they overestimate rainfall intensities as
time progresses. This suggests that satellite-based estimates depict a larger raining area than what
is observed on the ground. Additionally, satellite images show a relatively large region of high rainfall
intensities across different time steps, whereas station data indicates a more localized pattern.
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Figure 6.19: 2022-04-24 17.00 - 18.30. Spatial distribution of rainfall observed from space on the group of stations from Figure
6.18.
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Figure 6.20: 2022-05-21 16.00 - 18.30. Spatial distribution of rainfall observed from space zoomed in on the group of stations
from Figure 6.18.

6.3.4. Rainfall process
As discussed in Section 2.3, different rainfall processes exist across regions. To understand which
rainfall mechanisms play an important role in each region, the conditional probability distribution of the
brightness temperature of channel 9, given rainfall > 1 mm within 30 minutes was analyzed for the year
2022.

Figure 2.5 provides an example of stations within the Savannah climatic zone, demonstrating that
rainfall formation in this region is mostly dominated by cold rain processes. This is shown in Figure
6.21a, where rainfall mostly occurs when cloud tops are colder than 220 K, a pattern consistent with
other stations in the Savannah zone (see Appendix F).

In contrast, stations in the forest and coastal climatic zones show amix of cold and warm rain processes.
Figure 6.21b illustrates an example from these regions. Similar to most other stations (see Appendix
F) in the forest and coastal zones, the peak of the brightness temperature around 280 K (Figure 6.21b)
suggests the presence of warm rainfall formation processes.

(a) The Varenpare station, located in the Savannah climatic zone. (b) The TA00391 station, located in the coastal climatic zone.

Figure 6.21: Conditional probability distribution of the brightness temperature of channel 9 given rainfall > 1 mm fallen within
30 minutes
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Discussion and recommendations

7.1. Discussion
7.1.1. Limitations ground station comparison
This study compares ground station data to satellite products using only the year 2022. Ground station
performance varied over time, due to either clogged or malfunctioning stations reporting mostly zeros.
This made long-term comparisons challenging and a full quality check across multiple years very time-
consuming.

Additionally, approximately 8% of the 2022 comparison dataset contained frames from the training
dataset when compared to ground stations. This was done to assess model outputs over time and to
aggregate results into daily intervals. However, this overlap may lead to a misinterpretation of results
and a potential overestimation of model performance. However, Appendix D shows that the median
Pearson correlation of the test dataset for the 30-minute time interval shows similar results to that of
the entire test dataset comparison but with a larger spread. This may be attributed to either the pre-
selection of data, which emphasises more extreme rainfall events, or the fact that station data was only
quality-controlled for 2022, whereas the test dataset includes multiple years. Additionally, the smaller
number of events used to calculate the correlation could also contribute to the increased spread.

7.1.2. Quality of ground observations
A visual inspection was conducted by comparing cumulative monthly rainfall to the annual rainfall pat-
tern in Figure 2.4. Stations that showed clear misalignment with regional seasonal rainfall patterns
were removed from the dataset to prevent errors from malfunctioning or obstructed stations that pre-
dominantly recorded zero rainfall. While this raises some concerns about the quality of the remaining
data, it is reasonable to assume that if a station records rainfall, it is functioning correctly, as few plausi-
ble mechanisms would cause a station to report rainfall in the absence of actual rainfall. Consequently,
potential inconsistencies in the station data can largely be attributed to rainfall underestimation. Thus,
the observed underestimation of peak rainfall intensities in satellite-based products is unlikely to result
from errors in the ground station data.

The qualitative comparisons between nearby stations indicate highly variable and localized weather
patterns across Ghana. For example in Figure 6.12 it can be seen how the Tema station observes
rainfall of almost 20 mm within 30 min, while the TA00118 station does record no such peak, although
the stations are located within 1.8 km distance from each other. This may suggest that the TA00118
station was clogged or obstructed during this event. However, earlier that month, TA00118 recorded
a peak intensity of approximately 20 mm within 30 minutes similar to the Tema station, suggesting the
station was not obstructed or clogged at all, and thus highly variable rainfall patterns play a role. The
visual inspection of the satellite-based estimates revealed mainly MCS were the cause of peak rain-
fall. Potentially both the misallocation of peak rainfall and underestimation of rainfall intensity play an
important role of the discrepancies between satellite based estimates and ground station observations
within such convective systems.

52
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7.1.3. Comparison of satellite pixels and gauge station observations
Comparing pixels to points has some difficulties for multiple reasons. Le Coz et al. (2021) explains how
part of these discrepancies can be explained with positional and timing issues. First of all, the Meteosat
satellites are looking from space towards the top of the clouds above the Earth. The distance of the
cloud to the Earth itself is usually unknown and, since this can be quite high, especially in Ghana, a
lot could happen before rainfall formed within the clouds reaches the ground. For instance, wind could
take the precipitation a few kilometers elsewhere, resulting in a mismatch of precipitation located from
space and the actual precipitation location on the ground . When comparing the nearest pixel to a
gauge station it is possible the gauge station measures precipitation, while looking from space at that
specific location there is no precipitation (Figure 7.1).

Figure 7.1: The Figure shows an example of causing discrepancy between observations from space an ground observations.
The rainfall observed from space measures rainfall at the location of the cloud. Due to other factors such as wind the correctly
observed rainfall from space ends up at a different location on the ground, thus causing a discrepancy between the ground

observations and observations from space.

Besides, with convective rainfall events the variability of the rainfall can be very high and localized. For
IMERG-Final, when comparing (10 x 10 km) grid cells that take an average rainfall over a specific area
over 30 min, to an actual point is difficult. The point measurement might capture a very localized intense
rainfall event, while averaged out over the grid cell this effect is dampened (Figure 7.2). Additionally, the
rainfall estimations of IMERG-Final are not only averaged over space, but also over time, contributing
to the smoothing effect of extreme rainfall.
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Figure 7.2: This figure illustrates how both a satellite-based rainfall product and a ground-based station can accurately capture
rainfall observations, but still show discrepancies between them. The satellite product provides a correct average rainfall

estimate for a given pixel, while the station accurately records a localized peak event. Although both observations are correct,
the discrepancy is caused by the difference in the spatial resolution of the satellite data against the localized observation of the

station measurement.

7.1.4. Influence of reference and input data
For this research, IMERG-Final was selected as the reference dataset. Although resampled to the
resolution of SEVIRI images, the model wasn’t able to produce model outputs at higher resolution
compared to IMERG-Final, thus effectively reducing its resolution to 0.1° x 0.1°. Climate Prediction
Center Morphing dataset (CMORPH) was not considered; however, in retrospect, it would have been
a good alternative, as it also includes bias adjustment based on the GPCC dataset (NOAA, 2018).
Additionally, it has the same temporal resolution of 30 minutes but a higher spatial resolution of 8 × 8
km (Joyce et al., 2004). Besides, according to Pradhan et al. (2022), CMORPH has similar performance
to IMERG over Africa.

From comparison to the ground stations it is known that IMERG-Final struggles to capture the extreme
rainfall rates and overestimates lower rainfall rates. This is in line with the research of Li et al. (2024)
and Bogerd et al. (2024). This issue is common in rainfall products derived from infrared imagery, as
estimates are based on observations viewed from space explained earlier.

Interestingly, IMERG-Early appears more capable of capturing higher rainfall rates but often struggles
with accurate timing. As explained in 3.2.1, IMERG-Final incorporates a backward pass in its data as-
similation process to enhance temporal consistency and alignment with climatological products (Huff-
man et al., 2023). However, a potential side effect of this approach is the smoothing of peak rainfall
events over time. This effect is evident in the analysis and explains why IMERG-Final rarely estimates
higher rainfall rates. In contrast, IMERG-Early is less affected by this smoothing but more frequently
exhibits timing errors.

Training a model on IMERG-Final risks propagating its biases and errors. Li et al. (2024) highlights how
these biases vary throughout precipitation events and suggests incorporating event-stage information
and environmental variables in future algorithms.

Le Coz et al. (2021) discusses positional and timing errors and how to correct them. However, the
proposed method is computationally expensive and impractical for operational nowcasting. But, when
providing the Earthformer model with ground-based data, instead of a satellite base product, it might
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be able to learn those patterns autonomously, leading to more computationally efficient precipitation
estimation.

7.1.5. Influence of data splitting method
A potential limitation of this study is the assumption that individual frames were independent during
data splitting. For long-lived systems such as squall lines and MCS, some temporal correlations may
exist between frames, which could introduce dependencies in the training, validation and test set. How-
ever, the model was also evaluated on the entire year of 2022 by comparing it to the ground stations,
where most of the data had not been used in training, validation, or testing. The fact that the model
demonstrated similar performance to IMERG-Final on this dataset suggests that it captures meaningful
rainfall patterns and still holds potential for real-world applications.

7.1.6. Correcting biases with ground stations
A closer examination of the discrepancies between ground observations and satellite rainfall estimates
reveals that false alarms in satellite data mainly come from timing errors and a smoothing effect over
time. This smoothing not only spreads out rainfall events but also leads to an underestimation of peak
intensities. To address these biases, two correction approaches were explored.

The first approach involved adjusting satellite estimates using an accumulation factor. This factor was
calculated by dividing the cumulative rainfall over a specific time interval at a station by the cumulative
rainfall of the nearest satellite grid cell, using a rolling window. The factor was then linearly interpolated
between stations and applied to scale the satellite rainfall estimates at each timestep. However, this
method had one disadvantage; when the model missed a peak event, subsequent timesteps were
significantly overcorrected, even though light precipitation was already known to be overestimated.
While applying thresholds could help mitigate this issue, this was not further explored in this study.

The second approach investigated the use of quantile mapping, focusing on scaling extreme values.
A rolling window was used to obtain the cumulative distribution function (CDF) for each grid cell over
time, and each present grid cell value was mapped to the corresponding quantile of the nearest station.
However, this method also presented challenges, particularly due to the seasonal variability in Ghana’s
rainfall patterns. Differences between rainy and dry months made it difficult to ensure that past CDFs
accurately represented current conditions. A possible solution would be to correct each month using
historical data from previous years, though this approach is complicated by variations between wetter
and drier years as explained in Section 2.3.1.

Literature also showed other more advanced options. Moazami et al. (2022) employed an advanced
spatiotemporal bias adjustment for IMERGover Canada by using quantilemapping derived from gauged
locations. They interpolated the bias adjustment parameter on ungauged grids based on climatic sim-
ilarities and the spatial distribution of rain gauges, increasing the correlation with gauge stations from
0.3 to 0.9. Another approach found in the literature involves using classifiers to categorize rainfall into
intensity classes and then applying a regression model (a random forest) to predict the rainfall amount
for each intensity class (Ziarh et al., 2021). This method is particularly interesting because it scales rain-
fall of varying intensities differently. However, a bias correction is mostly useful for systematic errors
and if timing and location errors play an important role, this might not be as useful.

7.1.7. Optimizing hyperparameters and model architecture
Due to the relatively long training time of the model (approximately two days), limited time was spent
optimizing its hyper parameters. Themodel was trained, using a base unit of 128 values for the attention
mechanism. Increasing this value might help the model to capture more complex relations, which is
especially important when using additional input data. Additionally, increasing the depth of the model
by increasing the number of hierarchies might helps the model to look for multiple relations at different
spatial or temporal levels, which is relevant for precipitation estimations. This was not tested in this
research due to the limiting available memory of the GPU, but is advised to check whether it could
improve performance. However, both with increasing depth or base unit values the model becomes
more computationally expensive.
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Conclusion and recommendations

8.1. Conclusion
This research explored how the Earthformer transformer model can improve rainfall rate estimation us-
ing SEVIRI channel data from the Meteosat Second Generation satellite for near real-time applications
in Ghana. The main research question is addressed as follows:

”How can the Earthformer transformer model be applied to improve the accuracy of rainfall rate esti-
mates across different intensities for near real-time applications using SEVIRI channel data from the
Meteosat Second Generation satellite in Ghana?”

This study demonstrated how the Earthformer transformer model can be applied by training the model
with the Meteosat SEVIRI channel data as input and IMERG-Final as the target data. Its findings
suggest that the Earthformer model, using Meteosat SEVIRI satellite images as input, is a promis-
ing alternative to IMERG-Early due to its faster near real-time availability (within 15 minutes) and its
improved performance across most rainfall intensities when evaluated against IMERG-Final as the ref-
erence truth. Although the Earthformer model performs relatively well for the lower intensities, it still
struggles to capture heavy and extreme rainfall events accurately. This limitation reduces the models’
suitability for FEWS, where accurately localizing extreme events is essential. While precise intensity
estimates are not a strict requirement for FEWS, the models must still effectively identify the occurrence
of extreme events. This is something the Earthformer models currently fail to achieve.

8.1.1. Accuracy of rainfall estimation for varying intensities
The first subquestion is adressed in this section.

”How accurately does the Earthformer transformer model retrieve rainfall rate estimates for different
rainfall rates from the SEVIRI channels of the Meteosat Second Generation satellite in Ghana?”

The accuracy of the model is evaluated by comparing it both to IMERG-Final and ground station obser-
vations.

• When compared to IMERG-Final on the test dataset, the Earthformer models perform well at
lower rainfall intensities but show decreasing performance at higher intensities, similar to IMERG-
Early. However, both Earthformer models outperform IMERG-Early at lower intensities, and the
model with balanced loss also performs better at higher intensities. The balanced loss function
improves the detection of heavy rainfall rates but also increases the overestimation of light and
moderate rainfall.

• Comparing satellite-based estimates with ground station observations for the year 2022 reveals
weak correlations when zeros are excluded from the analysis (median ≈ 0.2 and values range
from 0 to 0.4) at 30-minute intervals for all satellite estimates. The weak correlation may be
caused by multiple factors: (1) timing errors in satellite observations (2) the spatial resolution of
satellite estimates not aligning with localized rainfall variations or (3) inconsistencies in ground
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station measurment, although the thrid one seems unlikely as explained in the discussion. Daily
aggregation improves the correlations (median ≈ 0.6 and values range from 0.3 to 0.9), sug-
gesting that timing discrepancies play a role, but further investigation is needed to quantify their
impact. Performance indicators show that all satellite-based estimates, including Earthformer,
perform poorly when compared to gauge station data at 30-minute intervals, particularly for ex-
treme rainfall events. This poor performance could partially be explained by the limitations of
satellite resolution in both time and space, as well as by the very localized and high variability of
rainfall. An analysis of several extreme peak events supports this conclusion, showing that satel-
lite estimates consistently underestimate peak rainfall while overestimating rainfall at the temporal
boundaries of events. Especially for IMERG-Final and the Earthformer models, which inherit its
biases. The time series analysis further shows that IMERG-Early occasionally captures extreme
rainfall intensities accurately but misaligned the timing of this event. Additionally, IMERG-Early
is the only satellite product demonstrating any (although limited) performance for higher rainfall
intensities (≥ 15 mm within 30 minutes). This finding suggests that the backward pass used in
the IMERG-Final algorithm, intended to improve temporal consistency with other data sources
(e.g., climatological records), may reduce extreme values, while improving timing accuracy. By
training on IMERG-Final, the Earthformer models inevitably adopt these biases.

Overall, while both Earthformer models demonstrate improved performance at lower rainfall intensities
compared to IMERG-Early, their accuracy declines for higher intensities, partly due to biases inher-
ited from IMERG-Final. However, the Earthfomer with balanced loss also outperforms IMERG-Early
for the higher rainfall intensities when compared to IMERG-Final. The weak correlation with ground
station observations of all satellite based rainfall products at short timescales highlights challenges in
capturing highly variable and localized rainfall events, though daily aggregation improves correlations.
These findings underscore the need for further refinement in satellite-based rainfall retrieval methods,
particularly for extreme events.

8.1.2. Adapting the model for extreme rainfall estimation
The second sub-question is addressed in this section.

”What modifications can be made to the Earthformer transformer model to improve the accuracy of
high-intensity rainfall estimates?”

This study explored whether modifying the model’s loss function to emphasize extreme values (bal-
anced loss) would improve performance for high-intensity rainfall. The model with balanced loss was
compared to the model with MSE loss. While the balanced loss function led to improvements at higher
intensities, the Earthformer model with balanced loss still underestimated peak intensities and also
resulted in decreased accuracy for the lower intensities. Additionally, as discussed earlier, both Earth-
former models inherit biases from IMERG-Final, which affects its peak intensity estimates.

In conclusion, using a balanced loss function in the Earthformer model improves estimates of higher
rainfall intensities but comes at the cost of light to moderate-intensity accuracy. Furthermore, training
on IMERG-Final causes Earthformer to inherit its biases, leading to missed extreme peak intensities.

The recommendation section discusses other possible adaptations of the model to enhance its perfor-
mance for extreme rainfall in future research.

8.1.3. Relation to ground stations
This section discusses the third subquestion.

”How do satellite based rainfall rate estimates relate to ground station observations?”

The accuracy assessment of the model already covered key relationships to ground stations, including
relevant metrics and statistical correlations. A qualitative analysis of various peak events revealed the
underestimation of extreme rainfall and a smoothing of the peak intensities in time. Notably, all inves-
tigated peak events in this study were associated with MCSs, suggesting that peak rainfall events in
Ghana are often linked to MCSs. However, this observation is anecdotal and requires further investi-
gation to establish statistical significance.

Visual inspection from the satellite estimates for the peak events revealed how the spatial variability of
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rainfall intensities within MCS systems is difficult to capture from satellite observations and showed a
more uniform spatial rainfall pattern than what the ground station observations indicate, leading to an
underestimation of peak rainfall and an overestimation of rainfall at the edges of rainfall cells. A few
potential reasons that might explain the difficulties in accurately capturing the rainfall intensities within
MCS are; (1) The anvil cloud top obstructs the vision of the satellite (2) Deep convective systems
reaching the tropopause their cloud top temperature is similar for various intensities (3) MCS, typically
associated with strong wind shear increases the risk of misallocation of rainfall.

Mapping the spatial correlation of rainfall stations revealed that stations within the Savannah climatic
zone in northern Ghana generally show higher correlations with satellite-based rainfall estimates com-
pared to those in the coastal and forest climatic zones in central and southern Ghana. Further analysis
of rainfall processes using conditional probabilities of brightness temperatures associated with rainfall
highlighted a key distinction between these regions. Stations within the Savannah climatic zone are
predominantly influenced by cold rain processes, indicative of deep convective rainfall. In contrast, the
coastal and forest climatic zones show a stronger presence of warm rain processes, as shown by the
conditional probability distributions. This difference might explain the greater discrepancies between
satellite-based rainfall estimates and ground station observations in these zones. Since warm rain pro-
cesses are not associated with cold cloud tops, they are more challenging to detect from space, leading
to potential underestimations by satellite products.

Additionally, the discussion already outlined two key explanations that influence the discrepancy be-
tween satellite-based rainfall product and ground observations. The first one is the resolution of the
satellite-based rainfall estimates, compared to a single-point measurement of a gauge station. Due to
spatial averaging of the satellite-based estimates, both station observations and satellite-based esti-
mates can correctly observe rainfall, but discrepancies remain. Secondly, the rainfall can be displaced
from the clouds observed from space before it reaches the ground.

Overall, satellite-based rainfall estimates show varying degrees of agreement with ground station ob-
servations, with stronger correlations in the Savannah climatic zone and greater discrepancies in the
coastal and forest zones. These differences are likely due to the presence of warm rain processes
in the latter regions, which are harder to detect from space. Additionally, the inability to fully capture
spatial rainfall variability within MCSs contributes to the underestimation of peak intensities and overes-
timation at event edges of peak events. While satellite estimates provide valuable insights into rainfall
distribution, their limitations highlight the need for improved retrieval methods, particularly for extreme
events and warm rain processes.

8.2. Recommendations
This section provides recommendations for future research to improve model performance, particularly
for extreme rainfall events.

Firstly, the stratified splitting method used in this research might introduce temporal dependencies
between the training, validation, and test sets, potentially affecting the generalization of results. To
address this, future research could explore alternative data-splitting strategies, such as separating
these sets by different years. This approach could enhance generalization across independent weather
events.

Additionally, incorporating more environmental variables into the model could improve its performance,
as suggested by Li et al. (2024). Potential variables include temperature, lightning imagery, and Con-
vective Available Potential Energy (CAPE). Küçük, Giannakos, et al. (2024) demonstrated the impor-
tance of lightning images, particularly for the localization of extreme rainfall. Since MCSs contribute
significantly to extreme rainfall in West Africa (Klein et al., 2018) and are often associated with high
lightning activity, the availability of lightning data from the Meteosat Third Generation satellites and
TAHMO station sensors presents a valuable opportunity.

Surface temperature data could help distinguish stratiform from convective rainfall, while CAPE pro-
vides insights into atmospheric instability and the potential for large convective systems to form. In-
cluding wind field data could also help identify how rainfall is displaced from clouds before reaching the
ground.
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To gain a deeper understanding of the model’s interpretation of input data, future research should
analyze the relative importance of each data channel and examine the correlation between cloud-top
temperatures, rainfall rate estimates, and ground station observations more closely.

Further research is also recommended to identify which rainfall mechanisms most frequently lead to
flooding, guiding future models to capture the most relevant physical interactions. As Peinó et al. (2025)
highlighted, estimating warm rainfall using VIS/IR imagers is challenging because warm rain is not typ-
ically associated with cold cloud-top temperatures. Wind shear, often linked with MCSs, may cause
misplacement of rainfall in satellite observations. Additionally, anvil cloud tops complicate the relation-
ship between cloud-top temperatures and rainfall rates. Locating the convective core within an MCS
remains a challenge and should be a priority for future studies, as qualitative analysis indicates that
extreme rainfall is predominantly associated with these systems. For accurate FEWS, the exact inten-
sities may not be as important. It could be more valuable for future research to focus on identifying the
core of MCSs, rather than striving to precisely determine the exact rainfall intensities.

Future work should also consider training the Earthformer model on GPUs with higher memory capacity.
This could reduce training times and enable more iterative hyperparameter tuning, as well as support
models with increased depth and base units to capture more complex relationships within the data.

To mitigate discrepancies between ground observations and satellite-based estimates, especially the
underestimation of peak events, future research should consider refining IMERG-Final or other satel-
lite products (e.g., CMORPH) using direct measurements such as radar data or dense rain gauge
networks. Alternatively, training models directly on high-quality regional rainfall data, when available,
could improve performance. However, since such data is currently unavailable in Ghana, innovative
approaches are needed to establish statistical relationships between satellite observations and the
probability of peak rainfall intensities. Techniques such as Non-Parametric Bayesian Networks or Cop-
ula and Vine Networks could help address this challenge. Investigating the spatial variability within one
grid cell by placing multiple ground stations within less than 10 x 10 km from each other can contribute
to establishing the spatial rainfall variability, which is especially interesting for the convective cores of
the MCS.

Lastly, future research should assess the practical implications of the model. Given the absence of a
standardized definition for early warning system requirements, it is important to determine acceptable
thresholds for false positives andmissed extreme rainfall events to maintain the credibility of the system.
Engaging with local authorities and communities is necessary to establish these thresholds and to
ensure that the model is in line with practical needs.

8.3. Final remarks
Overall, the Earthformer model, particularly with balanced loss, provides a valuable near real-time al-
ternative to IMERG-Early. Although its underestimation of extreme rainfall limits its use in early warning
systems, the model still remains valuable for other applications, such as short-term weather monitor-
ing in regions where ground-based observations are sparse. As the model performs relatively well
for the lower and mid intensities it could help in monitoring dry spells and drought patterns in these
regions. This might supports farmers in decision-making by monitoring the rainfall distribution and plan
the irrigation accordingly.
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A
Model explanation and setup

A.1. Transformer models explained
Transformer models are a recently developed deep learning approach, initially designed for large lan-
guage models (Vaswani et al., 2017). The key mechanism that drives transformer models is the at-
tention mechanism, which can capture contextual information. The attention mechanism captures the
importance of tokens relative to other tokens. A token is a vector that describes a specific part of the
data.

The attention mechanism consists of a Key Query and Value matrix. The attention score is calculated
as described in Equation A.1.

Attention(Q,K, V ) = softmax(
QKT

√
dk)V

(A.1)

In which Q is the Query matrix,K the Key matrix, V the value matrix and dk represents the dimensions
of the K vector.

The Key, Query and value matrices are obtained by multiplying each token both by a weight matrixWK

and a weight matrix wQ (Figure A.1). To obtain the relative importance of each token to other tokens
the dot product between the Key (K) matrix and the Query ((Q) is obtained. The higher the value of
the dot product the higher the relative importance. The Weight Key matrix and the weight Query matrix
are the same for all the tokens within a sequence.
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Figure A.1: The Query weight matrix and the Key weight matrix contain the trainable parameters of the model. Each token is
multiplied by both the WQ and the WK matrix. To obtain the relative importance of each token to other tokens the dot product

of the K matrix and Q is calculated.

The dot products of the Key and Query matrices for a sequence of input data can be gridded and show
which other tokens are of relative importance related to the token (Figure A.2). By applying a softmax
function this is translated into a probability distribution (the data is thus normalized and all the values are
translated into values between zero and one). This grid is called the attention pattern. The probability
distribution can be used to predict what comes next in the sequence of tokens, which is called self
attention. Therefore only one input sequence can serve as many training samples as it is constantly
predicting the next token. However, it is important with self attention that no information of ’future’ tokens
in the sequence is transferred to the previous tokens, as this already gives away the answer. However,
when translating one dataset into another dataset, such as language translation tasks or translating
satellite images into precipitation values, this becomes less important. The mechanism almost acts the
same, but the Key and Query matrices are obtained from different datasets, instead of the same. This
is called cross attention.
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Figure A.2: The higher the dot product, the higher the relative importance of the token to the other tokens. By softmaxing the
dot products a probability vector is created that can used to predict the next token.

To capture all the information of the different tokens into one vector the Valuematrix comes in place. The
Value weight matrix WV is multiplied by each token again to obtain the value vector V . Subsequently,
to preserve the information of the previous tokens in the sequence the value vector multiplied by the
Softmaxed probability of the previous vector is added to the next token in the sequence, each token
’attending’ to the other tokens. Eventually, the last token in the sequence contains all the information
of the previous tokens as well (Figure A.3).

Figure A.3: The value weight matrix contains trainable parameters of the model and is multiplied by each token. The individual
tokens attend to each other by multiplying the value matrix with the probability vector of the same token and adding it to the

next token in the sequence.

All of this together is called one attention head. Typically, multiple attention heads are run simultane-
ously, so different heads can capture different structures in the data. Each head can focus on different
parts of the input sequence or capture different types of relationships (e.g., local context, long-range
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dependencies, etc.). The setup of the model of this research uses 32 attention heads. After each head
computes its output, the results from all heads are concatenated and passed through a final linear
projection layer.

A.2. Earthformer model setup
As a basis of the model for this research, the Eartformer for INCA model is used. This is a space-time
transformer model especially designed for earth forecasting purposes. The Earthformer model was
developed by Amazon (Gao et al., 2022) and further adapted to predict convective weather events
in Austria using the Meteosat Second Generation and Integrated Nowcasting through Comprehensive
Analysis (INCA) by Küçük, Atencia, and Dabernig, 2024. As described in section 3.1, the Earthformer
model is a hierchical Transformer encoder-decoder model that uses Cuboid Attention. An overview of
the layers of the model can be found in Figure A.4 and Table A.1).

The model requires input tensors with dimensions time, height, width, and the number of input layers
[T,H,W,C] in HDF5 format. In the Earthformer model the data is tokenized by downsampling the spa-
tial dimensions and inceasing the channel dimensions by downsampling layers. The spatial resolution
(H x W ) of the input tensor are reduced first by a convolutional layer and secondly with a patch and
merge algorithm. Patch and Merge takes a 2D input tensor that has C channels. It divides this ten-
sor into small, non-overlapping patches, where each patch has a size of p×p (for example,2×2, 4×4,
etc.). After creating these smaller patches, it then merges the spatial information from each patch into
the channel dimension. This means that the spatial information (height and width) from the patches
is condensed into the channel dimension, effectively reducing the spatial resolution while increasing
the number of channels. In essence, patch and merge is a way of compressing the spatial information
and expanding the feature space in the process. The used setup of the research uses two downsam-
ple layers. The first layer reduces the spatial dimension by a factor three and increases the channel
dimension to 32. The second downsample layer reduces the spatial dimensions by a factor 2 and in-
creases the channel dimension to 128. Note that the final channel dimension of the channel dimension
should correspond to the base unit of cuboid attention mechanism as this is the embedding the model
is expecting. As the model processes the data simultaneously, a positional encoder is used to save
information of the position of the tokens in the sequence.

Block Layer Resolution Channels
Input - 248 × 184 11
2D CNN + Downsampler Conv3 × 3

Conv3 × 3
GroupNorm16
LeakyReLU
PatchMerge
LayerNorm
Linear

248 × 184
248 × 184
248 × 184
248 × 184
248 × 184 → 83 × 62
83 × 62
83 × 62

11 → 32
32
32
32
32 → 288
288
288 → 32

2D CNN + Downsampler Conv3 × 3
Conv3 × 3
GroupNorm16
LeakyReLU
PatchMerge
LayerNorm
Linear

83 × 62
83 × 62
83 × 62
83 × 62
83 × 62 → 42 × 31
42 × 31
42 × 31

32 → 128
128
128
128
128 → 512
512
512 → 128

Encoder Positional Embedding PosEmbed 42 × 31 128
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Block Layer Resolution Channels
Cuboid Attention Block x 1 LayerNorm

Cuboid (T, 1, 1)
FFN
LayerNorm
Cuboid (1,H, 1)
FFN
LayerNorm
Cuboid (1, 1,W )
FFN

42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31

128
128
128
128
128
128
128
128
128

Downsampler PatchMerge
LayerNorm
Linear

42 × 31 → 21 × 16
21 × 16
21 × 16

128 → 512
512
512 → 256

Decoder Initial Positional Embedding PosEmbed 21 × 16 256
Cuboid Attention Block x 1 LayerNorm

Cuboid (T, 1, 1)
FFN
LayerNorm
Cuboid (1,H, 1)
FFN
LayerNorm
Cuboid (1, 1,W )
FFN

21 × 16
21 × 16
21 × 16
21 × 16
21 × 16
21 × 16
21 × 16
21 × 16
21 × 16

256
256
256
256
256
256
256
256
256

Upsampler Nearest NeighbourInterp
Conv3 × 3

21 × 16 → 42 × 31
42 × 31

128
128

Cuboid Attention Block x 1 LayerNorm
Cuboid (T, 1, 1)
FFN
LayerNorm
Cuboid (1,H, 1)
FFN
LayerNorm
Cuboid (1, 1,W )
FFN

42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31
42 × 31

256
256
256
256
256
256
256
256
256

2D CNN + Upsampler Nearest NeighbourInterp
Conv3 × 3
GroupNorm16
LeakyReLU

21 × 16 → 42 × 31
42 × 31
42 × 31
42 × 31

256 → 64
64
64
64

Table A.1: Represents the different layers of the model, showing the mechanism of each layer how the data flows through the
model along with its dimensions.
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Figure A.4: A schematic overview of the Earthformer model, with the encoder on the left and the decoder on the right. The
input tensor first passes through the 2D-CNN and Downsample layers, which reduce its spatial dimensions while increasing its
channel dimensions through convolution, patch merging, tokenizing the data. The tokenized data is then processed by the
cuboid attention block to capture contextual relationships. Here, M represents the number of hierarchical layers, while D

denotes the number of cuboids within each layer. The model’s upsampling is performed using NNI.

The convolved tensor passes through the cuboid attention mechanism. This mechanism involves de-
composing the tensor, applying attention, and then merging the tensor back together (Figure A.5). The
tensor can be decomposed using different decomposition strategies (Figure A.6). The attention pat-
tern proven to be the most effective is the ’axial’ pattern, which includes global vectors (Gao et al.,
2022). In this approach, attention is first applied along the temporal direction, then along the height
direction, and lastly along the width direction within the decomposed cuboids. Additionally, all decom-
posed cuboids attend to global vectors to capture the global dynamics of the system. For upsampeling
Nearest Neighbour Interpolation (NNI) is used.

The model consists of two hierarchical layers (M), each containing a single cuboid attention block (D).
The cuboid attention blocks are stacked and connected by a normalization layer and a feedforward
network. Within each attention block, 32 attention heads are used, meaning that 32 parallel processes
of cuboid attention mechanisms are run individually, each with its own Key (K), Query (Q), and Value
(V) matrices. The outputs from these 32 parallel attention mechanisms are concatenated to form the
final output of the cuboid attention block. The input and output of the model are hierarchically encoded
and decoded to allow attention at different scales, enabling the model to capture both local patterns
and system-wide dynamics.
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Figure A.5: The Figure shows how the attention mechanism within the cuboid is decomposed in smaller cuboids, for
computational efficiency. Within each cuboid the attention mechanism is run, while all cuboids also attend to the global

parameter to ensure system wide dynamics are captured as well. After the attention mechanism has run, the decompased
blocks are merged back together.

Figure A.6: The Figure shows different strategies to decompose the cuboid attention block.

The input and output of the model is hierarchically encoded and decoded so it can attend at different
scales, thus finding both local patterns as well as system wide patterns.

A.2.1. Mixed precision
Themodel makes use of mixed precision, which means the model saves important parameters, such as
the loss function in full precision (32-bits) and saves less sensitive parameters, such as the gradients in
half precision (16-bits). Typically, gradients in Neural networks become smaller closer to the beginning
of the network, when gradients are smaller than one and become bigger when gradients are bigger
than one. To prevent underflow (gradients becoming too small to capture in mixed precision resulting
in zero values) or overflow (gradients becoming too big to capture in mixed precision, resulting in NaN
values) Pytorch Lighting dynamically scales the loss function up or down so the gradients are scaled
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accordingly. After the backward pass and right before the optimization step the gradients are scaled
back, so the ’true’ gradients are used to update the model parameters. When the model accounts NaN
values the dynamical scaler can drastically change its scaling, because it assumes overflow, resulting
in vanishing gradients. Therefore no NaN values can be present in you traings dataset and your loss
function should be defined in such a way it is always differentiable.

A.2.2. Gradient accumulation
To account for a limited amount GPU memory the model makes use of gradient accumulation, which
mimics a larger batch size. The model takes the mean gradients of eight steps, with an actual batch
size of four thus mimicking a batch size of 32, before updating its model parameters. The Pytorch
Lighting library makes sure this is alligned with mixed precision and gradient clipping.

A.2.3. Gradient clipping
To prevent exploding gradients, which is a common issue in deep neural networks gradient clipping is
applied. When the gradients of a vector exceed the gradient norm, which is essentially the length of the
vector and can be calculated with the Formula A.2, the gradient norm is clipped to the clipping norm,
which is 1.0 in the current model.

|x| =
√

x2
1 + x2

2 + ....+ x2
n (A.2)

in which |x| is the gradient norm and x the n gradients present in the vector.

A.2.4. AdamW optimizer
The optimizer used in this model is the Adam optimizer with weight decay, also called the Adaptive Mo-
ment Estimation optimizer. The adaptive optimizer ensures that even if a gradient is small or sparse,
it can contribute to model performance. Additionally, it avoids that small gradients are completely ig-
nored. This is done by adaptively changing the gradient for each parameter separately, by using the
first and second order moments.

Weight decay helps the model to generalize and prevents overfitting, by preventing large parameter
updates. The larger the weight decay the less likely it becomes for models to rely solely on a specific
set of parameters, however when too big underfitting is also risked.

A.2.5. Early stopping
To prevent overfitting the model stopped the training if the validation loss doesn’t improve over 20
epochs. For the final model parameters after training, the model weights that performed best on the
validation dataset are selected as the optimal parameters of the model.

A.2.6. Learning rate scheduler
For Transformer models it is common to use an adaptive learning rate scheduler, as transformer models
are very sensitive for its initial parameters. Therefore, the OneCycle learning rate scheduler is applied.
In the beginning of training the model starts off with a relatively small learning rate (a division factor 25
of the maximum learning rate) and is gradually increased to the maximum learning rate, using Cosine
annealing over 22% of the training phase. Afterwards the learning rate is gradually decreased again
(with a division factor 10 of the initial learning rate), assuming that the model at the end of training
approaches the optimum.

A.2.7. Activation functions
To prevent dead neurons and/or over saturated neurons, a GELU activation is used in the Feedforward
network of the attention mechanism. In the convolutional layers leaky relu functions are used as acti-
vation functions. To ensure that the distribution of the activation layers in the model remain constant
during training group normalization and layer normalization is applied. Group normalization normalizes
the activation layers over specific groups, while layer normalization normalizes each activation neuron
in a activation layer over the entire layer. Unlike batch normalization this is done for each data sample
separately.



B
Cumulative rainfall per month

(a) Abetifi (b) Ada Foah

(c) Akim Oda (d) Akosombo

(e) Akuse (f) Axim

Figure B.1: Cumulative rainfall per month for various stations in 2022.
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(a) Enchi (b) Jirapa

(c) Kalbeo (d) Kpandai

(e) Loagri (f) Nakpamboni

(g) Sefwi Bekwai (h) TA00005

Figure B.2: Cumulative rainfall per month for various stations in 2022.
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(a) TA00007 (b) TA00010

(c) TA00016 (d) TA00045

(e) TA00113 (f) TA00116

(g) TA00117 (h) TA00118

Figure B.3: Cumulative rainfall per month for various stations in 2022.
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(a) TA00120 (b) TA00121

(c) TA00136 (d) TA00251

(e) TA00254 (f) TA00259

(g) TA00266 (h) TA00301

Figure B.4: Cumulative rainfall per month for various stations in 2022.
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(a) TA00302 (b) TA00391

(c) TA00392 (d) TA00616

(e) TA00647 (f) TA00689

(g) TA00690 (h) TA00756

Figure B.5: Cumulative rainfall per month for various stations in 2022.
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(a) Tarkwa (b) Tema

(c) Tolon (d) Varenpare

(e) Yendi

Figure B.6: Cumulative rainfall per month for various stations in 2022.
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Spatial correlation plots with zeros
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Figure C.1: The Pearson correlation including zero values for each used ground station in Ghana, plotted on the map for a 30
minute interval. The top left shows the correlation of the Earthformer model with MSE loss, the top right the correlaiton of the
Earthformer with balanced loss, the bottom left the correlation with IMERG-Final and the bottom right the correlation with

IMERG-Early.

Figure C.2: The Pearson correlation including zero values for each used ground station in Ghana, plotted on the map for a
daily interval. The top left shows the correlation of the Earthformer model with MSE loss, the top right the correlaiton of the
Earthformer with balanced loss, the bottom left the correlation with IMERG-Final and the bottom right the correlation with

IMERG-Early.
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Correlation coefficients

(a) Pearson correlation all stations zeros included 30 min time
interval (b) Pearson correlation all stations zeros included daily time interval

Figure D.1: Correlation coefficents with inclusion of zero data for different time intervals compared to all stations.
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(a) Pearson correlation GMET zeros not included 30 min time
interval (b) Pearson correlation GMET zeros not included daily time interval

(c) Pearson correlation GMET zeros included 30 min time interval (d) Pearson correlation GMET zeros included daily time interval

Figure D.2: Correlation coefficents with and without inclusion of zero data for different time intervals compared to GMET
stations.
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(a) Pearson correlation TAHMO zeros not included 30 min time
interval

(b) Pearson correlation TAHMO zeros not included daily time
interval

(c) Pearson correlation TAHMO zeros included 30 min time interval (d) Pearson correlation TAHMO zeros included daily time interval

Figure D.3: Correlation coefficents with and without inclusion of zero data for different time intervals compared to TAHMO
stations.
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(a) Pearson correlation GMET stations zeros included 30 min time
interval test dataset

(b) Pearson correlation TAHMO stations zeros included 30 min time
interval test dataset

(c) Pearson correlation all stations zeros included 30 min time
interval test dataset

Figure D.4: Correlation coefficents with inclusion of zero data for 30 min time intervals compared to stations for the test dataset.
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(a) Pearson correlation GMET stations zeros not included 30 min
time interval test dataset

(b) Pearson correlation TAHMO stations zeros not included 30 min
time interval test dataset

(c) Pearson correlation all stations zeros not included 30 min time
interval test dataset

Figure D.5: Correlation coefficents without inclusion of zero data for 30 min time intervals compared to stations for the test
dataset.
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Metrics point pixel comparison
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(a) POD GMET (b) POD TAHMO

(c) CSI GMET (d) CSI TAHMO

(e) SUCR GMET (f) SUCR TAHMO

(g) Bias GMET. (h) Bias TAHMO

Figure E.1: Metrics calculated with mm precipitation over 30 min.



86

(a) POD GMET (b) POD TAHMO

(c) CSI GMET (d) CSI TAHMO

(e) SUCR GMET (f) SUCR TAHMO

(g) Bias GMET

(h) Bias TAHMO. The extremely high bias for the Earthformer
with balanced loss at the threshold of 60 mm is caused by one
false alarm and zero hits and misses. The additional factor of
1e-6 to avoid divisions by zero causes the one false alarm to be

divided by 1e-6.

Figure E.2: Metrics calculated for mm precipitation aggregated over a day.
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Conditional probabilities BT channel 9

F.1. Savannah climatic zone

(a) TA00136 (b) TA00689 (c) TA00251

(d) Varenpare (e) TA00616 (f) Nakpamboni

(g) Yendi (h) Kpandai (i) TA00113

Figure F.1: Conditional probability of Brightness Temperatures (BT) of channel 9 of the nearest grid cell of the SEVIRI images,
given that the rainfall is at least 1 mm fallen within 30 minutes within the Savannah climatic zone.
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F.2. Forest climatic zone

(a) Tolon (b) TA00392 (c) TA00756

(d) TA00116 (e) TA00045 (f) Akosombo

(g) Akuse (h) Akim Oda (i) TA00005

(j) Enchi

Figure F.2: Conditional probability of Brightness Temperatures (BT) of channel 9 of the nearest grid cell of the SEVIRI images,
given that the rainfall is at least 1 mm fallen within 30 minutes within the Forest climatic zone.
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F.3. Coastal climatic zone

(a) TA00121 (b) TA00120 (c) Axim

(d) TA00016 (e) TA00118 (f) Tema

(g) TA00391 (h) TA00301

Figure F.3: Conditional probability of Brightness Temperatures (BT) of channel 9 of the nearest grid cell of the SEVIRI images,
given that the rainfall is at least 1 mm fallen within 30 minutes within the Coastal climatic zone.
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