
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Is human-in-the-loop
reinforcement learning
enhanced if the robot
emotes its learning
progress?
An experimental study
F.C.J. Lycklama à Nijeholt

Is human-in-the-loop
reinforcement learning
enhanced if the robot
emotes its learning

progress?
An experimental study

by

F.C.J. Lycklama à Nijeholt
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday June 8th, 2023 at 9:00.

Student number: 4378105
Thesis committee: Dr. ir. D.J. Broekens, LIACS, daily supervisor

Dr. ir. J.C.F. de Winter, TU Delft, supervisor
Dr. D. Dodou Committee member

Cover: www.aldebaran.com/sites/default/files/inline-images/
nao-photo5-full.jpg (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

www.aldebaran.com/sites/default/files/inline-images/nao-photo5-full.jpg
www.aldebaran.com/sites/default/files/inline-images/nao-photo5-full.jpg
http://repository.tudelft.nl/

Summary

As technology continues to evolve at a rapid pace, robots are becoming an increasingly common sight
in our daily lives. Robots that work with humans need to adapt to a variety of users and tasks, and learn
to optimise their behaviour. For non-specialist users to interact with such robots, the robot’s learning
process needs to be transparent through its behaviour. Reinforcement Learning (RL) is a promising
learning method to achieve this adaptability. However, the behaviour generated by RL is not inherently
transparent because of the exploration/exploitation trade-off that is needed to optimise a policy for a
specific task.

A RL algorithm is Temporal Difference (TD) learning. In TD learning, the algorithm updates a Q-table
to keep track of Q-values. Q-values represent the expected future rewards that the agent (the actor that
decides what action to take) can receive by taking a specific action in a certain state. Calculating the
Q-values involves a value called the Temporal Difference, which is the difference between the current
Q-value with the received reward added and the Q-value for the future state and chosen action.

Emotions are a natural way of communicating intent and situational appraisal for humans. In this
study, emotional expressions based on Temporal Differences were implemented as a means to increase
the transparency of a robot’s learning progress. The effects on the robot’s learning progress, learning
result, and user experience were analysed.

A between-subject experiment with 61 participants on the following three robot modes was performed:
no emotions, simulated emotions, and simulated emotions with matching attribution (see Table 1.1). The
simulated emotions are hope, fear, joy, and distress, which were expressed by a humanoid robot. The
robot mode with simulated emotions and matching attributions would explain for what task it was feeling
hope or fear. The task was a simple task where a human teacher had to help a humanoid robot to learn
to express three different colours based on human commands.

The results demonstrate minimal differences between these three conditions. This means that for
simple tasks, emotional expressions grounded in RL do not have a significant effect, and thus do not
help nor hurt. The findings are discussed, and it is proposed that emotion simulation is beneficial for
tasks that are more complex, afford some robot autonomy, and for which the emotion is informative
about how the user should influence the robot’s actions to the benefit of the robot’s policy.

i

Contents

Summary i

Nomenclature iii

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Main objective . 2

1.2.1 Research question . 2
1.3 Research methods . 2
1.4 Report outline . 3

2 Background information 4
2.1 Introduction . 4
2.2 Temporal Difference Method . 4
2.3 Policies . 5

2.3.1 Softmax . 5
2.3.2 ϵ- Greedy . 6

2.4 Joy, Distress, Hope and Fear in the TDRL Theory of Emotion 6
2.5 Related work on emotion simulation based on RL . 6

3 Method 7
3.1 The learning task . 7
3.2 The robot . 8
3.3 Behaviour implementation . 8
3.4 Measurements . 10

3.4.1 Learning outcome . 10
3.4.2 Learning process . 10
3.4.3 User experience . 10

3.5 The experiment . 11

4 Results 12
4.1 Reliability checks . 12
4.2 Results . 12

4.2.1 The participants . 13
4.2.2 Questionnaire results . 13
4.2.3 Learning process and result . 15
4.2.4 The debriefing . 18

5 Conclusion/Discussion 19

References 21

A Consent form and Questionnaires 23
A.1 Consent form . 24
A.2 English questionnaire . 25
A.3 Dutch questionnaire . 27

B Source Code 29

C Scatter plots 44

ii

Nomenclature

Abbreviations

Abbreviation Definition

ANOVA Analysis of Variance
HRI Human Robot Interaction
MANOVA Multivariate Analysis of Variance
MDP Markov Decision Process
NAO Name of the humanoid robot used in this research
RL Reinforcement Learning
SARSA State-Action-Reward-State-Action
SD Standard Deviation
TD Temporal Difference
TDRL Temporal Difference Reinforcement Learning
UEQ User Experience Questionnaire

Definitions

Concept Definition

Agent The actor that decides what action to take
Deterministic A process or system that is completely predictable and has a fixed

outcome
Exploitation actions Performing the currently most optimal action
Exploration actions Performing an action to search for an optimal action
Policy The decision making of an agent in an environment
Q-value The expected future rewards that the agent can receive by taking a

specific action in a certain state
Reinforcement Learning Machine learning algorithm where the agent learn to optimise its ac-

tions to maximize a reward signal
Stochastic A process or system that involves randomness or probability
Temporal Difference The difference between the received reward combined with the cur-

rent Q-value and the estimated future Q-value
Transparency The ability of users to understand what the intelligent systems are

doing and why

Robot modes

Mode Characteristic Example

Mode 1 Neutral [-]
Mode 2 Simulated expressions Fear
Mode 3 Simulated expressions with attributions Fear for the colour red

iii

1
Introduction

1.1. Motivation and problem statement
Transparency of behaviour is important for intelligent systems that work with humans [1], especially when
these systems become increasingly more complex. The term transparency refers to the ability of users to
understand what the intelligent systems are doing and why. This is no different for robots that work with
humans. Transparency can help users better understand the reasoning behind the robot’s behaviour, en-
abling them to better assess the robot’s capabilities [2]. Transparency also reduces conflict and improves
the robustness of an interaction, particularly in team performance between robot and human [3].

If robots need to adapt to a variety of users and tasks, they need to learn to optimise their behaviour.
When a robot is able to learn to optimise its behaviour the robot will be more efficient, flexible, and robust.
It is more flexible as it can find optimal behaviour for different and changing environments. Due to this
flexibility, the robot will also be more robust, as it can perform in the presence of (unexpected) variations.

Reinforcement Learning (RL) is a promising learning method for this purpose [4]. By repeatedly
interacting with the environment, an RL agent (the actor that decides what action to take) learns to adapt
the values of actions to achieve the optimal state transition policy, which decides what actions to perform
to go to the next state, thus maximizing the rewards over time.

However, the behaviour generated by RL is not inherently transparent due to the exploration/exploita-
tion tradeoff that is needed to optimise a policy for a specific task [5]. During exploration, the robot will
perform actions that are not the best known actions at that moment in the learning process, which might
be confusing for the users. During premature exploitation, before the best action has been found, the
agent will select actions that are suboptimal, again potentially confusing the user.

Researchers [6, 7] state that it is important for intelligent systems to remain transparent to the users,
especially when the systems become increasingly more complex. With this self-explanatory capability,
users understand what these intelligent systems are doing during the Human Robot Interaction (HRI)
and why.

Studies [8, 9, 10] have shown the focus should be on creating transparency in order to generate
trust between humans and robots, instead of making the (automation) capabilities as high as possible.
This can be done, for example, by mutual communication and enabling vulnerable communication in
casual and non-work-related interactions. Vulnerable communication is communication where thoughts,
feelings, and emotions in an open manner are communicated, and non work-related interactions are
shared experiences outside of the task at hand that create a shared understanding.

It has also been suggested that simulation and expression of emotions in robots can be used to
create transparency [5]. Most emotion theories propose that emotions appear when a change in the
situation has an impact on the agent. The expression of emotions is a language-independent way to
communicate information about the current state of an individual to someone else. This communication
method is something that comes naturally to humans. The Temporal Difference Reinforcement Learning
(TDRL) theory of emotion [11] proposes that emotions are manifestations of reward processing in RL, in
particular manifestations of neural Temporal Difference (TD) assessment, which is thementally computed
TD. This TD represents the agent’s perception of gain or loss of utility (well-being), resulting from new
state.

This suggests that agents and robots that use RL to learn can also simulate and express emotions
grounded in their learning process. Indeed, research suggests that simulated emotions are plausible [12,
11, 13, 14]. However, experimental evidence that these emotions are understandable by and plausible
for human teachers in a robot-human interaction setting is lacking.

1

1.2. Main objective 2

1.2. Main objective
The goal of this research is to determine whether emotional expressions based on TD learning towards
a human teacher can be used as a means to increase the transparency of a robot’s learning process,
and thereby impact said learning process. Specifically, the study examines the effect of robot emotional
expressions and the explanation of the source (attribution) of the emotions on the teacher’s behaviour
and experience, and on the robot’s learning result and learning process. An example for the emotional
expressions and attributes is a robot expressing fear (the emotional expression) for the colour red (the
source/attribution). Three robot modes were used: a robot mode that showed no emotions, a robot mode
that showed simulated emotions, and a robot mode that showed simulated emotions with matching attri-
bution. The simulated emotions were hope, fear, joy, and distress, which were expressed by a humanoid
robot.

1.2.1. Research question
The main research question derived from the main objective is:

• What is the influence of introducing Temporal Difference-based emotions in a human-robot interac-
tion with a human teacher?

With the following sub-questions:

a) What is the influence of introducing Temporal Difference-based emotions on the learning result?

This sub-question focuses on the final learning result of the robot. The learning behaviour of the robot
is the same for any of robot modes. However, the human teacher might have a different approach to
teaching the tasks if the robot shows emotions. For example, if the robot communicates to the teacher
that it is afraid for a specific task, the teacher might decide to avoid that task, which will result in the robot
not learning said task.

b) What is the influence of introducing Temporal Difference-based emotions on the learning process?

This sub-question focusses on the learning process of the robot and how the user influences this. During
the learning process, the robot has the choice to perform exploration or exploitation actions to find the
correct actions for each task. However, the robot has no influence on what task the human teacher will
give. This sub-question focusses on the exploration and exploitation actions of the human teacher, as
well as the progress of the q-table, with the main focus on for how many tasks a positive route has been
found.

c) What is the influence of introducing Temporal Difference-based emotions on the user experience?

This sub-question focusses on how the participant experienced the interaction with the robot. This user
experience will be assessed using a questionnaire given to the user after the experiment. The user expe-
rience will be evaluated based on the perceived animacy, anthropomorphism, attractiveness, efficiency,
intelligence, likeability, novelty, and stimulation.

1.3. Research methods
The study primarily involves conducting an experiment with reinforcement learning using a human teacher.
In this experiment, the human will receive a simple learning task that they will have to perform, which is
teaching the robot the three primary colours: red, green, and blue.

The participant will perform this task with a robot with one of the robot modes that can be seen in
Table 1.1.

Apart from this difference in emotion display, all participants will receive the same task and the same
values will be measured during this experiment. After the interaction with the robot has been completed,
the participant will be asked to answer the User Experience Questionnaire [15] and the Godspeed ques-
tionnaire [16].

A more detailed explanation of the research method can be found in chapter 3.

1.4. Report outline 3

Mode Characteristic Example
Mode 1 Neutral [-]
Mode 2 Simulated expressions Fear
Mode 3 Simulated expressions with attributions Fear for the colour red

Table 1.1: The three different robot modes, with examples

1.4. Report outline
In Chapter 2, the background knowledge that is relevant to reinforcement learning and emotions is re-
ported. In Chapter 3 the experiment is explained. Here it can be found how the learning algorithm
has been programmed to learn colours as well as how the emotions have been implemented, and what
measurements have been performed during the experiment. In Chapter 4, the results of the tests are
reported. In Chapter 5, the conclusions on the research questions provided by the knowledge reported
in the previous chapters as well as a brief discussion can be found.

2
Background information

In this chapter the subject of Reinforcement Learning (RL) is introduced (2.1) and its applications. The
specific RL method used in this study, Temporal Difference Reinforcement Learning (TDRL), is explained
in Section 2.2 and the policies in are introduced in 2.3. In Section 2.4 the TDRL theory of Emotion, which
is used to simulate the emotions is introduced and in Section 2.5 related literature on simulating emotions
based on RL is listed.

2.1. Introduction
RL is an area of machine learning, in which an RL problem consists of an agent and an environment.
The RL agent acts on the environment and receives a reward or a punishment which tells the agent
what actions are beneficial and which ones are detrimental. The task for the RL agent is to maximise
the total reward and thus find an optimal policy. In an RL problem, it is not necessary to program how a
task needs to be achieved. The RL agent will need to perform either exploration actions to examine the
environment or exploitation actions in which the RL agent tries to exploit the current knowledge to obtain
a high reward [17]. The other components of an RL problem such as the two most used TD methods
and policy will be discussed in this chapter.

2.2. Temporal Difference Method
With TDRL, the algorithm updates a Q-table to keep track of Q-values. Q-values represent the expected
future rewards that the agent can receive by taking a specific action in a certain state. Calculating the
Q-values involves the TD value, which is the difference between the current Q-value with the received
reward added and theQ-value for the future state and chosen action. This TD is used to adjust predictions
during the learning process.

Qnew(st, at)← Q(st, at) + α

Temporal Difference︷ ︸︸ ︷
(rt + γ Q(st+1, a)︸ ︷︷ ︸

estimate of future value

−Q(st, at))︸ ︷︷ ︸
current value

(2.1)

Here, Q refers to the function that is computed and is used to determine how good action a in state
s is. st is the current state, at is the selected action, st+1 is the new state that the system will enter
after performing at, α is the learning rate which is a value between 0 and 1, rt is the received reward at
the current time. And γ is the discount factor, which is also a value between 0 and 1, and determines
the importance of the estimate of the future value [18]. Q(st+1, a) is the Q-value belonging to the future
state and an action. How this future Q-value is calculated is the main difference between SARSA (State-
Action-Reward-State-Action) and Q-learning [19], which are two algorithms that have been widely used
to solve RL problems

For Q-learning, the estimate is based on the maximum of the available actions, whilst SARSA learns
the Q values associated with the actions that it chooses. The Q-Learning algorithm is summarised in
algorithm 1 and the SARSA algorithm is summarised in algorithm 2 [20].

The RL agent updates the policy based on actions taken so it is known as an on-policy learning
algorithm.

4

2.3. Policies 5

2.3. Policies
As mentioned in section 2.2, an RL agent can be in states and perform actions. When the RL agent is
in a state, it needs to make a choice for which action it will take. This choice tends to be based on the
Q-values and what policy is used. This policy needs to find a good balance between exploration and
exploitation. Some actions are deterministic and depend only on the state and chosen action, and have
a fixed outcome, and other are stochastic and depend on the state and chosen action but also have a
randomness or a probability distribution.

Two commonly used policies are softmax and ϵ-greedy [21].

2.3.1. Softmax
Softmax uses a vector with K numbers. This vector is then normalised into a probability distribution

σ(z)i = ezi∑
j = 1Kezj

(2.2)

Here z is the vector with K numbers, zi are the values of the elements of the input vector, which can only
have real values.

The sum of this normalised distribution can be used as probabilities of the actions to happen. When
a value is very small or negative, the likelihood of choosing the action corresponding to that value will be
very small as well.

2.4. Joy, Distress, Hope and Fear in the TDRL Theory of Emotion 6

2.3.2. ϵ- Greedy
The ϵ-greedy algorithm shows a clear difference between the exploration and exploitation actions. There
is a probability of ϵ that the algorithm will choose an exploration action and a probability of 1-ϵ that the
algorithm chooses an exploitation action.

Action =

{
max Qt(a) With probability 1-ϵ
random action (a) With probability ϵ .

(2.3)

However, with the ϵ-greedy the algorithm will remain the same over time. The likelihood of selecting
an exploration action will always be ϵ. To solve this, the ϵ-decay strategy exists, where the ϵ values
decreases over time [19]. Due to this decrease, the algorithm will first mainly choose exploration actions
and over time increasingly opt for the exploitation action.

2.4. Joy, Distress, Hope and Fear in the TDRL Theory of Emotion
The TDRL Theory of Emotion proposes that all emotions are manifestations of TD errors [11, 5]. Emotion
is defined as valenced appraisals in reaction to (mental) events providing feedback to modify action
tendencies, grounded in primary reinforcers [11].

In Q-learning, a method to learn action values Q(s, a) based on repeated observations of states,
actions and rewards, the TD is defined as:

TD = r + γmax
a′

Q(s′, a′)−Q(s, a)old (2.4)

In the TDRL Theory of Emotion, joy is proposed to be themanifestation of a positive TD, whilst distress
is a negative TD. As such, Joy and Distress are defined as follows [11]:

if(TD > 0)⇒ Joy = TD (2.5)

if(TD < 0)⇒ Distress = TD (2.6)
Hope and fear are proposed in a similar manner to joy and distress. While joy and distress are pro-

posed to be manifestations of the actual received TD, hope and fear are proposed to be a manifestation
of the expected TD. Hope represents the anticipation (forward simulated) of a positive TD, whilst fear is
the anticipation of a negative TD [11].

2.5. Related work on emotion simulation based on RL
As mentioned in chapter 1, RL-generated behaviour is not always inherently transparent due to the
exploration/exploitation trade-off required to optimise policies [5]. During the exploration phase, or during
an exploitation phase before the optimal solution has been found, the robot may take sub-optimal actions,
which can be confusing for users.

Simulating and expressing emotions in a robot has been suggested to create transparency [5]. Ex-
pressing emotions is a natural, language-independent way to communicate information about an individ-
ual’s current state to others.

Simulating emotions for RL agents and robots is not new. For example, Broekens et al.[12], propose
a computational model of joy, distress, hope, and fear as mappings between values used in RL (reward,
value, update signal, etc...). In this model, joy/distress is derived from the positive/negative TD signal
for the current state, and hope/fear is derived from the expected TD for future states. This model is
explained more in section 2.4. Later work using the same model showed, with a theoretical analysis,
plausible simulations of fear and hope [22], and regret [14].

Moussa and Magnenat-Thalmann[23] included emotions, attachment (which represents whether an
agent loves or hates a person) and learning in a decision-making Q-learning architecture for a virtual
agent. Their framework was evaluated by interacting with users in different scenarios. Preliminary results
showed that the virtual agent showed appropriate emotional responses to different user behaviours.

A recent study simulated emotions based on TD signals and presented participants with videos of
the robot expressing these emotions [24]. The study was inconclusive with respect to the transparency
gained from these emotional expressions. A later study [25] observed a slight increase in transparency
but also proposed a larger scale study.

3
Method

During the experiment, participants received the objective to teach a robot a task. The focus of this
research is on the implementation of the emotion simulation and not on implementing a complex learning
algorithm. That is why the learning task was a simple task; teach the robot 3 different colours; red, green,
and blue.

In this chapter the learning task is described in Section 3.1. In Section 3.2 the robot is introduced. In
Section 3.3 the programmed behaviour is explained. In Section 3.4 the measurements are listed, and in
the final Section, section 3.5 the performed experiment is described.

3.1. The learning task
For the modelling of the learning process, a simple environment had been set up. A visual overview of
this environment can be seen in the Markov Decision Process (MDP) in Figure 3.1. This MDP consists
of a set of states, a set of actions, and transitions with associated rewards. In the start state, the robot
can only ask for a task. Then, depending on the task the robot received, it will either go to ”Task eyes
red”, ”Task eyes green”, or ”Task eyes blue”, the colour referring to the colour the teacher said the eyes
should be changed to.

In the states ”Task eyes red”, ”Task eyes green”, and ”Task eyes blue”, the algorithm will have three
actions that it can perform, namely ”Make eyes red”, ”Make eyes green”, and ”Make eyes blue”. So, in
total, the environment consisted of seven states and four possible actions.
States:

• Start
• Task eyes red
• Task eyes green
• Task eyes blue
• Eyes are red
• Eyes are green
• Eyes are blue

Actions:
• Ask for task
• Make eyes red
• Make eyes green
• Make eyes blue

Figure 3.1: A visualisation of the MDP for the learning process
of the robot. In the ellipses the seven states can be seen. At the
beginning of the arrow, the action can be seen and at the end of
the arrow, the matching reward can be seen. The actions to
change the eyes to a colour are indicated by the first letter of

that colour.

The decision about which action to perform will
be made using the ϵ-greedy variant ϵ-decay. This
is because of the high levels of exploration at the
beginning and high exploitation later in the exper-
iment. The robot will maintain a Q-table to track
the known routes and rewards. At the start of each
experiment, the Q-table will be populated with ze-
roes only. During the learning process, the robot
will continue to repeat the steps outlined in Algo-
rithm 2 in Section 2.2.

7

3.2. The robot 8

3.2. The robot

Figure 3.2: The NAO in the poses for the fou emotions and its
neutral pose.

During this research, a robot named NAO will
be used. Nao is a physically embodied robot
of 58cm height, with a lot of built-in features.
The ones that are used during this research
are:

• The ability to produce human-like
gestures by rotating its joints

• The ability to communicate with the
participants via its microphones and
speakers

• Speech recognition
• The ability to change the colour of the
light around its eyes

The NAO robot is equipped with the ”Robot in
the Classroom” software. But as the reaction
of the robot with that software appeared to be
quite slow, the main parts were programmed
via Python. Pictures of NAO can be seen in
Figure 3.2.

3.3. Behaviour implementation
SARSA learns from the actions it actually performs, instead of learning from the best possible action,
independent of the action performed (see Section 2.2). Therefore SARSA is a more realistic simulation
of the learning process of a human, and thus SARSA was choosen to be more suited for this experiment.
The algorithm for this can be seen in Section 2.2, in Algorithm 2. The general function for updating the
values in the Q-table can be seen in eq. 2.2. The exact function for SARSA is:

Q(st, at)← Q(st, at) + α

Temporal Difference︷ ︸︸ ︷
(rt + γ ∗Q(st+1, at+1)−Q(st, at)) (3.1)

For the policy, the ϵ-decay strategy has been chosen, which is explained in Section 2.3.2. During the
learning process, the ϵ-value starts at 0.7 and decays by multiplying it with a factor of 0.85, and has
a minimum factor of 0.1. The algorithm will start with a somewhat high exploration ratio, but as the
experiment continues, the algorithm will increasingly choose the most efficient action. With the decay
value of 0.85, the ϵ-value will reach a value of 0.1 after 12 multiplications. The high exploitation ratio and
the end will give the participant the feeling that the robot has indeed successfully learnt the colours.

The value of alpha has been set at 0.5 and the value for γ at 0.9 for this experiment.
With a high value for alpha, the learning rate, the Q-values will be updated rapidly, which also means

that the TD will quickly reach 0. A value of 0.5 was found to be a good balance for the decrease of TD.
With a high value for γ, the discount factor, the algorithm places a high emphasis on future rewards.

As the states ”Eyes are red”, ”Eyes are green”, and ”Eyes are blue” are terminal states, the Q-values for
these states will remain 0. This means that the discount factor will not have an influence on the states
”Task eyes red”, ”Task eyes green”, and ”Task eyes blue” and only on the ”start” state. The immediate
rewards for actions chosen from the ”start” state only have values of 0. The high emphasis on future
rewards allows the Q-values to propagate more efficiently to the start state.

The robot emotions were based on the TD value in Equation 3.1. Joy and distress are based on the
actually received TD. In Section 2.4, the threshold for the emotions was set at 0. To be able to easily
convince people to participate, the goal was to ensure that the experiment would take no longer than 15
minutes. To ensure that the disappearance of the emotion would still be observed, this threshold was
increased to 0.2. This resulted in the following thresholds for the activation of joy and distress:

if(TD > 0.2)⇒ Joy (3.2)

if(TD < −0.2)⇒ Distress (3.3)

3.3. Behaviour implementation 9

Hope and fear are based on the forward simulated TDs in the MDP, using a epsillon greedy simulation
policy for the robot. TDs are calculated for the epsillon greedy actions in the Task states (see Figure 3.1).
At the start state, themaximum absolute value of the three simulated TDs for the three possible stochastic
outcomes (human picks red, green or blue) is selected and that TD is used to express emotion. If that
TD is positive, the emotion is hope, and if that TD is negative, the emotion is fear. Only those transitions
that were actually observed are used. The calculations for hope and fear are:

TD = signed(max(|TDa,s∈Taskstates(argmax(Q(s, a)))|))
if(TD > 0.2)⇒ Hope

if(TD < −0.2)⇒ Fear

(3.4)

Joy and distress were expressed immediately after receiving the TD update for an action (i.e., after
the transition to a new state). Hope and fear were expressed in the state before the robot performed its
action. Multiple emotions could be expressed in a row. For example, upon arriving at a task state, the
robot could express distress for a negative TD it received because the user chose a colour that it had
not learned, followed by fear in the state for the possible wrong choice it may make. As an emotion is
either on or off, a small threshold was introduced for the emotion elicitation, so that the robot would only
express an emotion when a significant change in the TD occurred. This was done to stop the robot from
expressing emotions when converging on the learning task.

The NAO has the ability to perform human-like movements but lacks visual expression. Due to this,
the main focus for expressing emotions with the NAO is through the use of body language. The expres-
sion of emotions such as happiness, sadness, joy, and fear can be seen in figure 3.2.

The poses for the emotions sadness, happiness, and fear were inspired by research by Thoma et
al. [26] and Wu et al. [27]. These articles provide examples of poses for six basic emotions, including
anger, disgust, fear, happiness, sadness, and surprise. However, hope is not considered a basic emotion.
Therefore, the pose for hope was determined by testing different poses and asking volunteers how they
would label the pose.

After implementing these body expressions, a small pilot test was conducted to determine whether
participants could recognise all the expressions. It was concluded that the expressions could be more
recognisable by adding statements. The verbal expressions used for the robot in Dutch and English can
be seen in Tables 3.1 and 3.2, respectively. During the interaction, the algorithm randomly chose one of
the three expressions to avoid repeating statements.

Emotion Expression 1 Expression 2 Expression 3
Hope Ik heb er zin in Kom maar op! Dat gaat wel weer goed komen.
Fear Oei dit vind ik spannend. O nee dit gaat vast niet. O nee, dit gaat fout.
Joy Hoera Jippie Wat fijn
Distress Drommels Helaas Wat jammer
Neutral Oké Bedankt Prima

Table 3.1: The statements in Dutch made by the robot for the different emotions and for the neutral mode without any emotions

Emotion Expression 1 Expression 2 Expression 3
Hope I am looking forward to this Let’s go! Okay. Let’s go
Fear This is a bit scary for me O no, it will go wrong again Oh no, it will go wrong
Joy Hooray Nice Lovely
Distress O bother Let’s pretend that did not happen How unfortunate
Neutral Okay Thank you Check

Table 3.2: The statements in English made by the robot for the different emotions and for the neutral mode without any emotions

The robot mode with matching emotional attributions explained to the user, in addition to expressing
the emotions, what colour it was feeling hope or fear for (precisely: what colour the TD that generated
that emotion is associated with). Therefore, it explained the cause of the prospect-based emotions, the
attribution of hope and fear. The robot would explain to the user why it is feeling hope or fear at the start.

3.4. Measurements 10

If the robot were to simulate hope, it would add the statement ”Ik hoop dat het colour wordt!” or ”I am
hoping for colour!” after the hope expression.

After this algorithm was implemented, the robot behaviour underwent some iterations to make it as
fast as possible and to fine-tune the speech-to-text behaviour of the robot. During one of the pilots
between these iterations, it was decided to hardwire the actual reward to ensure that errors in the inter-
pretation of the reward were not possible. This way, the learning progress would not be influenced if the
robot were to hear the wrong statement after asking for a reward.

3.4. Measurements
A between-subject experiment was conducted, where each participant was randomly assigned to one
of three different robot modes. which can be seen in table 1.1. Various variables were measured to
examine the effect on experience, learning process, and learning outcome.

Apart from the measurements described in subsections 3.4.1, 3.4.2, and 3.4.3, the users were asked
for their age, gender, experience with robots, and experience in programming. These data was used to
investigate the spread of participants over the different groups.

3.4.1. Learning outcome
Learning progress and final outcome are measured based on the number of transitions to colour outcome
states for which the Q-table has a maximum value above zero (robot has learned the correct action). The
Q-table exhibits a value greater than zero when the correct colour has been performed at least once.

All possible values for the learning progress score are:
0. No colour learned
1. One colour learned
2. Two colours learned
3. Three colours learned

3.4.2. Learning process
To assess the learning process, the exploration and exploitation carried out by the human teacher were
examined. Exploration was defined as assigning a task to the robot for which the correct max Q had not
been found, while exploitation involved assigning a task for which the correct max Q had been found.

As the total number of iterations varied, the obtained scores were scaled based on the actual number
of iterations performed. Consequently, a ratio for each variable was calculated by dividing the number
of times it occurred by the total number of iterations.

We used the following variables to measure the learning process:
• Learning progress score over iterations
• The ratio of exploration commands given
• The ratio of exploitation commands given
• The ratio of inefficient exploitation commands (i.e. when the user selects a learned colour when
there are unknown colours left)

• The ratios of selecting another command the next trial, depending on whether the previous com-
mand was correctly executed by the robot or not

3.4.3. User experience
After the experiment, the participants were asked to complete two questionnaires: the Godspeed Ques-
tionnaire [16] and the User Experience Questionnaire (UEQ) [28]. The Godspeed questionnaire was
used to measure the degree of:

• Anthropomorphism: attributing human-like characteristics or behaviors to non-human entities (e.g.,
animals, objects, or even abstract concepts).

• Animacy: the perception of whether an entity is alive or not, based on its movement and behavior.
• Likeability: the degree to which an entity is pleasant, agreeable, or enjoyable.
• (Perceived) intelligence: the ability to acquire, understand, and apply knowledge and skills to solve
problems or adapt to new situations.

The UEQ was used to determine the scores for:

3.5. The experiment 11

• Novelty: the degree to which an entity is new, unusual, or unexpected.
• Stimulation: the degree to which an entity can capture and maintain someone’s attention or interest.
• Efficiency: the degree to which an entity achieves its intended purpose with minimum wasted effort
or resources.

• Attractiveness: the degree to which an entity is visually or aesthetically pleasing to someone’s
preferences.

The questions in the Godspeed questionnaire were initially organized by type - anthropomorphism,
animacy, likeability, perceived intelligence, and perceived safety. For this experiment, the questions
related to perceived safety were removed. Afterward, the remaining questions were sorted alphabetically
instead of by type. This was done to make it less obvious which questions were measuring which specific
factors. The final questionnaires can be found in Appendix A.

3.5. The experiment
We recruited 61 adult participants with a mean age of 30.64 (SD 13.147) to teach the robot three different
colors (red, green, and blue). In the starting state (refer to Figure 3.1), the robot asked the participants
which color to change its eyes to, and the participants responded with one of the three colors. The robot
then chose one of three actions [Make eyes red, Make eyes green, Make eyes blue] and asked the
participant if the color was correct, which the participant could confirm or deny. The actual reward was
hardwired to eliminate any errors in reward interpretation, and no mismatch between user response and
hardwired reward occurred.

The only influence that the participant had on the learning process was the order in which the tasks
were assigned to the robot.

During the learning process, the robot used ϵ-greedy with ϵ-decay for action selection. Beforehand,
the participants were informed that participation was voluntary and that they would have 10 minutes to
teach the robot the three colours and they were assured that this was sufficient time to complete the task
without feeling rushed. The participants were provided with a consent form before the beginning of the
task, as well as the first page of the questionnaire, which summarized the consent form and asked the
participant their age, gender, experience with robots, and experience in programming. The task ended
after convergence.

After the learning task had been completed, the participants were asked to complete the UEQ and
Godspeed questionnaires.

During the debriefing session, participants were informed about the distinctions in robot modes and
the aim of the research, which was to investigate the impact of including simulated emotional expression.
This was done after the experiment had been carried out and the questionnaires had been completed.

The study conducted a between-subject experiment, with each participant randomly assigned to one
of three robot modes that can be seen in Table 1.1.

(a) A participant in Leiden with the NAO
expressing fear (b) A participant in Delft with the NAO in its neutral mode

Figure 3.3: Two participants interacting with the NAO.

4
Results

In Section 4.1 the reliability of the questionnaire results is checked. In Section 4.2 the results are pre-
sented. In subsection 4.2.1 the spread of participants over the three robot modes is investigated. In
subsection 4.2.2 the Questionnaire results are presented and the effect of the different robot modes
is investigated. Subsection 4.2.3 effects on the learning progress and learning result are researched.
Subsection 4.2.4 describes the debriefing.

4.1. Reliability checks
Score Cronbach’s

Alpha
Animacy .637
Anthropomorphism .791
Attractiveness .876
Dependability .494
Efficiency .661
Novelty .628
Likeability .847
Perceived intelligence .623
Perspicuity .291
Stimulation .733

Table 4.1: This table displays the reliability of the
questionnaire results measured by Chronbach’s

alpha. A Cronbach’s alpha value lower than 0.60 is
commonly considered as inadequate.

To ensure the reliability of the data collected from the ques-
tionnaire, Cronbach’s alpha [29] was calculated. A high
value of Cronbach’s alpha indicates that the items are highly
correlated. To calculate Cronbach’s alpha, the correlation
between each item and the total score for this item is calcu-
lated, and the average of these correlations is used to esti-
mate the reliability of the questionnaire. A Cronbach’s alpha
value below values 0.60 are generally regarded as poorly
acceptable.

Due to their low consistency scores, the perspicuity and
dependability scores from the UEQwere not used. The Cron-
bach’s alpha for perspicuity was calculated to be 0.291 and
for dependability, it was 0.494. On the other hand, the other
UEQ scores had high Cronbach’s alpha values, with 0.876
for attractiveness, 0.661 for efficiency, 0.733 for stimulation,
and 0.628 for novelty. Similarly, Cronbach’s alpha was cal-
culated for Godspeed questionnaire with values of 0.791 for
anthropomorphism, 0.637 for animacy, 0.847 for likeability,
and 0.623 for perceived intelligence.

In summary, the study used Cronbach’s alpha to verify the reliability of the questionnaire data and
found that the perspicuity and dependability scores from the UEQ had low consistency. The study also
included three conditions with similar participant demographics and found no significant difference in
experience with robots and computer science among the conditions.

4.2. Results
After the reliability of the data had been investigated, an ANOVA (Analysis of Variance) [30] test had
been performed. An ANOVA is a statistical test used to analyse whether there are significant differences
between the means. An ANOVA is done by calculating the variance within and between groups, and
comparing these variances to determine if they are significantly different.

ANOVA tests the null hypothesis that there are no significant differences between the means of the
groups, and provides a p-value to determine whether this hypothesis should be rejected.

If the p-value obtained from the test is low (typically less than 0.05), the null hypothesis can be
rejected. The low p-value indicates that the probability of obtaining the found result by chance, while the
is no significant difference between the variance, is low.

A Multivariate Analysis of Variance (MANOVA) is similar to an ANOVA test, but it is used when con-
sidering multiple dependent variables simultaneously.

12

4.2. Results 13

4.2.1. The participants
Each robot mode had different participants. If the groups were significantly different, that might influence
the learning process, learning result, and user experience. To check for differences between the group,
the participants had to enter their age, gender, experience with robots, and experience in programming.

For the ages, the mean value and the standard deviation (SD) have been calculated.
Age, gender, and the number of participants were the same across all three conditions. Mode 1 had

20 participants, mean age of 30.20 years (SD = 13.950) and consisted of 11 males, 8 females, and one
other. Mode 2 had 20 participants, a mean age of 28.95 years (SD = 9.288), with 13 males and 7 females.
Mode 3 had 21 participants, a mean age of 32.67 years (SD = 15.631) and 13 males and 8 females.

ANOVA was used to test whether the experience with robots and computer science differed signif-
icantly among the conditions, but it was found that there was no significant difference [F(2,58)=0.076,
p=0.927].

Table 4.2: Results of Post Hoc LSD and ANOVA tests on the questionnaire answers for the comparison between robot modes.
Yellow values indicate significant differences in only the LSD Post Hoc test, green values indicate significant differences in both

tests. The effect size is indicated by the colour green for a medium effect and all other effect sizes are small.

4.2.2. Questionnaire results
To investigate the effect of the different robot modes on the user experience a MANOVA test has been
conducted on the combined Godspeed Questionnaire and UEQ. Godspeed measured the user experi-
ence on perceived anthropomorphism, animacy, likeability, and intelligence. This MANOVA did not show
any significant effects [F(8,108) = 1.325, p = .239]. The UEQ looked at the user experience on perceived
novelty, stimulation, efficiency, and attractiveness. This MANOVA did not show any significant effects
as well, [F(8,108) = 1.647, p = .120].

The p-values resulting from the univariate ANOVAs for each dependent variable can be seen in table
4.2, showing that only novelty has a significant [F(2, 58) = 3.485, p = .037, η2 = .107] effect, with a near
significant effect for animacy [F(2, 58) = 3.103, p = .052, , η2 = .097].

The medium effect size was found for both novelty and animacy, with η2 = .107 and η2 = .097,
respectively. Similarly, the effect size for attractiveness was also medium, with η2 = .069.

To test for differences between the different robot modes, Post Hoc ANOVA tests had been performed.
A Post Hoc ANOVA test is used to identify for which specific group the results differ (significantly) from
each other.

Because more groups are compared to each other, the probability of making a Type I error (false
positive) among a set of tests is higher. With the Bonferroni method the p-value is adjusted by dividing
the significance level by the number of comparisons [31], which is three in this scenario. With Bonferroni
correction for multiple comparisons, the only significant difference is on perceived novelty between the
no emotions and the emotions condition [Mean = 3.2411, SD = 0.57141; Mean = 3.6875, SD = 0.53186
respectively, with p = 0.034].

However, adding the Bonferroni correction resulted in most of the p-values being equal to 1, which
did not provide any useful information. To address this issue, a LSD Post Hoc test was performed, which
removed the Bonferroni correction and generated p-values below 1. This allowed for a more in-depth
analysis, but it was also noted that these results are prone to result in false positives.

4.2. Results 14

Without correction for multiple comparisons, the LSD Post Hoc test showed more significant differ-
ences (see Table 4.2). In particular, a significant difference had been found between the means of
Animacy for the robot without emotional expressions [Mean = 2.8917, SD = .57297] and the robot mode
with emotional expressions [Mean = 3.2667, SD = .49971] with p = .027 . A significant difference also
had been found between the mean of Animacy for the robot without emotional expressions and the mean
of Animacy with emotional expressions and attribution [Mean = 3.2222, SD = .48971] with p = .027.

A near significant difference was found between the means of Attractiveness for the robot without
emotional expressions [Mean = 3.5298, SD = 0.70933] and the robot mode with emotional expressions
[Mean = 3.8209, SD = .61618], p = 0.053. However, keep in mind that with the Bonferroni correction this
would be p = 0.159, which is not a significant result.

In figure 4.1 the mean scores for the User Experience questionnaire can be seen. The results of
the UEQ have been scaled to the scale of the Godspeed questionnaire, so for both questionnaires the
answers are on a scale from 1 to 5.

Figure 4.1: The means and 95% confidence interval error bars for the Godspeed questionnaire scores, including
Anthropomorphism, Animacy, Likeability, and Intelligence, alongside the scaled means for the UEQ scores of Novelty,

Stimulation, Efficiency, and Attractiveness, for different robot modes. Both the Godspeed and UEQ scores are on a 1 to 5 scale.

4.2. Results 15

Table 4.3: Results of LSD Post Hoc LSD and ANOVA tests on the measure values for the learning process and learning result for
the comparison between robot modes.

4.2.3. Learning process and result
For the leanring process and the learning result the p-values resulting from the univariate ANOVAs and
the Post Hoc ANOVA’s for each dependent variable can be seen in table 4.3.

None of the results on learning progress/outcome were significantly different between the robot condi-
tions. No differences were observed for the number of iterations needed to converge, the colour selection
of the human, the exploration/exploitation behavior of the human, the learning progress over time, or the
exploration/exploitation varying over time.

Figure 4.3 displays the distribution of the number of iterations for each learning progress score, as
well as the total number of iterations required to achieve a learning progress score of 3, which indicated
that the robot had successfully completed each colour task at least once. Figure 4.2 displays the mean
learning progress score over the participants for each iteration/trial number. The learning progress score
represents the amount of colours for which the task has been performed correctly at least once, which
means that the score can only increase.

The distribution of command selection, based on the robot’s success in executing the previous com-
mand, is presented in figure 4.6. The ratios for each variable were computed by dividing the number of
times it was selected by the user, by the total number of iterations.

Figures 4.4 and 4.5 depict the exploration and exploitation scores. An exploration action was defined
as a task for which the robot had not yet learned the corresponding colour, while an exploitation action
was defined as a task for which the robot had already learned the colour. Inefficient exploitation was
defined as performing an exploitation action before reaching a learning progress score of 3.

Figure 4.4 displays the mean ratios of exploration commands, exploitation commands, and inefficient
exploitation commands, along with 95% confidence interval error bars. The ratios were computed by
dividing the number of times each command was executed by the total number of iterations. The sum
of the exploration and exploitation ratios in the figure equals 1.00. The chosen action can only be either
an exploration or an exploitation action, which explains the equal p-values in table 4.3

Figure 4.5 shows the mean exploration/exploitation trade-off throughout the iterations, with each
curve representing the mean for participants in that condition. At the beginning of the experiment, the
only option was an exploration action, as none of the colours had been learned. As the experiment pro-
gressed, the robot learned the colours, and participants had the option to choose between exploration
and exploitation actions. By the end of the experiment, all colours had been learned, and only exploitation
actions were available.

4.2. Results 16

Figure 4.2: Learning curves for three robot conditions, calculated as means of the number of correct colours learned over the
iterations, which is a value between 0 and 3.

Figure 4.3: Bar plot with 95% confidence interval error bars of the mean of the number of iterations the robot took while it had
learned no correct colours, 1 correct colour, 2 correct colours, and with the total sum of iterations needed before it had learned all

colours correctly, which is the sum of the previous iterations.

4.2. Results 17

Figure 4.4: The 95% Confidence interval error bars and the means of the ratio of exploration commands, exploitation commands,
and inefficient exploitation commands, calculated for each variable by dividing the number of times it occurred by the total

number of iterations. The sum of the exploration and exploitation ratios in the figure adds up to 1.00.

Figure 4.5: Mean of the exploration/exploitation trade-off throughout the iterations. A value of 1 indicates exploitation and a
value of 0 indicates exploration.

4.2. Results 18

Figure 4.6: The means and 95% confidence interval error bars for the command selection ratios. The ratios were calculated for
each variable by dividing the number of times it was performed by the user by the total number of iterations. The command
selections were categorized based on the robot’s success in executing the previous command. The sum of ratios equals 1.

4.2.4. The debriefing
During the debriefing, all of the participants for robot mode 2 and 3 were able to identify all expressed
emotions.

Two participants shared their theories about the robot with emotions and their corresponding emo-
tional attributions. One participant observed that when the robot expressed fear for a certain colour, it
seemed to struggle with learning that colour. This observation was supported by instances where the
robot expressed fear and subsequently made errors in displaying the correct colour. Although this par-
ticipant managed to teach the robot all three colours in the end, they remained confident in their theory.

The other participant hypothesized that the robot’s expression of fear was based on colours associ-
ated with negativity. This was supported by the fact that the only colour that the robot showed fear for in
this experiment coincidentally happened to be red.

5
Conclusion/Discussion

The results demonstrate minimal differences between a robot without emotional expressions, one with
emotional expressions based on the learning process, and one with emotional expressions and an ex-
planation for its emotion.

This suggests that for uncomplicated tasks, emotional expressions grounded in RL neither help nor
hurt. Participants perceived the robot’s expressions as intended, the emotional model was thoroughly
evaluated in previous studies [14, 22, 23, 24, 25], pilot experiments were conducted to test the setup, all
the participants understood the task indicated by the completion of the task and lack of questions that
indicated otherwise, and the differences between the conditions were very noticeable. Therefore, it is
highly unlikely that this lack of a clear result can be explained by a lack of manipulation or a method-
ological flaw in the setup. Furthermore, since there was no negative effect on the user experience, the
expressions were apparently seen as natural and did not hinder the human in the task.

The learning task was carefully designed: it was simple enough to comprehend, involved a small RL
problem, ran smoothly and responded fast on the NAO robot, and was a clear teaching challenge that
was easy for the human teacher to monitor. It is believed that the minimal effect found in this experiment
has three reasons.

Firstly, the task is straightforward and easy, for a human, to oversee. The participant could easily
keep track of the colours that the robot had correctly shown. As emotions are simulated based on the
”mental state” of the RL system of the robot, the additional information this emotion gives to the human
teacher is perhaps not necessary. Emotion simulation might be more beneficial for tasks that are more
complex.

Secondly, even though the robot’s expressed emotion in this task provides information about the state
of the robot, there is no reason for the human to adapt the teaching strategy, as the goal is to teach the
robot the colours, whether or not it is happy, sad, hopeful, or fearful. For instance, if the robot displays
fear towards a particular colour command, there is no appropriate action for the human to take, such as
refraining from teaching that colour.

Thirdly, due to the task being so simple and fast, there was never a moment when the user had
to or could intervene. For example: if fear is a genuine signal of danger ahead, the human teacher
may stop the robot from going on and steer it towards another area of the task. Alternatively, if the
robot autonomously explores, and when the human sees the robot’s expression of hope, based on a
falsely predicted future benefit, the human can stop the robot. For this reason, the robot needs to have
some autonomy in the task, and a better impact measure of robot conditions may be the number of
(constructive) interventions the human teacher performs.

It is a valuable finding that emotional expressions based on RL did not hinder the human teacher for
this uncomplicated task. In fact, the neutral robot mode outperformed other two robot modes due to the
movements and sounds used to simulate the emotions. The neutral mode was easier to program than the
emotional expression mode. Once the learning algorithm and sound recognition were established, the
neutral mode was operational, while programming for the emotional expression mode required setting
up future TD prediction and movements for expressing emotions. Thus, knowing that a simple learning
task does not require complex behaviour for the human teacher to perform effectively can save both time
and effort.

Upon reflection, it is believed that the task may not have been suitable. This realization in itself is
considered a valuable contribution to the field. It is important that future research on interactive robot
learning with human teachers, where emotions are used as social signals to the teacher, takes into
account the aforementioned three aspects:

19

20

• The task complexity needs to be such that the human teacher cannot easily oversee the complete
process.

• Emotions need to convey information about how the human can influence the actions of the robot.
• The robot needs to have some meaningful autonomy in solving the task so that the human can
intervene triggered by the robot’s emotion.

References

[1] R.R. Hoffman et al. “Metrics for explainable AI: Challenges and prospects”. In: arXiv preprint
arXiv:1812.04608 (2018).

[2] J.Y.C. Chen and M.J. Barnes. “Human–agent teaming for multirobot control: A review of human
factors issues”. In: IEEE Transactions on Human-Machine Systems 44.1 (2014), pp. 13–29.

[3] C.Breazeal et al. “Effects of nonverbal communication on efficiency and robustness in human-robot
teamwork”. In: 2005 IEEE/RSJ international conference on intelligent robots and systems. IEEE.
2005, pp. 708–713.

[4] J. Kober, J.A. Bagnell, and J. Peters. “Reinforcement learning in robotics: A survey”. In: The Inter-
national Journal of Robotics Research 32.11 (2013), pp. 1238–1274. DOI: 10.1177/02783649134
95721. URL: http://ijr.sagepub.com/content/32/11/1238.abstract.

[5] J. Broekens and M. Chetouani. “Towards transparent robot learning through TDRL-based emo-
tional expressions”. In: IEEE Transactions on Affective Computing 12.2 (2019), pp. 352–362.

[6] E. T. Mueller. Transparent Computers: Designing Understandable Intelligent Systems. CreateS-
pace Independent Publishing Platform, 2016. ISBN: 1523408340.

[7] M. Boden et al. “Principles of robotics: regulating robots in the real world”. In: Connection Science
29.2 (2017), pp. 124–129. DOI: 10.1080/09540091.2016.1271400. eprint: https://doi.org/10.
1080/09540091.2016.1271400. URL: https://doi.org/10.1080/09540091.2016.1271400.

[8] C. Duhigg. “What Google Learned From Its Quest to Build the Perfect Team.” In: The New York
Times (2016). URL: https://www.nytimes.com/2016/02/28/magazine/what-google-learned-
from-its-quest-to-build-the-perfect-team.html.

[9] A. Edmondson, R. M. Kramer, and K. S. Cook. “Psychological safety, trust, and learning in orga-
nizations: A group-level lens building the future-how cross-industry teaming works”. In: Trust and
distrust in organizations: Dilemmas and approaches (December 2004).

[10] E. J. de Visser et al. “Towards a Theory of Longitudinal Trust Calibration in Human–Robot Teams”.
In: International Journal of Social Robotics 12 (2 May 2020), pp. 459–478. ISSN: 18754805. DOI:
10.1007/s12369-019-00596-x.

[11] J. Broekens. “A temporal difference reinforcement learning theory of emotion: A unified view on
emotion, cognition and adaptive behavior”. In: arXiv preprint arXiv:1807.08941 (2018).

[12] J. Broekens, E. Jacobs, and C.M. Jonker. “A reinforcement learning model of joy, distress, hope
and fear”. In: Connection Science (2015), pp. 1–19. ISSN: 0954-0091. DOI: 10.1080/09540091.
2015.1031081. URL: http://dx.doi.org/10.1080/09540091.2015.1031081.

[13] J. Broekens and L. Dai. “A TDRL Model for the Emotion of Regret”. In: 2019 8th International
Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 2019, pp. 150–156.
ISBN: 1728138884.

[14] L. Dai and J. Broekens. “Simulating Fear as Anticipation of Temporal Differences: an experimental
investigation”. In: 2021 9th International Conference on Affective Computing and Intelligent Inter-
action Workshops and Demos (ACIIW). IEEE. 2021, pp. 1–8.

[15] A. Hinderks, M. Schrepp, and J. Thomaschewski. User Experience Questionnaire. 2018. URL:
https://www.ueq-online.org/ (visited on 11/26/2022).

[16] B. Christoph et al. “Measurement instruments for the anthropomorphism, animacy, likeability, per-
ceived intelligence, and perceived safety of robots”. In: vol. 1. 2009. DOI: 10.1007/s12369-008-
0001-3.

[17] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A Survey”. In: Journal
of Artificial Intelligence Research 4 (1996). DOI: 10.1613/jair.301.

21

https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://ijr.sagepub.com/content/32/11/1238.abstract
https://doi.org/10.1080/09540091.2016.1271400
https://doi.org/10.1080/09540091.2016.1271400
https://doi.org/10.1080/09540091.2016.1271400
https://doi.org/10.1080/09540091.2016.1271400
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
https://doi.org/10.1007/s12369-019-00596-x
https://doi.org/10.1080/09540091.2015.1031081
https://doi.org/10.1080/09540091.2015.1031081
http://dx.doi.org/10.1080/09540091.2015.1031081
https://www.ueq-online.org/
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.1613/jair.301

References 22

[18] R.S. Sutton and A.G. Barto. Reinforcement Learning. Adaptive computation and machine learning
series. Cambridge, MA : The MIT Press, 2018. ISBN: 9780262039246.

[19] .S. Sutton and A.G. Barto. “Reinforcement Learning: An Introduction(2nd Ediction Draft)”. In: Ky-
bernetes (2017). ISSN: 0368492X.

[20] A. Asghari, M.K. Sohrabi, and F. Yaghmaee. “Task scheduling, resource provisioning, and load
balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic
algorithm”. In: The Journal of Supercomputing 77 (3 2021). ISSN: 1573-0484. DOI: 10 . 1007 /
s11227-020-03364-1.

[21] M. Tokic ad G. Palm. “Value-Difference Based Exploration: Adaptive Control between Epsilon-
Greedy and Softmax”. In: (2011). Ed. by Joscha Bach and Stefan Edelkamp, pp. 335–346.

[22] T. Moerland, J. Broekens, and C.M. Jonker. “Fear and Hope Emerge from Anticipation in Model-
BasedReinforcement Learning”. In:Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence (IJCAI-16). Ed. by Subbarao Kambhampati. AAAI Press, 2016, pp. 848–
854.

[23] M.B. Moussa and N. Magnenat-Thalmann. “Toward socially responsible agents: integrating attach-
ment and learning in emotional decision-making”. In: Computer Animation and Virtual Worlds 24.3-
4 (2013), pp. 327–334.

[24] A. Rossi et al. “Evaluation of a humanoid robot’s emotional gestures for transparent interaction”.
In: Social Robotics: 13th International Conference, ICSR 2021, Singapore, Singapore, November
10–13, 2021, Proceedings 13. Springer. 2021, pp. 397–407.

[25] G. Angelopoulos et al. “Transparent Interactive Reinforcement Learning Using Emotional Behaviours”.
In: Social Robotics: 14th International Conference, ICSR 2022, Florence, Italy, December 13–16,
2022, Proceedings, Part I. Springer. 2023, pp. 300–311.

[26] P. Thoma, D. Bauser, and B. Suchan. “BESST (Bochum Emotional Stimulus Set)-A pilot validation
study of a stimulus set containing emotional bodies and faces from frontal and averted view.” In:
Psychiatry research 209 (Dec. 2012). DOI: 10.1016/j.psychres.2012.11.012.

[27] J. Wu et al. “Generalized zero-shot emotion recognition from body gestures”. In: Applied Intelli-
gence 52 (June 2022). DOI: 10.1007/s10489-021-02927-w.

[28] M. Schrepp, A. Hinderks, and J. Thomaschewski. “Applying the user experience questionnaire
(UEQ) in different evaluation scenarios”. In: Design, User Experience, and Usability. Theories,
Methods, and Tools for Designing the User Experience: Third International Conference, DUXU
2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Pro-
ceedings, Part I 3. Springer. 2014, pp. 383–392.

[29] Lee J. Cronbach. “Coefficient alpha and the internal structure of tests”. In: Psychometrika 16 (3
1951). ISSN: 00333123. DOI: 10.1007/BF02310555.

[30] P. Stoker, G. Tian, and J.Y. Kim. “Analysis of variance (Anova)”. In: 2020. DOI: 10.4324/9780429
325021-11.

[31] W. Haynes. “Bonferroni correction”. In: Encyclopedia of systems biology (2013), pp. 154–154.

https://doi.org/10.1007/s11227-020-03364-1
https://doi.org/10.1007/s11227-020-03364-1
https://doi.org/10.1016/j.psychres.2012.11.012
https://doi.org/10.1007/s10489-021-02927-w
https://doi.org/10.1007/BF02310555
https://doi.org/10.4324/9780429325021-11
https://doi.org/10.4324/9780429325021-11

A
Consent form and Questionnaires

23

Effect of robot expressing emotions on user experience and reinforced learning process
and reinforced learning result

Informed consent form for participants
Researchers
Floortje Lĳcklama à Nĳeholt
E-mail: F.C.J.LĳcklamaaNĳeholt@student.tudelft.nl

Dr.ir. J. C. F. de Winter
E-mail: j.c.f.dewinter@tudelft.nl

Location
Faculty of Mechanical Engineering Delft University of Technology Mekelweg 2, 2628 CD, Delft, The Netherlands

Research purpose and experiment procedure
The purpose of this experiment is to investigate how robots can learn from humans. You will be asked to teach the robot the
colours red, green, and blue, within 10 minutes. There is no need to rush the task but do try to achieve this goal. After that, you
will be asked to fill in a questionnaire about how you experienced your interaction with the robot, as well as a few
demographic questions. The total duration of the experiment will be about 15 minutes.

Risk of participating
There are no expected risks. If you experience any discomfort, please inform the experiment supervisor so that the experiment
can be stopped.

Right to withdraw
Your participation is completely voluntary, and you may stop at any time during the experiment for any reason. There will be no
negative consequences for withdrawing from the experiment.

Data treatment
All data will be collected anonymously and used for academic research only. You will not be personally identifiable in future
publications based on this work, in data files shared with other researchers, or in data repositories. This signed consent form will
be kept in a dedicated locker.

Prevention of the spread of COVID-19
You may not participate if you show any symptoms indicative of COVID-19. You will be asked to disinfect your hands before
touching any equipment and surfaces. All equipment used in the experiment and surfaces will be disinfected before
participation.

Please respond to the following statements
Statement Yes No
I consent to participate voluntarily in this study.
I have read and understood the information provided in this document.

I adhere to the preventative measures with regard to COVID-19 explained above.
I understand that I can withdraw from the study at any time without anynegative
consequences.
I agree that the data collected during the experiment will be used for academic research
and may be presented ina publication and public data repository.

Signature
Name:

Date:

Signature: ___________________

A.1. Consent form

Please makeyour evaluation now.
This experiment is done to test interactions between a teacheranda robot. In this
interaction the robot was tasked with learning different colours,with the participant as
teacher.

For the experiment wewill useyour following data: age, gender, experience with
programming, experience with robots, and the answersin the following questionnaires.
This data will only be usedfor this research.

Do only continue if you agree to the usage of the before
mentioned data!
For the assessment of the NAO, please fill out the following questionnaires. The
questionnaire consists of pairsof contrasting attributes that mayapply to the product. The
circles between the attributes represent gradations between the opposites.The first
questionnaire has scores between 1 and 5 and the secondquestionnaire hasscores
between 1and7. Youcanexpress your agreement with the attributes by ticking the circle
that most closelyreflects your impression.

Example:

This response would mean that you rate the applicationas more attractive than unattractive.
Please decide spontaneously. Don’t think too long about your decision to makesure that
you convey your original impression.

Sometimes youmaynot be completely sureabout your agreement with aparticular
attribute, or youmayfind that the attribute does not apply completely to the particular
product. Nevertheless, please tick acircle in every line.

It is your personal opinion that counts.Please remember: there is no wrong or right answer!

Beforeyou start with the questionnaire about the robots behaviour, please answer the
following questionsabout yourself.

Attractive O O O O O O O Unattractive

Age:
Gender:
Howmanyexperience do you havewith robots? 0 O O O O O 5
Howmany experience do you havewith programming? 0 O O O O O 5

A.2. English questionnaire

Pleaserate your impression of Naoon these scales:
Dislike O O O O O Like
Awful O O O O O Nice
Apathetic O O O O O Responsive
Dead O O O O O Alive
Foolish O O O O O Sensible
Moving rigidly O O O O O Moving elegantly
Artificial O O O O O Lifelike
Machinelike O O O O O Humanlike
Mechanical O O O O O Organic
Unkind O O O O O Kind
Incompetent O O O O O Competent
Unconscious O O O O O Conscious
Fake O O O O O Natural
Unintelligent O O O O O Intelligent
Unpleasant O O O O O Pleasant
Irresponsible O O O O O Responsible
Unfriendly O O O O O Friendly
Ignorant O O O O O Knowledgeable
Inert O O O O O Interactive
Stagnant O O O O O Lively
Pleasealso rate your impression of Naoon these scales:

Annoying O O O O O O O Enjoyable
Not understandable O O O O O O O Understandable
Creative O O O O O O O Dull
Easyto learn O O O O O O O Difficult to learn
Valuable O O O O O O O Inferior
Boring O O O O O O O Exciting
Not interesting O O O O O O O Interesting
Unpredictable O O O O O O O Predictable
Fast O O O O O O O Slow
Inventive O O O O O O O Conventional
Obstructive O O O O O O O Supportive
Good O O O O O O O Bad
Complicated O O O O O O O Easy
Unlikable O O O O O O O Pleasing
Usual O O O O O O O Leading edge
Unpleasant O O O O O O O Pleasant
Secure O O O O O O O Not secure
Motivating O O O O O O O Demotivating
Meets expectations O O O O O O O Doesnot meet expectations
Inefficient O O O O O O O Efficient
Clear O O O O O O O Confusing
Impractical O O O O O O O Practical
Organized O O O O O O O Cluttered
Attractive O O O O O O O Unattractive
Friendly O O O O O O O Unfriendly
Conservative O O O O O O O Innovative

Devragenlĳst
Dit experiment wordt gedaanom interacties te testen tusseneen leraar en de robot. In deze
interactie kreegde robot de taak om kleuren te leren met de deelnemerals leraar.
Vanu als deelnemerwordt uw leeftĳd, geslacht, programmeerervaring, ervaringmet
robots, en uw antwoorden op dezevragenlĳst opgeslagen.Deze gegevens worden alleen
gebruikt voor het verwerken vande resultaten in dit onderzoek.

Alsu het ermee eensbent dat dezegegevensgebruikt worden, kan u verder
gaanmet dezevragenlĳst.

Voor debeoordeling vanhet product, vragenwe u detwee vragenlĳsten op de volgende
paginain te vullen. Devragenlĳsten bestaat uit verschillendepunten met ieder twee
tegengestelde eigenschappen die van toepassingzĳn op het product. Derondjes staanvoor
verschillende gradaties. Deene vragenlĳst op eenschaalvan1 tot 5 en de andere schaal
gaan van1 tot 7. Ukunt uw beoordeling gevendoor het rondje, die het meestuw indruk
weerspiegelt, aan te vinken.

Voorbeeld:

Dit antwoord zoubetekenendat uhet product beoordeelt alsmeeraantrekkelĳk dan
onaantrekkelĳk.

Het isde bedoelingdat u uw eerste ingevinginvult. Wacht niet te langmet invullen om te
voorkomendat u gaat twĳfelen over uw eerste ingeving.

Het kanzĳn dat uniet helemaalzekerbent vanuw antwoord of dat u de eigenschap niet
volledig van toepassing vindt, kruis dan toch een rondje aan.

Het isuw meningdie telt. Eris geengoedof fout antwoord!

Voordat u met de vragenlĳst begint over het gedragvande robot, worden er eerst 4 vragen
over uzelf gesteld:

Aantrekkelĳk O O O O O O O Onaantrekkelĳk

Leeftĳd:
Geslacht:
Hoeveelervaring heeft u met robots? 0 O O O O O 5
Hoeveelervaring heeft u met programmeren? 0 O O O O O 5

A.3. Dutch questionnaire

Beoordeelde interactie met NAOdoor eencĳfer te gevenop de volgendepunten:
Afkeer O O O O O Geliefd
Afschuwelĳk O O O O O Mooi
Apatisch O O O O O Responsief
Dood O O O O O Levend
Dwaas O O O O O Gevoelig
Houterige bewegingen O O O O O Vloeiende bewegingen
Kunstmatig O O O O O Levensecht
Lĳkend op eenmachine O O O O O Lĳkend op eenmens
Mechanisch O O O O O Organisch
Niet lief O O O O O Lief
Onbekwaam O O O O O Bekwaam
Onbewust O O O O O Bewustzĳn
Onecht O O O O O Natuurlĳk
Onintelligent O O O O O Intelligent
Onplezierig O O O O O Plezierig
Onverantwoordelĳk O O O O O Verantwoordelĳk
Onvriendelĳk O O O O O Vriendelĳk
Onwetend O O O O O Veelwetend
Passief O O O O O Interactief
Stilstaand O O O O O Levendig

Beoordeel daarnaook de interactie met NAOop de volgendepunten

Onplezierig O O O O O O O Plezierig
Onbegrĳpelĳk O O O O O O O Begrĳpelĳk
Creatief O O O O O O O Saai
Makkelĳk te leren O O O O O O O Moeilĳk te leren
Waardevol O O O O O O O Inferieur
Vervelend O O O O O O O Spannend
Oninteressant O O O O O O O Interessant
Onvoorspelbaar O O O O O O O Voorspelbaar
Snel O O O O O O O Langzaam
Origineel O O O O O O O Conventioneel
Belemmerend O O O O O O O Ondersteunend
Goed O O O O O O O Slecht
Complex O O O O O O O Eenvoudig
Afstotend O O O O O O O Aantrekkelĳk
Gebruikelĳk O O O O O O O Nieuw
Onaangenaam O O O O O O O Aangenaam
Vertrouwd O O O O O O O Niet vertrouwd
Motiverend O O O O O O O Demotiverend
Volgensverwachtingen O O O O O O O Niet volgensverwachtingen
Inefficiënt O O O O O O O Efficiënt
Overzichtelĳk O O O O O O O Verwarrend
Onpraktisch O O O O O O O Praktisch
Ordelĳk O O O O O O O Rommelig
Aantrekkelĳk O O O O O O O Onaantrekkelĳk
Aardig O O O O O O O Onaardig
Conservatief O O O O O O O Innovatief

B
Source Code

The main code
1 from agent import Agent
2 from environment import Environment
3 from robot import Robot
4 import time
5 import numpy as np
6 from autobahn.twisted.component import Component, run
7 from twisted.internet.defer import inlineCallbacks
8 from autobahn.twisted.util import sleep
9 import csv
10 states = 7
11 actions = 4
12 s = (states, actions, states)
13 transition_table = np.zeros(s)
14 agent = Agent(7, 4)
15 EMOTIONS = True
16 REASONS = True
17 DOUBLE_EMOTIONS = True
18 OptimismFactor = 1.1 # how much more the robot values the positive expected TD's over the

negative once for state 0
19 COLOURS_LEARNED = {0:False, 1: False, 2: False}
20

21 @inlineCallbacks
22 def main(session, details):
23 datafile = open('Data.csv', 'a')
24 writer = csv.writer(datafile, lineterminator='\n')
25 prev_state = []
26 next_state = []
27 prev_action = []
28 reward = 0
29 STANDING = True
30 LEARNING = True
31 TD = 0
32 state = 0
33 Language_settings = input("Language settings [1=Nederlands, 2=English]:\n")
34 Robot_mode = input("The emotive mode for the robot [1=no emotions, 2=simple emotions, 3=

emotions and reasoning]:\n")
35 User_name = "x" #input("The name of the user is:\n")
36 Language_settings = int(Language_settings)
37 environment = Environment(Language_settings)
38 if int(Robot_mode) == 1:
39 EMOTIONS = False
40 REASONS = False
41 elif int(Robot_mode) == 2:
42 EMOTIONS = True
43 REASONS = False
44 elif int(Robot_mode) == 3:
45 EMOTIONS = True
46 REASONS = True
47

48 robot = Robot(Language_settings, User_name, EMOTIONS, REASONS)
49 yield robot.startup(session)
50 startTime = time.perf_counter()
51 while LEARNING == True:
52 if state==0:
53 if (Language_settings == 1): yield session.call("rie.dialogue.say", text="Daar

gaan we")
54 else: yield session.call("rie.dialogue.say", text="Here we go")

29

30

55 if transition_table[state,:].max()>0:
56 Scaled_Expected_TD, reasons = agent.EmotionTD(state, transition_table,

OptimismFactor)
57 if EMOTIONS:
58 if Scaled_Expected_TD > 0.2:
59 yield robot.hopefull(session, state, reasons)
60 STANDING = False
61 elif Scaled_Expected_TD < -0.0:
62 yield robot.fear(session, state, reasons)
63 STANDING = False
64 # ask the environment for the possible actions
65 pos_actions = environment.possible(state)
66 # agent selects an action
67 action = agent.select_action(state, pos_actions)
68 # print(f"Am I standing: {STANDING}")
69 if STANDING == False: #If the robot is still striking a pose, it will go back to

standing
70 yield robot.stand(session)
71 STANDING = True
72 # print(f"Am I standing: {STANDING}")
73 if isinstance(action, int): # only if performing an action is possible
74 if isinstance(prev_state, int):
75 # agent performs internal updates based on sampled experience
76 agent.step(prev_state, prev_action, reward, state, action)
77 # agent performs the selected action
78 next_state, reward = yield environment.step(session, state, action, prev_state,

prev_action)
79 if reward != 0:
80 TD = agent.td(prev_state, prev_action, reward, state)
81 elif (DOUBLE_EMOTIONS and action == 0):
82 TD = agent.td(state, action, reward, next_state)
83 if EMOTIONS:
84 if TD > 0.2:
85 yield robot.happy(session)
86 yield sleep(1)
87 yield robot.slowstand(session)
88 STANDING = True
89 elif TD < -0.2:
90 yield robot.sad(session)
91 yield sleep(1)
92 yield robot.stand(session)
93 STANDING = True
94 else:
95 robot.no_emotions(session)
96

97 TD = 0
98 # update the transition table
99

100 if isinstance(action, list): # if next action is go back to start
101 FORCED = True
102 # agent performs internal updates based on sampled experience
103 agent.step(prev_state, prev_action, reward, state, prev_action, FORCED)
104 prev_action = []
105 prev_state = []
106 else:
107 prev_action = action
108 prev_state = state
109 transition_table[state, action, next_state] += 1
110 state = next_state
111 route, iterations, flipRoute, learningScore, totalExploration, totalExplotation,

ExplorationRatio, qtable0, qtable1, qtable2, qtable3 = agent.ExportValues(state,
reward)

112 print(f"learning score count {learningScore.count(3)}")
113 if ((time.perf_counter() - startTime)>=600.0) or (learningScore.count(3)>5) and (state

== 0): # If 10 minutes have passed or colours have been learned enough, we will
stop the test when the learning loop will restart or session.call("rom.optional.
behavior.play", name="BlocklyTouchToes")

114 yield robot.end(session)
115 LEARNING = False
116

117 session.leave() # Sluit de verbinding met de robot

31

118 new_data = User_name, Robot_mode, iterations, route, flipRoute, learningScore,
totalExploration, totalExplotation, ExplorationRatio, qtable0, qtable1, qtable2,
qtable3

119 writer.writerow(new_data)
120 datafile.close()
121

122 wamp = Component(
123 transports=[{
124 "url": "ws://wamp.robotsindeklas.nl",
125 "serializers": ["msgpack"],
126 "max_retries": 0
127 }],
128 realm="rie.641037a6cd363302f221068e",
129)
130

131

132 wamp.on_join(main)
133

134 if __name__ == "__main__":
135 run([wamp])

32

The agent code
1 import numpy as np
2 from q_table import QTable
3 import math
4 from environment import Environment
5 import random
6

7 class Agent:
8

9 def __init__(
10 self,
11 observation_space=7,
12 action_space=4,
13 alpha=0.5,
14 gamma=0.9,
15 epsilon=0.7,
16 epsilon_decay=0.85,
17 epsilon_min=0.1
18):
19 """ Initialize agent.
20

21 Params
22 ======
23 - nA: number of actions available to the agent
24 """
25 self.states = observation_space
26 self.nA = action_space
27 self.possible_actions = np.arange(self.nA)
28 self.all_actions = np.arange(self.nA)
29 self.epsilon_decay = epsilon_decay
30 self.epsilon = epsilon
31 self.epsilon_min = epsilon_min
32 self.q_table = QTable(
33 observation_space=observation_space,
34 action_space=action_space,
35 alpha=alpha,
36 gamma=gamma)
37 self.environment = Environment(1)
38 self.flipRoute = []
39 self.route = []
40 self.taskDescription = {0: "ask", 1: "red", 2: "green", 3: "blue"}
41 self.learningScore = []
42 self.totalExploration = 0
43 self.totalExplotation = 0
44 self.ExplorationRatio = []
45 self.RewardValue = 0
46

47

48 def update_epsilon(self):
49 self.epsilon = max(self.epsilon * self.epsilon_decay, self.epsilon_min)
50

51 def epsilon_greedy(self, state, pos_actions):
52 policy = np.ones(self.nA) * (self.epsilon/self.nA)
53 best_action_idx = np.argmax(self.q_table.q(state))
54 if pos_actions.count(best_action_idx)==0: #if the max value is an action that the

robot shouldn't know yet
55 if list(self.q_table.q(state)).count(0)==len(self.q_table.q(state)): # if

everything is 0, the odds are all equal
56 policy = np.ones(self.nA) * (1/self.nA)
57 else: # if not
58 index = np.where(self.q_table.q(state)[pos_actions]==0.)[0] # find all zero's
59 new_max_val = (1 - ((self.nA-len(index))*(self.epsilon / self.nA)))/len(index)
60 for i in index:
61 policy[i+min(pos_actions)]=new_max_val
62 else:
63 policy[best_action_idx] = (1 - self.epsilon) + (self.epsilon / self.nA)
64 print(f"policy is {policy}, epsillon is {self.epsilon}")
65 return policy
66

67 def select_action(self, state, pos_actions):

33

68 """ Given the state, select an action.
69 Params
70 ======
71 - state: the current state of the environment
72 - pos_actions: the possible actions the agent could perform from this state
73

74 Returns
75 =======
76 - action: an integer, compatible with the task's action space
77 """
78 if len(pos_actions) == 0:
79 action = []
80 return action
81 elif len(pos_actions) == 1:
82 action = pos_actions[0]
83 return action
84 else:
85 # self.possible_actions = np.array(pos_actions)
86 action_probabilities = self.epsilon_greedy(state, pos_actions)
87 # agent updates the variablele epsillon
88 self.update_epsilon()
89 checked = 0
90 #return the chosen action
91 while checked == 0:
92 choice = np.random.choice(self.all_actions, p=action_probabilities)
93 checked = pos_actions.count(choice)
94 return int(choice)
95

96 def step(self, state, action, reward, next_state, next_action, FORCED = False):
97 """ Update the agent's knowledge, using the most recently sampled tuple.
98

99 Params
100 ======
101 - state: the previous state of the environment
102 - action: the agent's previous choice of action
103 - reward: last reward received
104 - next_state: the current state of the environment
105 - FORCED; when the agent is at it last state the update will be "forced", True or

False, if not identified, it is assumed to be false
106 """
107 self.q_table.sarsa_update(state, action, reward, next_state, next_action, FORCED)
108

109 def td_table(self, transition_table):
110 """ Generate a table existing out of the expected TD values for all actions that the

agent has once performed
111

112 Params
113 ======
114 - transition_table: all actions that the agent has once performed, in the form of

state, chosen action, new state
115 - state: the state for the simulation for the TD
116 - action: possible actions in states
117 - newstate: state that the action will take the robot to
118 - TD_table: a table will all expected TD values based the states that the robot has

once visited
119 """
120 s = (self.states, self.nA, self.states) # all available combi's
121 TD_table = np.zeros(s) # first set all to zero
122 for state in range(self.states):
123 for action in range(self.nA):
124 for newstate in range(self.states):
125 if transition_table[state, action, newstate]!= 0: # the action needs to be

performed at least once
126 reward = self.environment.reward(action, state)
127 TD = self.q_table.temporal_difference(state, action, reward, newstate)

#calculate the TD value
128 TD_table[state, action, newstate] = TD
129 return TD_table
130

131 def EmotionTD(self, s, transition_table, OptimismFactor):
132 reasons = 0

34

133 TD_table = self.td_table(transition_table)
134 # for the task states we just calculate the maximum value, as the robot chooses via

greedy
135 if s < 4 and s!=0:
136 future_max = self.TaskStateTD(s, TD_table)
137 # Expected_TD = future_max
138 Scaled_Expected_TD = future_max
139

140 # for the main state we base the expexted TD on the amount of times the robot has
visited the task state and the expected TD in that state

141 elif s == 0:
142 max_values = [0, 0, 0, 0]
143 scaled_max_values = [0, 0, 0, 0]
144 # we will check for each task state what the TD would be
145 for i in range(1,4):
146 future_max = self.TaskStateTD(i, TD_table)
147 max_values[i] = future_max
148 scaled_max_values[i] = future_max
149 if np.isnan(future_max): scaled_max_values[i] = 0
150 elif future_max > 0: scaled_max_values[i] = future_max * OptimismFactor
151 Scaled_Expected_TDs = scaled_max_values #np.multiply(transition_table[0,0,:4],

scaled_max_values)
152 print(f'For the next states the TD is officially {max_values} but will be {

Scaled_Expected_TDs}, and the transitions are {transition_table[0,0,:4]}')
153 # print(f"scaled expected tds are: {Scaled_Expected_TDs}, abs are {abs(

Scaled_Expected_TDs)}, max is {max(abs(Scaled_Expected_TDs))}")
154

155 reasons = np.where(abs(Scaled_Expected_TDs) == max(abs(Scaled_Expected_TDs)))
156 reasons = int(reasons[0][0])
157 Scaled_Expected_TD = Scaled_Expected_TDs[reasons]
158 # Added_TD = [scaled_max_values[i] + TD_table[0,0,i] for i in range(len(

scaled_max_values))]
159

160 return Scaled_Expected_TD, reasons
161

162 def TaskStateTD(self, s, TD_table):
163 # for the task states we just calculate the maximum value, as the robot chooses via

greedy
164 Future_TD = TD_table[s, :, :]
165 for action in range(self.nA):
166 for newstate in range(self.states):
167 if Future_TD[action, newstate]== 0:
168 Future_TD[action, newstate] = None
169 future_max = np.nanmax(Future_TD)
170 # print(f'Future_TD looks like {Future_TD}')
171 # print(f'Future_Max is {future_max} abs max is {AbsMax}')
172 # print(f'Is this the actual value of the absMax? {BetterMax}')
173 return future_max
174

175 def td(self, state, action, reward, newstate):
176 """Calculate the indivudual TD values
177

178 Params
179 ======
180 - TD: The temporal difference based on the following parameters:
181 - state: the state from which we will calculate the TD
182 - action: the chocen action for that state
183 - newstate: state that the action will take the robot to
184 - reward: the simulated reward the robot will get with this combination
185 """
186

187 TD = self.q_table.temporal_difference(state, action, reward, newstate) #calculate the
TD value

188 return TD
189

190 # def q_table(self):
191 # return QTable.all_q()
192

193 def ExportValues(self, state, reward):
194 Flip = False
195 print(f"state is {state}")

35

196 if reward != 0:
197 self.RewardValue = reward
198 if 4 <= state <= 6: # for this values the robot has tried to perform an colour

action, which indicates the end of a single loop
199 self.oldTask = self.task
200 learningScore = 0
201 for i in range (1,4): # see for how many of the tasks the max q value has been

found
202 if self.q_table.max_q(i) > 0.0:
203 learningScore += 1
204 self.learningScore.append(learningScore)
205 print(f"Current learning score is {self.learningScore}")
206 self.qtable0.append(self.q_table.q(0))
207 self.qtable1.append(self.q_table.q(1))
208 self.qtable2.append(self.q_table.q(2))
209 self.qtable3.append(self.q_table.q(3))
210 elif 1 <= state <= 3: # for this values the user has recently given a task
211 self.task = self.taskDescription[state]
212 if self.q_table.max_q(state) > 0.0: # if route with a positive reward has been

found, the task will be seen as an explotation task
213 self.totalExplotation += 1
214 else: # else it is exploration
215 self.totalExploration += 1
216 if self.totalExplotation is not 0: # Calculating the exploration/explotation

ratio
217 ExplorationRatio = self.totalExploration/self.totalExplotation
218 else: # If we are going to devide by zero, we

don't do that
219 ExplorationRatio = self.totalExploration
220 self.ExplorationRatio.append(ExplorationRatio)
221

222 try:
223 if self.oldTask == self.task: # the user decided to repeat the same task
224 Flip = False
225 else: # the user switched tasks
226 Flip = True
227 self.flipRoute.append(self.task)
228 self.flipRoute.append(self.RewardValue)
229 self.flipRoute.append(Flip)
230 except AttributeError:
231 print("first loop probably?")
232 self.flipRoute.append(self.task)
233 self.flipRoute.append(0)
234 self.qtable0 = []
235 self.qtable1 = []
236 self.qtable2 = []
237 self.qtable3 = []
238

239 self.route.append(state)
240 iterations = self.route.count(0) # see how often the "main" state has been visited,

which will indicate the amount of iterations that has been done
241 return self.route, iterations, self.flipRoute, self.learningScore, self.

totalExploration, self.totalExplotation, self.ExplorationRatio, self.qtable0, self
.qtable1, self.qtable2, self.qtable3

36

The environment code
1 from autobahn.twisted.component import Component, run
2 from twisted.internet.defer import inlineCallbacks
3 from autobahn.twisted.util import sleep
4 from robot import Robot
5

6 class Environment:
7 def __init__(
8 self,
9 Language_settings
10):
11 """ Initialize environment.
12

13 Params
14 ======
15 - Language_settings: 1 for Dutch, 2 for English
16 """
17 self.Language_settings = Language_settings
18 self.TimesAsked = 0
19 self.Reward =[[0, 0, 0, 0, 0, 0, 0],
20 [0, 1, -1, -1, 0, 0, 0],
21 [0, -1, 1, -1, 0, 0, 0],
22 [0, -1, -1, 1, 0, 0, 0]]
23 self.robot = Robot(1, "x", False, False)
24

25 @inlineCallbacks
26 def step(self, session, state, action, prev_state, prev_action):
27 """ Update the environment based on the action that the agent has chosen
28

29 Params
30 ======
31 - action: the agent's choice of action
32 0 for "ask", 1 for "red", 2 for "green", 3 for "blue'
33 - state: the current state the agent is in
34 0 for "home", 1 for "taks red", 2 for "task green", 3 for "task blue', 4 for "

perform red", 5 for "perform green", 6 for "perform blue"
35

36 Returns
37 - reward: reward received
38 only a value in state 4, 5, 6, else 0
39 - next_state: the current state of the environment
40 1 for "taks red", 2 for "task green", 3 for "task blue', 4 for "perform red", 5

for "perform green", 6 for "perform blue", [] for "restart"
41

42 """
43 if action == 0: # if action is "ask"
44 next_state = yield self.perform(session, action)
45 elif action == 1 or action == 2 or action == 3: # if action is change to a colour
46 yield self.perform(session, action)
47 next_state = 3 + action
48 else:
49 fake_reward = yield self.receive_reward(session, state)
50 next_state = 0
51 if isinstance(prev_action, int):
52 reward = self.reward(prev_action, prev_state)
53 # print(f"reward is {reward}")
54 else: reward = 0
55 return next_state, reward#(action, state)
56

57

58 def reward(self, action, state):
59 """ ask the environment what actions are possible
60

61 Params
62 ======
63 - state: the current state of the environment
64 - action: the action that has been chosen to get to this state
65

66 Returns
67 =======

37

68 - reward: the reward based on the action/state combination
69 """
70 reward = self.Reward[action][state]
71 return reward
72

73 def possible(self, state):
74 """ ask the environment what actions are possible
75

76 Params
77 ======
78 - state: the current state of the environment
79

80 Returns
81 =======
82 - pos_action: the possible actions the agent can perform in this state
83 """
84 if state == 0: #if in "home state"
85 pos_action = [0] # only action is to ask for a task
86 elif state == 1 or state == 2 or state == 3: # if in a task state
87 pos_action = [1, 2, 3] #actions are changing eye colours
88 else:
89 pos_action = []
90 return pos_action
91

92 @inlineCallbacks
93 def receive_reward(self, session, state):
94 """ if possible, ask what the rewards is from the performed action, if not possible,

rewards is zero
95

96 Params
97 ======
98 - state: the current state of the environment
99

100 Returns
101 =======
102 - reward: the rewards based on the performed action
103 """
104 # global keyword_listener2
105 self.answer = 0
106 reward = 0
107 session.call("rom.optional.behavior.play", name="BlocklyStand")
108 if (self.Language_settings == 1): #Nederlandse settings
109 yield session.call("rie.dialogue.keyword.clear")
110 question = "Is dit de juiste kleur?"
111 yield session.call("rie.dialogue.keyword.add",
112 keywords=["ja", "nee"])
113 elif (self.Language_settings == 2): #Engelse settings
114 yield session.call("rie.dialogue.keyword.clear")
115 question = "Is this the right colour?"
116 yield session.call("rie.dialogue.keyword.add",
117 keywords=["yes", "no"])
118 yield session.call("rie.dialogue.say", text=question)
119 print ("Ik luister nu")
120 session.call("rom.actuator.light.write", mode="linear", frames=[{"time": 100, "data":

{"body.head.eyes": [50, 50, 50]}}])
121 if state == 4: session.call("rom.actuator.light.write", mode="linear", frames=[{"time"

: 100, "data": {"body.head.eyes": [250, 0, 0]}}])
122 elif state == 5: session.call("rom.actuator.light.write", mode="linear", frames=[{"

time": 100, "data": {"body.head.eyes": [0, 250, 0]}}])
123 elif state == 6: session.call("rom.actuator.light.write", mode="linear", frames=[{"

time": 100, "data": {"body.head.eyes": [0, 0, 250]}}])
124

125 keyword_listener = yield session.subscribe(self.on_keyword,
126 "rie.dialogue.keyword.stream")
127 yield session.call("rie.dialogue.keyword.stream")
128 # answer = input("Was dat goed? [j/n]")
129

130 while self.answer == 0:
131 yield sleep(0.01) # hier moet een timeout die gecancelled kan worden door de event

handler
132

38

133 if self.answer == 4: #goed
134 reward = 1
135 elif self.answer == 5: # fout
136 reward = -1
137

138 yield keyword_listener.unsubscribe()
139 yield session.call("rie.dialogue.keyword.close")
140 yield session.call("rie.dialogue.keyword.clear")
141 session.call("rom.actuator.light.write",
142 mode="linear",
143 frames=[{"time": 1000, "data": {"body.head.eyes": [0, 0, 0]}}])
144 return reward
145

146 def on_keyword(self, frame):
147 print(frame)
148 if ("certainty" in frame["data"]["body"] and frame["data"]["body"]["certainty"] > self

.certainty and
149 ((frame["data"]["body"]["text"] == 'rood') or (frame["data"]["body"]["text"]

== 'red'))):
150 self.answer = 1
151 print("ik hoorde rood")
152 elif ("certainty" in frame["data"]["body"] and frame["data"]["body"]["certainty"] >

self.certainty and
153 ((frame["data"]["body"]["text"] == 'groen') or (frame["data"]["body"]["text"]

== 'green'))):
154 # sess.call("rie.dialogue.say", text= "groen")
155 self.answer = 2
156 print("ik hoorde groen")
157 elif ("certainty" in frame["data"]["body"] and frame["data"]["body"]["certainty"] >

self.certainty and
158 ((frame["data"]["body"]["text"] == 'blauw') or (frame["data"]["body"]["text"]

== 'blue'))):
159 # sess.call("rie.dialogue.say", text= "blauw")
160 self.answer = 3
161 print("ik hoorde blauw")
162 elif ("certainty" in frame["data"]["body"] and frame["data"]["body"]["certainty"] >

self.certainty and
163 ((frame["data"]["body"]["text"] == 'yes') or (frame["data"]["body"]["text"] ==

'ja'))):
164 self.answer = 4
165 print("ik hoorde dat het goed was")
166 elif ("certainty" in frame["data"]["body"] and frame["data"]["body"]["certainty"] >

self.certainty and
167 ((frame["data"]["body"]["text"] == 'no') or (frame["data"]["body"]["text"] ==

'nee'))):
168 self.answer = 5
169 print("ik hoorde dat het fout was")
170

171 @inlineCallbacks
172 def ask(self, session):
173 """ performing action "ask", in which the agent will ask the user what the next task

should be
174

175 Params
176 ======
177

178 Returns
179 =======
180 - answer: the task that the user has given the robot. 1 for task "red", 2 for task "

green", and 3 for task "blue"
181 """
182 # global waiting
183 self.sess = session
184 self.answer = 0
185 self.certainty = 0.45
186

187 if (self.Language_settings == 1): #Nederlandse settings
188 yield session.call("rie.dialogue.keyword.clear")
189 if self.TimesAsked < 8: question = "Welke kleur zou ik mijn ogen moeten maken,

rood, groen of blauw?"
190 else: question = "Welke kleur zou ik mijn ogen moeten maken?"

39

191 yield session.call("rie.dialogue.say", text=question)
192 yield session.call("rie.dialogue.keyword.add",
193 keywords=["rood", "blauw", "groen"])
194 elif (self.Language_settings == 2): #Engelse settings
195 yield session.call("rie.dialogue.keyword.clear")
196 if self.TimesAsked < 4: question = "To what colour should I change my eyes, red,

green, or blue?"
197 else: question = "To what colour should I change my eyes?"
198 yield session.call("rie.dialogue.say", text=question)
199 yield session.call("rie.dialogue.keyword.add",
200 keywords=["red", "blue", "green"])
201

202 task_listener = yield session.subscribe(self.on_keyword,
203 "rie.dialogue.keyword.stream")
204 yield session.call("rie.dialogue.keyword.stream")
205 print ("Ik luister nu")
206 session.call("rom.actuator.light.write", mode="linear", frames=[{"time": 100, "data":

{"body.head.eyes": [50, 50, 50]}}])
207

208 while self.answer == 0:
209 yield sleep(0.01)
210

211 yield task_listener.unsubscribe()
212 yield session.call("rie.dialogue.keyword.close")
213 yield session.call("rie.dialogue.keyword.clear")
214 self.TimesAsked += 1
215 session.call("rom.actuator.light.write", mode="linear", frames=[{"time": 100, "data":

{"body.head.eyes": [0, 0, 0]}}])
216 return self.answer
217

218 @inlineCallbacks
219 def perform(self, session, action): #, session
220 """ perform the action
221

222 Params
223 ======
224 - action: the chosen action that has to be performed
225

226 Returns
227 =======
228 - answer: in the scenario in which the task is "ask", the agent asks which task it has

to perform,
229 this will return 1 for task "red", 2 for task "green", and 3 for task "

blue"
230 """
231 if (action == 0):
232 answer = yield self.ask(session)
233 return answer
234 elif (action == 1):
235 # maak ogen rood
236 session.call("rom.actuator.light.write", mode="linear",
237 frames=[{"time": 1000, "data": {"body.head.eyes": [255, 0, 0]}}])
238 print("ik voer nu taak rood uit")
239 elif (action == 2):
240 # maak ogen groen
241 session.call("rom.actuator.light.write", mode="linear",
242 frames=[{"time": 1000, "data": {"body.head.eyes": [0, 255,0]}}])
243 print("ik voer nu taak groen uit")
244 elif (action == 3):
245 # maak ogen blauw
246 session.call("rom.actuator.light.write", mode="linear",
247 frames=[{"time": 1000, "data": {"body.head.eyes": [0, 0, 255]}}])
248 print("ik voer nu taak blauw uit")

40

The robot code
1 from autobahn.twisted.component import Component, run
2 from twisted.internet.defer import inlineCallbacks
3 from autobahn.twisted.util import sleep
4 import random
5

6 class Robot:
7 def __init__(
8 self,
9 language_settings,
10 user_name,
11 EMOTIONS,
12 REASONS
13):
14 self.language_settings = language_settings
15 self.user_name = user_name
16 self.EMOTIONS = EMOTIONS
17 self.REASONS = REASONS
18 self.lidwoord = {0:"dit", 1:"dat", 2:{"this"}, 3:{"that"}}
19 # statements for Dutch
20 self.makkelijk2 = {0:"Ik heb er zin in", 1: "Kom maar op!", 2: "Dat gaat wel weer goed

 komen"}
21 self.lastig2 = {0: "Oei dit vind ik spannend", 1: "O nee dit gaat vast niet.", 2: "O

nee, dit gaat fout"}
22 self.succesvol = {0: "hoera", 1: "Jippie", 2: "Wat fijn"}
23 self.mislukt = {0: "Drommels", 1: "Helaas", 2: "Wat jammer"}
24 self.neutraal = {0: "Oké", 1: "Bedankt", 2: "Prima"}
25 self.makkelijk1 = {0:"Ik heb er zin in", 1: "Kom maar op!", 2: "Dit gaat wel goed

komen"}
26 self.lastig1 = {0: "Oei dat vind ik spannend", 1: "O nee dat gaat vast niet.", 2: "O

nee, dit gaat fout"}
27 self.taak = {0: "vragen", 1: "rood", 2: "groen", 3: "blauw "}
28

29 # Statements for English
30 self.easy1 = {0:"I am looking forward to this", 1: "Let's go!", 2: "Okay. Let's go"}
31 self.tough1 = {0: "This is a bit scary for me", 1: "O no, it will go wrong again", 2:

"oh no, it will go wrong"}
32 self.succesful = {0: "hooray", 1: "Nice", 2: "Lovely"}
33 self.failed = {0: "O bother", 1: "Let's pretend that did not happen", 2: "How

unfortunate"}
34 self.neutral = {0: "Okay", 1: "Thank you", 2: "Check"}
35 self.easy2 = {0:"I am looking forward to this", 1: "Let's go!", 2: "Okay. Let's go"}
36 self.tough2 = {0: "This is a bit scary for me", 1: "O no, it will go wrong again", 2:

"oh no, it will go wrong"}
37 self.task = {0: "ask", 1: "red", 2: "green", 3: "blue"}
38

39 @inlineCallbacks
40 def startup(self, session):
41 yield session.call("rom.optional.behavior.play",
42 name="BlocklyStand")
43 yield session.call("rom.actuator.light.write",
44 mode="linear",
45 frames=[{"time": 1000, "data": {"body.head.eyes": [50, 50, 50]}}])
46 if (self.language_settings == 1): # Nederlands
47 # Zet de taal naar Nederlands:
48 yield session.call("rie.dialogue.keyword.language", lang="nl")
49 yield session.call("rie.dialogue.config.language", lang="nl")
50 session.call("rie.dialogue.say",
51 text=f"Hallo! Leuk dat je me wil helpen met kleuren leren! Laten we aan de

slag gaan.")
52 elif (self.language_settings == 2): #Engels
53 # Zet de taal naar Engels:
54 yield session.call("rie.dialogue.keyword.language", lang="en")
55 yield session.call("rie.dialogue.config.language", lang="en")
56 session.call("rie.dialogue.say",
57 text=f"Hello! Thank you for helping me learn colours. Let's start!")
58 yield session.call("rom.optional.behavior.play", name="BlocklyWaveRightArm")
59

60 @inlineCallbacks
61 def handsOpen(self, session):

41

62 # being sad
63 yield session.call("rom.actuator.motor.write",
64 mode="linear",
65 frames=[
66 {"time": 1500, "data": {"body.arms.right.hand": "Open"}},
67 {"time": 1500, "data": {"body.arms.left.hand": "Open"}}
68],
69 force=True)
70

71 @inlineCallbacks
72 def stand(self, session):
73 yield session.call("rom.optional.behavior.play",
74 name="BlocklyStand")
75 # session.leave() # Sluit de verbinding met de robot
76

77 @inlineCallbacks
78 def happy(self, session):
79 print ("I am happy")
80 versie = random.randint(0, 2)
81 if (self.language_settings == 1): session.call("rie.dialogue.say", text=self.succesvol

[versie])
82 else: session.call("rie.dialogue.say", text=self.succesful[versie])
83 yield session.call("rom.actuator.motor.write",
84 mode="linear",
85 frames=[
86 {"time": 1500, "data": {"body.head.pitch": -0.35}},
87 {"time": 1500, "data": {"body.legs.right.upper.pitch": 0.01}},
88 {"time": 1500, "data": {"body.legs.left.upper.pitch": 0.01}},
89 {"time": 1500, "data": {"body.legs.right.lower.pitch": 0.45}},
90 {"time": 1500, "data": {"body.legs.left.lower.pitch": 0.45}},
91 {"time": 1500, "data": {"body.arms.right.upper.roll": -0.7}},
92 {"time": 1500, "data": {"body.arms.left.upper.roll": 0.7}},
93 {"time": 1500, "data": {"body.arms.right.upper.pitch": -1.1}},
94 {"time": 1500, "data": {"body.arms.left.upper.pitch": -1.1}},
95 {"time": 1500, "data": {"body.arms.right.lower.roll": -0.75}},
96 {"time": 1500, "data": {"body.arms.left.lower.roll": 0.75}}
97],
98 force=True)
99

100 def slowstand(self, session):
101 yield session.call("rom.actuator.motor.write",
102 mode="linear",
103 frames=[
104 {"time": 1500, "data": {"body.head.pitch": 0.05}},
105 {"time": 1500, "data": {"body.legs.right.upper.pitch": -0.1}},
106 {"time": 1500, "data": {"body.legs.left.upper.pitch": -0.1}},
107 {"time": 1500, "data": {"body.legs.right.lower.pitch": 0.55}},
108 {"time": 1500, "data": {"body.legs.left.lower.pitch": 0.55}},
109 {"time": 1500, "data": {"body.arms.right.upper.roll": -0.25}},
110 {"time": 1500, "data": {"body.arms.left.upper.roll": 0.25}},
111 {"time": 1500, "data": {"body.arms.right.upper.pitch": 1.8}},
112 {"time": 1500, "data": {"body.arms.left.upper.pitch": 1.8 }},
113 {"time": 1500, "data": {"body.arms.right.lower.roll": 0.5}},
114 {"time": 1500, "data": {"body.arms.left.lower.roll": -0.5}}
115],
116 force=True)
117 session.call("rom.optional.behavior.play", name="BlocklyStand")
118

119 @inlineCallbacks
120 def sad(self, session):
121 print ("I am sad")
122 # being sad
123 versie = random.randint(0, 2)
124 if (self.language_settings == 1): session.call("rie.dialogue.say", text=self.mislukt[

versie])
125 else: session.call("rie.dialogue.say", text=self.failed[versie])
126 yield session.call("rom.actuator.motor.write",
127 mode="linear",
128 frames=[
129 {"time": 1000, "data": {"body.head.pitch": 0.35}},
130 {"time": 1000, "data": {"body.legs.right.upper.pitch": -0.75}},

42

131 {"time": 1000, "data": {"body.legs.left.upper.pitch": -0.75}},
132 {"time": 1000, "data": {"body.legs.right.lower.pitch": 1}},
133 {"time": 1000, "data": {"body.legs.left.lower.pitch": 1}},
134 {"time": 1000, "data": {"body.arms.right.upper.roll": -0.1}},
135 {"time": 1000, "data": {"body.arms.left.upper.roll": 0.1}},
136 {"time": 1000, "data": {"body.arms.right.upper.pitch": 1}},
137 {"time": 1000, "data": {"body.arms.left.upper.pitch": 1}},
138 {"time": 1000, "data": {"body.arms.right.lower.roll": -0.9}},
139 {"time": 1000, "data": {"body.arms.left.lower.roll": 0.9}}
140],
141 force=True)
142 # session.leave() # Sluit de verbinding met de robot
143

144 @inlineCallbacks
145 def hopefull(self, session, state, reasons):
146 print ("I am hopeful")
147 versie = random.randint(0, 2)
148

149 # being being hopefull
150 session.call("rom.actuator.motor.write",
151 mode="linear",
152 frames=[
153 {"time": 1000, "data": {"body.head.pitch": 0.05}},
154 {"time": 1000, "data": {"body.arms.right.upper.roll": -0.1}},
155 {"time": 1000, "data": {"body.arms.left.upper.roll": 0.1}},
156 {"time": 1000, "data": {"body.arms.right.upper.pitch": 1.25}},
157 {"time": 1000, "data": {"body.arms.left.upper.pitch": 1.25}},
158 {"time": 1000, "data": {"body.arms.right.lower.roll": 2}},
159 {"time": 1000, "data": {"body.arms.left.lower.roll": -2}},
160 {"time": 1500, "data": {"body.legs.right.upper.pitch":

-0.1}},
161 {"time": 1500, "data": {"body.legs.left.upper.pitch": -0.1}},
162 {"time": 1500, "data": {"body.legs.right.lower.pitch": 0.55}},
163 {"time": 1500, "data": {"body.legs.left.lower.pitch": 0.55}}
164],
165 force=True)
166 if state == 0:
167 if (self.language_settings == 1):
168 yield session.call("rie.dialogue.say", text=self.makkelijk1[versie])
169 if self.REASONS:
170 yield session.call("rie.dialogue.say", text=f"Ik hoop dat het {self.taak[

reasons]} wordt!")
171

172 else:
173 yield session.call("rie.dialogue.say", text=self.easy1[versie])
174 if self.REASONS:
175 yield session.call("rie.dialogue.say", text=f"I am hoping for {self.task[

reasons]}!")
176 else:
177 if (self.language_settings == 1): yield session.call("rie.dialogue.say", text=self

.makkelijk2[versie])
178 else: yield session.call("rie.dialogue.say", text=self.easy2[versie])
179

180 # session.leave() # Sluit de verbinding met de robot
181

182 @inlineCallbacks
183 def fear(self, session, state, reasons):
184 print ("I am afraid")
185 # being afraid
186 session.call("rom.actuator.motor.write",
187 mode="linear",
188 frames=[
189 {"time": 1500, "data": {"body.head.pitch": 0.35}},
190 {"time": 1500, "data": {"body.legs.right.upper.pitch":

-0.2}},
191 {"time": 1500, "data": {"body.legs.left.upper.pitch": -0.2}},
192 {"time": 1500, "data": {"body.legs.right.lower.pitch": 0.65}},
193 {"time": 1500, "data": {"body.legs.left.lower.pitch": 0.65}},
194 {"time": 1500, "data": {"body.arms.right.upper.roll": -0.35}},
195 {"time": 1500, "data": {"body.arms.left.upper.roll": 0.35}},
196 {"time": 1500, "data": {"body.arms.right.upper.pitch": -0.5}},

43

197 {"time": 1500, "data": {"body.arms.left.upper.pitch": -0.5}},
198 {"time": 1500, "data": {"body.arms.right.lower.roll": 2}},
199 {"time": 1500, "data": {"body.arms.left.lower.roll": -2}},
200 {"time": 1500, "data": {"body.arms.right.lower.yaw": -0.1}},
201 {"time": 1500, "data": {"body.arms.left.lower.yaw": 0.1}},
202 {"time": 1500, "data": {"body.arms.right.hand.yaw": 2}},
203 {"time": 1500, "data": {"body.arms.left.hand.yaw": -2}}
204],
205 force=True)
206 versie = random.randint(0, 2)
207 if state == 0:
208 if (self.language_settings == 1):
209 yield session.call("rie.dialogue.say", text=self.lastig1[versie])
210 if self.REASONS:
211 yield session.call("rie.dialogue.say", text=f"Ik vrees dat het {self.taak[

reasons]} wordt.")
212

213 else:
214 yield session.call("rie.dialogue.say", text=self.tough1[versie])
215 if self.REASONS:
216 yield session.call("rie.dialogue.say", text=f"I am afraid it will be {self

.task[reasons]}.")
217 else:
218 if (self.language_settings == 1): session.call("rie.dialogue.say", text=self.

lastig2[versie])
219 else: session.call("rie.dialogue.say", text=self.tough2[versie])
220

221 # session.leave() # Sluit de verbinding met de robot
222

223 @inlineCallbacks
224 def no_emotions(self, session):
225 print ("I received feedback")
226 versie = random.randint(0, 2)
227 if (self.language_settings == 1): yield session.call("rie.dialogue.say", text=self.

neutraal[versie])
228 else: yield session.call("rie.dialogue.say", text=self.neutral[versie])
229 # session.leave() # Sluit de verbinding met de robot
230

231 @inlineCallbacks
232 def end(self, session):
233 yield session.call("rom.optional.behavior.play",
234 name="BlocklyStand")
235 if (self.language_settings == 1): # Nederlands
236 session.call("rie.dialogue.say",
237 text=f"Jippie! Ik heb nu de kleuren geleerd. Dank je wel!")
238 elif (self.language_settings == 2): #Engels
239 session.call("rie.dialogue.say",
240 text=f"Hoeray! I have learned the colours! Thank you!")
241 yield session.call("rom.optional.behavior.play", name="BlocklyWaveRightArm")
242 yield session.call("rom.optional.behavior.play", name="BlocklyStand")
243

244 @inlineCallbacks
245 def colourLearned(self, session, state):
246 yield session.call("rom.optional.behavior.play", name="BlocklyStand")
247 if state == 1: session.call("rom.actuator.light.write", mode="linear", frames=[{"time"

: 100, "data": {"body.head.eyes": [250, 0, 0]}}])
248 elif state == 2: session.call("rom.actuator.light.write", mode="linear", frames=[{"

time": 100, "data": {"body.head.eyes": [0, 250, 0]}}])
249 elif state == 3: session.call("rom.actuator.light.write", mode="linear", frames=[{"

time": 100, "data": {"body.head.eyes": [0, 0, 250]}}])
250 if (self.language_settings == 1): # Nederlands
251 yield session.call("rie.dialogue.say",
252 text=f"Kijk, ik weet nu goed wat {self.taak[state]} is!")
253 elif (self.language_settings == 2): #Engels
254 yield session.call("rie.dialogue.say",
255 text=f"Look! I know what {self.task[state]} is!")
256 session.call("rom.actuator.light.write", mode="linear", frames=[{"time": 100, "data":

{"body.head.eyes": [50, 50, 50]}}])

C
Scatter plots

Here scatter plots between different variables can be seen. In table C.1 the figure for specific combina-
tions can be found.

Animacy, Anthropomorphism, Attractiveness, Efficiency, Intelligence, Likeability, Novelty, and Stimu-
lation are on a 1 to 5 scale. Inefficient Exploitation is a count for how often an exploitation action before
reaching a learning progress score of 3 has been performed. This value can not be lower than 0 and
does not have an upper limit. L.P. = 3 location refers to the total number of iterations required to achieve
a learning progress score of 3. Very lucky participants could reach this score after3 iterations, and there
is no upper limit.

Although some relations can be found for some combinations of variables, no relations with regard
to the different robot modes can be found.

Table C.1: Post Hoc LSD results between robot modes and ANOVA P-values. Yellow values indicate a significance in a LSD
Post Hoc test, but no significance in a Bonferroni Post Hoc Test. Green indicates significance for both Post Hoc tests. All values

have been calculated with a univariance general linear model. For all ANOVA’s the degrees of freedom were: F(2, 58).

44

45

Figure C.1

Figure C.2

46

Figure C.3

Figure C.4

47

Figure C.5

Figure C.6

48

Figure C.7

Figure C.8

49

Figure C.9

Figure C.10

50

Figure C.11

Figure C.12

51

Figure C.13

Figure C.14

52

Figure C.15

Figure C.16

53

Figure C.17

Figure C.18

54

Figure C.19

Figure C.20

55

Figure C.21

Figure C.22

56

Figure C.23

Figure C.24

57

Figure C.25

Figure C.26

58

Figure C.27

Figure C.28

59

Figure C.29

Figure C.30

60

Figure C.31

Figure C.32

61

Figure C.33

Figure C.34

62

Figure C.35

Figure C.36

63

Figure C.37

Figure C.38

64

Figure C.39

Figure C.40

65

Figure C.41

Figure C.42

66

Figure C.43

Figure C.44

67

Figure C.45

	Summary
	Nomenclature
	Introduction
	Motivation and problem statement
	Main objective
	Research question

	Research methods
	Report outline

	Background information
	Introduction
	Temporal Difference Method
	Policies
	Softmax
	– Greedy

	Joy, Distress, Hope and Fear in the TDRL Theory of Emotion
	Related work on emotion simulation based on RL

	Method
	The learning task
	The robot
	Behaviour implementation
	Measurements
	Learning outcome
	Learning process
	User experience

	The experiment

	Results
	Reliability checks
	Results
	The participants
	Questionnaire results
	Learning process and result
	The debriefing

	Conclusion/Discussion
	References
	Consent form and Questionnaires
	Consent form
	English questionnaire
	Dutch questionnaire

	Source Code
	Scatter plots

