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Abstract

The highly conformal planned dose distribution achievable in Intensity Modu-
lated Proton Therapy (IMPT) can severely be compromised by uncertainties in
patient setup and proton range. While several robust optimization approaches
have been presented to address this issue, appropriate methods to accurately
estimate the robustness of treatment plans are still lacking. To fill this gap we
present Polynomial Chaos Expansion (PCE) techniques which are easily appli-
cable and create a meta-model of the dose engine by approximating the dose in
every voxel with multidimensional polynomials. This Polynomial Chaos (PC)
model can be built in an automated fashion relatively cheaply and subsequently
it can be used to perform comprehensive robustness analysis. We adapted PC
to provide among others the expected dose, the dose variance, accurate prob-
ability distribution of dose-volume histogram (DVH) metrics (e.g. minimum
tumor or maximum organ dose), exact bandwidths of DVHs, and to separate
the effects of random and systematic errors. We present the outcome of our
verification experiments based on 6 head-and-neck (HN) patients, and exem-
plify the usefulness of PCE by comparing a robust and a non-robust treatment
plan for a selected HN case. The results suggest that PCE is highly valuable
for both research and clinical applications.
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1 Introduction
Intensity Modulated Proton Therapy (IMPT) has the potential to surpass traditional radiotherapy due
to its ability to better conform the dose distribution to the exact shape of the tumor and thereby better
spare the surrounding healthy tissues. While this is highly desirable, the finite range of protons that
makes dose conformity possible is also the source of a major drawback: the significantly higher sensitivity
of IMPT treatments to uncertainties [1, 2, 3], which are always present due to inaccuracies in patient
setup, uncertainties in the conversion from Computer Tomography (CT) Hounsfield Unit into stopping
power, anatomical changes, etc. Clearly it is vital to assure that treatment plans are sufficiently robust
against these uncertainties.

In recent years considerable efforts have been made to address this issue. The two most widely used
methods are robust and probabilistic treatment planning. During robust planning a few worst case error
scenarios are taken into account (e.g. a maximum error in patient setup in one of the directions or in
proton range) and plans are optimized such that all constraints are respected in all of these scenarios
[4, 5, 6, 7]. In the probabilistic approach the errors are assumed to follow a certain distribution and
the optimization problem is formulated in a stochastic sense, subsequently the solution minimizes the
expected value of the objective function while satisfying all constraints with a given probability only
[4, 5, 8]. Theoretically both these strategies can provide superior treatment plans compared to current
planning methods under the realistic, uncertain conditions. In practice however several proton therapy
centers still use simpler techniques, such as the Single Field Uniform Dose (SFUD) approach, partially
because the daily application of such advanced optimization strategies is far less understood.

One reason for this is that although the above methods do allow the uncertainties to be taken into
account, they do not provide an accurate estimate of the actual sensitivities and the true robustness of the
generated plans. Appropriate tools for such evaluation after treatment planning are also lacking, since
unlike in traditional radiotherapy (where high energy photons are used and hence the dose distribution is
relatively invariant under small errors), in proton therapy the dose has to be recalculated for every error
scenario [9]. This makes the regular use of well-known Monte Carlo sampling techniques impractical,
since they require several hundreds or even thousands of dose calculations for sufficient accuracy [10].

Our paper demonstrates that Polynomial Chaos Expansion (PCE) methods [11] can fill this gap by
allowing truly comprehensive, yet fast robustness analysis of IMPT plans. PCE represents a meta-model
of the dose engine for a given plan and can be constructed by calculating the dose in a limited number
of predefined error scenarios. Once obtained, it provides among others the expected dose, the variance
of the dose, and makes it possible to calculate the full dose distribution in any given error scenario.
Consequently, for the purpose of comprehensive robustness analysis our work focuses on three main
aspects. First, we adapted existing Polynomial Chaos (PC) techniques for the analysis of radiotherapy
treatments. Second, we verified that PC can provide acceptable accuracy for real clinical IMPT plans
with affordable computational costs. Third, we extended the existing PC methodology to better suit
radiotherapy specific requirements. As a result the effects of random and systematic setup errors can
be separated, thousands of full dose distributions can be calculated in a matter of seconds, and the full
probability density function (PDF) of Dose Volume Histogram (DVH) metrics can be derived. This
enables the accurate estimation of the probability of adequate Clinical Target Volume (CTV) coverage
or the exact bandwidths of DVHs for instance. In conclusion, PCE allows a wide variety of estimates for
plan robustness to be derived (practically all measures previously introduced in the literature) and can
be a highly valuable tool in research as well as in clinical practice.

2 Methods and Materials
2.1 The Theory of Polynomial Chaos Expansion
The basic idea of Polynomial Chaos Expansion is to approximate the output of a model (e.g. the dose
distribution calculated by the dose engine in our case) as a polynomial function of the stochastic input
variables (e.g. errors in patient setup and proton range) [11]. Once this function - the PCE of the output
- is available, it constitutes a meta-model of the original system, which - among others - can be used to
quickly calculate the values of the response corresponding to different realizations of the uncertain inputs.
To perform PCE one has to follow three steps. First, the stochastic input variables and their distribution
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have to be specified, and appropriate polynomial basis functions have to be chosen (Section 2.1.1). Next,
the computational model has to be run with specific realizations of the input parameters to calculate the
corresponding outputs and to determine the expansion coefficients in the PCE (Section 2.1.2). Finally,
the results have to be post-processed (Section 2.1.3). For brevity only the most essential aspects of these
steps are detailed here, for all technical details see Section 1 of the Supplementary Materials (SM).

2.1.1 Input Uncertainties and Polynomial Chaos Basis Vectors

In proton therapy the most important uncertainties are the inaccuracies in patient setup (in the x, y and
z directions) and proton range. Other uncertainties - such as internal organ motion for example - are also
relevant, but our study does not cover these. Setup uncertainties have a systematic component (which
is constant for a given patient during the course of the treatment) and a random one (which is different
in each fraction). Range errors are usually assumed to be systematic and can have an absolute and a
relative component, however in this work only the latter one was taken into account (including absolute
range errors is straightforward though, they simply represent an additional input variable). These all
together constitute N = 7 distinct sources of uncertainties, which can be described by a stochastic input
vector ξ ∼ (δρ, δx, δy, δz, δX, δY, δZ), where δρ is the range error, δx and δX are the systematic and
random setup errors in the x direction respectively, etc. The systematic and random setup errors are
however additive and can be handled together as combined setup errors, i.e. as ∆x = δx+ δX for the x
direction, etc. As a result the uncertainties can be described by an only N = 4 dimensional stochastic
input vector ξ ∼ (δρ,∆x,∆y,∆z) (and consequently a computationally cheaper, but equally accurate
"compressed" PCE can be obtained, for more details see Section 1.4.1 of the SM).

Next the distribution of the input variables, i.e. their pξ
(
ξ
)
joint PDF has to be specified. In this work

it was assumed that the uncertainties are independent, therefore the joint PDF is simply the product of
the PDFs of the individual parameters, i.e. pξ

(
ξ
)

=
∏N
j=1 pξj

(ξj). Furthermore all uncertainties were
supposed to be Gaussian with zero mean and various standard deviations (see later in Section 2.2.3).

Last, the orthogonal basis of the PCE is specified. The Ψk

(
ξ
)
PC basis vectors are multidimen-

sional polynomials constructed by the tensorization of one-dimensional polynomials, i.e. as the product
of univariate polynomials each depending on a single input variable ξj . The type of the polynomial
family corresponding to parameter ξj depends on its distribution and follows the Wiener-Askey scheme
[12]. For our normally distributed parameters probabilists’ Hermite polynomials Heo are appropriate,
consequently all PC basis vectors are of the form of Ψk

(
ξ
)

=
∏N
j=1 Heok,j

(ξj), where ok,j in the sub-
scripts denotes the order of the polynomial corresponding to PC basis vector k and input parameter j.
A traditional choice is to use a full PC basis set, where all multidimensional polynomials up to a certain
combined order O are included (i.e. where

∑N
j=1 ok,j ≤ O). In this work a computationally more efficient

sparse basis set was used, where some of the high order multivariate basis vectors (representing strong
interactions between the input variables) were excluded. For further details see Section 1.1 of the SM.

Once the basis vectors are specified the Polynomial Chaos Expansion of a response R depending on
the ξ uncertain inputs as R

(
ξ
)
takes the form of

R
(
ξ
)

=
P∑
k=0

rkΨk

(
ξ
)
, (1)

where rk are the PC expansion coefficients (PCCs) corresponding to the Ψk

(
ξ
)
PC basis vectors and

P + 1 is the number of vectors in the basis set [11].

2.1.2 Polynomial Chaos Coefficients and Their Calculation Using Sparse Grids

Due to the orthogonality of the PC basis set (see Section 1.1.3 of the SM) the rk expansion coefficients
in Equation 1 can be determined as a spectral projection, i.e. as

rk =
〈
R
(
ξ
)
,Ψk

(
ξ
)〉〈

Ψk

(
ξ
)
,Ψk

(
ξ
)〉 =

∫ ∫
...
∫
R
(
ξ
)

Ψk

(
ξ
)
pξ
(
ξ
)

dξ1dξ2...dξN〈
Ψk

(
ξ
)
,Ψk

(
ξ
)〉 . (2)

The main issue in Equation 2 is the evaluation of the multidimensional integral in the numerator, since
it contains the unknown dependence of the response on the input parameters. In this work the Non-
Intrusive Spectral Projection (NISP) approach is followed and a sparse grid based numerical integration
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technique is used for this purpose [13]. The biggest advantage of this method is that it relies on using the
original computer code (that calculates R

(
ξ
)
corresponding to different values of ξ, in our case the dose

engine) as a black box and needs no modification of its source code (hence the non-intrusive adjective).
Therefore constructing the PCE of the dose distribution only needs the repeated execution of the dose
calculation algorithm to compute the dose in each voxel (which are the R

(
ξ
)
responses) in a limited

number of error scenarios. For all further technical details see Section 1.2 of the SM.

2.1.3 Post-processing the Polynomial Chaos Meta-model

Once the PCE is available it can be used to perform comprehensive sensitivity and uncertainty analysis of
the output. The mean and the variance of the response are readily available as µR =

∫
R
(
ξ
)
pξ
(
ξ
)

dξ =
r0 and σ2

R =
∫ (
R
(
ξ
)
− µR

)2
pξ
(
ξ
)

dξ =
∑∞
k=1 r

2
kh

2
k ≈

∑P
k=1 r

2
kh

2
k respectively, which follow from the

orthogonality of the PC basis set and the choice of the constant term as the zeroth term (Ψ0
(
ξ
)

=
1). Classic sensitivity analysis (i.e. determining the ∂R/∂ξj derivatives of the response) and variance
decomposition (e.g. calculating Sobol sensitivity indices to identify the main sources of the uncertainty
[14]) can be done analytically, as PCE is a simple function containing only polynomials. The full
probability density function of R (and more generally the PDF of any computationally cheap function
depending on the response) can also be obtained by sampling the PCE and using histograms or kernel
density estimators (as we only need to evaluate polynomials and potentially a simple function, even
millions of samples can be calculated in a matter of seconds for a single response, for more details see
Section 1.3 of the SM). To better satisfy the needs of our radiotherapy application we also extended
the general PCE methodology by devising two ways to construct new PCEs from an existing one. The
first makes it possible to separate the effects of additive Gaussian variables (resulting in an "extended"
PCE), the second to take the expected value over a subset of the inputs (making an "expected" PCE,
both detailed in Section 1.4 of the SM). These are particularly important for radiotherapy, as they allow
a convenient handling of random and systematic setup errors, such that the dependence of the expected
dose (used to approximate the cumulative dose blurred out by the random setup errors during the course
of a fractionated treatment, see in Section 2.5 of the SM) on the systematic errors can be investigated.
Consequently the probability of CTV underdosage or the exact bandwidths of DVHs corresponding to
any confidence level can be determined (see later in Section 2.3.2 and Section 3.3).

2.2 Radiotherapy Application of Polynomial Chaos Methods
2.2.1 Dose Calculation and Treatment Planning Tools

For our study all treatment plans were generated with Erasmus-iCycle [15, 16], an in-house developed
multicriteria optimization method, in which instead of combining the various objectives with different
weights into a single objective function, they are given priorities. The algorithm successively optimizes
for the objective with the highest priority, then sets it as a constraint and proceeds by optimizing for the
objective with the next priority. Erasmus-iCycle uses the dose engine of the ASTROID code developed
at Massachusetts General Hospital [17], and it enables robust optimization using the minimax approach
[6] with nine planning scenarios (nominal, 6 for worst case setup errors along the three principal axes
and 2 for range [18, 19]). Dose recalculation for a given setup error is done by shifting the pencil beams,
whereas range errors are taken into account by scaling the values of the CT image.

2.2.2 Polynomial Chaos Tools and Their Use

All Polynomial Chaos related calculations were done using a modified version of the Fully Adaptive
Non-Intrusive Spectral Projection (FANISP) algorithm [13, 20]. FANISP is a versatile PC tool coded in
Matlab, which can be coupled to external codes and is capable of building the PCE of responses using
traditional sparse grids with a fixed PC basis set, as well as doing this adaptively (i.e. using adaptive
sparse grids with a PC basis set constructed on-the-fly).

For the present work FANISP was coupled with Erasmus-iCycle as the external code. No adaptivity
was used, sparse grids were chosen a priori as Smolyak or Extended Smolyak sparse grids of different grid
orders (detailed in Section 1.2.2 and in Section 1.2.3 of the SM) and the corresponding dose calculations
were done with Erasmus-iCycle. To reduce memory requirements without compromising accuracy only
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those voxels were included in the PC models which had a dose exceeding 0.01 Gy in at least one of the
9 planning scenarios described in Section 2.2.1. The PCEs were built this way even in the cases where
the treatments themselves were planned without robust optimization.

To evaluate the accuracy of PC a detailed cost-accuracy analysis, i.e. a systematic evaluation of the
accuracy of different PC meta-models was done. Smolyak sparse grids with grid orders of 2, 3 and 4
were used to build sparse PCEs using O = 2, 3, 4 respectively. After analyzing these results the extended
Smolyak sparse grids were created by replacing the 4th order one-dimensional grids with 5th order ones
while increasing the total polynomial order to O = 5. In this way the optimal set of PC parameters
could be found that provided satisfactory results at minimal computational costs.

2.2.3 Investigated Patients and Uncertainties

For our initial exploratory investigations and the cost-accuracy analysis a head-and-neck (HN) patient
was chosen with a unilateral tumor. For treatment planning a simultaneous integrated boost technique
was used. The dose prescription was 66 Gy to the high dose CTV (consisting of the primary tumor
and the positive neck levels) and 54 Gy to the low dose CTV (containing the elective neck levels).
The treatment was planned for 30 fractions using 3 beam directions having angles of 60, 180 and 300
degrees. Plans were generated both without and with robust optimization, for the latter using the 9
planning scenarios described in Section 2.2.1 (nominal scenario, 6 scenarios with setup errors of ±3 mm,
2 scenarios with ranger errors of ±(3%+1 mm)). The cost-accuracy analysis was done for both plans,
along with a detailed study of the dependence of the voxel doses and other parameters on the errors.
Based on the results the PC basis set and the required sparse grids were chosen and fixed. This set of
parameters provides PC meta-models with O = 5th order sparse PC basis sets containing P + 1 = 73 PC
basis vectors and requires 217 evaluation with the dose engine according to 4th order extended Smolyak
sparse grids (the grids themselves need 209 calculations, 8 additional ones are used for the selection of
the included voxels as described in Section 2.2.2). For all subsequent calculations (and all calculations
presented in this paper) these settings were used. Further details of the cost-accuracy analysis can be
found in Section 2.2 and Section 2.1 of the SM.

For a larger scale, clinical verification of PC, 6 head-and-neck patients (3 bi- and 3 unilateral cases,
the latter including the example patient as well) were investigated with non-robustly optimized treatment
plans (robustly optimized plans showed very similar accuracy in terms of PCE performance). The dose
prescription was the same as for the example patient described above. In all cases the PCE of the dose
was constructed by taking into account 4 uncertainty sources (N = 4): 3 setup errors and 1 range error.
All were supposed to follow a Gaussian distribution with zero mean and various variances. The setup
errors represented the combined systematic and random components (see Section 1.4.1 of the SM) and
had σx = σy = σz = 2.828 mm (since for both components a 2 mm standard deviation was assumed and√

22 + 22 ≈ 2.828). The relative range uncertainty was σr = 2% [21].

2.3 Clinical Verification and Illustrative Use of PC
2.3.1 Verification Methods

Both during the cost-accuracy analysis and the clinical verification, the accuracy of PC was tested in
several error scenarios. These test scenarios all had different errors and were chosen such that they
covered 99% of the input phase space. They were generated by uniformly sampling each of the 4 errors,
making all possible combinations and retaining the ones within the 99% confidence ellipsoid [22] (for
more details see Appendix A). This procedure resulted in 681 test scenarios for each patient. For each
scenario the dose distribution was calculated by the dose engine (exact calculation) as well as by using
the PC meta-model(s) and the two were quantitatively compared.

Three metrics were used for the comparison. For each patient and each test scenario first a Γ-
evaluation was done [23, 24], with strict dose difference and distance-to-agreement criteria of ∆D =
0.1 Gy and ∆d = 1 mm respectively. These results were plotted in cumulative histograms similar to
DVHs, showing the proportion of scenarios that have at least a given fraction of accepted voxels from
the Γ-evaluation. To have a more quantitative measure of the dose errors the D2 of the dose difference
between PC and the dose engine was also analyzed. This is the minimal difference among the 2% of the
voxels having the largest dose difference and is denoted by ∆D2 in the rest of the paper. Finally, for each
patient the dose difference distribution (i.e. the fraction of voxels as a function of the dose difference)
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averaged over the simulated test scenarios was plotted, as well as the dose difference distribution in the
scenarios with the lowest fraction of accepted voxels by the Γ-evaluations (these are the scenarios in
which PC performs the worst).

Due to our method of choosing the test scenarios many of them lay on or very close to the surface of
the 99% confidence ellipsoid and therefore represent unlikely cases (see Figure 7b in Appendix A). For
example 20% of the them are beyond the 98% confidence level and only 50% are within the 95% level.
This - combined with the strict Γ-evaluation criteria - makes our evaluation method very rigorous, as
these improbable scenarios are taken into account with the same weight as the other more realistic ones.

2.3.2 Illustration of Comprehensive Robustness Analysis with PC

To demonstrate the usefulness of PC a comprehensive robustness analysis was performed for both the
robust and the non-robust plan of the example HN patient. The same uncertainties were assumed as
described in Section 2.2.3 and "extended" and "expected" PCEs were used to obtain various metrics of
robustness. Separately most of these methods have already been published in the literature, however
PC allows all of them to be derived and provides much higher accuracy than previously possible. The
applied metrics are as follows.

DVH clouds A simple way to investigate plan robustness is to plot several DVHs corresponding to
different error scenarios in the same figure [25, 21]. Such DVH clouds give a "feeling" of the variability of
the DVH, however they only provide information about the specific scenarios that are investigated. The
advantage of PCE here is that it allows a large number of scenarios to be investigated, and Section 3.3.1
highlights this by comparing the DVH clouds of a 100 scenarios and that of only the 9 planning scenarios.
For a fair comparison in these calculations both the random and the systematic errors were sampled (by
sampling the "extended" PCEs), therefore each of these DVHs can be thought of as a possible realization
of a single fraction treatment (or a fraction dose if scaled properly).

Dose Standard Deviation The standard deviation of the dose is a well defined metric, giving the
width of the PDFs of the dose in the individual voxels. Its distribution can be visualized on the CT
image, as well as summarized in Standard Deviation Volume Histograms (SDVH) [8]. The benefit of
PCE here is that it can provide the standard deviation computationally much cheaper than statistical
estimators (see in Section 2.3 of the SM for details). For all results in Section 3.3.2, as well as for the
rest of the metrics the "expected" PCEs were used and only the systematic errors were sampled when
needed (these PCEs hence represent the cumulative dose during the course of a fractionated treatment).

Under- and Overdosage Probability The dose uncertainty can also be visualized as target un-
derdosage or OAR overdosage probability [26, 10]. With PCE it is easy to derive these probabilities
accurately, since we can draw a large number of samples of the dose distribution (depending on the size
of the structure even up to 10000 - 100000) and simply count how many are above/below the defined
value. In Section 3.3.3 we illustrate such a use by plotting the probability of each voxel in the high and
low dose CTV on a representative slice of the CT not meeting their planning constraint (D ≥ 0.95 ·Dpr).

Dose Population Histograms Dose Population Histograms (DPHs) conveniently summarize the
spatial distribution of the dose uncertainty in a similar way as DVHs do for the dose itself [27]. A DPH
gives the probability that - or the fraction of the population in which - the given parameter is bigger
than a certain value. In Section 3.3.4 DPHs are used to investigate CTV underdosage and OAR doses.
Just like in the previous case, without PCE the accurate calculation of these probabilities would be
computationally much more expensive and far more complicated.

Dose Volume Histogram Distributions For a comprehensive description of the uncertainties DVH
distributions (DVHDs) were derived using α − DVH-s [28, 29]. An α − DVH(D) gives the volume
VD that receives a dose higher than D with a probability 1 − α, and can be obtained by sampling the
PCE of the dose, producing the DVH for each sample on the same dose grid, then determining the 1−α
percentiles. Subsequently α−DVH pairs for α and 1−α can be used to visualize the confidence intervals
around the DVH for confidence level 1 − 2α (Section 3.3.5). Once again PCE allows a sufficiently high
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number of samples in a matter of seconds, from which the accurate estimates of the confidence intervals
can be obtained.

3 Results
3.1 Clinical Verification of PCE For Head-and-Neck Patients
In Figure 1a the results of the gamma evaluations can be seen for the 6 investigated head-and-neck
patients. 82% of the voxels in all patients pass the test in all 681 test scenarios, and the dose is correctly
predicted by the PC model in more than 90% of the voxels in 95% of the scenarios. The pass rate rises
to 94% when looking at only 80% of the scenarios, representing the more probable error scenarios closer
to the nominal case (roughly the ones within the 98% confidence ellipsoid). To further investigate the
accuracy of PC the explicit differences between PCE and the dose engine (i.e. the exact calculation)
were examined. Figure 1b shows the ∆D2 parameter among the scenarios. In all patients the ∆D2 is
less than 3.5 Gy, furthermore in roughly 80% of the scenarios it is less than 1.5 Gy.

Naturally by looking at ∆D2 we lose some information as there are voxels that have a higher dose
difference than 3.5 Gy. Therefore the distribution of the dose difference is also depicted for the 6 patients,
both averaged over the 681 test scenarios (Figure 1c) as well as for the worst performing scenarios
(Figure 1d). As can be seen on average PC is very accurate, all voxels have an error smaller than 0.8 Gy
in all patients. Even for the worst performing scenarios the largest dose difference is around 4 Gy, and
90% of the voxels are accurate up to 2 Gy (these worst case scenarios were always the ones with an
extreme error in one of the directions or in the range, i.e. scenarios on the surface of the 99% confidence
ellipsoid which are the least likely to occur in clinical practice).

3.2 Computational Cost Assessment
Table I shows the required total time to construct the PCE for the different patients as well as the time
that was necessary to calculate the dose distribution corresponding to the 9 planning and a 1000 random
error scenarios. The time for the 9 scenarios was chosen instead of the time for a single one since in
Erasmus-iCycle multiple scenarios can always be calculated faster as a batch than one-by-one due to the
CT image scaling and data input-output issues, hence it was considered a more representative measure.
On average it took roughly 80 min to derive the PCE for the head-and-neck patients. This included both
the time to run the 217 dose calculations as well as to extract the necessary data and calculate the PCCs.
The computational overhead for all PC related calculations is small (typically it was around 5 minutes),
most of the computational effort lies with having to recalculate the dose in various error scenarios. The
true power of PCE is best shown by being able to calculate the dose in a 1000 random error scenarios
within seconds, meaning that on average dose calculation with PCE takes less than 0.01 s.

Table I. Overview of the time needed to calculate the dose distribution for a given scenario and to
construct the PCEs for the different patients. PCE results are representative for a modern desktop
PC (2 core 64 bit Intel(R) Xeon(R) X5675 processor and 24 GB memory).

Patient Patient Number Calculation time for PCE construction
group of inclu- 9 planning scenarios 1000 random time

ded voxels PCE Exact scenarios (PCE)
HN 1 unilateral 994265 0.45 s 366 s 2.89 s 67 min
HN 2 bilateral 1516041 0.62 s 500 s 4.00 s 82 min
HN 3 bilateral 1647850 0.68 s 556 s 4.62 s 83 min
HN 4 unilateral 1018986 0.41 s 310 s 2.67 s 53 min
HN 5 unilateral 1137738 0.45 s 351 s 3.10 s 72 min
HN 6 bilateral 2066136 0.86 s 823 s 5.96 s 110 min
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(a) Gamma evaluation in different scenarios for 6 head-
and-neck patients.
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(c) The distribution of the dose difference in the HN
cases averaged over the 681 test scenarios.
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Figure 1. Evaluation of the accuracy of PC for head-and-neck patients. For the vast majority of test
scenarios performance is excellent, and even in the most unrealistic ones doses are predicted with 4 Gy
accuracy in even the worst performing voxels.

3.3 Illustrative Examples of Comprehensive Robustness Analysis with PCE
To exemplify the usefulness of PCE we present different methods to analyze plan robustness. Throughout
this section the nominal scenario indicates not having any errors (i.e. neither random nor systematic)
and delivering exactly the planned dose. The planning error scenarios refer to the 8 error scenarios
used in robust planning (6 for setup and 2 for range). For the best realistic scenario a zero systematic
uncertainty was assumed, therefore it provides the most optimistic realistically achievable treatment,
where the cumulative dose is only blurred out by the random uncertainties. For the DVH clouds the
"extended", for all other metrics the "expected" PCEs were used, hence for the former both the random
and systematic errors, whereas for the latter only the systematic errors were sampled (when needed).

3.3.1 DVH clouds

Figure 2 shows the DVH of the cord in a robust and a non-robust plan for 100 different error scenarios, as
well as the nominal scenario and the 8 planning error scenarios used in robust planning. Figure 2a shows
that in the non-robust plan the nominal scenario naturally satisfies the constraint on the maximum cord
dose (20 Gy), however even perturbations in the range or in the position along one of the axes alone
can result in significantly higher maximum dose. Furthermore there is a large number of error scenarios
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that violate the constraint. Figure 2b displays the same graph for the robust plan, highlighting that it
successfully satisfies the constraint in all the 8 considered planning error scenarios. However when all
errors are included there were still 11 scenarios among the 100 where the optimization constraint was
violated. Including extra scenarios with simultaneous errors (i.e. errors in all 3 directions and the range
at the same time) in addition to the 9 planning scenarios as proposed by [21] produces very similar DVH
clouds as the planning scenarios alone, therefore would also fail to identify the overdosage of the cord
compared to the optimization constraint (for a detailed discussion see Section 2.4 of the SM).
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(b) Robust plan

Figure 2. DVH cloud for the cord in the non-robust and the robust plan, together with the DVH for the
nominal scenario and 8 error scenarios used in the robust optimization. Computation time: 0.03 s.

3.3.2 Standard Deviation Volume Histograms

The standard deviation of the cumulative dose (directly available from the PCCs) is shown in Figure 3.
Figure 3a and Figure 3b display the spatial distribution on a CT slice in the middle of the CTV for the
non-robust and the robust plans respectively. In the non-robust plan the standard deviation is much
higher than in its robust counterpart, especially in the high dose CTV, reaching values up to 10 Gy.
While in the robust plan large variations in the dose are mainly seen around the CTV (where they are
expected due to the large dose gradients), in the non-robust plan there is a significant variability inside
the CTV as well, indicating that parts of it may be underdosed. Figure 3c showing the SDVH for the
high dose CTV, the cord and the parotid in the two plans further highlights that in the non-robust plan
standard deviations in the CTV are 2− 4 Gy larger than in the robust plan. For the OARs however
little difference is seen in this case.
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(a) Dose standard deviation in the
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(b) Dose standard deviation in the
robust plan.
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Figure 3. The standard deviation of the dose (in Gy) on a CT slice in the middle of the CTV (highlighted
in green and red) and standard deviation volume histograms of the example HN patient.
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3.3.3 Visualization of Dose Uncertainty

The probability of CTV underdosage derived from the "expected" PCEs using 100000 error scenarios is
shown in Figure 4. While in the non-robust plan there is a high, up to 70% chance of underdosing certain
parts the CTV this is markedly reduced in the robust plan. The latter still has a non-negligible chance
for cold spots at the edges of the target volumes, but this is drastically worse in the non-robust plan:
basically all of the high dose CTV and large parts of the low dose CTV too have failure probabilities
above 20%. Since the planning constraint requires 98% of the target volumes to receive 95% of their
prescribed dose we can already suspect that non-robust plan has little chance to meet these constraints
when the uncertainties are taken into account.
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(a) Non-robust plan. Computational time 27.02 s.
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(b) Robust plan. Computational time 24.10 s.

Figure 4. Probability of underdosage in the high and low dose CTV (green and blue dotted contours
respectively) on a slice in the middle of the CTV (in %). Input uncertainties were Gaussian with
2.828 mm standard deviation for the setup and 2% for the range errors.

3.3.4 Dose-Population Histograms

Figure 5 shows the DPH for the CTVs and the parotid glands. Figure 5a reveals that - as suspected
from Figure 4 - the non-robust plan is critically compromised by the uncertainties: there is practically 0
probability that the (near) minimum dose (D98) in either the high or the low dose CTV would meet its
planning constraint. This clearly improves by robust planning, however the satisfactoriness of the plan is
still questionable, as there is only 49.5% and 64.9% chance of adequate high and low dose CTV coverage.
The example well highlights practical issues with robust planning: the resulting plans always satisfy the
planning constraints in the investigated error scenarios (the 9 planning scenarios in our case), however
there can be a lot of other scenarios where they do not. Choosing which error scenarios to include in the
optimization therefore is much more a guesswork currently than a rigorous process, since the connection
between the considered scenarios and the general robustness of a plan is mostly unknown [30].

Figure 5b shows the DPH for the mean dose in the parotid glands. The mean is always between 6 Gy
and 23 Gy, and the graph illustrates that the price of robustness in the CTVs is a markedly higher dose
to the parotid (the parotid is the OAR with the highest priority on the wishlist of the optimization [30]).

3.3.5 Dose-Volume Histogram Distributions

Figure 6 shows the DVHs together with their confidence intervals for the high and low dose CTVs, as
well as the cord, both for the non-robust and the robust plan, derived from the "expected" PCEs using
10000 error scenarios. The nominal scenario and the best realistic scenario (the plan with zero systematic
errors) are also shown. Comparing Figure 6a and Figure 6b reinforces our conclusion from Figure 5a:
in the non-robust plan, although the nominal scenario satisfies the constraint that 98% of the volume
should receive 95% of the prescribed dose, this is practically never achieved in reality. Even in the best
realistic scenario without any systematic error the random errors blur out the dose such that the planning
constraint is violated. In the vast majority of cases the D98 is significantly, up to 5− 10 Gy lower than
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Figure 5. Dose Population Histograms based on 10000 error scenarios.

supposed to be, and at the same time the maximum doses get very high, up to 90 Gy. In the robust plan
the confidence intervals for the same confidence levels are drastically smaller. As a result several of the
scenarios do satisfy the CTV coverage constraint and overdosage is greatly reduced. However there is
still a significant (50%, see in Figure 5a) chance of underdosing the CTV. Figure 6c and Figure 6d show
magnified views of the DVH distributions of the low dose CTV, further highlighting the inadequacy of
the non-robust plan (even the best realistic scenario fails to satisfy the planning constraint).

The DVH distributions for the cord are shown in Figure 6e and Figure 6f. As can already be expected
from Figure 2a, there is a high, 50% probability of violating the planning constraint in the non-robust
plan (Figure 6e). This is significantly reduced in the robust plan to around 15%, signaled by the much
shorter tail of the DVH distribution (Figure 6f).

4 Discussion
Accuracy From Figure 1 we can conclude that the accuracy of PC for head-and-neck patients is
excellent. The most convincing argument is presented in Figure 1d showing that even in the most
extreme (and therefore least likely) test scenarios the dose can be reconstructed with 4 Gy accuracy,
with 90% of the voxels being 2 Gy accurate. This corresponds to 6% and 3% of the prescription dose,
respectively. Furthermore for the vast majority of the scenarios the accuracy is substantially higher as
exemplified by Figure 1a.

The performance of PC essentially depends on how the dose in the individual voxels changes with
the various errors. This in turn is influenced by the anatomical details, the beam arrangement, the
level of intensity modulation, the beam spot size, and several other factors, hence the computational
cost associated with obtaining a PCE of desired accuracy is expected to vary with all of these. We
have already seen such dependences when we tested PC on 5 prostate (PR) patients (see Section 3 of
the SM for an extensive discussion). Using the same 217 scenarios and the same error distributions
as for the HN cases PC only had an acceptance rate of 88% from the Γ-evaluation in 50% of the test
scenarios (vs. 96% of the voxels for HN). A major reason for this worse performance is that PR patients
had a higher prescription dose (74 Gy vs. 66 Gy), therefore the same 0.1 Gy dose agreement criterion
in the Γ-evaluation is relatively stricter for them. Others include the smaller number of beams (2 vs.
3), the longer beam lengths, the larger effect of range errors and the stronger intensity modulation of
the prostate plans, all detailed in Section 3 of the SM. Moreover the 50% acceptance rate covers 95%
of the possible scenarios (see Section 2.3.1 and Appendix A), for which the accuracy is 88% from the
Γ-evaluation and 2 Gy from the D2 of the dose difference (corresponding to 3% of the prescription dose).

Using clinically typical 3 mm/3% criteria in the Γ evaluations for both the HN and PR cases (instead
of our 1 mm/0.1 Gy values) leads to 99.94% and 99.4% of the voxels being accepted in the patient
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(a) DVH distribution of the high-dose CTV for the
non-robust plan
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(b) DVH distribution of the high-dose CTV for the
robust plan.
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(c) DVH distribution of the low-dose CTV for the non-
robust plan.
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(d) DVH distribution of the low-dose CTV for the ro-
bust plan.
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(e) DVH distribution of the cord for the non-robust
plan. Computation time: 0.29 s.
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(f) DVH distribution of the cord for the robust plan.
Computation time: 0.34 s.

Figure 6. The distribution of the DVH of the CTVs and the cord in the example HN patient for the
non-robust and the robust plan. Colored bandwidths signal different confidence levels for the DVH to
be in. The nominal plan represents a treatment without errors, the best realistic scenario a fractionated
treatment with infinite fractions and zero systematic errors.
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groups respectively, in all 681 test scenarios (see Figure 10 of the SM). These results suggest that
the accuracy of PC is significantly higher than what was found for other meta-models of the exact dose
engine: for example the fast range-corrected dose approximation method proposed in [31] only had a 93%
acceptance rate for an 8 mm unidirectional setup error in the examined lung patient (the most extreme
unidirectional setup error among our 681 test scenarios was 7.3 mm). Considering that the 3 mm/3%
Γ-evaluation criteria used in [32] to evaluate the accuracy of pencil beam algorithms compared to Monte
Carlo dose calculation (without uncertainties) resulted in acceptance rates as low as 93% we can safely
state that PCE well satisfies current clinical needs (at least for the examined HN and PR cases).

Computational Costs The computational cost associated with building an appropriate PC model
is clearly site and requirement specific. The good performance achieved with 217 dose calculations is
limited to the presented head-and-neck (and prostate) cases, the computational costs for other sites,
error distributions, accuracy specifications, etc. can be both higher and lower. For example bigger spot
size is expected to decrease cost, whereas anatomical complexity (e.g. metal implants) to increase it
for similar accuracy. This implies that the cost-accuracy analysis has to be done separately for each
disease site and intended application. However both the HN and PR cases suggest that there is little
inter-patient variability for the same site, beam arrangement and plan objectives, therefore this is only
expected to be necessary once for a given patient group. Applying adaptive PC methods [13, 20] could
further alleviate this problem by automating the cost-accuracy analysis.

Comparison With Statistical Methods The most similar studies (e.g. [3, 10]) applied traditional
Monte Carlo sampling to assess the effects of range and setup uncertainties of IMPT treatment plans.
In these works the authors used a relatively large number of dose calculations to model fractionated
treatments: [3] simulates 40 different systematic errors and 30 fractions (1200 calculations), [10] employs
60 samples with 10 fractions (600 calculations). [3] gives no justification how the number of samples
was chosen, whereas in [10] this is determined by checking the convergence of the expected values of the
DVHs (but not that of the standard deviations for example).

The quoted sample sizes are already higher than what PCE needs, at the same time they are far
from being sufficient for accurately estimating more complicated DVH metrics, such as PDFs or un-
der/overdosage probabilities. As Section 2.3 of the SM shows PCE drastically surpasses statistical
methods even for calculating the (relatively simple) expected dose distribution: in the example HN pa-
tient PCE provided the same accuracy with 217 calculations as Monte Carlo sampling with almost 12000
dose calculations. In our experience this is true in general, PC methods systematically and decisively
outperform statistical methods [33, 13, 20] (unless dealing with a large - higher than 50 - number of
input variables). As a result, given a certain computational cost, PC allows far more accurate estimates
than statistical methods. This makes its use worthwhile for radiotherapy applications even if exact dose
engines become much faster than today [34].

Drawbacks and Limitations One drawback of our work is that the mathematical details may seem
complicated at first sight (they are certainly more elaborate than evaluating a few worst case scenarios
or using basic statistical methods). From a user point of view however there is a huge advantage of
Polynomial Chaos techniques: appropriate tools are available to perform all the needed calculations
[13, 20, 35], and one only has to ensure that the dose engine can be run with different errors and the dose
distribution can be given back to the PC algorithm. If these interfaces are available PC can be applied
without having to invest time and effort into the PC method itself.

A second limitation is that PCE relies on being able to parametrize the uncertainties in the problem
by a finite set of random variables having given distributions. This makes it particularly useful for inves-
tigating the effects of patient setup, proton range, couch and gantry angle errors, however complicates
its extension to cases where it is difficult (or even impossible) to parametrize the uncertainty (which is
the case for example for anatomical changes). Moreover the higher the number of the stochastic inputs
gets, the more costly the construction of the PC model becomes, hence it should always be carefully
investigated what accuracy is needed and what computational cost is affordable.

As was shown in Table I with a current typical dose engine (Erasmus-iCycle) it takes roughly 60-80
minutes to run 217 dose calculations and to obtain a PCE. This excludes the instantaneous use of PCE
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right after treatment planning, however it is a very reasonable time for all the advantages it provides,
furthermore all necessary calculations can completely be automated (and run overnight for example).

Usefulness Appropriate sensitivity and robustness analysis are critical for the safe and widespread
application of IMPT treatments. We have not encountered any technique available in the literature that
can be as comprehensive as Polynomial Chaos Expansion can. Throughout Section 3.3 we have shown
that PCE can practically yield all previously introduced sensitivity and uncertainty metrics, such as
expected DVHs and the standard deviation of the DVH [10], DVH bandwidths for arbitrary confidence
levels [28, 36, 29, 25], dose standard deviation distribution and Standard Deviation Volume Histograms
[5, 8], PDFs of point doses and dose interval probabilities [26, 10], Dose Population Histograms [27, 37],
error volume histograms [21], etc. What makes PCE unique is the speed and accuracy with which it can
provide all these, and in particular its ability to enable the derivation of the spatial distribution of the
probability of under- and overdosage, exact Dose-Population Histograms and Dose-Volume Histogram
Distributions, which give a far more comprehensive description of dose uncertainties than previously
presented methods. Furthermore PCE allows practically real time dose calculations, making it promising
for regular clinical use. Naturally all these advantages come at a higher computational cost than some
simpler methods (e.g. [1, 21, 25]), however these all rely on certain assumptions which are difficult to
check, provide far less information, furthermore can result both in too conservative estimates, as well as
in a false sense of safety (see Section 2.4 of the SM for further details).

Our adaptation of PCE also allows separating the effects of random and systematic setup errors, fur-
thermore provides accurate DPHs. These combined enable the derivation of "robustness recipes". Such
recipes establish a relationship between the magnitude of the setup and range errors (i.e. the standard
deviations of their Gaussian distributions) and the error scenarios one should include in robust optimiza-
tion (e.g. in a 9 scenario based optimization) to achieve a predefined CTV coverage in a given fraction of
the patients. Consequently their use can make robust treatment planning much more quantitative than
today, when the included error scenarios are mostly chosen ad-hoc. We have already demonstrated such
a use for HN patients in [30] and are planning to extend this work to other sites.

5 Conclusions
The results indicate that Polynomial Chaos Expansion (PCE) is an attractive approach for performing
the sensitivity and uncertainty analysis of intensity modulated proton therapy treatment plans. It allows
the true robustness of treatments to be investigated in a quantitative way and therefore represents a
valuable tool for both researchers and clinicians, filling the gap where such comprehensive robustness
analysis methods are lacking. Possible uses include instantaneous visualization of the dose distribution
and any dose related parameter for specified errors (e.g. to check the acceptability of a given fraction
based on the daily imaging on-the-fly), automatic computation of whole treatment parameters (e.g.
target underdosage, OAR overdosage, expected DVHs or DVH distributions), thorough robustness com-
parison of different modalities (e.g. IMPT versus passive scattering), derivation of robustness recipes,
etc. Ultimately we plan to use PC methods during treatment planning itself.

A Test Scenarios for the Evaluation of the PC Meta-models
For a multivariate normal distribution the contour encompassing (1− α) · 100% of the probability is
given by the multidimensional ellipsoid of(

ξ − µ
)T Σ−1 (ξ − µ) ≤ χ2

p (α) , (3)

where χ2
p (α) is the upper (100α)th percentile of the chi-square distribution with p degrees of freedom,

µ is the mean and Σ is the covariance matrix [22]. In our case p = N = 4, α was chosen as α = 0.01 to
include 99% of the possible errors, µ = (0, 0, 0, 0) and Σ is a diagonal matrix with the variances on the
diagonal. The setup and range errors for the test scenarios were sampled in a way that they covered the
99% confidence volume in a grid-like structure. Along each axis a number of equally distanced points
were chosen such that the two outermost ones always lay on the ellipsoid given by Equation 3. Then all
possible combinations of the points along the axes were made, and finally all that fall outside the contour
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were discarded. This procedure was done using 5, 6 and 7 points along the single dimensions and the
combinations resulted in 681 included scenarios (as an illustration of the method in three dimensions
using 5 points along the axes see Figure 7a). Half of the generated scenarios fall between the 95%
and 99% confidence ellipsoids (see Figure 7b) and therefore represented unlikely cases (which are more
difficult to model with PC). Consequently a 50% acceptance ratio for the scenarios accounts for the most
probable 95% of the possible cases.
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(a) Illustration of the error scenarios with three Gaus-
sian variables with standard deviations of 2, 3 and 2.
Points are uniformly positioned along the single di-
mensions (5 in this case) and the endpoints always lie
on the surface of the ellipsoid. All combinations are
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Figure 7. Illustration of the error scenarios in which the performance of Polynomial Chaos Expansion
was evaluated
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