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Abstract

Many scientists and engineers in the �eld of quantum computing and engineering are

collaborating in order to realize a quantum computer. A quantum computer uses qubits

to do calculations. These are clustered in processing units, which are interconnected by

optical links. This might be implemented as qubits in diamonds with optical �bres between

the diamonds.

Within a processing unit, the qubits can be modelled as nodes in a star graph. The

optical connections between di�erent diamonds can be modelled as connections between

the centres of the star graphs, such that the centres with their interconnections form a

complete graph. We call the overall graph a fully connected star graph. This topology is

derived from the interactions possible in a quantum processor based on NV-centres. Each

NV-centre is assumed to have multiple memory qubits around it, forming a processing

unit.

Nowadays, a quantum processing unit does not comprise enough qubits to do interesting

calculations. This is why there are interconnections between the processing units; by these

connections, they can perform a large task together. Such a task is described by a quantum

circuit. It describes (among others) in which order pairs of two qubits should be together

in a processing unit. For example, if we have four qubits numbered from 1 - 4, it might be

that �rstly, an interaction between qubits 1 and 2 is desired and after that one between

qubits 1 and 3. It should be ensured that in the �rst place, qubits 1 and 2 are in the

same processing unit and when the subtask is performed with these qubits, then qubits

1 and 3 should be brought together to do the next subtask. Or to give a more practical

example, a wall of a house is built by �rstly, ensuring that there is a basement which is

strong enough, secondly, the �rst row of stones is placed and then the higher stones will

be placed. Similarly, in a quantum computer, �rstly calculation A should be done, then

calculation B, such that after X calculations the result Y is obtained.

In order to execute a quantum circuit, multiple pairs of qubits should be brought

together in di�erent quantum processing units, such that multiple tiny calculations can be

done in parallel. In order to bring two qubits together and to distribute the pairs of qubits

among the available processing units, planning (sorting) is required.

To bring pairs of qubits together, the qubits can be moved around in the graph by

means of swaps. A swap operation within a processing unit (PU) implies that the qubit in

the centre of the PU is interchanged with another qubit in the PU, which is said to be in a
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leaf. A swap operation between di�erent PUs is possible too, by means of a teleportation

procedure. This procedure is considered much more costly than a swap within a PU.

Several swaps between PUs can be done in parallel. This is called a time step, or shortly

a step. The less steps are used, the faster the quantum circuit is executed. In practice,

as we are interested in fast computations, we often want to minimize the number of steps.

However, minimizing the execution time results in more costs of swaps within processors,

which means that more energy (electrical power) is required.

Going back to our problem, the aim is to minimize the costs of the routing process of

the qubits. These costs are described in terms of the number of swaps and the number

of steps. At the moment, no e�cient algorithm exists to sort the qubits especially in

fully connected star graphs. However, this work demonstrates e�cient solutions in the

form of algorithms to several slightly di�erent versions of the routing via matching model

introduced by Alon et al [1], which is applied to fully connected star graphs. Thereby,

both minimizing the number of swaps and minimizing the number of steps is considered.

The proposed algorithms minimize either one of these factors or both.

It is assumed that the costs for exchanging two qubits between centres are much higher

than swapping qubits between a centre and a leaf. This is motivated by fact that the

teleportation process between centres takes much more time than executing some gate

within a processing unit. Even stronger, the execution time of gates within the processors

are neglected.

It is shown that qubit moves in fully connected star graphs can be scheduled e�ciently,

such that the number of moves is minimized. Guidelines are given to minimize the execution

time too, where only interactions between PUs are counted.
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2 Introduction

At least in China [2] and the Netherlands [3], quantum scientists and engineers are working on

the realisation of quantum networks and quantum computers. These devices use qubits to do

calculations. One kind of qubit candidate is the Nitrogen Vacancy (NV) centre in diamond [4].

Its atomic structure is such that the NV-centre can act as a communication qubit and several

surrounding carbon-13 atoms as memory qubits. The communication between the NV-centres

is done optically, by means of laser pulses via optical links [4]. The interconnections between

multiple NV-centres can be implemented with glass �bres, such that a cluster of small quantum

processors can be formed.

Quantum computers are being built because of their special properties, like the ability to

provide theoretically, perfectly secure communications [5] and data storage [6]. Secondly, many

scientists and engineers believe that the quantum computer would be able to perform many

computations much faster than any classical computers. However, it is still one of the open

questions in this �eld if that is true or not. In many cases, this is equivalent to the question

whether the computational complexity classes BQP and P are equal. Assuming that the classes

BQP and P are not equal or that the polynomial hierarchy does not collapse, many scientists

would like to show quantum supremacy (see e.g. [7]), by showing the successful execution of

certain quantum circuits [7] [8]. Ultimately, this cannot be done without a properly working

quantum computer.

2.1 Problem Examples

One of the problems in the �eld of quantum computation is the problem of planning the

execution of a quantum circuit given speci�c quantum hardware. This is known as the circuit

placement problem, which is known to be NP-complete, in general [9]. One of the goals is to

minimize the circuit execution time. Another goal might be to minimize the number of quantum

gates used to perform the circuit. In this work, closely related problems will be faced, which will

be explained in more detail below. Firstly, we consider the topology of the quantum processor

and after that, the planning of the qubit movements to perform a series of quantum gates is

addressed.
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2.2 Qubits in a Fully Connected Star Graph

In this work, a special topology is considered, which we call the fully connected star graph (Def.

3.1). This models a quantum processor based on NV-centres in diamond. It is a graph which

consists of k star graphs, which represent the di�erent processing units (PUs). A star with m

nodes is a graph with a centre node and m− 1 leaves, as illustrated in Fig. 1.

Centre: NV-centre

Leaf: Carbon-13

Figure 1: A quantum processing unit can be based on NV-centres. Such processing unit has one NV-
centre and several Carbon-13 atoms as spin qubits around it.

The centres of the k star graphs are connected with all other centres such that they are part

of a complete (fully connected) graph. Examples are shown in Fig. 2 and Fig. 8.

1

3 4

2

6

5

P1

P2

P3

Figure 2: This is a fully connected star graph with k = 3 stars and each star has m − 1 = 3 leaves.
The stars have the labels P1, . . . , P3. There are six data qubits in this graph, numbered 1, . . . , 6. Each
star (processing unit) has 2 data qubits. The unlabelled nodes carry spare qubits for communication
purposes between the processing units.

Some of the nodes in the fully connected star graph are carrying data qubits. We say a

qubit is a data qubit if their state should be preserved; they are mostly involved in calculations.

We call the other qubits spare qubits, since these are used for communication purposes between

the processors. In Fig. 2, the six data qubits are labelled 1, . . . , 6 and are equally distributed

among the PUs P1,2,3. The unlabelled nodes carry spare qubits.
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2.3 Execution of a Quantum Circuit

Given the FCS graph with some data qubits, a quantum circuit can be executed on it. A

simple circuit is illustrated in Fig. 3. This can be mapped onto the FCS graph in Fig. 2. The

processors P1 and P2 have 2 data qubits each, numbered from 1, . . . , 4. It is assumed that the

given circuit has only 1-qubit and 2-qubit gates, since any quantum circuit can be decomposed

into e.g. the universal set of gates {H,S, T, CNOT}, which consists of only 1-qubit and 2-qubit

gates. Furthermore, a 1-qubit gate can be applied on any qubit in the graph. However, 2-qubit

gates can only be applied within a processor. If a 2-qubit gate should be performed on qubits

in di�erent PUs, then these qubits should be brought together into one processor in order to

apply the gate.

t0 t1 t2

1

3

4

2

P1

P2

Figure 3: The processors P1 and P2 have 2 qubits each, numbered from 1, . . . , 4 as shown. Firstly, at
time t1, a 2-qubit gate on qubits 3 and 4 should be performed. Furthermore, a gate is executed on qubits
1 and 2 within time t2.

How the circuit in Fig. 3 can be mapped onto the FCS graph, can be answered by considering

the current and desired distribution of the qubits over the nodes in the graph. An example

is given in Table 1. Within time t1, a gate is executed on qubits 3 and 4. Besides, a gate is

executed on qubits 1 and 2 within time t2. In the desired state y in Table 1, these pairs of

qubits are each in one processor. This means that as soon as the desired state is reached, both

gates in the circuit can be executed.

In this report, we do not care about how a certain quantum circuit looks like. However, the

problem is faced how to obtain the wished qubit distribution y from the current distribution x

in a fully connected star graph. To reach the desired placement of qubits, some qubits should
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Table 1: An example of the initial distribution of qubits x and desired distribution y for the graph
illustrated in Fig. 2, to execute the circuit in Fig. 3. The violet coloured, circled numbers are the labels
of the centres. The other number are the labels of the leaves. The data qubits are numbered as in Fig.
2 by 1, . . . , 6. A '-' sign indicates a spare qubit.

PU P1 P2 P3

Node 1 2 3 4 5 6 7 8 9 10 11 12

Current x 3 1 - - 2 4 - - - 6 - 5
Desired y 2 1 - - 3 4 - - - 6 - 5

be moved around. This is done by swap operations. Swaps within processors can be executed

easily. However, swapping qubits between di�erent processors is done by teleportation (see

Section 3.1), which is much more costly.

2.4 Swaps in Practice

In practice, swapping two qubits in di�erent stars/processors can be executed as shown in Fig.

4. Firstly, entanglement ( ) is created between the NV-centres of the two corresponding

processors, e.g. P1 and P2. Then, a swap with the spare leaf in each processor moves the

entangled qubits to a leaf at both sides. Thereby, two spare qubits are moved from the leaves

to the NV-centres, between which entanglement can be created for a second time. Thirdly, the

two entangled qubits in processor P2 are exchanged. This results in a state where the NV-centre

of the one processor is entangled with a memory qubit in the other processor. Lastly, the two

qubits are teleported to their destinations.

1

2

(a)

1

2

(b)

1

2

(c)

1

2

(d)

Figure 4: A swap operation between distant qubits is performed in multiple steps, though in one time
step. Firstly, entanglement is created between both centres (a). Secondly, each entangled qubit is
swapped with the spare qubit (b), after which entanglement is created between the centres for the second
time. Thirdly, the two entangled qubits in exactly one of the processors should be exchanged (c). Lastly,
the two qubits can be teleported to the other side (d).
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Whether a swap within a processing unit or between them is performed, the same symbols

are used in both cases (see Fig. 5). Consider the example begin and �nal distribution of qubits

as given in Table 1. Knowing swaps, Fig. 6 shows how the desired distribution y can be reached

from the current one x by doing swap operations.

1
1 2

2
2 1

×

×
x y

Figure 5: The qubits 1 and 2 carried by two wires 1 and 2 can be swapped, such that the qubits will
occur in reversed order at the output y with respect to the input x.

1
3 2

2
1 1

5
2 3

6
4 4

×

×

x y

P1

P2

Figure 6: The current qubit placement x from Table 1 can be transformed into the desired placement y
by doing several swap operations. The bold numbers at the left side correspond to the wire numbers. A
number above a wire indicates which qubit occupies the wire at that point.

2.5 Problem

Now, our �rst goal is to minimize the number of quantum operations. These operations are

�rstly, the gates within processors and secondly, the moves of data qubits between the PUs.

Details about the minimum number of operations are given in sections 5.5, 5.13 and 7.2. Our

second goal is to minimize the time. In this sense, qubit moves between processors are much

more costly than applying gates within a PU. This is motivated by the fact that moving qubits

between PUs is done by teleportation (see Section 3.1), which is a relatively time-intensive pro-

cedure compared to applying gates in a processor. Therefore, we will neglect the gate execution

time within processors and count only the moves between PUs. More about minimizing the

time is stated in sections 6.1 and 7.3.
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2.6 Related Work

The general form of our problem where the number of steps should be minimized, is described

for the �rst time by Alon et al [1] by his routing via matching model. In his work, he states

that the routing number rt(G) (see Section 3.4) for a complete graph G is equal to 2. This

result might be used to determine the routing number for the FCS graph (Section 6.1).

Other related work includes [10], which is based on the same model, where several graph

topologies are considered. One of them is the fully connected graph, which is closely related

with the FCS graph. Moreover, their problem P1 [10, p. 7] is a slightly di�erent version of

the problem faced in the current report. However, in this paper, this problem is tackled for

a topology which is not considered before -to the best of our knowledge. Furthermore, our

problem is closely related to the direct routing model, introduced in [11]. It is a model where

each data packet (qubit) moves along a direct path to its destination, without being bu�ered

at intermediate nodes. However, [11] does not consider fully connected star graphs neither.

[12] considers the general case of routing permutations in connected graphs (graphs where

each pair of nodes is connected via a path). It gives better bounds than before on the complexity

of verifying the routing time rt(G, π) (see Section 3.4) of a given permutation π in a graph G.

Meanwhile, several notions are set forth like when a cycle (Def. 4.4 in Section 4.5) is individually

routable and when a pair of cycles is mutually routable, which can be used in planning the qubit

moves. The authors show -among others- how to route qubits in a complete graph in only 2

steps, though, not how to route qubits in an FCS graph e�ciently.

2.7 Motivation and Contribution

Sorting algorithms can be modi�ed such that they can be used to plan the qubit moments

in FCS graphs. Several optimal, classical sorting algorithms are known to sort numbers on

restricted topologies like complete graphs, grids or 1D-nearest neighbour (nodes on a line)

topologies. These include Merge sort, Heapsort and Selection sort. However, they are not

optimal for the FCS graph for several reasons. Firstly, an abstraction (Section 4.4) can be

made of the FCS graph to a complete graph with abstract nodes each comprising m nodes from

a star in the original graph. To a certain extent, this abstraction can be seen as m complete
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graphs, by which the number of steps can be optimized when we consider single moves/half

swaps. However, handling this graph as m complete graphs cannot be used to optimize the

number of steps with full swaps. So existing, e�cient algorithms for complete graphs cannot

be used to optimize the number of steps. Secondly, other graph topologies for which e�cient

algorithms exist, di�er too much from the FCS graph to be applicable to the FCS graph.

This report describes methods to reach an arbitrary permutation y of the current qubit dis-

tribution x by using either full swaps of qubits or by using half swaps/qubit moves. Thereby,

several variants of the permutation problem are considered. Firstly, an algorithm can be op-

timized to produce a schedule using the minimum number of swaps and secondly, the produced

routing scheme can be optimized in terms of the execution time in practice. Both cases are

discussed and solutions are proposed to (nearly) optimize the number of swaps (Section 5) and

to minimize the number of moves (Section 7). Besides, guidelines are given to minimize the

number of steps using swaps and it is conjectured that the number of steps via qubit moves can

be optimized too, by using the proposed theory. These solving methods (algorithms) require

time and classical memory space which is polynomial in the size of the FCS graph, which makes

these algorithms e�cient in this sense.

Our contributions are divided as follows over this paper.

Section 3.

• Some background information on the problem is given regarding quantum state teleport-

ation

in theory and

in practice.

• This is supplemented with notations and

• De�nitions.

Section 4.

• After posing a generalized problem of planning qubit movements (Section 4.2), a simple

routing algorithm is proposed (Algorithm 1 in Section 4.3) which solves this problem.

• The FCS graph is abstracted (Section 4.4) to a move graph, after which

• Properties of the move graph are discussed (Section 4.5).

Section 5.
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• Starting with the problem of planning qubit movements via full swaps, it is shown that in

order to reach the optimal number of swaps, the abstracted graph should be decomposed

into as many cycles as possible (Sections 5.3 - 5.5).

• Then a method is proposed to solve this problem in most cases (Sections 5.6 - 5.8).

• This has been implemented in the language C and compared to the aforementioned simple

algorithm, in Section 5.9, and discussed further in Section 5.10.

• This is followed by presenting and discussing a simple, optimal routing algorithm which

sorts the qubits via swaps (Section 5.12).

• It is shown how to minimize the total number of swaps, so including the swaps within the

processing units/stars.

Section 6.

• Guidelines are proposed to minimize the number of steps (Section 6.2).

Section 7.

• The problem of routing qubits via moves/half swaps is set out and the minimum number

of moves is shown (Section 7.2).

• Assuming that each star has 2 spare qubits, the optimal number of steps is given in

Section 7.3.

• To reach this optimum, a special function is needed, which is proposed and discussed in

Sections 5.6 - 5.7.

• An algorithm is presented solving the routing problem via moves, being optimal in both

the number of moves and steps (Section 7.6).

• Under the condition that each star has at least one qubit, guidelines are proposed to

minimize the number of steps, while using the minimum number of moves (Section 7.8).

• The application of the proposed algorithms to other graphs than the fully connected star

graph is discussed in Section 7.9.

Section 8.

• A summary is given,

• Conclusions and

• Open research questions.
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2.8 Outline

Firstly, some background information on the routing problem is given in section Section 3. Since

existing algorithms are not fully suitable for our purpose, new permutation routing algorithms

are demanded. The exact problem de�nition is given in Section 4.2, after which a simple, non-

optimal in-place sorting algorithm is presented (Section 4.3). Section 4.4 gives an abstraction

of the problem, thereby focussing on the relevant parameters to optimize. By changing the

parameters, the problem can appear in di�erent contexts and several cases are addressed. In

the �rst case, full swaps with qubits are considered in Section 5 and an algorithm is presented

to minimize the number of full swaps (Algorithm 6 in Section 5.12). This algorithm uses a

certain function as basis, which has been implemented and is discussed in Sections 5.6 - 5.8. In

Sections 5.13 and 6.1, notes are given for further optimizations.

Then a fully connected star graph where qubit moves are allowed is addressed in Section

7. Under certain conditions, the number of moves (half swaps) is minimized, together with the

number of time steps. A list of rules is composed and used in an e�cient routing algorithm

(Section 7). With this, both the number of moves and steps are optimized. A more general case

where moves are allowed, is discussed in the following Section 7.8. In addition, the application

of the algorithms to other graphs than the fully connected star graph is addressed. Finally, the

results are discussed and conclusions are listed in Section 8. To �nalize, this is supplemented

by several open questions.
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3 Background on the Routing Problem

As stated in the introduction, a quantum computer would be useful to do certain calculations

faster than any classical computer, like searching entries in databases [13]. In order to do so,

quantum hardware is required. Therefore, a good architecture is being searched nowadays,

which lays down which pairs of qubits can interact with each other.

In this work, a special topology (see Fig. 2 or Fig. 8) is addressed, which is derived from

the interactions possible in NV-centre based quantum processors -as written before. In order to

execute a quantum circuit with this processor architecture, an algorithm is needed which plans

which gate should be executed in which time slot. Thereby, it is assumed that the quantum

circuit consists of only 1 and 2-qubit gates. A 1-qubit gate can be executed on any qubit and

therefore, their execution does not have to be planned. In contrast, 2-qubit gates can only be

used on qubits in nodes with an edge in between, for which planning is demanded in order to

execute the circuit as fast as possible.

During the circuit execution, the distribution of the qubits over the FCS graph changes over

time. Given some distribution x, another distribution y should be reached as fast as possible.

In this work, only the time for the qubit teleportations (in fact the measurements) is counted,

but not the time demanded by the gates within the processors. More about the teleportation

procedure follows in the next section.

3.1 Quantum State Teleportation

Using the quantum properties of atomic particles, quantum entanglement can be used to teleport

the quantum state of a qubit, see Fig. 7. The teleportation procedure is as follows. Firstly,

Entanglement
Creation

Bell Measurement Correction

P1

q0 = |ψ〉 • H • m0

q1 = |0〉 • m1

P2 q2 = |0〉 H • X Z |ψ〉

Figure 7: This is a schematic representation of the procedure to teleport one qubit |ψ〉, using a shared
Bell state (β00 = 1/

√
2 (|00〉+ |11〉)) and two classical bits m1 and m2.



3 BACKGROUND ON THE ROUTING PROBLEM 11

entanglement is created between two distant qubits, such that the two qubits share the entangled

state β00 = 1/
√

2 (|00〉+ |11〉), written conform the Dirac notation. Let these qubits be q1 and

q2, being present in quantum processors 1 and 2, respectively. When there is another qubit

q0 = |ψ〉 in processor 1 to be teleported to processor 2, then a Bell measurement is performed

using one entangled qubit q1 and the qubit q0 to be teleported. After the measurements, the

state of qubit q0 is not |ψ〉 any longer. Finally, by using the measurement outcomes, qubit q2

should be corrected, such that its state becomes equal to |ψ〉. This correction follows from Fig.

7.

It follows that to teleport a qubit from processor P1 to P2, both PUs should have at least

one spare qubit. Furthermore, the entangled qubit q1 and data qubit q0 should be in the one

and the same PU, in nodes with an edge in between, otherwise the Bell measurement cannot

take place.

Applying this to the FCS graph, in a star, each edge is connected with the centre node. This

means that there is no disjoint set of edges in a star comprising more than 1 edge. Therefore,

only one qubit can be teleported from a particular PU at the same time.

3.2 Teleportation In Practice

The described method to teleport a quantum state is valid in theory, though in practice, the

procedure includes some more operations. One procedure is described in [4], which is roughly

as follows.

Consider two distant qubits q1 and q4. From both sides, an entangled qubit is sent to a box

in the middle. Qubit q2 is sent from the side of qubit q1 and q3 from the side of q4. Their states

are |ψ12〉 = |ψ34〉 = β00. Then qubit q1 will get entangled with q4 as soon as the qubits q2 and

q3 are entangled with each other. However, the probability of getting wished entanglement is

not necessarily 1.

After measurements in the box, qubits q2 and q3 will share one of the four Bell states with

equal probability. If the state is |ψ23〉 = β00, then the state is as desired and achieved with

probability 1/4. If the state is |ψ23〉 = β01 = 1/
√

2 (|01〉+ |10〉), then a local correction with an

X-gate will reach the wished state β00. However, if the state is |ψ23〉 = β1x, then the state β00

cannot be reached when the procedure is done using only linear optics -which is often done. In
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that case, entanglement between qubits q1 and q4 is created in the box with probability 1/2.

More complex optical materials would be required to raise this probability of success. For more

details on the teleportation procedure, see e.g. [4].

Performing the Bell measurement illustrated in Fig. 7 is the most time-consuming process

during the teleportation process. It costs much more time than performing gates within a PU,

which is the reason why we only count the teleportations and not the gate execution times in

the processors, when solving the routing problem.

3.3 Notations

Some notations used in this report are summarized below.

[n] The set of integers 1, 2, . . . , n.

G = (V,E) A graph G having vertex set V and edges E.

G′ = (P,E′) A graph G′ having (abstract) nodes Pi and edges E′.

Pi The ith processor (node) in move graph G′.

(i, j) The directed edge from node Pi to Pj .

wij A weight ∈ Z≥0 of edge (i, j), indicating the number of qubits to move from

node Pi to Pj .

W The move matrix containing the weights wij = [W ]ij .

µ+
i The number of data qubits to move outwards from node Pi

µ−i The number of data qubits to move inwards to node Pi

µ The total number of qubits to move around through the move graph G′.

C A collection of cycles (Def. 4.4).

ζ The number of cycles in cycle decomposition C.

β The number of swaps required to solve Problem 2 with move graph G′.

M The number of moves (half swaps) required to solve Problem 3 with graph G′.

N+
i The set of out-neighbours of node Pi.

N−i The set of in-neighbours of node Pi.

dNU (G′) The number of steps required to solve Problem 3 with move graph G′.
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3.4 Definitions

De�nition 3.1. A Fully Connected Star graph (FCS graph) is a graph consisting of star graphs

from which only the centres are connected with each other, such that the connections between

the centres form a fully connected graph.

Fig. 8 shows an example of an FCS graph with k = 4 stars, each having m = 4 nodes.

P1

P2

P3

P4

Figure 8: This �gure shows a fully connected star graph with k = 4 centers and each centre has m−1 = 3
leaves. The four stars are labelled as P1, . . . , P4.

The routing time rt(G, π) for a given permutation pi in graph G is the minimum number of

time steps needed to route the qubits to reach the desired permutation.

Now, let us de�ne the distance between two nodes in the move graph.

De�nition 3.2. The distance between two nodes in move graph G′ is equal to the length of

the shortest path between them via only edges (i, j) satisfying wij > 0.

Furthermore, we de�ne the set of shortest paths Qij .

De�nition 3.3. Given the move graph G′ = (P,E′), the set of shortest paths Qij from node

Pi to Pj is the set

Qij :=
⋃
{(v1, v2, . . . , vl) ∈ P × P × · · · × P : l − 1 = lmin} (1)

where lmin is the length of the shortest path in G′ from node Pi to Pj .

Besides, we de�ne the cut-set.
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De�nition 3.4. An s-t cut C = (S, T ) is a partition of Qij such that Pi ∈ S and Pj ∈ T . The

cut-set Xij is the set

Xij := {(u, v) ∈ Qij : u ∈ S, v ∈ T} (2)

The capacity c(S, T ) can be de�ned now.

De�nition 3.5. The capacity c(S, T ) is the weighted sum of the paths going from partition S

to T :

c(S, T ) =
∑

(u,v)∈XC

wuv (3)

With this, we de�ne the �ow fij from node Pi to Pj as follows.

De�nition 3.6. The �ow fij from node Pi to Pj is the minimum value of the capacity c(S, T ):

fij = min c(S, T ) (4)
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4 Problem Definition of Routing Qubits in Fully

Connected Star Graphs

Given a fully connected star (FCS) graph, where each vertex has a unique label and a certain

qubit distribution, one could be interested in permuting the qubits with the minimum number

of swaps or by using the minimum number of steps. Then the challenge arises to design a

classical algorithm which solves these questions. Preferably, this algorithm is as fast as possible

and it should use only a limited amount of memory space on a classical computer to come up

with a qubit routing scheme by which the number of swaps and/or steps is minimized. Such a

classical algorithm which uses only limited amount of memory space in terms of the problem

size, to solve the routing problem with a classical computer, is called an in-place algorithm.

Advantageously, the produced routing scheme uses the least amount of quantum memory during

the execution.

4.1 Terminology

Before de�ning the problem exactly, some de�nitions are given. As written in the introduction,

a swap operation is an operation where two qubits are interchanged, under the condition that

there is a link between the nodes carrying the qubits.

De�nition 4.1. Given a graph G = (V,E) with nodes V and edges E, a swap operation

swap(i, j) only acts over some edge (i, j) ∈ E between nodes i and j by interchanging the

qubits vi and vj .

Fig. 9 shows an example of a swap operation on two lines 1 and 2, carrying the qubits x1

and x2, respectively. If the swap is done, the qubits are swapped and otherwise, they stay in

place.

x1 y1

x2 y2

×

×
s1 (y1, y2) =

{
(x2, x1) if s1 = 1

(x1, x2) if s1 = 0

Figure 9: The qubits carried by two wires can either be swapped (s1 = 1), such that the output values
are y1 = x2 and y2 = x1, or not (s1 = 0), such that the outputs are equal to the inputs (y1,2 = x1,2).
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Since a swap in a processor can be executed much faster than between PUs, we will ignore

the time required for swaps in PUs for the moment. Therefore, at each time step, a disjoint

collection of swaps between PUs is chosen and the qubits are moved accordingly.

4.2 Problem Definition

Now the actual problem can be written as follows. Let G = (V,E) be an FCS graph with

|V | = n vertexes, satisfying the following properties:

1. The graph G consists of exactly k star graphs;

2. Each star has m nodes, such that it has (m− 1) leaves;

3. Each node has a unique label j ∈ [n];

4. Each node j carries a qubit vj ∈ Z≥0;

5. The pebbles vi and vj can only be swapped if nodes i and j are connected by edge

(i, j) ∈ E (sometimes called a matching);

6. A swap over an edge which connects the centre of a star with a leaf has costs a ∈ R+.

7. A swap (or 2 half swaps/moves) over an edge interconnecting two stars has costs b ∈

R+, b > a;

8. The centre in the ith star has the label m(i− 1) + 1, i ∈ [k];

9. The leaves in the ith star have the labels j, m(i− 1) + 1 < j ≤ mi, i ∈ [k].

Note that from properties 1 and 2 follows that the total number of nodes n is equal to

n = km (5)

As stated before, in order to execute a quantum circuit, the distribution of the qubits over

the FCS graph changes over time. Given the current distribution and a wanted distribution,

the question is how to swap the qubits such that the desired distribution will be reached, while

minimizing the costs for the swap operations and/or the time.

Problem 1. In a fully connected star graph with properties 1 - 9 mentioned above, let the

initial assignments xj of all nodes j ∈ [n] be stacked in an input vector x ∈ Zn
≥0 and let the

permuted, �nal assignments be y ∈ Zn
≥0. Given the costs a and b for performing the swaps and

costs c ∈ R+ for each step, �nd an in-place routing algorithm which orders the qubits from the
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initial distribution x to the �nal distribution y, such that the total costs are minimized (Eq.

7).

A mathematical description of the problem is given below. Let the step function be de�ned

as

step(v) =


1 if v > 0

0 otherwise

(6)

The edge set Ec contains all edges between the nodes j = m(i− 1) + 1, being the centre of the

ith star (i ∈ [k]). Π(i, j) is the permutation matrix such that Π(i, j)x is the vector x in which

the elements xi and xj are swapped. The variables s(l, i, j) are used for the swap operations.

Only if the qubits on wires i and j should be swapped in time step l, variable s(l, i, j) is 1,

otherwise 0.

min a
∑

(i,j)∈E\Ec

s(l, i, j) + b/2
∑

(i,j)∈Ec

s(l, i, j)[ step(vi) + step(vj)] + cd (7)

s.t.

y =

(
d∏

l=1

Sl

)
x x,y ∈ Zn

≥0

Sl =
∏

(i,j)∈E

s(l, i, j)Π(i, j) ∀l ∈ [d]

∑
j∈V

s(l, i, j) ≤ 1 ∀l ∈ [d],∀i ∈ [n]

s(l, i, j) + s(l + 1, i, j) ≤ 1 ∀l ∈ [d− 1],∀(i, j) ∈ E

s(l, i, j) ∈ {0, 1} ∀l ∈ [d],∀(i, j) ∈ E

Note that the one but last condition is not necessary. It states that if a gate uses wires i and

j in step l, then it may not be used in the next step l + 1. This would be ine�cient and is

implied in the other conditions and the fact that the number of swaps should be minimized.

From now, the case a = 0 is considered, such that the number of swaps in the stars will

not be optimized. The parameters b and c may vary, depending on the context of the problem.

Both the cases b = 0, c > 0; b > 0, c = 0 and b, c > 0 will be addressed later.
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4.3 A Simple In-Place Sorting Algorithm

It can be concluded from section 2.6 that there exist several routing algorithms at the moment.

However, they are all not speci�cally intended for our problem, nor directly applicable to the

FCS graph. Nevertheless, a trivial sorting algorithm can be given for Problem 1, like Algorithm

1. This algorithm is only considered to set a benchmark on the more advanced routing algorithm

which is proposed later.

For an FCS graph G = (V,E), the simple sorting algorithm 'RouteSimple' (Algorithm 1)

�rstly brings the correct qubits in the �rst star, then the second star will get the correct qubits,

and so on (similar ot the existing algorithm Selection sort). Thereby, qubits are only exchanged

over the edges E. Finally, the function returns a list L of the swaps done.

Algorithm 1 routes the qubits from the initial state x to the �nal state y. However, it

does not take the number of swaps into account, nor the number of steps. Nevertheless, the

algorithm gives an indication of what existing algorithms would achieve and it will be used

later in this work to compare the proposed, more advanced algorithm with (Algorithms 6 and

8). Note that only the swaps between stars are counted.

This algorithm has been implemented in C. It can be found online at https://github.

com/jkeur/routeSwaps.git.

Algorithm 1: RouteSimple

Data: The initial placement x and desired placement y of the qubits and the number
of stars k in the FCS graph G.

Result: A list L containing the swaps done.
1 v := x ; // Use a copy of the initial state

2 m := length(x)/k ; // Set #nodes per star

3 foreach p ∈ [k] do // For each star p
4 i := m(p− 1) + 1 ; // i gets the label of the centre node of star p
5 for q := p+ 1 to k do // For each unordered star q > p
6 if star q has the right numbers then
7 break;

8 while star q has ≥ 1 qubit for star p do
9 j := m(q − 1) + 1 ; // Set the label of the centre node of star q

10 swap(i, l) such that the destination of vi is not in star p;
11 swap(j, l) such that vj has a destination in star p;
12 swap(i, j);
13 add2list(i, j) ; // Add swap (i, j) to the list L

https://github.com/jkeur/routeSwaps.git
https://github.com/jkeur/routeSwaps.git
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4.3.1 Time Complexity Algorithm 1

The time complexity of the algorithm above in the worst case is as follows.

Lemma 4.1. For an FCS graph with n nodes and k stars, Algorithm 1 runs in time O(k log n).

Proof. The �rst for-loop (line 3) requires timeO(k). The second for-loop (line 5) together with

the while-loop (line 7) requires time O(log(mk)). This makes the total runtime O(k log n).

4.3.2 Space Complexity Algorithm 1

Regarding the classical memory space requirements, this depends on the variables used. These

are the vectors x, y and v, the single parameters k, m, i, j, l, p and q, and the list of

swaps L. The three vectors need space O(3n log n). The seven single parameters demand space

O(logm + 3 log k + 3 log n), since their ranges are [k], [m], [n], [n], [n], [k], [k], respectively.

Finally, the list L requires space O(2m(k − 1) log n). This give a total space in the order

O(logm+ 3 log k + (5n− 2m+ 3) log n).

4.4 An Abstraction of the Fully Connected Star Graph

As the focus lies on the swaps between the stars, Problem 1 can be abstracted as follows.

Firstly, each star is represented as a big node Pi (i ∈ [k]) containing the nodes of that star:

Pi = {j|j ∈ V,m(i− 1) + 1 ≤ j ≤ mi} (8)

These nodes are part of the complete directed graph G′, which is de�ned below.

De�nition 4.2. Themove graph G′ = (P,E′) is a complete directed graph containing the nodes

Pi,∀i ∈ [k] and directed edges (i, j) ∈ E′, each corresponding to the direct communication link

from node Pi and Pj in practice, and each having a weight wij , which indicates the number

of qubits to be moved from star Pi to Pj in the original graph G (i, j ∈ [k]); and if a qubit in

star Pi should end in the centre of star Pj , then the notation (wij , 1) is used as weight for edge

(i, j).

Since the edges E′ are the edges between the centres, |E′| = |Ec| holds. In the case that
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the original graph G is an FCS graph, |E′| = k(k − 1)/2 is true for k stars. As example, the

move graph of the problem instance in Table 2 for graph G in Fig. 8 is shown in Fig. 10.

Table 2: An example of the initial placement x and target placement y of the qubits in the graph
illustrated in Fig. 8. It is an example of Problem 1 for an FCS graph with k = 4 stars, each having
m = 4 nodes. The violet coloured, circled numbers are the labels of the centres.

PU P1 P2 P3 P4

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Current x 15 8 7 1 2 9 14 16 5 12 3 13 11 6 4 10
Desired y 3 8 6 1 15 7 10 16 5 12 14 2 11 13 4 9

2

2

1, 1
1, 1

P1

P2

P3

P4

Figure 10: This is the move graph G′ for the problem instance given in Table 2 for graph G in Fig. 8.
Only the edges (i, j) satisfying wij > 0 are shown. If no number is given at an edge, its weight is 1. If
one number is written at edge (i, j), then this indicates its weight wij. Lastly, if two numbers are given,
then the �rst is the edge weight wij and the second number denotes that one qubit from star Pi should
end in the centre of star Pj.

4.5 Properties of this Abstraction

The edge weights wij of the graph G
′ can be stacked in a matrix W .

De�nition 4.3. The move matrix is the matrix W ∈ Zk×k
≥0 , where element wij is the weight

of edge (i, j) ∈ E′, i.e. it represents the number of qubits that should be moved from star Pi

to Pj in the original graph G (i, j ∈ [k]). Furthermore, wii is the number of qubits to stay in

star Pi.

One property of this matrix is as follows.

Lemma 4.2. For the move matrix W , it holds that

∑
i,j

wij = n (9)



4 PROBLEM DEFINITION OF ROUTING QUBITS IN FULLY CONNECTED STAR GRAPHS 21

Proof. For each star Pi ∈ P , a qubit therein should either stay there or should be moved to

some other star. In the �rst case, the number of qubits is given by wii. The number of qubits

in the latter case, is the sum of the other weights in the ith row of the matrix W :
∑

j 6=i wij .

Since there are n qubits, the sum of the weights is n.

Another property which can be derived from the move matrix, is the total number of qubits

to move µ.

Lemma 4.3. Given a move matrix W , the total number of qubits to move µ is equal to

µ =
∑

i,j,j 6=i

wij (10)

Proof. This follows from Eq. 9 and the fact that
∑

i wii is the total number of qubits which

are in the correct star: µ = n−
∑

i wii.

In the move graph G′ in Fig. 10, it can be observed that one qubit has to go from node P2

to P4 and one qubit in the reverse direction. This is called a cycle of length 2.

De�nition 4.4. A cycle in graph G′ is a simple closed path containing only edges (i, j) ∈ E′

satisfying wij > 0.

For example, cycles in the move graph illustrated in Fig. 10 include: {(2, 4), (4, 2)} with

length 2, {(1, 2), (2, 3), (3, 1)} having length 3 and {(1, 2), (2, 3), (3, 4), (4, 1)} being a 4-cycle.

So far, the routing problem is abstracted by which our problem is fully described by the

move graph G′ = (P,E′). When the locations of the qubits in the stars do not matter, in other

words, if it does not matter which qubit is in a centre or in a leaf, then the move matrix W is

su�cient to describe our problem.
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5 Routing Qubits with the Minimum Number of

Swaps

Problem 1 can be restricted to have either only data qubits or both data and spare qubits. As

stated in the introduction, a data qubit carries information to be preserved, while the state of

a spare qubit may be destroyed. If spare qubits are present, they are used for communication

purposes between PUs via teleportation.

This section considers a model in which only full swaps of qubits are allowed. So a swap

operation over an edge will �ip the qubits in the nodes at the edge's endpoints. This holds for

both swaps within a processor, as well as for swaps between PUs. In principle, the following

problem will be addressed in this section.

Problem 2. This problem is equivalent to Problem 1, where the costs for swaps within PUs

are zero (a = 0), the costs for swaps between PUs are non-zero (b > 0) and a data qubit vi is

carried by each node i in the FCS graph.

5.1 A Practical View on this Problem

The following translation could be made to the NV-centre based quantum processor in reality.

Each star Pi with m nodes can be regarded as an NV-centre (centre qubit) having access to

m + 1 memory qubits (leaves). m of the memory qubits correspond to the m unique values

vj in the star Pi. The other memory qubit is a spare qubit and the NV-centre itself acts as a

communication link with other stars, which is modelled as a spare qubit too. In this model,

it is assumed that when a data qubit is moved from node Pi to Pj , then always another data

qubit will be moved back from node Pj to Pi.

5.2 Approach: an Overview

Solving Problem 2 will be done in several phases. Firstly, it is shown that the move graph

G′ = (P,E′) can be decomposed into cycles. There seems to be a direct relation between the

number of cycles in the decomposition and the number of swaps required to sort the qubits

from the current to the desired distribution. Having shown this relation, rules are proposed to
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�nd a (nearly) optimal decomposition. These rules can be used successively and repeatedly in

an algorithm until a decomposition has been found. Such a decomposition can be used directly

by an algorithm, to sort the qubits using the minimum number of swaps.

5.3 Decomposition of the Move Graph into Cycles

Having introduced an abstraction (in Section 4.4) to represent a problem instance of Problem

1 and given the notion of cycles, we will focus on the cycles now. It is known that each

permutation of a �nite set of objects partitions that set into cycles. This holds for move graphs

too.

Lemma 5.1. Given some move graph G′ = (P,E′) with corresponding move matrix W , let the

number of qubits µ+
i to be moved from node Pi to other nodes be

µ+
i =

∑
j

wij (11)

Then move graph G′ can be decomposed into cycles, such that each node Pi is part of µ
+
i cycles.

Proof. For each qubit vj ∈ Pi to be moved outwards, another qubit vl should be moved to node

Pi. In other words, if µ+
i (µ+

i ≤ m) qubits in node Pi should be moved to other nodes, then µ+
i

qubits should be moved from other nodes to node Pi. This implies that each node Pi is part of

µ+
i cycles (with length ≥ 2).

Fig. 11 shows an example of a move graph G′, which can be decomposed into cycles in

two ways. The �rst decomposition consists of three 3-cycles and the second decomposition has

one 3-cycle and one 6-cycle. It is known that for any permutation in a complete graph, the

decomposition into cycles is unique. In contrast, this example shows that this is not the case

for the move graph from an FCS graph.

5.4 Relation Between the Number of Cycles and Swaps

From Lemma 5.1 follows that every move graph G′ can be decomposed into cycles. It is known

that the length of a cycle is proportional to the number of swaps required to apply the cyclic
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#swaps

= +

2= + 5 = 7

= +

2OR +

+

2 + 2 = 6

Figure 11: The move graph in the top left corner can be decomposed into cycles in two ways. The
decomposition on top consists of 2 cycles, while the decomposition below has 3 cycles. 7 swaps are
demanded to sort the qubits according to the �rst decomposition and only 6 swaps according to the
second decomposition.

permutation: An n-cycle needs n− 1 swaps to sort. Similarly, the minimum number of swaps

to apply the permutation j → π(j) on the current qubit distribution is determined by the

metric called the Cayley distance. It is well-known that given the current qubit placement j

and desired placement π(j), the Cayley distance T (j, π(j)) is the minimum, total number of

swaps, transforming j into π(j):

T (j, π(j)) = n−#cycles in (jπ(j)−1) (12)

where n is the size of the permutation, being equal to the number of qubits in the FCS graph.

In this relation, trivial 1-cycles are included in the number of cycles (which are disregarded in

our work, according to Def. 4.4).

"This relation is easy to prove. By invariance, take π(j)− id. If j is a k-cycle, it takes k− 1

moves to sort, and disjoint cycles take separate sorting operations." [14, p. 117-118]

5.5 The Optimal Number of Swaps Between Centres

The Cayley distance is now rewritten in terms of the parameters used in this report.
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Theorem 5.1. Given a move graph G′ with µ qubits to move (Eq. 10), a decomposition with

ζ≥2 cycles of length ≥ 2 requires β swaps, being

β = µ− ζ≥2 (13)

Proof. The total number of cycles ζ -including trivial 1-cycles- is obviously ζ = ζ1 + ζ≥2,

where ζ1 is the number of 1-cycles and ζ≥2 is the number of the remaining cycles in the cycle

decomposition. It was mentioned in the proof of Lemma 4.3 in Section 4.5 that µ = n−
∑

i wii,

which is equal to µ = n− ζ1. Since β = T (j, π(j)), Eq. 13 follows:

β = T (j, π(j)) = n−#cycles in (jπ(j)−1)

= n− ζ1 − ζ≥2

= n−
∑
i

wii − ζ≥2

= µ− ζ≥2

The Cayley distance tells us, that the more cycles in our decomposition C, the less swaps

are needed to sort. From this can be concluded that in order to minimize the number of swaps,

the number of cycles in the decomposition should be maximized. In this context, it can be

concluded that the �rst decomposition in Fig. 11, is the best.

5.6 Finding an Optimal Decomposition

To reach the optimal number of swaps (13), a decomposition of move graph G′ should be

found with the maximum number of cycles. In order to �nd this, one could search for possible

combinations of cycles and pick the best decomposition. This is a intensive approach, and could

lead to an exponential search time. However, by using the following rules, an optimal cycle

decomposition can be found for many instances of Problem 2.

The rules act on a copy of the move matrix W , say W ′. An algorithm implementing these

rules should store the cycle decomposition C and besides, it should store what we call a path
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table, which is described in rule B.

Rule A: Handle Special Cycles. Repeatedly, remove one of the shortest cycles C ⊆ E′

from W ′ and add it to the cycle decomposition C if it has at least |C| − 1 edges (i, j) ∈ C, for

which holds that the shortest path from node Pj to Pi has length l− 1, where l is the length of

the shortest cycle in W ′; and if the �ow fji (Def. 3.6) from node Pj to Pi satis�es fji ≤ wij ;

thereby, if the cycle comprises an edge (i, l) which can be reached by walking via nodes Pj , as

stored in the path table (see rule B), then the cycle should be extended with that path and

that path (i, j, l) should be deleted from the path table.

The deletion of a path (i, j, l) from the path table means that the weight w for the path,

which is stored in a quadruple (i, j, l, w), is decreased by one.

The deletion of cycle C from the move graph G′ implies that the weights wij are decreased

by one for each edge (i, j) ∈ C and the weight wii is increased by one for each node Pi in

the cycle. From rule A, it follows that every 2-cycle will be removed. Furthermore, note that

the same cycle C ⊆ E′ could occur multiple times. This number of occurrences is equal to

min(i,j)∈C wij .

At the moment, we do not know why this rule should be used. However, our implementation

(Section 5.9) shows that it often leads to an optimal decomposition (see Section 5.9).

Rule B: Replace edges from nodes having a single in-neighbour. If processor Pj

has a single in-neighbour Pi with an edge in between with weight wij , then the weight of

edges (i, l), l 6= i should be increased by wjl and wij should be decreased by wjl, for each

out-neighbour Pl (l 6= i) of Pj , after which the weights wjl (l 6= i) should be set to 0. The

quadruple (i, j, l, wjl) for all processors Pi should be stored, e.g. in a table which we call the

path table. (i, j, l, wjl) means that node Pl can be reached from node Pi by walking via Pj . The

number of edges (i, k) for which this holds, is equal to wij .

This rule is valid, since when node Pj can only be reached from Pi, then all out-neighbours

of Pj can indirectly be reached from node Pi. An example where rule B can be used and not

rule A is shown in Fig. 12.

Rule C: Replace edges from nodes having a single out-neighbour. If processor

Pj has a single out-neighbour Pl with an edge in between with weight wjk, then the weight

of edges (i, l), i 6= l should be increased by wij and wjl should be decreased by wij , for each
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Figure 12: This �gure shows an example (a) of a move graph G′ where rule B can be applied, while
rule A cannot be used: Rule B can be applied on node P6 and its adjacent edges. Then (b), rule A can
be applied on cycle {1, 4, 5}, etc.

in-neighbour Pi (i 6= l) of Pj , after which the weights wij should be set to 0. The quadruple

(i, j, l, wij) for all processors Pl should be stored in the path table.

It is legal to use rule C, since when node Pj is reached, then there is no other way than

going to its single out-neighbour Pl.

5.7 A Function Giving an Optimal Decomposition

Rules A - C mentioned in the previous section, are presented in the form of a function (Algorithm

2) in order to �nd an optimal cycle decomposition of the move graph, described by the move

matrix W . Rules A, B and C are set out in Algorithm 3, Algorithm 4 and Algorithm 5,

respectively.

5.8 Complexity of Algorithm 2

The produced routing scheme by an algorithm like Algorithm 6 might be e�cient in the number

of swaps to do between the quantum PUs, although for practical reasons, the computation time

to �nd such e�cient scheme on a classical computer should be minimized too. This motivates a

veri�cation of the computational complexity of Algorithm 2, which can form a basis for routing

algorithms for FCS graphs. Therefore, the computational complexity of the rules A, B and



28 5 ROUTING QUBITS WITH THE MINIMUM NUMBER OF SWAPS

Algorithm 2: GetDecomposition

Data: Move matrix W .
Result: A decomposition C of the move graph G′ into cycles.

1 W ′ := W ;
2 T := ∅;
3 C := ∅;
4 while W ′ 6= 0 do
5 ruleA(W ′, C, T );
6 if W ′ 6= 0 then
7 ruleB(W ′, T );
8 if W ′ 6= 0 then
9 ruleC(W ′, T );

10 if W ′ 6= 0 and rules A - C cannot be applied then

11 remove one of the shortest cycles;

C will be examined. Besides, the algorithm should use a limited amount of classical memory

space to run, which is measured by the space complexity.

5.8.1 Time Complexity

We examine the time complexity of Algorithm 2, starting with rule A, after which the other

rules are addressed.

Rule A. This rule starts with initializations on lines 2 - 3, which need time O(1).

To verify the time complexity of the rest of the algorithm, �rstly, the for-loop on line 9 is

considered. This for-loop is executed l times for each l-cycle. To verify the condition on line

10, time O(lk) is required. This gives in total time O(l2k) for the for-loop on lines 9 - 11.

The condition on line 12 demands time O(1). If this condition is satis�ed, the code below

needs time O(l + lγ) for a cycle of length l, where O(lγ) is the time required for the function

addCycle. Since at most bk/lc l-cycles are in W ′ and the while-loop is executed at most k

times, the overall execution time is O((k/l)(lk2 + l + lγ) + k4) = O(k4 + k3 + kγ + k).

Rule B. We proceed analysing rule B. The for-loop on line 2 is executed k times. The

condition on line 3 can be veri�ed in time O(1), if the number of in-neighbours is tracked during

the execution of the algorithm. The inner for-loop requires at most m steps. This gives a total

runtime of O(km) = O(n).

Rule C. Similar to rule B, it demands time O(n).
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Algorithm 3: Rule A

1 Function ruleA(W ′, T , C)
Data: The temporary move matrix W ′ used by the algorithm using this function,

the path table T and the collection of cycles C.
Result: An updated version of W ′ on which rule A is applied where possible and

the (extended) cycle collection C.
2 l := 1;
3 extended := 1 ; // Flag: Decomposition C extended (1) or not (0)

4 while extended == 1 do
5 extended := 0;
6 l := getMinCycleLen(W ′);
7 foreach cycle C in W ′ with |C| = l do
8 c := 0 ; // Reset counter

9 foreach (i, j) ∈ C do

10 if shortest path from Pj to Pi has length l − 1 and �ow fji ≤ wij then

11 c := c+ 1 ; // Increase counter

12 if c ≥ l − 1 then
13 w′ij := w′ij − 1,∀(i, j) ∈ C ; // Remove cycle C from W ′

14 addCycle(C, C, T ) ; // Build cycle decomposition C
15 extended := 1 ; // C is extended

So far, we know the computational complexity of rules A, B and C using the proposed

algorithms. Since we do not know how frequently rules A - C cannot be applied, the exact

time complexity of Algorithm 2 is not presented. However, since the number of 3-cycles in G′

is at most n/3, the while-loop is used at most n/3 times, such that the algorithm runs in time

O((n/3)(k4 + k3 + kγ + k)).

5.8.2 Space Complexity

Another complexity measure is how much classical memory the algorithm requires. The single

variables are only l, c and extended. These require space O(2 log k + 1). The other variables

are matrices and sets, being the matrix W ′, the path table T and the cycle decomposition C.

W ′ needs spaced O(k2 logm); W ′ is a k × k matrix with weights w′ij = [W ′]ij ≤ m requiring

O(logm) bits each. In the path table T , each quadruple demands space O(3 log k + logm).

Each time rule B or C can be applied on some node Pi, at most m quadruples are added to T .

Since a trivial lower bound on the number of times rule B (C) can be applied successively is

k/3, the path table T needs space O((n/3)(3 log k + logm)) = O(n log k + n/3 logm). Lastly,
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Algorithm 4: Rule B

1 Function ruleB(W ′, T )
Data: The temporary move matrix W ′ used by the algorithm using this function,

and the path table T .
Result: Rule B applied on W ′; an updated version of W ′, and the (updated) path

table T .
2 foreach j ∈ [k] do
3 if

∑
i wij == 1 then // If Pj has exactly 1 in-neighbour

4 foreach l ∈ [k], i 6= l 6= j do // For each out-neighbour Pl

5 wil := wil + wjl;
6 wij := wij − wjl;
7 wjl := 0;
8 Store(i, j, l, wjl) ; // Add quadruple to path table T

Algorithm 5: Rule C

1 Function ruleC(W ′, T )
Data: The temporary move matrix W ′ used by the algorithm using this function,

and the path table T .
Result: Rule B applied on W ′; an updated version of W ′, and the (updated) path

table T .
2 foreach j ∈ [k] do
3 if

∑
i wji == 1 then // If Pj has exactly 1 out-neighbour

4 foreach i ∈ [k], j 6= i 6= l do // For each in-neighbour Pi

5 wil := wil + wij ;
6 wjl := wjl − wij ;
7 wij := 0;
8 Store(i, j, l, wij) ; // Add quadruple to path table T

the cycle decomposition C requires space O(n log k). Adding up these space requirements, the

sum is O(2(n+ 1) log k + (k2 + n/3) logm+ 1).

Note that the time complexity of a function like addCycle can be reduced by using an

index on the path table T . However, this would increase the demanded memory space.

5.9 Implementation and Statistics of Algorithm 2

An algorithm executing rules A - C has been implemented using the programming language C,

whereby -so far- only the number of cycles is counted; an optimal decomposition is not given.

As stated in Section 4.3, the function Algorithm 1 has been implemented in C too. These

implementations are available online at https://github.com/jkeur/routeSwaps.git.

https://github.com/jkeur/routeSwaps.git
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By counting the number of cycles in the decomposition, the minimum number of swaps is

determined by Eq. 13, which is the number of swaps used by an algorithm based on Algorithm

2. For such an algorithm, see Algorithm 6 in Section 5.12. In this way, the number of swaps

can be compared to the simple algorithm given before, namely Algorithm 1 (Section 4.3).

Fig. 13 gives an indication of the performance in terms of the number of swaps, for an

algorithm based on getDecomposition, compared to Algorithm 1. The number of nodes per

star m is �xed to 6. For k ∈ {5, 10, 20, 50} stars, 500 random move graphs were generated

and the optimal number of cycles in the decomposition was found in most of the cases. What

'most of the cases' implies, is discussed later. For a certain number of stars, the number of

swaps was averaged over the 500 cases. This is shown by the blue line with circle marks in

Fig. 13. Analogously, the same problem instances were solved using Algorithm 1. The average

number of swaps for a certain value of k is indicated by the red line with dotted marks. In this

�gure, is clearly visible that an algorithm based on Algorithm 2 performs much better than

RouteSimple (Algorithm 1).

Figure 13: A graph giving an indication of the performance in terms of the number of swaps, of an
algorithm based on getDecomposition (Algorithm 2), with respect to the simple algorithm RouteS-

imple (Algorithm 1). The number of nodes per star m is �xed to 6. For a certain number of stars
k ∈ {5, 10, 20, 50}, 500 problem instances were generated, after which the number of swaps were counted
used by both algorithms. The red line with dotted marks gives a benchmark of RouteSimple. The
optimal number of swaps using getDecomposition is indicated by the blue line with circled marks.

Unfortunately, Algorithm 2 does not always give an optimal result for a given problem

instance. One example is given in Fig. 14, where none of the rules A - C can be applied.
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In such cases, one of the shortest cycles was taken (at random), after which Algorithm 2 was

continued. In the given instance, this method will lead to an optimal solution. Although this

is not proven, it can be examined. It is open for research how to �nd the best decomposition

in general.
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Figure 14: This �gure shows an example of a move graph G′ which cannot be decomposed into cycles
by using rules A - C. More research would be required to solve it.

Optimality of Algorithm 2 has been veri�ed using a second approach to get a cycle decom-

position. This reference method was not guaranteed to give an optimal solution, however, in

any case that Algorithm 2 gave a decomposition, the number of cycles was not lower than using

the reference. This has been tested for thousands of random instances with m = 6 nodes per

star and di�erent numbers of stars k ≤ 7.

Graphs with more than seven stars have been evaluated too. By comparing the results of

Algorithm 2 and the reference algorithm, as low as 7/500 (1.4%) instances with k = 10 were

not decomposed in an optimal way by Algorithm 2 and 22/500 (4.4%) for k = 20 stars. If the

optimal number of cycles/swaps was not reached by Algorithm 2, then the detected deviation

was only 1 swap from the reference value, which is at least closer to the optimal value. For k = 4

stars, the minimum number of swaps was found successfully for all instances. This is caused by

the small problem size. For k = 500 stars, remarkably, only 2/500 (0.4%) cases were detected

to be not optimal. This may be caused by the relative sparsity of in/out-neighbours. In this

case, only at most 6 out of 499 nodes were in-neighbour of a particular node and at most 6/499

nodes out-neighbour. This means that there is a high chance that di�erent cycles do not have
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overlapping edges. Moreover, there is a high probability that the condition of the �ow (rule A)

is satis�ed for some edge. Therefore, with high probability rule A can be applied, which seems

to be the case. It can be concluded that rule A is worth to use, although its correctness has

not been investigated/proven. All together, it can be concluded that Algorithm 2 gives nearly

optimal results if not optimal.

5.10 Example Cases

To illustrate these rules, consider the example of a move graph in Fig. 15. All of the rules A -

C can be applied on this instance. Thereby, it does not matter whether rule A is applied �rstly,

or rule B or C. This is demonstrated with some examples.

If rule A is chosen �rstly, it should be applied on the unique 2-cycle {(3, 5), (5, 3)}. If rule B

would be used, it should be applied on e.g. node P2, which has a single in-neighbour P1. Vice

versa, node P1 has a unique out-neighbour P2. Therefore, rule C can be used too. Below, an

example is given where an optimal cycle decomposition is built using only rule A. As stated

above, rule B can be chosen before applying rule A, for which an example is given too.

P1

P2

P3P4

P5 2

Figure 15: An example of a move graph G′ is illustrated, on which rules A - C can be applied.

Fig. 16 shows that rule A is su�cient to get an optimal cycle decomposition for this instance

(a). It is assumed that the graph is fully described by the move matrix W . As said before,

the rule acts on a copy of the move matrix, which is visualized by showing the move graph

corresponding to the temporary move matrix W ′, which is initially equal to the original move

matrix W . A cycle like {(3, 5), (5, 3)} is written shortly as {3, 5}.

Firstly, the 2-cycle {3, 5} should be removed from W ′ (b); this is the only shortest cycle.

At the same time, we start building the cycle decomposition C by adding this cycle. Then the

shortest cycle is the 3-cycle {1, 2, 3}. All of the three edges in this cycle satisfy the condition
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P1

P2

P3P4

P5 2

C = {}

(a)

P1

P2

P3P4

P5 2

C = {{3, 5}}

(b)

P1

P2

P3P4

P5

C = {{3, 5},
{1, 2, 3}}

(c)

P1

P2

P3P4

P5

C = {{3, 5},
{1, 2, 3},
{1, 2, 4, 5}}

(d)

Figure 16: (a) shows an example of a move graph G′. It is assumed that the graph is fully described by the
move matrix W . Here, rule A acts on a copy of the move matrix, say W ′, for which the corresponding
move graph is depicted in this �gure for each step the algorithm takes. For a cycle {(3, 5), (5, 3)}, the
short hand notation {3, 5} is used. In this example, rule A can be applied to the cycle {3, 5} �rstly (b).
Then on the cycle {1, 2, 3} (c), and lastly on the remained cycle {1, 2, 4, 5} (d). In each step, the cycle
decomposition C is extended accordingly.

that there is a unique shortest path from the end of the edge to its origin. Therefore, by rule

A, this 3-cycle should be removed from W ′ and added to C (c). After that a 4-cycle remains,

which should be removed lastly. Then W ′ = 0 and the cycle decomposition consists of 3 cycles

(d).

The next example shows how to apply rule B, see Fig. 17. Rule B is applicable to node P2;

its unique in-neighbour is node P1. The situation will become as shown in Fig. 17 (b) and the

quadruples (1, 2, 3, 1) and (1, 2, 4, 1) are stored in the path table T . Rule B can be applied again

on node P4: the edges (1, 4) and (4, 5) will be replaced by a direct edge (1, 5). The quadruple

(1, 4, 5, 1) will be stored. What remains are only bidirected edges between nodes P1, P3 and P4.

To form a decomposition, rule A should be applied now. Say we start with the cycle {1, 3}.

According to the �rst quadruple stored in table T , node P3 is reached from node P1 by going

via node P2. This means that the cycle will be extended to {1, 2, 3} and then removed fromW ′,

see Fig. 17 (d). The quadruple used will be removed from T and the forming the decomposition

is taken o� with the 3-cycle. Secondly, we choose the 2-cycle {(3, 5), (5, 3)}. None of the stored

quadruples indicate that some of these nodes are reached via an intermediate node, which means

that the cycle can be removed; it occurred in the original graph as it is now (e). Lastly, the

2-cycle {1, 5} is to be removed. The second of the remained quadruples states that node P5 is

reached from node P1 via P4 and the �rst quadruple that this node P4 is reached from node
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P1 via P2. Therefore, the cycle becomes a 4-cycle, being {(1, 2, 4, 5}. Now, this cycle should be

removed from W ′ together with the quadruples used from T . The cycle �nalizes the formation

of an optimal decomposition; W ′ = 0.
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P1

P2

P3P4

P5 2

C = {}

(a)

P1

P2

P3P4

P5

T = {(1, 2, 3, 1),
(1, 2, 4, 1)}

C = {}

(b)

P1

P2

P3P4

P5

T = {(1, 2, 3, 1),
(1, 2, 4, 1)
(1, 4, 5, 1)}
C = {}

(c)

P1

P2

P3P4

P5

T = {(1, 2, 4, 1)
(1, 4, 5, 1)}

C = {(1, 2, 3)}

(d)

P1

P2

P3P4

P5

T = {(1, 2, 4, 1)
(1, 4, 5, 1)}
C = {(3, 5),

(1, 2, 3)}

(e)

P1

P2

P3P4

P5

T = {}
C = {{3, 5},
{1, 2, 3},
{1, 2, 4, 5}}

(f)

Figure 17: (a) shows an example of a move graph G′. Rule B is used to replace the edges adjacent
to node P2; it has a single in-neighbour. The corresponding quadruples are stored in the path table T
(b). Then rule B can be applied on node P4 and its edges, by which one quadruple will be added to
T (c). Since rule B cannot be applied any longer (nor rule C), rule A should be used. The 2-cycle
{1, 3} is chosen �rstly, which is extended to the 3-cycle {1, 2, 3} by using the �rst quadruple. With
this cycle, building the cycle decomposition begins (d). Next, the 2-cycle {3, 5} is picked, and directly
added to C; there is no quadruple indicating that an extension should be made (e). Lastly, the remained
2 quadruples indicate that the 2-cycle {1, 5} should be extended to the 4-cycle {1, 2, 3, 4}. This cycle
�nalizes the formation of an optimal decomposition; W ′ = 0.



5 ROUTING QUBITS WITH THE MINIMUM NUMBER OF SWAPS 37

5.11 From the Decomposition to Swaps

In the previous section, it has been demonstrated how to �nd an optimal cycle decomposition.

In order to use such decomposition to �nd an optimal qubit sorting scheme, it should be known

how to use it. From the decomposition, it can be derived which swaps are legal to use and

which may not be used in a sorting scheme.

To see which swaps are allowed, let our attention go to a single cycle from an optimal cycle

decomposition, as shown in Fig. 18. The cycle considered has weights wij = 1 for all edges (i, j)

in the cycle. If such cycle C occurs p times (p = mini,j,(i,j)∈C wij) in the optimal decomposition,

then the proposed theories hold for all p fully overlapping cycles.

Regarding the cycle, it can be observed in Fig. 18, that a swap ( ) over an edge in an

n-cycle reduces the cycle to an (n− 1)-cycle and leaves one single node.

Pn

P1

P2P3

Pn−1

(a)

Pn

P1

P2P3

Pn−1

(b)

Figure 18: A cycle containing n nodes is drawn (a). A swap operation between neighbouring nodes P1

and P2 would move the qubit from P1 to its destination P2 and the qubit from P2 with destination P3

is moved to P1 (b). The length of the new cycle is n− 1.

In general, the following can be stated about doing a swap between any two nodes in a cycle.

Recall that the distance was given in Def. 3.2.

Lemma 5.2. A swap between nodes Pn and Pd in a single cycle having only edges with weights

wij = 1, leaves one (n− d)-cycle and one d-cycle, both having only edges with weight 1, where

d is the distance between the two nodes.

Proof. This is shown in Fig. 19 (and Fig. 18).

Doing a swap according to Lemma 5.2, the number of swaps to sort the two remained cycles

is (n− d− 1) + (d− 1) = n− 2. Addition of the single swap done, makes n− 1 swaps for a n-

cycle, which is exactly Cayleys distance (12) for a cyclic permutation. Therefore, the following
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Pn

P1

P2P3

Pn−1

(a)

Pn

P1

P2P3

Pn−1

(b)

Figure 19: A single cycle containing n nodes and edge weights 1 is shown (a). A swap operation
between nodes P1 and P3 would move the qubit from P1 with destination P2 to P3 and the qubit from
P3 with destination P4 ends in P1 (b). Two smaller cycles are formed; one with length (n− d) and one
with length d.

Lemma 5.3 is true. This lemma is linked to what is called the individual routability of a cycle

C [12]. However, in the move graph G′, more freedom exists to swap two qubits, since swaps

can be done between any pair of nodes in the move graph and not only over edges (i, j) ∈ C.

Lemma 5.3. Let qubits vi,j with destinations π(vi), π(vj), be moved from nodes Pi,j. Then the

optimal number of swaps (13) for a given optimal cycle decomposition C will be reached, when

a swap over edge (i, j) is done such that �rstly, nodes Pi and Pj are in one and the same cycle

C ∈ C, and secondly, if edges (i, π(vi)) and (j, π(vj)) are in cycle C.

Proof. When a swap over edge (i, j) is done in some cycle C ∈ C and if edges (i, π(vi)) and

(j, π(vj)) are in this cycle C too, then the cycle divides according to Lemma 5.2. By doing so,

the total number of required swaps does not change, such that the optimal number of swaps

(13) will be reached.

So far, a single cycle is considered. Two cycles can be considered together too, as shown

in [12, p. 2-3]: Two disjoint cycles can be mutually routable in 2 steps, if and only if they

are of same length. In our cycle decomposition, two cycles can overlap each other. In certain

situations, overlapping cycles can be routed in 2 steps too, see Fig. 20. However, the conditions

under which this is possible, are not investigated and is open for research. From this section,

it can be concluded how to swap qubits such that the minimum number of swaps is used, by

investigation of an optimal cycle decomposition.
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P1 P2

P3P4

(a)

P1 P2

P3P4

(b)

P1 P2

P3P4

(c)

Figure 20: The 2-cycle {2, 4} and 4-cycle {1, 2, 3, 4} are partly overlapping (a). A swap operation over
edges (1, 2) and (3, 4) results in the situation in (b), only if the qubit used from node P2 has destination
P3 and the qubit from P4 has destination P1. Two additional swaps are required to sort the remaining
qubits (c). This show that there are cases where 2 partly overlapping cycles can be routed in 2 steps.

5.12 An Algorithm Solving Problem 2 Minimizing the

Number of Swaps

So far, it is described how to create a cycle decomposition with the maximum number of cycles

(in many cases). This means that a routing algorithm based on the function getDecompos-

ition (Algorithm 2) can give a routing scheme which is optimal in the number of swaps (13).

It has been investigated how to use an optimal decomposition to derive which swaps are legal.

With this, an algorithm can be designed.

5.12.1 A Routing Algorithm using Swaps

A simple algorithm satisfying the condition in Lemma 5.3 is Algorithm 6, which minimizes the

number of swaps. In Section 5.9, the performance of this algorithm is compared to Algorithm

1.

Algorithm 6: RouteSwaps

Data: Move matrix W .
Result: A list L containing the swaps done.

1 C := GetDecomposition(W );
2 foreach (i, j) ∈ C do
3 swap(i, j);
4 add2list(i, j);
5 deleteEdge(C, (i, j));
6 deleteEdge(C, (j, π(vj)));
7 addEdge(C, (i, π(vj)));
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In this algorithm, it is assumed that in practice, the qubit swaps is executed by some

background process. With a command like swap(i, j), the process knows which qubit to move

from node Pi to Pj and vice versa. Thereby, the process uses the cycle decomposition C. Upon

the command, the process should retrieve the correct qubit from its current position and send

it from subgraph Pi to subgraph Pj containing its destination. Once the qubit is there, the

background process should place the qubit in the correct node within that subgraph.

5.12.2 Time Complexity of Algorithm 6

The time complexity of Algorithm 6 can be derived as follows. The function getDecomposi-

tion requires time O((n/3)(k4 +k3 +kγ+k)) (see Section 5.8.1). Since the maximal number of

swaps to do is β (Eq. 13), the for-loop is executed O(n) times. The commands on lines 3 - 5 and

7 require timeO(3). The increase of the execution time due to calling the function deleteEdge

is O(2n log n). So the total runtime of Algorithm 6 is O((n/3)(k4 +k3 +kγ+k)+3n+2n log n).

5.12.3 Space Complexity of Algorithm 6

Now the required classical memory space is analysed. Algorithm 6 starts calling getDecom-

position, which needs space O(2(n + 1) log k + (k2 + n/3) logm + 1). Then a list L is built,

which demands space O(n). This sums up to O(2(n+ 1) log k + (k2 + n/3) logm+ 1 + n).

5.13 Solving Problem 2 Minimizing the Total Number of

Swaps

Given Problem 1 with a, b > 0 and a move graph G′ = (P,E′), the total number of swaps can

be optimized by considering the second term of the edge weights wij , 1 -indicating the number

of qubits ending in the centre of Pj , which is always at most 1 in the FCS graph. If the second

term is 1 for edge (i, j), then it should be ensured that all qubits having a destination in Pj

have arrived there, except one qubit coming from node Pi. When this is the case, the one qubit

to be moved outwards from node Pj should be moved to node Pi and �nally, the qubit from

node Pi having the centre of Pj as destination should be teleported. This is possible by doing

the teleportation procedure in two steps (see Fig. 21). Firstly, entanglement is created between

both centres (a). Then, the entangled qubit in processor P1 is swapped with the spare qubit
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(b). Then qubit 2 is teleported to a leaf in P1, after which entanglement is created between the

centres for the second time. (c) Lastly, qubit 1 can be teleported to the centre of processor P2

(d).

1

2

(a)

1

2

(b)

1

2

(c)

1

2

(d)

Figure 21: A swap operation between distant qubits can be performed in two time steps. This might
be relevant in the case that a qubit from the one node P1 should end in the centre of P2. Firstly,
entanglement is created between both centres (a). Secondly, the entangled qubit in P1 is swapped with
one of the spare qubits in the processor (b). Then qubit 2 is teleported to a leaf in P1, after which
entanglement is created between the centres for the second time. (c) Lastly, qubit 1 can be teleported to
the centre of processor P2 (d).
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6 Routing Qubits via Swaps with the Minimum

Number of Steps

It has been set out what the minimum number of swaps (13) is and how to create an algorithm

reaching this number, using an optimal decomposition of the move graph G′. Minimizing the

number of steps has more practical signi�cance than optimizing the number of swaps, since the

number of steps determine the execution time of a quantum circuit. The less steps used, the

faster quantum circuits can be executed. Recall that only the swaps between stars are counted

(a = 0).

6.1 The Optimal Number of Steps

On general graphs, �nding a sequence of swaps such that the number of steps is minimized is an

NP-complete problem [12]. At least some upper bound on the number of steps can be given for

this problem using the move graph. In order to do so, the routing number of the move graph

G′ is considered. "The routing number rt(G) of a connected graph G is the minimum integer r

so that every permutation of vertices can be routed in r steps by swapping the ends of disjoint

edges." [15]

As stated in e.g. [1] and [16], the routing number of a complete graph Kn is

rt(Kn) = 2, n ≥ 3 (14)

Therefore, the following is conjectured to hold for the routing number of the move graph.

Conjecture 6.1. The routing number of the move graph G′k,m having k nodes, where each node

represents m nodes from a star in the original graph G, is equal to

rt(Gk,m) = 2m, k ≥ 3 (15)

where only full swaps between stars are counted.

The move graph G′k,m is a special kind of a complete Kk graph, where each node has m

qubits. Therefore, the move graph can be regarded as if it has m complete Kk graphs. As any
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permutation in a Kk graph can be routed in at most 2 steps, the routing number rt(Gk,m) of

the move graph would be 2m.

In our case, the number of steps can be bounded further by considering a given permutation

π.

Conjecture 6.2. Given some permutation π : x→ y in a move graph G′, an upper bound on

the routing time satis�es

rt(G, π) ≤ 2 max
i∈[k]

µ+
i (16)

where µ+
i is the number of qubits to move outwards from node Pi.

This follows from the observation that the move graph G′ can be regarded as a graph having

maxi∈[k] µ
+
i complete Kk graphs (µ+

i is the number of qubits to move outwards from node Pi).

A trivial lower bound on the required number of steps d = rt(G, π) for a given permutation

π : x→ y is as follows.

Lemma 6.1. The routing time rt(G, π) for a given permutation π satis�es

rt(G, π) ≥
⌈

β

bk/2c

⌉
(17)

Proof. Per step, no more than bk/2c swaps can be done. Since β swaps are required, (17)

follows.

Another known, trivial bound is

rt(G, π) ≥ max
i∈[k]

µ+
i ≥ max

i∈[k]
max(|N+

i |, |N
−
i |) (18)

where |N+
i | is the number of outgoing edges from node Pi and |N+

i | the number of incoming

edges. The given equations are bounds, so they do not show how to reach the optimum.

6.2 Solving Problem 2 Minimizing the Number of Steps

Algorithm 6 minimizes the number of swaps, which does not imply that the number of steps

is minimized. Although �nding a sequence of swaps minimizing the number of steps could be
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hard, some guidelines can be given to �nd an optimal routing scheme for the FCS graph G, by

considering the move graph G′.

Since the number of steps is dependent on the maximum number of qubits to move from/to

a certain node, it is good to make sure in the current step, that most of the nodes Pj satisfying

µ+
j = maxi∈[k] µ

+
i are used in a swap over edge (l, j) for some Pl, preferably satisfying µ+

l <

maxi∈[k] µ
+
i -thus not over edge (j, l). When these nodes Pj are used in the current step and

if there are nodes unused while they can be used, then advantageously, a swap should be done

over an edge (l, j) analogous to the way described above. Realise that the value for maxi∈[k] µ
+
i

would be lower for the remained nodes.

If there are multiple edges (l, j) to choose for some node Pj under the aforementioned

conditions, then preferably, an edge is chosen with node Pl having the lowest value for µ+
l

among the nodes Pl to choose from.
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7 Routing Qubits via Moves in Fully Connected

Star Graphs

As stated in Section 5, Problem 1 (Section 4.2) can be restricted to have either unique or

non-unique qubits. The �rst case is handled in Section 5. Here the latter case is discussed.

In this case, several qubits in the FCS graph are modelled the same, which we call spare

qubits. The state of these qubits may be destroyed. Spare qubits are used for communication

purposes between PUs via teleportation. Besides full swaps, the spare qubits allow, half swaps

between PUs, called moves. A move over an edge (i, j) will bring a qubit from node Pi to Pj .

So the same Problem 1 is addressed, be it in di�erent context than in Section 5:

Problem 3. This problem is equivalent to Problem 1, where the costs for swaps within PUs

are zero (a = 0) and the qubits vi carried by node i in the FCS graph G = (V,E) are unique

and vi > 0, except for some spare qubits vj modelled as vj = 0.

Problem 1 is repeated below, where b/2 are the costs of a move.

min a
∑

(i,j)∈E\Ec

s(l, i, j) + b/2
∑

(i,j)∈Ec

s(l, i, j)[ step(vi) + step(vj)] + cd (19)

s.t.

y =

(
d∏

l=1

Sl

)
x x,y ∈ Zn

≥0

Sl =
∏

(i,j)∈E

s(l, i, j)Π(i, j) ∀l ∈ [d]

∑
j∈V

s(l, i, j) ≤ 1 ∀l ∈ [d],∀i ∈ [n]

s(l, i, j) + s(l + 1, i, j) ≤ 1 ∀l ∈ [d− 1],∀(i, j) ∈ E

s(l, i, j) ∈ {0, 1} ∀l ∈ [d],∀(i, j) ∈ E

7.1 Qubit Moves in Practice

The case that the qubits are non-unique might be compared to a collection of interconnected

NV-centres (processors), each having at least one spare qubit. Often, this spare qubit might be



46 7 ROUTING QUBITS VIA MOVES IN FULLY CONNECTED STAR GRAPHS

the NV-centre, which is used for communication. Besides one spare qubit for communication,

each star may have one additional spare qubit in a leaf. With this, swaps as shown in Fig. 4

can be performed between any pair of stars. As mentioned before, half swaps can be used too,

called moves.

How a qubit move can be done in practice, is shown in Fig. 22. There, a qubit move is

illustrated from star P1 to P2. Star P1 should have at least one spare qubit and the other star

two, in order to be able to teleport a qubit from P2 to another processor. This follows from

the teleportation procedure (Section 3.1). Firstly, a spare qubit in star P1 is entangled with a

spare qubit in star P2. Having the entangled qubit in star P1 near the data qubit to move, the

data qubit can be teleported to star P2. In the end, star P1 has one spare qubit more and star

P2 one less than in the initial state.

1

2
P1 P2

(a)

1

2
P1 P2

(b)

1

2
P1 P2

(c)

Figure 22: Having at least one spare qubit in star P1 and at least 2 in star P2, a move with a qubit from
star P1 to a distant star P2 can be done in several steps. Firstly, entanglement is created between both
centres (a). Secondly, the entangled qubit in star P2 is swapped with a spare qubit if the qubit should
end in a leaf, otherwise the swap is not necessary (b). Finally, the qubit can be teleported to the star
P2 (c).

Knowing how to move a qubit, this can be applied to the case that data qubits should be

moved around in a cycle. Fig. 23 shows an example. Firstly, entanglement is created between

the stars analogously to Fig. 4. Then each qubit is teleported to its destination. This implies

the following.

Lemma 7.1. Each cycle in move graph G′, where each node involved has at least 2 spare qubits

in both the initial and �nal state, can be solved within one step.

Proof. Entanglement can be created as illustrated in Fig. 23, after which the qubits can be

teleported.

Another implication when moves are used, is that multiple qubits can be moved to the same

processor in one and the same step. Fig. 24 illustrates the movement of multiple data qubits to

the same processor. For each data qubit to move to processor P2, one entangled pair should be
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P1

P2P3

1

2

3

(a)

P1

P2P3

3

1

2

(b)

Figure 23: In this example, the data qubits 1, 2 and 3 have to be moved around in a cyclic way,
clockwise. Data qubit 1 should be moved to star P2, qubit 2 to P3 and qubit 3 to P1. Each star has at
least 2 spare qubits. To move qubits in a cyclic way like this, multiple steps are required. Firstly, to
send qubit 1 to star P2, entanglement is created between the centre of P1 and a leaf in P2. Similarly,
this should be done for the other qubits (a). Secondly, the qubit are teleported to their destinations (b).

created which is shared by the processor having the data qubit and by P2. This implies that in

one step, at most fi qubits can be teleported to a processor Pi having fi spare qubits. In the

example in Fig. 24, the maximum number of qubits to teleport to P2 is 3, since it has 3 spare

qubits.

P1

P2P3

1

2

(a)

P1

P2P3

1

2

(b)

Figure 24: Here, both data qubits 1 and 2 have to be moved to processor P2. Processors P1 and P2 have
at least 1 spare qubit and P2 at least 2. To move the qubits to their destination, �rstly, entanglement
is created between the centre of P1 and a leaf containing a spare qubit in P2. Besides, entanglement
should be created between the centre of processor P3 and another leaf having a spare qubit in P2 (a).
After that, the qubits should be teleported to their destinations (b).

Now, assume that after teleportation, the state of all qubits in P2 in Fig. 24 should be

preserved and at least one of these qubits has to be moved outwards in a second step. This is

only possible if there is a spare qubit present in node P2. Therefore, in this case, the maximum

number of qubits δ2 which could be moved to P2 in step 1, would be 2 instead of 3.
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7.2 The Optimal Number of Moves Between Centres

Knowing how qubit moves are executed in practice, the minimum number of moves can easily

be derived. Say that the qubits which are not spare qubits are data qubits.

Theorem 7.1. Given an instance of Problem 3, where in total µ data qubits should be moved

around, this instance can be solved by using M moves, being

M = µ (20)

Proof. Having µ qubits to move around, µ entangled pairs should be created, such that the

qubits can be routed over direct paths within M = µ moves.

7.3 The Optimal Number of Steps: 2 Spare Qubits per Star

As seen in the previous section, one could minimize the number of moves easily. A more

interesting question is how to minimize the number of steps. Now, it is assumed that each node

contains 2 spare qubits in both the initial and �nal state. This allows to move the data qubits

in a cyclic way in one step, as shown in Fig. 23. This notion can be used to �nd the optimal

number of steps.

Conjecture 7.1. Given Problem 3 with move graph G′ containing nodes Pi, i ∈ [k], where

each node has 2 spare qubits in both the initial and �nal state, there exists a cycle decomposition

C containing a (sub)set of disjoint cycles, which covers at least all nodes Pi satisfying µ+
i =

maxj∈[k] µ
+
j , where µ

+
j is the number of qubits to move outwards from node Pj.

Graph G′ can be seen as a collection of maxj∈[k] µ
+
j complete graphs, each having edges

(i, j) with weight wij ∈ {0, 1}. Therefore, there must exist a set of cycles covering all nodes Pi

satisfying µ+
i = maxj∈[k] µ

+
j . Assuming Conjecture 7.1, the minimum number of steps follows.

Theorem 7.2. Assuming Conjecture 7.1, Problem 3 with move graph G′ containing nodes

Pi, i ∈ [n], where each node has two spare qubits in both the initial and �nal state, can be solved

within dM steps, being

dM (W ′) = max
i∈[k]

µ+
i (21)
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Proof. Let the number of nodes Pj satisfying µ+
j = maxi∈[k] µ

+
i be p. By assumption of Con-

jecture 7.1, there exists a set of disjoint cycles C1 covering the p nodes. It has been shown that

a permutation of disjoint cycles can be sorted in 1 step. By doing that, the cycles C1 will be

removed from the move graph G′ and the weights wij are decreased by one for all edges (i, j)

in the cycles. This implies that µ+
i is decreased by one too, for each node Pi involved in the

cycles in C1, including the p nodes.

The procedure above can be applied repeatedly, until all weights are zero such that no node

has a qubit in a wrong position. Then it follows the procedure is applied maxi∈[k] µ
+
i times.

7.4 A Function Giving a Node Cover

In order to reach both the optimal number of moves (20) and steps (21) (Problem 3), given

that each PU has at least 2 spare qubits, a proper node cover should be found in each time

step, according to Conjecture 7.1. Some tools are proposed below. These rules act on a copy

W ′ of move matrix W . A candidate procedure is given in Algorithm 7.

Rule 1: Add 2-cycles to C containing a node with a single neighbour. Add the

2-cycle {(i, j), (j, i)} to Ct satisfying wij , wji, > 0 if node Pi has exactly one neighbour Pj which

is not used in Ct so far.

Rule 2: Add edges to C with a node having a single in-neighbour. Add edge

(i, j), wij > 0 to Ct if node Pj has exactly one in-neighbour Pi given that (i, q) /∈ Ct,∀q ∈ [k].

Rule 3: Add edges to C with a node having a single out-neighbour. Add edge

(i, j), wij > 0 to Ct if node Pi has exactly one out-neighbour Pj given that (p, j) /∈ Ct,∀p ∈ [k].

Rule 4: Add an edge to C beginning at a node used in Ct. Add edge (i, j), wij > 0

such that (p, i) ∈ Ct, (i, q) /∈ Ct,∀q ∈ [k] and |{Pj ||N+
j | = maxp∈[k] |N+

p |}| = 1.

Rule 5: Add an edge to C ending at a node used in Ct. Use edge (i, j), wij > 0 such

that (j, q) ∈ Ct, (p, j) /∈ Ct,∀p ∈ [k] and |{Pi||N+
i | = maxq∈[k] |N+

q |}| = 1.

Rule 6: Add randomly an unused edge to C. Given that none of the rules 1 - 5 can

be applied, randomly choose an edge (i, j), wi,j > 0, under the following conditions. Firstly, no

outgoing edge from node Pi, nor another incoming edge in node Pj may be used so far. Secondly,

if some edge (p, q) is used and no outgoing edge from node Pq, then an edge (q, j), wqj > 0

should be chosen.
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Algorithm 7: Get a Node Cover

1 Function getNodeCover
Data: Move matrix W .
Result: A set C of disjoint cycles covering at least the nodes with the maximum

number of qubits to move outwards.
2 P := {Pj |µ+

j = maxi∈[k] µ
+
i };

3 GP := setInducedGraph(W,P) ; // Set induced subgraph G′[P]
4 while not all nodes Pj ∈ P are used in Ct or Ct is no collection of cycles do
5 rule1(W,GP , C);
6 while rule 2 or rule 3 can be applied do

7 rule2(W,GP , C);
8 rule3(W,GP , C);
9 if rule 4 or rule 5 can be applied then

10 rule4(W,GP , C);
11 rule5(W,GP , C);
12 continue;

13 rule6(W,GP , C);

7.5 Complexity of Algorithm 7

It is important that the function proposed in the previous section can be executed e�ciently

on a classical computer. Therefore, both the time and space complexity of Algorithm 7 are

addressed.

7.5.1 Time Complexity

Regarding the time complexity of Algorithm 7, it starts by setting the nodes to be covered (line

2), which costs time O(k). Setting the induced subgraph needs time O(k2). Now, the rules

are examined. Rule 1 costs time O(k2). Rules 2 and 3 require time O(k2). They are used at

most k times successively. Time O(n) is demanded for rules 4 and 5. Rule 6 needs time O(n)

too. The while-loop is executed at most k times. For simplicity, it is assumed that each rule

requires time O(k2) and that all rules together are executed O(k) times. Then this algorithm

has a total runtime in the order O(k3 + k2 + k).

As in the previous algorithm, speed-ups are possible if more information is stored. However,

we preferred the simplicity of the presented algorithms over their execution time.
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7.5.2 Space Complexity

The required working memory depends mainly on the set of nodes to be covered P, the move

matrix W and the induced subgraph GP = G′[P]. The �rst requires space O(k) and the latter

two graphs require space O(k2). This give a total space of order O(2k2 + k).

7.6 An Algorithm Solving Problem 3: 2 Spare Qubits per

Star

Being able to get a node cover according to Conjecture 7.1, an algorithm can be designed

minimizing the number of steps required. An sample algorithm solving Problem 3 is Algorithm

8. In each step t, qubits are moved over edges Ct ⊆ E′, and the vector v, representing the qubit

distribution, is updated accordingly. The set Ct is a collection of disjoint cycles.

Algorithm 8: routeMoves

Data: The initial placement x and desired placement y of the qubits in the FCS graph
G = (V,E) and the number of stars k.

Result: A list L containing an optimal sequence of moves.
1 W := buildMoveMatrix(x, y, k);
2 t := 1 ; // Start in the first time step

3 v := x ; // Use a copy of the initial state

4 while W 6= 0 do
5 Ct := getNodeCover(W );
6 useCycles(Ct,v, k);
7 t := t+ 1;

Conjecture 7.2. Given an FCS graph G = (V,E) with initial qubit placement x and desired

placement y, Algorithm 8 solves Problem 3 such that both the number of swaps as well as the

number of steps are minimized.

For the cases (about 20) solved by hand, the conjecture was satis�ed. Although not all rules

have been implemented so far, no case has been imagined in which rules 1 - 6 would not lead

to a proper node cover, by which an optimal solution can be obtained.

Assuming Conjecture 7.2, it can be concluded that given a working function getNo-

deCover, the qubits in a FCS graph can be routed e�ciently using Algorithm 8. The routing

scheme generated uses the minimum number of moves (Eq. 20) as well as the optimal number of
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steps (Eq. 21), being only the maximum number of qubits to move outwards from a particular

node, which is at most m. Both the time and space requirements are polynomial in k for k stars

(see the previous section). Even the required number of spare qubits in the quantum circuit is

as low as 2 per processing unit.

7.7 Complexity Algorithm 8

Knowing how to plan qubit moves with the minimum number of steps, the running time of

Algorithm 8 remains to be investigated. Besides, the classical space requirements are examined.

7.7.1 Time Complexity

Algorithm routeMoves starts with creating the move matrixW , given the current and desired

qubit placements in the FCS graph. This costs time O(n2). Setting the single variable t costs

timeO(1). A time in the orderO(n) is demanded to create a copy of the initial qubit distribution

x (line 3). Then a node cover is created, requiring time O(k3 + k2 + k), see Section 7.5. The

function useCycles needs time O(n); there are at most k edges in Ct, but since the qubit

distribution v is updated, time O(n) is required. The last statement needs time O(1). The

while-loop is executed exactly dM times (Eq. 21), which is at most m. Therefore, Algorithm

8 runs in time O(n2 + n+ 1 +m(k3 + k2 + k + n+ 1)).

7.7.2 Space Complexity

The working memory required for this algorithm needs to store the variables t and k, vectors

x, y and v and the move matrix W . This costs space in the order O(k2 + 3n+ 2).

7.7.3 Example of the Application of Algorithm 8

As example to apply Algorithm 8, consider the move graph in Fig. 10. Let dM,t(G
′) be the

number of steps to do after time step t. Then initially, the maximum number of qubits to move

outwards from a node, is equal to dM,0(G′) = 3, which is the case for only node P2. This implies

by Theorem 7.2 that 3 steps are required. Furthermore, Conjecture 7.1 states that there is a

disjoint set of cycles in G′ covering all nodes having 3 qubits to move outwards. Let's take the

cycle {(2, 4), (4, 2)} �rstly. By sorting some qubits via this cycle in step 1, the value for dM,1(G′)



7 ROUTING QUBITS VIA MOVES IN FULLY CONNECTED STAR GRAPHS 53

becomes 2; both nodes P2 and P3 are part of 2 cycles. Now, we sort 3 qubits via the cycle

{(1, 2), (2, 3), (3, 1)}, covering at least the nodes P2 and P3. Being 2 time steps further, dM,2(G′)

is 1 for all nodes in the move graph G′. Lastly, the remained cycle {(1, 2), (2, 3), (3, 4), (4, 1)}

will be used to sort the four qubits which are not in place, which leaves W = 0; the qubits are

sorted and the process ends.

7.8 The Optimal Number of Steps: At Least 1 Spare Qubit

per Star

Suppose that each processor does not necessarily have 2 spare qubits. Then the number of steps

does not always satisfy Eq. 21; if a processor Pi has only 1 spare qubit and if at least one data

qubit in Pi has to be moved outwards, then no other qubit may be moved to Pi, otherwise no

data qubit can be moved outwards.

Proposition 7.1. Problem 3 can be solved within one step using moves, if and only if the

following requirements are met. Firstly, each processor Pi has at most 1 data qubit to move

outwards (µ+
i ≤ 1). Secondly, each processor which has 1 data qubit to move out and gets 1

spare qubit instead, has at least 2 spare qubits. Thirdly, a processor which receives µ−i data

qubits has at least µ−i + 1 spare qubits.

Proof. Let the number of nodes containing a data qubit to move be t. Then these t nodes

form a regular graph having exactly one incoming and one outgoing edge. Therefore, the cycle

decomposition of graph G′ is a set of disjoint cycles. As disjoint cycles can be solved in parallel,

this problem can be solved within one step (Lemma 7.1).

7.8.1 An Algorithm Solving Problem 3: At Least 1 Spare Qubit per Star

Solving Problem 3 with at least 1 spare qubit per processing unit is much harder than when

there are 2 spare qubits available in each PU. Although no algorithm has been found to give a

routing scheme which is optimal in the number of steps, some solving tools are listed below.

For µ−i =
∑

j wji data qubits to move to processor Pi and having µ+
i data qubits to move

to other nodes, let processor Pi have fi spare qubits in the current state.

Rule I. Use as most edges (i, j) as possible, satisfying fi = 1 and fj > 1.
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Rule II. Use as most edges (i, j) as possible, satisfying µ+
i > 0.

7.9 Application of Algorithm 8 to Other Graphs

In general, Algorithm 8 can be applied to other graphs (quantum processor architectures) than

the FCS graph as long as the following conditions are satis�ed.

1. The graph considered should be a connected graph.

2. The graph should be divisible into k smaller subgraphs P1, . . . , Pk.

3. A qubit in subgraph Pi (i ∈ [k]) may only be moved to another subgraph Pj (i ∈ [k]) if

edge (i, j) exists in the move graph.

4. Given a transition of the qubits π : x→ y, for each subgraph Pi, the number of incoming

qubits should be the same as the number of outgoing qubits (µ+
i = µ−i ,∀i ∈ [k]).

5. It is assumed that in practice, a qubit move is executed by some background process.

With a command like move(i, j), the process knows which qubit to move from node Pi

to Pj . Upon the command, the process should retrieve the correct qubit from its current

position and send it from subgraph Pi to subgraph Pj containing its destination. Once

the qubit is there, the background process should place the qubit in the correct node

within that subgraph.

Note that requirement 4. implies that each subgraph should have at least one incoming and one

outgoing edge (without restriction on their weights). Besides, the number of moves between

the subgraphs are minimized by this algorithm, however, the number of steps will only be

minimized in the case that at most one qubit can be moved outwards from some node in a

particular time step.
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8 Conclusions & Open Questions

The problem of routing qubit movements in a fully connected star graph G with qubits is

discussed. In other words, the planning of qubit movements in a special quantum architecture

is examined. The graph is abstracted to a move graph, by which our attention was directed

to the swaps between centres. Several special cases of the problem were considered. Firstly,

the qubits are moved around I. via swaps or II. via moves (half swaps). Furthermore, we can

minimize 1. the number of swaps and 2. the number of time steps.

In case I.1, the move graph G′ should be decomposed into as many cycles as possible.

Using such a decomposition in planning the qubit swaps, results in the minimization of the

number of full swaps. An algorithm is proposed which �nds a (nearly) optimal decomposition.

This has been implemented. From the results shown, it can be concluded that this algorithm

performs better than the simple routing algorithm that was set out, based on the existing

method Selection sort. Moreover, the total number of swaps can be optimized by planning the

execution of swaps with qubits having a centre destination, after other swaps.

The problem in case I.2 is NP-complete on general graphs. Several solving rules are proposed

by which many instances can be solved by an e�cient algorithm which produces a routing

scheme that is optimized in the number of steps. However, several speci�c cases will not be

solved.

In case II where each star has at least 2 spare qubits, the optimal number of moves can be

achieved easily; the order of moving the qubits does not matter. The number of steps required

is conjectured, being equivalent to the maximum number of qubits which should be moved

outwards from one of the stars/processing units. An e�cient routing algorithm is conjectured

to solve this problem. However, more thorough research would be required to validate its

correctness and universality. Nevertheless, the theoretical basics are given. It is known what

to achieve, though the question remains how the requirements can be met by preferably, an

e�cient algorithm.

Algorithm 8 is directly applicable to other graphs than fully connected star graphs, under

certain conditions. The basics of this algorithm might even be used for a wider range of graphs

if some changes/extensions are made. Currently, the question what and how to do that is an
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open research question.

So by abstracting our problem and by examining the resulting move graph, foundations

have been laid to route qubit movements e�ciently in fully connected star graphs (a special

quantum processor architecture). Whether only full swaps or moves are allowed, in both cases,

the number of operations can be minimized e�ciently using the presented algorithms. Moreover,

when each processing unit has only 2 spare qubits, even the optimal number of steps can be

minimized e�ciently. On top of that, the proposed algorithm can be applied to other quantum

processor architectures. Together with the fact that the fully connected star graph is a model

for a quantum processor based on promising diamond impurities, the potential of application

of this work is high.
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