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A Fully Compliant Pendulum Balancer
with a Spherical Range of Motion

Riley Barendse and Giuseppe Radaelli®)
Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands
g.radaelli@tudelft.nl

Abstract. This paper introduces a fully compliant spherical joint with
a stiffness profile specifically optimized for balancing a pendulum. The
design builds on previous work where a fully compliant spherical joint
was created using tetrahedron-shaped elements connected in series. Using
a numerical simulation, optimizations are conducted for two different
ranges of spherical motion. Based on one of the optimized results, a pro-
totype is fabricated and experimentally validated, achieving a moment
reduction of 90.5%. The deformation calculated by the computational
tool closely matches the prototype’s deformation with an accuracy of
89.6%, demonstrating its potential for application in the development of
shoulder exoskeletons.

1 Introduction

Gravity balancers are systems where the work done by moving masses in a grav-
itational field is largely reduced by passive forces that act in the opposite sense.
As such, the forces needed to actuate such systems can be largely reduced. This
leads, among other things, to smaller actuators and less energy consumption.
In human powered devices, gravity balancers have been applied to reduce the
muscle fatigue of the users as well as to help regain functionality to people with
debilitated muscles, by compensating for the gravity forces of their own limbs.

Gravity balancers can mostly be subdivided into two categories. Those that
use counter-masses have been around for centuries and can be seen in, e.g.,
bascule bridges [4]. In the other category, the compensating force derives from
springs, famously employed in the Anglepoise desk lamp [7]. Typically, designers
resort to the latter option if a lower total weight of the system is desired, or if
space on the opposite side of the mass to be balanced is limited.

In an effort to further improve these systems in terms of friction, part-count
and compactness, scholars have in recent years applied the paradigm of compli-
ant mechanisms, wherein the flexibility of mechanical elements is purposefully
applied to obtain a desired motion or force behavior. This paradigm can lead
to an integration of the kinematic functionality of the joint and the kinetostatic
function of the spring. A few examples exist where fully compliant mechanisms
have been applied to obtain the right nonlinear moment profile, which is sinu-
soidal, able to statically balance a pendulum [1,2,12-14,16]. Many others have
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been focusing on the kinematic side of the challenge, namely creating the com-
pliant equivalent of a revolute joint [6]. However, the attempts to face both
challenges at once in order to obtain a fully compliant pendulum balancer are
very scarce. Rommers, for instance, designed an origami-inspired mechanism
that uses the bending of the facets and torsional springs in-between the facets to
obtain the matching moment needed to balance a pendulum|[16]. Abouheidari,
on the other hand, optimized shape of a helicoidally shaped compliant joint,
achieving a sinusoidal moment for a quarter of a revolution [1].

The long term aim of the research here presented is to devise a gravity
balancing system that provides support to the arms of people with debilitated
muscles, in order to partially regain arm functionality. With this perspective,
and conceiving the arm moving about the shoulder joint as the pendulum to be
balanced, two fundamental new requirements must be accounted for, namely the
fact that the shoulder resembles a ball joint, i.e. with three rotational degrees of
freedom, and the fact that the device should have a remote center of rotation in
order not to intersect with the body.

In this context, the compliant remote center of rotation joint developed by
Rommers et al. [17] presents an opportunity. The joint consists of tetrahedron
elements that effectively resist torsion, and which are arranged at an offset from
the center of rotation in such a way that three rotational degrees of freedom
are much more compliant than the translation degrees of freedom. However, the
progression of the moment as a function of the applied rotations has not been
focused on. Hogervorst [8] showed that from the same fundamental concept and
by optimizing the dimensions of the tetrahedron elements, it is possible to design
for a desired nonlinear moment behavior. In this case a behavior was devised
whereby the compliant joint counteracted the force of a regular extension spring.
This work suggests that the fundamental kinematic concept based on tetrahe-
dron elements has the potential to be adapted towards a behavior whereby the
nonlinear moment-angle behavior of the compliant joint can match the required
sinusoidal characteristic needed to balance a pendulum, and to do so in at least
two rotational degrees of freedom.

This paper aims to contribute in the development of shoulder exoskeletons by
presenting the first fully compliant pendulum balancer with a spherical ROM,
based on the serial concatenation of tetrahedron elements.

The paper is structured as follows: Sect. 2 explains the design on which the
novel pendulum balancer is based and elaborates on its geometry, the optimiza-
tion and the experimental validation setup. Section 3 shows the results of the
optimization and the experimental validation. After that the results, observa-
tions, limitations and future work are discussed in Sect.4 and in Sect.5 the
conclusions will be drawn.

2 Method

This section describes the methodology used to obtain the fully compliant pen-
dulum balancer with a spherical range of motion. The Tetra I design from Rom-
mers et al. [17] (see Fig. 1) lays the foundation for the novel pendulum balancer.
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This section will therefore start by describing the design principles of this fully
compliant spherical joint. Next, the geometry and parameters from which the
novel pendulum balancer is built will be defined. Subsequently, the optimization
process is described, which utilizes the TetraFEM tool to optimize the geomet-
ric parameters for balancing a given pendulum. Finally, a description of the test
setup and the measurement procedure that are used to validate the pendulum
balancing properties of the prototype is given.

Rod indicating
v~ the center of

rotation

Fig. 1. The fully compliant spherical joint ‘Tetra I’, with its center of rotation at P.
Retrieved from Rommers et al. [17].

2.1 Tetra I Working Principle

The Tetra I consists of a number of tetrahedron elements connected in series
without intermediate bodies. Each tetrahedron (see Fig.2) is formed by three
connected flexures AB, BC, AC, with all connecting edges, a, b and ¢ pointing
towards its center of rotation Pp. The tetrahedra are compliant for two rota-
tional directions and stiff in the other four degrees of freedom. Therefore, a serial
concatenation of these elements results in a joint that is compliant for all rota-
tions about point Pp, but very stiff for all translations. This design ensures a
nearly constant center of rotation of the spherical joint.
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Fig. 2. The first two tetrahedra of the com- . ) o
pliant joint with its flexures depicted as Fig. 3. A visualization of the param-

eters necessary for calculating the
(angular) height of the tetrahedron.
Point P,2, Py2 and P2 are the mid-
points of the edges on which they are
located.

planes. The independent geometric parame-
ters are shown in grey, with « indicating the
angle between two tetrahedra. The compli-
ant directions of the first tetrahedron in Pp
are shown in green and the stiff directions
in red.

2.2 Geometry of the Pendulum Balancer

Independent Geometric Parameters. This subsection aims to define the
generic geometry of the novel pendulum balancing joint and its tetrahedron ele-
ments. The novel joint consists of n tetrahedra connected in series. The first
tetrahedron, T, is fixed on edge a to the base and the last tetrahedron, T,
is attached to a pendulum at edge c. Each tetrahedron consists of three blade
flexures: AB, AC and BC, with AB and BC being equal in length. The inde-
pendent geometric parameters which dictate the shape and dimensions of each
tetrahedron are shown in Fig. 2. In this study, the parameters o and v can have
different values for each tetrahedron, but t,,;n, R, and R, remain the same
value for all tetrahedra.

Angular Height. The angular height 3 (see Fig. 3) of the tetrahedron is calcu-
lated using the aforementioned independent geometric parameters to minimize
parasitic motion. The height of the tetrahedron is determined using a formula
from Rommers et al. [17] which minimizes parasitic motion if the shape of the
tetrahedron is approximated as a prism:

1
1 4812, . R2 1 12R2 H|°
H=3 [\/41132@ : QQCQR%)M(V +) Liser —meg)(z/ L) , (1)

where v is Poisson’s ratio v = E/(2G) — 1. The other terms used in Eq.1 are
illustrated in Fig.3 and can be derived from the independent parameters:
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Luses = 2sin (%) (Rm + %) 2)
Rym = Ry, cos (%) (3)

The angular height § of the tetrahedron can be calculated using H from Eq.1
and R, m:

Rinm = Rin cos (%), (4)
B = arctan (Rin,m wa,m/2). (5)

Cross-Section Parameters. Similar to the Tetra I design, the flexures of the
tetrahedra have a trapezoidal shaped cross-section, which is illustrated in Fig. 4.
On the edges between P,3, P,3 and P.3 the thickness is the lowest with t,,n,
while on the edges between P,1, P,; and P.; the thickness has the highest value
with ¢,,4,. The equation for t,,,, is given below:

Rin + R
tmaz = . tmin. (6)
Rin
M. is the centroid of the trapezoidal cross-section along edge ¢, as depicted in

Fig. 4. The distance Rj;, between M, and the center of rotation Po can be
calculated using the following equation:

tmaz + 2tmzn
—_— 7
S(tnum; + tnn'n) ( )

As edge a has the same cross-section and dimensions as edge ¢, the relative
location of centroid M, on edge a is the same as that of centroid M, on edge c.

RMo = Rzn+Rw _Rw

Fig.5. A generic simulated spheri-
cal joint composed of five tetrahe-
dra subjected to the load of a pen-
dulum which intersects a Pyoq: point.
This load causes the end-effector of
the simulated joint to deflect towards
point Pgg.

Fig. 4. The cross-section at edge ¢ shown
with a trapezoidal shape due to its variable
thickness.
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2.3 TetraFEM Tool

In order to keep the multi-variable optimization time low, a specialized numeri-
cal simulation tool, the TetraFEM, was developed. This FEM-like algorithm is
written in Python and simulates the behaviour of a pendulum balancing spher-
ical joint consisting of one or more tetrahedra connected in series. Efficient use
of the chain algorithm [9] and several simplifications are applied to minimize
computation time.

The main inputs of the TetraFEM tool are the independent geometric param-
eters of the joint, its relevant material properties, the mass and length of the pen-
dulum and the intended range of motion. The main output of the TetraFEM tool
is the calculated locations of deflected end-effector points corresponding to gravi-
tational loads applied to the model. The calculations performed in the TetraFEM
tool to obtain and visualize deflected end-effector points can be divided into four
parts: The Flexure Compliance Analysis, the Tetrahedron Compliance Analy-
sis, the Chain Algorithm and the Pendulum Balancing Test. To keep this paper
concise, only the Pendulum Balancing Test will be discussed in detail. More
information on the first three parts of the TetraFEM tool can be found in the
authors’ thesis [3].

Flexure Compliance Analysis: The Flexure Compliance Analysis obtains
the compliance matrix of each flexure within the tetrahedra. This analysis is
mostly based on the work of F. Pavari Rad et al. [11], who in return used the
work of Zhang et al. [19] as a foundation to do a compliance analysis on a curved
spherical flexure. The flexures in this Flexure Compliance Analysis are modelled
as Timoshenko beams.

Tetrahedron Compliance Analysis: After the compliance matrices of all
flexures are calculated, the compliance matrices of each tetrahedra can be
obtained using the Tetrahedron Compliance Analysis. In this analysis, the com-
pliance matrices of flexure AB is added to that of flexure BC' to obtain the com-
bined compliance matrix as these flexures are connected in series. After that, the
stiffness matrix, i.e. the inverse of the compliance matrix, of these two flexures
combined is added to the stiffness matrix of flexure AC, as these are connected
in parallel, to obtain the compliance matrix of the whole tetrahedron.

Chain Algorithm: The next step in the TetraFEM tool is the Chain Algo-
rithm, which is a computationally efficient method to calculate nonlinear defor-
mation in a compliant mechanism. Howell explained in [9] how the chain algo-
rithm can be used to calculate the deflection of a flexible cantilever beam dis-
cretized into a number of beam elements. The chain algorithm is utilized in the
TetraFEM tool to calculate the (nonlinear) deflection of the spherical joint when
it is subjected to the load of a pendulum and the self-weight of the flexures.
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Pendulum Balancing Test: This part will explain how the TetraFEM tool can
quantify the pendulum balancing performance of its simulated spherical joint.
The intended ROM of the simulated joint is defined by the range of parameters
1, and ¥y, (see Fig.5) and has the shape of a spherical segment. If the simu-
lated joint would be a perfect spherical joint, meaning it only allows rotational
movement around a constant center of rotation Py, then point Pgr would be
able to move over this spherical segment with a constant radius Ry, (see Eq.7).
This ideal spherical segment is discretized in the TetraFEM tool by m evenly
distributed points denoted as (Pgoq);. The position vector of (Pyoqr); relative
to Pp is defined as:

]Fr(P—goal)j/PO = Sln( n j) ( Yo ])RMO ’ (8)

where (1¢,,); and (¢5); are defined such that the (Pyoq); points are evenly
distributed over the spherical segment.

The load of the pendulum to be balanced depends on its size and weight,
which are inputs for the TetraFEM tool. As illustrated in Fig. 5, the load acting
on the joint also depends on the orientation of the pendulum. L., is the distance
between the center of rotation Py and the COG of the weight on the pendulum
with mass m,,. The mass m,. of the pendulum’s rod has its COG at a distance
of L,/2 from Pp. If the pendulum is in equilibrium under an angle of ¢y, the
moment force Mpenq at point Po can be written as:

. L,
Mpend = Sln("/’h) (mngw + mr.‘]?)- (9)

where g = 9.81m/ s%. The load of the pendulum w4 at point Po and expressed
in reference frame JF equals:

0
0
JF _g(mw+mr)
end — . 10
Wrend —Sln(%}) pend ( )
COS(¢w) pend
0

A pendulum load related to (Pyoqr); can be calculated by implementing the
(1w); and (¥); from 8 in the Egs. 9 and 10. The simulated spherical joint in the
TetraFEM tool is subjected to this pendulum load (Wpenq); and the self-weight
of the flexures to test its pendulum balancing performance. The spherical joint
is a perfect pendulum balancer if this load makes point (Pgg); deflect exactly
to the location of the corresponding (Pyoar);-

The pendulum balancing performance can be quantified by averaging the
magnitudes of the distances between (Pyoq1); and (Pgg); for all m points:
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1 m
davg = m Z ||JFr(P—90al)j/Po —7r Y(Pgg)j/Po || ) (11)
j=1

where dqyg represents a deviation that would be zero for a perfect pendulum
balancing joint. This deviation can be compared to s4.4, the average distance
between (Pyoqr); and the undeformed location of Prg, allowing the deformation
resemblance 74, between the simulated joint and the ideal pendulum balancing
joint to be calculated:

day
- (1 - 79) -100%, (12)
Savg
where
1 - JF
Savg = E Z ” r(P,goal)j/E'E,undefH (13)
j=1

and where EE,,qey is point Ppg in undeformed state.

2.4 Optimization

This study conducted two separate optimizations on the DelftBlue supercom-
puter [5] to determine the independent geometric parameters of the optimal
pendulum balancers for two different scenarios. The amount of dl elements per
flexure, the R;, and R, parameters, the material properties and the properties
of the pendulum are equal and fixed for both scenarios and are shown in Table 1.

Table 1. The fixed parameters used in the optimizations.

Fixed parameters/Value Description

N 200 Amount of dl elements in a flexure
Rin 67 mm Independent geometric parameter
Ry 25 mm Independent geometric parameter
p 1010kg/m? |Density of flexure material

E 1700-10° Pa Young’s modulus

v 0.38 Poisson’s ratio

by % Shear coefficient

b % Shear coefficient

My 100g Mass of weight on pendulum

my 23.5¢g Mass of the rod

L 250 mm Distance between weight and Po
L, 320 mm Length of the rod

For each optimization the COBYLA [18] method is used to minimize the
objective function dg.g, as defined in Eq. 11. The boundary values imposed on the
optimizations are shown in Table 2, where N, denotes the number of iterations.
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Table 2. The boundary values imposed on the optimizations.

Parameter Boundary values
a; [deg] |[5, 60]

7i [deg]  [-90, 35]

timin [m] [1000, 1800]
Niter <1000

To increase the chances of finding the global optima, each separate optimiza-
tion is repeated for 50 sets of different initial values for oy, v; and t,,;,. These
initial values are determined randomly, but within the boundary values from
Table 2.

2.5 Experimental Validation

Experimental Setup. A prototype is 3D-printed from PA-12 powder with
Multi Jet Fusion printers to validate the TetraFEM tool and the results of the
optimizations. This material should have the same properties as those depicted in
Table 1. The prototype is tested in an experimental setup as shown in Fig. 6 and
7. The base of the prototype is fixed to a part with a fixed reference point and the
other end of the prototype is attached to a pendulum with the same properties
as in Table 1. The weights on the pendulum rod can be shifted along the rod
to increase or decrease parameter L,, and consequently change the load of the
pendulum on the joint. The fixed reference point is placed such that its location
is exactly 5mm under the center of rotation, indicated by the Pp-indicator, if
no loads are applied to the prototype.

P.¢ indicator

Pendulum

‘=|| '
AT |
I

i

Phoneholders
with phongs

Fig. 6. A broad view of the experimental

Fig. 7. A close-up view of the exper-
setup.

imental setup.

Two phone holders, each supporting a mobile phone with a camera, are posi-
tioned at a 90-degree angle relative to each other and at an equal distance from
the center of rotation. In the background of the prototype, rings are suspended
freely on threads. These threads serve as a reference for the direction of gravity
when capturing images of the prototype.
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Measurement Procedure. With the pendulum attached to the prototype,
the orientations and positions of the pendulum for which the system was in
equilibrium were captured using two cameras. As the Pgg-indicator is located
at a fixed distance Ry, from the Pp-indicator, its position in equilibrium can be
calculated from these images. This process was done for each stable and unstable
equilibrium that was manually found for ¥, < 45°. This process was repeated
for several values of L,,, the position of the weights on the pendulum rod, with
increments of 2.5 mm until no additional equilibria were observed.

3 Results

Table 3. Best optimization results

i 30-360 90-90

o (deg) v (deg)a (deg)y (deg)
1 16.30 |- 60.00 |-
2 27.74 1-39.1359.64 |35
3 56.64 |7.83 60.00 (34.32
4 22.24 1-22.22|58.53 1-20.51
5 43.66 1—44.36(37.27 |—88.57
6 43.02 |—22.58(31.56 |35
7 31.80 [|—38.04/58.09 |35
8 15.71 1—40.34|46.87 |27.55
9 31.40 |—83.87(25.18 |35
10 24.23 |-2.07 |47.26 |-8.37
t-min|1290.61 pm 1512.45 pm
Time 256 s 736 s
d_avg|1.31 mm 10.77 mm
n-dr 195.6% 92.0%
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Pee

Pgoal

Y)e [mm]
N

125 100 -75 ~50 -25 0 25 50 Fig. 9. The 3D-printed prototype
Xje [mm] .
based on the best performing pendu-

Fig.8. A top-view of the simulated Tetra lum balancer from the 30-360 opti-
I design, tested as a pendulum balancer for mization.
eleven P,,q and Pgpg points. The arrows
indicate the correspondence between each
Prg point and its associated Pgoq point.

3.1 Tetra I Benchmark

To serve as a benchmark, the original Tetra I design as defined in [15] is simulated
in the TetraFEM tool to test its pendulum balancing performance using the
Pendulum Balancing Test (see Subsect. 2.3). The pendulum balancing area for
which the Tetra I joint is tested is defined by the range of the polar and azimuth
angles: 0 < ¢ < 30 and 0 < v, < 360. This spherical segment is discretized in
the TetraFEM tool by m = 11 evenly distributed points. The self-weight in this
test is assumed to be significant and is recalculated and re-applied once in the
chain algorithm due to the changed self-weight load in large deformations. The
resulting 74, is 32.5% and the top-view is depicted in Fig. 8.

As can be seen in Fig.8 the tetraFEM tool plots the flexures as semi-
transparent planes instead of solids for simplicity. Each tetrahedra is given a
different color to make them easier to distinguish and edge a of T} is depicted
with a dashed line to indicate where the simulated joint is fixed to the environ-
ment. The blue dots in the figure represent the m evenly distributed FP,,,; points,
while the orange dots represent the corresponding Pgg points. As explained in
the Pendulum Balancing Test (2.3), the Pyoq points indicate the 1, and
angles of the pendulum load acting on the simulated joint, with the highest
Mpenq value at the outer ring, where v, = 30°. This pendulum load, along with
the self-weight load, causes the Prg point to deflect to the location indicated by
an orange dot. The distance between the P,,, and Prg points directly correlates
to the performance of the simulated pendulum balancer, for which the top-view
plot provides a convenient visualization. However, the distance in Z ;p-direction
between Prpg and Pyoq, though not visible in the top view, may not always
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be neglected, especially for well-optimized simulated pendulum balancers (see
Fig. 10).

3.2 Optimization Results

Optimization Result 1: 30-360. The first optimization is performed on the
Pendulum Balancing Test of a spherical joint with the same range, amount of
points, amount of tetrahedra and self-weight calculations as described in Subsect.
3.1.

The optimization was run in parallel 50 times under these conditions, with a
computation time of approximately 256 s per iteration. The optimization result
with the lowest objective function dg.4, that does not self-intersect in undeformed
state, is considered to be the best result. This optimized pendulum balancer was
found after 201 iterations, yielding a dgyg of 1.31 mm and an ng, of 95.6%. This
result is illustrated in Fig.9 and 10 and its independent geometric parameters
are listed in Table 3 under “30-360”.

100 / o Pgoal
Pee
|

N 4
Wy

4
E
E o —
3
>

:
s

v
Zjr [mm]

-100

-100 -50 0 50 100
Xje [mm]

0
Yje [mm]

Fig. 10. The simulated top and (Y-Z) side view of the best performing pendulum
balancer from the ten-tetrahedra optimization with eleven Py.q; and Prg points.

Optimization Result 2: 90-90. The second optimization is performed under
the same conditions as the 30-360 optimization, but with m = 18 evenly dis-
tributed points and a range of 0 < ¥, < 90 and 0 < %, < 90 for the polar
and azimuth angles. The optimization was run in parallel 50 times under these
conditions, with a computation time of approximately 736s per iteration. The
best performing result from this 90-90 optimization was found after 284 iter-
ations, yielding a dgny of 10.77mm and an 7g, of 92.0%. The top-view of this
optimization result is shown in Fig. 11 and its independent geometric parameters
are listed in Table 3 under “90-90”. While the distances between the Pgg and
Pyoqr points in the Z;r direction were relatively minor in the other optimization
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results, they are considerably more pronounced in this particular optimization
result, as depicted in Fig. 12.

125

100 &

75 A LI

Pee
100 . P e Pgoal

Pee

Z [Imm]
&

-0 -75 -50 -25 0 % 50 75 100
Yje [mm]

-100 -75 -50 =25 0 25 50 75 100
Xje [mm]

Fig.12. A YZ side view of the best
Fig.11. A top-view of the best perform- performing pendulum balancer from
ing pendulum balancer from the 90-90 opti- the 90-90 optimization with 18 Pyoa
mization with 18 Pyoq; and Pgpg points. and Pgpg points.

3.3 Prototype Validation

The tetrahedra of the 3D-printed prototype described in Subsect. 2.5 share the
same geometric parameters as the best performing pendulum balancer of the
30-360 optimization. The top view of the prototype in Fig.9 differs slightly from
the top-view of the simulated pendulum balancer in Fig. 10 due to deflection
under its own weight and some creep experienced during shipment.

Figure 13 illustrates the results of the prototype’s experimental validation
test, using the top-view of the simulated joint as a reference. A total of 30
stable and 31 unstable equilibria were identified for 200 < L,, < 267.5 mm, with
2.5 mm increments. The location of the prototype’s Pgg-indicator is shown for
each equilibrium e, represented as a square for stable equilibria and as a diamond
for unstable equilibria. The colors of these squares and diamonds represent the
value of (L, ). when the equilibrium was found. The disk in the figure depicts
the top-view of the spherical segment checked for equilibria, which is defined by
polar angle ¥, < 45° and radius Rjps,. The purple area within this spherical
segment indicates where the prototype would self-intersect, and therefore these
regions could not be reached during the experimental validation test.
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(Lw)e=300 mm

100 Pee
/ & O Pgoal
(Lw)e=300 mm 45 deg [ 0.199 Nm (Lwle=25Q mm
100 / \
30 deg | 0.141 Nm
50 < ’
(Lwle=25Q mm (Lw)e=200 m
L\ 15 deg | 0.073 Nm
50 7 - )
(Lw)e=200 m 0.deg | 0 Nm £
Eo
— =
£
Eo
=
~ -50
\\\
-50
-100
~100 —50 0 50 100
X
-100 G [mm]
~100 —50 0 50 100 . . .
X Imm] Fig. 14. A top-view of the simulated

joint with 17 Pyoq; and Prg points.

Fig.13. A top-view of the Pgp-indicator Each Pyoe point matches the posi-

points for 61 identified equilibria. tion of a Pgg-indicator point in equi-

librium.

The prototype is optimized for 1, up to 30°, which is indicated by the yellow
circle in Fig.13. For an ideal pendulum balancing spherical joint, the whole
area encapsulated by this yellow circle would be filled with green squares and
diamonds. However, many of the squares and diamonds depicted in the figure
have a non-green color, as their equilibrium e was found for (L,,). # 250 mm. The
balancing performance of the prototype at equilibrium e for a pendulum with
L., = 250 can be quantified by defining its moment error at this orientation:

(Merror)e = mwgSin (('I/}h)e) ((Lw)e - Lw) (14)

The balancing performance of the prototype for its intended ROM can be approx-
imated by taking the average of the absolute moment errors for all e with 1, <
30°:

1 v
Mavg-error = ; Z |(Merror)u| (15)
u=1

where u indicates an equilibrium e with ¢, < 30° and v equals the total amount
of u equilibria.
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The prototype’s validation test yields a Mgyg_error of 0.00945 Nm. This value
can be related to the total moment force of the pendulum, Mye,q (see Eq.9),
which is depicted in the colorbar in the upper-right corner of Fig. 13 for several
values of vy,. For reference, this average moment error is equal to the moment
force of the pendulum (with L,, = 250 mm) at an angle ¢, = 1.9°.

Finally, the average moment reduction of the prototype for a pendulum with
L., = 250 mm can be calculated with equation:

MGU Eerror
lired = (1 - M97> -100%, (16)
avg

where Mg,q is the average moment force of the pendulum under angle (¢4,).:

v Lr
Mavg = % ugl sin ((¢h)u) (mngw + mr.Q?) (17)

Based on the identified equilibria in the prototype’s validation test, the moment
reduction 7,.q equals 90.5%.

3.4 TetraFEM Validation

The accuracy of the TetraFEM tool can be assessed by comparing the proto-
type’s deformation to the simulated joint’s deformation under equal conditions.
The process and result of this TetraFEM validation test are explained in this
subsection.

During the prototype’s validation test, the Pp-indicator showed minimal
shifting while identifying the equilibria and its distance to the Pgg-indicator
is fixed at Rjps,. As a result, the Pgg-indicator points found for the prototype
are located on a nearly ideal spherical segment, where each point can represent
the polar and azimuth angles, respectively (1), and (1y,)e, of the pendulum in
equilibrium e. The TetraFEM tool can be validated using these Pgg-indicator
points as Pyoq points in the simulation, similar to what is described in the
Pendulum Balancing Test in Sect. 2.3.

The simulated joint in the TetraFEM tool is subjected to the force of a
pendulum with angles (). and (¢y,)., and with its weights at (L., ).. The pro-
totype is based on the best-performing result from the 30-360 optimization and
this simulated joint therefore shares the same independent geometric parameters
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(see Table 3) and fixed parameters (see Table 1). The self-weight of the simulated
joint is considered to be significant and is applied in the same manner as in the
30-360 result. For an ideal TetraFEM tool, the simulated joint with these con-
ditions would deflect all (Pgg). points precisely to their corresponding (Pyoat)e
points, as the prototype is in equilibrium at each (Pyoq1)e point for a pendulum
with Ly, = (Ly)e-

Figure 14 depicts the deflected Prg points for 17 Py, points. These Pyoq
points correspond to the Pgg-indicator points identified for (L., ). = 250 4 7.5n
mm, where n equals the integers from -6 to 2. The selection of Py points was
made to ensure clarity in Fig. 14 and avoid overlapping points.

The error of the TetraFEM tool in calculating the prototype’s deformation
can be quantified by determining dy,,4, the average distance between the (Pyoqr)e
and (Pgg)e points, in a similar way as described in Eq.11. The deformation
resemblance 74, between the simulated joint and the prototype can then be
calculated in a similarly to Eq. 12, where m = 17 and s,,4 represents the average
deflected distance of the (Pyoq1)e points in the figure. This 7g, value reflects the
overall accuracy of the TetraFEM tool in calculating the prototype’s nonlinear
deformations in this validation test, which is 89.6%.

4 Discussion

The 30-360 optimization resulted in the independent geometric parameters of a
well-performing simulated pendulum balancer, achieving an 7y, of 95.6% in the
TetraFEM tool. For comparison, the simulated Tetra I design of Rommers et
al. [17], which is not optimized for balancing a pendulum, yields a significantly
lower deformation resemblance with a 74, of only 32.5%.

Of the two optimizations, the 90-90 optimization was the least successful
with its best performing result scoring a 74, of 92.0%. A well performing pen-
dulum balancer for this range of motion should have a rotational stiffness close
to 0 Nm at ¢, = 90°, as Myenq is approximately constant at that point. How-
ever as the Pgp points in Fig. 11 and 12 indicate, this stiffness profile could not
be found in the 90-90 optimization for the given conditions and assumptions in
the TetraFEM tool. A better result for this optimization might be achieved by
exploring the possibility of optimizing ¢,,;, for individual tetrahedra, or by inves-
tigating the effects of replacing some of the straight flexures in the simulation
with curved flexures or flexures with a varying width along its length.
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The identified equilibria demonstrate optimal balancing behaviour of the
prototype at those orientations for a pendulum with its weights at (L, ).. The
prototype’s average moment reduction for a pendulum with L,, = 250 mm is
90.5%, based on the identified equilibria, indicating that the prototype is a fairly
effective pendulum balancer for its intended pendulum and ROM. However, it
is important to recognize that no equilibria were identified for large portions
of the intended ROM, limiting the available data on the prototype’s balancing
performance in these areas. This limitation arises from the experimental setup
used in this study. While a different setup involving force sensors could capture
data across the entire ROM, as demonstrated in [8], it would also constrain the
joint’s movement and require meticulous calibration for each measurement. To
avoid these complexities, a simpler, non-invasive measurement setup was selected
for this study.

Figure 13 shows that the prototype with a pendulum has two distinct regions
where the majority of equilibria were found: One region contains only unstable
equilibria where (L, ). &~ 250 mm and another region with primarily stable
equilibria where 200 < (L,). < 250 mm. The difference in the prototype’s
stiffness between the stable and unstable region can be attributed to relaxation,
as the prototype was somewhat compressed during shipment. This compression
has effectively reduced its rotational stiffness in orientations where 1, ~ 225
degrees (the stable region) and increased the stiffness in orientations where ,, ~
45 degrees (the unstable region). If the effects of relaxation are accounted for,
the overall stiffness of the prototype is somewhat lower than ideal. This could be
due to the effective Young’s modulus of the prototype’s material being slightly
lower than its advertised tensile modulus of 1700 MPa [10].

The TetraFEM tool validation 3.4 confirms that the deflections of the sim-
ulated joint in the TetraFEM tool are useful to predict the deflections of the
prototype. The 74, of 89.6% would likely be even higher without the prototype’s
relaxation and presumably its lower Young’s modulus, as the TetraFEM tool
was the most accurate for equilibria where (L), ~ 250 mm.

5 Conclusion

This paper presents the first fully compliant pendulum balancer with a spherical
range of motion. Its design is based on the Tetra I joint [17], with its geometry
optimized for balancing a pendulum. The study includes optimizations under
two different conditions to better understand the potential and limitations of
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these pendulum balancers. From one of these optimizations, the best performing
result is 3D printed. This prototype achieved an average moment reduction of
90.5% in the regions where equilibria were identified.

References

11.

12.

13.

14.

15.

16.

17.

. Abouheidari, S., Radaelli, G., Herder, J.: Synthesis of nonlinear torque-angle profile

using compliant helicoidal shell joint. Master’s thesis, Delft University of Technol-
ogy (2024)

Amoozandeh Nobaveh, A., Radaelli, G., Herder, J.L.: A design tool for passive
wrist support. In: Moreno, J.C., Masood, J., Schneider, U., Maufroy, C., Pons,
J.L. (eds.) WeRob 2020. BB, vol. 27, pp. 13-17. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-69547-7_3

Barendse, R., Radaelli, G.: A fully compliant pendulum balancer with a spherical
range of motion. Master thesis, Delft University of Technology (2024)

Chheta, Y.R., Joshi, R.M., Gotewal, K.K., ManoahStephen, M.: A review on pas-
sive gravity compensation. In: 2017 International Conference of Electronics, Com-
munication and Aerospace Technology (ICECA), IEEE, vol. 1, pp. 184-189 (2017)
Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer
(Phase 2) (2024)

Farhadi Machekposhti, D., Tolou, N., Herder, J.L.: A review on compliant joints
and rigid-body constant velocity universal joints toward the design of compliant
homokinetic couplings. J. Mech. Design 137(3), 032,301 (2015)

French, M., Widden, M.: The spring-and-lever balancing mechanism, George Car-
wardine and the Anglepoise lamp. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
214(3), 501-508 (2000)

Hogervorst, D., Radaelli, G., Herder, J.: A neutrally stable quasi-compliant spher-
ical joint with a remote center of rotation (2022)

Howell, L.L.: Compliant mechanisms, chap. 7. Wiley (3013)

Materialise Pal2 MJF 3D printing material (2024). https://www.materialise.com/
en/industrial /3d-printing-materials/pal2-mjf. Accessed 25 Aug 2024

Parvari Rad, F., Berselli, G., Vertechy, R., Parenti-Castelli, V.: Stiffness analysis
of a fully compliant spherical chain with two degrees of freedom, pp. 273—284.
Springer, Cham (2014)

Radaelli, G., Herder, J.: A monolithic compliant large-range gravity balancer.
Mech. Mach. Theory 102 (2015)

Radaelli, G., Herder, J.: Gravity balanced compliant shell mechanisms. Int. J.
Solids Struct. 118, 78-88 (2017)

Rijff, B.L., Herder, J.L., Radaelli, G.: An energy approach to the design of single
degree of freedom gravity balancers with compliant joints. In: International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, vol. 54839, pp. 137-148 (2011)

Rommers, J.: New spherical flexure joint designs (compliant mechanisms).
YouTube (2021)

Rommers, J., Radaelli, G., Herder, J.L.: A design tool for a single vertex compliant-
facet origami mechanism including torsional hinge lines. J. Mech. Robot. 9(6),
061,015 (2017)

Rommers, J., van der Wijk, V., Herder, J.L.: A new type of spherical flexure joint
based on tetrahedron elements. Precis. Eng. 71, 130-140 (2021)


https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://doi.org/10.1007/978-3-030-69547-7_3
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf
https://www.materialise.com/en/industrial/3d-printing-materials/pa12-mjf

116 R. Barendse and G. Radaelli

18. SciPy Development Team. Scipy: Cobyla optimization method in minimize func-
tion (2024). https://docs.scipy.org/doc/scipy /reference/optimize.minimize-cobyla.
html. Accessed 25 Aug 2024

19. Zhang, S., Fasse, E.: A finite-element-based method to determine the spatial stiff-
ness properties of a notch hinge. J. Mech. Design 123 (2001)


https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html

