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A Fully Compliant Pendulum Balancer 
with a Spherical Range of Motion 

Riley Barendse and Giuseppe Radaelli(B) 

Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands 
g.radaelli@tudelft.nl 

Abstract. This paper introduces a fully compliant spherical joint with 
a stiffness profile specifically optimized for balancing a pendulum. The 
design builds on previous work where a fully compliant spherical joint 
was created using tetrahedron-shaped elements connected in series. Using 
a numerical simulation, optimizations are conducted for two different 
ranges of spherical motion. Based on one of the optimized results, a pro-
totype is fabricated and experimentally validated, achieving a moment 
reduction of 90.5%. The deformation calculated by the computational 
tool closely matches the prototype’s deformation with an accuracy of 
89.6%, demonstrating its potential for application in the development of 
shoulder exoskeletons. 

1 Introduction 

Gravity balancers are systems where the work done by moving masses in a grav-
itational field is largely reduced by passive forces that act in the opposite sense. 
As such, the forces needed to actuate such systems can be largely reduced. This 
leads, among other things, to smaller actuators and less energy consumption. 
In human powered devices, gravity balancers have been applied to reduce the 
muscle fatigue of the users as well as to help regain functionality to people with 
debilitated muscles, by compensating for the gravity forces of their own limbs. 

Gravity balancers can mostly be subdivided into two categories. Those that 
use counter-masses have been around for centuries and can be seen in, e.g., 
bascule bridges [ 4]. In the other category, the compensating force derives from 
springs, famously employed in the Anglepoise desk lamp [ 7]. Typically, designers 
resort to the latter option if a lower total weight of the system is desired, or if 
space on the opposite side of the mass to be balanced is limited. 

In an effort to further improve these systems in terms of friction, part-count 
and compactness, scholars have in recent years applied the paradigm of compli-
ant mechanisms, wherein the flexibility of mechanical elements is purposefully 
applied to obtain a desired motion or force behavior. This paradigm can lead 
to an integration of the kinematic functionality of the joint and the kinetostatic 
function of the spring. A few examples exist where fully compliant mechanisms 
have been applied to obtain the right nonlinear moment profile, which is sinu-
soidal, able to statically balance a pendulum [ 1, 2,12– 14,16]. Many others have 
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been focusing on the kinematic side of the challenge, namely creating the com-
pliant equivalent of a revolute joint [ 6]. However, the attempts to face both 
challenges at once in order to obtain a fully compliant pendulum balancer are 
very scarce. Rommers, for instance, designed an origami-inspired mechanism 
that uses the bending of the facets and torsional springs in-between the facets to 
obtain the matching moment needed to balance a pendulum[ 16]. Abouheidari, 
on the other hand, optimized shape of a helicoidally shaped compliant joint, 
achieving a sinusoidal moment for a quarter of a revolution [ 1]. 

The long term aim of the research here presented is to devise a gravity 
balancing system that provides support to the arms of people with debilitated 
muscles, in order to partially regain arm functionality. With this perspective, 
and conceiving the arm moving about the shoulder joint as the pendulum to be 
balanced, two fundamental new requirements must be accounted for, namely the 
fact that the shoulder resembles a ball joint, i.e. with three rotational degrees of 
freedom, and the fact that the device should have a remote center of rotation in 
order not to intersect with the body. 

In this context, the compliant remote center of rotation joint developed by 
Rommers et al. [ 17] presents an opportunity. The joint consists of tetrahedron 
elements that effectively resist torsion, and which are arranged at an offset from 
the center of rotation in such a way that three rotational degrees of freedom 
are much more compliant than the translation degrees of freedom. However, the 
progression of the moment as a function of the applied rotations has not been 
focused on. Hogervorst [ 8] showed that from the same fundamental concept and 
by optimizing the dimensions of the tetrahedron elements, it is possible to design 
for a desired nonlinear moment behavior. In this case a behavior was devised 
whereby the compliant joint counteracted the force of a regular extension spring. 
This work suggests that the fundamental kinematic concept based on tetrahe-
dron elements has the potential to be adapted towards a behavior whereby the 
nonlinear moment-angle behavior of the compliant joint can match the required 
sinusoidal characteristic needed to balance a pendulum, and to do so in at least 
two rotational degrees of freedom. 

This paper aims to contribute in the development of shoulder exoskeletons by 
presenting the first fully compliant pendulum balancer with a spherical ROM, 
based on the serial concatenation of tetrahedron elements. 

The paper is structured as follows: Sect. 2 explains the design on which the 
novel pendulum balancer is based and elaborates on its geometry, the optimiza-
tion and the experimental validation setup. Section 3 shows the results of the 
optimization and the experimental validation. After that the results, observa-
tions, limitations and future work are discussed in Sect. 4 and in Sect. 5 the 
conclusions will be drawn. 

2 Method  

This section describes the methodology used to obtain the fully compliant pen-
dulum balancer with a spherical range of motion. The Tetra I design from Rom-
mers et al. [ 17] (see Fig. 1) lays the foundation for the novel pendulum balancer.
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This section will therefore start by describing the design principles of this fully 
compliant spherical joint. Next, the geometry and parameters from which the 
novel pendulum balancer is built will be defined. Subsequently, the optimization 
process is described, which utilizes the TetraFEM tool to optimize the geomet-
ric parameters for balancing a given pendulum. Finally, a description of the test 
setup and the measurement procedure that are used to validate the pendulum 
balancing properties of the prototype is given. 

Fig. 1. The fully compliant spherical joint ‘Tetra I’, with its center of rotation at P. 
Retrieved from Rommers et al. [17]. 

2.1 Tetra I Working Principle 

The Tetra I consists of a number of tetrahedron elements connected in series 
without intermediate bodies. Each tetrahedron (see Fig. 2) is formed by three 
connected flexures AB, BC, AC, with all connecting edges, a, b and c pointing 
towards its center of rotation .PO. The tetrahedra are compliant for two rota-
tional directions and stiff in the other four degrees of freedom. Therefore, a serial 
concatenation of these elements results in a joint that is compliant for all rota-
tions about point .PO, but very stiff for all translations. This design ensures a 
nearly constant center of rotation of the spherical joint.
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Fig. 2. The first two tetrahedra of the com-
pliant joint with its flexures depicted as 
planes. The independent geometric parame-
ters are shown in grey, with . γ indicating the 
angle between two tetrahedra. The compli-
ant directions of the first tetrahedron in . PO 

are shown in green and the stiff directions 
in red. 

Fig. 3. A visualization of the param-
eters necessary for calculating the 
(angular) height of the tetrahedron. 
Point .Pa2, .Pb2 and .Pc2 are the mid-
points of the edges on which they are 
located. 

2.2 Geometry of the Pendulum Balancer 
Independent Geometric Parameters. This subsection aims to define the 
generic geometry of the novel pendulum balancing joint and its tetrahedron ele-
ments. The novel joint consists of . n tetrahedra connected in series. The first 
tetrahedron, T. 1, is fixed on edge . a to the base and the last tetrahedron, T. n, 
is attached to a pendulum at edge . c. Each tetrahedron consists of three blade 
flexures: AB, AC and BC, with AB and BC being equal in length. The inde-
pendent geometric parameters which dictate the shape and dimensions of each 
tetrahedron are shown in Fig. 2. In this study, the parameters . α and . γ can have 
different values for each tetrahedron, but .tmin, .Rin and .Rw remain the same 
value for all tetrahedra. 

Angular Height. The angular height . β (see Fig. 3) of the tetrahedron is calcu-
lated using the aforementioned independent geometric parameters to minimize 
parasitic motion. The height of the tetrahedron is determined using a formula 
from Rommers et al. [ 17] which minimizes parasitic motion if the shape of the 
tetrahedron is approximated as a prism: 

.H =
1
2

[√
4L4

a2c2 +
48L2

a2c2R
2
w m(ν + 1)
5

+ L2
a2c2 +

12R2
w m(ν + 1)

5

] 1
2

, (1) 

where . ν is Poisson’s ratio .ν = E/(2G) − 1. The other terms used in Eq. 1 are 
illustrated in Fig. 3 and can be derived from the independent parameters:
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.La2c2 = 2 sin
(α

2

)(
Rin +

Rw

2

)
, (2) 

.Rw m = Rw cos
(α

2

)
. (3) 

The angular height . β of the tetrahedron can be calculated using .H from Eq. 1 
and .Rin m: 

.Rin m = Rin cos
(α

2

)
, (4) 

.β = arctan
( H

Rin m + Rw m/2

)
. (5) 

Cross-Section Parameters. Similar to the Tetra I design, the flexures of the 
tetrahedra have a trapezoidal shaped cross-section, which is illustrated in Fig. 4. 
On the edges between .Pa3, .Pb3 and .Pc3 the thickness is the lowest with .tmin, 
while on the edges between .Pa1, .Pb1 and .Pc1 the thickness has the highest value 
with .tmax. The equation for .tmax is given below: 

.tmax =
Rin + Rw

Rin
· tmin. (6) 

.Mc is the centroid of the trapezoidal cross-section along edge . c, as depicted in 
Fig. 4. The distance .RMo between .Mc and the center of rotation .PO can be 
calculated using the following equation: 

.RMo = Rin + Rw − Rw
tmax + 2tmin

3(tmax + tmin)
. (7) 

As edge . a has the same cross-section and dimensions as edge . c, the relative 
location of centroid .Ma on edge . a is the same as that of centroid .Mc on edge . c. 

Fig. 4. The cross-section at edge . c shown 
with a trapezoidal shape due to its variable 
thickness. 

Fig. 5. A generic simulated spheri-
cal joint composed of five tetrahe-
dra subjected to the load of a pen-
dulum which intersects a .Pgoal point. 
This load causes the end-effector of 
the simulated joint to deflect towards 
point .PEE . 
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2.3 TetraFEM Tool 

In order to keep the multi-variable optimization time low, a specialized numeri-
cal simulation tool, the TetraFEM, was developed. This FEM-like algorithm is 
written in Python and simulates the behaviour of a pendulum balancing spher-
ical joint consisting of one or more tetrahedra connected in series. Efficient use 
of the chain algorithm [ 9] and several simplifications are applied to minimize 
computation time. 

The main inputs of the TetraFEM tool are the independent geometric param-
eters of the joint, its relevant material properties, the mass and length of the pen-
dulum and the intended range of motion. The main output of the TetraFEM tool 
is the calculated locations of deflected end-effector points corresponding to gravi-
tational loads applied to the model. The calculations performed in the TetraFEM 
tool to obtain and visualize deflected end-effector points can be divided into four 
parts: The Flexure Compliance Analysis, the Tetrahedron Compliance Analy-
sis, the Chain Algorithm and the Pendulum Balancing Test. To keep this paper 
concise, only the Pendulum Balancing Test will be discussed in detail. More 
information on the first three parts of the TetraFEM tool can be found in the 
authors’ thesis [ 3]. 

Flexure Compliance Analysis: The Flexure Compliance Analysis obtains 
the compliance matrix of each flexure within the tetrahedra. This analysis is 
mostly based on the work of F. Pavari Rad et al. [ 11], who in return used the 
work of Zhang et al. [ 19] as a foundation to do a compliance analysis on a curved 
spherical flexure. The flexures in this Flexure Compliance Analysis are modelled 
as Timoshenko beams. 

Tetrahedron Compliance Analysis: After the compliance matrices of all 
flexures are calculated, the compliance matrices of each tetrahedra can be 
obtained using the Tetrahedron Compliance Analysis. In this analysis, the com-
pliance matrices of flexure AB is added to that of flexure BC to obtain the com-
bined compliance matrix as these flexures are connected in series. After that, the 
stiffness matrix, i.e. the inverse of the compliance matrix, of these two flexures 
combined is added to the stiffness matrix of flexure AC, as these are connected 
in parallel, to obtain the compliance matrix of the whole tetrahedron. 

Chain Algorithm: The next step in the TetraFEM tool is the Chain Algo-
rithm, which is a computationally efficient method to calculate nonlinear defor-
mation in a compliant mechanism. Howell explained in [ 9] how the chain algo-
rithm can be used to calculate the deflection of a flexible cantilever beam dis-
cretized into a number of beam elements. The chain algorithm is utilized in the 
TetraFEM tool to calculate the (nonlinear) deflection of the spherical joint when 
it is subjected to the load of a pendulum and the self-weight of the flexures.
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Pendulum Balancing Test: This part will explain how the TetraFEM tool can 
quantify the pendulum balancing performance of its simulated spherical joint. 
The intended ROM of the simulated joint is defined by the range of parameters 
.ψw and .ψh (see Fig. 5) and has the shape of a spherical segment. If the simu-
lated joint would be a perfect spherical joint, meaning it only allows rotational 
movement around a constant center of rotation .PO, then point .PEE would be 
able to move over this spherical segment with a constant radius .RMo (see Eq. 7). 
This ideal spherical segment is discretized in the TetraFEM tool by .m evenly 
distributed points denoted as .(Pgoal)j . The position vector of .(Pgoal)j relative 
to .PO is defined as: 

.
JF r(P goal)j/PO

=

⎡
⎢⎢⎢⎣

sin
(
(ψh)j

)
cos

(
(ψw)j

)
RMo

sin
(
(ψh)j

)
sin

(
(ψw)j

)
RMo

RMo

(
1 − sin

(
(ψh)j

))

⎤
⎥⎥⎥⎦ , (8) 

where .(ψw)j and .(ψh)j are defined such that the .(Pgoal)j points are evenly 
distributed over the spherical segment. 

The load of the pendulum to be balanced depends on its size and weight, 
which are inputs for the TetraFEM tool. As illustrated in Fig. 5, the load acting 
on the joint also depends on the orientation of the pendulum. .Lw is the distance 
between the center of rotation .PO and the COG of the weight on the pendulum 
with mass .mw. The mass .mr of the pendulum’s rod has its COG at a distance 
of .Lr/2 from .PO. If the pendulum is in equilibrium under an angle of .ψh, the  
moment force .Mpend at point .PO can be written as: 

.Mpend = sin(ψh)
(
mwgLw + mrg

Lr

2

)
. (9) 

where .g = 9.81m/s2. The load of the pendulum .wpend at point .PO and expressed 
in reference frame .JF equals: 

.
JFwpend =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

−g(mw + mr)
− sin(ψw)Mpend

cos(ψw)Mpend

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (10) 

A pendulum load related to .(Pgoal)j can be calculated by implementing the 
.(ψw)j and .(ψh)j from 8 in the Eqs. 9 and 10. The simulated spherical joint in the 
TetraFEM tool is subjected to this pendulum load .(wpend)j and the self-weight 
of the flexures to test its pendulum balancing performance. The spherical joint 
is a perfect pendulum balancer if this load makes point .(PEE)j deflect exactly 
to the location of the corresponding .(Pgoal)j . 

The pendulum balancing performance can be quantified by averaging the 
magnitudes of the distances between .(Pgoal)j and .(PEE)j for all .m points:
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.davg =
1
m

m∑
j=1

∣∣∣∣JF r(P goal)j/PO
−JF r(PEE)j/PO

∣∣∣∣ , (11) 

where .davg represents a deviation that would be zero for a perfect pendulum 
balancing joint. This deviation can be compared to .savg, the average distance 
between .(Pgoal)j and the undeformed location of .PEE , allowing the deformation 
resemblance .ηdr between the simulated joint and the ideal pendulum balancing 
joint to be calculated: 

.ηdr =
(
1 − davg

savg

)
· 100%, (12) 

where 

.savg =
1
m

m∑
j=1

∥∥JF r(P goal)j/EE undef

∥∥ (13) 

and where .EEundef is point .PEE in undeformed state. 

2.4 Optimization 

This study conducted two separate optimizations on the DelftBlue supercom-
puter [ 5] to determine the independent geometric parameters of the optimal 
pendulum balancers for two different scenarios. The amount of .dl elements per 
flexure, the .Rin and .Rw parameters, the material properties and the properties 
of the pendulum are equal and fixed for both scenarios and are shown in Table 1. 

Table 1. The fixed parameters used in the optimizations. 
Fixed parameters Value Description 
.N 200 Amount of .dl elements in a flexure 
.Rin 67 mm Independent geometric parameter 
.Rw 25 mm Independent geometric parameter 
.ρ 1010 kg/m. 

3 Density of flexure material 
.E 1700. ·10. 6 Pa Young’s modulus 
.ν 0.38 Poisson’s ratio 
.by .

5
6

Shear coefficient 
.bz .

5
6

Shear coefficient 
.mw 100 g Mass of weight on pendulum 
.mr 23.5 g Mass of the rod 
.Lw 250 mm Distance between weight and . PO

.Lr 320 mm Length of the rod 

For each optimization the COBYLA [ 18] method is used to minimize the 
objective function .davg, as defined in Eq. 11. The boundary values imposed on the 
optimizations are shown in Table 2, where .Niter denotes the number of iterations.
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Table 2. The boundary values imposed on the optimizations. 
Parameter Boundary values 
.αi [deg] [5, 60] 
.γi [deg] [. −90, 35] 
.tmin [.μm] [1000, 1800] 
.Niter . ≤1000

To increase the chances of finding the global optima, each separate optimiza-
tion is repeated for 50 sets of different initial values for . αi, .γi and .tmin. These 
initial values are determined randomly, but within the boundary values from 
Table 2. 

2.5 Experimental Validation 

Experimental Setup. A prototype is 3D-printed from PA-12 powder with 
Multi Jet Fusion printers to validate the TetraFEM tool and the results of the 
optimizations. This material should have the same properties as those depicted in 
Table 1. The prototype is tested in an experimental setup as shown in Fig. 6 and 
7. The base of the prototype is fixed to a part with a fixed reference point and the 
other end of the prototype is attached to a pendulum with the same properties 
as in Table 1. The weights on the pendulum rod can be shifted along the rod 
to increase or decrease parameter .Lw and consequently change the load of the 
pendulum on the joint. The fixed reference point is placed such that its location 
is exactly 5 mm under the center of rotation, indicated by the .PO-indicator, if 
no loads are applied to the prototype. 

Fig. 6. A broad view of the experimental 
setup. 

Fig. 7. A close-up view of the exper-
imental setup. 

Two phone holders, each supporting a mobile phone with a camera, are posi-
tioned at a 90-degree angle relative to each other and at an equal distance from 
the center of rotation. In the background of the prototype, rings are suspended 
freely on threads. These threads serve as a reference for the direction of gravity 
when capturing images of the prototype.
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Measurement Procedure. With the pendulum attached to the prototype, 
the orientations and positions of the pendulum for which the system was in 
equilibrium were captured using two cameras. As the .PEE-indicator is located 
at a fixed distance .RMo from the .PO-indicator, its position in equilibrium can be 
calculated from these images. This process was done for each stable and unstable 
equilibrium that was manually found for .ψh .≤ 45. ◦. This process was repeated 
for several values of .Lw, the position of the weights on the pendulum rod, with 
increments of 2.5 mm until no additional equilibria were observed. 

3 Results 

Table 3. Best optimization results 
.i 30-360 90-90 

.α (deg).γ (deg).α (deg).γ (deg) 
1 16.30 – 60.00 – 
2 27.74 . −39.13 59.64 35 
3 56.64 7.83 60.00 34.32 
4 22.24 . −22.22 58.53 . −20.51 
5 43.66 . −44.36 37.27 . −88.57 
6 43.02 . −22.58 31.56 35 
7 31.80 . −38.04 58.09 35 
8 15.71 . −40.34 46.87 27.55 
9 31.40 . −83.87 25.18 35 
10 24.23 . −2.07 47.26 . −8.37 
.t min 1290.61 . µm 1512.45 . µm 
Time 256 s 736 s 
.d avg 1.31 mm 10.77 mm 
.η dr 95.6% 92.0%
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Fig. 8. A top-view of the simulated Tetra 
I design, tested as a pendulum balancer for 
eleven .Pgoal and .PEE points. The arrows 
indicate the correspondence between each 
.PEE point and its associated .Pgoal point. 

Fig. 9. The 3D-printed prototype 
based on the best performing pendu-
lum balancer from the 30-360 opti-
mization. 

3.1 Tetra I Benchmark 

To serve as a benchmark, the original Tetra I design as defined in [ 15] is simulated 
in the TetraFEM tool to test its pendulum balancing performance using the 
Pendulum Balancing Test (see Subsect. 2.3). The pendulum balancing area for 
which the Tetra I joint is tested is defined by the range of the polar and azimuth 
angles: .0 ≤ ψh ≤ 30 and .0 ≤ ψw < 360. This spherical segment is discretized in 
the TetraFEM tool by .m = 11 evenly distributed points. The self-weight in this 
test is assumed to be significant and is recalculated and re-applied once in the 
chain algorithm due to the changed self-weight load in large deformations. The 
resulting .ηdr is 32.5% and the top-view is depicted in Fig. 8. 

As can be seen in Fig. 8 the tetraFEM tool plots the flexures as semi-
transparent planes instead of solids for simplicity. Each tetrahedra is given a 
different color to make them easier to distinguish and edge . a of .T1 is depicted 
with a dashed line to indicate where the simulated joint is fixed to the environ-
ment. The blue dots in the figure represent the .m evenly distributed .Pgoal points, 
while the orange dots represent the corresponding .PEE points. As explained in 
the Pendulum Balancing Test (2.3), the .Pgoal points indicate the .ψw and . ψh

angles of the pendulum load acting on the simulated joint, with the highest 
.Mpend value at the outer ring, where .ψh = 30. ◦. This pendulum load, along with 
the self-weight load, causes the .PEE point to deflect to the location indicated by 
an orange dot. The distance between the .Pgoal and .PEE points directly correlates 
to the performance of the simulated pendulum balancer, for which the top-view 
plot provides a convenient visualization. However, the distance in .ZJF -direction 
between .PEE and .Pgoal, though not visible in the top view, may not always
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be neglected, especially for well-optimized simulated pendulum balancers (see 
Fig. 10). 

3.2 Optimization Results 

Optimization Result 1: 30-360. The first optimization is performed on the 
Pendulum Balancing Test of a spherical joint with the same range, amount of 
points, amount of tetrahedra and self-weight calculations as described in Subsect. 
3.1. 

The optimization was run in parallel 50 times under these conditions, with a 
computation time of approximately 256 s per iteration. The optimization result 
with the lowest objective function .davg, that does not self-intersect in undeformed 
state, is considered to be the best result. This optimized pendulum balancer was 
found after 201 iterations, yielding a .davg of 1.31 mm and an .ηdr of 95.6%. This 
result is illustrated in Fig. 9 and 10 and its independent geometric parameters 
are listed in Table 3 under “30-360”. 

Fig. 10. The simulated top and (Y-Z) side view of the best performing pendulum 
balancer from the ten-tetrahedra optimization with eleven .Pgoal and .PEE points. 

Optimization Result 2: 90-90. The second optimization is performed under 
the same conditions as the 30-360 optimization, but with .m = 18 evenly dis-
tributed points and a range of .0 ≤ ψh ≤ 90 and .0 ≤ ψw ≤ 90 for the polar 
and azimuth angles. The optimization was run in parallel 50 times under these 
conditions, with a computation time of approximately 736 s per iteration. The 
best performing result from this 90-90 optimization was found after 284 iter-
ations, yielding a .davg of 10.77 mm and an .ηdr of 92.0%. The top-view of this 
optimization result is shown in Fig. 11 and its independent geometric parameters 
are listed in Table 3 under “90-90”. While the distances between the .PEE and 
.Pgoal points in the .ZJF direction were relatively minor in the other optimization
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results, they are considerably more pronounced in this particular optimization 
result, as depicted in Fig. 12. 

Fig. 11. A top-view of the best perform-
ing pendulum balancer from the 90-90 opti-
mization with 18 .Pgoal and .PEE points. 

Fig. 12. A YZ side view of the best 
performing pendulum balancer from 
the 90-90 optimization with 18 . Pgoal 

and .PEE points. 

3.3 Prototype Validation 

The tetrahedra of the 3D-printed prototype described in Subsect. 2.5 share the 
same geometric parameters as the best performing pendulum balancer of the 
30-360 optimization. The top view of the prototype in Fig. 9 differs slightly from 
the top-view of the simulated pendulum balancer in Fig. 10 due to deflection 
under its own weight and some creep experienced during shipment. 

Figure 13 illustrates the results of the prototype’s experimental validation 
test, using the top-view of the simulated joint as a reference. A total of 30 
stable and 31 unstable equilibria were identified for 200 .≤ Lw ≤ 267.5 mm, with 
2.5 mm increments. The location of the prototype’s .PEE-indicator is shown for 
each equilibrium . e, represented as a square for stable equilibria and as a diamond 
for unstable equilibria. The colors of these squares and diamonds represent the 
value of .(Lw)e when the equilibrium was found. The disk in the figure depicts 
the top-view of the spherical segment checked for equilibria, which is defined by 
polar angle .ψh ≤ 45. ◦ and radius .RMo. The purple area within this spherical 
segment indicates where the prototype would self-intersect, and therefore these 
regions could not be reached during the experimental validation test.
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Fig. 13. A top-view of the .PEE-indicator 
points for 61 identified equilibria. 

Fig. 14. A top-view of the simulated 
joint with 17 .Pgoal and .PEE points. 
Each .Pgoal point matches the posi-
tion of a .PEE-indicator point in equi-
librium. 

The prototype is optimized for .ψh up to 30. ◦, which is indicated by the yellow 
circle in Fig. 13. For an ideal pendulum balancing spherical joint, the whole 
area encapsulated by this yellow circle would be filled with green squares and 
diamonds. However, many of the squares and diamonds depicted in the figure 
have a non-green color, as their equilibrium . e was found for .(Lw)e �= 250 mm. The 
balancing performance of the prototype at equilibrium . e for a pendulum with 
.Lw = 250 can be quantified by defining its moment error at this orientation: 

.(Merror)e = mwg sin
(
(ψh)e

)(
(Lw)e − Lw

)
. (14) 

The balancing performance of the prototype for its intended ROM can be approx-
imated by taking the average of the absolute moment errors for all . e with . ψh ≤
30. ◦: 

.Mavg error =
1
v

v∑
u=1

|(Merror)u| (15) 

where . u indicates an equilibrium . e with .ψh ≤ 30. ◦ and . v equals the total amount 
of . u equilibria.
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The prototype’s validation test yields a .Mavg error of 0.00945 Nm. This value 
can be related to the total moment force of the pendulum, .Mpend (see Eq. 9), 
which is depicted in the colorbar in the upper-right corner of Fig. 13 for several 
values of .ψh. For reference, this average moment error is equal to the moment 
force of the pendulum (with .Lw = 250 mm) at an angle .ψh = 1.9. ◦. 

Finally, the average moment reduction of the prototype for a pendulum with 
.Lw = 250 mm can be calculated with equation: 

.ηred =
(
1 − Mavg error

Mavg

)
· 100%, (16) 

where .Mavg is the average moment force of the pendulum under angle .(ψh)u: 

.Mavg =
1
v

v∑
u=1

sin
(
(ψh)u

)(
mwgLw + mrg

Lr

2

)
(17) 

Based on the identified equilibria in the prototype’s validation test, the moment 
reduction .ηred equals 90.5%. 

3.4 TetraFEM Validation 

The accuracy of the TetraFEM tool can be assessed by comparing the proto-
type’s deformation to the simulated joint’s deformation under equal conditions. 
The process and result of this TetraFEM validation test are explained in this 
subsection. 

During the prototype’s validation test, the .PO-indicator showed minimal 
shifting while identifying the equilibria and its distance to the .PEE-indicator 
is fixed at .RMo. As a result, the .PEE-indicator points found for the prototype 
are located on a nearly ideal spherical segment, where each point can represent 
the polar and azimuth angles, respectively .(ψh)e and .(ψw)e, of the pendulum in 
equilibrium . e. The TetraFEM tool can be validated using these .PEE-indicator 
points as .Pgoal points in the simulation, similar to what is described in the 
Pendulum Balancing Test in Sect. 2.3. 

The simulated joint in the TetraFEM tool is subjected to the force of a 
pendulum with angles .(ψh)e and .(ψw)e, and with its weights at .(Lw)e. The pro-
totype is based on the best-performing result from the 30-360 optimization and 
this simulated joint therefore shares the same independent geometric parameters
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(see Table 3) and fixed parameters (see Table 1). The self-weight of the simulated 
joint is considered to be significant and is applied in the same manner as in the 
30-360 result. For an ideal TetraFEM tool, the simulated joint with these con-
ditions would deflect all .(PEE)e points precisely to their corresponding . (Pgoal)e
points, as the prototype is in equilibrium at each .(Pgoal)e point for a pendulum 
with .Lw = .(Lw)e. 

Figure 14 depicts the deflected .PEE points for 17 .Pgoal points. These . Pgoal

points correspond to the .PEE-indicator points identified for . (Lw)e = 250 + 7.5n
mm, where . n equals the integers from -6 to 2. The selection of .Pgoal points was 
made to ensure clarity in Fig. 14 and avoid overlapping points. 

The error of the TetraFEM tool in calculating the prototype’s deformation 
can be quantified by determining .davg, the average distance between the . (Pgoal)e
and .(PEE)e points, in a similar way as described in Eq. 11. The deformation 
resemblance .ηdr between the simulated joint and the prototype can then be 
calculated in a similarly to Eq. 12, where .m = 17 and .savg represents the average 
deflected distance of the .(Pgoal)e points in the figure. This .ηdr value reflects the 
overall accuracy of the TetraFEM tool in calculating the prototype’s nonlinear 
deformations in this validation test, which is 89.6%. 

4 Discussion 

The 30-360 optimization resulted in the independent geometric parameters of a 
well-performing simulated pendulum balancer, achieving an .ηdr of 95.6% in the 
TetraFEM tool. For comparison, the simulated Tetra I design of Rommers et 
al. [ 17], which is not optimized for balancing a pendulum, yields a significantly 
lower deformation resemblance with a .ηdr of only 32.5%. 

Of the two optimizations, the 90-90 optimization was the least successful 
with its best performing result scoring a .ηdr of 92.0%. A well performing pen-
dulum balancer for this range of motion should have a rotational stiffness close 
to 0 Nm at .ψh = 90. ◦, as  .Mpend is approximately constant at that point. How-
ever as the .PEE points in Fig. 11 and 12 indicate, this stiffness profile could not 
be found in the 90-90 optimization for the given conditions and assumptions in 
the TetraFEM tool. A better result for this optimization might be achieved by 
exploring the possibility of optimizing .tmin for individual tetrahedra, or by inves-
tigating the effects of replacing some of the straight flexures in the simulation 
with curved flexures or flexures with a varying width along its length.
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The identified equilibria demonstrate optimal balancing behaviour of the 
prototype at those orientations for a pendulum with its weights at .(Lw)e. The  
prototype’s average moment reduction for a pendulum with .Lw = 250 mm is 
90.5%, based on the identified equilibria, indicating that the prototype is a fairly 
effective pendulum balancer for its intended pendulum and ROM. However, it 
is important to recognize that no equilibria were identified for large portions 
of the intended ROM, limiting the available data on the prototype’s balancing 
performance in these areas. This limitation arises from the experimental setup 
used in this study. While a different setup involving force sensors could capture 
data across the entire ROM, as demonstrated in [ 8], it would also constrain the 
joint’s movement and require meticulous calibration for each measurement. To 
avoid these complexities, a simpler, non-invasive measurement setup was selected 
for this study. 

Figure 13 shows that the prototype with a pendulum has two distinct regions 
where the majority of equilibria were found: One region contains only unstable 
equilibria where .(Lw)e ≈ 250 mm and another region with primarily stable 
equilibria where 200 .≤ (Lw)e ≤ 250 mm. The difference in the prototype’s 
stiffness between the stable and unstable region can be attributed to relaxation, 
as the prototype was somewhat compressed during shipment. This compression 
has effectively reduced its rotational stiffness in orientations where . ψw ≈ 225
degrees (the stable region) and increased the stiffness in orientations where . ψw ≈
45 degrees (the unstable region). If the effects of relaxation are accounted for, 
the overall stiffness of the prototype is somewhat lower than ideal. This could be 
due to the effective Young’s modulus of the prototype’s material being slightly 
lower than its advertised tensile modulus of 1700 MPa [ 10]. 

The TetraFEM tool validation 3.4 confirms that the deflections of the sim-
ulated joint in the TetraFEM tool are useful to predict the deflections of the 
prototype. The .ηdr of 89.6% would likely be even higher without the prototype’s 
relaxation and presumably its lower Young’s modulus, as the TetraFEM tool 
was the most accurate for equilibria where .(Lw)e ≈ 250 mm. 

5 Conclusion 

This paper presents the first fully compliant pendulum balancer with a spherical 
range of motion. Its design is based on the Tetra I joint [ 17], with its geometry 
optimized for balancing a pendulum. The study includes optimizations under 
two different conditions to better understand the potential and limitations of
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these pendulum balancers. From one of these optimizations, the best performing 
result is 3D printed. This prototype achieved an average moment reduction of 
90.5% in the regions where equilibria were identified. 
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