
 
 

Delft University of Technology

Unsupervised seabed habitat change detection with multibeam backscatter data using a
constrained Gaussian mixture model

Bai, Qian; Amiri-Simkooei, Alireza; Mestdagh, Sebastiaan; Simons, Dick G.; Snellen, Mirjam

DOI
10.1016/j.apacoust.2026.111222
Licence
CC BY
Publication date
2026
Document Version
Final published version
Published in
Applied Acoustics

Citation (APA)
Bai, Q., Amiri-Simkooei, A., Mestdagh, S., Simons, D. G., & Snellen, M. (2026). Unsupervised seabed
habitat change detection with multibeam backscatter data using a constrained Gaussian mixture model.
Applied Acoustics, 246, Article 111222. https://doi.org/10.1016/j.apacoust.2026.111222

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.apacoust.2026.111222
https://doi.org/10.1016/j.apacoust.2026.111222


 

Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier.com/locate/apacoust  

Unsupervised seabed habitat change detection with multibeam backscatter 
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H I G H L I G H T S

• Unsupervised seabed change detection via backscatter differences across surveys and relative calibration on a reference area.

• Unchanged seabed is modeled as a zero-mean Gaussian, with its variance constrained by reference-area backscatter uncertainty.

• Backscatter differences from incident angles between 40◦ and 60◦ present the largest ability of seabed change detection.

• Detected changes align with the sediment movement and a reduction in sand mason worms between the repeated surveys.
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A B S T R A C T

Seabed backscatter data acquired by the multibeam echosounder (MBES) have been identified as a valuable 

indicator of sediment properties and benthic community characteristics. However, developing robust change 

detection models with MBES backscatter remains challenging due to the high costs and limited spatial coverage of 

seabed ground truth data. Lack of absolute backscatter calibration also hinders the comparison between repeated 

MBES measurements. To mitigate these issues, we propose an unsupervised method to detect seabed changes 

by fitting a Gaussian Mixture Model to the backscatter difference between two datasets. A relative calibration is 

conducted based on a stable reference area to eliminate the impact of possible drifts in echosounder characteristics 

on the backscatter difference. We then model the unchanged class as a zero-mean Gaussian distribution, with 

its variance constrained by the backscatter uncertainty estimated from the reference area. By processing each 

incident angle individually, the angular range with the greatest ability for seabed change detection can also be 

investigated. We demonstrate the effectiveness of the proposed method through two case studies in the Dutch 

North Sea. The detected changes reveal seasonal and temporal variations in benthic communities, such as sand 

mason worms, and are consistent with the sediment movement in one of the study areas. This research highlights 

the value of MBES backscatter data for seabed change detection and provides a cost-effective solution for seabed 

habitat monitoring with acoustic measurements.

1 . Introduction

Regular seabed monitoring is important for preserving and manag­

ing marine habitats [1–3]. Traditional ecological monitoring techniques, 

such as box coring and trawling, provide precise but spatially sparse 

seabed information. These techniques also disturb the benthic habitats, 

which restricts the locations and frequency of sampling [4]. By contrast, 

acoustic techniques, especially the multibeam echosounder (MBES), of­

fer a non-destructive and efficient approach for seabed characterization. 

Installed on a vessel platform, MBES emits sound waves in a wide swath 

perpendicular to the sailing direction and collects the backscattered sig­

nals. The beamsteering technique can distinguish signals backscattered 

from different directions, resulting in measurements for bathymetry and 

seabed backscatter intensity across various geolocations [5].

Previous research has successfully employed MBES backscatter data 

to characterize sea bottom properties, such as the sediment grain 

size [6–8], the occurrence of marine benthos [9–13], and manmade 

structures [14,15]. Considering the ability of MBES for continuous and 
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broad-scale seabed mapping across various applications, repeated MBES 

surveys provide a promising solution for inspecting seabed changes 

over time [16]. Such advances highlight MBES as an important tool for 

monitoring and managing dynamic marine environments.

Generally speaking, change detection from multi-temporal remote 

sensing datasets has been a prominent research topic for decades [17]. 

Given the ground truth data, supervised methods including machine 

learning and deep learning approaches can be applied for change de­

tection. One common supervised approach is the post-classification 

comparison, where two classified images are compared to generate a 

change matrix [18]. Similarly, Montereale-Gavazzi et al. [19] classi­

fied MBES data from six surveys using the Random Forest algorithm. 

In their study, comparisons of the classification maps revealed tem­

poral changes in three seabed sediment types over a ten-year period. 

However, collecting ground truth data for environmental monitoring 

can be time-consuming and labor-intensive. In seabed mapping applica­

tions, the aquatic environment poses additional challenges for accessing 

the seabed and achieving ground truth samples with accurate local­

ization [20]. In this regard, unsupervised change detection methods, 

which minimize the dependence on ground truth data, offer a valuable 

alternative for monitoring dynamic seafloor environments.

Unsupervised classification methods have also been employed in the 

post-classification comparison to detect seabed changes. For example, 

Gaida et al. [20] identified changes in underwater coastal nourishment 

materials from eight surveys by comparing the unsupervised Bayesian 

classification [21] results of the MBES backscatter data. To avoid mis­

interpreting the possible drifts in sonar system characteristics as the 

seabed changes, they classified the backscatter data from each survey 

separately. However, some overall changes in the study area might be 

overlooked when comparing patterns of the separately classified maps 

without ground truth data from each survey. Feature differencing, on 

the other hand, offers a more straightforward approach for comparing 

datasets acquired at different times. Analyzing the difference between 

two co-registered datasets is a widely adopted method for change de­

tection [22]. Seabed monitoring using the bathymetric differences from 

repeated surveys has also been investigated [23]. Seabed change detec­

tion using the MBES backscatter differences, however, remains an area 

that requires further research.

Analyzing the backscatter differences among distinct surveys poses 

several challenges mainly due to the absence of absolute backscatter 

calibration. Some sonar parameters such as directivity patterns can be 

proprietary and hence unavailable to users. Moreover, the aging of MBES 

components or changes in the seawater environment can also affect the 

hardware sensitivity. In addition, the angular variation of the backscat­

ter intensity introduces across-track inconsistencies in the backscatter 

data, which further complicates the process of feature differencing.

Building on the aforementioned gaps and challenges, this research 

aims to identify seabed habitat changes in an unsupervised manner by 

analyzing the backscatter differences between two MBES datasets. To 

make the two backscatter datasets comparable, we conduct a relative 

calibration using a stable reference area, which has been indicated as an 

effective approach for making the temporal backscatter data intrinsically 

relative [24,25]. Following this, seabed changes are analyzed for each 

incident angle separately by clustering the backscatter differences using 

a Gaussian Mixture Model (GMM). Gaussian distribution is a widely used 

assumption for change detection [26]. Regarding the MBES backscat­

ter data, statistical properties of the beam-averaged backscatter strength 

also allow the use of Gaussian distributions. To ensure the separation be­

tween unchanged and changed seabed areas, constraints are introduced 

to the GMM: the unchanged cluster is modeled as a zero-mean Gaussian, 

where its variance is initialized by the uncertainty estimated from the 

backscatter data within the reference area.

We applied the proposed change detection method to MBES datasets 

acquired in two study areas in the Dutch North Sea. We used backscatter 

data at 300 kHz, a frequency commonly employed for high-resolution 

seafloor mapping in shallow coastal waters. Our detection results align 

with the observed geomorphological changes in seabed sediments and 

suggest a potential reduction in living benthos such as Lanice conchi­

lega (sand mason worms) between two measurement periods, showing 

that the proposed method can be a cost-effective solution for moni­

toring the benthic habitat. The constrained GMM method also reveals 

the difference in change detection performance regarding different inci­

dent angles, facilitating the design of future surveys for acoustic seabed 

mapping.

2 . Methods

The workflow of our seabed change detection method can be divided 

into three steps: data preprocessing, backscatter difference preparation, 

and change detection using the constrained GMM (see Fig. 1).

Fig. 1. Workflow for seabed change detection using MBES backscatter measurements from two surveys.
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2.1 . Data preprocessing

We remove the bathymetric outliers through spline filtering and use 

the remaining soundings for backscatter data analysis. Apart from geo­

physical and biological seabed properties, the echo level received by 

an MBES is affected by many factors, including acoustic frequency, 

incident angle, water column properties, seabed geomorphology, and 

certain sonar settings. To accurately make use of MBES backscatter data 

for seabed habitat characterization, it is essential to account for these 

factors.

With a fixed acoustic frequency, the backscatter strength (𝐵𝑆) 

[dB per m2 at 1 m] exclusively representing the sea bottom material 

properties can be determined according to the sonar equation [5]:

𝐵𝑆(𝜙) = 𝐸𝐿 + 2𝑇𝐿 − 𝑆𝐿 −𝐺 − 𝑆𝐻 − 𝐵𝑃𝑇 (𝜃𝑇 ) − 𝐵𝑃𝑅(𝜃𝑅) − 10log𝐴, (1)

where 𝜙 is the actual incident angle relative to the seabed slope. 𝐸𝐿 in­

dicates the echo level [dB] backscattered to the MBES. 𝑆𝐿 is the source 

level [dB re 1 µPa at 1 m]. 𝐵𝑃𝑇  and 𝐵𝑃𝑅 are the directivity patterns at 

the transmission angle 𝜃𝑇  and receiving angle 𝜃𝑅 relative to the sonar 

axis. 𝐺 and 𝑆𝐻  refer to the receiver gain [dB] and transducer sensitivity 

[dB re 1 V/µPa], respectively. In addition to the above sonar parame­

ters, 𝑇𝐿 in Eq. (1) accounts for the one-way transmission loss through 

the water column, consisting of the geometrical spreading and seawater 

absorption:

𝑇𝐿 = 20log𝑅 + 𝛼𝑅, (2)

with 𝑅 being the one-way travel distance of the acoustic signal from the 

sonar to the seabed and 𝛼 being the absorption coefficient [dB/m].

In addition, the insonified beam footprint 𝐴 is considered to derive 

the backscatter strength in the unit area. 𝐴 is determined as the smaller 

value between the beam-limited regime 𝐴𝑏 and pulse-limited regime 

𝐴𝑝 [27], which are 

𝐴𝑏 = 𝑅2Ω𝑎𝑙Ω𝑎𝑐 , (3)

and

𝐴𝑝 = Ω𝑎𝑙𝑅
𝑐𝜏𝑒

2sin(𝜙𝑓𝑙 − 𝜖𝑎𝑐 )cos(𝜖𝑎𝑙)
, (4)

where Ω𝑎𝑙 and Ω𝑎𝑐  are the along- and across-track beam opening angles, 

respectively. 𝑐 refers to the sound velocity [m/s] and 𝜏𝑒 is the effective 

pulse length [s]. Moreover, 𝜙𝑓𝑙 is the nominal incident angle relative to 

a horizontal and flat seabed. 𝜖𝑎𝑐  and 𝜖𝑎𝑙 indicate the across- and along-

track seabed slope [radians], respectively, accounting for the impact of 

seabed geomorphology on 𝐵𝑆. We estimate 𝜖𝑎𝑐  and 𝜖𝑎𝑙 using a 2D finite 

difference method, with a moving window of 60 pings on the bathymetry 

data [28].

With the seabed slopes 𝜖𝑎𝑐  and 𝜖𝑎𝑙, the actual incident angle 𝜙 can 

then be derived as

𝜙 = arccos

⎛

⎜

⎜

⎜

⎝

cos𝜙𝑓𝑙 + 𝜖𝑎𝑐sin𝜙𝑓𝑙
√

1 + 𝜖2𝑎𝑙 + 𝜖2𝑎𝑐

⎞

⎟

⎟

⎟

⎠

. (5)

Achieving the absolute backscatter correction described in Eq. (1) is 

challenging due to the absence of knowledge of sonar parameters such 

as 𝑆𝐻  and the directivity patterns. For MBES backscatter measurements 

of a single survey, these unknown parameters can be considered as fixed 

values. By properly handling other factors, we can still achieve uncal­

ibrated 𝐵𝑆 representing the variation in seabed properties. However, 

comparing or combining backscatter data across multiple surveys will 

require either absolute or relative sonar calibration to account for the 

impact of possible changes in the system characteristics across different 

surveys.

2.2 . Backscatter difference preparation

The difference in 𝐵𝑆 between two MBES datasets collected at time 𝑡1
and 𝑡2 for the same study area is the input to our seabed change detection 

method. Considering the angular dependence of 𝐵𝑆, we analyze 𝐵𝑆
for each incident angle 𝜙 separately. To avoid including the change in 

sonar characteristics in the backscatter difference, Δ𝐵𝑆(𝜙), we conduct 

a relative calibration on 𝐵𝑆(𝜙, 𝑡2) using a reference area.

2.2.1 . Reference area selection

Ideally, the reference area should remain sufficiently stable over time 

in terms of bathymetry and geomorphology, as validated by successive 

surveys [25,29]. The reference area selection follows several criteria. 

First, the area should be flat and stable in bathymetry over time. In 

principle, the bathymetric change of the area from 𝑡1 to 𝑡2 should remain 

within the uncertainty of MBES depth measurements. The flatness can be 

examined by the seabed slope estimations, and the occurrence of simple 

unidirectional patterns is acceptable [25]. In addition, the area should 

exhibit homogeneity in backscatter data at both 𝑡1 and 𝑡2.
Since such an independent reference area was inaccessible during our 

surveys, we selected a homogeneous and stable region within our study 

area (see Section 4.2). For the selected area fulfilling these requirements, 

we further validated its stability over time by assessing the consistency 

of nearby bottom samples taken at 𝑡1 and 𝑡2, considering their median 

grain size, benthos composition, and presence of dead shells.

2.2.2 . Relative calibration

After selecting the reference area, the relative calibration of 𝐵𝑆 from 

different surveys is straightforward (Fig. 1). For each incident angle 𝜙, 

we compute the average 𝐵𝑆 within the reference area from 𝑡1 and 𝑡2, 
denoted as 𝜇(𝜙, 𝑡1) and 𝜇(𝜙, 𝑡2). The relative calibration term 𝐶 is then 

determined as

𝐶(𝜙) = 𝜇(𝜙, 𝑡2) − 𝜇(𝜙, 𝑡1). (6)

If 𝐵𝑆(𝜙, 𝑡2) represents any 𝐵𝑆 value in the study area for 𝜙 at 𝑡2, the 

relative calibration can be achieved by

𝐵𝑆′(𝜙, 𝑡2) = 𝐵𝑆(𝜙, 𝑡2) − 𝐶(𝜙), (7)

which accounts for the MBES systematic difference between 𝑡1 and 𝑡2. 
Following this, we achieve the corrected backscatter difference as input 

to the change detection algorithm through:

Δ𝐵𝑆(𝜙) = 𝐵𝑆′(𝜙, 𝑡2) − 𝐵𝑆(𝜙, 𝑡1). (8)

2.3 . Seabed change detection: Constrained GMM

We propose to detect seabed changes by clustering Δ𝐵𝑆(𝜙) using the 

GMM, since the nature of the beam-averaged backscatter strength allows 

us to model Δ𝐵𝑆(𝜙) as Gaussian distributions.

Given the ping-by-ping emission of an MBES, 𝐵𝑆(𝜙) can be treated 

as a random variable affected by the seabed geoacoustic properties. 

Within each beam, 𝐵𝑆(𝜙) results from averaging over the intensities of 

several independent scatter pixels, which correspond to the ensonified 

footprints of each pulse. According to the central limit theorem, when 

a sufficient number of scatter pixels are present, 𝐵𝑆(𝜙) from a single 

seabed type follows a Gaussian distribution [21].

Therefore, given a fixed incident angle 𝜙, the overall probability den­

sity function (PDF) of 𝐵𝑆 at time 𝑡1 can be represented by a Gaussian 

mixture as

𝑓1(𝑥) =
𝑚1
∑

𝑖=1

𝑤1,𝑖
√

2𝜋𝜎21,𝑖

exp

[

−
(𝑥 − 𝜇1,𝑖)

2

2𝜎21,𝑖

]

, (9)

where 𝑥 is one observation from 𝐵𝑆(𝜙, 𝑡1), 𝑚1 is the total number 

of seabed types present at time 𝑡1, and 𝑤1,𝑖, 𝜇1,𝑖, and 𝜎1,𝑖 are the 
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weight coefficient, mean, and standard deviation of the 𝑖-th seabed type, 

respectively.

Similarly, for the same study area and 𝜙, the PDF of 𝐵𝑆 at time 𝑡2
can be written as

𝑓2(𝑥) =
𝑚2
∑

𝑗=1

𝑤2,𝑗
√

2𝜋𝜎22,𝑗
exp

[

−
(𝑥 − 𝜇2,𝑗 )

2

2𝜎22,𝑗

]

. (10)

For seabed change detection, assuming that MBES measurements at 

𝑡1 and 𝑡2 are independent, the PDF of Δ𝐵𝑆(𝜙) = 𝐵𝑆(𝜙, 𝑡2)−𝐵𝑆(𝜙, 𝑡1) can 

then be derived as

𝑓Δ(𝑥) =
𝑚1𝑚2
∑

𝑘=1

𝑤̃Δ,𝑘
√

2𝜋𝜎̃2Δ,𝑘
exp

[

−
(𝑥 − 𝜇̃Δ,𝑘)

2

2𝜎̃2Δ,𝑘

]

. (11)

where 𝑤̃Δ,𝑘 = 𝑤1,𝑖𝑤2,𝑗 , 𝜇̃Δ,𝑘 = 𝜇2,𝑗−𝜇1,𝑖, and 𝜎̃2Δ,𝑘 = 𝜎21,𝑖+𝜎
2
2,𝑗  for each pair 

(𝑖, 𝑗) assuming independent measurement noise at 𝑡1 and 𝑡2. 𝑥 becomes 

one value in Δ𝐵𝑆(𝜙).
In theory, the difference between 𝑓2(𝑥) and 𝑓1(𝑥) yields 𝑚1𝑚2 com­

ponents corresponding to all possible transitions between seabed types. 

In practice, only a subset of these components is physically meaningful 

since many transitions do not occur within the study area. Moreover, at 

each location, only a single type of bottom change can occur, which lim­

its the number of relevant components. Thus, we approximate Eq. (11) 

by 𝑛 components:

𝑓Δ(𝑥) =
𝑛
∑

𝑘=1

𝑤Δ,𝑘
√

2𝜋𝜎2Δ,𝑘
exp

[

−
(𝑥 − 𝜇Δ,𝑘)

2

2𝜎2Δ,𝑘

]

, (12)

in which the first component represents the unchanged seabed and com­

ponents 2 to 𝑛 represent different types of seabed changes. The weight 

coefficient 𝑤Δ,𝑘, 𝑘 = 1,… , 𝑛, satisfies 
∑𝑛

𝑘=1 𝑤Δ,𝑘 = 1. 𝜇Δ,𝑘 and 𝜎Δ,𝑘
are the mean and standard deviation of the 𝑘-th seabed change type, 

respectively. 𝑤Δ,𝑘, 𝜇Δ,𝑘, and 𝜎Δ,𝑘 are the unknown parameters to be 

optimized.

Regarding the unchanged cluster, several constraints can be added to 

its Gaussian distribution. After appropriate backscatter correction and 

relative calibration, the mean of the unchanged cluster, 𝜇Δ,1, can be 

assumed to be 0. Theoretically, its variance 𝜎2Δ,1 is calculated as

𝜎2Δ,1 = 𝜎2𝑢 (𝑡1) + 𝜎2𝑢 (𝑡2), (13)

with 𝜎2𝑢 (𝑡1) and 𝜎2𝑢 (𝑡2) the uncertainty of 𝐵𝑆(𝜙) measurements from the 

two distinct surveys, respectively. Since the random fluctuation of 𝐵𝑆 is 

affected by the seabed types, it is difficult to determine 𝜎2𝑢 (𝑡1) and 𝜎2𝑢 (𝑡2)
without prior knowledge of the study area. Nevertheless, we can still 

facilitate the search for 𝜎Δ,1 using the pre-selected reference area.

Within the reference area, where the seabed is homogeneous, 𝐵𝑆(𝜙)
can be seen as repeated measurements of the same seabed type. Since the 

reference area remains stable over time and experiences no change mea­

surable with an MBES between 𝑡1 and 𝑡2, we can estimate the variance 

of backscatter difference for this specific seabed type as

𝜎′2Δ,1 = 𝜎2𝑟 (𝑡1) + 𝜎2𝑟 (𝑡2), (14)

with 𝜎2𝑟  the variance of 𝐵𝑆(𝜙) from the reference area. We then use 𝜎′Δ,1
to initialize 𝜎Δ,1 during optimization.

Regarding the remaining unknown parameters, the weights 𝑤𝑘 of 

different Gaussian components are initialized equally. In addition, 𝜇Δ,𝑘
and 𝜎Δ,𝑘 of the changed clusters are initialized using the cluster mean 

and standard deviation from the K-Means clustering [30] results. The 

K-Means cluster whose mean is closest to zero is excluded from this. 

K-Means clustering minimizes within-cluster data variances and might 

help separate GMM clusters. Following this, the unknown parame­

ters in Eq. (12) are estimated by the Expectation-Maximization (EM) 

optimization algorithm [31].

In our implementation, computations for the constrained GMM and 

the EM optimization were performed in Python using the package 

PyTorch, while K-Means clustering was realized via scikit-learn using 

the ‘kmeans++’ initialization. Regarding acoustic datasets in this study, 

computations ran efficiently on a desktop equipped with an Intel Xeon 

E5‑1620 v3 CPU and 16 GB RAM, showing that no specialized hardware 

was required.

2.4 . Evaluation

We evaluate the proposed change detection from two aspects: clus­

tering performance and comparison with ground truth.

The clustering performance is evaluated using the silhouette co­

efficient [32], which quantifies how compact and well-separated the 

clusters are in feature space. The silhouette coefficient ranges from −1 

(poor clustering) to 1 (well-clustered) and allows a direct comparison of 

clustering quality across incident angles for a fixed number of clusters. 

In particular, higher silhouette values indicate that Δ𝐵𝑆 at a given angle 

provides better separation between the seabed change types.

In addition, we assess whether a given number of Gaussian com­

ponents adequately explains the data distribution by computing the 

Bayesian information criterion (BIC) as a measure of goodness of fit [33]. 

Lower BIC values indicate a better trade-off between model fit and com­

plexity. The silhouette coefficient and BIC are jointly used to select the 

optimal number of clusters/change types (𝑛 in Eq. 12).

With the available ground truth bottom samples, we examine how 

predicted changes correspond to variations in sample properties such as 

sediment grain size and benthic community presence, thereby linking 

our change detection results to specific seabed conditions. For locations 

sampled during both survey times, we also compute the accuracy and 

F1-score for the binary ‘changed’ and ‘unchanged’ classification. The ac­

curacy describes the proportion of correctly predicted samples, while 

the F1-score is calculated as 

F1 = 2Precision × Recall

Precision + Recall
, (15)

where Precision measures the proportion of predicted ‘changed’ loca­

tions that truly experienced changes, and recall is the proportion of 

actual ‘changed’ samples correctly identified as ‘changed’. Both accuracy 

and F1-score range from 0 (worst) to 1 (best).

3 . Study areas and datasets

3.1 . Study areas

We conducted hydrographic surveys in a subtidal region north of 

the Wadden Sea islands in the North Sea (see Fig. 2), where intensive 

economic activities take place, including fishing, offshore wind energy 

generation, and installation of cables and pipelines on the seabed [34]. 

Regular monitoring in this region is therefore essential for achieving a 

sustainable use of the seabed environment.

Our surveys, conducted in summer 2021 and early spring 2024, cov­

ered two study areas: Borkumse Stenen (BoS) and a region between 

Ameland and Terschelling (AT). Area BoS is characterized by a bathy­

metric drop in the middle, with more heterogeneous water depths on 

the deeper eastern seabed. By contrast, Area AT contains gradual seabed 

slopes, with a deep central trough. Due to limitations in time and bud­

get, the 2024 survey covered only half of the initial survey extent in 

each study area. In addition, a seasonal difference in the seawater tem­

perature (≈10◦C) can be noticed between surveys in the two years (see 

Table 1).

3.2 . Acoustic datasets

During all surveys, we collected the acoustic data using the same 

pole-mounted MBES system, R2Sonic 2026, with an acoustic frequency 

of 300 kHz. The beam opening angle was set to 0.7◦, with a nomi­

nal pulse length of 150 µs. Under the equiangular beam spacing mode, 
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Fig. 2. Study areas. (Left) Location of the study areas in the North Sea. (Right) Bathymetry measured in 2021, displayed with the seabed sampling locations in 2021 

and 2024.

Table 1 

Survey time and seawater temperature of the study areas.

Study area Survey time Seawater temperature1 [◦C]

BoS August 9–13, 2021 17.2±0.08

AT July 12–16, 2021 16.7±0.06

BoS March 13–14, 2024 7.3±0.14

AT March 12–13, 2024 7.5±0.14

1
 Mean ± standard deviation for all water depths.

each ping contained 256 beams, covering a swath of 130◦. In addition, 

adjacent track lines had approximately 50% overlap. To enable the com­

parison of 𝐵𝑆(𝜙) between different surveys, we adopted the same sailing 

direction for the track lines in 2021 and 2024.

During the measurements, we used the hydrographic data acqui­

sition software Qinsy to store the MBES bathymetry and backscatter 

data as database (.db) files. Conductivity, temperature, and depth (CTD) 

measurements were collected regularly to assist in accurate backscatter 

correction for sound absorption through the water column.

3.3 . Seabed properties revealed by bottom samples

In 2021, 13 boxcore sampling locations were selected in Area BoS 

and AT for ground truthing. We used a cylindrical boxcore sampler 

with a surface area of 0.078 m2. Pictures of the boxcore samples were 

taken onboard to provide a simple visual inspection. Macrofauna and 

sediment analyses were conducted later in the laboratory. In 2024, 

we selected 10 locations in BoS and AT for seabed sampling. Apart 

from boxcore samples, we took underwater videos above the seabed 

at each sampling location in 2024. Each video footage covered a tran­

sect of about 50 m, offering a qualitative assessment of the seabed

conditions.

Sample analysis results from 2021 reveal a homogeneous seabed con­

sisting of fine sand on the western side of Area BoS (Fig. 3). By contrast, 

the eastern seabed varied in sediment types from fine to coarse sand, 

with an abundant presence of L. conchilega, which are common in the 

subtidal sandy sediments of the North Sea [35]. L. conchilega are known 

for building tubes with sand grains and shell fragments. These tubes 

protrude outside the seabed surface, altering the seabed’s geoacoustic 

properties to some extent [36]. Moreover, at location BC25, many clay 

chunks were found underneath the seabed surface. Area AT, on the other 

hand, had a narrower variation in sediment types (fine to medium sand). 

L. conchilega were also found in AT, especially in the coarser sediment 

of the trough.

In 2024, the spatial distribution of different sediment types in both 

study areas remained largely consistent with 2021. However, a new sed­

iment type (msG) was identified in Area BoS from one boxcore sample 

taken in a region unsampled in 2021 (see N1 in Fig. 3). This region 

was found to have a high dead shell content in 2024. Clay chunks were 

also found at location N2, which is close to the location BC25 sampled 

in 2021. For other sampling locations in 2024 on the eastern seabed of 

BoS, the L. conchilega density was smaller compared to 2021. This is pos­

sibly due to the influence of seasonality on mortality and recruitment of 

the worms, considering that the life cycle of L. conchilega follows a sea­

sonal pattern. Adult worms that survive the storms in autumn and winter 

spawn in spring, and juveniles usually settle on the seabed in late spring 

and summer [37,38]. In the central trough of Area AT, a lower density 

of L. conchilega and a higher percentage of dead shells were also found 

in spring 2024 compared to summer 2021.

4 . Results and discussion

4.1 . Relations between 𝐵𝑆 and seabed properties

To infer the type of seabed changes using Δ𝐵𝑆(𝜙), relations between 

𝐵𝑆(𝜙) and seabed properties, such as the sediment grain size and ben­

thos abundance, need to be examined first. In this way, we can link 

the increase or decrease in 𝐵𝑆(𝜙) with certain seabed habitat changes. 

Fig. 4 presents the correlation analysis between seabed characteristics 

revealed by bottom samples and averaged 𝐵𝑆 from three angular ranges 

for our study areas. 𝐵𝑆1 from 0–25◦, 𝐵𝑆2 from 25◦–55◦, and 𝐵𝑆3
from 55◦–65◦ were obtained by averaging over 50 pings around each 

sampling location.

In general, 𝐵𝑆1, 𝐵𝑆2, and 𝐵𝑆3 are highly correlated, particularly 

in Area BoS surveyed in 2021. In 2021, L. conchilega in BoS was more 

abundant in coarse sediments (high Folk classes). The dead shell content 

also shows a moderate correlation with the Folk class. Moreover, the 

averaged 𝐵𝑆 across all three angular ranges correlates well with the 
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Fig. 3. Folk classes, L. conchilega (sand mason worm) density, and dead shell content for all boxcore samples collected in 2021 and 2024, displayed with the backscatter 

mosaic of each area. The backscatter mosaics were achieved using the software FMGT and only used for visual assessment. The 6 Folk classes correspond to an increase 

in the median grain size (fS: fine sand; mG: muddy gravel; mS: medium sand; gmS: gravelly muddy sand; cS: coarse sand; msG: muddy sandy gravel). L. conchilega

density less than 20 [ind/m2] or dead shell content smaller than 0.2% are not shown.

Fig. 4. Correlation matrix for each study area between the boxcore sample properties and mean 𝐵𝑆 from three angular ranges, with 𝐵𝑆1 from incident angles 0–25◦, 

𝐵𝑆2 from 25◦–55◦, and 𝐵𝑆3 from 55◦–65◦. Folk classes found in the study areas (fS–msG) are numbered from 1 to 6 when calculating the correlation coefficient.

Folk class. 𝐵𝑆2 and 𝐵𝑆3 exhibit moderate correlations with the dead 

shell content, and may be strongly affected by the L. conchilega density.

By contrast, 𝐵𝑆1, 𝐵𝑆2, and 𝐵𝑆3 show limited correlations with the 

L. conchilega density and dead shell content in the 2024 BoS survey. The 

relations between the Folk class and L. conchilega density also change 

significantly. Far fewer L. conchilega were found in most samples taken 

in 2024 than in 2021. In addition, bottom samples from locations N1 and 

N2 (Fig. 3) contained sediments with larger grain sizes and higher dead 

shell content than those collected in 2021. The differences in sampling 

locations might also contribute to the change in the correlation between 

the Folk class and L. conchilega occurrence. The two seabed properties 

might share a non-linear relationship, considering the preference of L. 

conchilega for sediments containing fine to medium sand [36]. Moreover, 

coarse materials from N1 and N2, such as dead shells, can exceed the 

acoustic wavelength and may no longer increase 𝐵𝑆. Despite these 

variations, 𝐵𝑆1 and 𝐵𝑆2 remain highly correlated with the Folk class.

In Area AT, there are apparent differences among 𝐵𝑆 from the three 

angular ranges regarding their relations with the seabed properties. For 

both surveys in 2021 and 2024, 𝐵𝑆1 exhibits the strongest correlation 

with the Folk class. For 2021 data, 𝐵𝑆1, 𝐵𝑆2, and 𝐵𝑆3 show similar 

moderate correlations with the dead shell content and high correlations 

with the L. conchilega density. In 2024, bottom samples contained signif­

icantly fewer L. conchilega and generally higher dead shell content than 

in 2021. Compared to the results for 2021, correlations between 𝐵𝑆 and 

the L. conchilega density are weaker for AT surveyed in 2024, while 𝐵𝑆2
and 𝐵𝑆3 are highly correlated with the dead shell content.
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Fig. 5. Average half-swath angular response curves and standard deviations of 

𝐵𝑆 from different incident angles within the reference area in 2021 and 2024. 

Incident angles with the same absolute value from the port and starboard side 

are considered identical, as the R2Sonic 2026 operates as a single-head system.

4.2 . Relative calibration results

The selected reference area (Fig. 3) covers approximately 300 ×
360 m of seabed. Within this area, the average absolute bathymetric 

difference between the two surveys in 2021 and 2024 is 0.08 m. To as­

sess whether this difference is consistent with expected measurement 

variability, we used the A priori Multibeam Uncertainty Simulation Tool 

(AMUST), which was developed to quantify the vertical uncertainty of 

MBES measurements [39,40]. Based on the echosounder specifications 

given in Section 3.2, the depth uncertainty is estimated to be in the range 

of 0.074–0.088 m at the 95% confidence level for water depths in Area 

BoS. Although part of the observed 0.08 m difference may be attributed 

to systematic errors, which are not accounted for in this assessment, 

the close agreement with the expected random uncertainty suggests that 

the seabed within the reference area has remained effectively stable be­

tween the two surveys. This is also confirmed by the average seabed 

slope, which remains consistent at 0.7◦ for both years. Backscatter mo­

saics further support this stability by a visual assessment of the seabed 

homogeneity within the reference area. Furthermore, boxcore samples 

next to the reference area demonstrate stability in the sediment type (fS) 

and very little presence of benthos, although there is a slight increase in 

dead shell content (≈0.8%) from 2021 to 2024.

The average backscatter angular response curves from the reference 

area, 𝜇(2021) and 𝜇(2024), show consistency between the 2021 and 

2024 surveys for incident angles 20◦–30◦ (see Fig. 5). However, there 

exists an increasing difference between 𝜇(2021) and 𝜇(2024) for inci­

dent angles larger than 30◦, reaching approximately 4 dB for angles 

above 60◦, which is consistent with the findings from a recent study 

on the instrumental temperature dependence of backscatter measure­

ments [41]. Since the difference in sound absorption due to changes in 

seawater temperatures has been accounted for during the backscatter 

correction (Eq. 2), this effect might be attributed to the hardware sen­

sitivity of the MBES system. In addition, we investigated the potential 

variation in the calculated two-way sound attenuation due to seawater 

absorption, by computing the difference between 2𝛼𝑅 in Eq. (2) using 

the minimum and maximum sound absorption coefficient (𝛼) acquired 

for a water depth of 25 m. 𝛼 was estimated based on in-situ CTD mea­

surements during the survey period. Such difference does not exceed 

0.3 dB from 30◦ to 65◦ (see Fig. 6), which is similar to values revealed 

by previous studies [20,41] and is not significant compared to the 4 dB 

difference observed between 𝜇(2021) and 𝜇(2024). Variations in this 

maximum difference of estimated seawater absorption across surveys 

can be attributed to seasonal differences in daily temperature fluctua­

tions as well as different numbers of CTD measurements due to varying 

survey durations.

Fig. 6. Difference between seawater absorption in dB calculated using the min­

imum and maximum sound absorption coefficient acquired for a water depth of 

25 m, displayed for incident angles 30◦–65◦.

Fig. 7. Histogram of Δ𝐵𝑆(55◦) within the reference area after relative calibra­

tion, displayed with the zero-mean Gaussian distribution  (0, 𝜎𝑟(55◦, 2021)
2 +

𝜎𝑟(55◦, 2024)
2) =  (0, 1.852).

In this research, 𝜇(2024) - 𝜇(2021) was used as the relative cali­

bration term for both Area BoS and AT, considering that the seawater 

temperature difference between the two study areas was small (Table 1). 

On the other hand, the standard deviations of 𝐵𝑆 within the reference 

area (𝜎𝑟) from the 2021 and 2024 surveys are generally consistent, with 

a decreasing trend as the incident angle increases (Fig. 5). This shows the 

stability regarding the uncertainty of MBES backscatter measurements 

from different surveys.

After applying the relative calibration, Δ𝐵𝑆 within the reference 

area presents an example of backscatter difference of the unchanged 

seabed type. With the incident angle 55◦, it is observed that the his­

togram of the resulting Δ𝐵𝑆 can be approximated by a zero-mean 

Gaussian distribution, whose variance is calculated as 𝜎𝑟(2021)
2 +

𝜎𝑟(2024)
2 at 55◦ (Fig. 7). This is consistent with the assumption for 

constrained GMM.

4.3 . Change detection: The optimal number of clusters

The silhouette coefficient and BIC quantitatively evaluate the clus­

tering performance, facilitating the search for the optimal number of 

change types (𝑛 in Eq. 12). We compare the silhouette coefficients across 

five clustering methods: K-Means, GMM with random initialization 

(GMM-r), constrained GMM with random initialization (CGMM-r), GMM 

with Gaussian parameters initialized by K-Means clustering (GMM-k), 

and constrained GMM with K-Means initialization (CGMM-k). Since BIC 

Applied Acoustics 246 (2026) 111222 

7 



Q. Bai, A. Amiri-Simkooei, S. Mestdagh et al.

Fig. 8. Silhouette coefficients (Left) from five clustering methods and BIC values 

(Right) from GMM clustering methods for Area BoS, with the number of clusters 

ranging from 2 to 5. The presented metric value is an average value computed 

from the clustering results for incident angles 40◦–60◦. The clustering methods 

are: K-Means, GMM clustering with Gaussian parameters initialized randomly 

(GMM-r), GMM clustering with Gaussian parameters initialized by the K-Means 

clustering results (GMM-k), constrained GMM clustering with random initial­

ization (CGMM-r), and constrained GMM clustering with K-Means initialization 

(CGMM-k).

Fig. 9. Silhouette coefficients (Left) from five clustering methods and BIC values 

(Right) from GMM clustering methods for Area AT, with the number of clusters 

ranging from 2 to 5 and metric values averaged over 40◦–60◦.

is defined for parametric probabilistic models with an explicit likelihood 

function, we present BIC only for the GMM methods.

To compare the performance across different numbers of clusters, 

we computed the average metric values based on clustering results for 

incident angles between 40◦ and 60◦ (Fig. 8 and 9). This angular range 

was selected because Δ𝐵𝑆, for this angular range, exhibits the greatest 

capability to distinguish different seabed change types (see silhouette 

coefficient results in Section 4.4). Considering that this angular range is 

relatively narrow and contains a comparable number of valid 𝐵𝑆 values 

at each angle, the average BIC can also be representative of the overall 

model fit in this range.

For Area BoS, silhouette coefficients indicate that GMM-k and 

CGMM-k achieve better-separated clusters than the other methods, al­

though results for 𝑛 ≥ 4 decrease significantly compared to two and three 

clusters (Fig. 8). With only two clusters, K-Means produces a silhouette 

coefficient comparable to GMM-k and CGMM-k, but its performance 

deteriorates significantly for more clusters. In general, GMM-based 

methods can further improve the K-Means clustering results by using 

them to initialize the Gaussian parameters. From GMM-r to GMM-k, the 

significant improvement in the silhouette coefficient also highlights the 

Fig. 10. Silhouette coefficient of 3 clusters for all incident angles for Area 

(Top) BoS and (Bottom) AT. Comparisons among five clustering methods are 

presented.

effectiveness of K-Means initialization in GMM optimization. GMM-r and 

CGMM-r fail to achieve satisfactory clustering results. However, the su­

perior performance of CGMM-r for 𝑛 ≥ 3 compared to K-Means and 

GMM-r suggests the potential benefits of incorporating the proposed 

constraints. While silhouette coefficients show that 𝑛 = 2 is optimal for 

Area BoS, BIC values suggest 𝑛 = 3 for GMM-k and 𝑛 = 4 for the other 

three GMM methods. Considering that GMM methods show little differ­

ence between silhouette coefficients for two and three clusters, but a 

significant decrease for four clusters, we chose 3 as the optimal number 

of clusters.

Clustering for Area AT generally yields lower silhouette coefficient 

values compared to results for BoS. There might be smaller differences 

among seabed change types in AT. For Area AT, GMM-k performs the 

best with two clusters (Fig. 9). CGMM-k achieves the best-separated clus­

ters for 𝑛 = 3, but shows similar silhouette coefficients to GMM-k and 

CGMM-r. By contrast, K-Means and GMM-r fail to effectively distinguish 

three clusters. With 𝑛 ≥ 4, silhouette coefficients of all methods are 

close to or smaller than zero, indicating poor clustering performance. 

Through a joint analysis of silhouette coefficients and BIC values, it is 

clear that 𝑛 = 3 is an optimal choice for CGMM methods, while 𝑛 = 2
might be suitable for the other methods. When visually assessing the 

cluster maps, it is found that the ‘unchanged’ detections from CGMM 

methods are scarcely present in the 2-cluster results, with most of the 

study area falling into a single ‘changed’ cluster. With three clusters 

in CGMM-r and CGMM-k, the spatial distribution of the ‘unchanged’ 

cluster remains consistent with the 2-cluster results, but an additional 

‘changed’ cluster with a different spatial pattern is revealed. Notably, the 

two ‘changed’ clusters also coincide with the 2-cluster results from the 

other methods, which might indicate that most areas in AT experienced 

changes. Based on these observations, we ultimately chose three clusters

for AT.

4.4 . Change detection: Comparison among incident angles

With three clusters, all five methods achieve the best clustering per­

formance for incident angles ranging from 40◦ to 60◦ (see Fig. 10). For 

Area BoS, all methods result in a silhouette coefficient close to zero for 

nadir beams up to 20◦. Between 20◦ and 40◦, K-Means, GMM-r, and 

CGMM-r have the silhouette coefficient still near zero, while CGMM-k 

and GMM-k can improve the clustering results significantly compared 

to the nadir beams. By contrast, for Area AT, most methods do not show 

clear separations for incident angles below 40◦.
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Fig. 11. Histogram of Δ𝐵𝑆 for 10◦ and 50◦ regarding Area BoS, colored by the clustering results. Change type 1 can be interpreted as ‘unchanged’ for CGMM methods.

Fig. 12. Histogram of Δ𝐵𝑆 for 10◦ and 50◦ regarding Area AT, colored by the clustering results. Change type 1 can be interpreted as ‘unchanged’ for CGMM methods.

Multiple factors contribute to the differences in clustering perfor­

mances between nadir and oblique beams. Since 𝐵𝑆 from the nadir 

beams has a larger uncertainty (Fig. 5), distinguishing different seabed 

types becomes more challenging. Previous research [42] also suggested 

that a backscatter uncertainty of 2 dB is required to discriminate 

sediment types from fine to coarse sand, which is only met by the 

𝐵𝑆 standard deviation within the 40◦–60◦ range. In addition, seabed 

roughness and volume properties mainly affect 𝐵𝑆 at oblique angles [5]. 

Seabed changes related to these properties may not induce nadir Δ𝐵𝑆
values exceeding the uncertainty of the backscatter measurements. 

Regarding GMM methods, 𝐵𝑆 in the nadir can violate the assumption 

of Gaussian distributions due to the insufficient number of scatter pixels 

within one beam [21], which can subsequently deteriorate the clustering 

performance.

Histograms of Δ𝐵𝑆 at 10◦ and 50◦ provide a more detailed compar­

ison of the clustering results for nadir and oblique angles (see Fig. 11 

and 12). For both study areas, Δ𝐵𝑆(10◦) varies around 0 dB, with sub­

stantial overlap among the three clusters. By contrast, Δ𝐵𝑆(50◦) of Area 

BoS exhibits a much larger dispersion. Apart from one cluster centered 

at 0, cluster 2 with the negative backscatter difference is identified. 

Moreover, cluster 3 with Δ𝐵𝑆(50◦) around 5 dB is clearly separated by 

GMM-k and CGMM-k (Fig. 11). In contrast with BoS, Δ𝐵𝑆(50◦) of AT 

shows mostly negative values (Fig. 12). When using K-Means or GMM-r, 

clusters 1 and 2, which are closer to 0, overlap significantly. GMM-k im­

proves cluster separation but does not center cluster 1 around 0 dB. The 

proposed CGMM methods, on the other hand, ensure that cluster 1 ac­

curately represents the ‘unchanged’ seabed. Cluster 1 from CGMM-r and 

CGMM-k contains a very small number of data points, indicating that 

most of Area AT can be divided into the other two ‘changed’ clusters. 

For both study areas, CGMM-k can simultaneously enable the identifi­

cation of the ‘unchanged’ seabed and maximize the separation among 

different clusters.

4.5 . Seabed change type analysis

The 3-cluster change detection results from the CGMM methods dis­

tinguish the ‘unchanged’ seabed and two ‘changed’ clusters. Based on 

the relationship between 𝐵𝑆 and sample properties for our study areas 

(Fig. 4), we interpret the ‘changed’ cluster as ‘coarser’ if its mean Δ𝐵𝑆
is larger than 0 and as ‘softer’ if the cluster mean is negative. In addi­

tion, we validate the change detection results by comparing them with 

seabed changes revealed by the ground truth bottom samples collected 

in 2021 and 2024.

4.5.1 . Area BoS

All clustering methods reveal similar spatial patterns in the change 

maps for Area BoS (Fig. 13). Due to the unsatisfactory clustering perfor­

mance of the nadir beams, only results for incident angles between 25◦

and 60◦ are presented. The change maps from K-Means, GMM-r, and 

CGMM-r show a greater mixture of the three clusters compared to the 

other two methods, which aligns with the silhouette coefficient results 

(see Fig. 8 and 10).

For CGMM-r and CGMM-k, clusters 1, 2, and 3 can be interpreted 

as ‘unchanged’, ‘softer’, and ‘coarser’, respectively. Most of the west­

ern seabed of BoS is classified as ‘unchanged’. Besides, a stripe pattern 

(Zone S circled in Fig. 13(e) suggests areas where the seabed may have 

become ‘coarser’ in 2024 compared to 2021. On the eastern seabed, an 

alternating pattern of the ‘softer’ and ‘coarser’ detections is observed.

This alternating pattern on the eastern seabed may be attributed 

to sediment movement over time, as indicated by the bathymetry data 

along four profile lines in Area BoS (Fig. 14). In 2021 and 2024, BoS ex­

hibited similar geomorphological features, such as the bathymetric drop 

in the middle and the heterogeneous reef-like structures with a height of 

about 40 cm in the east. However, the relocation of those reef-like struc­

tures after almost three years can be noticed. Comparing the bathymetric 
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Fig. 13. 3-cluster change maps for Area BoS. Results for incident angles between 25◦ and 60◦ are presented. For the CGMM methods, the change type 1, 2, and 3 can 

be regarded as ‘unchanged’, ‘softer’, and ‘coarser’, respectively.

Fig. 14. Comparison of bathymetry profiles between 2021 and 2024, colored by the CGMM-k change detection results. ΔBathymetry is calculated by subtracting the 

bathymetry in 2021 from that measured in 2024.

difference with the CGMM-k change detection results reveals that the 

‘softer’ and ‘coarser’ seabed east of the bathymetric drop corresponds 

to the increase and decrease in bathymetry, respectively. The consistent 

amplitude of these changes further supports the possibility of horizontal 

sediment movement (see Profile 1, 3, 4 in Fig. 14). In addition, bathy­

metric differences along Profile 2 also show ‘softer’ locations on the 

western seabed that might be due to sediment transport (near the sam­

pling location A2-2). By contrast, the ‘coarser’ seabed in Zone S in the 

west does not experience significant changes in bathymetry.

Seabed samples collected in 2021 and 2024 also help to validate the 

change detection results. The Folk class, L. conchilega density, and dead 

shell content of three sample groups are compared (see Table 2). Each 

group includes samples taken from different years but at nearby loca­

tions. Group A (A1-1, A1-2, A2-1, and A2-2 shown in Fig. 13(d) contains 

sediments with the same Folk class, which aligns with the ‘unchanged’ 

seabed type indicated by the CGMM-k results. However, the average L. 

conchilega density of A2-1 and A2-2 is higher than in A1-1 and A1-2. 

Nevertheless, very few L. conchilega are found for Group A in general. 

The dead shell content shows a slight increase in 2024 compared to 

2021. Similarly, for Group B, the Folk class remains unchanged, with 

a moderate increase in dead shell content. However, the L. conchilega

density drops significantly from 2021 to 2024, which is consistent with 

the detected seabed change. The ‘softer’ detections from CGMM-k in the 

neighborhood of sampling locations B1 and B2 may result from the lower 
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Table 2 

Comparison between change detection results and changes in seabed sample 

properties (2021 → 2024) for Area BoS.

Group A1 Group B Group C

Folk class fS → fS gmS → gmS mS → cS

L. conchilega density [ind/m2] 17.1 → 64.1 1175.2 → 0 653.8 → 179.5

dead shell content [%] 0.26 → 1.51 0.18 → 1.72 1.30 → 2.23

Change type predicted by 

CGMM-k

Unchanged Softer –

1
 Locations of samples from Group A, B, and C are shown in Fig. 13(d). For 

Group A, average values of samples from the same year are presented.

presence of L. conchilega in spring 2024, though more ground truthing 

is required to confirm this.

C1 and C2 are located close to each other, but in a heterogeneous 

region, which might explain why they lead to different seabed change 

types (see the zoomed-in plot in Fig. 13(e). Folk classes of C1 and C2 

might show the difference in the sediment from the reef-like structures 

(mS) and troughs between them (cS). In addition, C1 has a much higher 

L. conchilega density than C2, possibly due to the different sediment 

types or seasonal variations in the abundance of L. conchilega. Moreover, 

Location D on the western seabed of BoS is classified as ‘coarser’ by 

CGMM-k, likely due to the presence of empty shells, as observed in box­

core pictures and video transects for sampling locations from Group A 

and Location D. The seabed videos also show a brownish color of the 

sediment at Location D, possibly indicating organic matter left by the 

living shellfish. However, no 2021 samples are available in Zone S to 

validate the detected seabed change.

4.5.2 . Area AT

As observed from the CGMM-r and CGMM-k change maps, the ‘un­

changed’ detections are sparse in the northeast of Area AT (Fig. 15). 

Some across-track inconsistency can also be noticed in the ‘unchanged’ 

detections, possibly due to the poorer clustering performance of 20◦–40◦

compared to 40◦–60◦. Nevertheless, the spatial pattern of seabed change 

types in Area AT is more homogeneous than that in BoS. Based on the 

cluster mean values of Δ𝐵𝑆, change types 2 and 3 can be interpreted 

as ‘slightly softer’ and ‘softer’, respectively. The ‘softer’ seabed is mainly 

located near the trough in the middle of the study area, with some pres­

ence in the west, while ‘slightly softer’ detection results align with the 

seabed slopes next to the trough.

Due to the homogeneity in each detected change type of AT, valida­

tion using bottom samples can be straightforward both qualitatively and 

quantitatively. Across all five ground truth sample groups, the Folk class 

remains unchanged, while the dead shell content shows a slight increase 

from 2021 to 2024 (see Table 3). By contrast, Groups A–D exhibit a de­

crease in L. conchilega density over the same period. The seabed near B1 

and B2 is classified as ‘slightly softer’ by CGMM-k, corresponding to a 

decrease in the L. conchilega density of about 100 [ind/m2]. In Groups 

C and D, the L. conchilega density drops by more than 600 [ind/m2], 

which may explain their classification as ‘softer’. In a similar manner, 

locations A1 and A2 are also identified as ‘softer’, with a decrease in the 

density reaching 200 [ind/m2]. Δ𝐵𝑆(50◦) for locations near Group A is 

about −5 dB, which is close to the boundary value between the change 

types ‘slightly softer’ and ‘softer’ given by CGMM-k (see Fig. 12). On the 

other hand, Group E is classified as ‘slightly softer’, but no significant 

change is observed from the sample properties. Since defining ‘softer’ 

and ‘slightly softer’ for the ground truth samples is challenging, the 

accuracy and F1-score for the binary ‘changed’ and ‘unchanged’ classifi­

cation were calculated, demonstrating the effectiveness of the CGMM-k 

detection results with the metric values of 0.80 and 0.89, respectively.

Across both study areas, BoS and AT, the sediment types (Folk 

classes) remained consistent from 2021 to 2024. The slight increase 

in the dead shell content is not reflected in the change detection re­

sults. Seabed changes revealed by CGMM-k might be more related to the 

Fig. 15. 3-cluster change maps for Area AT. Results for incident angles between 25◦ and 60◦ are presented. For the CGMM methods, the change type 1, 2, and 3 can 

be regarded as ‘unchanged’, ‘slightly softer’, and ‘softer’, respectively.

Table 3 

Comparison between change detection results and changes in seabed sample properties (2021 → 2024) for Area AT.

Group A1 Group B Group C Group D Group E

Folk class fS → fS fS → fS fS → fS mG → mG mG → mG

L. conchilega density [ind/m2] 185.9 → 0 102.6 → 0 641.0 → 0 698.7 → 0 12.8 → 12.8

dead shell content [%] 0.40 → 0.92 0.24 → 0.26 0.15 → 0.99 0.24 → 0.31 0.01 → 0.12

Ground truth change type Changed Changed Changed Changed Unchanged

Change type predicted by CGMM-k Softer Slightly softer Softer Softer Slightly softer

Accuracy: 0.80 F1-score: 0.89

1
 Locations of samples from Group A, B, C, D, and E are indicated in Fig. 15(d).
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changes in living benthos such as L. conchilega, which increase seabed 

surface roughness through their tube-building activities [43].

4.6 . Limitations and future work

Δ𝐵𝑆 between distinct surveys is affected by multiple seabed proper­

ties in a combined way. In this research, the inconsistency in sampling 

locations across years, especially in Area BoS, hinders the quantitative 

analysis of the relationships between Δ𝐵𝑆 and various bottom prop­

erties. This also brings difficulties in validating some of our detected 

seabed changes. With constraints in time and budget during our surveys, 

priority was given to broader spatial coverage with a limited number of 

bottom samples. A more comprehensive study of how different seabed 

properties contribute to Δ𝐵𝑆 would require long-term monitoring with 

consistent sampling locations. Another limitation of this research lies 

in the lack of an independent and long-term monitored reference area. 

For seabed monitoring surveys in the Dutch North Sea, well-established 

reference areas, such as the Kwinte area located in the Belgian North 

Sea [25], can be considered in the future.

In addition, this research focuses on case studies with relatively lim­

ited spatial extents in the Dutch North Sea. To investigate the influence 

of a wider range of seabed types and increased data volumes on 𝐵𝑆
uncertainty and change detection performance across incident angles, 

repeated MBES measurements in diverse seabed environments and on 

larger spatial scales are needed. Seabed types and ocean environments 

can also affect the optimal temporal interval of acoustic monitoring sur­

veys. For the L. conchilega habitats investigated in this research, seasonal 

observations within a year might be beneficial. In sandy sediments 

affected by a high current speed, angular characteristics of 𝐵𝑆 mea­

surements might change in hours due to variations in sand ripples [44], 

allowing for more frequent monitoring. Acoustic frequency is another 

key factor affecting the change detection results using Δ𝐵𝑆, since the 

relationship between 𝐵𝑆 and seabed properties is frequency dependent. 

𝐵𝑆 at various frequencies can show different discrimination abilities for 

bottom characteristics regarding surface roughness and shallow subsur­

face structures. It is therefore beneficial to investigate the potential of 

multi-frequency backscatter for a more comprehensive seabed change 

analysis in the future. Moreover, based on relative calibration, future 

research can investigate other machine learning based benthic habitat 

mapping methods (e.g., [2,3,45,46]) to enhance the use of various types 

of acoustic features in seabed change detection.

5 . Conclusion

Repeated MBES backscatter surveys can help to monitor changes in 

the benthic habitat, but bring the challenge of limited seabed ground 

truth and complexity in backscatter data processing. In this regard, 

we apply Gaussian Mixture Model (GMM) clustering to the backscatter 

difference per incident angle from repeated surveys, achieving unsu­

pervised seabed change detection. We ensure the identification of the 

‘unchanged’ and ‘changed’ seabed, by fitting the ‘unchanged’ cluster as 

a zero-mean Gaussian and constraining its variance using the estimated 

backscatter uncertainty from a stable reference area. The method is also 

flexible in describing different types of seabed changes, through fitting 

multiple Gaussians.

With Gaussian parameters of ‘changed’ clusters initialized by the K-

Means clustering results, the proposed constrained GMM method shows 

promising change detection results for two study areas in the Dutch 

North Sea using 300 kHz backscatter data measured by the MBES system 

R2Sonic 2026. The proposed method detects the seabed change possibly 

caused by a reduction in the Lanice conchilega abundance, which might 

be due to seasonal changes in the seawater environment, such as tem­

perature. For one of the study areas, the change detection results reveal 

alternating patterns between the seabed becoming ‘coarser’ and ‘softer’, 

which align with the sediment movement after almost three years, as 

indicated by the bathymetry data. By processing each incident angle in­

dividually, we show that backscatter data from 40◦ to 60◦ might have 

the greatest ability to detect seabed changes, which is consistent with the 

backscatter uncertainty estimation. When designing surveys for monitor­

ing purposes, it is then helpful to increase the overlap between adjacent 

track lines.

Although the proposed method was tested on a specific MBES system 

and operating frequency in this research, it is, in principle, applica­

ble to other systems and a broader range of frequencies, provided that 

appropriate relative calibration of the backscatter data is performed. 

Moreover, when applying the method to different seabed environments, 

it is essential to first investigate the relationship between backscatter 

measurements and seabed properties at the frequencies of interest.

Limitations of this research lie in the lack of an independent refer­

ence area and different seabed sampling locations in repeated surveys. 

Nevertheless, our study still demonstrates the value of using MBES 

backscatter data for benthic habitat monitoring, especially regarding 

changes in the benthic communities, which can be extended to long-term 

acoustic datasets in the future.
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