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HIGHLIGHTS

» Unsupervised seabed change detection via backscatter differences across surveys and relative calibration on a reference area.

» Unchanged seabed is modeled as a zero-mean Gaussian, with its variance constrained by reference-area backscatter uncertainty.
«» Backscatter differences from incident angles between 40° and 60° present the largest ability of seabed change detection.

«» Detected changes align with the sediment movement and a reduction in sand mason worms between the repeated surveys.

ARTICLE INFO ABSTRACT

Keywords: Seabed backscatter data acquired by the multibeam echosounder (MBES) have been identified as a valuable

Multibeam echosounder indicator of sediment properties and benthic community characteristics. However, developing robust change

Change detection detection models with MBES backscatter remains challenging due to the high costs and limited spatial coverage of

Unsupervised seabed ground truth data. Lack of absolute backscatter calibration also hinders the comparison between repeated

Seabed habitat L. . .

North sea MBES measurements. To mitigate these issues, we propose an unsupervised method to detect seabed changes
by fitting a Gaussian Mixture Model to the backscatter difference between two datasets. A relative calibration is
conducted based on a stable reference area to eliminate the impact of possible drifts in echosounder characteristics
on the backscatter difference. We then model the unchanged class as a zero-mean Gaussian distribution, with
its variance constrained by the backscatter uncertainty estimated from the reference area. By processing each
incident angle individually, the angular range with the greatest ability for seabed change detection can also be
investigated. We demonstrate the effectiveness of the proposed method through two case studies in the Dutch
North Sea. The detected changes reveal seasonal and temporal variations in benthic communities, such as sand
mason worms, and are consistent with the sediment movement in one of the study areas. This research highlights
the value of MBES backscatter data for seabed change detection and provides a cost-effective solution for seabed
habitat monitoring with acoustic measurements.

1. Introduction Installed on a vessel platform, MBES emits sound waves in a wide swath

perpendicular to the sailing direction and collects the backscattered sig-
nals. The beamsteering technique can distinguish signals backscattered
from different directions, resulting in measurements for bathymetry and
seabed backscatter intensity across various geolocations [5].

Previous research has successfully employed MBES backscatter data
to characterize sea bottom properties, such as the sediment grain
size [6-8], the occurrence of marine benthos [9-13], and manmade
structures [14,15]. Considering the ability of MBES for continuous and

Regular seabed monitoring is important for preserving and manag-
ing marine habitats [1-3]. Traditional ecological monitoring techniques,
such as box coring and trawling, provide precise but spatially sparse
seabed information. These techniques also disturb the benthic habitats,
which restricts the locations and frequency of sampling [4]. By contrast,
acoustic techniques, especially the multibeam echosounder (MBES), of-
fer a non-destructive and efficient approach for seabed characterization.
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\begin {equation}\label {ieq4} C(\phi ) = \mu (\phi , t_2)-\mu (\phi , t_1).\end {equation}
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\begin {equation}\label {ieq7} f_1(x) = \sum _{i=1}^{m_1}\frac {w_{1,i}}{\sqrt {2\pi \sigma _{1,i}^2}} \exp \left [-\frac {{(x-\mu _{1,i})}^2}{2\sigma _{1,i}^2}\right ],\end {equation}
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broad-scale seabed mapping across various applications, repeated MBES
surveys provide a promising solution for inspecting seabed changes
over time [16]. Such advances highlight MBES as an important tool for
monitoring and managing dynamic marine environments.

Generally speaking, change detection from multi-temporal remote
sensing datasets has been a prominent research topic for decades [17].
Given the ground truth data, supervised methods including machine
learning and deep learning approaches can be applied for change de-
tection. One common supervised approach is the post-classification
comparison, where two classified images are compared to generate a
change matrix [18]. Similarly, Montereale-Gavazzi et al. [19] classi-
fied MBES data from six surveys using the Random Forest algorithm.
In their study, comparisons of the classification maps revealed tem-
poral changes in three seabed sediment types over a ten-year period.
However, collecting ground truth data for environmental monitoring
can be time-consuming and labor-intensive. In seabed mapping applica-
tions, the aquatic environment poses additional challenges for accessing
the seabed and achieving ground truth samples with accurate local-
ization [20]. In this regard, unsupervised change detection methods,
which minimize the dependence on ground truth data, offer a valuable
alternative for monitoring dynamic seafloor environments.

Unsupervised classification methods have also been employed in the
post-classification comparison to detect seabed changes. For example,
Gaida et al. [20] identified changes in underwater coastal nourishment
materials from eight surveys by comparing the unsupervised Bayesian
classification [21] results of the MBES backscatter data. To avoid mis-
interpreting the possible drifts in sonar system characteristics as the
seabed changes, they classified the backscatter data from each survey
separately. However, some overall changes in the study area might be
overlooked when comparing patterns of the separately classified maps
without ground truth data from each survey. Feature differencing, on
the other hand, offers a more straightforward approach for comparing
datasets acquired at different times. Analyzing the difference between
two co-registered datasets is a widely adopted method for change de-
tection [22]. Seabed monitoring using the bathymetric differences from
repeated surveys has also been investigated [23]. Seabed change detec-
tion using the MBES backscatter differences, however, remains an area
that requires further research.

Analyzing the backscatter differences among distinct surveys poses
several challenges mainly due to the absence of absolute backscatter

MBES data
acquired at time ¢

For a fixed incident angle ¢:

BS mean

W, 1)

BS mean

W, 1)

A 4

Bathymetric cleaning

Relative calibration term:
C=u(@, ) — (4, 1)
~

Backscatter correction For BS within the study area

|

BS'(¢, 1) = BS(4, 1) -C

4

Beam-averaged BS ABS(¢) = BS (¢, t,) — BS(¢, t,)

Data pre-processing

Reference area assumed unchanged

Backscatter difference preparation
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calibration. Some sonar parameters such as directivity patterns can be
proprietary and hence unavailable to users. Moreover, the aging of MBES
components or changes in the seawater environment can also affect the
hardware sensitivity. In addition, the angular variation of the backscat-
ter intensity introduces across-track inconsistencies in the backscatter
data, which further complicates the process of feature differencing.

Building on the aforementioned gaps and challenges, this research
aims to identify seabed habitat changes in an unsupervised manner by
analyzing the backscatter differences between two MBES datasets. To
make the two backscatter datasets comparable, we conduct a relative
calibration using a stable reference area, which has been indicated as an
effective approach for making the temporal backscatter data intrinsically
relative [24,25]. Following this, seabed changes are analyzed for each
incident angle separately by clustering the backscatter differences using
a Gaussian Mixture Model (GMM). Gaussian distribution is a widely used
assumption for change detection [26]. Regarding the MBES backscat-
ter data, statistical properties of the beam-averaged backscatter strength
also allow the use of Gaussian distributions. To ensure the separation be-
tween unchanged and changed seabed areas, constraints are introduced
to the GMM: the unchanged cluster is modeled as a zero-mean Gaussian,
where its variance is initialized by the uncertainty estimated from the
backscatter data within the reference area.

We applied the proposed change detection method to MBES datasets
acquired in two study areas in the Dutch North Sea. We used backscatter
data at 300 kHz, a frequency commonly employed for high-resolution
seafloor mapping in shallow coastal waters. Our detection results align
with the observed geomorphological changes in seabed sediments and
suggest a potential reduction in living benthos such as Lanice conchi-
lega (sand mason worms) between two measurement periods, showing
that the proposed method can be a cost-effective solution for moni-
toring the benthic habitat. The constrained GMM method also reveals
the difference in change detection performance regarding different inci-
dent angles, facilitating the design of future surveys for acoustic seabed
mapping.

2. Methods

The workflow of our seabed change detection method can be divided
into three steps: data preprocessing, backscatter difference preparation,
and change detection using the constrained GMM (see Fig. 1).

i 1

i BS standard deviation BS standard deviation !

| G f(¢, t) - a($, 1) B |
GMM initialization

unchanged cluster: mean fixed at 0;
variance initialized with o($, ,)* + o($, 1,)> <5
changed clusters: Gaussian parameters

initialized with K-means clustering results

Search for the
Constrained GMM fitting  optimal number
l of clusters
Change map for ¢ -------------*
l unchanged

Seabed change type analysis
soft

er o coarser
5 0 5 ABS($)[dB]
Assemble change maps of all incident angles

!

Validation with seabed samples

Seabed change detection

Fig. 1. Workflow for seabed change detection using MBES backscatter measurements from two surveys.
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2.1. Data preprocessing

We remove the bathymetric outliers through spline filtering and use
the remaining soundings for backscatter data analysis. Apart from geo-
physical and biological seabed properties, the echo level received by
an MBES is affected by many factors, including acoustic frequency,
incident angle, water column properties, seabed geomorphology, and
certain sonar settings. To accurately make use of MBES backscatter data
for seabed habitat characterization, it is essential to account for these
factors.

With a fixed acoustic frequency, the backscatter strength (BS)
[dB per m? at 1 m] exclusively representing the sea bottom material
properties can be determined according to the sonar equation [5]:

BS(¢) = EL+2TL - SL -G - SH — BPp(6;) — BPg(6g) — 10logA, (1)

where ¢ is the actual incident angle relative to the seabed slope. EL in-
dicates the echo level [dB] backscattered to the MBES. S L is the source
level [dB re 1 pPa at 1 m]. BP; and BPy are the directivity patterns at
the transmission angle 6; and receiving angle 6, relative to the sonar
axis. G and S H refer to the receiver gain [dB] and transducer sensitivity
[dB re 1 V/uPa], respectively. In addition to the above sonar parame-
ters, TL in Eq. (1) accounts for the one-way transmission loss through
the water column, consisting of the geometrical spreading and seawater
absorption:

TL =20logR + aR, @

with R being the one-way travel distance of the acoustic signal from the
sonar to the seabed and « being the absorption coefficient [dB/m].

In addition, the insonified beam footprint A is considered to derive
the backscatter strength in the unit area. A is determined as the smaller
value between the beam-limited regime A, and pulse-limited regime
A, [27], which are

Ab = R2Qulga¢" (3)

and

A, =Q,R e “)
P AT sin(ghy — €40)C08(€g)

where Q,, and Q,, are the along- and across-track beam opening angles,
respectively. ¢ refers to the sound velocity [m/s] and , is the effective
pulse length [s]. Moreover, ¢, is the nominal incident angle relative to
a horizontal and flat seabed. ¢, and ¢, indicate the across- and along-
track seabed slope [radians], respectively, accounting for the impact of
seabed geomorphology on B.S. We estimate ¢, and ¢, using a 2D finite
difference method, with a moving window of 60 pings on the bathymetry
data [28].

With the seabed slopes ¢,. and ¢,, the actual incident angle ¢ can
then be derived as

cos¢ ;) + €,,5in¢
¢ = arccos AT e A . 5)

2 2
,/1+ea,+eac

Achieving the absolute backscatter correction described in Eq. (1) is
challenging due to the absence of knowledge of sonar parameters such
as S H and the directivity patterns. For MBES backscatter measurements
of a single survey, these unknown parameters can be considered as fixed
values. By properly handling other factors, we can still achieve uncal-
ibrated BS representing the variation in seabed properties. However,
comparing or combining backscatter data across multiple surveys will
require either absolute or relative sonar calibration to account for the
impact of possible changes in the system characteristics across different
surveys.

Applied Acoustics 246 (2026) 111222

2.2. Backscatter difference preparation

The difference in BS between two MBES datasets collected at time 7,
and 1, for the same study area is the input to our seabed change detection
method. Considering the angular dependence of B.S, we analyze BS
for each incident angle ¢ separately. To avoid including the change in
sonar characteristics in the backscatter difference, A BS(¢), we conduct
a relative calibration on B.S(¢,1,) using a reference area.

2.2.1. Reference area selection

Ideally, the reference area should remain sufficiently stable over time
in terms of bathymetry and geomorphology, as validated by successive
surveys [25,29]. The reference area selection follows several criteria.
First, the area should be flat and stable in bathymetry over time. In
principle, the bathymetric change of the area from ¢#, to 7, should remain
within the uncertainty of MBES depth measurements. The flatness can be
examined by the seabed slope estimations, and the occurrence of simple
unidirectional patterns is acceptable [25]. In addition, the area should
exhibit homogeneity in backscatter data at both ¢, and ¢,.

Since such an independent reference area was inaccessible during our
surveys, we selected a homogeneous and stable region within our study
area (see Section 4.2). For the selected area fulfilling these requirements,
we further validated its stability over time by assessing the consistency
of nearby bottom samples taken at ¢, and 7,, considering their median
grain size, benthos composition, and presence of dead shells.

2.2.2. Relative calibration

After selecting the reference area, the relative calibration of B.S from
different surveys is straightforward (Fig. 1). For each incident angle ¢,
we compute the average B.S within the reference area from #, and 1,,
denoted as u(¢.t;) and u(¢,t,). The relative calibration term C is then
determined as

C() = u(d, 15) — u(d,1y). (6)

If BS(¢,1,) represents any BS value in the study area for ¢ at t,, the
relative calibration can be achieved by

BS'(¢.1)) = BS(¢.1;) = C(&), )

which accounts for the MBES systematic difference between ¢, and ¢,.
Following this, we achieve the corrected backscatter difference as input
to the change detection algorithm through:

ABS(¢) = BS'($.1;) = BS(¢. 1) (8)

2.3. Seabed change detection: Constrained GMM

We propose to detect seabed changes by clustering A BS(¢) using the
GMM, since the nature of the beam-averaged backscatter strength allows
us to model AB.S(¢) as Gaussian distributions.

Given the ping-by-ping emission of an MBES, BS(¢) can be treated
as a random variable affected by the seabed geoacoustic properties.
Within each beam, B.S(¢) results from averaging over the intensities of
several independent scatter pixels, which correspond to the ensonified
footprints of each pulse. According to the central limit theorem, when
a sufficient number of scatter pixels are present, BS(¢) from a single
seabed type follows a Gaussian distribution [21].

Therefore, given a fixed incident angle ¢, the overall probability den-
sity function (PDF) of B.S at time ¢, can be represented by a Gaussian
mixture as

my ; ( _ i)2
£100) = Z Wy, exp [_ X = Hy, ] . ©

2
20y,

i=1 /2162
1,i

where x is one observation from BS(¢,t;), m; is the total number
of seabed types present at time ¢, and w,;, p;;, and o;; are the
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weight coefficient, mean, and standard deviation of the i-th seabed type,
respectively.

Similarly, for the same study area and ¢, the PDF of BS at time 7,
can be written as

ny . _ _2
OEDY %”emLu “”} (10

2
- 2 207 .
Jj=1 271'62.1. 2,j

For seabed change detection, assuming that MBES measurements at
t, and t, are independent, the PDF of ABS(¢) = BS(¢.t,)— BS(¢, 1) can
then be derived as

"0 ag (e = figg)
fa0) =Y exp |[-—= . 11
k=1 27;&2 . 265 4

where @y o = wy Wy, fiag = Hyj—H1 s and &5 = Uii"’”i;‘ for each pair
(i, j) assuming independent measurement noise at 7; and ¢,. x becomes
one value in ABS(¢).

In theory, the difference between f,(x) and f,(x) yields m;m, com-
ponents corresponding to all possible transitions between seabed types.
In practice, only a subset of these components is physically meaningful
since many transitions do not occur within the study area. Moreover, at
each location, only a single type of bottom change can occur, which lim-
its the number of relevant components. Thus, we approximate Eq. (11)
by n components:

=Y
k=1

_ 2
Ak exp _(x Hax) :| 12)

\ /w [
2
271'0'2 k 2°-A,k

in which the first component represents the unchanged seabed and com-
ponents 2 to n represent different types of seabed changes. The weight
coefficient wyy, k = 1,...,n, satisfies Y/ wa, = 1. py, and oy
are the mean and standard deviation of the k-th seabed change type,
respectively. w,, ppy, and o, are the unknown parameters to be
optimized.

Regarding the unchanged cluster, several constraints can be added to
its Gaussian distribution. After appropriate backscatter correction and
relative calibration, the mean of the unchanged cluster, u, ;, can be
assumed to be 0. Theoretically, its variance Gi,l is calculated as
oi’l = 62(t)) + 62(1), (13)

with af(z 1) and 03(12) the uncertainty of B.S(¢) measurements from the
two distinct surveys, respectively. Since the random fluctuation of B.S is
affected by the seabed types, it is difficult to determine ¢2(¢,) and 62(1,)
without prior knowledge of the study area. Nevertheless, we can still
facilitate the search for o, ; using the pre-selected reference area.

Within the reference area, where the seabed is homogeneous, BS(¢)
can be seen as repeated measurements of the same seabed type. Since the
reference area remains stable over time and experiences no change mea-
surable with an MBES between ¢, and 7,, we can estimate the variance
of backscatter difference for this specific seabed type as

5 =00t + 07 (1), a4

(2
with orz the variance of BS(¢) from the reference area. We then use G’A‘l
to initialize o, ; during optimization.

Regarding the remaining unknown parameters, the weights w, of
different Gaussian components are initialized equally. In addition, u, 4
and o, of the changed clusters are initialized using the cluster mean
and standard deviation from the K-Means clustering [30] results. The
K-Means cluster whose mean is closest to zero is excluded from this.
K-Means clustering minimizes within-cluster data variances and might
help separate GMM clusters. Following this, the unknown parame-
ters in Eq. (12) are estimated by the Expectation-Maximization (EM)
optimization algorithm [31].
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In our implementation, computations for the constrained GMM and
the EM optimization were performed in Python using the package
PyTorch, while K-Means clustering was realized via scikit-learn using
the ‘kmeans + +’ initialization. Regarding acoustic datasets in this study,
computations ran efficiently on a desktop equipped with an Intel Xeon
E5-1620 v3 CPU and 16 GB RAM, showing that no specialized hardware
was required.

2.4. Evaluation

We evaluate the proposed change detection from two aspects: clus-
tering performance and comparison with ground truth.

The clustering performance is evaluated using the silhouette co-
efficient [32], which quantifies how compact and well-separated the
clusters are in feature space. The silhouette coefficient ranges from —1
(poor clustering) to 1 (well-clustered) and allows a direct comparison of
clustering quality across incident angles for a fixed number of clusters.
In particular, higher silhouette values indicate that ABS at a given angle
provides better separation between the seabed change types.

In addition, we assess whether a given number of Gaussian com-
ponents adequately explains the data distribution by computing the
Bayesian information criterion (BIC) as a measure of goodness of fit [33].
Lower BIC values indicate a better trade-off between model fit and com-
plexity. The silhouette coefficient and BIC are jointly used to select the
optimal number of clusters/change types (n in Eq. 12).

With the available ground truth bottom samples, we examine how
predicted changes correspond to variations in sample properties such as
sediment grain size and benthic community presence, thereby linking
our change detection results to specific seabed conditions. For locations
sampled during both survey times, we also compute the accuracy and
F1-score for the binary ‘changed’ and ‘unchanged’ classification. The ac-
curacy describes the proportion of correctly predicted samples, while
the Fl-score is calculated as
Fl = ZM, 15)

Precision + Recall
where Precision measures the proportion of predicted ‘changed’ loca-
tions that truly experienced changes, and recall is the proportion of
actual ‘changed’ samples correctly identified as ‘changed’. Both accuracy
and F1-score range from 0 (worst) to 1 (best).

3. Study areas and datasets
3.1. Study areas

We conducted hydrographic surveys in a subtidal region north of
the Wadden Sea islands in the North Sea (see Fig. 2), where intensive
economic activities take place, including fishing, offshore wind energy
generation, and installation of cables and pipelines on the seabed [34].
Regular monitoring in this region is therefore essential for achieving a
sustainable use of the seabed environment.

Our surveys, conducted in summer 2021 and early spring 2024, cov-
ered two study areas: Borkumse Stenen (BoS) and a region between
Ameland and Terschelling (AT). Area BoS is characterized by a bathy-
metric drop in the middle, with more heterogeneous water depths on
the deeper eastern seabed. By contrast, Area AT contains gradual seabed
slopes, with a deep central trough. Due to limitations in time and bud-
get, the 2024 survey covered only half of the initial survey extent in
each study area. In addition, a seasonal difference in the seawater tem-
perature (~10°C) can be noticed between surveys in the two years (see
Table 1).

3.2. Acoustic datasets

During all surveys, we collected the acoustic data using the same
pole-mounted MBES system, R2Sonic 2026, with an acoustic frequency
of 300 kHz. The beam opening angle was set to 0.7°, with a nomi-
nal pulse length of 150 ps. Under the equiangular beam spacing mode,
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Fig. 2. Study areas. (Left) Location of the study areas in the North Sea. (Right) Bathymetry measured in 2021, displayed with the seabed sampling locations in 2021

and 2024.

Table 1
Survey time and seawater temperature of the study areas.

Study area Survey time Seawater temperature' [°C]
BoS August 9-13, 2021 17.2+0.08

AT July 12-16, 2021 16.7+0.06

BoS March 13-14, 2024 7.3+0.14

AT March 12-13, 2024 7.5+0.14

1 Mean =+ standard deviation for all water depths.

each ping contained 256 beams, covering a swath of 130°. In addition,
adjacent track lines had approximately 50% overlap. To enable the com-
parison of B.S(¢) between different surveys, we adopted the same sailing
direction for the track lines in 2021 and 2024.

During the measurements, we used the hydrographic data acqui-
sition software Qinsy to store the MBES bathymetry and backscatter
data as database (.db) files. Conductivity, temperature, and depth (CTD)
measurements were collected regularly to assist in accurate backscatter
correction for sound absorption through the water column.

3.3. Seabed properties revealed by bottom samples

In 2021, 13 boxcore sampling locations were selected in Area BoS
and AT for ground truthing. We used a cylindrical boxcore sampler
with a surface area of 0.078 m?. Pictures of the boxcore samples were
taken onboard to provide a simple visual inspection. Macrofauna and
sediment analyses were conducted later in the laboratory. In 2024,
we selected 10 locations in BoS and AT for seabed sampling. Apart
from boxcore samples, we took underwater videos above the seabed
at each sampling location in 2024. Each video footage covered a tran-
sect of about 50 m, offering a qualitative assessment of the seabed
conditions.

Sample analysis results from 2021 reveal a homogeneous seabed con-
sisting of fine sand on the western side of Area BoS (Fig. 3). By contrast,
the eastern seabed varied in sediment types from fine to coarse sand,
with an abundant presence of L. conchilega, which are common in the
subtidal sandy sediments of the North Sea [35]. L. conchilega are known
for building tubes with sand grains and shell fragments. These tubes

protrude outside the seabed surface, altering the seabed’s geoacoustic
properties to some extent [36]. Moreover, at location BC25, many clay
chunks were found underneath the seabed surface. Area AT, on the other
hand, had a narrower variation in sediment types (fine to medium sand).
L. conchilega were also found in AT, especially in the coarser sediment
of the trough.

In 2024, the spatial distribution of different sediment types in both
study areas remained largely consistent with 2021. However, a new sed-
iment type (msG) was identified in Area BoS from one boxcore sample
taken in a region unsampled in 2021 (see N1 in Fig. 3). This region
was found to have a high dead shell content in 2024. Clay chunks were
also found at location N2, which is close to the location BC25 sampled
in 2021. For other sampling locations in 2024 on the eastern seabed of
BoS, the L. conchilega density was smaller compared to 2021. This is pos-
sibly due to the influence of seasonality on mortality and recruitment of
the worms, considering that the life cycle of L. conchilega follows a sea-
sonal pattern. Adult worms that survive the storms in autumn and winter
spawn in spring, and juveniles usually settle on the seabed in late spring
and summer [37,38]. In the central trough of Area AT, a lower density
of L. conchilega and a higher percentage of dead shells were also found
in spring 2024 compared to summer 2021.

4. Results and discussion
4.1. Relations between BS and seabed properties

To infer the type of seabed changes using A BS(¢), relations between
BS(¢) and seabed properties, such as the sediment grain size and ben-
thos abundance, need to be examined first. In this way, we can link
the increase or decrease in B.S(¢) with certain seabed habitat changes.
Fig. 4 presents the correlation analysis between seabed characteristics
revealed by bottom samples and averaged B.S from three angular ranges
for our study areas. BS, from 0-25°, BS, from 25°-55°, and BS;
from 55°-65° were obtained by averaging over 50 pings around each
sampling location.

In general, BS,, BS,, and BS; are highly correlated, particularly
in Area BoS surveyed in 2021. In 2021, L. conchilega in BoS was more
abundant in coarse sediments (high Folk classes). The dead shell content
also shows a moderate correlation with the Folk class. Moreover, the
averaged BS across all three angular ranges correlates well with the
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Fig. 3. Folk classes, L. conchilega (sand mason worm) density, and dead shell content for all boxcore samples collected in 2021 and 2024, displayed with the backscatter
mosaic of each area. The backscatter mosaics were achieved using the software FMGT and only used for visual assessment. The 6 Folk classes correspond to an increase
in the median grain size (fS: fine sand; mG: muddy gravel; mS: medium sand; gmS: gravelly muddy sand; cS: coarse sand; msG: muddy sandy gravel). L. conchilega
density less than 20 [ind/m?] or dead shell content smaller than 0.2% are not shown.
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Fig. 4. Correlation matrix for each study area between the boxcore sample properties and mean BS from three angular ranges, with B.S| from incident angles 0-25°,
BS, from 25°-55°, and B.S; from 55°-65°. Folk classes found in the study areas (fS-msG) are numbered from 1 to 6 when calculating the correlation coefficient.

Folk class. BS, and B.S; exhibit moderate correlations with the dead
shell content, and may be strongly affected by the L. conchilega density.

By contrast, BS, BS,, and BS; show limited correlations with the
L. conchilega density and dead shell content in the 2024 BoS survey. The
relations between the Folk class and L. conchilega density also change
significantly. Far fewer L. conchilega were found in most samples taken
in 2024 than in 2021. In addition, bottom samples from locations N1 and
N2 (Fig. 3) contained sediments with larger grain sizes and higher dead
shell content than those collected in 2021. The differences in sampling
locations might also contribute to the change in the correlation between
the Folk class and L. conchilega occurrence. The two seabed properties
might share a non-linear relationship, considering the preference of L.
conchilega for sediments containing fine to medium sand [36]. Moreover,

coarse materials from N1 and N2, such as dead shells, can exceed the
acoustic wavelength and may no longer increase BS. Despite these
variations, BS| and BS, remain highly correlated with the Folk class.

In Area AT, there are apparent differences among B.S from the three
angular ranges regarding their relations with the seabed properties. For
both surveys in 2021 and 2024, BS, exhibits the strongest correlation
with the Folk class. For 2021 data, BS,, BS,, and BS; show similar
moderate correlations with the dead shell content and high correlations
with the L. conchilega density. In 2024, bottom samples contained signif-
icantly fewer L. conchilega and generally higher dead shell content than
in 2021. Compared to the results for 2021, correlations between BS and
the L. conchilega density are weaker for AT surveyed in 2024, while B.S,
and B.S; are highly correlated with the dead shell content.
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Fig. 5. Average half-swath angular response curves and standard deviations of
BS from different incident angles within the reference area in 2021 and 2024.
Incident angles with the same absolute value from the port and starboard side
are considered identical, as the R2Sonic 2026 operates as a single-head system.

4.2. Relative calibration results

The selected reference area (Fig. 3) covers approximately 300 X
360 m of seabed. Within this area, the average absolute bathymetric
difference between the two surveys in 2021 and 2024 is 0.08 m. To as-
sess whether this difference is consistent with expected measurement
variability, we used the A priori Multibeam Uncertainty Simulation Tool
(AMUST), which was developed to quantify the vertical uncertainty of
MBES measurements [39,40]. Based on the echosounder specifications
given in Section 3.2, the depth uncertainty is estimated to be in the range
of 0.074-0.088 m at the 95% confidence level for water depths in Area
BoS. Although part of the observed 0.08 m difference may be attributed
to systematic errors, which are not accounted for in this assessment,
the close agreement with the expected random uncertainty suggests that
the seabed within the reference area has remained effectively stable be-
tween the two surveys. This is also confirmed by the average seabed
slope, which remains consistent at 0.7° for both years. Backscatter mo-
saics further support this stability by a visual assessment of the seabed
homogeneity within the reference area. Furthermore, boxcore samples
next to the reference area demonstrate stability in the sediment type (fS)
and very little presence of benthos, although there is a slight increase in
dead shell content (~0.8%) from 2021 to 2024.

The average backscatter angular response curves from the reference
area, ¢(2021) and u(2024), show consistency between the 2021 and
2024 surveys for incident angles 20°-30° (see Fig. 5). However, there
exists an increasing difference between ;(2021) and x(2024) for inci-
dent angles larger than 30°, reaching approximately 4 dB for angles
above 60°, which is consistent with the findings from a recent study
on the instrumental temperature dependence of backscatter measure-
ments [41]. Since the difference in sound absorption due to changes in
seawater temperatures has been accounted for during the backscatter
correction (Eq. 2), this effect might be attributed to the hardware sen-
sitivity of the MBES system. In addition, we investigated the potential
variation in the calculated two-way sound attenuation due to seawater
absorption, by computing the difference between 2« R in Eq. (2) using
the minimum and maximum sound absorption coefficient («) acquired
for a water depth of 25 m. « was estimated based on in-situ CTD mea-
surements during the survey period. Such difference does not exceed
0.3 dB from 30° to 65° (see Fig. 6), which is similar to values revealed
by previous studies [20,41] and is not significant compared to the 4 dB
difference observed between x(2021) and u(2024). Variations in this
maximum difference of estimated seawater absorption across surveys
can be attributed to seasonal differences in daily temperature fluctua-
tions as well as different numbers of CTD measurements due to varying
survey durations.
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o'r(55°,2024)2) = N(0,1.85%).

In this research, x(2024) - 4(2021) was used as the relative cali-
bration term for both Area BoS and AT, considering that the seawater
temperature difference between the two study areas was small (Table 1).
On the other hand, the standard deviations of BS within the reference
area (o,) from the 2021 and 2024 surveys are generally consistent, with
a decreasing trend as the incident angle increases (Fig. 5). This shows the
stability regarding the uncertainty of MBES backscatter measurements
from different surveys.

After applying the relative calibration, ABS within the reference
area presents an example of backscatter difference of the unchanged
seabed type. With the incident angle 55°, it is observed that the his-
togram of the resulting ABS can be approximated by a zero-mean
Gaussian distribution, whose variance is calculated as zr,(2021)2 +
o‘,(2024)2 at 55° (Fig. 7). This is consistent with the assumption for
constrained GMM.

4.3. Change detection: The optimal number of clusters

The silhouette coefficient and BIC quantitatively evaluate the clus-
tering performance, facilitating the search for the optimal number of
change types (n in Eq. 12). We compare the silhouette coefficients across
five clustering methods: K-Means, GMM with random initialization
(GMM-r), constrained GMM with random initialization (CGMM-r), GMM
with Gaussian parameters initialized by K-Means clustering (GMM-k),
and constrained GMM with K-Means initialization (CGMM-k). Since BIC
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Fig. 9. Silhouette coefficients (Left) from five clustering methods and BIC values

(Right) from GMM clustering methods for Area AT, with the number of clusters
ranging from 2 to 5 and metric values averaged over 40°-60°.

is defined for parametric probabilistic models with an explicit likelihood
function, we present BIC only for the GMM methods.

To compare the performance across different numbers of clusters,
we computed the average metric values based on clustering results for
incident angles between 40° and 60° (Fig. 8 and 9). This angular range
was selected because ABS, for this angular range, exhibits the greatest
capability to distinguish different seabed change types (see silhouette
coefficient results in Section 4.4). Considering that this angular range is
relatively narrow and contains a comparable number of valid BS values
at each angle, the average BIC can also be representative of the overall
model fit in this range.

For Area BoS, silhouette coefficients indicate that GMM-k and
CGMM-k achieve better-separated clusters than the other methods, al-
though results for n > 4 decrease significantly compared to two and three
clusters (Fig. 8). With only two clusters, K-Means produces a silhouette
coefficient comparable to GMM-k and CGMM-k, but its performance
deteriorates significantly for more clusters. In general, GMM-based
methods can further improve the K-Means clustering results by using
them to initialize the Gaussian parameters. From GMM-r to GMM-k, the
significant improvement in the silhouette coefficient also highlights the
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Fig. 10. Silhouette coefficient of 3 clusters for all incident angles for Area
(Top) BoS and (Bottom) AT. Comparisons among five clustering methods are
presented.

effectiveness of K-Means initialization in GMM optimization. GMM-r and
CGMM-r fail to achieve satisfactory clustering results. However, the su-
perior performance of CGMM-r for n > 3 compared to K-Means and
GMM-r suggests the potential benefits of incorporating the proposed
constraints. While silhouette coefficients show that n = 2 is optimal for
Area BoS, BIC values suggest n = 3 for GMM-k and »n = 4 for the other
three GMM methods. Considering that GMM methods show little differ-
ence between silhouette coefficients for two and three clusters, but a
significant decrease for four clusters, we chose 3 as the optimal number
of clusters.

Clustering for Area AT generally yields lower silhouette coefficient
values compared to results for BoS. There might be smaller differences
among seabed change types in AT. For Area AT, GMM-k performs the
best with two clusters (Fig. 9). CGMM-k achieves the best-separated clus-
ters for n = 3, but shows similar silhouette coefficients to GMM-k and
CGMM-r. By contrast, K-Means and GMM-r fail to effectively distinguish
three clusters. With n > 4, silhouette coefficients of all methods are
close to or smaller than zero, indicating poor clustering performance.
Through a joint analysis of silhouette coefficients and BIC values, it is
clear that n = 3 is an optimal choice for CGMM methods, while n = 2
might be suitable for the other methods. When visually assessing the
cluster maps, it is found that the ‘unchanged’ detections from CGMM
methods are scarcely present in the 2-cluster results, with most of the
study area falling into a single ‘changed’ cluster. With three clusters
in CGMM-r and CGMM-k, the spatial distribution of the ‘unchanged’
cluster remains consistent with the 2-cluster results, but an additional
‘changed’ cluster with a different spatial pattern is revealed. Notably, the
two ‘changed’ clusters also coincide with the 2-cluster results from the
other methods, which might indicate that most areas in AT experienced
changes. Based on these observations, we ultimately chose three clusters
for AT.

4.4. Change detection: Comparison among incident angles

With three clusters, all five methods achieve the best clustering per-
formance for incident angles ranging from 40° to 60° (see Fig. 10). For
Area BoS, all methods result in a silhouette coefficient close to zero for
nadir beams up to 20°. Between 20° and 40°, K-Means, GMM-r, and
CGMM-r have the silhouette coefficient still near zero, while CGMM-k
and GMM-k can improve the clustering results significantly compared
to the nadir beams. By contrast, for Area AT, most methods do not show
clear separations for incident angles below 40°.
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Fig. 11. Histogram of AB.S for 10° and 50° regarding Area BoS, colored by the clustering results. Change type 1 can be interpreted as ‘unchanged’ for CGMM methods.
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Multiple factors contribute to the differences in clustering perfor-
mances between nadir and oblique beams. Since BS from the nadir
beams has a larger uncertainty (Fig. 5), distinguishing different seabed
types becomes more challenging. Previous research [42] also suggested
that a backscatter uncertainty of 2 dB is required to discriminate
sediment types from fine to coarse sand, which is only met by the
B.S standard deviation within the 40°-60° range. In addition, seabed
roughness and volume properties mainly affect B.S at oblique angles [5].
Seabed changes related to these properties may not induce nadir ABS
values exceeding the uncertainty of the backscatter measurements.
Regarding GMM methods, BS in the nadir can violate the assumption
of Gaussian distributions due to the insufficient number of scatter pixels
within one beam [21], which can subsequently deteriorate the clustering
performance.

Histograms of ABS at 10° and 50° provide a more detailed compar-
ison of the clustering results for nadir and oblique angles (see Fig. 11
and 12). For both study areas, AB.S(10°) varies around 0 dB, with sub-
stantial overlap among the three clusters. By contrast, A B.S(50°) of Area
BoS exhibits a much larger dispersion. Apart from one cluster centered
at 0, cluster 2 with the negative backscatter difference is identified.
Moreover, cluster 3 with AB.S(50°) around 5 dB is clearly separated by
GMM-k and CGMM-k (Fig. 11). In contrast with BoS, ABS(50°) of AT
shows mostly negative values (Fig. 12). When using K-Means or GMM-r,
clusters 1 and 2, which are closer to 0, overlap significantly. GMM-k im-
proves cluster separation but does not center cluster 1 around 0 dB. The
proposed CGMM methods, on the other hand, ensure that cluster 1 ac-
curately represents the ‘unchanged’ seabed. Cluster 1 from CGMM-r and
CGMM-k contains a very small number of data points, indicating that
most of Area AT can be divided into the other two ‘changed’ clusters.
For both study areas, CGMM-k can simultaneously enable the identifi-
cation of the ‘unchanged’ seabed and maximize the separation among
different clusters.

4.5. Seabed change type analysis

The 3-cluster change detection results from the CGMM methods dis-
tinguish the ‘unchanged’ seabed and two ‘changed’ clusters. Based on
the relationship between B.S and sample properties for our study areas
(Fig. 4), we interpret the ‘changed’ cluster as ‘coarser’ if its mean ABS
is larger than 0 and as ‘softer’ if the cluster mean is negative. In addi-
tion, we validate the change detection results by comparing them with
seabed changes revealed by the ground truth bottom samples collected
in 2021 and 2024.

4.5.1. Area BoS

All clustering methods reveal similar spatial patterns in the change
maps for Area BoS (Fig. 13). Due to the unsatisfactory clustering perfor-
mance of the nadir beams, only results for incident angles between 25°
and 60° are presented. The change maps from K-Means, GMM-r, and
CGMM-r show a greater mixture of the three clusters compared to the
other two methods, which aligns with the silhouette coefficient results
(see Fig. 8 and 10).

For CGMM-r and CGMM-k, clusters 1, 2, and 3 can be interpreted
as ‘unchanged’, ‘softer’, and ‘coarser’, respectively. Most of the west-
ern seabed of BoS is classified as ‘unchanged’. Besides, a stripe pattern
(Zone S circled in Fig. 13(e) suggests areas where the seabed may have
become ‘coarser’ in 2024 compared to 2021. On the eastern seabed, an
alternating pattern of the ‘softer’ and ‘coarser’ detections is observed.

This alternating pattern on the eastern seabed may be attributed
to sediment movement over time, as indicated by the bathymetry data
along four profile lines in Area BoS (Fig. 14). In 2021 and 2024, BoS ex-
hibited similar geomorphological features, such as the bathymetric drop
in the middle and the heterogeneous reef-like structures with a height of
about 40 cm in the east. However, the relocation of those reef-like struc-
tures after almost three years can be noticed. Comparing the bathymetric
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Fig. 13. 3-cluster change maps for Area BoS. Results for incident angles between 25° and 60° are presented. For the CGMM methods, the change type 1, 2, and 3 can

be regarded as ‘unchanged’, ‘softer’, and ‘coarser’, respectively.
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Fig. 14. Comparison of bathymetry profiles between 2021 and 2024, colored by the CGMM-k change detection results. ABathymetry is calculated by subtracting the

bathymetry in 2021 from that measured in 2024.

difference with the CGMM-k change detection results reveals that the
‘softer’ and ‘coarser’ seabed east of the bathymetric drop corresponds
to the increase and decrease in bathymetry, respectively. The consistent
amplitude of these changes further supports the possibility of horizontal
sediment movement (see Profile 1, 3, 4 in Fig. 14). In addition, bathy-
metric differences along Profile 2 also show ‘softer’ locations on the
western seabed that might be due to sediment transport (near the sam-
pling location A2-2). By contrast, the ‘coarser’ seabed in Zone S in the
west does not experience significant changes in bathymetry.

Seabed samples collected in 2021 and 2024 also help to validate the
change detection results. The Folk class, L. conchilega density, and dead
shell content of three sample groups are compared (see Table 2). Each

group includes samples taken from different years but at nearby loca-
tions. Group A (A1-1, A1-2, A2-1, and A2-2 shown in Fig. 13(d) contains
sediments with the same Folk class, which aligns with the ‘unchanged’
seabed type indicated by the CGMM-k results. However, the average L.
conchilega density of A2-1 and A2-2 is higher than in Al-1 and Al-2.
Nevertheless, very few L. conchilega are found for Group A in general.
The dead shell content shows a slight increase in 2024 compared to
2021. Similarly, for Group B, the Folk class remains unchanged, with
a moderate increase in dead shell content. However, the L. conchilega
density drops significantly from 2021 to 2024, which is consistent with
the detected seabed change. The ‘softer’ detections from CGMM-k in the
neighborhood of sampling locations B1 and B2 may result from the lower
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Table 2
Comparison between change detection results and changes in seabed sample
properties (2021 — 2024) for Area BoS.

Group A! Group B Group C
Folk class fS — fS gmS — gmS mS — ¢S
L. conchilega density [ind/m?] 17.1 - 64.1 1175.2 - 0 653.8 — 179.5
dead shell content [%] 0.26 - 1.51 0.18 - 1.72 1.30 —» 2.23
Change type predicted by Unchanged Softer -
CGMM-k

1 Locations of samples from Group A, B, and C are shown in Fig. 13(d). For
Group A, average values of samples from the same year are presented.

presence of L. conchilega in spring 2024, though more ground truthing
is required to confirm this.

C1 and C2 are located close to each other, but in a heterogeneous
region, which might explain why they lead to different seabed change
types (see the zoomed-in plot in Fig. 13(e). Folk classes of C1 and C2
might show the difference in the sediment from the reef-like structures
(mS) and troughs between them (cS). In addition, C1 has a much higher
L. conchilega density than C2, possibly due to the different sediment
types or seasonal variations in the abundance of L. conchilega. Moreover,
Location D on the western seabed of BoS is classified as ‘coarser’ by
CGMM-k, likely due to the presence of empty shells, as observed in box-
core pictures and video transects for sampling locations from Group A
and Location D. The seabed videos also show a brownish color of the
sediment at Location D, possibly indicating organic matter left by the
living shellfish. However, no 2021 samples are available in Zone S to
validate the detected seabed change.

4.5.2. Area AT
As observed from the CGMM-r and CGMM-k change maps, the ‘un-
changed’ detections are sparse in the northeast of Area AT (Fig. 15).

(d) GMM-k
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Some across-track inconsistency can also be noticed in the ‘unchanged’
detections, possibly due to the poorer clustering performance of 20°-40°
compared to 40°-60°. Nevertheless, the spatial pattern of seabed change
types in Area AT is more homogeneous than that in BoS. Based on the
cluster mean values of ABS, change types 2 and 3 can be interpreted
as ‘slightly softer’ and ‘softer’, respectively. The ‘softer’ seabed is mainly
located near the trough in the middle of the study area, with some pres-
ence in the west, while ‘slightly softer’ detection results align with the
seabed slopes next to the trough.

Due to the homogeneity in each detected change type of AT, valida-
tion using bottom samples can be straightforward both qualitatively and
quantitatively. Across all five ground truth sample groups, the Folk class
remains unchanged, while the dead shell content shows a slight increase
from 2021 to 2024 (see Table 3). By contrast, Groups A-D exhibit a de-
crease in L. conchilega density over the same period. The seabed near Bl
and B2 is classified as ‘slightly softer’ by CGMM-k, corresponding to a
decrease in the L. conchilega density of about 100 [ind/m2]. In Groups
C and D, the L. conchilega density drops by more than 600 [ind/m?],
which may explain their classification as ‘softer’. In a similar manner,
locations A1 and A2 are also identified as ‘softer’, with a decrease in the
density reaching 200 [ind/m?]. AB.S(50°) for locations near Group A is
about —5 dB, which is close to the boundary value between the change
types ‘slightly softer’ and ‘softer’ given by CGMM-k (see Fig. 12). On the
other hand, Group E is classified as ‘slightly softer’, but no significant
change is observed from the sample properties. Since defining ‘softer’
and ‘slightly softer’ for the ground truth samples is challenging, the
accuracy and F1-score for the binary ‘changed’ and ‘unchanged’ classifi-
cation were calculated, demonstrating the effectiveness of the CGMM-k
detection results with the metric values of 0.80 and 0.89, respectively.

Across both study areas, BoS and AT, the sediment types (Folk
classes) remained consistent from 2021 to 2024. The slight increase
in the dead shell content is not reflected in the change detection re-
sults. Seabed changes revealed by CGMM-k might be more related to the

(¢c) CGMM-t
e

4 Sampling locations (2021)
o Sampling locations (2024)

Change type

L
1 2. 3

(e) CGMM-k

Fig. 15. 3-cluster change maps for Area AT. Results for incident angles between 25° and 60° are presented. For the CGMM methods, the change type 1, 2, and 3 can

be regarded as ‘unchanged’, ‘slightly softer’, and ‘softer’, respectively.

Table 3
Comparison between change detection results and changes in seabed sample properties (2021 — 2024) for Area AT.
Group A' Group B Group C Group D Group E

Folk class fS - £S fS — fS fS — fS mG — mG mG —» mG
L. conchilega density [ind/m?] 185.9 -0 102.6 - 0 641.0 > 0 698.7 —» 0 12.8 - 12.8
dead shell content [%] 0.40 - 0.92 0.24 - 0.26 0.15 - 0.99 0.24 - 0.31 0.01 - 0.12
Ground truth change type Changed Changed Changed Changed Unchanged
Change type predicted by CGMM-k Softer Slightly softer Softer Softer Slightly softer

Accuracy: 0.80 F1-score: 0.89

1 Locations of samples from Group A, B, C, D, and E are indicated in Fig. 15(d).
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changes in living benthos such as L. conchilega, which increase seabed
surface roughness through their tube-building activities [43].

4.6. Limitations and future work

ABS between distinct surveys is affected by multiple seabed proper-
ties in a combined way. In this research, the inconsistency in sampling
locations across years, especially in Area BoS, hinders the quantitative
analysis of the relationships between AB.S and various bottom prop-
erties. This also brings difficulties in validating some of our detected
seabed changes. With constraints in time and budget during our surveys,
priority was given to broader spatial coverage with a limited number of
bottom samples. A more comprehensive study of how different seabed
properties contribute to ABS would require long-term monitoring with
consistent sampling locations. Another limitation of this research lies
in the lack of an independent and long-term monitored reference area.
For seabed monitoring surveys in the Dutch North Sea, well-established
reference areas, such as the Kwinte area located in the Belgian North
Sea [25], can be considered in the future.

In addition, this research focuses on case studies with relatively lim-
ited spatial extents in the Dutch North Sea. To investigate the influence
of a wider range of seabed types and increased data volumes on BS
uncertainty and change detection performance across incident angles,
repeated MBES measurements in diverse seabed environments and on
larger spatial scales are needed. Seabed types and ocean environments
can also affect the optimal temporal interval of acoustic monitoring sur-
veys. For the L. conchilega habitats investigated in this research, seasonal
observations within a year might be beneficial. In sandy sediments
affected by a high current speed, angular characteristics of BS mea-
surements might change in hours due to variations in sand ripples [44],
allowing for more frequent monitoring. Acoustic frequency is another
key factor affecting the change detection results using ABS, since the
relationship between BS and seabed properties is frequency dependent.
BS at various frequencies can show different discrimination abilities for
bottom characteristics regarding surface roughness and shallow subsur-
face structures. It is therefore beneficial to investigate the potential of
multi-frequency backscatter for a more comprehensive seabed change
analysis in the future. Moreover, based on relative calibration, future
research can investigate other machine learning based benthic habitat
mapping methods (e.g., [2,3,45,46]) to enhance the use of various types
of acoustic features in seabed change detection.

5. Conclusion

Repeated MBES backscatter surveys can help to monitor changes in
the benthic habitat, but bring the challenge of limited seabed ground
truth and complexity in backscatter data processing. In this regard,
we apply Gaussian Mixture Model (GMM) clustering to the backscatter
difference per incident angle from repeated surveys, achieving unsu-
pervised seabed change detection. We ensure the identification of the
‘unchanged’ and ‘changed’ seabed, by fitting the ‘unchanged’ cluster as
a zero-mean Gaussian and constraining its variance using the estimated
backscatter uncertainty from a stable reference area. The method is also
flexible in describing different types of seabed changes, through fitting
multiple Gaussians.

With Gaussian parameters of ‘changed’ clusters initialized by the K-
Means clustering results, the proposed constrained GMM method shows
promising change detection results for two study areas in the Dutch
North Sea using 300 kHz backscatter data measured by the MBES system
R2Sonic 2026. The proposed method detects the seabed change possibly
caused by a reduction in the Lanice conchilega abundance, which might
be due to seasonal changes in the seawater environment, such as tem-
perature. For one of the study areas, the change detection results reveal
alternating patterns between the seabed becoming ‘coarser’ and ‘softer’,
which align with the sediment movement after almost three years, as
indicated by the bathymetry data. By processing each incident angle in-
dividually, we show that backscatter data from 40° to 60° might have
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the greatest ability to detect seabed changes, which is consistent with the
backscatter uncertainty estimation. When designing surveys for monitor-
ing purposes, it is then helpful to increase the overlap between adjacent
track lines.

Although the proposed method was tested on a specific MBES system
and operating frequency in this research, it is, in principle, applica-
ble to other systems and a broader range of frequencies, provided that
appropriate relative calibration of the backscatter data is performed.
Moreover, when applying the method to different seabed environments,
it is essential to first investigate the relationship between backscatter
measurements and seabed properties at the frequencies of interest.

Limitations of this research lie in the lack of an independent refer-
ence area and different seabed sampling locations in repeated surveys.
Nevertheless, our study still demonstrates the value of using MBES
backscatter data for benthic habitat monitoring, especially regarding
changes in the benthic communities, which can be extended to long-term
acoustic datasets in the future.
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