
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Designing a Hardware
Controller
Used for controlling a Power Grid simulation

Michiel De Rop
Johannes Ketelaars

Designing a
Hardware Controller
Used for controlling a Power Grid simulation

by

Michiel De Rop
Johannes Ketelaars

to obtain the degree of Bachelor of Science

Supervised by dr. S.H. Tindemans, Ing. R.N. Koornneef and N.K. (Nanda) Panda

Defended before dr.ir. N.P. van der Meijs, dr. S.H. Tindemans, dr.ing. M. Shahraki Moghaddam and
ing. R.N. Koornneef

Bachelor Graduation Thesis
Friday 28th June, 2024

Delft University of Technology

Faculty of Electrical Engineering, Mathematics
and Computer Science

Electrical Engineering Programme

Abstract

As part of making a power grid simulator, a hardware controller is needed. This thesis specifically
describes the design of such a controller. The objective is to design it in such a way that it is self-
explanatory and interactive. Therefore, the following user controls and feedback are made possible. A
small solar panel makes it possible to provide input for a solar generator in the simulation. A slider
gives input for a wind farm in the simulation. This is visualized by adding a small physical turbine to
the hardware, going faster or slower based on the input. A small knob to go back or forward in the
simulation, if pressed, pauses or resumes the time. A RGB LED indicates the situation on the grid.
Based on the loading of transmission lines, the color of the LED changes. These user-control actions and
feedback from the simulation are processed on an Arduino Mega Rev3 development board. This uses
an ATMega2560 microcontroller. To interact with the simulation, bidirectional serial communication
is needed between the Arduino and the computer running the simulation with the Godot game engine.
These components are implemented on a PCB to finalize the design.

i

Preface

This report is written as part of the bachelor’s graduation project for the bachelor of electrical engi-
neering at TU Delft. The project was initiated to create an interactive power grid visualization and
simulation system. Our part in the project was to create a hardware controller. This project has
confronted us with the challenges that working as a team brings. It was a great opportunity to gain
experience handling projects as a team. The project proved to be difficult to integrate with other teams,
this has shown the importance of communication. We experienced a feeling of satisfaction seeing all
parts of the project come together and form a whole. New experience was gained due to the need for
programming in languages the team members had little to no skills.

First, we want to express our gratitude to our supervisor, Simon Tindemans, for proposing this project.
His advice and enthusiasm were of great value in accomplishing the final result. Secondly, we want to
thank Remko Koornneef for sharing his expertise when designing the PCB for the project. Lastly, we
want to express our gratitude to our BAP group. Thanks to Rik Bieling, Joran Kroese, Björn Buksch,
and Bodhi van Dam for their collaboration and support during this project.

As we present this thesis, we are proud of the accomplishments and eager to see the applications of the
final result.

Michiel De Rop
Johannes Ketelaars

Delft, June 2024

ii

Contents

Summary i

Preface ii

1 Introduction 1

2 Program of requirements 3
2.1 Problem definition . 3
2.2 Global requirements . 3
2.3 Requirements of the hardware . 3

2.3.1 Mandatory requirements . 4
2.3.2 Trade-off requirements . 4

3 Design process 5
3.1 Preliminaries . 5

3.1.1 Godot game engine . 5
3.1.2 Arduino IDE . 6
3.1.3 System.IO.Ports . 6
3.1.4 KiCad . 6

3.2 The hardware components . 6
3.2.1 Micro controller . 7
3.2.2 Time controller . 8
3.2.3 Solar generation . 9
3.2.4 Wind generation . 10
3.2.5 RGB LED . 11
3.2.6 LCD screen . 12
3.2.7 Power supply . 12

3.3 Communication with Godot . 14
3.4 PCB Design . 15

4 Prototype implementation & Results 16
4.1 Hardware components . 16

4.1.1 Time controller . 16
4.1.2 Solar generation . 17
4.1.3 Wind generation . 19
4.1.4 RGB LED . 19
4.1.5 Power supply . 19

4.2 Communication with Godot . 20
4.2.1 Sending data to Godot . 20
4.2.2 Receiving data from Godot . 20

4.3 PCB design . 22

5 Conclusion 24

6 Discussion and recommendation 25
6.1 Discussion . 25
6.2 Recommendations . 25

References 27

A Code 29
A.1 Code used for the communication with Godot . 29
A.2 Timebase code . 31

iii

Contents iv

A.3 Code for the Arduino Mega . 33

1
Introduction

This project is about the hardware components of a power grid visualizer. This visualizer simulates
different scenarios of the power grid. This enables users to increase their understanding of the inner
workings of the transmission grid network. It depends on how the data is visualized and how the user
can play with that data. So the main purpose of the project is to make a complex scientific topic more
tangible. The most important thing in science communication is that it informs the audience about the
main research results in an understandable format [14]. The project makes use of a simulation of the
power grid combined with forecasted data and hardware components.

The combination of hardware and visualization to enhance users understanding of a specific topic is the
goal of the project. It has been done in science museums and the combination of physical elements and
virtual visualization proved to give a more engaging experience than only a virtual model [17]. This was
discussed in a paper where a virtual touchscreen environment with virtual components was compared
with a virtual table including physical components [15]. The hardware of this project will enable the
project to educate the users [1]. A lot of documentation has been published on how humans interact
with computers. This project is about making an interface for users to interact with a simulation. The
main benefit that the hardware brings is a sense of touch, which is an important human sense, and
touch can communicate a lot of information to a person [16].

The purpose of this project is to create a power grid simulator that enables the user to influence the
scenario through a hardware controller with interactive controls and present pre-selected scenarios that
pose challenges to the user. The controller should be simple and intuitive to use. A forecasting compo-
nent should predict the upcoming load of the scenario. The simulator should be kept simple enough for
an interested person without expertise in power grid dynamics to understand what is happening. This
is done to give the user a sense of how the grid works, what possible problems can arise, and how those
can be fixed.

The project is working towards a power grid simulator that can be implemented in a future power grid
room. Such a simulator allows people with basic power grid knowledge to simulate different scenarios
on a power grid. The project focuses on the design steps towards a functional prototype that are made
to make sure future iterations of this prototype can be implemented smoothly.

To create a power grid simulator, a visualization of the power grid has been made using the game engine
Godot. To control this simulator, hardware components are needed that can be used to give user input
to the simulation. These inputs are used while the simulation is running. To enable communication
between Godot and the hardware, an Arduino micro-controller and a C# library are used. The scenario
that will be shown in the simulation heavily depends on the real and suitable data that is available
to give an accurate representation of a real grid. The dataset must also be extensive enough to train
a forecasting algorithm that will encourage the user to interact with the grid based on its predicted

1

2

values. The scenario that was chosen is the Dutch aggregated transmission grid of 220KV and 380KV
using data from 2018.

After the simulator has been turned on, the Forecasting & Scenario Selection module will find the
parameters for the selected scenario and predict the corresponding 24-hour load forecasts for the full
duration of the scenario. The parameters and predictions will be sent to the Visualization & Simulation
module, where the power flows will be calculated and the grid will thereafter be displayed. The user will
then be able to interact with the simulator using the various hardware components, and the Hardware
module will transmit the information to the Visualization & Simulation module so that the grid can
be re-simulated and re-displayed. Three subgroups have been devised to work on the aforementioned
modules. The subgroups are the forecasting subgroup, the visualization subgroup, and the hardware
subgroup. The following figure shows how the subgroups are connected.

Figure 1.1: Interconnection of the subgroups in the project

This report is about the hardware subgroup. In this report, the first thing that will be discussed is the
program of requirements. Then, a section on the prototype design and hardware implementation will
follow the discussion of the design of the entire hardware system and its subsystems. The final part is
the conclusion and the discussion.

2
Program of requirements

2.1. Problem definition
The hardware subgroup must develop the hardware that the user will use to interact with the power
grid visualization. It consists of coding a micro-controller to implement different components that the
user can interact with and change the simulation, and it is necessary to integrate the hardware with
the game engine used for visualization. It leads to a problem statement:

The simulator needs to be controlled using external components that enable the user to control the visu-
alization using hardware components. These hardware components are connected to the other modules
via a computer and enable the user to start working with the simulator.

The requirements were decided based on the future use of the simulator, which would be used in a
power grid room. Thus it must serve as an exhibition, allowing people with less understanding of power
grids to also be able to interact with it. Therefore the following requirements were come up with in
collaboration with the supervisor and other subteams of this project.

2.2. Global requirements
The project has global requirements to make sure all the subgroups work towards the same goal. These
requirements are the following:

• The user must be able to interact with the simulated power grid and see how it affects the power
grid dynamics.

• The user must be able to see useful information about the grid, such as power generations and
loads or line loadings.

• The user must be able to access forecasted values of the grid, which can be useful for taking
actions in the grid.

• The user must be able to change the portrayed time in the simulation.
• The modules must be able to send and receive data between one another in an agreed-upon format

and form.
• The system must use a working solar and wind generator in real life that links to the scenario.

2.3. Requirements of the hardware
Next to the global requirements, the hardware requirements have been written out.

3

2.3. Requirements of the hardware 4

2.3.1. Mandatory requirements
• The hardware modules must be safe to interact with for the user. The user must not experience

health implications by using the hardware.
• All the hardware components must have a function that can be used to control the power grid

simulator or change variables in the power grid simulator.
• The hardware builds must be re-executable. A future team must have the knowledge to build the

hardware from scratch.
• The hardware must consist of a component that lets the user change the simulation time. The

user must be able to control the direction of time and stop/start the simulation.
• The hardware must incorporate solar into the design. To enable the user to change the amount

of solar received in a given node inside the power grid simulator.
• The hardware must incorporate wind into the design. To enable the user to change the amount

of wind received in a given node inside the power grid simulator.
• The hardware must be able to receive information from the computer that is running the simu-

lation. This must be done without the simulation stopping or experiencing delay. To enable the
user to have feedback on the situation on the power grid.

• The hardware must be able to send information to the computer that is running the simulation.
This must be done without the simulation stopping or experiencing delay. This is done to let the
user control the simulation with the hardware.

• The hardware must have a safe and reliable power supply. To supply the components with power.
• The hardware modules need to be self-explanatory, when a user walks in and sees the final design

it needs to be clear what the components do either by their design or signs drawn upon them.
• The hardware should have components indicating the situation on the simulated grid. To give the

user feedback on whether the power grid is in a stable state or not.

2.3.2. Trade-off requirements
• The hardware shall be as simple to use as possible. To make sure the user knows how to use the

components that control the simulation
• The hardware should have a good aesthetic casing.
• The hardware should minimize the complexity of controlling all the hardware components by using

a micro controller.
• The Hardware component used for controlling time should be a motorized wheel.

3
Design process

3.1. Preliminaries
For this project, numerous different programs and coding libraries were used to create a working simu-
lator. The most important libraries and programs that were used in the hardware part of the project
will be listed below.

3.1.1. Godot game engine
The Godot game engine is used for the visualization of the power grid. Godot is an open-source game
engine in which both 2D and 3D projects can be made. The game engine was chosen because of its
support for the coding languages C++ and C#. Godot makes use of GDSCript, an internal program-
ming language. Godot is based upon nodes, allowing for scenes and games to be built up consisting of
different smaller parts working together. The fact that Godot is open source and has support for C++
made it usable for this project.

In Godot scenes can be created to make simulations or games. These scenes are built up from different
nodes that can be programmed to have a certain function. These nodes can, for example, control time,
certain lines, or the whole background map. The nodes that were used for this program were built up
In two different ways, certain nodes were constructed using the Godot C++ extension library, in which
the programming language C++ can be used. Other nodes were programmed by connecting a script to
the node and programming in C#. These two methods worked together, which was a major advantage
of using the Godot game engine. For the hardware part, a lot of the code was programmed using C#
scripts. The visualization primarily used the C++ Godot extension. An example of the scene that was
used for this project is seen in the following image.

5

3.2. The hardware components 6

Figure 3.1: A scene in Godot consisting of several nodes

3.1.2. Arduino IDE
The Arduino IDE is a platform used to control the Arduino micro controller. The platform can be used
to write code to the Arduino and test if the system works. In the application, a lot of libraries are
available to use inside this program. This platform supports the coding language C++, which enables
the Arduino micro controller to execute the required functions and enable the hardware to communicate
with the computer. [11]

3.1.3. System.IO.Ports
This is an aNET library that is used in the Godot game engine to get the inputs via the COM ports
of the personal computer from the Arduino. The library is made by Microsoft and is useful for imple-
menting hardware in a project like this.\

3.1.4. KiCad
The KiCad software was used to develop the PCB chips for the circuits that were designed for all the
hardware modules. Kicad is a program where you can make circuits, transform these circuits into PCB
chips, and then output a file to print this PCB chip. The Kicad software has a lot of components
included. This made finding the footprints of the components that are used for the project easier. The
Kicad platform was used to make a logic design of how the final hardware setup would be and which
microcontroller pins should be connected.

3.2. The hardware components
The program of requirements gives a good starting point for the global design of the hardware system.
The modules needed to implement a design that validated all these requirements. The hardware com-
ponents must be recognizable to the user to make sure they know how to use the hardware [2]. This is
why it was decided to go for things like buttons and knobs to control the simulation instead of things
a much smaller part of the predicted users are familiar with, such as game controllers. In hardware
design, it is important to keep in mind how users will interact with the components. McNamara and
Kirakowski (2006) propose a method of evaluating human-computer interfaces that consists of evaluat-
ing three elements: functionality, usability, and user experience. [19]

3.2. The hardware components 7

Figure 3.2: The hardware setup

The design must include components that let the user control the simulation time, the wind generation,
and the solar generation. The complexity of implementing solar and wind in the design was to keep it
as simple as possible. [10] So components that output signals to control these internal variables were
designed. Next to this, a component was needed that showcased to the user what the current situation
in the simulation was. This was done to make sure the hardware could receive data from inside the
simulator and to make sure the user had a feedback system. This gave the following hardware setup: 3.2.

As can be seen in the figure, the final design consists of a micro controller connected to four different
modules, the four different modules are:

• The component that controls the simulation time
• The component that shows the situation on the Grid
• The component that controls the wind generation
• The component that controls the solar generation

The microcontroller was needed to enable communication between the computer and the components.
The microcontroller had to read user inputs for wind generation, solar generation, and the time con-
troller. The second function of the microcontroller was to control the RGB LED and the LCD screen
to give the user feedback on what was happening in the simulation. Lastly, a method of combining all
these modules into a final design was developed, which consisted of combining all these different compo-
nents on a single PCB. In the next part, the design of every part of the hardware will be elaborated upon.

3.2.1. Micro controller
To control all the individual hardware components, a device was needed that could connect to all these
individual components and on which code could be uploaded, to make sure the hardware could connect
to the computer. After multiple options were considered, it was chosen to make use of an Arduino Mega
Rev3 development board. This board makes use of the Atmega2560 AVR micro controller.

One of the main strengths of using an Arduino development board is the library support for interfac-
ing with hardware sensors. An Arduino board does not make use of a full operating system, unlike
a Raspberry Pi. Making use of a full operating system would be overkill for the requirements of this
project since mainly simple read and response actions are needed. This allows the Arduino to be more
predictable in real time, reacting very fast to inputs from hardware components and actuators. Arduino
boards provide many digital I/O pins and analog input pins. Especially these analog pins are missing
on a Raspberry Pi, making hardware integration with an Arduino more easy. Last but not least, the
Raspberry Pi’s GPIO pins are not 5V compatible, requiring 3.3V. For example, the DC motor driver

3.2. The hardware components 8

for the wind controller needs 5V inputs. This also makes integration more difficult [21].

The Arduino Mega development board was then chosen over other Arduino development boards. This
is due to the high number of input and output pins needed for this project. The Arduino Mega provides
54 digital I/O pins and 16 analog inputs, whereas the Arduino Uno only provides 14 digital I/O pins
and 6 analog inputs. Many digital I/O pins are needed to connect all hardware components; for exam-
ple, the LCD screen alone would already need 6 pins. This makes the Arduino Mega better suited for
more complex, multi-component projects like this. Also, much room is left for expanding the hardware
controller in the future.

3.2.2. Time controller
To control the simulation time, a hardware component was needed that could pause and play time
and that could change the direction of time. At the start of the project, it was discussed to develop a
time-wheel connected to a brushless DC motor via a shaft. Connecting a rotary encoder to this setup
allowed for control of this setup. This idea was scaled down because the component that controlled the
time did not have to be that complex. This would only decrease the usability of the design, so it would
not help a user control time but make it unnecessarily difficult to control time. [19] It was decided to
use a rotary encoder in combination with a button.

A rotary encoder works in the following manner: it has two output pins with signals A and B and a
common pin. The output pins make contact with the common pin, which generates two square waves.
Due to the placement of these output pins, the two square waves are 90 degrees out of phase. The
rotary encoder measures the rotation direction by measuring the state of output B at the falling edge
of output pin A. If the state of B is low, the rotation direction is anti-clockwise; if the state of A is high,
the rotation direction is clockwise [4].

The rotary encoder that was chosen for this was the Bourns PEC11R-4225F-S0024 [23]. This is an
incremental rotary encoder that has an internal button. This made the component really useful for the
project because it could emit all the signals needed to control the simulation time. This component was
included in combination with the filter circuit described inside the provided data sheet to make sure
the output signals worked adequately. The filter circuit used can be seen in the following figure.

Figure 3.3: Filter circuit of the rotary encoder

This filter reduces high-frequency noise. The implementation of the rotary encoder into the prototype
and the testing of the controller can be found in chapter 4.

3.2. The hardware components 9

3.2.3. Solar generation
As stated in the requirements ??, the hardware must incorporate solar energy in the design, and this
design of the solar should be self-explanatory. Therefore, it was chosen to make use of a small solar
panel to provide an input for a Solar generator in the power grid simulation. This is done by measuring
the power generated by the solar panel and scaling it to a value between 0 and 700 MW. It is then
transmitted to the simulator. This value was chosen to be realistic in combination with the forecasting
model of the simulation, which is based on a dataset used for an open data-based model of the Dutch
high-voltage power system [25].

Figure 3.4: Power measurement circuit of the solar panel

To measure the power of a solar panel by using a microcontroller, a power measurement circuit has to
be set up. The circuit design can be seen in figure 3.4. The solar panel used is capable of generating
300 mW with a maximum voltage of 6 volts. Therefore, the maximum current it is able to generate is
50 mA. Considering the Arduino analog pins need a voltage between 0 and 5 volts, a voltage divider
is needed. For resolution purposes, it is best to use as much of the range as possible. Therefore, the
voltage divider should scale 6 volts down to 5 volts.

Figure 3.5: Voltage divider

Vout

Vin
=

R2

R1 +R2
(3.1)

Considering equation 3.1, the resistor values were chosen to be R1 = 10kΩ and R2 = 50kΩ. These
resistor values were chosen considerably higher than the load resistor. This is done to make most of the
current go through the load and make the power consumption of the voltage divider as low as possible.
Then the voltage is measured with the analog A0 pin of the Arduino. To prevent high-frequency noise
and smooth transient changes, a capacitor is placed in parallel with R2. The value of this capacitor is
based on the cutoff frequency for noise and the resistance.

3.2. The hardware components 10

To measure the current, a 10 ohm resistor is used in series with the load resistor. This resistor causes
a small voltage drop. A non-inverting amplifier increases this voltage drop by 57 times with a gain of
0. Based on the voltage drop, the current can be calculated using Ohm’s law. Since the resistor is in
series with the load, the current will be the same. Since the solar panel maximally generates a voltage
of 6 volts, the maximum expected current through the 10 Ohm resistor can be calculated. The values
in the following equations are based on figure 3.4.

Req = (
1

R1 +R2
+

1

R4 +R5
)−1 = 682.15Ω (3.2)

Itotal =
Vsolar

Req
= 8.8mA (3.3)

I1 =
Vsolar

R1 +R2
= 0.1mA (3.4)

I2 =
Vsolar

R4 +R5
= 8.7mA (3.5)

First, the total current through the system is calculated; this is done by calculating the equivalent
resistance of the circuit 3.2. Then the total current through the circuit, inclusive the voltage divider for
voltage measurement, can be calculated 3.3. After calculating both current going through the voltage
divider 3.4 and through the load and 10 Ohm resistor 3.5, it can be found that only 1 percent of current,
and thus power, is lost on measuring the voltage. This is the reason why the voltage divider resistors
were chosen to have such high values, to minimize their power consumption. For this application, the
choice was made not to use a shunt resistor for the current measurement. The reason for this is the
extremely small voltage drop the shunt resistor would have, since these resistors are in the range of mili
Ohms. These resistors are made to handle high amounts of power, which is, in our case, not applicable.
As said before, the maximum amount of power a solar panel can generate is 0.3 watts. A regular 10
Ohm resistor, which creates a greater voltage drop, is more easily suitable for that. In this way, a lower
gain is needed for the amplifier, and power loss still remains very low.

3.2.4. Wind generation
To enable the user to control a wind generator in the simulation, an interactive, clear control method
had to be designed. The first idea was to use the same type of power measurement circuit as described
before in the solar part. Then a small DC motor with a small fan would act as a generator. The
user would then be able to blow air into the fan to generate electricity that the circuit could measure.
Depending on how hard a user blows into the fan, the Arduino sends a power value to the computer
running the simulation. However, during testing, it was found that by blowing into the fan, only a very
minimal generation occurred. It would also not be very comfortable for the user to constantly blow into
a fan to perform a control action in the simulation. Therefore, a different approach was chosen.

A more user-friendly way to control the wind generation in the simulator would be to control it with
a potentiometer slider. This would give an input between 0 and 900 MW; this is based on the model
the forecasting is using [25]. Then the inputted power is visualized using a DC motor with a fan spin-
ning faster or slower based on the user input. The motor is controlled using a driver, which is in turn
controlled by a PWM signal from the Arduino. The dc motor has an external voltage supply since it
would draw too much power from the Arduino development board. The full schematic can be seen in
the figure above 3.6. More information on this can be found in the section about the power supply 3.2.7.

The L298N driver is designed to control up to two DC motors or one stepper motor. For this application,
only one DC motor is used. One of the advantages of using this driver is the separation of the source
and DC-motor from the micro controller. Electromotive Force (EMF) voltage spikes will not be able
to do damage to the Arduino. The driver can also control the motor in a two-directional way. In this
application, only one direction is used. The driver contains an H bridge using NPN transistors [9]. The

3.2. The hardware components 11

Figure 3.6: Control circuit of wind generation

driver board has a voltage divider that gives a steady voltage of 5V.

3.2.5. RGB LED
To enable the user to get feedback from the grid, the RGB LED was implemented. An RGB LED is
a light source that can have three different LEDs. A red, green and blue one. These can be used to
implement almost all colors. The RGB LEDs have three internal LEDs that share either a common
anode or common cathode. The RGB LED that is used in this project makes use of a common cathode.
This means all LEDs have a common ground. To control the colors, a PWM signal is connected to the
pins of the internal LEDs.

Figure 3.7: Connection circuit of RGB LED

Rred =
Vsource − Vred

If
=

5V − 2V

20 ∗ 10−3A
= 150Ω

Rgreen = Rblue =
Vsource − Vgreen/blue

If
=

5V − 3.2V

20 ∗ 10−3A
= 90Ω

The LED pins are connected through a resistor to the Arduino, giving the PWM signal. This resistor is
calculated based on the data sheet of the RGB LED [5]. The forward voltage of the R LED is typically
2 volts; for the G and B LEDs, this is typically 3.2 volts. The forward current of all LEDs is 20mA.
After calculating the voltage difference with the supply voltage, Ohm’s law can be applied to calculate

3.2. The hardware components 12

the needed resistance.

The function of the LED is to communicate data from the simulation to the user. This is done to give
the user an indication of the situation on the grid. The grid has transmission lines; in the simulation,
these lines get a certain color based on their loading. A green, orange, or red light is possible. The
green light needs only the G part of the LED to be activated, the orange light needs a combination of
R and G to be active and the red light only needs the R part to be active.

3.2.6. LCD screen
The Hardware wind and solar components were connected to an LCD screen to see what the Arduino
would output and to give the user some feedback on what the current value of wind and solar generation
would be. The LCD screen was implemented for user feedback but also for testing purposes. Due to
the LCD, variables could be plotted on it without the need for a computer.

3.2.7. Power supply
The power supply has an incredible importance in a system. The design of it is often left until the
end of a project since bench supplies do the job perfectly for testing purposes. [3]. For this project,
the choice was made to use a 12V power supply. This would be used directly to supply the LM358 of
the solar power measurement circuit 3.2.3. This provides a large overhead voltage for the 4.95V the
operational amplifier should output maximally. These 12V power supplies are widely available on the
market to buy for low prices.

The power supply needs to convert 230V AC to 12V DC. In this way, the hardware controller can just
be plugged into a plug for it to work. The choice was made to buy a pre-built power supply for this.
Due to the low safety risks. Working with 230V brings serious risks. When choosing a pre-built power
supply, many options are available. There are mainly two types of power supplies: linear power supplies
and switching power supplies. A linear power supply uses a transformer to step down the voltage and
then a rectifier circuit to make it a DC voltage. These types of supplies have very low electrical noise
and are simple, low-cost, and robust. However, it is not very efficient; a lot of energy is wasted and
converted to heat. But these types of power supplies are not very flexible, usually requiring a fixed
input voltage [3].

Another option is using a switching power supply; these are usually more energy-efficient and flexible.
However, they require much more complex circuitry.

Figure 3.8: Functional diagram of a switching power supply

In figure 3.8, the basic principles of a switching power supply are visualized. First, AC is directly con-
verted to DC without first stepping down. The result is high-voltage DC. Then, by frequency switching,
a high-frequency square wave is made. The amplitude of this square wave is then stepped down by a
transformer. After the transformer, it is rectified to DC again and goes through the regulator, resulting
in a lower DC voltage. The regulator gives feedback to the switch on which frequency to switch to get
the desired voltage.

In our design, a voltage of 6 volts is required for the DC motor when controlling the wind. This could
be done by using a voltage divider, but that would be extremely inefficient. When used for high voltage
reductions and high power applications, they dissipate a lot of power as heat. A buck converter steps

3.2. The hardware components 13

down the voltage by increasing the current. This results in a high efficiency since the inputted power
is almost the same as the outputted power. Therefore, a buck converter would be used to step down
12V DC to 6V DC.

Figure 3.9: Schematic of a buck converter

In figure 3.9, a basic schematic of a buck converter is shown. When the switch is closed, the inductor
L1 is directly connected to the source; in this case, that would be 12 volts. The current through the
inductor will start to increase, and energy will be stored in the inductor. The capacitor will charge
during this period. When the switch opens, the diode becomes forward-biased, and the inductor will
start to discharge its stored energy. If the voltage across the capacitor, induced by the collapse of the
magnetic field of the inductor, is higher than the voltage across the capacitor, it will still charge the
capacitor. Otherwise, both the inductor and capacitor will discharge through the motor.

Vo ≈ Vin ·DC (3.6)

Formula 3.6 describes the role of the PWM driving the switch in the buck converter formula. Usually,
this switch is a MOSFET. The output voltage has approximately a linear relationship with the Duty
Cycle (DC). For this project, the DC would be set 0.5 to reduce 12V to 6V.

3.3. Communication with Godot 14

3.3. Communication with Godot
To make the hardware usable inside the Godot game engine and to enable the user to interact with
the simulator, a method that enabled communication between the micro-controller and The Godot
game engine was needed. Three different methods were considered to make the communication hap-
pen. In the following paper, the serial communication between Arduino and Godot was established. [22]

The first method consisted of downloading an open source library[24] that could be included in the
Godot project to add communication methods to the already existing nodes in Godot. The benefit was
that this method was used successfully by the visualization team to create a working project that could
be programmed using C++ code and C++ libraries. This was implemented using Scons, a software
construction tool that builds the project using Python scripts, and the Godot C++ repository. To
implement this method, the main files from the libraries needed to be cloned inside the project files of
the Godot project and then compiled using SCons.

The second method was using a C# library called System.IO.Ports and using the Script function of
Godot to create different signals which could then be emitted to other nodes in the Godot project. The
benefit of this method was that it used a coding library that was already used in several projects.

The third method was to make the Arduino micro-controller write keyboard inputs towards the com-
puter, enabling Godot to execute different commands depending on the keyboard inputs the Arduino
would give the PC. A disadvantage of this method is that the Arduino would take over the keyboard
so no inputs could be given to the PC.

It was decided to go with the first method of downloading a library that could incorporate serial com-
munication between the Arduino and the Godot engine. This open-source serial communication library
had a short installation manual on GitHub. Due to the outdated library, the installation kept failing.
So this method proved to be unusable. There were several other open-source GitHub libraries, but none
were well-documented. So it was decided to go for the second method.

This was an implementation of a serial connection using the System.IO.Ports library inside a C# script.
These were implemented, and a C# code was developed that changed a rich text file inside Godot. The
signals were created in the code and outputted using the “emit.signal” function of the library [8]. After
this, it was necessary to specify inside the functions of the visualization team how to call the correct
signal that changed the values, for example, solar and wind generation or that controlled the timebase.

To enable the hardware modules to handle signals sent from the simulation, the microcontroller and the
code controlling it had to be able to receive data. The serial write methods of the Serial.IO.Port C#
library were used to write the data to the Arduino. The Arduino has a library contained in its software
package to receive serial communication. [12]

3.4. PCB Design 15

3.4. PCB Design
The last step of the hardware design was developing a working prototype. This prototype had to be
a combination of all the different components and include methods of explaining to the user what is
happening or how to change certain simulation parameters.

For the prototype, a PCB chip was needed, on which all the connections between modules and the mi-
crocontroller were implemented. The PCB consists of an Arduino shield on which the Arduino can be
mounted and it was designed to contain all the different hardware components needed in the final design.

The software used in the design of the PCB is KiCAD. This platform was chosen because of its acces-
sibility and the availability of footprints for this certain program. [7] The KICAD software provided a
good interface and a wide array of hotkeys and functions. [13] In this program, the first step is designing
a schematic using components. The next step after the connection between the different components is
set up is assigning footprints, either from the provided libraries or from manufacturers or suppliers of
electronic components.

The next step in the PCB design is implementing the actual design for the complete hardware module.
This is done by placing all the footprints in the correct manner in a PCB editor. In this editor, the
connection which will be printed on the actual PCB can be drawn. For the design, it was important to
pack everything as close as possible; this was done to keep the final hardware module as small as possible.

4
Prototype implementation & Results

4.1. Hardware components
For the prototype implementation of the hardware, all the different modules were tested individually.
The complete setup was tested as the final step. The hardware circuits were tested using a breadboard.
The hardware components were controlled using code that can be found in appendix ??.

Figure 4.1: Test Setup

4.1.1. Time controller
To test the time controller, the rotary encoder was connected to the Arduino using the filter circuit as
described in figure ??. This was done by using two capacitors and 4 resistors. To connect the switch of
the rotary encoder, a pull-up resistor was used. The Arduino pins that were used for this connection
can be found in table 4.1.

16

4.1. Hardware components 17

Table 4.1: Arduino connection of the rotary encoder

Arduino pin Connection
Digital 2 Terminal A
Digital 3 Terminal B
Digital 38 Switch

To use the rotary encoder to control the time, a communication protocol was developed with the Godot
engine. The rotary encoder had to output -1 or 1, depending on the rotation direction. Next to this, a
2 or 3 was sent if the simulation had to stop or start. In the section about the Godot communication,
this will be discussed further.

To make sure the rotary encoder outputted the required signals, a function was developed and included
in the code that was uploaded to the Arduino. An open-source library was used in this code called
Rotaryencoder [18].

To test the design, the serial monitor of the Arduino was used. In this tool of the Arduino IDE, you
can see what gets written to the computer’s serial port. To test the rotary encoder, it was checked to
see if the outputs provided were the correct responses. After this was found to be correct, the Rotary
encoder was connected to the Godot game engine to see if it outputted the correct values, and the
correct implementation was executed. The Godot C++ code that was changed to implement the rotary
encoder was the timebase code found in Appendix A.2. In this code, which was made by the visualiza-
tion sub-group, two functions were added to implement the change in time. A connection was set up
between the timebase file and the file where the signal was defined. This is the Arduino file found in
the appendix A.1 that is connected to the Arduino Node in Godot. A function was added that changed
the flow of time depending on which signal was outputted to the Godot engine.

This setup was tested rigorously to see if the flow of time changed. This was done by using a text file
to see what signals were sent to Godot. To see if the direction of time changed, print statements were
added to the code.

4.1.2. Solar generation
To implement the design for the solar component, the components were ordered, and the designed
circuits were connected to the solar panel and to a power supply. To measure the output, the voltage
divider and the operational amplifier were connected to the Arduino. The pins that were used on the
Arduino can be found in the following table ??.

Table 4.2: Arduino connection of the solar circuit

Arduino pin connection
Digital 13 voltage divider
Digital 12 output operational amplifier

There were some difficulties because of the LM358 operational amplifier that was used. One side of this
amplifier was faulty so the circuit did not seem to work. But these were fixed in time and the circuit
proved to be working. in the following figure, the testing setup is provided.

4.1. Hardware components 18

Figure 4.2: Solar testing circuit

While testing the solar circuit connected to the solar panel, the measurements provided proved to be
quite noisy. The value of the solar generation variable kept varying. To compensate for this, a filter
was implemented in the software. The algorithm that was chosen was the exponential filter algorithm
[20]. This method was chosen over several other software filtering methods, like averaging or taking the
running average. These other methods cause a delay in measuring since many measurements have to be
taken to then take the average. These types of filtering take up some memory, whereas the exponential
filtering algorithm only remembers its last measured value.

Yn = w.Xn + (1− w) · Yn−1; (4.1)

This equation4.1 shows how the measurements are filtered. Yn is the filtered measurement, and Xn

is the actual measurement. The parameter w is a weighting parameter, having a value between 0
and 1. When the weighting parameter is high, it doesn’t smooth the measurements much, but it is
very responsive. When it is low, it does smooth a lot, but it is very slow in responding to changes in
measurements. Another advantage is that this filter can be adjusted by only changing the weighting
parameter. The code implementing this filter can be found in the appendixA.3. To regulate the amount
of power the solar panel is producing, a light bulb would be present.

4.1. Hardware components 19

4.1.3. Wind generation
The Wind implementation was tested in three different steps. Firstly, the sliding potentiometer was
connected to the Arduino, and a code was written, which can be found in Appendix A.3, that gave the
wind value to the Arduino and the computer. The sliding potentiometer was connected to the Arduino
in the following way:.

Table 4.3: Arduino connection of the sliding potentiometer

Arduino pin connection
analog 7 pin 1
5 volts pin 2
Ground pin 3

The potentiometer has been proven to be a little bit noisy during testing. When not moved, the analog
reading sometimes slightly changes. To get rid of this, a simple if statement was used in the code to
check if the reading has changed by more than a certain value before implementing any changes.

4.1.4. RGB LED
The RGB LED was implemented in combination with three resistors to make sure the correct colours
were emitted. The RGB led was connected to the Arduino in the following way:. [6]

Table 4.4: Arduino connection of the RGB LED

Arduino pin connection
Digital 13 Blue
Digital 12 Green
Digital 11 Red

4.1.5. Power supply
For the power supply, as described before 3.2.7, a prebuilt switching power supply is used. For converting
12V to 6V for the DC motor, a prebuilt buck converter module is used, a TC-9927140. The cost of
buying the individual components would have been higher than buying a mass-produced, prebuilt unit.
The reliability and performance of this unit have been tested.

4.2. Communication with Godot 20

4.2. Communication with Godot
To implement the communication method, different coding files were used, which can be found in Ap-
pendix ??. Some additions belong to these files written by the simulation team to enable the simulator
and the Godot game engine to act upon signals sent by the Arduino through the serial communication
port. The same holds for the signals sent by the files inside of the game engine towards the Arduino.

To be able to use signals in different codes, it was necessary to set up a connection between these nodes.
This was done by using the relative path between these nodes and using callables to set up the functions
for which the signals could be used.

4.2.1. Sending data to Godot
The signals that were sent to Godot consisted of Strings. All the signals and their functions in the
simulator are listed in the table below.

Table 4.5: Signals emitted to the Godot engine

String Function
-1 go backward in simulation time
1 go forward in simulation time
2 play
3 pause
Sxxx change solar to xxx
Wxxx change wind to xxx

The code of the visualization team handled the signals inside the Godot engine. There are four signals
that control the simulation time. The go forward and go backward signals are 1 and -1. They get
emitted if the rotary encoder is turned. A 1 gets emitted if the encoder is turned clockwise, and a -1
is emitted if the encoder is turned counterclockwise. The pause or play signal, so a 2 for play and a
3 for pause, gets emitted if the user presses the rotary encoder and it stops or starts the simulation time.

The signal controlling the wind generation is used in the visualization and is transmitted whenever
the user changes the wind input with the sliding potentiometer. The signal outputted is used in the
simulation as a value for the power generated in a wind farm used as a generating node.

The signal used to change the solar generation is gathered by the solar panel module of the hardware
and is emitted to the simulation whenever the user presses a button. The value is used inside the
simulation for the power generated in a solar park.

4.2.2. Receiving data from Godot
The signals that were sent to the Arduino can be seen in the following table.

Table 4.6: signals received from the Godot engine

Signal Function
1 Turn RGB LED green
2 Turn RGB LED yellow
3 Turn RGB LED red

All of these values were sent depending on the number of overloaded or almost overloaded lines inside the
simulation. The signals control the color of an RGB LED controlled by the microcontroller. The signal

4.2. Communication with Godot 21

emitted to the Arduino was a three if a line exceeded its maximum rated capacity in the simulation. If
the Arduino receives this signal, the LED turns red. If there are more than five lines higher than 95
percent of their rated capacity, the code writes a 2 to the Arduino, and the RGB LED turns yellow. If
both of these conditions are not met, a 1 gets emitted and the RGB LED turns green.

4.3. PCB design 22

4.3. PCB design
To implement the final schematic to make a PCB, all the different circuits were combined into a big
schematic that showed the total hardware modules. The center of this hardware module is the Arduino.
All the components were connected to the Arduino in such a manner that it would fit on as small a
PCB as possible.

Figure 4.3: The schematic of the total design made in the program Kicad

The schematic was made using as many of the footprints as the actual components to make sure they
would all fit exactly as expected. The connections were made in the smartest way possible, so all the
components would fit around or on top of the Arduino. The schematic was made using a shield for
the Arduino Mega. On this shield, pins can be soldered, and this shield can be placed on top of the
Arduino, making the Arduino removable. This is handy if problems arise with this component.

Figure 4.4: The final design to implement the PCB

4.3. PCB design 23

The PCB design that can be seen in figure 4.4 is made using the Kicad software, and the schematic
can be found in figure 4.3. This was done by placing all the components as closely together as possible
to make the PCB cheaper. Some components were placed on top of each other. This is because the
Arduino is placed on the bottom of the shield, so components can be soldered on the top part. The
LCD screen is also placed over the shield and a couple of resistors. This is because it needs to be visible
to the user when it is using the hardware module. The button and rotary encoder are also placed on
top, so they can be accessed and controlled if the PCB is connected to the Arduino. The RGB LED was
connected in such a manner that it could be seen from the user’s perspective. The connections between
components are made using 0.5 mm wide connections. These are all placed in a way that minimizes
the risk of disconnection. The things that are not on the Arduino but will be connected using screw
terminals are the following.

• The power supply
• The buck converter
• The L298N motor driver
• The dc motor
• The solar panel

All of these components need to be fitted inside the casing as well. The footprints for a couple of com-
ponents were missing to test the PCB design, it was printed out and the necessary changes were made
to a couple of footprints of certain components to make sure they could be fitted on the final PCB design.

5
Conclusion

To conclude this report, which described the building of a hardware controller for a power grid visu-
alization, the hardware had to be implemented in the visualization and had to have specific functions.
The final product that was designed validated the requirements that were stated in the program of re-
quirements. The hardware module contains components that control solar generation, simulation time,
and wind generation. The hardware components that were designed are safe to use, have a functional
use in the power grid simulator, can be controlled using a micro-controller, and can change parameters
in the Godot simulator.

This thesis demonstrates a harmonic interaction between a simulation based on software and a hardware
controller based on hardware and software. Also, it highlights the practical challenges faced and explains
the accompanying innovative solutions.

24

6
Discussion and recommendation

6.1. Discussion
For the hardware, the problem definition was the most difficult part of the project. It was hard to
define the boundaries for what was achievable within the time frame of the project. Different designs
with different complexities were considered. For example, in the first iteration of the time controller, a
rotating shaft was controlled by a rotary encoder, a microcontroller, and a motor. This was considered
to be too difficult and time-consuming. The hardware consisted of many different parts, so all the
different modules needed to be simple and easy to implement.

The amount of software that needed to be implemented, especially the Godot code, was underestimated.
To enable the hardware and Godot to communicate, a lot of different methods were tried and it took
almost two weeks to fully implement. This time could have been a lot shorter if the methods used
were documented better. So for future projects, it is important to write down all the installation steps
of different programs. A lot of time was spent retracing the steps of other sub-teams or retracing the
steps of other teammates. This could be improved in documentation by writing installation manuals
for every software program of the project.

The last thing that was a major issue in this project was the testing. Due to the number of different
modules that needed to be implemented, the testing setups were chaotic. The decision to use bread-
boards for testing was useful for testing every component individually, but for integrating the different
modules, it was time-consuming to check every connection and make sure nothing was connected in the
wrong way. This could be improved by testing components individually and, if they work as expected,
soldering them together and using them as modules to test the final prototype. To improve testing in
the future, a PCB has been designed to implement the full prototype, but due to a lack of time, this
has not been tested yet.

6.2. Recommendations
For this project, recommendations for future groups would be adding different components to make the
hardware module have more functions. This would enable the user to make more choices and take in-
telligent actions to solve problems on the power grid simulator. Right now, the user has three variables
that can be controlled. This can be increased with other actions, such as building or breaking lines or
tuning some lines on or off. This is pretty complex due to the dependency on the work of the other
subgroups.

Another recommendation would be to improve the current components. For example, the time control
could benefit from a speed-up or speed-down mode. The current feedback about the system from the

25

6.2. Recommendations 26

user is minimal; adding more warning components could help.

The final recommendation would be to test the system with users. Currently, not much testing has
been done with inexperienced users; the control of mechanisms has been kept simple but user testing
has not been achieved yet.

References

[1] Sue Allen and Joshua P Gutwill. “Creating a program to deepen family inquiry at interactive
science exhibits”. In: Curator: The Museum Journal 52.3 (2009), pp. 289–306.

[2] Alethea Blackler, Vesna Popovic, and Douglas Mahar. “Intuitive Interaction Applied to Interface
Design”. In: New Design Paradigms: Proceedings of International Design Congress (IDC) 2005.
Ed. by M. C. Ho. International Design Congress, CD Rom, 2005, pp. 1–10.

[3] Marty Brown. Power Supply Cookbook. 2nd ed. Boston: Newnes, 2001.
[4] Neil Cameron. Electronics Projects with the ESP8266 and ESP 32. Apress, 2020, pp. 559–584.

url: https://link.springer.com/chapter/10.1007/978-1-4842-6336-5_19#citeas.
[5] CHINA YOUNG SUN LED TECHNOLOGY CO., LTD. YSL-R596CR3G4B5C-C10 RED/GREEN/BLUE

Triple Color LED. Online. Accessed: insert-access-date-here. 2023. url: https://www.sparkfun.
com/datasheets/Robotics/L298_H_Bridge.pdf.

[6] Matt Clary. “Interfacing to an LCD screen using an Arduino”. In: College of Engineering (2015).
[7] Peyton Reade Crosby. “Analysis of the Design and Manufacure of a Printed Circuit Board for a

High Altitude Balloon Payload”. In: (2023).
[8] Godot Engine Documentation. Signals in Godot. [Online; accessed 14-June-2024]. 2024. url: https:

//docs.godotengine.org/en/stable/getting_started/step_by_step/signals.html.
[9] SparkFun Electronics. L298 H-Bridge. Online. Accessed: insert-access-date-here. n.d. url: https:

//www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf.
[10] Jill Engel-Cox and Kerrin Jeromin. “Effective Communication of Energy Science and Technology”.

In: Climate and Energy 40.8 (2024), pp. 1–8.
[11] Mohamed Fezari and Ali Al Dahoud. “Integrated development environment “IDE” for Arduino”.

In: WSN applications 11 (2018), pp. 1–12.
[12] Ahmad Adamu Galadima. “Arduino as a learning tool”. In: 2014 11th International Conference

on Electronics, Computer and Computation (ICECCO). IEEE. 2014, pp. 1–4.
[13] David L Jones. “PCB design tutorial”. In: June 29th (2004), pp. 3–25.
[14] Mihaela Sabina Jucan and Cornel Nicolae Jucan. “The power of science communication”. In:

Procedia-Social and Behavioral Sciences 149 (2014), pp. 461–466.
[15] Joyce Ma et al. “Using a tangible versus a multi-touch graphical user interface to support data ex-

ploration at a museum exhibit”. In: Proceedings of the Ninth International Conference on Tangible,
Embedded, and Embodied Interaction. 2015, pp. 33–40.

[16] I Scott MacKenzie. “Human-computer interaction: An empirical research perspective”. In: (2024),
p. 41.

[17] Paul Marshall. “Do tangible interfaces enhance learning?” In: Proceedings of the 1st international
conference on Tangible and embedded interaction. 2007, pp. 163–170.

[18] Mathertel. RotaryEncoder Arduino Library. Accessed: 2024-06-10. 2022. url: https://github.com/
mathertel/RotaryEncoder.

[19] Niamh McNamara and Jurek Kirakowski. “Functionality, usability, and user experience: Three
areas of concern”. In: interactions 13.6 (2006), pp. 26–28.

[20] MegunoLink. 3 Methods to Filter Noisy Arduino Measurements. Accessed: 14th of June 2024.
2023. url: https : / / www . megunolink . com / articles / coding / 3 - methods - filter - noisy - arduino -
measurements/.

[21] Nur Qamarina Mohd Noor et al. “Arduino vs Raspberry Pi vs Micro Bit: Platforms for Fast IoT
Systems Prototyping”. In: Open International Journal of Informatics 6.1 (2018), pp. 1–12.

27

https://link.springer.com/chapter/10.1007/978-1-4842-6336-5_19#citeas
https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
https://docs.godotengine.org/en/stable/getting_started/step_by_step/signals.html
https://docs.godotengine.org/en/stable/getting_started/step_by_step/signals.html
https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf
https://github.com/mathertel/RotaryEncoder
https://github.com/mathertel/RotaryEncoder
https://www.megunolink.com/articles/coding/3-methods-filter-noisy-arduino-measurements/
https://www.megunolink.com/articles/coding/3-methods-filter-noisy-arduino-measurements/

References 28

[22] Francesca Santucci et al. “An immersive open source environment using godot”. In: Computational
Science and Its Applications–ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4,
2020, Proceedings, Part VII 20. Springer. 2020, pp. 784–798.

[23] NXP Semiconductors. PCF856l. Datasheet. https://www.farnell.com/datasheets/3717670.pdf.
2021.

[24] Joel Setterberg. GDSerCommPlugin. https://github.com/NangiDev/GDSerCommPlugin. Ver-
sion 1.0. Accessed: 2024-06-09. 2019.

[25] Wouter Zomerdijk et al. “Open Data Based Model of the Dutch High-Voltage Power System”. In:
Proceedings of the IEEE Innovative Smart Grid Technologies Conference Europe. Accessed: June
10, 2024. IEEE, 2022, pp. 1–5. doi: 10.1109/ISGT-Europe46778.2022.9960703.

https://www.farnell.com/datasheets/3717670.pdf
https://github.com/NangiDev/GDSerCommPlugin
https://doi.org/10.1109/ISGT-Europe46778.2022.9960703

A
Code

A.1. Code used for the communication with Godot
1 using Godot ;
2 using System ;
3 using System . IO . Ports ;
4

5 public pa r t i a l c l a s s Arduino : Node2D
6 {
7 [Signal]
8 public delegate void SMREventHandler(s t r ing message) ;
9 [Signal]

10 public delegate void WindEventHandler (f l o a t message2) ;
11 [Signal]
12 public delegate void SolarEventHandler (f l o a t message3) ;
13

14

15 Ser ia lPort s e r i a lPor t ;
16 RichTextLabel text ;
17

18 private int r l = 0;
19 private int o l = 0;
20 private int red l ines5 = 0;
21 private int oldvalue = 0;
22 private int oldvalue2 = 0;
23 private f l o a t a = 0;
24 private f l o a t b = 0;
25

26

27 private void PrintNodePaths (Node node , s t r ing pre f ix = ””)
28 {
29 GD. Print (pre f ix + node .Name) ;
30 foreach (Node ch i ld in node . GetChildren ())
31 {
32 //PrintNodePaths (chi ld , pre f ix + node .Name + ”/”) ;
33 }
34 }
35 private void RLR(int r l s)
36 {
37 r l = r l s ;
38 GD. Print (”Red␣Lines␣Received : ” , r l s) ;
39 }
40

41 private void OLR(int o l s)
42 {
43 o l = o l s ;
44 GD. Print (”Overloaded␣Lines␣Received : ” , o l s) ;
45 }
46 private void Ca l l r ed l ine s ()
47 {

29

A.1. Code used for the communication with Godot 30

48 Node parentNode = GetParent () ;
49 var ch i ld = GetParent () . GetChild (3) .GetPath () ;
50 GD. Print (ch i ld) ;
51 Node mapNode = GetNode<Node>(”/root/Node2D/MapGenerator”) ;
52 Callable C2 = new Cal lable (this , ”RLR”) ;
53 mapNode . Connect (”RLS2” , C2) ;
54 Callable C3 = new Cal lable (this , nameof (OLR)) ;
55 mapNode . Connect (”OLS2” , C3) ;
56 //powertest2 . Connect (”RLS” , C2) ;
57 //power . Connect (”Ardwrite ” , C2) ;
58 GD. Print (” connection␣ estab l i shed ”) ;
59 }
60 //Called when the node enters the scene tree fo r the f i r s t time .
61 public overr ide void _Ready()
62 {
63 Node parentNode = GetParent () ;
64 PrintNodePaths (GetTree () . Root) ;
65 text = GetNode<RichTextLabel>(”RichTextLabel”) ;
66 Cal l r ed l ine s () ;
67 s e r i a lPor t = new Ser ia lPort () ;
68 s e r i a lPor t .PortName = ”COM4” ;
69 s e r i a lPor t .BaudRate = 9600;
70 s e r i a lPor t .Open() ;
71

72 }
73

74 public void Ardwrite (int overloadedlinesA , int redlinesA)
75 {
76 int RGBlight = 0;
77

78 i f (overloadedlinesA >= 1)
79 {
80 RGBlight = 3;
81 s e r i a lPor t .Write (”3”) ;
82 }
83 e l s e i f (redl inesA >= 3)
84 {
85 RGBlight = 2;
86 s e r i a lPor t .Write (”2”) ;
87 }
88 e l s e
89 {
90 RGBlight = 1;
91 s e r i a lPor t .Write (”1”) ;
92 }
93 GD. Print (”Light␣value␣send␣to␣arduino␣=” , RGBlight) ;
94 }
95 // Called every frame . ’ de lta ’ i s the elapsed time s ince the previous frame .
96 public overr ide void _Process (double delta)
97 {
98 //GD. Print (”Red Lines Received : ” , r l) ;
99 i f (o l != oldvalue | | r l != oldvalue2)

100 {
101 Ardwrite (ol , r l) ;
102 }
103 oldvalue = ol ;
104 oldvalue2 = r l ;
105

106 i f (! s e r i a lPor t . IsOpen) return ;
107

108 i f (o l != oldvalue | | r l != oldvalue2)
109 {
110 Ardwrite (ol , r l) ;
111 }
112 oldvalue = ol ;
113 oldvalue2 = r l ;
114 s t r ing ser ialMessage = ser ia lPor t . ReadExisting () ;
115

116 i f (! Str ing . IsNullOrWhiteSpace (ser ialMessage))
117 {
118 i f (ser ia lMessage [0]== ’W’)

A.2. Timebase code 31

119 {
120 s t r ing modifiedMessage = serialMessage . Substring (1) ;
121 i f (f l o a t . TryParse (modifiedMessage , out f l o a t windPowerValue)

)
122 {
123 //power . Call (” set_wind” , 2.0 f) ;
124 text . Text = modifiedMessage ;
125 EmitSignal (nameof (Wind) ,windPowerValue) ;
126 }
127 }
128 e l s e i f (ser ialMessage [0] == ’S ’)
129 {
130 s t r ing modifiedMessage2 = serialMessage . Substring (1) ;
131 i f (f l o a t . TryParse (modifiedMessage2 , out f l o a t

solarPowerValue))
132 {
133

134

135 //power . Call (” set_solar ” , 2.0 f) ;
136 GD. Print (solarPowerValue) ;
137 text . Text = modifiedMessage2 ;
138 EmitSignal (nameof (Solar) , solarPowerValue) ;
139 }
140 }
141 e l s e
142 {
143 text . Text = serialMessage ;
144 EmitSignal (nameof (SMR) , ser ia lMessage) ; //
145 }
146 }
147 }
148

149

150 }

A.2. Timebase code
1 #include ”timebase . h”
2 #include <godot_cpp/core/class_db . hpp>
3 #include <godot_cpp/variant/ut i l i ty_funct ions . hpp>
4

5

6 using namespace godot ;
7

8 void Timebase : : _bind_methods () { //Create the s ized property (as s i z e i s already a thing) to
depict the s i z e of the whole gr id

9 ClassDB : : bind_method(D_METHOD(”set_timer_amount” , ”new_amount”) , &Timebase : :
set_timer_amount) ;

10 ClassDB : : bind_method(D_METHOD(”get_timer_amount”) , &Timebase : : get_timer_amount) ;
11 ClassDB : : bind_method(D_METHOD(”_on_timebase_timeout”) , &Timebase : : _on_timebase_timeout) ;
12 ClassDB : : bind_method(D_METHOD(”_on_direction_signal”) , &Timebase : : _on_direction_signal) ;
13 ClassDB : : add_property (”Timebase” , PropertyInfo (Variant : :FLOAT, ”amount”) , ”set_timer_amount

” , ”get_timer_amount”) ;
14 ADD_SIGNAL(MethodInfo (”time_index_signal” , PropertyInfo (Variant : : INT, ”time_index”))) ;
15 }
16

17 Timebase : : Timebase () {
18 amount = 5;
19 f l owdi rect ion = 1;
20 timeindex = 0;
21 }
22

23 Timebase : : ~ Timebase () {
24 }
25

26 void Timebase : : _ready () {
27 timebase ->set_wait_time (amount) ;
28 timebase ->set_autostart (true) ;
29 timebase ->set_one_shot (f a l s e) ;
30 timebase ->set_timer_process_callback (TIMER_PROCESS_IDLE) ;

A.2. Timebase code 32

31 add_child (timebase) ;
32 timebase ->connect (”timeout” , Cal lable (this , ”_on_timebase_timeout”)) ;
33

34 Node* parentnode = get_parent () ;
35 Node2D* arduinonode = parentnode ->get_node<Node2D>(”Arduinonode”) ;
36 Uti l i tyFunctions : : pr int (arduinonode) ;
37 i f (arduinonode){
38 arduinonode ->connect (”SMR” , Cal lable (this , ”_on_direction_signal”)) ;
39 }
40 e l s e {
41 Uti l i tyFunctions : : pr int (”Arduino␣connection␣node␣not␣found”) ;
42 }
43

44 }
45

46 void Timebase : : _on_timebase_timeout () {
47 Uti l i tyFunctions : : pr int (” index : ␣” , timeindex , ”␣amt : ␣” , amount , ”␣dir : ␣” , f l owdi rect ion) ;
48 emit_signal (”time_index_signal” , timeindex) ;
49 i f ((timeindex + f lowdirect ion) < 0){
50 timeindex = 0;
51 }
52 e l s e {
53 timeindex += f lowdirect ion ;
54 }
55 }
56

57 void Timebase : : _on_direction_signal (Str ing message){
58 int s e l e c t o r = message . to_int () ;
59 switch (s e l e c t o r){
60 case -1 :
61 f l owdi rect ion = -1 ;
62 break ;
63

64 case 1 :
65 f l owdi rect ion = 1;
66 break ;
67

68 case 2 :
69 i f (! timebase ->is_paused ()){
70 timebase ->set_paused (true) ;
71 }
72 break ;
73

74 case 3 :
75 i f (timebase ->is_paused ()){
76 timebase ->set_paused (f a l s e) ;
77 }
78 break ;
79

80 default :
81 break ;
82 }
83 return ;
84 }
85

86 void Timebase : : set_timer_amount(const f l o a t new_amount){
87 amount = new_amount ;
88 timebase ->set_wait_time (amount) ;
89 return ;
90 }
91

92 int Timebase : : get_timer_amount () {
93 return amount ;
94 }
95

96 void Timebase : : _input (InputEventKey *event){
97 i f (timebase){
98 Ref<InputEventKey> key_btn = event ;
99 i f (key_btn->get_keycode () && key_btn->is_pressed ()){

100 int keyse lector = key_btn->get_keycode () ;
101 Uti l i tyFunctions : : pr int (keyse lector) ;

A.3. Code for the Arduino Mega 33

102 switch (keyse lector){
103 case 65:
104 i f (amount > 0){
105 old_amount = amount ;
106 amount = amount - 0 .25 ;
107 i f ((old_amount - 0 .25) <= 0.2) {
108 Uti l i tyFunctions : : pr int (”Can ’ t␣go␣ slower ! ”) ;
109 }
110 e l s e {
111 timebase ->set_wait_time (amount) ;
112 }
113 }
114 break ;
115

116 case 68:
117 amount = amount + 0 .25 ;
118 timebase ->set_wait_time (amount) ;
119 break ;
120

121 default :
122 break ;
123 }
124 }
125 }
126 return ;
127 }

A.3. Code for the Arduino Mega
1 /*
2 Code For BAP project Power Grid Visua l i zat ion
3 Written by Michiel De Rop and Johannes Ketelaars
4 */
5

6

7

8 #include <LiquidCrystal . h> // l i b r a r i e s
9 #include <RotaryEncoder . h>

10

11 //pin conf igurat ion
12 #def ine PIN_RA 2
13 #def ine PIN_RB 3
14 #def ine LED_R 11
15 #def ine LED_G 12
16 #def ine LED_B 13
17 #def ine windControl A2
18 #def ine motorControl 4
19 #def ine startPin 23
20 #def ine s e l e c tSo l a r 24
21 #def ine selectWind 26
22 #def ine voltageSolar A0
23 #def ine currentSolar A1
24 #def ine playbutton 35
25

26 // Constants fo r LCD
27 const int rs = 52 , en = 50 , d4 = 48 , d5 = 46 , d6 = 44 , d7 = 42; //pin connection LCD
28 LiquidCrystal lcd (rs , en , d4 , d5 , d6 , d7) ;
29

30 // I n i t i a l i z a t i o n of g lobal var iab le s
31 int PowerWind = 0;
32 int PowerSolar = 0;
33 int OldPowerSolar = 0;
34 int displayW ;
35 int displayS ;
36 int readingW ;
37

38 int buttonsolar = LOW;
39 int stateW = HIGH;
40 int previousS = LOW;
41 int previousW = LOW;

A.3. Code for the Arduino Mega 34

42 int previousRW = HIGH;
43 int previousRS = HIGH;
44 int windRead = 0;
45 int oldwindRead = 0;
46

47 unsigned long timeS = 0; // Time of l a s t so la r button toggle
48 unsigned long timeW = 0; // Time of l a s t wind button toggle
49 const unsigned long debounce = 200UL; // Debounce time in mi l l i seconds
50

51 bool papla = f a l s e ;
52 f l o a t weighting = 0 . 5 ; //weighting parameter exponential f i l t e r i n g
53 f l o a t oldSmoothVoltage = 0;
54 f l o a t oldSmoothCurrent = 0;
55 int lastPos = 0;
56

57 RotaryEncoder encoder (PIN_RA, PIN_RB) ;
58

59 void checkPosition ()
60 {
61 encoder . t i ck () ; // just c a l l t i ck () to check the state .
62 }
63

64 void setup () {
65 lcd . begin (16 , 2) ; // I n i t i a l i z e the LCD
66 pinMode(startPin , INPUT) ; // Set the s ta r t pin as input
67 Se r i a l . begin (9600) ; // startup s e r i a l communication
68 pinMode(motorControl , OUTPUT) ; // set pint fo r wind motor as output
69

70 pinMode(LED_R, OUTPUT) ; // set LED pins as output
71 pinMode(LED_G, OUTPUT) ;
72 pinMode(LED_B, OUTPUT) ;
73 analogWrite (LED_R, 0) ; // s ta r t RGB LED in green
74 analogWrite (LED_G, 255) ;
75 analogWrite (LED_B, 0) ;
76

77 attachInterrupt (digitalPinToInterrupt (PIN_RA) , checkPosition , CHANGE) ; //use interrupts
fo r the rotary encoder

78 attachInterrupt (digitalPinToInterrupt (PIN_RB) , checkPosition , CHANGE) ;
79 attachInterrupt (digitalPinToInterrupt (playbutton) , pauseplay , CHANGE) ;
80

81 oldwindRead = analogRead (windControl) + 10;
82 Se r i a l . pr int ln (”S0”) ; // i n i t i a l i z e so la r and wind value to

computer with 0
83 Se r i a l . pr int ln (”W0”) ;
84 }
85

86 void loop () {
87 buttonsolar = SolarButton () ; //check i f so la r i s act ivated
88 i f (buttonsolar == HIGH){
89 PowerSolar = readSolar () ; // i f so la r activated , read i t s power
90 i f (OldPowerSolar != PowerSolar){
91 Se r i a l . pr int (”S”) ; //send so la r value to computer i f value i s updated
92 Se r i a l . pr int ln (PowerSolar) ;
93 }
94 OldPowerSolar = PowerSolar ;
95 }
96 lcd . c l ea r () ; // c l ea r LCD screen
97 SolarLCD(buttonsolar , PowerSolar) ; //send so la r information to LCD
98 encoder . t i ck () ;
99 pauseplay () ; // function for pause and play button on rotary

encoder
100 // Check the pos i t ion
101 int newPos = encoder . getPosit ion () ;
102

103 i f (S e r i a l . ava i lab le () > 0){ //check i f any communication has been rece ived
104 RGBLed() ;
105 }
106

107 i f (newPos > lastPos) { //send time contro l s to computer from rotary
encoder

108 Se r i a l . pr int ln (”1”) ; // Turned r ight

A.3. Code for the Arduino Mega 35

109 } e l s e i f (newPos < lastPos) {
110 Se r i a l . pr int ln (” -1”) ; // Turned l e f t
111 }
112 lastPos = newPos ;
113

114 windRead = analogRead (windControl) ; //read potentiometer fo r wind contro l
115 windInput (windRead) ; // give wind value to motor , LCD and computer
116 delay (100) ;
117 }
118

119 void RGBLed() {
120 int GridState = Se r i a l . read () ;
121 i f (GridState == ’1 ’){
122 analogWrite (LED_R, 0) ; // co lor green
123 analogWrite (LED_G, 255) ;
124 analogWrite (LED_B, 0) ;
125 }
126 e l s e i f (GridState == ’2 ’){
127 analogWrite (LED_R, 255) ; // co lor orange
128 analogWrite (LED_G, 165) ;
129 analogWrite (LED_B, 0) ;
130 }
131 e l s e i f (GridState ==’3 ’){ // co lor red
132 analogWrite (LED_R, 255) ;
133 analogWrite (LED_G, 0) ;
134 analogWrite (LED_B, 0) ;
135 }
136 }
137

138 int readSolar () {
139 f l o a t power ;
140 int voltageValue = analogRead (voltageSolar) ; //read

analog inputs
141 int currentValue = analogRead (currentSolar) ;
142 f l o a t smoothVoltage = weighting*voltageValue + (1 - weighting)*oldSmoothVoltage ; //

implementing exponential f i l t e r
143 f l o a t smoothCurrent = weighting*currentValue + (1 - weighting)*oldSmoothCurrent ;
144 oldSmoothVoltage = smoothVoltage ;
145 oldSmoothCurrent = smoothCurrent ;
146 f l o a t realVoltage = (voltageValue * (6/ 1023.0)) ; // convert

analog value to actual voltage , take voltage div ider into account
147 f l o a t realCurrent = (oldSmoothCurrent / 1023.0) * 0.00869; // convert

analog value to current
148 f l o a t measuredpower = realVoltage*realCurrent ; //

ca l cu la te power
149 i f (measuredpower >= 0.041712){ // give max

power value above 80percent of max power so la r
150 power = 700;
151 }
152 e l s e
153 power = (measuredpower / 0.041712) * 700; // sca l e to

0 to 700 range
154 return round(power/10) *10; //round

power to nearest multiple of 10
155 }
156

157

158 int SolarButton () {
159 // Code for managing so la r button press
160 int stateS ;
161 int readingS = digitalRead (s e l e c tSo l a r) ;
162

163 // i f the input just went from LOW and HIGH and we ’ ve waited long enough
164 // to ignore any noise on the c i r cu i t , toggle the output pin and remember
165 // the time
166 i f (readingS == HIGH && previousS == LOW&& mi l l i s () - timeS > debounce) // function to

change state with one button press
167 {
168 i f (stateS == HIGH){
169 stateS = LOW;
170 Se r i a l . pr int ln (”S0”) ;

A.3. Code for the Arduino Mega 36

171 }
172 e l s e {
173 stateS = HIGH;
174 }
175 timeS = mi l l i s () ;
176 }
177 previousS = readingS ;
178 return stateS ;
179 }
180 void SolarLCD(int stateS , int displayS){
181 i f (stateS == HIGH){ //print values on LCD
182 lcd . setCursor (0 ,0) ;
183 lcd . pr int (”Solar=”) ;
184 lcd . pr int (displayS) ;
185 lcd . pr int (”MW␣ON”) ;
186 }
187 e l s e {
188 lcd . setCursor (0 ,0) ;
189 lcd . pr int (”Solar=0MW␣OFF”) ;
190 }
191 }
192

193 void windInput (int windval){
194 int scaledWind = map(windval , 0 , 1023 , 0 , 900) ; //map value of wind power to

simulator value
195 int motorInput = map(windval , 0 , 1023 , 0 , 255) ; //map value of wind power to an input

value for the motor
196 i f (abs (windval - oldwindRead)>5){ // f i l t e r i n g fo r small noise
197 i f (windval < 50){
198 analogWrite (motorControl , 0) ; // contro l motor and LCD
199 lcd . setCursor (0 ,1) ;
200 lcd . pr int (”Wind=0MW␣OFF”) ;
201 Se r i a l . pr int ln (”W0”) ;
202 }
203 e l s e i f (windval >= 50){
204 analogWrite (motorControl , motorInput) ;
205 lcd . setCursor (0 ,1) ;
206 lcd . pr int (”Wind=”) ;
207 lcd . pr int (scaledWind) ;
208 lcd . pr int (”MW␣ON”) ;
209 Se r i a l . pr int (”W”) ;
210 Se r i a l . pr int ln (scaledWind) ;
211 }
212 }
213 oldwindRead = windval ;
214 }
215

216 void pauseplay () {
217 i f (digitalRead (playbutton) == HIGH){
218 i f (papla == fa l s e){
219 papla = true ;
220 Se r i a l . pr int ln (3) ;
221 }
222 e l s e {
223 papla = f a l s e ;
224 Se r i a l . pr int ln (2) ;
225 }
226 delay (300) ;
227 }
228 }

	Summary
	Preface
	Introduction
	Program of requirements
	Problem definition
	Global requirements
	Requirements of the hardware
	Mandatory requirements
	Trade-off requirements

	Design process
	Preliminaries
	Godot game engine
	Arduino IDE
	System.IO.Ports
	KiCad

	The hardware components
	Micro controller
	Time controller
	Solar generation
	Wind generation
	RGB LED
	LCD screen
	Power supply

	Communication with Godot
	PCB Design

	Prototype implementation & Results
	Hardware components
	Time controller
	Solar generation
	Wind generation
	RGB LED
	Power supply

	Communication with Godot
	Sending data to Godot
	Receiving data from Godot

	PCB design

	Conclusion
	Discussion and recommendation
	Discussion
	Recommendations

	References
	Code
	Code used for the communication with Godot
	Timebase code
	Code for the Arduino Mega

