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Abstract
Hyperledger Fabric is a permissioned enterprise
blockchain allowing organizations to collaborate
and automate processes via smart contracts. How-
ever, these contracts could contain security vulner-
abilities leading to unexpected behavior or other
negative consequences. Therefore, this study takes
a closer look at three reported smart contract vul-
nerabilities in Fabric: rich queries, pseudorandom
number generators, and global variables. Smart
contracts containing these vulnerabilities were de-
ployed on a test network, and the vulnerable con-
tract features were exploited and explained. The
study provides an estimation of each vulnerability’s
impact severity, and possible countermeasures to
lower it were explored and evaluated. This study
found that the proposed countermeasures can at
least mitigate the impact severity of all three vul-
nerabilities. Additionally, the study provides an
overview of compatible analysis tools. The avail-
able tools were found to be lacking, however, as
most of them do not exist outside of research pa-
pers. Overall, static code analysis tools were found
to be effective at detecting all three vulnerabilities.

1 Introduction
Nakamoto conceptualized the use of blockchain technology
for financial transactions, commonly known as blockchain
1.0, in the Bitcoin whitepaper in 2008 [1]. By using a peer-
to-peer network, online payment systems could be based on
cryptographic proof rather than relying on a trusted third
party to handle and verify transactions. Although the concept
of blockchain goes as far back as 1991 [2], Bitcoin became
the first successful proof-of-concept of the practical uses of
blockchain technology and laid the foundations for the var-
ious platforms that would proceed it. One such platform is
Ethereum, which extended blockchain 1.0 with smart con-
tract technology [3]. The addition of smart contracts resulted
in blockchain 2.0, which significantly broadened the potential
use cases of blockchain technology [4, 5].

Smart contracts allow using blockchains for applications
other than financial transactions; they are self-enforcing
and event-driven programs stored on the blockchain that

can interact with the ledger and invoke transactions [6, 7].
The transparent and immutable properties of smart contracts
make them a promising technology in a wide variety of appli-
cations ranging from automated insurance, voting systems,
secure health record storage, and more [7–9]. However,
smart contracts could also result in negative consequences
if not used carefully, such as millions in financial loss due
to exploits like the Ethereum DAO hack [10]. The high
security requirements associated with smart contracts hinder
the widespread adoption of the technology in most viable
applications [6]. It is therefore important to understand what
the potential security vulnerabilities are, what the impact
severity would be if a malicious actor were to exploit them,
and how to mitigate exploitation.

Related research. Extensive research into various secu-
rity and privacy issues surrounding smart contracts is avail-
able and has resulted in numerous frameworks and tools to
evaluate and validate the security of smart contracts. [11]
provides a categorization of vulnerabilities in Ethereum smart
contracts, including example code of attacks that exploit
them. The study does not discuss possible countermeasures
for each attack but highlights that smart contract verification
tools can detect most of the identified vulnerabilities. [6] pro-
vides a thorough survey of smart contracts, including reported
vulnerabilities and analysis of design schemes and tooling
that can prevent them. However, the majority of vulnera-
bilities and tools are heavily focused on Ethereum, although
the survey briefly mentions other platforms like Hyperledger
Fabric.

Although Fabric is a well-known and popular framework
[12], there is significantly less research on attacks exploiting
vulnerabilities in Fabric smart contracts [13]. Yamashita et al.
[14] discussed several security risks in Fabric smart contracts
attributed to the Go programming language. However, it is
unclear how severe these vulnerabilities are and what poten-
tial exploits exist. Countermeasures besides analysis tools are
also not discussed. Several hypothetical attacks on Fabric are
described in [15], however, there are no concrete examples
of the attacks. Both [16] and [17] expand upon the vulner-
abilities found in [14] with vulnerabilities related to the net-
work and external resources. [16] categorizes several Fabric
vulnerabilities and countermeasures, but the smart contract-
related countermeasures are only briefly mentioned. Besides
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the smart contract-specific vulnerabilities mentioned in [14],
there seem to be more vulnerabilities related to various net-
work and consensus configurations; this is likely due to both
the network and consensus protocol being highly customiz-
able.

Motivation. Despite the various studies describing Fabric
smart contract vulnerabilities, concrete implementations
of these vulnerabilities and their exploitations are lacking.
Moreover, countermeasures besides analysis tools are rarely
mentioned and often not explored in detail. Unlike Ethereum,
Fabric focuses on the use of blockchain 2.0 in a trusted en-
terprise setting; example use cases include supply chain
tracking and asset transfers between known organizations
rather than transactions between anonymous users [18].
Because Fabric has different applications than Ethereum, it
also has different security needs. Hence, vulnerabilities and
exploits in Ethereum likely do not directly apply to Fabric,
and more detailed studies into Fabric-specific smart contract
vulnerabilities are needed.

Contribution. This paper aims to address the aforemen-
tioned gap in research by focusing on a few reported vul-
nerabilities and providing examples of their implementation
and possible exploitation. It may be unrealistic to completely
avoid a vulnerability in some applications; therefore, this pa-
per will provide countermeasures besides analysis tools that
can eliminate or reduce the vulnerability’s impact severity.

The main question this study aims to answer is as follows:

Q: What are a few security vulnerabilities in Hyperledger
Fabric smart contracts, and what are their countermea-
sures?

To expand on this question, three subquestions are proposed:

Q1: How can these vulnerabilities be exploited?

Q2: What is the impact severity of these exploitations?

Q3: How do the countermeasures affect the impact severity?

Structure. This paper is organized into six sections. Sec-
tion 2 provides an explanation of Fabric’s architecture and
transaction flow. Section 3 covers the research and imple-
mentation methodology. Section 4 presents the results of the
research. Section 5 considers the reproducibility and ethical
implications of the work presented in this study. Finally, sec-
tion 6 concludes this study by answering the research ques-
tions and proposes areas of future work.

2 Background
The following section presents the necessary technical knowl-
edge needed to understand the technical aspects of this paper.
Section 2.1 provides an overview of Fabric’s architecture and
introduces important terms. The transaction flow is explained
in more detail in section 2.2.

2.1 Architectural overview
Fabric uses smart contract technology to invoke transactions,
and distributed ledger technology to store them [18]. Trans-
actions are events acting upon objects, or assets, stored on the
ledger [19]. Assets may be implemented as structs in Go, see

appendix A for an example. There are two types of transac-
tions: query and update transactions. Only update transac-
tions can modify, delete or add assets to the ledger.

The ledger and the world state
The ledger is an append-only, transparent record of all trans-
actions on the network. It consists of several ordered blocks
containing a subset of transactions. A unique hash identi-
fies each block, and the block refers back to the hash of its
predecessor. The ledger is therefore also referred to as the
”blockchain” [19]. All peers keep a distributed copy of the
ledger. Smart contracts allow controlled interactions with the
ledger and are also stored on the peers [20]; they are arbi-
trary programs that implement the Fabric Contract API in-
terface [21]. Smart contracts are packaged into chaincode,
but these terms are used interchangeably. In addition to the
ledger, every peer maintains a state database representing the
world state.

The world state reflects the current state of the ledger; it
contains the latest values of the assets stored on the ledger
for fast retrieval. Fabric currently supports two storage solu-
tions for the world state: LevelDB and CouchDB. LevelDB
is the default database used by the test network and is a fast
key-value store that maps keys to binary data. LevelDB can-
not reason about the contents of the data, so it can only per-
form key-based queries [22]. CouchDB, on the other hand,
is a document-object store and stores assets as JSON docu-
ments. This allows CouchDB to perform content-based, or
rich, queries. CouchDB is therefore well-suited for smart
contracts that require fast queries on specific properties [23].

Entity types
There are three main types of entities in the Fabric network:
clients, peers, and orderers [24]. These entities hold key roles
in the transaction flow. Clients are applications that request
transactions on behalf of the end-user. Peers endorse trans-
action requests and validate transactions received by the or-
derer. Orderers package endorsed transactions into blocks
and broadcast the blocks on the network. Multiple orderers
form an ordering service following the RAFT consensus pro-
tocol; the test network in this study has only one orderer, so
this aspect of consensus will not be covered. The other aspect
is the endorsement policy, which is explained in section 2.2.
See figure 1 for an overview of the test network.

In addition to the three main entity types, there are also cer-
tificate authorities (CA) and membership service providers
(MSP). These two components make Fabric a permissioned
network: Every entity has an identity issued by a CA, while
the MSPs govern the permission rules of the network based
on these identities. As Fabric was designed with enterprise
applications in mind, every network entity belongs to an orga-
nization; every organization provides their own CA and MSP
to verify the identities of their entities.

Privacy
Fabric adds a layer of privacy through the use of chan-
nels. Channels partition the network into smaller, private
blockchains, each with its own ledger accessible only to the
entities in that channel. In addition to channels, there are pri-
vate data collections that allow storing (partial) assets in a
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separate data storage that only specific peers can access [25].
Private data collections work on the same principle as chan-
nels and are used when creating a new channel would result
in unnecessary overhead; e.g., when a subset of channel or-
ganizations should be privy to a subset of the data.

Figure 1: A simplified diagram of the test network showing the most
important components. Clients connect to peers of different organi-
zations through the channel. Every peer holds a copy of the chan-
nel’s ledger and uses smart contracts to interact with it.

2.2 Execute-order-validate transaction flow

Fabric was the first blockchain framework to utilize smart
contracts written in general-purpose languages, as opposed
to domain-specific languages (DSLs) like Solidity [26]. Re-
gardless of the blockchain 2.0 framework that is used, smart
contracts are executed by multiple nodes with the same in-
put expecting the same output. In other words, smart con-
tracts need to be deterministic. DSLs ensure determinism by
simply avoiding non-deterministic language features. Fab-
ric instead applies a novel execute-order-validate approach to
the transaction flow (compared to order-execute in Ethereum)
[18]; non-deterministic smart contract invocations will fail
in the execute phase. Note that although the flow is called
the ”transaction flow”, it only applies to update transactions.
Query transactions instead go directly between client and
peer [27]. The whole flow is described below and illustrated
in figure 2.

Execute phase
1. The client sends a transaction proposal to (a subset of)

the endorsing peers.

2. The endorsing peers simulate the transaction. Every peer
returns their endorsement together with a readset and a
writeset containing the results of the simulation. The
writeset contains asset modifications, while the readset
contains the asset values that were read and their version
numbers [26].

3. The client collects the endorsements and checks that all
read- and writesets match. The endorsement policy spec-
ifies a subset of peers that need to agree on the transac-
tion’s read- and writesets.

Order phase
1. The client sends the transaction to the orderer once the

endorsement policy is fulfilled.

2. The orderer decides on the order of transactions, groups
them into blocks and broadcasts the blocks to the peers.

Validate phase
1. The peers check the endorsement policy, and verify that

the version numbers in the readset equal the version
numbers in their world state.

2. The peers apply the changes in the writeset to their world
state, and append the block to their copy of the ledger.

Figure 2: Sequence diagram showing the execute-order-validate
transaction (tx) flow, based on [26, figure 4] and modified to repre-
sent the test network.

3 Methodology
There are two main aspects to this study: researching existing
vulnerabilities, attacks and countermeasures; and implemen-
tation to reproduce the identified vulnerabilities and attacks.
This section will go over the methodology for both of these
aspects.

3.1 Literature research
To find literature reporting on smart contract vulnerabilities
in Fabric, Google Scholar was used with the following
query terms: (("Hyperledger Fabric" AND "smart
contract") OR chaincode) AND (vulnerabilit* OR
attack*).

The latest major version, Hyperledger Fabric v2, was re-
leased in January 2020. Therefore, only results from 2020
onwards were initially considered to ensure that the vulner-
abilities, attacks or countermeasures discussed in the litera-
ture are still relevant. Due to the lack of research on this
topic, however, the time window for relevant literature was
expanded to 2019. In addition to the query terms, the snow-
ball and citation searching methods [28] were used to find
related literature not captured by the initial search query.

A subset of the reported smart contract vulnerabilities was
chosen based on their perceived implementation feasibility as
well as the method of exploitation. This selection procedure
allowed avoiding vulnerabilities with similar methods of ex-
ploitation and mitigation to cover a broader spectrum of vul-
nerabilities and countermeasures within a limited time frame.

3



3.2 Implementation
Contract deployment. The chosen vulnerabilities were
studied and subsequently implemented in smart contracts
deployed on a local Hyperledger Fabric (v2.2.3) test net-
work. The test network was installed and set up using
Docker (v20.10.6) following the official tutorial [29], con-
sisting of a single channel, two organizations with one peer
each, and one orderer. Interaction with the network was
done via the command-line interface (CLI) using the pro-
vided network.sh script and peer [30] binary. Contract
deployment was done using the ./network.sh deployCC
command. Unless stated otherwise, all contracts were de-
ployed with the default endorsement policy, i.e. all peers are
required to endorse transactions.

Fabric supports smart contracts written in several general-
purpose languages, and some vulnerabilities may depend on
the language used. To keep the results consistent, this paper
focuses on smart contracts written in Go (v1.16.3), which was
the language used in most of the literature reporting on vul-
nerabilities. The full code, including a setup and exploitation
guide, is available on Github 1.

Invoking transactions. The vulnerable smart contracts
were invoked to achieve unexpected behavior or output, ef-
fectively simulating an attack on the contract. To invoke
query transactions, the peer chaincode query command
was used. These transactions are only executed by the peer
whose address is stored in the CORE PEER ADDRESS envi-
ronment variable. Similarily, the peer chaincode invoke
command was used to invoke update transactions. After a
successful malicious invocation, the vulnerable features of
the contract that allowed the exploitation were identified, and
the impact severity was calculated following the Common
Vulnerability Scoring System (CVSS) [31]. Countermeasures
that target the vulnerable features were then explored, and it
was evaluated whether they could lower the impact severity.

4 Vulnerabilities
The vulnerabilities that were implemented and exploited are
presented in this section. Each vulnerability is illustrated by
code snippets, followed by a description of how the vulnera-
ble features are exploitable. Finally, there is a discussion on
possible countermeasures and whether they can solve the vul-
nerable features without introducing other problems. Tools
that detect the vulnerabilities are discussed in section 4.4, and
the vulnerabilities’ impact severity is analyzed in section 4.5.

4.1 Updates using rich queries
The ”updates using rich queries” vulnerability is also referred
to as ”range query risk” in some papers [14, 16, 32]. The
vulnerability was implemented in a smart contract based on
the ”asset-transfer-ledger-queries” contract provided with the
test network. The smart contract can perform rich queries
on assets stored in the ledger by using CouchDB as the state
database.

The seemingly innocuous ChangeColorByOwner function
seen in listing 1 introduces the vulnerability into the con-
tract. The color attribute is changed on line 10, and the asset

1https://github.com/CathrinePaulsen/rp-chaincode

is written back to the ledger on line 12. It is not checked
whether the asset obtained from CouchDB is consistent with
the latest committed ledger value (or readset), which is ex-
ploitable.

1 func (t *SimpleChaincode) ChangeColorByOwner(ctx, owner string,
color string) error {

2 queryString := fmt.Sprintf(`{
3 "selector":{"docType":"asset","owner":"%s"}}`, owner)
4
5 // Call wrapper method for getQueryResult()
6 result, _ := getQueryResultForQueryString(ctx, queryString)
7
8 // Change color of all assets and write back the change
9 for _, asset := range result {

10 asset.Color = color
11 assetBytes, _ := json.Marshal(asset)
12 ctx.GetStub().PutState(asset.ID, assetBytes)
13 }
14 return nil
15 }

Listing 1: ChangeColorByOwner changes the color of all assets
owned by owner to the specified color.

Exploit: Illegal value propagation
The default access controls provided with CouchDB are poor
[15]. If these are not changed, a malicious actor on the net-
work could access a peer’s CouchDB instance with little dif-
ficulty. The attacker could then directly modify and control
the world state perceived by that peer without invoking any
ledger transactions. Thus, it is difficult for the peer to know
whether its state has been changed since there is no record of
the changes [33].

Figure 3: The value has been modified from 300 to -1 through the
CouchDB GUI accessible on localhost:5984/ utils.

When combined with the vulnerability presented in listing
1, illegal changes made in the state database can propagate to
the ledger. For the propagation to succeed, the attacker must
modify the state database of a sufficient number of endorsing
peers to pass consensus; to simplify implementation, the vul-
nerable contract had only one endorsing peer. To reproduce
this exploit, the ledger was first initialized with assets. An
asset to exploit was then chosen, see figure 3. The original
value of this asset was modified from 300 to -1 in the peer’s
state database. Although the smart contract contains no func-
tions to modify the value attribute, invoking the vulnerable
ChangeColorByOwner function allows the illegal change to
propagate to the ledger. As a result, ChangeColorByOwner
not only changed the color of the asset, but it also inadver-
tently changed the value, see listing 2.

1 // 1. Query asset1
2 $ peer chaincode query ... -c '{"Args":["ReadAsset","asset1"]}'
3 -> [{"ID":"asset1","color":"blue","owner":"Tom",
4 "value":300}]
5
6 // 2. Change the value of asset1 to -1 in state database
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7
8 // 3. Change color of all assets owned by Tom
9 $ peer chaincode invoke ... -c

'{"Args":["ChangeColorByOwner","Tom","black"]}'
10 -> Chaincode invoke successful. result: status:200
11
12 // 4. ReadAsset verifies that the value of asset1 has changed on

the ledger
13 $ peer chaincode query ... -c '{"Args":["ReadAsset","asset1"]}'
14 -> [{"ID":"asset1","color":"black","owner":"Tom",
15 "value":-1}]

Listing 2: Step-by-step results of the illegal value propagation
exploit.

Countermeasures
Literature discussing the vulnerability suggest rich query
methods like GetQueryResult only be used for query trans-
actions [14, 32], including Fabric’s own documentation [22],
because the query results are not verified in the validate phase.
Besides avoiding rich queries within update transactions alto-
gether, the following design pattern can be adopted:

1. Use rich query to retrieve the appropriate keys from the
state database.

2. Use a safe key-based query (e.g. GetState) to retrieve
the latest committed values from the ledger.

See listing 3 for an implementation of this pattern. This pat-
tern was based on community discussions on the Hyperledger
Fabric forums [34]. Redoing the steps in listing 2 with the
safer update function could not reproduce the illegal value
change, so the design pattern is indeed effective at preventing
this exploit.

1 func (t *SimpleChaincode) ChangeColorByOwnerFIXED(ctx, owner
string, color string) error {

2 queryString := fmt.Sprintf(`{
3 "selector":{"docType":"asset","owner":"%s"}}`, owner)
4 // Call wrapper method for getQueryResult()
5 result, _ := getQueryResultForQueryString(ctx, queryString)
6
7 // Change color of all assets and write back the change
8 for _, asset := range result {
9 key := asset.ID

10 // Safe key-based query
11 assetBytes, _ := ctx.GetStub().GetState(key)
12 json.Unmarshal(assetBytes, asset)
13 asset.Color = color
14 assetBytes, _ := json.Marshal(asset)
15 ctx.GetStub().PutState(asset.ID, assetBytes)
16 }
17 return nil
18 }

Listing 3: Safer implementation of the ChangeColorByOwner
function following the proposed design pattern.

However, it is important to note that even though the val-
ues are retrieved from the ledger, the keys are still retrieved
from the rich query result. If an attacker can modify the
state database, he can also control the outcome of the rich
query. Although no illegal value changes are propagated, the
attacker could exclude or include specific assets in the query
results. While a simple if-statement can be added to the smart
contract to check if an asset passes the query, it is much more
difficult to check if certain assets have been excluded without
doing an additional iteration over all assets. However, this

defeats the purpose of using rich queries as it significantly
impacts performance. Instead, adopting a stronger endorse-
ment policy and more secure access controls could alleviate
this problem, but these changes are not related to the smart
contract itself.

4.2 Pseudorandom number generator
A secure random number generator (RNG) should be un-
predictable [35], whereas the outcome of invoking a smart
contract must be deterministic. These conflicting properties
make implementing secure RNGs in smart contracts a chal-
lenging problem [36]. A truly unpredictable RNG generates
a new random number every time it is called. As a result,
unpredictable RNG cannot be used in smart contracts; ev-
ery endorsing peer will calculate a different random number
and the contract will be non-deterministic. To prevent non-
determinism, the outcome of the RNG must be predictable
across all peers, for example by using a pseudorandom num-
ber generator (PRNG). However, this makes the contract vul-
nerable to exploitation.

PRNGs generate number sequences by following a deter-
ministic algorithm: Given the same input, or seed, the se-
quence output by the PRNG is the same every time it is run
[37]. Since all peers need access to the same seed, it must be
available on the blockchain. However, then it is also available
to a potential attacker. If an attacker knows the seed used by
the PRNG, he can predict the outcome and exploit the con-
tract.

This PRNG vulnerability was implemented into a simple
lottery smart contract, see listing 4. The smart contract gen-
erates a random number using the math/rand PRNG seeded
with the transaction timestamp on line 5, which is the vulner-
able feature of this contract. The number is hashed and stored
on the ledger for future reference. The participants can then
invoke the contract to try and guess the random number to
win the lottery.

1 func (s *SmartContract) generateNewWin(ctx) error {
2 // Generate and hash random number
3 timestamp, _ := ctx.GetStub().GetTxTimestamp()
4 rand.Seed(timestamp.GetSeconds())
5 randomNumber := rand.Int()
6 hashedRandomNumber := ...
7 // Create and store new winning number
8 asset := Asset{
9 ID: "current_win",

10 Number: hashedRandomNumber,
11 Won: false,
12 }
13 assetBytes, _ := json.Marshal(asset)
14 ctx.GetStub().PutState(asset.ID, assetBytes)
15 return nil
16 }

Listing 4: Function used by the vulnerable lottery contract to
generate the new winning number using a PRNG.

Exploit: Predicting the outcome
Both the transaction timestamp and the smart contract are
available to everyone on the channel. A malicious participant
is therefore able to re-calculate the random number and pre-
dict the lottery with the information available on the ledger.
To reproduce this scenario, the ledger was inspected using
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Hyperledger Explorer (v1.1.5), see figure 4. This can also be
done via the CLI, but it may be difficult to navigate to the
relevant information. Although the winning number itself is
hidden, the timestamp used to calculate the number is plainly
visible. The attacker can then use the same PRNG method
to re-calculate the winning number and invoke the contract to
win the lottery.

Figure 4: Although the winning number is hidden, inspecting the
ledger reveals the transaction timestamp used to generate it.

Countermeasures
Because randomness on blockchains is its own complex re-
search topic, this section will only present a few of the main
ideas used for blockchain RNG.

Passing seed as input. Transient data is not recorded
on the ledger, so passing the seed as transient input data al-
lows using a PRNG while keeping the seed secret from the
blockchain [25]. However, this only moves the security is-
sue from the smart contract to the invoking client as the client
becomes a single point of failure. If the client does not gener-
ate and store the seed securely or becomes compromised, the
smart contract is also compromised.

Centralized oracles. Calculating the random number off-
chain by a centralized oracle using a high entropy function is
another option. The smart contract can then request the ran-
dom number from the oracle. The oracle is not restricted by
the same non-deterministic constraints as the smart contract,
and can therefore generate truly random numbers. Possible
external oracles compatible with Fabric include Provable and
Gardener. The downside to this solution is that control over
the random number calculation is lost, and the solution relies
on the third-party oracle being trusted and secure since it can
fully control the outcome of the RNG. This defeats some of
the purpose of using smart contracts since blockchain tech-
nology was created partly to avoid relying on (centralized)
trusted third-parties [38]. As with the previous countermea-
sure, if the oracle is compromised, then so is the smart con-
tract.

Decentralized oracles. Distributed RNGs (or decen-
tralized oracles) like RANDAO, Bitcoin Beacon [35] or the
commit-reveal design scheme [39] address the compromised
oracle problem above. Random numbers are generated based
on random input from several participants. The input is then
combined in some deterministic way to create the final ran-
dom number. The advantage of this approach is that although
all participants can influence the outcome, no single partici-
pant can fully control it. While RANDAO and the commit-
reveal scheme are implemented in Ethereum context, the un-
derlying ideas could still be implemented in Fabric smart con-
tracts. For example, every endorsing peer of the RNG con-

tract can use a high entropy function to generate a random
number stored in private data. Endorsing peers of the lottery
contract can then retrieve and combine the numbers to create
the winning lottery number. The issues related to RANDAO
and the commit-reveal scheme due to incentivization [39] and
anonymity in Ethereum are not present in Fabric since all par-
ticipants are known and there is no native currency or concept
of gas.

4.3 Global variables
Global variables are easy to implement and their global scope
can be useful; they can be accessed from any function or used
to keep track of some global state. However, they become
problematic when used in smart contracts and are a com-
monly reported source of non-determinism [13, 14, 16, 32].
A malicious actor can exploit global variables to make the
contract non-deterministic or behave unexpectedly.

See listing 5 for the implementation of the vulnerability.
The global variable totalAssets keeps track of the number
of assets added by the function CreateAsset. This variable
is then used to calculate the value of the asset. Finally, the
asset is added to the ledger if it does not already exist.

1 var totalAssets = 0 // Global variable
2 func (s *SmartContract) CreateAsset(ctx, id string, owner string)

error {
3 totalAssets++
4 asset := Asset{
5 ID: id,
6 Owner: owner,
7 Value: totalAssets / maxAssets * 100,
8 }
9 assetJSON, _ := json.Marshal(asset)

10 if exists, _ := s.AssetExists(ctx, id); exists {
11 return fmt.Errorf("asset already exists with id: %v", id)
12 } else {
13 return ctx.GetStub().PutState(asset.ID, assetJSON)
14 }
15 }

Listing 5: The totalAssets variable is updated every time an asset
is created by CreateAsset. The value of an asset is based on this
variable.

Exploit: Causing non-determinism
As explained in section 2, it is the client’s responsibility to
send the invocation requests to the peers; the client is not re-
quired to send the request to all peers. This fact was exploited
to make the contract non-deterministic, see listing 6.

First, the client sends a transaction proposal to invoke the
CreateAsset function to only one peer. Since the endorse-
ment policy requires the endorsement of all peers, the trans-
action fails with an endorsement policy error. Although the
transaction was rejected, the values stored in the global vari-
ables are now different across the peers. The peer that re-
ceived the transaction proposal has updated its global vari-
ables, causing the contract to be non-deterministic. All future
update transactions will fail to pass consensus and the mali-
cious caller has successfully put the contract out of service.

1 // 1. Invoke update transaction on only one peer
2 $ peer chaincode invoke <peerA> -c

'{"Args":["CreateAsset","4","Alice"]}'
3 $ docker logs -f <peerA>
4 -> err validation of endorsement policy

6



5
6 // 2. Invoke update transaction on all peers
7 $ peer chaincode invoke ... -c

'{"Args":["CreateAsset","4","Alice"]}'
8 -> Error: could not assemble transaction

Listing 6: Step-by-step results of the non-determinism exploit. The
first invocation is only sent to one peer, which causes all subsequent
invocations to fail.

Exploit: Causing unexpected behavior
The values stored in global variables persist across transac-
tions, and there is no distinction between valid and invalid
transactions. Any changes made in an invalid transaction are
persisted in the global variable, which can be exploited to
make the contract behave unexpectedly as shown in listing 7.

The malicious caller sends a transaction proposal to all
peers to create an asset with an id that already exists.
This transaction fails and returns an error. However, the
totalAssets global variable was changed before exiting the
CreateAsset function, and this new value will persist to the
next invocation. The caller can then send another transaction
proposal, this time with a valid id. As can be seen in the out-
put of the query, the value is 400 instead of 300. Thus, the
malicious caller has successfully corrupted the next transac-
tion, causing the contract to behave unexpectedly.

1 // 1. Query ledger after initialization
2 $ peer chaincode query ... -c '{"Args":["GetAllAssets"]}'
3 ->[{"ID":"1","owner":"Tomoko","value":100},
4 {"ID":"2","owner":"Brad","value":200},
5
6 // 2. Invoke invalid transaction
7 $ peer chaincode invoke ... -c

'{"function":"CreateAsset","Args":["1","Alice"]}'
8 -> Error: asset already exists with id: 1
9

10 // 3. Invoke valid transaction and query the result
11 $ peer chaincode invoke ... -c

'{"function":"CreateAsset","Args":["3","Alice"]}'
12 $ peer chaincode query ... -c '{"Args":["GetAllAssets"]}'
13 ->[{"ID":"1","owner":"Tomoko","value":100},
14 {"ID":"2","owner":"Brad","value":200},
15 {"ID":"3","owner":"Alice","value":400}]

Listing 7: Step-by-step results of the unexpected behavior exploit.
A rejected transaction caused the next accepted transaction to have
a higher value than expected.

Countermeasures
In the unexpected behavior example, the solution is obvi-
ous: The exploit can be prevented by adding proper error-
handling to ensure that the global variable is only modified
in valid transactions. However, in more involved smart con-
tracts, it is easy to lose track of when and where the global
variable was last modified. This makes preventing unex-
pected behavior due to global variables increasingly difficult.

While proper error-handling can prevent global variables
from causing unexpected behavior, the non-deterministic is-
sue cannot be fixed without completely avoiding them. Un-
like the previous vulnerabilities described in sections 4.1 and
4.2, safer alternatives can easily replace global variables. For
example, state database queries can replace global variables
used to persists values across transactions to minimize per-
formance loss. Global variables can still be used to share

variables across function calls, but they must be properly re-
set and initialized on every transaction; a safer option is to
use the function parameters to pass local variables between
functions.

4.4 Analysis tools
To apply the suggested countermeasures to the discussed vul-
nerabilities, a developer would first need to know whether the
vulnerability is present. While an alert developer may detect
these vulnerabilities during development, they can be easy to
miss. Automated tooling should therefore be used to detect
vulnerabilities the developer did not catch. This section will
discuss the various tools applicable to Fabric smart contracts.

Compared to Ethereum, this study found few analysis tools
compatible with Fabric smart contracts. In total, four static
code analysis tools (ReviveCC, Chaincode Scanner, Chain-
code Analyzer [14] and Lv et al. [32]) and two formal veri-
fication tools (Zeus [40] and Beckert et al. [41]) were found.
Only two of the six tools were open-source, ReviveCC and
Chaincode Analyzer. Of these two, this study only managed
to run ReviveCC. Chaincode Analyzer was last updated in
February 2020 and is likely currently incompatible with the
newer Fabric versions.

According to the literature reviewed on the static code anal-
ysis tools, all of them except ReviveCC can detect all three
vulnerabilities, see table 1. However, only the claims of Re-
viveCC could be verified. Furthermore, it is unclear whether
Chaincode Scanner can detect the rich queries vulnerability;
it can according to [14], but not according to the ReviveCC
repository.

Both formal verification tools are working prototypes, but
no source code or product was available, nor were any other
papers or applications using them found. They also cannot
verify contract behavior as a result of multiple invocations
[40,41]. Hence, it is unclear whether they can prevent the dis-
cussed vulnerabilities since the exploits do not occur within a
single transaction.

Table 1: Overview of static analysis tools compatible with Hyper-
ledger Fabric smart contracts and which of the three vulnerabilities
they are able to detect. Entries marked with * are verified.

Global PRNG Rich Open
variables queries source

ReviveCC yes* yes* no* yes
Chaincode Scanner yes yes yes no
Chaincode Analyzer yes yes - yes
Lv et al. yes yes yes no

4.5 Impact severity
The following section discusses and compares the vulnera-
bilities’ impact severities, and how well the proposed coun-
termeasures are able to lower them. This study uses impact
severity to measure the impact the exploitation of a vulner-
ability would have on the blockchain. The impact severity
is derived from the base CVSS score for each vulnerability
and is listed in table 2. These scores are not official numbers,
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but rather estimations made for this study indicate the impact
severity of the vulnerabilities.

The base score is calculated by considering different as-
pects of the vulnerability distributed over two categories:
ease of exploitation and impact. The ease of exploitation is
reflected by the following metrics: attack vector, attack com-
plexity, privileges required, user interaction and scope. Only
the first two are relevant for the comparisons in this section.
The impact is expressed through confidentiality (leaking sen-
sitive data), integrity (illegal modifications) and availability.
The exact definitions of these metrics are explained in [31].

Table 2: The base CVSS scores of the three vulnerabilities explored
in this study. The base score translates into an impact severity of
low, medium or high.

Global PRNG Rich
variables queries

Base score 8.2 4.3-6.5 5.3
Impact severity high medium medium

Attack vector network network adjacent
Attack complexity low low high
Privileges required low low none
User interaction none none none
Scope unchanged unchanged unchanged

Confidentiality none low-high none
Integrity low none high
Availability high none none

Although global variables are perhaps the simplest to both
introduce and avoid out of the three vulnerabilities, it also
has the highest impact severity. This is largely due to the
high ease of exploitation, and the exploits affecting both the
integrity and availability of the contract. Comparatively, both
the PRNG and rich query exploits only affect one of the im-
pact metrics: confidentiality and integrity, respectively. The
rich queries vulnerability can severely impact the integrity of
a contract, however the overall impact severity is lower than
the global variables because the attack complexity is much
higher. The PRNG vulnerability has the same ease of ex-
ploitation as the global variables, but it only affects the con-
tract’s confidentiality. The impact on confidentiality also de-
pends on the specific contract and how sensitive the random
numbers are. In the case of a lottery application, for example,
the impact on confidentiality will be high.

Countermeasures. For the global variables vulnerabil-
ity, only the unexpected behavior exploit can be prevented by
implementing proper error-handling. Although this counter-
measure would lower the overall impact severity by eliminat-
ing the impact on integrity, the impact on availability remains
high since the non-deterministic exploit cannot be removed.
Because the impact severity cannot be lowered to an accept-
able level, global variables should always be avoided.

A two-step design pattern was proposed as a countermea-
sure for the rich query vulnerability. This countermeasure
would lower the impact severity by lowering the impact on
integrity. Although the risk to integrity is not removed, the
attacker can no longer control the outcome of the exploit.

Because the attack complexity of the exploit is so high, the
remaining impact severity is relatively low.

All of the proposed countermeasures for the PRNG vulner-
ability involve moving the random number generation outside
of the contract: either into a centralized or decentralized ora-
cle, or by passing the seed as input. Unfortunately, the latter
countermeasure has the same issue as the centralized oracle:
The impact severity of the exploit is then dependent on the
security of a single point of failure and is therefore hard to
estimate. It is, however, safe to assume that the general im-
pact severity goes down because the attack complexity goes
up; originally, any user with access to the blockchain could
exploit the vulnerability.

5 Responsible Research
Both the ethical aspects and the reproducibility of the re-
search methods were taken into consideration during the re-
search for this paper. This section will discuss those aspects
to ensure that the ethical impact of the paper poses no signif-
icant risks to individuals or society as a whole, and that the
results are reproducible for future research.

5.1 Ethical aspects
The purpose of this study is solely to report on known exploits
and vulnerabilities to facilitate secure smart contract devel-
opment. The author of this paper has no personal affiliations
with or stake in any blockchain or smart contract technology
that could result in a conflict of interest. Furthermore, the vul-
nerabilities were implemented in smart contracts deployed in
a private, local test environment. Therefore, no exploitation
was done with real-world implications or interference with
existing systems. This study also did not make use of any
personal data, and no human test subjects were involved in
any way.

The paper provides code snippets and descriptions of vul-
nerabilities and their exploitations to increase the repro-
ducibility of the research; however, this information could
potentially be used by a malicious actor to attempt exploita-
tion of similar vulnerabilities in real-world systems or work
around known countermeasures. Nevertheless, the vulnera-
bilities, exploits and countermeasures described in this study
are already known and reported in other literature. A deter-
mined attacker could therefore find similar information else-
where; hence, this study poses minimal additional risk to indi-
viduals or systems affected by similar technology. In fact, this
survey could help smart contract developers become aware of
how their systems can be made less vulnerable to exploita-
tion.

5.2 Reproducibility
To ensure that the results of this research is reproducible for
future experiments and research, code snippets of relevant
code sections are included to show the relevant aspects of
each vulnerability and exploit. The snippets are relatively
small and specific, making them straightforward to imple-
ment in terms of software engineering. With basic knowledge
of the Hyperledger Fabric platform and Go language, these
code snippets can in theory be introduced into any compati-
ble contract. Some superfluous code such as error handling
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has been left out of the snippets for brevity, but the full code
is available on Github 2. The countermeasures may be more
difficult to reproduce since they are mostly theoretical sug-
gestions and not all of them are fully implemented in this
research. However, the countermeasures are based on exist-
ing implementations and research, which can be verified by
checking the cited sources.

6 Conclusions and future work
This study managed to find and reproduce three security
vulnerabilities in Hyperledger Fabric-based smart contracts:
global variables, updates using rich queries and pseudoran-
dom number generators. A number of countermeasures were
explored and proposed for each vulnerability. The unex-
pected behavior exploit of global variables can be mitigated
by proper error-handling, but this countermeasure does not
scale well for larger and more complex contracts. The non-
determinism exploit cannot be prevented by the smart con-
tract. It is therefore better to avoid global variables altogether
by replacing them with other suitable alternatives. Luckily,
global variables are relatively easy to replace. The rich query
and PRNG vulnerabilities, on the other hand, provide func-
tionality that is difficult to replace. The proposed counter-
measures can effectively reduce the impact severity, but there
is still some risk involved. For the rich queries vulnerability,
the risk can be removed but at the cost of significant loss of
performance. A developer should therefore carefully consider
whether the risk is acceptable for their use case and whether
the functionality is necessary for the correct functioning of
the contract.

To implement countermeasures for a vulnerability, the de-
veloper first needs to be aware of the vulnerability. It is
therefore recommended to always use some kind of analysis
tool during development. For these particular vulnerabilities,
static code analysis tools work well. Although few available
tools were found, more general tools like Revive are highly
customizable and a developer could create their own custom
rules to warn against global variables, rich query methods and
PRNGs relatively easily.

Future work. First, only a small subset of vulnerabilities
could be explored due to time constraints. Future work could
continue exploring other vulnerabilities in similar detail. Sec-
ond, for the blockchain RNG problem, verifiable random
functions (VRF) like Chainlink are available for Ethereum.
Future work could explore how VRF can be used in Fabric.
Third, because Fabric is a permissioned blockchain, it is un-
clear how likely the exploits presented in this study are to
occur in practice. Future work could therefore investigate the
exploits in a more realistic setting. Finally, there are currently
few open-source analysis tools applicable for Fabric smart
contracts, so future work on developing open-source analy-
sis tools would greatly benefit the developer community.
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A Asset example

1 type Asset struct {
2 ID string
3 Color string
4 Owner string
5 Value int
6 }

Listing 8: The asset used by the smart contracts implementing the
rich query and global variables vulnerabilities.
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