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Introduction

In the world of machine learning and deep learning, one factor plays a decisive role in distinguishing
between successful models and wasted effort: the dataset used for training and testing. As deep learn-
ing models have become increasingly complex over the years, with rapidly growing numbers of nodes
and weights, there has been an accompanying demand for ever larger and more diverse datasets. The
introduction of large-scale models such as OpenAl’s ChatGPT [21] and DeepSeek’s Large Language
Model (LLM) [7] exemplifies this trend.

In the case of Artificial Neural Networks (ANNs), a commonly cited heuristic is that the amount of data
required should be at least 50 times greater than the number of adjustable parameters in the model [3].
Obtaining such vast amounts of data can be both costly and time-consuming. Depending on the specific
application, datasets may need to be purchased, collected using specialized hardware, or generated
through controlled experiments. Furthermore, when time-sensitive or domain-specific data is required,
the collection process becomes even more challenging.

1.1. Intrusion Detection Systems (IDS)

Network Intrusion Detection Systems are designed to monitor network traffic and identify anomalous
or malicious activity. Their primary goal is to detect and alert on traffic patterns that deviate from estab-
lished definitions of normal behaviour. Broadly, IDS approaches can be divided into two categories:

* Rule-based Intrusion Detection, where incoming traffic is evaluated against a predefined set of
signatures or rules [17];

* Deep Learning-based Intrusion Detection, where anomalies are identified through models
trained on large datasets of network behaviour [18].

1.2. Data Challenges in Deep Learning-based IDS

Deep learning-based IDS models, while powerful, are highly dependent on the quality and diversity of
the datasets they are trained on [37]. In cybersecurity, obtaining representative and up-to-date labelled
data is particularly difficult due to privacy constraints, the dynamic nature of network environments, and
the scarcity of publicly available datasets. Well-known benchmarks such as NSL-KDD and CICIDS2017
are frequently reused, but they may not reflect current attack trends or traffic distributions [39]. The
consequence of this, is that more recently developed methods to intrude a network could bypass the
IDS that were trained with these older datasets. Or, with the technology behind this constantly being
updated, it could yield more false negatives. What means that perfectly fine network traffic would be
labelled as anomalous.

As aresult, researchers are increasingly exploring the use of Al-generated network data to supplement
real datasets. Generative models, such as Generative Adversarial Networks (GANs) and diffusion-
based models, can create synthetic network traffic that mimics real-world distributions [1]. This ap-
proach offers advantages in data availability, cost, and privacy preservation.
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2 1. Introduction

However, questions remain about how reliably such data can be used to train intrusion detection mod-
els and whether it can generalize to real network conditions. Another approach could be the use of
LLMs or other transformer-based models for the generation of training data. Although it is currently
already being researched if LLMs could play an active role as a base for IDS [9], it appears that the
role of an LLM to act as data generator for training other deep learning-based IDS has not yet been
systematically investigated as of the day of this writing.

1.3. Problem Definition

While Al-generated network traffic provides a promising solution to data scarcity in cybersecurity re-
search, the reliability of such synthetic data, and its broader applicability across other data modalities,
remains largely unexplored. In order to increase the accuracy of IDS, it is sometimes useful to include
data belonging to the application of the system into the IDS [16]. Obtaining representative and high-
quality application layer datasets, however, poses additional challenges. These datasets are often
context specific, hardware dependent, and expensive to collect. In such cases, Al-generated data may
offer a powerful mechanism to augment or replicate measurements from real-world systems, reducing
costs and increasing dataset diversity. In order to use this way of collecting datasets properly however,
some topics need to be understood more thoroughly:

1. To what extent Al-generated data can supplement or replace real-world data (both network and
application-level) in training deep learning-based IDS models;

2. Whether synthetic data can accurately capture the temporal and contextual dependencies present
in real sensor measurements;

3. How the ratio of real-to-synthetic data affects model performance.

The central problem addressed in this thesis is therefore the uncertainty surrounding the reliability
and performance impact of Al-generated data, encompassing both network- and application-
level information, when used to train deep learning-based IDSs. This thesis aims to determine the
extent to which Al-generated samples can be used to complement or replace real-world data without
significantly reducing model performance.

To create this thorough understanding of these questions, this thesis will describe a set of experiments
where the performance of Deep Learning-based IDS will be evaluated compared to the datasets that
was fed into their training. Specifically the following steps will be taken to retrieve answers to the
previous sets of questions:

1. To start, one needs to look at Deep Learning-based IDSs in general and the role of the training
data that is being used:

(a) The baseline performance of Deep Learning-based IDS needs to be established with differ-
ent configurations;

(b) The accuracy of IDS trained with real Network Traffic Telemetry (NTT) data and with Appli-
cation Model (AM) data added is to be compared.

2. After establishing the optimal base configuration for the IDS, the data itself should be examined
more in depth and the ability of Generative Al to replicate this should be explored:
(a) What input should be given to Generative Al to realise a usable dataset;
(b) How does the generated data compare to a real dataset in terms of dataset statistics.
3. After obtaining both real- and generated datasets, these can be used to train and evaluate the
performance of IDS:
(a) A data subset should be extracted to evaluate the created models on accuracy;

(b) A set of models should be trained, each with a different ratio of real and generated data in
it’s training dataset and its accuracy evaluated.
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1.4. Thesis Outline

This thesis started with introducing the problem of datasets in training deep learning-based IDS. In
Chapter 2, relevant background information on IDS in general, deep learning-based IDS, the Long-
Short-Term Memory (LSTM) model and the Wasserstein distance (WD) will be described. In Chapter
3, a small application context for this thesis will be introduced, together with the architecture of a base-
line IDS. There will be an analysis performed on the recorded application- and NTT data, after which
artificially generated data will be introduced and analysed. Two baseline models will be trained to serve
as a benchmark for the experiments in Chapter 4. In this Chapter, two sets of experiments will be stated
and the experimental results will be demonstrated. In Chapter 5, the results will be discussed and ex-
planations will be provided, after which a conclusion is drawn. And last, the thesis will be summarised
and concluded in Chapter 6.






Background

The reliability and effectiveness of IDS depend not only on the sophistication of their algorithms but
also on the quality and representativeness of the data on which they are trained. In recent years, deep
learning models have increasingly been applied to IDS tasks, offering improved adaptability and the
ability to recognize complex temporal and statistical patterns in network and application traffic [18].
Despite these advances, such models remain constrained by one persistent limitation: the scarcity of
diverse and up-to-date datasets [39]. This limitation motivates the exploration of alternative data gen-
eration methods, including the use of artificial intelligence (Al) models capable of producing realistic
synthetic samples.

This chapter provides the conceptual and technical foundation necessary to understand the research
presented in this thesis. It begins by introducing the principles, architecture, and classification of IDS,
distinguishing between rule-based and data-driven approaches. The discussion then moves toward the
integration of deep learning techniques in IDS, summarizing the progress achieved and the challenges
that remain, particularly in relation to data availability and generalization. Subsequently, attention is
directed to neural network architectures relevant to this work, with a specific focus on LSTM-Recurrent
Neural Networks (RNNs). These models are especially suitable for analysing sequential and time-
dependent data, such as network flows or application-layer sensor readings, and form the basis of the
intrusion detection framework developed in this study. Afterwards, the chapter explores the emerging
potential of LLMs as generative tools for creating synthetic datasets. Last but not least, the chapter will
introduce the WD and discuss how this tool possibly can be used as an estimator for how much real
recorded data would still need to be used in combination with the LLM-generated data.

2.1.IDSs

IDSs play a central role in modern cybersecurity by continuously monitoring network activities to identify
anomalies that may indicate malicious or abnormal behaviour. Their purpose is to detect, and in some
cases respond to, unauthorized access, data exfiltration, or disruption attempts within digital infrastruc-
tures. IDSs are typically deployed at various layers of a system ranging from network gateways to end
hosts. There they form a great addition to existing defence mechanisms like firewalls and encryption
by recognising ongoing attacks or policy violations and reacting to this. IDS approaches can broadly
be classified into the two main categories mentioned in Section 1.1.

2.1.1. Rule-based IDS

Rule-based IDSs rely on predefined signatures, heuristics, or expert-defined rules that describe known
attack patterns. They operate similarly to antivirus software, comparing observed traffic or system
events against a set of rules that is built based on known threats. This approach is effective in de-
tecting well-understood and previously documented attacks but is limited by its inability to recognize
new or evolving threats that do not match existing patterns [19]. Examples of rule-based IDS include
widely used tools such as Snort and Suricata, which rely on continuously updated rule sets to maintain
detection accuracy.
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2.1.2. Anomaly-based IDS

Anomaly-based IDSs, in contrast, learn a model of what constitutes normal system or network be-
haviour and flags any significant deviations as potential intrusions. Early implementations of anomaly
detection relied on statistical models or traditional machine learning algorithms; more recently, deep
learning techniques have been introduced to improve their ability to model complex and high-dimensional
data [37]. This approach enables the detection of previously unseen attacks, including zero-day ex-
ploits, but it also introduces challenges such as higher false positive rates and the need for large,
representative training datasets. In practice, modern cybersecurity architectures often integrate both
rule-based and anomaly-based detection in a hybrid IDS configuration. Such systems leverage the pre-
cision of signature matching for known attacks while using anomaly detection to capture novel threats
and behavioural irregularities [39]. The following Section explores how deep learning methods have
been used to implement modern-day anomaly-based IDS.

2.1.3. Deep Learning-based IDS

Deep learning has revolutionized the field of intrusion detection by enabling models to automatically
extract hierarchical features from large, high-dimensional datasets. Unlike traditional machine learning
techniques, which rely heavily on manual feature engineering, deep learning architectures can capture
non-linear and temporal dependencies directly from raw network traffic or application data [11]. This
capability allows for more generalizable and adaptive IDSs that can identify complex or previously un-
seen attack patterns.

Several deep learning paradigms have been successfully applied to IDS research, including Deep Neu-
ral Networks (DNNs), Convolutional Neural Networks (CNNs), RNNs, and hybrid models that combine
multiple architectures. Ferrag et al. [11] provide an extensive comparative study of these approaches
across different datasets such as CSE-CIC-IDS2018 and Bot-loT, highlighting that deep discrimina-
tive models (e.g., RNNs, DNNs, CNNs) generally outperform traditional machine learning methods like
Support Vector Machines (SVMs) and Random Forests. However, they also emphasize the sensitivity
of these models to dataset characteristics, particularly class imbalance and representativeness, which
significantly affect their generalization to real-world network environments.

Recurrent architectures, especially LSTM) and Gated Recurrent Unit (GRU) networks, have shown no-
table promise due to their ability to model sequential and temporal dependencies in network traffic [38,
32]. These models maintain internal states that allow them to remember contextual information across
time steps, making them particularly suited for IDS tasks where attack behaviour unfolds over time.
This in contrast to Feed Forward only DNNs like CNNs that only feed the data foward to the next layer
and do not take into account previous inputs. Yin et al. [38] demonstrated that LSTM-based models
trained on the NSL-KDD dataset achieved higher accuracy and lower false positive rates than classical
RNNs, validating their effectiveness in capturing long-term temporal patterns. Similarly, Tang et al.
[32] showed that GRU-based models could achieve strong detection rates with reduced computational
complexity, highlighting their efficiency for real-time applications.

2.2. LSTM RNN

As is mentioned in Section 2.1.3, LSTM networks are very suitable to be used in anomaly detection
based IDS due to their ability to maintain an internal state based on previous inputs and therefore pro-
cess time dependant data in a more effective way.

LSTMs are a special category of RNNs. These have originally been created to mitigate an issue that
RNN'’s tempt to show when a long sequence of data, e.g. speech or weather models are being used
[14]. In general with RNNs, data is only fed back into the same node or perhaps a few nodes back.
However, when a long sequence of data is fed into the model, the influence of data entries from rel-
atively long ago (e.g. more than 10-20 steps back in time) is not being used any more due to the
vanishing gradient problem [14]. The LSTM addresses this issue by using a memory cell that keeps
track of older inputs and can be updated with fresh input. Gers et al. [12] added a so-called forget
gate to the LSTM that can reset the memory cell in order to keep training practical and the model agile
enough to adjust to shifts in data streams.



2.2. LSTM RNN 7

2.2.1. Inner Working of the LSTM Cell

LSTM cell

W = weigth mairix of size H x (H+d) |
b = constant
C, h = vector of size H (hidden ammount of nodes) ]
X = input vector with size n (ammount of features)
\ /
~ -

Figure 2.1: Schematic view of an LSTM cell. Short term memory is stored in the hidden nodes vector h; while longer term
memory is stored in vector C_t. The output is obtained by taking the vector h; and combining all the nodes into the desired
output shape.

The Long Short-Term Memory (LSTM) cell extends the conventional recurrent neuron by introducing
a dedicated internal memory cell C; and three multiplicative gates. These gates regulate the flow of
information into, within, and out of the cell, enabling the network to maintain, overwrite, or discard in-
formation selectively. This architecture allows the LSTM to preserve relevant temporal dependencies
across long sequences while mitigating the vanishing gradient problem inherent to classical RNNs [14].

As illustrated in Figure2.1, each LSTM cell operates on three primary inputs: The current input vector
X¢, (representing the input features at time step t), the previous hidden state h;_; (which carries short-
term contextual information from the previous step) and the previous cell state C;_; (which functions
as the long-term memory).

From these inputs, the LSTM computes three gating functions—each implemented using a sigmoid
activation—and a candidate cell update vector, computed using a hyperbolic tangent activation. These
components are defined as:

fe = o(Wy[he_q, x¢] + by) (Forget gate) (2.1)
i = o(Wi[h¢—q,x¢] + by) (Input gate) (2.2)
C, = tanh(W[he—q, x¢] + bc) (Candidate cell update) (2.3)

Here:

« Wr, W;, W, are the weight matrices corresponding to the forget, input, and candidate update gates
respectively,

* bg, b;, b are the associated bias terms,

* a(+) denotes the sigmoid activation function, which outputs values in the range (0, 1),
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» tanh(-) denotes the hyperbolic tangent activation, which outputs values in the range (-1, 1),

» The concatenation [h;_q, x;] represents the combination of the previous hidden state and the
current input.

The forget gate f; determines the proportion of the previous cell state C;_; that is retained, effectively
“forgetting” irrelevant information. The input gate i; controls how much new information from the can-
didate update C, is written into the memory. The new cell state C, is then computed as:

Ce=fOC1+iOC (2.4)

Where (O denotes element-wise multiplication. The first term in Equation 2.4 controls the persistence
of prior memory, while the second term introduces newly computed information. This additive update
mechanism, as opposed to purely multiplicative recurrence in standard RNNs, allows for a more stable
gradient flow through time, thereby enabling learning over long sequences. Next, the cell computes
the output gate and the updated hidden state:

o = o(W,[he_q,x¢] + by) (Output gate) (2.5)
hy = 0o © tanh(C;) (Updated hidden state) (2.6)

Where:
* W, and b, are the weight matrix and bias for the output gate,
» o, determines how much of the current cell state contributes to the output,

* h; is the updated hidden state that serves both as the immediate output and as input to the next
time step.

As shown by [12], the introduction of the forget gate enhances this architecture by enabling the cell to
explicitly reset or decay its memory, preventing uncontrolled accumulation of information and allowing
the network to adapt efficiently to non-stationary input sequences. This capability has made LSTMs
particularly powerful in tasks involving temporal dependencies, such as natural language modelling,
speech recognition, and time-series-based IDSs. A schematic overview of these interactions, including
the gate activations, cell state transitions, and hidden state outputs, is depicted in Figure 2.1. The
diagram directly corresponds to the mathematical formulation presented in Equations 2.1-2.6.

2.2.2. Training of LSTM Networks
Training an LSTM network follows the general principles of training RNNs, but with specific adaptations
to accommodate its gating mechanisms and cell state dynamics. The objective is to optimize the
trainable parameters

© = {Wy, W;, W¢, W, by, by, be, by}

such that the network minimizes a loss function L, typically defined over a sequence of predictions
compared to the true outputs. To train these parameters, the LSTM uses a variation of the Back Prop-
agation Through Time (BPTT) algorithm. In BPTT, the network is unfolded across time steps, creating
a feed-forward computational graph where each unfolded cell corresponds to one time step. The gra-
dients of the loss function with respect to the parameters are then computed by applying the chain rule
backward through this temporal structure.

The parameter updates are performed using gradient-based optimization methods such as Stochastic
Gradient Descent (SGD) or its variants (e.g., Adam or RMSprop):

oL
0-0-noc 2.7)

where 1 is the learning rate.
The key difference between standard RNNs and LSTMs lies in how gradients propagate through time.
In a traditional RNN, repeated multiplications by the recurrent weight matrix Wy, cause gradients to
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either diminish exponentially (vanishing gradient) or grow uncontrollably (exploding gradient) as se-
quence length increases [5]. This limits the ability of conventional RNNs to capture dependencies
beyond approximately 10-20 time steps. In contrast, the LSTM’s additive cell state update (Equation
2.4) provides a nearly constant error flow, often referred to as the Constant Error Carousel [14]. The
gradient with respect to the cell state can be expressed as:

oL oc .
OCt_l - aCt ft ( . )

where the forget gate f; directly scales how much of the gradient is propagated backward. Since
this multiplication can be controlled through the gating function, the LSTM maintains stable gradients
across long sequences and effectively learns long-term dependencies. During training, regulariza-
tion techniques such as dropout and gradient clipping are often employed to prevent over fitting and
suppress residual gradient explosions. The resulting network is capable of robust temporal modelling
even in the presence of noisy or non-stationary input data, making it highly suitable for IDSs based on
time-dependent behavioural patterns.

2.2.3.LSTM as IDS

The long memory aspect of the LSTM RNN makes it very suitable to be trained upon a time sequence of
data, like the data type can be found in NTT data upon the arrival of network packages onto a server, and
then serve as an IDS. This is exactly what has been done by Jiang et al.[16]. In this research, a multi-
channel IDS had been created, where application data and network telemetric data were used both
separately and together to train 3 different LSTM RNN'’s. Upon arrival of a packet, these would bring
out a vote to a central voting counter. If the majority agreed upon accepting the node after receiving it's
package, it would count towards a positive 'trust score’. If the voter’s majority would agree on a denial,
the node would be given a lower 'trust score’. Trained and tested with the NSL-KDD dataset, this would
result in an accuracy upwards of 97%. It should be noted that with application data here is meant the
features in the NSL-KDD dataset that are corresponding with application related network traffic e.g. ’is
there a login attempt performed on the server’.

2.3. Data Challenges in Deep Learning-based IDS

The success of a Deep-Learning based IDS stands with the quality of the dataset that it has been
trained on. Over the years, many datasets have become available for this purpose [11]. These datasets
very from Network traffic-based datasets e.g. KDD Cup 1999 or Darpa 1998 to Internet traffic-based
datasets e.g. CAIDA internet traces 2016. For this thesis, the focus will lay on the NSL-KDD dataset
[33]. This dataset, as was used as well by the proposed LSTM-based model in Section 2.2.3, is an
improved version of the KDD Cup 1999 dataset. Duplicate and redundant records had been removed
and the number of records is more reasonable. This dataset is a Network traffic-based dataset. Fea-
tures include, but are not limited to: The protocol type, the amount of source bytes, the count of sent
messages in the last 30 seconds, etc. A more complete overview will be given later in Chapter 3

This dataset as well as others have one trait in common. They are, in general, dated and difficult
to collect. The NSL-KDD dataset is based on the 1999 KDDcup dataset [36], that was 'created for
a classifier learning contest to learn a predictive model capable of distinguishing between legitimate
and illegitimate connections in a computer network’ [31]. Over the years, a lot of the networking in-
frastructure and technology as it was in 1999 is still in use. However, as new technologies emerged
and systems have been upgraded to newer architectures over time with better security features, these
older datasets might not be as much reflecting the current set of threats that exist to computer networks
any more as they did in 1999. Now newer datasets are available [11]. However, with the continuous
struggle between developers of secure systems and networks and undiscovered bugs in various sys-
tems or even malicious entities trying to circumvent these measures, it is just a matter of time for these
datasets to lose their relevance in the progress over time. And constant updating of available datasets
will remain needed.

Collecting these datasets create difficulties on their own. Often they rely on simulations [24], because
collecting real world network traffic is generally infeasible due to privacy regulations, ethical constraints
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or legal implications of exposing sensitive user data. This not only applies for network traffic data, but
even more so for application data. On top of this, real-world measurements are often expensive and
need specific hardware. They can also take up a lot of time where a solution for an application specific
IDS would be needed within shorter time constraints.

2.4. Generating Data with LLMs
2.4.1. Generative Al

Generative artificial intelligence (Al) refers to models that learn an approximate data distribution and
can sample new, synthetic observations from it. This includes families such as Generative Adversarial
Networks (GANs) [13], and more recent diffusion-based models for high-quality image synthesis [25].
Specialised generative systems now exist for images, audio, and video, while more general-purpose
models can produce text and structured data.

For deep learning-based IDS, generative Al offers a potential remedy to data scarcity: once a model
has learned a suitable approximation of the underlying distribution of network or application-layer data,
it could be used to augment limited real measurements with additional synthetic samples. This can
increase the effective training set size and help expose the model to a broader range of patterns, with-
out requiring proportionally more measurement campaigns or specialised hardware. Synthetic data is
therefore best viewed as a complement to empirical datasets, particularly in scenarios where controlled
experiments or long-term monitoring are difficult to perform.

However, the use of generative models for dataset construction also introduces new risks. Synthetic
data inherits the biases and blind spots of the training distribution and of the model architecture itself.
Recent work by Shumailov et al. [29] shows that repeatedly training models on their own generated
outputs can lead to ‘'model collapse’, where the model progressively forgets low-probability regions of
the original data distribution and converges to increasingly distorted, low-diversity outputs. However,
results of research by Alemohammad et al. [2] indicate that mixing in a non-trivial fraction of real data
at each training generation can substantially mitigate this degradation and preserve more faithful sam-
pling behaviour.

These findings suggest that generative Al is a powerful but delicate tool for data generation in IDS
research. Synthetic samples can help alleviate the cost and difficulty of collecting real-world network
and application-layer data, but they should not fully replace empirical measurements. Maintaining a
continuous stream of real data is essential to anchor training and prevent distributional drift caused
by recursive use of synthetic outputs. Within this broader landscape, LLMs are particularly interesting
due to their versatility and ease of use through prompting; their role in generating structured, security-
relevant data will be examined in more detail in Section 2.4.2.

24.2. LLMs

LLMs such as ChatGPT [21] and DeepSeek [7] generate text by predicting sequences of tokens based
on patterns learned from vast corpora of natural language. Most state-of-the-art LLMs are based on
the Transformer architecture introduced by Vaswani et al. [35], which relies on self-attention mecha-
nisms to model long-range dependencies within sequences. During training, the model learns statistical
relationships between tokens in diverse contexts, enabling it to produce coherent, structured, and con-
textually appropriate text when prompted.

Although originally developed for natural language processing tasks, LLMs are increasingly being ap-
plied to domains involving structured or semi-structured data [30]. Their ability to understand prompts,
generate consistent sequences, and follow formatting instructions makes them suitable for synthesis-
ing time-series data, structured logs, or domain-specific records. For the purpose of this research, this
versatility is especially relevant: application-layer sensor data and network metadata often follow pre-
dictable temporal and semantic patterns, which LLMs can reproduce when given suitable conditioning
through prompting or in-context examples. As a result, LLMs offer a high-level, accessible means of
generating synthetic datasets without requiring specialised generative models such as GANs or diffu-
sion models.
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However, the use of LLMs for data generation also introduces significant risks. First, the generated
data will inevitably reflect the biases or blind spots present in the model’s training corpus. If the model
has not been exposed to patterns relevant for intrusion detection, the resulting synthetic data may
misrepresent rare but important behaviours. Second, LLMs tend to “hallucinate”: confidently produc-
ing plausible-looking but factually incorrect or statistically inconsistent sequences [15]. Without careful
validation, such inaccuracies may degrade the performance of an IDS trained on these samples. On
top of this, the earlier discussed model collapse problem shows the need to combine LLM-generated
samples with sufficient real-world measurements to preserve distributional integrity.

2.4.3. Prompting

When using LLMs to generate synthetic data, the design of the prompt plays a crucial role in ensuring
that the model produces structured, coherent, and domain-appropriate output. Delgado-Soto et al. [8]
demonstrate this clearly in their work on generating synthetic network traffic using GPT-based models.
Their findings provide a set of practical principles for designing prompts that elicit realistic protocol-
conforming sequences rather than generic text.

1. First, prompts must explicitly encode the structure of the desired output. In the case of network
traffic, Delgado-Soto et al. formulate prompts that specify packet fields, message order, and pro-
tocol semantics using structured templates rather than free-form descriptions. For example, they
instruct the model to generate traffic in a line-delimited, key—value format corresponding to ARP,
ICMP, DNS, or HTTP conversations. By constraining the output schema, they prevent the model
from defaulting to natural language prose, which is its typical mode of generation. Their results
show that such schema-based prompting significantly increases both syntactic validity and se-
mantic plausibility of the generated traffic.

2. Second, the prompt should provide contextual examples illustrating correct domain behaviour.
Delgado-Soto et al. use few-shot prompting in which one or more real packet sequences are pro-
vided as exemplars. These examples help the model learn the temporal ordering of messages,
dependencies between fields, and typical conversational patterns (e.g., request-response dy-
namics in DNS or HTTP). They report that removing these examples leads to degraded protocol
consistency and, in some cases, the model inventing fields or deviating from expected flow be-
haviour. This supports earlier findings in prompt engineering research that few-shot demonstra-
tions increase adherence to domain-specific constraints.

3. Third, prompts benefit from including explicit constraints describing what the model must and
must not do. In their work, Delgado-Soto et al. instruct the model not to create non-existent pro-
tocol fields, not to include explanatory text, and not to deviate from the given protocol’s message
sequence. These negative instructions serve as guardrails that steer the model away from com-
mon LLM failure modes such as hallucinated metadata, extraneous commentary, or mixing of
protocols. Their evaluation highlights that such guardrails are essential for generating outputs
that resemble valid packet traces rather than plausible-sounding but technically invalid text.

4. Fourth, the authors find it valuable to specify semantic conditions tied to the domain. For instance,
when generating ICMP traffic, the prompt encodes protocol rules such as matching identifiers
or appropriate type/code values. In HTTP traffic generation, they encode constraints such as
ensuring that the server responds only after a client request. Embedding these domain-level
invariants within the prompt enables the model to respect protocol logic even without explicit
fine-tuning on packet-level data.

5. Finally, Delgado-Soto et al. emphasise the importance of post-prompt validation. Because LLMs
can still produce inconsistent or erroneous sequences despite good prompting, they validate each
generated flow using protocol parsers. This suggests that effective prompt engineering should be
combined with automated validation or filtering stages when used for synthetic dataset generation.

Together, these findings indicate that LLM prompting for IDS-relevant synthetic data is most effective
when prompts combine four core elements: (1) explicit structural templates, (2) example-based demon-
strations, (3) clear constraints and guardrails, and (4) embedded domain knowledge. When applied



12 2. Background

carefully, this strategy enables LLMs to generate structured outputs that approximate the behaviour of
real network or application-layer data—an essential requirement for their use in training deep learning-
based IDS models.

2.5. Expected Behaviour and Underlying Mechanisms

Altough LLM’s are in general very complex models where the predictability of their outcome is difficult
to estimate. Some predictions of the usability of the data can be made when it is mixed with real data. A
principled way to estimate this is to treat the training data distribution as a mixture of real and synthetic
distributions and analyse how divergence between this mixture and the true data distribution affects
the expected test error. This approach follows classical statistical learning theory [20] and domain
adaptation theory [4], which relate generalisation error to the divergence between training and test
distributions.

2.5.1. Mixture Distribution Formulation

Let P4 denote the true underlying data distribution, as approximated by a real dataset such as in the
case of this thesis application data like temperature measurements from a sensor, and let Pgy,, denote
the distribution induced by LLM-generated synthetic samples. If a fraction a € [0, 1] of the training data
is real and the remainder is synthetic, then the effective training distribution is

Pirain = @ Prea + (1 — ) Psynth- (2.9)

The test distribution is assumed to be the real distribution,

Piest = Preals

reflecting the operational environment in which the IDS will be deployed.

2.5.2. Generalisation Error Bound
Statistical learning theory establishes that the generalisation error on the real distribution can be bounded
by the training error plus a divergence term [20]:

Errtest(h) < Errtrain(h) + D(Ptrain ” Preal)' (2-10)

Where D(:||-) is a statistical divergence. Domain adaptation theory provides a similar formulation, using
the H AH divergence to quantify distribution shift [4]. In either case, the divergence between the training
mixture and the real distribution directly influences the potential degradation of performance when the
model is evaluated on real-world data. Substituting Equation 2.9 into the divergence term gives:

D(aPreaI +(1- a)Psynth ” Preal): (2.11)

Which increases with both the deviation of synthetic samples from real data and the proportion of
synthetic data used.

2.5.3. Divergence Approximation and Predictive Thresholds

For many divergence measures, the divergence between the mixture and the real distribution can
be upper bounded by a linear scaling term involving the divergence between the synthetic and real
distributions [34]:

D (Pyrain || Prea)) < (1 —a) D(Psynth | Preal)- (2.12)

If a maximum tolerable divergence ¢ is defined—for example, the divergence that is similar to the
divergence between two sets of real-measured data.—the inequality

1-a) D(Psynth | Preal) <e
yields the following estimate for the minimal amount of real data required:

€

1- (2.13)
D(Psynth ” Preal)

Omin =
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This expression provides a theoretically motivated threshold for the proportion of real data needed to
ensure that synthetic samples do not introduce excessive distribution shift.

2.5.4. Practically Computing Divergence

Divergence can be estimated for numerical features by the so-called Wasserstein distance [22]. This
can be used for example as follows:

Let Preal = {x1, ..., xp} @nd Pgyninh = {¥1, ..., ¥im} denote two empirical sets of numerical application mea-
surements (for example a temperature measurement), not necessarily of equal size. We model them

as empirical distributions
n m
1 1
Prea = Ez 5,([, Psynth = E‘Zé‘yﬂ
i=1 j=1

where §, denotes a unit point mass at x and n and m represent respective sample set sizes. In one
dimension, and for the purposes of this work, we define the divergence

D(Psynth ” Preal) = J- |Fsynth(t) - Freal(t)| dt: (2-14)

where Fgynih and Fe, denote the empirical cumulative distribution functions (CDFs) of Pgyi, @and Prey),
respectively. This choice of D(:||-) corresponds to the one-dimensional Wasserstein-1 distance (also
known as the Earth Mover’s Distance) between the two empirical distributions. Importantly, equation
2.14 does not require n = m and naturally handles unequal sample sizes.

The mixture distribution framework provides a mathematically grounded approach for predicting the
usability of LLM-generated data. If the divergence between synthetic and real samples is small, a large
fraction of synthetic data can be safely incorporated. Conversely, high divergence implies that even
small amounts of synthetic data may distort the learned decision boundaries of an IDS. The frame-
work therefore offers both a theoretical and practical basis for deciding how much artificial data can be
included in training deep learning-based IDS models.
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3.1. Context Setting

Up to now in this thesis, the general case of having an IDS including evaluating AM data as part of
the anomaly detection has been discussed. In order to perform measurements on a system where the
training data for this system can be artificially generated and compared with real-world data, one needs
to implement a certain application to test this on.

3.1.1. Environmental Measurements

In this thesis, it is decided to take a small distributed network of environmental measurement stations as
an application. These sensors, that will be placed over five different villages (Den Hoorn, Wassenaar,
Dordrecht, Lage Zwaluwe and Delfgauw) in the Netherlands will collect the following data:

» Temperature [°C]: The temperature surrounding the weather station will be collected with an
accuracy of 2 decimals;

* Humidity [%]: The relative air humidity will be collected with an accuracy of 1 decimal;

« PM1,0 [ug m™3]: A fine particle concentration of particles with a size of 1, 0um in the air;

« PM2,5 [ug m™3]: A fine particle concentration of particles with a size of 2, 5um in the air;

« PM10,0 [ugm™3]: A fine particle concentration of particles with a size of 10, 0um in the air.

These are collected by a central server that will make the data available in an overview for hosts of
the weather stations. But to maintain integrity of the system and obtain correct measurements, one
would include an IDS to prevent anomalous devices from either manipulating ongoing measurements
by disruption, or inserting non-real data into the collection.

3.2. Environmental Measurement Stations
3.2.1. Hardware

The weather stations themselves consist of a Raspberry Pi (RPi) SoC computer [23]. These are either
of the type: RPi 4B 4GB, RPi 4B 8GB or RPi 4B 8GB. Two sensors from the Seeed Studio collection
[28] are connected to these RPis. The sensors and their specifications can be found in Table 3.1.
These sensors are connected to the RPis using 12C to the header pins present on all RPi B models
and also retrieve their power from the 5V power pins on the RPis. The RPi has by default one 12C bus
enabled. In order to connect a second device to the RPi over 12C, a second bus has to be enabled and
dedicated to some of the GPIO pins on the RPi. An example can be seen in Figure 3.1

3.2.2. Software
Each environmental measurement station operates on a Raspberry Pi running the ARM version of
Ubuntu 24.04.03 LTS (64-bit) [6], which is installed through the Raspberry Pi Imager tool. On top of
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Table 3.1: Specifications of the Grove Sensors Used

Specification Grove - Laser PM2.5 Sensor Grove — Temperature & Humidity
(HM3301) [26] Sensor (DHT20) [27]
Operating voltage 3.3V/5.0vDC 20V /55VvDC

Operating temperature
Operating humidity
Measurement type

Effective PM2.5 range
Maximum concentration range
Resolution

Stability time

Humidity accuracy
Temperature accuracy
Interface

-10°Cto 60°C

10 % — 90 % RH (non-condensing)
Particle concentration (PM4, PM,s,
PMq)

1-500 ugm=3

1000 ygm=3

1ugm=3

~30 s after power-on

I2C (address: 0x40)

—40°Cto +80°C
0% — 100 % RH
Temperature and humidity

~1s after power-on
+3% RH (at 25°C)
+0.5°C

12C (address: 0x38)

Figure 3.1: RPi 4B 8GB with Grove sensors connected.

the operating system, two custom software services have been developed specifically for this thesis.
These services run continuously in the background and together provide both local sensor access for
nearby users and remote data transmission to the central server infrastructure.

Local Sensor Access via Web Dashboard

The first service is a Python F1ask web application that exposes a local dashboard for reading the real-
time sensor values of the measurement station. This interface is intended for hosts or maintainers of the
weather station who visit the device physically and connect their laptop directly to the RPi. To support
such a direct connection, each station runs a lightweight DHCP service, assigning an IP address to any
directly connected client machine. To improve usability, a minimal DNS service is also deployed. The
Flask application retrieves sensor data from the 12C devices and presents the sensor measurement
values on a simple HTML dashboard, enabling quick diagnostics during installation or maintenance.

Automated Data Acquisition and Uplink

The second background service is a Python script responsible for performing periodic sensor mea-
surements and transmitting them to the central data collection server. The measurement interval is
fully configurable through the service configuration file, allowing sampling frequencies to be adapted to
experimental requirements or hardware limitations.

Each transmitted data packet includes the timestamp of the measurement, the raw sensor outputs
(temperature, humidity, PM1.0, PM2.5, PM10), the geographical or logical location of the measure-
ment station (set statically in the service configuration), a station-specific UUID that uniquely identifies
the device.
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For the purpose of training both the network-traffic and application-level machine-learning models, an
additional field is included: a label indicating the operational status of the station at the time of mea-
surement. This label is injected by the service and is not derived from the sensors themselves. The
semantics of the labels are as follows:

» 0 — All sensors functioning correctly; normal behaviour.

* 1 — The station transmits data without rate-limiting, simulating a mild Denial-of-Service (DoS)
pattern originating from the device itself, which should be considered anomalous network be-
haviour.

* 2 — One or more sensors intentionally producing abnormal or faulty values, enabling the study
of sensor-level anomalies.

These labels are used solely during training and evaluation phases to support supervised learning and
anomaly-detection benchmarking, but should not be considered part of a normal application set-up.

3.3. Data Collection

3.3.1. Server

The central component of the data-collection pipeline is a dedicated server that receives, processes,
and stores the measurements transmitted by all environmental stations. For this research, a refur-
bished consumer-grade laptop was repurposed as the server system. Despite its modest hardware, it
provides more than sufficient computational capacity for handling the incoming sensor streams, running
network-monitoring tools, and executing the data-processing scripts required for the intrusion-detection
experiments.

Server Hardware and Operating System

The server machine is a Toshiba Satellite C50-A-1G6 laptop equipped with an Intel® Core™ i3-3110M
CPU and 8,GB of RAM. It runs the AMDG64 version of Ubuntu 24.04 LTS, ensuring compatibility with
the full software stack used in this thesis, including the Flask-based collection service, Zeek, and the
subsequent data-processing pipeline.

Data Collection Service

Running on the server is a Python-based back-end service responsible for receiving the periodic up-
loads from all environmental measurement stations. This service exposes an HTTP endpoint at /up-
load, to which each RPi sends a JSON payload containing containing the previously mentioned
dataset. Upon receiving a request, the server performs the following operations:

1. Associates the measurement with metadata such as the client IP and port,

2. Queries the most recent Zeek network-traffic observations for the corresponding device,
3. Computes a set of NSL-KDD—inspired network-flow features,

4. Appends both AM and NTT data into two CSV log files:

» A full log merging Zeek features + AM data,

+ An application-only log for analysing sensor behaviour.

The service continuously maintains these CSV files and makes them available to the analysis pipeline
described in later chapters. A password-protected dashboard is also hosted on the server, enabling
real-time inspection of the incoming AM data across different measurement locations. This was made
both to check for the functionality of measurement stations and was made available to hosts of the
measurement devices as an incentive to host such a device as well.
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3.3.2. Measurements

Weather stations were spread across the Netherlands over five different locations as was mentioned
in Section 3.1.1 to ensure that the weather data it measures is variable enough for the deep learning
model to be trained with. However, it turned out that due to internet connectivity issues, the measure-
ment station in Delfgauw failed to send collected data over to the server. Therefore, from now on, this
thesis will continue with the data from just 4 of the nodes.

The application was configured to take a measurement every 5 minutes and send the data as men-
tioned in Section 3.2.2 automatically to the server. As a start time, the client would send a first sample
immediately on startup of the application and then continue from there. Therefore the measurements
did not arrive synchronously to the server. Measurements were recorded for the period of a week in
between the 31st of October 2025 at 20:30 and the 7th of November at 21:00.

Table 3.2: Total amount of estimated measurements versus the actual result.

Nr. of Total Sampling Estimated Total Actual Sample Set
Stations (N): Recording Frequency per Samples Size:
Time (T) [min]:  Station (N * T * F):
(F;)[Samples/min]:
4 10,110 0.25 10,110 9279

As can be seen in Table 3.2, the estimation of total amount of samples deviates with 831 samples. This
is due to the fact that a sensor did not always manage to send a sample exactly every five minutes.
This is mostly due to connectivity issues of the weather stations.

3.3.3. Anomaly Generation

In order to train the Deep Learning model for the AM data properly, some ’anomalous’ data had to be
created as well. The two types of anomalous data are simulations of faulty sensors or malicious use
of the server. To be exact about these events that took place, an overview can be found in Table 3.3.
All of these events were performed by the weather station that was located in Den Hoorn. This due to
the reachability of the device and the nature of one of the events that took place. This event involved
sending a large amount of post requests to the server in a very short time. To avoid misuse of public
infrastructure it was decided to perform this on the local network only.

Anomalous data has only been generated through the API of the application. This only allowed HTTP
traffic to be recorded. Therefore other famous types of attacks as are represented in e.g. the NSL-KDD
dataset, are not present in these measurements.

3.3.4. Data Analysis & Preparation

In order to compare the data that will be generated by an LLM to the measured data, it is important to
know the statistics related to the dataset. Since for both the AM data and the NTT data, synthetic data
will be generated, for both types of data some statistics will be given. Most important here will be the
WD (see Section 2.5.4). Since this will indicate how comparable the data is that will be generated to
the original measured data.

AM data

The features collected for the AM are the sensor values that were described in Section 3.1.1. The
anomaly to normal data ratio is quite low as can be seen in Table 3.3. Therefore, additional anomalies
were added by transforming some of the good data into anomalous data. This was done by replacing
500 regular good samples with samples that had their pm measurements set to 0 or their temperature
and humidity both or separately set to 0.

After this, the complete dataset was pre divided in a training- and testing set. Where 20% of the total
dataset was pseudo-randomly taken to form a test set. One condition that was applied during this
process is that 20% of the data in the test set is anomalous. All the leftover anomalies were left in the
training set. This resulted in the division visible in Table 3.4.

The distribution of the two datasets can be found in Figure 3.2. It can be seen that for the anomalous
data the mean is closer to 0 for all sensors, which is due to the nature of the anomalous data where
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Table 3.3: Overview of anomalous samples in measured dataset.

Anomalous event: Time of event: Nr. of Details:
Samples
Simple DOS (label 1) From: 2025-11-06 1297 Client was sending correct
22:29:51 To: 2025-11-06 measurements without a rate
22:33:00 limiter. This HTTP flooding attack is
inspired by the most common form
of attack present in the NSL-KDD
dataset related to HTTP traffic: the
backlog attack [10]. This attack
features large amount of messages
coming in a short time period, just
like the HTTP flood attack.
Failing Temp/Humidity From: 2025-11-06 139 Client was sending correct PM
Sensor (label 2) 21:37:55 To: 2025-11-07 measures, but either humidity or
10:03:22 temperature was hardcoded to 0 or
a constant not representable to
reality.
Failing PM Sensor (label | From 2025-11-07 89 Client was sending correct
2) 10:04:31 To: 2025-11-07 Temperature and Humidity
17:23:20 measures, but either any PM value
was hardcoded to 0 or a constant
not representable to reality.
Failing Temp/Humidity From: 2025-11-07 35 Temperature, Humidity and PM
and PM Sensor (label 2) | 16:25:02 To: 2025-11-07 values were all set to 0.
20:15:08
Total: 1560 Label 1: 1297, Label 2: 263

Table 3.4: Amount and type of anomalies in the AM dataset

Type of sample: Count Count
Training  Test
data: data:

Normal data 6573 1642

Broken PM sensor (sends only 0) 497 127

Broken Temperature sensor (sends only 0) 91 19

Broken Humidity sensor (sends only 0) 79 29

Both Temperature and Humidity sensors are broken (both send 0) 375 81

Total: 7423 1855

broken sensors are represented with a 0 in their recording value. More in-depth statistics about the
measured AM data can be found in Table 3.5. Besides the WD, these statistics prove to be relevant in
the comparison of this dataset to the generated dataset as will be discussed in the next paragraph.
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Figure 3.2: Distribution of normal and anomalous data in the datasets for the AM. The value on the y-axis is the unit of the
measurement belonging to the feature type as provided in Section 3.1.1.

Table 3.5: Statistics of recorded dataset from the weather stations. Only normal data (i.e. data with label 0) is considered in
these statistics. Data is separated per location of the weather stations. One row is added in the end with some overall statistics.

Location: PM1,0 PM2,5 PM10 Temperature Humidity

(avg/std): (avg/std): (avg/std): (avg/std): (avg/std):
Den Hoorn 3.6/3.07 4.8/4.36 4.9/4.85 12.0/2.53 78.0/10.24
Dordrecht 7.3/3.57 10.3/5.18 10.8/6.18 12.0/1.75 77.5/7.55
Lage Zwaluwe  4.5/2.37 6.2/3.44 6.2/3.54 12.2/3.65 76.9/9.34
Wassenaar 5.0/3.43 6.9/4.99 7.1/5.72 12.0/2.44 74.2/8.63
Total: 5.1/3.44 7.1/4.98 7.3/5.62 12.0/2.68 76.6/9.07

As was mentioned in the start of this subsection, the WD is an important metric to compare the later
generated data to the real-recorded measurement data using formula 2.13. To set a threshold of what
an acceptable distance would be, the WD between two subsets of the AM data could be used. In order
to take a single € to predict the maximum ratio of generated data to be used to still train a reliable IDS,
the normalized values of the measurements will be used to do this estimation. To find out which would
be the maximum threshold to use, the following two calculations will be performed:

» The WD between each combination of two days of one measurement station, so per 24 hours;

 The WD between each combination of two measurement stations over the whole measurement

period.
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For now, the tolerance will only be calibrated by measuring the WD between independent subsets of the
real data. This real-real divergence captures the natural variability present in genuine measurements.
This baseline will then be compared to the WD between real and generated samples. As long as the
real—-synthetic divergence remains on the same order as, or below, the typical real-real divergence, it
is to be expected that the induced mixture distribution will remain within an acceptable generalisation
regime. This yields the following maximum WDs, visible in Table 3.6:

Table 3.6: Maximum WDs of normalised real-recorded AM data. Only data with label ’0’ (i.e. non-anomalous recordings) are
taken into account.

Application Max. Block with maximum (start Max. Two locations with max
metric: WS times of the two blocks. WS distance
dist. Each block is 24 hours) dist.
per 24 be-
hr tween
blocks loca-
tions
Temperature 0.16 Den Hoorn: 2025-11-04 0.02 Dordrecht <> Lage Zwaluwe
19:37:09 — 2025-11-07
19:38:02
Humidity 0.31 Den Hoorn: 2025-11-01 0.06 Den Hoorn <> Wassenaar
19:34:23 — 2025-11-04
19:37:09
PM1,0 0.22 Dordrecht: 2025-11-04 0.07 Den Hoorn <> Dordrecht
19:36:51 — 2025-11-07
19:39:46
PM2,5 0.23 Dordrecht: 2025-11-04 0.07 Den Hoorn <> Dordrecht
19:36:51 — 2025-11-07
19:39:46
PM10 0.22 Dordrecht: 2025-11-04 0.06 Den Hoorn <> Dordrecht
19:36:51 — 2025-11-07
19:39:46

As can be seen in Table 3.6, the maximum WD is 0.31. This WD on its own is a good bounding
threshold to later on compare the WD between the real and generated datasets with. That is why for
now it is decided that:

€Emax = 0.31 (3.1)

NTT data

The NTT data, that is collected, is inspired by the NSL-KDD dataset that has been mentioned earlier. In
an earlier stage of this thesis, the NSL-KDD dataset was indeed used to train the network traffic model
(NTM). However, this turned out to be a very unreliable model. Its predictions for the label turned out to
be generally opposite to the label belonging to the recordings. More on this will be mentioned later in
Section 3.3.5. For the training of the NTT data therefore, the data collected through the weather station
application is used. This will be analysed in a similar matter as the AM data. The features present in
the recorded dataset, are listed in Table 3.7.

Table 3.8 displays the division between normal and anomalous data.

The 28 features of the NTT dataset are not all numerical. Three of them (protocol_type, service and
flag) are categorical items. This offers no problem, since the dataloader in the design takes care of
transforming these into a numerical and scaled value. For the numerical data, its statistics are given in
Table 3.9.
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Table 3.7: Features of the NTM training and testing dataset.

Feature Description

duration Duration of the connection.

protocol_type Network protocol used in the connection (e.g. tcp, udp, icmp).

service Destination network service on the target host (e.g. http, ftp).

flag Status flag of the connection at the transport layer.

src_bytes Bytes sent from source to destination in this connection.

dst_bytes Bytes sent from destination to source in this connection.

land 1 if source and destination IP/port are the same, 0 otherwise.

wrong_fragment Number of incorrect IP fragments in this connection.

urgent Number of packets with the urgent flag set in this connection.

count Number of connections to the same destination host in the last 2
seconds.

srv_count Number of connections to the same service in the last 2 seconds.

serror_rate
srv_serror_rate
rerror_rate
srv_rerror_rate
same_srv_rate
diff_srv_rate

Fraction of connections in count with SYN-related errors.
Fraction of connections in srv_count with SYN-related errors.
Fraction of connections in count with REJ (error) flags.
Fraction of connections in srv_count with REJ (error) flags.
Fraction of connections in count to the same service.

Fraction of connections in count to different services.

srv_diff_host_rate Fraction of connections in srv_count to different destination

hosts.

dst_host_count Number of connections to the same destination host.

dst_host_srv_count Number of connections to the same service on the same
destination host.

dst_host_same_srv_rate Fraction of connections in dst_host count to the same service.

dst_host_diff _srv_rate Fraction of connections in dst_host_count to different services.

dst_host_same_src_port_rate  Fraction of connections in dst host srv count from the same
source port.

dst_host_srv_diff _host rate Fraction of connections in dst_host srv_count to different

destination hosts.

Fraction of connections in dst_host count with SYN-related

errors.

dst_host_srv_serror_rate Fraction of connections in dst_host srv_count with

SYN-related errors.

Fraction of connections in dst _host count with REJ errors.

Fraction of connections in dst_host srv_count with REJ

errors.

dst_host_serror_rate

dst_host_rerror_rate
dst_host_srv_rerror_rate

Table 3.8: Amount and type of anomalies in the AM dataset

Type of sample: Count Count
Training  Test
data: data:

Normal data 6387 1596

DOS attack 1036 259

Total: 7423 1855

It can be seen in the table with statistics that often, the data remains close to 0 or is constant at 0.
The features ‘wrong_fragment’ and ‘urgent’ are manually kept at 0, since the way Zeek is configured to
collect the data currently does not allow for the flags belonging to these features to be recorded. Writing
a dedicated parser or using more elaborate package capturing software would be able to provide this
data. But for this thesis it is chosen not to. However, they are still included in the dataset. Similar to
the AM data, the NTT data is stored along with details of the device that sent the belonging packet.
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Table 3.9: Mean and standard deviation (mean/std) of the training and testing dataset for the NTM. The statistics are split up
between the training and testing datasets and separated for each label.

Feature Train 0 Train 1 Test 0 Test 1
duration 0.12/1.63 0.03/0.01 0.07/0.17 0.03/0.01
src_bytes 431.72/6.98 428.93/1.39 431.93/6.31 428.93/1.34
dst_bytes 181.00/0.00 181.00/0.00 181.00/0.00 181.00/0.00
land 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
wrong_fragment 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
urgent 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
count 1.56/1.89  95.93/16.14 1.53/0.52  96.44/14.68
srv_count 1.56/1.88  95.93/16.14 1.53/0.51 96.44/14.68
serror_rate 0.00/0.02 0.00/0.00 0.00/0.01 0.00/0.00
srv_serror_rate 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
rerror_rate 0.00/0.01 0.00/0.00 0.00/0.00 0.00/0.00
srv_rerror_rate 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
same_srv_rate 0.99/0.09 1.00/0.00 1.00/0.07 1.00/0.00
diff_srv_rate 0.01/0.09 0.00/0.00 0.00/0.07 0.00/0.00
srv_diff_host_rate 0.73/0.26 0.01/0.03 0.73/0.25 0.01/0.03
dst_host_count 28.39/10.55 96.46/14.54 28.25/10.53 96.97/13.14
dst_host_srv_count 27.40/10.06 96.38/14.52 27.34/10.26 96.90/13.13
dst_host same_srv_rate 0.97/0.05 1.00/0.00 0.97/0.05 1.00/0.00
dst_host_diff_srv_rate 0.03/0.05 0.00/0.00 0.03/0.05 0.00/0.00

dst_host same_src_port rate  0.00/0.01 0.00/0.00 0.00/0.01 0.00/0.00
dst_host_srv_diff_host_rate 0.23/0.11 0.02/0.05 0.23/0.12 0.02/0.05

dst_host_serror_rate 0.62/0.23 0.00/0.00 0.62/0.23 0.00/0.00
dst_host_srv_serror_rate 0.60/0.24 0.00/0.00 0.59/0.25 0.00/0.00
dst_host_rerror_rate 0.62/0.23 0.00/0.00 0.62/0.23 0.00/0.00
dst_host_srv_rerror_rate 0.60/0.24 0.00/0.00 0.59/0.25 0.00/0.00

For the sake of readability, there will not be an overview of the features per location. Box plots with the
distribution of the features are to be seen in Figures 3.3 and 3.4.
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Figure 3.3: Distribution of the training and testing datasets with normal and anomalous data for the NTM. 1/2
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With this dataset, the same methods will be used as for the AM data to compute the WDs between
subsets of the dataset for normal data. These WDs will then again be used to set a threshold of how
much the generated dataset should be able to be mixed with the recorded dataset to still provide a
reliable model. The WDs can be found in Table 3.10. For readability reasons, only the features that
contain the five largest Wasserstein differences are displayed.

Table 3.10: The top five maximum WDs of normalised real-recorded NTT data. Only data with label ‘0’ (i.e. non-anomalous
recordings) are taken into account.

Application Max. Block with maximum Max. Two locations with max
metric: WS (start times of the two ws distance
dist. blocks. Each block is dist.
per24 24 hours) be-
hr tween
blocks loca-
tions
dst_host_srv_ 0.69 Den Hoorn: 2025-11-02 0.04 Den Hoorn <>
serror_rate 19:35:18 — 2025-11-06 Wassenaar
19:34:19
dst_host_srv_ 0.69 Den Hoorn: 2025-11-02 0.04 Den Hoorn <>
rerror_rate 19:35:18 — 2025-11-06 Wassenaar
19:34:19
dst_host_serror_rate 0.63 Den Hoorn: 2025-11-03 0.04 Den Hoorn <>
19:36:15 — 2025-11-06 Wassenaar
19:34:19
dst_host_rerror_rate 0.63 Den Hoorn: 2025-11-03 0.04 Den Hoorn <>
19:36:15 — 2025-11-06 Wassenaar
19:34:19
src_bytes 0.14 Wassenaar: 2025-11-01 0.46 Den Hoorn <> Lage
19:32:20 — 2025-11-07 Zwaluwe
19:32:49

It can be seen that the weather station of Den Hoorn is represented in all five largest WDs. This is
most likely due to the fact that that weather station was also used to generate the anomalous network
traffic data and anomalous AM data. This had as a consequence that as soon as the normal data flow
was restarted, the past behaviour of this node is still embedded in its longer range metrics. It can be
seen that the top four features are indeed related to longer term effects of a recent HTTP Flood attack.
While src_bytes shows a large deviation due to the amount of anomalous data (with small values for
the application features) compared to a node that behaved normal.
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The largest WD that can be observed in Table 3.10 is 0.69. This will serve as a threshold to later
estimate the minimum ratio of real data that needs to included in the mixed dataset of real and gener-
ated samples to still maintain a well performing model. This will be done in the same way as for the
AM data by using formula 2.13, where now

€max = 0.69 (3.2)

3.3.5. NSL-KDD

As was mentioned earlier in Section 3.3.4, in an earlier stage of the development of this thesis, the
NSL-KDD dataset was used as a basis to train the NTM with. However, it turned out after testing this
model on the recorded dataset, that this model would not be able to correctly detect anomalies out
of the recordings. After more thorough analysis of the two datasets, it came down to most likely the
different interpretation of the DOS attacks that were used. In the NSL-KDD dataset, the backlog attack
was used [10], where large amounts of data are sent to a server, and the ACK that is supposed to follow
after a SYN-ACK is sent by the server is never delivered. Therefore the server’s backlog get'’s flooded
with new SYN messages that it at some point will fail to process fast enough. In the recorded dataset,
HTTP flooding was performed, where the SYN-ACK is properly replied, but a lot of HTTP messages
are sent in a short time. This leads to different characteristics in the features as can be observed
in Figure 3.5. In there it can be observed that in case of an attack, the NSL-KDD shows opposite
behaviour compared to the recorded data. In the NSL-KDD dataset, a backlog attack is registered
as a low amount of packages being received, but with a large payload. Since the SYN-ACK is never
completed, it is likely that all SYN requests that follow are considered part of the same message. In the
recorded data however, the payload stays the same compared to a normal situation, but the amount of
packets being sent rises sharply. Therefore it was decided to move forward with the recorded dataset
only instead of the NSL-KDD dataset.
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Figure 3.5: Distribution of the features ’src_bytes’, 'dst_bytes’, ’count’ and ’srv_count’ compared between the NSL-KDD dataset
and the recorded NTT dataset.
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3.4. Data Generation

This section will introduce the methods for generating the synthetic data that will be used to mix in with
the real-recorded data introduced in Section 3.3.4. As was mentioned in the introduction of this thesis,
the LLM will hold the role of generating data for the purpose of this thesis due to its upcoming role for
use in the current society as by writing of this thesis. And on top the 'ease of use’ does play a great
factor in making this decision as well, with the possibility to tune prompts to unimaginable extend as
will be discussed in Section 3.4.1. The LLM that will be used in this thesis will be introduced in the
next paragraph. The hallucination problem that these models tempt to suffer from, need to be taken
into account before training an IDS with generated data. Therefore the data that is generated will be
analysed thoroughly in Section 3.4.2

In this thesis, the main LLM-based model that will be used to generate synthetic data will be Ope-
nAl's GPT 5.1 model [21]. This due to its wide popularity as well as many other writings that already
have been focused on its behaviour and the use of GPT for several academic researches. GPT is built
on the transformer architecture as was described in Section 2.4.2. Its main interaction methods are ei-
ther through OpenAl’s website ChatGPT [21], or through an API that is available for paid subscriptions.
OpenAl does make a distinction between users subscribed to a paid plan versus their free to use GPT
model. Paying users have access to more prompts in a day and can make use of the latest models
that OpenAl has to offer. Due to the amount of testing that needed to be done for the purpose of this
thesis, the paid version of ChatGPT was used. To be specific GPT 5.1 is used compared to the free to
use, but older model GPT-40. Which is still very popular at the time of this writing.

3.4.1. Prompts

As was mentioned in Section 2.4.3, prompts should not be created without a proper strategy. Two
prompts will be drafted for this thesis for each of the models that will be trained. So two for the AM
data and two for the NTT data. The general approach is that each next prompt will be provided with
more details than the previous one. After naming the prompts, they will each be compared by the
five constraints proposed by [8] and summarised in Section 2.4.3. It should be remarked that in any
example data in the prompts that contains IP addresses of client devices, these IP addresses have
been manually altered to preserve privacy of the hosts of the weather stations that took part in this
experiment. They are not included in the training of the models and are therefore not important to the
functionality of the system in the end. The in total four prompts are as follows:

AM data prompts:

For the AM data, two prompts have been written. These are requesting datasets from the LLM, by
introducing the measurement set up, how the system performs and how the dataset is structured. The
second prompt will, as mentioned, be a bit more restrictive and detailed than prompt 1. Prompt 1 can
be read in Figure 3.6 and prompt 2 in Figure 3.7.

These prompts do not seem to be clearly readable from a human perspective. While creating these, it
is taken into account that the LLM should be able to receive instructions as clear as possible. Therefore
unnecessary language was avoided. In order to analyse these prompts. The first prompt will be held
against the principles stated in Section 2.4.3. This is done in Table 3.11.
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Prompt 1 Application Data

Create a .csv file filled with samples of a small environment weather station. Connected to the
weather station are a humidity sensor, a temperature sensor and a Particular Matter sensor that
measures Pm1.0, pm2,5 and pm10 values.

These sensors perform measurements and send their results to a server every 5 minutes. They do
this for exactly one week in october. There are 4 different weather stations on 4 different locations.
These locations are: Den Hoorn, Dordrecht, Wassenaar and Lage Zwaluwe, all in the Netherlands.
The server collects this data and stores this in a csv in the following format:

timestamp_utc, client_ip, pm1, pm2_5, pm10, temperature, humidity, label, locations
timestamp_utc is a utc timestamp of when the data was recorded and sent to the server

client_ip is a unique ipv4 address that is linked to each weather station

pm1 is the recorded pm1,0 value in micrograms per cubic meter, this is an integer

pm2_5 is the recorded pm2.5 value in micrograms per cubic meter, this is an integer

pm10 is the recorded pm10 value in micrograms per cubic meter, this is an integer

temperature is the recorded temperature in degrees Celsius

humidity is the relative humidity recorded in percentage

label is a label that indicates if data was sent correctly, 0 means everything is fine, 1 means that
either one of the sensors is malfunctioning and sending non real recorded data along, this could be
0 or any other number.

locations is the place name in which the device is located. So this would be Dordrecht, Lage
Zwaluwe, Wassenaar or Den Hoorn.

Create me a .csv with samples from this system. Use realistic measurements and add a label 0 to
this. Also, include some 'anomalous data’. This is data with label 1.

For label 1, insert samples with all of the pm values 0 or any very large number and or the humidity
or temperature value 0 or any large number, keep this constant for at least 10 consecutive samples
to simulate a stream of broken sensor data.

Make a good mix of real and anomalous data

Make sure that there is only 1 unique |P address per location.

Keep the temperature, humidity and PM values realistic to the time of the year for these locations,
do not add temperatures higher than 25 degrees altough it is November. Do not add PM values that
are unimaginably large e.g. above 1000

Give me data for the full week, not a subset of the datal

Examples of the samples could be, but are not limited to:

2025-10-31 19:33:29,10.70.20.29,4 5 5,11 552047729492188 82 89918899536133,0, Den Hoorn
2025-10-31
20:46:29,77.175.216.133,5,7,7,11.754798889160156,79.44412231445312 .0, Wassenaar
2025-11-07 08:33:21,10.70.20.29,9,13,13,0,0,300,1,Den Hoomn

2025-11-06 21:30:39,10.70.20.29,7,10,10,9.667778015136719,85.28060913085938,0 Den Hoorn

Give me only the _csv file, without any added text.

Figure 3.6: Prompt 1 for the AM data. This prompt leaves a few more items open to interpretation, like the amount of samples.
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Prompt 2 Application Data

Create a .csv file filled with samples of a small environment weather station. Connected to the weather
=tation are a humidity sensor, a temperature sensor and a Particular Matter sensor that measures
Pm1.0, pm2,5 and pm10 values.

These sensors perform measurements and send their results to a server every 5 minutes. They do this
starting at 2025-10-31 19:31:26(UTC) and ending at 2025-11-07 20:00:34 (UTC), round off to the
nearest 5 minute time slot if needed. There are 4 different weather stations on 4 different locations.
These locations are: Den Hoorn, Dordrecht, Wassenaar and Lage Zwaluwe, all in the Metherlands.
The server collects this data and stores this in a csv in the following format:

timestamp_utc, client_ip, pm1, pm2_5, pm10, temperature, humidity, label, locations

timestamp_utc is a utc timestamp of when the data was recorded and sent to the server

client_ip is a unique ipv4 address that is linked to each weather station

pm1 is the recorded pm1,0 value in micrograms per cubic meter, this is an integer

pm2_5 is the recorded pm2,5 value in micrograms per cubic meter, this is an integer

pm10 is the recorded pm10 value in micrograms per cubic meter, this is an integer

temperature is the recorded temperature in degrees Celsius

humidity is the relative humidity recorded in percentage.

label is a label that indicates if data was sent correctly, 0 means that normal data is sent with a normal
rate, 1 means that either one of the sensors is malfunctioning and sending non real recorded data along,
this could be 0 or any other number.

locations is the place name in which the device is located. So this would be Dordrecht, Lage Zwaluwe,
VWassenaar or Den Hoorn.

Create me a _csv with samples from this system. Use realistic measurements and add a label 0 to this.
Also, include some "anomalous data’. This is data with label 1.

Forlabel 1, insert samples with one or more of the pm values 0 or any large number or the humidity or
temperature value 0 or any large number, keep this constant for at least 10 consecutive samples to
simulate a stream of broken sensor data. This should roughly make up 50% of the data.

Make sure that at least 50 percent of the data is of the type with label 0.

Make sure that there is only 1 unique IP address per location.

Use realistic measurements to create this dataset. Use online sources to base your creation on. The
temperature fluctuates between 4 and 16 degrees Celsius. The humidity between 60 and 92 percent.
The PM values all fluctuate between 0 and 25 for realistic data.

Be aware of the natural fluctuation of the data. The temperature drops at night and the humidity
decreases when the temperature gets higher.

Give me data for the full time period, not a subset of the datal

Examples of the samples could be, but are not limited to:

2025-10-31 19:33:29,10.70.20.29,4 5 5,11 552047729492188 82 89918899536133,0,Den Hoorn
2025-10-31 20:46:29,77 175.216.133,5,7,7,11.754795889160156,79.44412231445312,0 Wassenaar
2025-11-07 08:33:21,10.70.20.29,9,13,13,0,0,1,Den Hoorn

2025-11-06 21:30:39,10.70.20.29,7,10,10,9.667778015136719,85.28060913085938,0,Den Hoorn
2025-11-06 21:30:47 77.175.216.133,7,10,10,9.661674499511719,85.3144645690918,0 Wassenaar
2025-11-07 03:18:09,86.82.229.87 5,7.7,0,0,1,Lage Zwaluwe

Give me only the csv file, without any added text.

Figure 3.7: Prompt 2 for the AM data. This prompt is a bit more strict with the requirements it sets to the dataset that the LLM
has to provide. It will for example put a minimum on the amount of anomalies, making this an explicit requirement. It will also
provide more detail on the measurements that were performed.
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Table 3.11: Prompt design rules from Section 2.4.3 applied in Prompt 1 to generate artificial AM data.

Design | Rule: Use in prompt 1 (AM data):
Rule:
1. Prompts must
explicitly encode the 1. In the prompt it is stated what columns are to be added

structure of the output. to the dataset:

2. It is stated that the output should only be a .csv file, no
additional text;

3. The units of all the features are given;

4. Examples of correct output are given.

2. The Prompt should
provide co_ntextua-l 1. Examples are given of correct output.
examples illustrating
correct domain 2. The correct functioning of the measurement system is
behaviour. explained.
3. Include explicit
constraints describing 1. Restrictions to the data is given in the form of the exact

what the model must
do and what it must not
do. 2. The range of features is given (e.g. the maximum
temperature);

number of samples that need to be created;

3. The model is prompted to keep the data realistic to the
time of the year and not use random data;

4. The model is prompted not to give just a subset of the
data, but the full dataset.

4. Specify semantic
conditions tied to the 1

. Th k h i is given;
domain. e background to the experiment is given;

2. The different sensors are stated;

3. The time of the year in which the experiment is given to
keep the data more realistic;

4. Locations of the measurement stations are given.

NTT data prompts

For the network telemetry data, a similar approach was taken as for the AM data. The two prompts that
were created can be read in Figure 3.8 for the first prompt and in Figure 3.9 for the second. The design
for the NTM LLM prompt is, just like the prompt for the AM data, held against the design standards
proposed in Section 2.4.3. The justification for this can be found in Table 3.12
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Prompt 1 Network Traffic Telemetry Data

There is a small weather environment measurement system that has collected several environmental
measurements. There are sensors connected to these weather stations.

These sensors perform measuraments and send their results to a server every 5 minutes.

They do this for exactly one week in october.

There are 4 different weather stations on 4 different locations.

These locations are: Den Hoorn, Dordrecht, Wassenaar and Lage Zwaluwe, all in the Metherlands.

A server collects this data and records network traffic telemetry data as well using Zeek. It records
features that are also present in the NSL-KDD dataset.
These are:

duration protocol_type service flag.src_bytes.dst_bytes land wrong_fragment. urgent,count,
=rv_count,serror_rate srv_serror_rate rerror_rate srv_rerror_ratesame_srv_rate diff_srv_rate,
=rv_diff_host_rate dst_host_count,dst_host_srv_count,dst_host_same_srv_rate,

dst_host diff srv_rate dst host same src_port rate,dst host srv_diff_host rate,

dst_host_serror_rate dst_host_srv_serror_rate dst_host_rerror_rate dst_host_srv_rerror_rate label

The only service that my little app uses is hitp.

VWhere label indicates if the data was normal or anomalous. Anomalous data is a backlog DOS attack.
Give me a .csv file with records of these measurements where you include both normal entries and
anomalous data in the form of the backlog DOS attack.

Give me enough data for a week where every 5 minutes information was sent from 4 different devices.
The data records would for example look like:

0.0472550392150878 tcp,http,5F 431,181,0,0,0,1,1,0.0,0.0,0.0,0.0,1.0,0.0,1.0,27 27,1.0,0.0,0.0,
0.1851851851851851,0.7407407407407407,0.7407407407407407,
0.7407407407407407,0.7407407407407407 0

0.0258569717407226 tcp hitp,5F,429,181,0,0,0,2,2,0.0,0.0,0.0,0.0,1.0,0.0,0.5,26,26,1.0,0.0,0.0,
0.1785714285714285,0.7142857142857143,0.7142857142857143,
0.7142857142857143,0.7142857142857143.0

0.0507080091705322 tcp hitp, 5F,433,181,0,0,0,1,1,0.0,0.0,0.0,0.0,1.0,0.0,1.0,27 .27 1.0,0.0,0.0,

0.1851851851851851,0.7037037037037037,0.7037037037037037,
0.7037037037037037,0.7037037037037037.0

1.1985007991750771 tcp http,SF,439,181,0,0,0,2,2,0.0,0.0,0.0,0.0,1.0,0.0,0.5,27 .24,
0.8858888888888888,0.1111111111111111,0.037037037037037,
0.1651851851851851,0.6666666666666666,0.592592592592565926,0.6666666666666666,
0.569259259255255926,0

0.0238661766052246 tcp hitp,5F,430,181,0,0,0,100,100,0.0,0.0,0.0,0.0,1.0,0.0,0.01,100,100,1.0,0.0,
0.0,0.01,0.0,0.0,0.0,0.0.1

Give me only the csv. file without any text.

Figure 3.8: Prompt 1 for the NTT data. This prompt leaves a few more items open to interpretation, like the amount of samples.
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Prompt 2 Network Traffic Telemetry Data

There is a small weather environment measurement system that has collected several environmental
measurements.

There are sensors connected to these weather stations.

These sensors perform measurements and send their results to a server every 5 minutes.

They do this starting at 2025-10-31 19:31:26(UTC) and ending at 2025-11-07 20:00:34 (UTC).
There are 4 different weather stations on 4 different locations.

These locations are: Den Hoorn, Dordrecht, Wassenaar and Lage Zwaluwe, all in the Netherlands.
The server they send their data to is in Den Hoorn.

A server collects this data and records network traffic telemetry data as well using Zeek.

It records features that are also present in the NSL-KDD dataset.

Those are: duration,protocol_type,service flag,src_bytes,dst_bytes land,wrong_fragment,urgent,count,
srv_count,serror_rate,srv_serror_rate,rerror_rate,srv_rerror_rate same_srv_rate diff_srv_rate,
srv_diff_host_rate,dst_host_count,dst_host_srv_count,dst_host_same_srv_rate,dst_host_diff_srv_rate,
dst_host same src_port rate,dst_host srv_diff_host rate dst_host serror_rate,
dst_host_srv_serror_rate,dst host rerror_rate dst host srv_rerror_rate label

The only service used in the recordings is hitp.
Label indicates if the data was normal or anomalous. Anomalous data is a backlog DOS attack. Or any other http
attack that could exist.

Give me a .csv file with records of these measurements where you include both normal entries and anomalous data
in the form of the backlog DOS attack.

Do not just use random data, but base your created data on general academically accepted sources.

Every b minutes, data was sent to the server, when nomally behaving

Include all the features, make the data as realistic as possible

The data records would for example look like:

0.0472550392150878 tcp hitp,5F,431,181,0,0,0,1,1,0.0,0.0,0.0,0.0,1.0,0.0,1.0,27,27,1.0,0.0,0.0,
0.1851851851851851,0.7407407407407407 ,0.7407407407407407,
0.7407407407407407,0.7407407407407407,0

0.0258569717407226 tcp, hitp,5F,429,181.0,0,0,2,2,0.0,0.0,0.0,0.0,1.0,0.0,0.5,25,25,1.0,0.0,0.0,
0.1785714285714285,0.7142857142857143,0.7142857142857143,0.7142857142857143,
0.7142857142857143,0

0.0507090091705322 tcp hitp,5F,433,181.0,0,0,1,1,0.0,0.0,0.0,0.0,1.0,0.0,1.0,27 27 1.0,0.0,0.0,
0.1851851851851851,0.7037037037037037,0.7037037037037037,0.7037037037037037.
0.7037037037037037,0

1.1995007991790771 tcp,http, 5F,439,181,0,0,0,2,2,0.0,0.0,0.0,0.0,1.0,0.0,0.5,27 24,
0.58888888888888588,0.1111111111111111,0.037037037037037,0.1851851851851851,
0.6666666666666666,0.5925925925925926,0.6666666666666666,0.5925925925925526.0
0.0238661766052246 tcp hitp,5F,430,181.0,0,0,100,100,0.0,0.0,0.0,0.0,1.0,0.0,0.01,100,100,1.0,
0.0,0.0,0.01,0.0,0.0,0.0,0.01

Only 50% of the data should be normal. Make the other 50% anomalous. Keep the anomalous data varied.

In total | want to receive at least enough samples to fit the time period in where every 5 minutes samples were sent
with 4 devices and on top of that anomalous data. The generation of anomalous data is allowed to overwrite the
requirement for sending normal samples every 5 minutes.

Give me only the csv. file in the form of a download link. Do not write any additional text outside of the .csv file.

Figure 3.9: Prompt 2 for the NTT data. This prompt is a bit more strict with the requirements it sets to the dataset that the LLM
has to provide. It will for example put a minimum on the amount of anomalies, making this an explicit requirement. It will also
provide more detail on the measurements that were performed.
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Table 3.12: Prompt design rules from Section 2.4.3 applied in Prompt 1 to generate artificial NTT data.

Design | Rule: Use in prompt 1 (NTT data):
Rule:
1. Prompts must
e?pl'i'tly e?ct::de tI:e t . In the prompt it is stated what columns are to be added
structure of the output. to the dataset:
. lItis stated that the output should only be a .csv file, no
additional text;
. Examples of correct output are given.
2. The Prompt should
prowdtla cqnte);tui-l . The application has been introduced into the prompt to
examples | u,s rating provide background information;
correct domain
behaviour. . The anomalies that are present in the NSL-KDD
dataset have been listed to be included in the data.
3. Include explicit
constraints describing . . )
what the model must . The amount of required samples has been listed;
do and what it must not . The prompt indicates what amount of the data should
do. be anomalous.
3. ltis instructed to solely provide the .csv file, no
additional text.
4. Specify semantic
conlelons tied to the 1. Background information of the application was given;
domain.
2. Locations of the clients were provided, this could effect
the duration of the connection;
3. Information on the software used to capture the NTT
data was given;
4. Information of when attacks happen was given.

Prompt 2 deviates again from the first prompt in that it provides more detail on the information that
should be given. In this case this means that for example the exact time was given in between data was
sent to the server. It was also explicitly instructed that the data should be realistic and new data should
be generated. This data should not be generated at random, prompting the model to use its capabilities
as a system to search the internet for more background sources than just randomly generating numbers.
The model was also instructed that at least 50% of the samples should consist of anomalies.

3.4.2. Data Analysis

Now that synthetic data has been created by using OpenAl’s ChatGPT [21] with the prompts from Sec-
tion 3.4.1, it is important to analyse these datasets on inconsistencies and usability. For both datasets
this will be done by: Verifying correct labelling of features, providing general statistics of the dataset
and comparing the WDs of the generated dataset per feature with the real-recorded data.
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AM data

First it was verified that there are no discrepancies in the feature labelling of the generated dataset
compared to the real-recorded dataset. Second the generated AM data will be compared with the real-
recorded AM data. It turned out that when the LLM was asked to estimate a good ratio between normal
and anomalous data, it only came up with a fairly short list of anomalous samples. Prompt 2 has solved
this issue by specifying a minimum requirement to this. As can be seen in Table 3.13 General statistics
of the generated data can be found in Tables 3.14 and 3.15

Table 3.13: Amount and type of anomalies in the generated AM datasets

Type of sample: Prompt Prompt
1: 2:
Normal data 7951 4092
Broken PM sensor 48 1000
Broken Temperature sensor 24 1000
Broken Humidity sensor 0 1000
Both Temperature and Humidity sensors are broken 35 1000
Total: 8064 8092

Table 3.14: Statistics of generated dataset using prompt 1. Only normal data (i.e. data with label 0) is considered in these
statistics. Data is separated per location of the weather stations. One row is added in the end with some overall statistics.

Location: Temperature Humidity PM1,0 PM2,5 PM10
(avg/std): (avg/std): (avg/std): (avg/std): (avg/std):
Den Hoorn 11.9/2.93 82.1/4.14 7.0/3.18 9.3/3.90 12.3/4.78
Dordrecht 11.0/2.94 80.0/4.08 9.1/3.22 11.5/3.90 14.6/4.81
Lage Zwaluwe 10.5/2.94 78.0/4.10 8.1/3.31 10.3/3.92 13.3/4.84
Wassenaar 13.0/2.92 85.0/4.05 6.1/3.16 8.5/3.87 11.6/4.76
Total: 11.6/3.08 81.3/4.85 7.6/3.41 9.9/4.06 12.9/4.93

Table 3.15: Statistics of generated dataset using prompt 2. Only normal data (i.e. data with label 0) is considered in these
statistics. Data is separated per location of the weather stations. One row is added in the end with some overall statistics.

Location: Temperature Humidity PM1,0 PM2,5 PM10
(avg/std): (avg/std): (avg/std): (avg/std): (avg/std):
Den Hoorn 9.7/2.95 82.7/6.71 7.1/2.99 9.6/3.45  12.1/3.91
Dordrecht 10.2/3.04 80.9/7.06 9.1/3.00 11.6/3.43 14.1/3.89
Lage Zwaluwe 10.0/2.99 81.9/6.93 8.0/2.88 10.5/3.35 13.0/3.74
Wassenaar 9.7/3.04 83.8/6.69 6.2/2.83 8.7/3.25 11.2/3.61
Total: 9.9/3.01 82.3/6.92 7.6/3.12 10.1/3.54 12.6/3.94

It seems that in the case of prompt 1 the temperature and humidity features are quite comparable to
those of the recorded dataset. The PM values however are with both prompts higher in general than
the recorded pm values. Prompt 2 shows a lower average in the temperatures and a higher relative
air humidity. In general the generated data seems more constant than the recorded data. Due to the
presence of more anomalous data, the dataset given by the LLM after instructing it with prompt 2 will
be used in the upcoming experiments of Chapter 4.

In order to check for the usability of the data for training the LSTM Deep learning model as well as
would be possible with the recorded data, and to find the maximum ratio in which the two types of
datasets (generated and the real dataset) can be mixed before the functionality of the deep learning
model should start to deteriorate, the WDs between the distributions are again important here. These
are calculated using the data, this time with both labels 0 and 1. These are provided in Table 3.16:
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Table 3.16: WDs between the normalised recorded AM data and the generated data using prompt 2. Both normal and anomalous
data were taken into account.

Feature Normal (label=0) Anomalous (label=1)
PM1,0 0.0401 0.0581
PM2,5 0.0358 0.0527
PM10,0 0.0525 0.0590
Temperature 0.0357 0.0241
Humidity 0.0470 0.0510

As can be observed, the WDs between the generated data and the real-recorded data in Table 3.16 are
overall lower than the maximum WDs found between subsets of the real-recorded data from Table 3.6.
This already indicates that the AM data is very 'replaceable’ with the generated data without causing a
shift in the behaviour of a deep learning model trained with any. To verify the ratio of real to generated
data that would cause a shift in the behaviour, formula 2.13 of Section 2.5.3 can now be used. When
applying the maximum WD found between the generated data of the two prompts in the formula, this
yields the following:

D(Psynthpmmptz Il Prea|) = 0.06 (3.3)
Emax
J— < .
1=a=%06 (3-4)
With ey = 0.31 this yields:
031 1
1= amin < 556 = %% (3.5)

Since a,,;, cannot be negative, this means that the AM data should be fully interchangeable with the
generated data from prompt 1 and not cause a shift in accuracy. However, since the €,,,, was just an
estimation based on the maximum Wasserstein Difference amongst subsamples of the real-recorded
data, the accuracy can in the end still be affected.

Network Traffic Data

For the network data, also two datasets have been generated, using the prompts from Section 3.4.1.
The headers have been checked and it was verified that the LLM did not make a mistake in the list
of features. For the generation of anomalies it can be seen in Table 3.17 that prompt 1 has, just like
with the AM data, the problem that there are too few anomalies generated. This is solved by prompt 2
by explicitly stating requirements for the amount of anomalies. Statistics about the generated datasets
can be observed in Table 3.18.

Table 3.17: Amount and type of anomalies in the generated NTT datasets

Type of sample: Prompt Prompt
1: 2:
Normal data 7675 8088
DOS Attack 389 8088
Total: 8064 16176

The datasets have similar statistics for most of the features. A notable exception to this however, are the
statistics for the feature 'srv_diff _host_rate’, for prompt 2 this is showing the opposite behaviour from
the real data in Table 3.9, where the mean increases for anomalous data. In the dataset generated by
prompt 2, this seems to have the opposite effect. The real impact of the generated dataset on training
the NTM however, can be better estimated by calculating the WDs between the generated dataset and
the real-recorded data. For this, only the generated dataset generated by the LLM using prompt 2 will
be used. This is due to the fact that the dataset generated by the LLM from prompt 1 has an insufficient
amount of anomalies and is therefore considered not usable. The result from calculating these WDs
can be observed in Table 3.19.
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Table 3.18: Mean and Standard variation of numerical features of the LLM generated datasets for the NTT data compared. Only
samples with label 0 are taken into account here.

Feature Prompt 1, Prompt 1, Prompt 2, Prompt 2,
label =0 label =1 label =0 label =1
duration 0.61/0.34 0.11/0.05 0.23/0.22 0.13/0.10
src_bytes 429.82/17.53 410.12/29.26 448.54/81.13 184.29/191.89
dst_bytes 190.27/17.64 185.03/20.10 178.97/59.35 75.69/77.94
land 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
wrong_fragment 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
urgent 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
count 5.55/2.88 90.92/18.04 15.17/8.33 74.92/14.65
srv_count 5.48/2.87 88.99/17.20 14.91/8.37 74.76/14.70
serror_rate 0.00/0.00 0.00/0.00 0.01/0.01 0.96/0.04
srv_serror_rate 0.00/0.00 0.00/0.00 0.01/0.01 0.96/0.04
rerror_rate 0.00/0.00 0.00/0.00 0.01/0.01 0.91/0.08
srv_rerror_rate 0.00/0.00 0.00/0.00 0.01/0.01 0.91/0.07
same_srv_rate 0.85/0.09 0.97/0.01 0.83/0.09 0.98/0.02
diff_srv_rate 0.15/0.09 0.03/0.01 0.04/0.03 0.01/0.01
srv_diff_host_rate 0.65/0.20 0.05/0.03 0.09/0.06 0.38/0.14
dst_host_count 34.83/14.77 99.89/11.95 108.52/52.10 167.44/50.61
dst_host_srv_count 22.42/11.33 99.53/11.94 80.38/40.49 166.93/50.15
dst_host same_srv_rate 0.75/0.14 0.97/0.01 0.80/0.11 0.98/0.02
dst_host_diff_srv_rate 0.25/0.14 0.03/0.01 0.07/0.05 0.01/0.01
dst_host _same_src_port_rate 0.15/0.09 0.02/0.01 0.17/0.10 0.96/0.03
dst_host_srv_diff_host_rate 0.70/0.12 0.03/0.01 0.12/0.08 0.05/0.04
dst_host_serror_rate 0.70/0.12 0.00/0.00 0.01/0.02 0.97/0.03
dst_host_srv_serror_rate 0.70/0.12 0.00/0.00 0.01/0.02 0.97/0.03
dst_host_rerror_rate 0.70/0.12 0.00/0.00 0.01/0.02 0.93/0.06
dst_host_srv_rerror_rate 0.70/0.12 0.00/0.00 0.01/0.02 0.93/0.06

The WDs in Table 3.19 were calculated by first normalising the recorded dataset and applying the same
scaling to the generated dataset. By normalising the data, the differences between the features them-
selves become comparable. Applying the same scaling weights to the generated dataset preserves
the offset in the data, which could have an impact on the training of the NTM. When comparing the
WDs with the previously determined threshold of €,,,, = 0.69 in Section 3.3.4, it can be observed that
the WDs in this comparison are overall higher. With a few of them even exceeding 1. For estimating
the ratio of real data that is needed to keep the performance of the NTM similar to when it is purely
trained with real-recorded data, this yields the following:

D(Psynthpm,m,,t2 I Preal) =542 (3.6)
emax

l1-a< c 12 (3.7)

With €4, = 0.69 this yields:
1—amin < 0.69 =0.13 (3.8)

5.42
For a,,;n this yields:

Upin = 1—0.13 = 0.87 (3.9)

This means that at least 87% of the dataset used to train the NTM should consist of real data. to
keep the performance similar. However, this is just an estimation. The WD of 5.42 only appears in the
anomalous samples for the feature ’src_bytes’. The importance of this feature is determined by how
the LSTM trainer will apply weights to the different features. Therefore it could well be that a similar
performance of the model will still be preserved even with lower ratios of real data present in its training
set.
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Table 3.19: WDs between the normalised recorded NTT data and the generated data using prompt 2. Both normal and anomalous
data were taken into account.

Feature Normal (label=0) Anomalous (label=1)
duration 0.0024 0.0012
src_bytes 1.2446 5.4164
dst_bytes 0.0000 0.0000
land 0.0000 0.0000
wrong_fragment 0.0000 0.0000
urgent 0.0000 0.0000
count 0.1365 0.2318
srv_count 0.1340 0.2334
serror_rate 0.0092 0.9552
srv_serror_rate 0.0000 0.0000
rerror_rate 0.0162 1.8290
srv_rerror_rate 0.0000 0.0000
same_srv_rate 0.1672 0.0248
diff_srv_rate 0.0455 0.0126
srv_diff_host_rate 0.6345 0.3676
dst_host_count 0.8524 0.7593
dst_host_srv_count 0.5636 0.7537
dst_host_same_srv_rate 0.2472 0.0358
dst_host_diff_srv_rate 0.0533 0.0176
dst_host _same_src_port_rate 1.1978 6.7388
dst_host_srv_diff host rate 0.1500 0.0471
dst_host_serror_rate 0.6737 1.0675
dst_host_srv_serror_rate 0.6467 1.0687
dst_host_rerror_rate 0.6715 1.0257
dst_host_srv_rerror_rate 0.6462 1.0275

3.5. Intrusion Detection System

The main goal of this thesis as proposed in Chapter 1 is to test the influence of LLM generated data
on training an AM and NTM for an IDS. Therefore an application specific IDS was designed. This
IDS will live on top of the Environmental measurement application, where it checks incoming HTTP
traffic from the distributed measurement stations and runs the Application and NTT data belonging to
incoming packets through its models to assign a certain trust score to each node. This trust score can
be used to automatically block nodes from using the server’s service, if it turns out a node is showing
anomalous behaviour, which is to be shown by a trust score dropping below a certain threshold. First
the architecture of the IDS will be introduced in Section 3.5.1, after which the software used to run it is
discussed in Section 3.5.2. Last but not least, the voting algorithm that is responsible for producing the
final trust score is discussed in Section 3.5.3.

3.5.1. Architecture

The IDS consists of several subsystems. These work closely together in tasks like training models,
preparing incoming samples for anomaly prediction by the models and eventually translating the output
of the models into action. A small GUI is also made to display the nodes’ trust scores and to commit
manual interventions if needed. A complete overview of the system can be seen in Figure 3.10.
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Figure 3.10: Top level architecture of the Intrusion Detection System.

To getintroduced briefly to what each component in the IDS is responsible for, here follows an overview:

* Intrusion Detection System: This is the heart of the IDS, this controller (that can be partially
controlled by the GUI) is responsible for receiving either raw data from the server if configured that
way, or receiving prepared data through the data producer from the Application. It is responsible
for running the incoming data packets by the trained model(s) and collecting their scores. It is
also home to the voting mechanism in Section 3.5.3;

* Model Trainer: The model trainer takes datasets from the Dataloader through the main controller
and trains a model based on the configuration passed by the main controller as well. It has the
capability of reloading a previous trained model and train this model further with new additions
on the dataset;

» Dataloader: The Dataloader can receive datasets from the main controller by passing paths to
their respective csv files. It can mix two datasets and derive test sets by itsself. Separate test
sets can also be provided to the Dataloader in order to be scaled accordingly to the training data
that was provided earlier. Samples can also be passed one by one to be scaled in order to run
them by the trained models;
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» Data Producer: This is a highly application specific part of the IDS, it is meant to extract raw data
from the Application and parse this into a dataset that can be used by the IDS. In the context of
the Environment measurement Application this Data Producer for example parses raw Zeek logs
into the NTT format required for the NTM;

* Intrusion Detection Model(s): The models are responsible for offering predictions on the in-
coming samples. They will return their predictions in the form of logits, that the main controller
will transform into a combined trust score through its voting system;

» GUI: The GUI allows for the trust scores of the nodes to be tracked live.

3.5.2. Implementation

All modules have been implemented in the Python programming language. Python was chosen primar-
ily because of its strong ecosystem for machine learning and deep learning, in particular the availability
of mature libraries such as PyTorch. These libraries are used in this work to construct data loaders,
define model architectures, and perform training and evaluation in a concise and reproducible manner.

For the application layer and graphical user interface, the Flask framework is employed. Flask is a
lightweight web framework that is well suited for rapid development and for integrating web-based
front-ends with existing Python code. In this project, it is used to generate the front-end from templates
while orchestrating the underlying Python scripts that handle data processing, model inference, and
interaction with the trained models.

3.5.3. Voting Mechanism

The voting mechanism forms a core feature of the IDS proposed in this thesis. The use of a voting
mechanism is proposed in related research by Jiang et al. [16]. However, in that research, the actual
way in which the voting processes the outcome of the models to a final result, differs from what has
been used in this thesis. Jiang et al. proposed a 'majority win’ voting technique, where three models
cast a binary vote to determine if a sample is considered normal or anomalous. If the majority of the
models agree on the sample to be normal, it will pass as a normal sample. If two out of three or all
three models decide that the sample is anomalous, the sample will be marked anomalous.

In this thesis a slightly more elaborate method is created where the resulting ’logits’ that the models will
produce when a sample is presented on its input are combined into a so called trust score. Since all
the datasets that are fed into each model in this thesis have binary labelling (either 0 or 1 for normal or
anomalous), each model will produce two logits. These logits indicate how likely it is according to the
model that a sample is classified with either a 0 or a 1. Per model, first an individual trust score S will
be calculated:

. . 1
S = o(logit, — logit,) = T glogity o, (3.10)
These trust scores are then combined by taking the average:
Sapp + S
Svote _ App - Network (3 1 )

This produces a general trust score where a value close to 1 means the sample is most likely normal
and for a value close to 0 it means the sample is most likely anomalous. To make a binary decision, a
threshold is used to cast a final vote vote:

(3.12)

vote = 0 if Syote > threshold
vote = 1 if Syote < threshold

If a threshold of 0.75 is taken, then the sample will be considered anomalous if one of the two models
considers the sample to be anomalous. However, it allows for the possibility that a model rejecting a
sample might not be very confident about the decision. This can be observed by the fact that the values
of the two logits of that model lie close to each other. In that case, if the other model is very confident
about giving the sample a normal label, the sample can still pass as normal.
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3.6. Baseline reference models

In order to test the influence of artificially generated data on the performance of the deep learning based
IDS, a baseline needs to be established. This baseline will consist of two deep learning models that are
trained solely with real reliable data. This means that for the NTM, the recorded NSL-like data will be
used. For the AM data model, the recorded AM data will be used. The recorded dataset was therefore
split up in two sets. A training and a testing set. The complete test set will be used later to test the
performance of the voting system. The division was made randomly, but in such a way that the division
of anomalous and normal data was as is visible in Table 3.20.

Table 3.20: The division made in the recorded data to generate a test set for the voting model (VM) and a training set for the
base models.

Sample label Train set# Relative to total size Testset# Relative to total size
training set [%] test set [%]

0 = normal 5537 74.59 1383 74.56

1 =DOS attack 1036 13.69 259 13.96

2 = Sensor anomaly 850 11.45 213 11.48

3.6.1. Network Traffic Data

For the NTT data, a baseline model will be trained using the findings of Jiang. et al [16]. The reason
for this is that the nature of the data that was used in this paper, the NSL-KDD dataset, is similar to
the data set that was recorded for this thesis. Furthermore the researchers also made use of a LSTM
architecture. In this paper, the authors describe an LSTM RNN with one LSTM layer, an averaging
layer to produce one output and a logistic regression layer to map this output to a probabilistic division
between the labels called logits. The maximum logit indicates if the prediction is normal (0) or anoma-
lous (1). The exact parameters used for training this model can be found in Table 3.22. The paper
discussed that only 10 epochs were used to train the model. To verify that this would be enough, a
small test is performed where different amount of epochs, varying from 1 to 150 in increasing steps of
1 have been used to train the model. The impact on the accuracy and other important output metrics
as the precision, recall and F1 score are given in Figure 3.11. To the training set that is provided for
training the baseline models, a small adjustment is made. This model will train on the NTT data only,
therefore features related to the application will be removed. Since anomalies with label = 2 are related
to the sensor data only, and no network anomalies were introduced while a sensor was 'malfunction-
ing’, the labels with value 2 are changed manually to 0 for the training of the NTM. five repetitions were
performed per number of epochs with different random divisions of training data batches.

It can be seen in the results that starting from 84 epochs, the output metrics stay fairly constant. There-
fore 84 epochs will be used in the baseline model. The paper does however not provide the size of the
hidden nodes H in the LSTM layer. Since it is this size that determines in how many nodes the LSTM
Model stores its ‘'memory’, it is an important metric. In the tests for the optimal amount of epochs, this
is therefore kept at a sufficiently large number: 128. In order to determine the optimum size for this
hidden layer, a small comparative test is performed with multiple hidden sizes varying from 2 to 128. It
is expected that, in order to capture the influence of all the features, a size of at least 28 (the amount
of NTT features) would be needed. The results can be found in Figure 3.12.

It can be seen that starting from 4 hidden nodes the output metrics stay more or less constant, which
is smaller than the amount of features that are present in the NTT dataset. This could be explained in
the distribution of some of the features, that remain at a constant 0 and therefore do not benefit from a
memory effect in the model. A size of 4 will be used in the baseline model.

Training a model with these parameters yielded the test performance metrics in Table 3.21
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Figure 3.11: The influence of the amount of epochs performed during the training of the baseline model of the NTT data on the
output metrics: accuracy, precision, recall and F1-score. The line represents the mean outcome of five repetitions. The shadow
around the line indicates the standard deviation of the data. As can be seen in the plots, the output parameters stabilise after 84
epochs, which indicates an optimal trade-off between training costs and performance of the model.
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Figure 3.12: The influence of the amount of hidden nodes in the LSTM RNN model for the NTT data on the output metrics after
testing this model. These metrics are: accuracy, precision, recall and the F1-score. The output metrics stabilise after using 4 or
more hidden nodes. This will be used for the baseline model, since it serves as an optimal trade-off between the complexity of
the model and the performance.

Table 3.21: Output performance metrics of the NTM trained with the parameters from Table 3.22

Parameter: TestlLoss: Accuracy: Precision: Recall: F1-score:
Value: 0.039204 0.988608 0.987850 0.987709 0.987778
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Table 3.22: NTT data LSTM model training parameters for the baseline model, based on Jiang et. al [16]. The amount of epochs
and the size of the hidden nodes have been determined experimentally.

Parameter type: Value:

Batch size 128

Sequence length

Feature size

Hidden size

Amount of LSTM layers

Amount of output classes

Learning rate Starting at 0.1 multiplied with
0.1 per § of the epochs. Final

Learning rate therefore is

N AR

0.001.
Fraction of training data used for testing 20%
Epochs 84

3.6.2. AM data

For the AM data, a similar approach has been taken as for the NTT data in Section 3.6.1. An LSTM
RNN has been trained with one LSTM layer, an averaging layer to produce one output and a logis-
tic regression layer to map this output to a probabilistic division between the labels called logits. The
maximum logit indicates if the prediction is normal (0) or anomalous (1). For this model, the features
that are related to the NTT data have been removed from the training and testing dataset. Since all
samples with label 1 (DOS attack) are only relevant to the NTT data based model, they have manually
been set to 0 for this model. The exact parameters used for training this model can be found in Table
3.24. The amount of epochs that would converge the model have been determined by training different
models with the number of epochs increase from 1 to 150 in steps of 1. five repetitions were performed
per number of epochs with different random divisions of training data batches.

The results of this can be seen in Figure 3.13. From the Figure it can be seen that the model sta-
bilises after 145 or more epochs. Therefore 145 epochs will be used to train the model as a trade-off
between the computational requirements and the performance of the trained model.

For the amount of hidden nodes, an estimation based on the amount of features in the dataset would
predict that five hidden units would be sufficient for this model, since there are five features. When
performing trainings with different amounts of hidden nodes and the 145 epochs that were determined
earlier, it can be seen in Figure 3.14 that indeed from 8 or more hidden nodes, the output test metrics
of the model stabilise. Therefore, 8 hidden nodes will be used.

Training a model with these parameters yielded the test performance metrics in Table 3.23

Table 3.23: Output performance metrics of the AM trained with the parameters from Table 3.24

Parameter: TestlLoss: Accuracy: Precision: Recall: F1-score:
Value: 0.100894 0.983836 0.995181 0.936508 0.964953
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Figure 3.13: The influence of the amount of epochs performed during the training of the baseline model of the AM data on the
output metrics: accuracy, precision, recall and F1-score. The line indicates a mean of five repetitions with a shadow around
the line indicating the standard deviation. As can be seen in the plots, the output parameters stabilise after 145 epochs, which
indicates an optimal trade-off between training costs and performance of the model.
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Figure 3.14: The influence of the amount of hidden nodes in the LSTM RNN model for the AM data on the output metrics after
testing this model. These metrics are: accuracy, precision, recall and the F1-score. The output metrics stabilise after using 8 or
more hidden nodes. This will be used for the baseline model, since it serves as an optimal trade-off between the complexity of
the model and the performance.
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Table 3.24: AM data LSTM model training parameters for the baseline model. The amount of epochs and the size of the hidden
nodes have been determined experimentally.

Parameter type: Value:

Batch size 128

Sequence length 1

Feature size 5

Hidden size 8

Amount of LSTM layers 1

Amount of output classes 2

Learning rate Starting at 0.1 multiplied with 0.1 per % of the
epochs. Final Learning rate therefore is 0.001.

Fraction of training data used for testing 20%

Epochs 145

3.6.3. Voting System

Now that the baseline performance of the two models has been evaluated, it is also important to know
how they perform combined with each other on the data recordings from the measurement. In order
to do this, the two trained models will be put together in in the voting system described in Section 3.5.
They will be tested using the test set that was split off from the full recordings when training the base-
line models (see Table 3.20). Their voting results will be counted and hold against the label that was
connected with the sample to determine the output performance metrics.

For the final results, the output logits of the two models have been saved. Their distributions can
be seen in Figure 3.15. It can be seen that the distributions for the logits for label 0 and 1 are quite far
apart for both models, indicating a strong decisiveness of both models. When combining each models’
logits in a trust score given by each model (as is done in Figure 3.16a), it can be seen that each model
reacts well to the anomalies that are presented for them, to which they specifically have been trained
for. So for the AM, it reacts strongly to anomalies with label 2, and for the NTM, it reacts strongly to
anomalies with label 1. When combining the trust scores of both models in one overall trust score as
is done in Figure 3.16b, then it can be seen that a voters threshold of 0.75 captures the differences
between anomalies and normal data quite well with the exception of 3 outliers. This results in the
confusion matrix in Table 3.25 and the output parameters in Table 3.26.

Table 3.25: Confusion matrix of the voting system.

w 1 = anomalous 0 = normal
Real labels:
AM:
1 = anomalous 212 260
0 = normal 1 1382
NTM:
1 = anomalous 258 214
0 = normal 0 1383
Voting System:
1 = anomalous 270 2
0 = normal 1 1382
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Figure 3.15: Output logits of the AM and the NTM side by side. The output logits indicate a likelihood that the label it represents
is actually the label belonging to the sample. In Figure a, both the models give a strong indication towards label 0, which was
indeed the label that those samples carried. In Figure b, it can be seen that when the data holds label 1, the NTM indeed reacts
to these samples by showing a larger likelihood towards label 1 than label 0. As it should do, since that model is trained in
detecting these anomalies. In Figure c, the label is 2. This is a type of anomaly that the AM should pick up. And as can be seen

it indeed reacts to these anomalies by showing a stronger likelihood for label 1 (an anomaly is detected).

Table 3.26: Output performance metrics of the VM.

Parameter: Accuracy: Precision: Recall: F1-score:
AM: 0.859 0.995 0.449 0.619
NTM: 0.885 1.000 0.547 0.707
VM: 0.998 0.998 0.996 0.997
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(a) Trust scores of the AM and the NTM. The trust score indicates how trustworthy the source of the samples is when running the latest sample by
the models. When data with label 0 is passed, both models indicate that the sample was trustworthy. When data with label 1 is run by the models,
the NTM indicates an anomaly by lowering its trust score. When samples with label 2 arrive, the AM shows a lower trust score. It has to be noticed
that the variance in its trust score is significantly larger than the variance of the trust scores provided by the NTM.
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(b) The overall trust score of the voters system. The average of the trust scores of the two models counts as an overall trust score, where the
presence of anomalous data is decided by the trust score falling below a threshold, in this case 0.75. In the case of label 0, one outlier can be
seen below the threshold, this will be marked as a false positive. The two outliers above the threshold for label 1 and label 2 are marked as a false
negative.

Figure 3.16: Trust scores provided by the two models present in the voting system. Figure (a) shows the raw trust scores of
each model, in Figure (b) these are combined into one score.



Measurements

In Chapter 1, several problem statements and objectives were proposed in Section 1.3. While some of
these objectives have been fulfilled by the data analysis in the previous chapter. The main topic of this
thesis is about the influence of LLM generated data on training an AM and a NTM for an IDS. Therefore
objective 3b still has to be fulfilled in order to answer research question 3. This will be done by two main
experiments (experiment 1 in Section 4.1 and experiment 2 in Section 4.2 of which the results will be
shown in Section 4.3. Two experiments will be performed to test the influence of LLM generated data
on the baseline models that were described in Section 3.6. The architecture of both the AM and the
NTM just as the voting mechanism with it's threshold of 0.75 will therefore be maintained throughout
the whole set of experiments.

The two main experiments that will be performed will both test a set of various mixes of real-recorded
data and LLM generated data. What differs between the two, is how the data is mixed. In the first
set of experiments, real-recorded data in the training dataset will be replaced with increasing amounts
of generated data, trying to achieve a complete overview of different ratios of real to generated data,
while keeping the total training set size constant. In the second set of experiments, the total size of the
training datasets for the Application and NTMs will increase. Data from the LLM generated datasets will
be added to increase the ratio of the generated data in the combined training dataset, while preserving
the complete information of the recorded dataset. The experiments will be described in more detail in
Sections 4.1 and 4.2.

4.1. Experiment 1

In experiment 1, as mentioned, the baseline Application and NTMs from 3.6 will be trained with datasets
that will have a constant increase in the ratio of LLM generated data compared to the original recorded
data. The original data records are replaced by this generated data, which will keep the total training
dataset size constant. The reason for this is that the effect of the generated data can be measured in a
more controlled environment. Nothing about the model changes except for the content of the training
data.

4.1.1. Set-up

For this experiment both the Application and NTMs will be trained in rounds. In each round, the amount
of generated data in the combined training dataset will increase with 1% of the total size of the training
dataset. The models’ performance will be tested with pre-separated testing datasets for the models.
After completing the training, the models will be combined in the voter’s model where again a pre-
separated dataset is used to test the VM. This will be repeated 5 times where a combined dataset is
made with a different subset of the original recorded training data and the generated training data, in the
same ratio. After this is completed, the ratio increases with 1%pt and the whole cycle will be repeated
until 100% of the training set consists of pure generated data. The parameters of this experiment are
collected as well in table 4.1

47
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Table 4.1: Parameters Experiment 1

Parameter AM NTM

Training set size (# samples) 7423 7423

Test set size (# samples) 1856 1856

Number of repetitions 5 5

Total number of models 500 500

trained

Ratio of generated data to Start at 0 %to 100% in steps Start at 0 %to 100% in steps

real-recorded data of 1% (either 74 or 75 of 1% (either 74 or 75
samples per round) samples per round)

Input features 5 38

Epochs per training 145 84

Hidden size 8 4

4.1.2. Collected results

For each round of training, some parameters will be calculated and collected. These include the output
metrics of the individual model as well as the complete VM, the raw logit output of the models based on
their own test sets and the trust scores provided by the voting system. These will be used to produce
the following graphs:

1. A plot with the Accuracy, Recall score, Precision score and F1-score over the ratio of generated
data over real-recorded data. This will be the average of the scores per round in the experiment.
For the Network Traffic and the AM, separate models will also be made with their scores when
tested with their own respective test datasets as well as a general plot for the outcome of the VM;

2. Aplotwith the average and the standard deviation of the raw output logits. These will be separated
out over the case where the label of the test data is equal to 0 and when it is equal to 1. They
will be taken when the models are separately evaluated on their own test sets, so before the VM.
This will be plotted over the ratio of generated data over real-recorded data;

3. A plot with the average and standard deviations of the trust score of the VM over the ratio of
generated data over real-recorded data;

4. A plot with the average and standard deviations of the confusion matrices for the Application and
the NTMs separately and of the VM in general. Again plotted over the ratio of generated data
over real-recorded data.

All this data is stored in 3 rows per run. One for just the AM, one for the NTM and one for the overall
VM. This way the output metrics like the accuracy and precision are available of all models and can
therefore be analysed separately

4.1.3. Expected outcome

The aim of the experiment is to find out if there is a threshold for the ratio of LLM generated data to
real-recorded data from where the performance of the AM, NTM and the Voting system will drop. This
performance will be expressed by the outcome metrics of these models. For this thesis it is considered
a degradation if one of these metrics drops more than the standard deviation of the same metric in the
case where no generated data is mixed in the training set of the model. It is expected that this will
happen when the ratio of real data in this training dataset drops below «,,;,, = 0.87 for the network
model and that it will not happen at all for the AM, since the «a,,;, for the AM data was smaller than 0.
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4.2. Experiment 2

In experiment 2, the baseline Application and NTMs from 3.6 will again be trained with datasets that will
have a constant increase in the ratio of LLM generated data compared to the original recorded data.
In this experiment however, the LLM generated data samples will be added to the recorded data in the
combined dataset. Therefore the total size of the training dataset will increase per round. The reason
for this is that one of the purposes of this thesis is to explore if LLM generated data could decrease the
amount of samples needed for training an IDS model by completing a larger dataset where only part
of the data samples comes from ‘real’ samples.

4.2.1. Set-up

For this experiment both the Application and NTMs will again be trained in rounds. In each round,
there will be such an amount of generated data added to the combined dataset, that the total ratio of
generated data in the combined dataset has increased with 1%pt. The models’ performance will be
tested with pre-separated testing datasets for the models. After completing the training, the models will
be combined in the voter’s model where again a pre-separated dataset is used to test the VM. This will
be repeated 5 times where a combined dataset is made with the full recorded dataset and a different
subset of the generated training data, in the same ratio. After this is completed, the ratio increases with
1%pt and the whole cycle will be repeated until one of the generated datasets is exhausted. After this,
the cycles will continue where only of the other dataset extra samples will keep on being added until
that one is exhausted as well. For the first model, the dataset will stay constant at the maximal ratio of
generated data over real-recorded data that can be achieved. The parameters of this experiment are
to be found in table 4.2. The same parameters are collected as for the first experiment.

Table 4.2: Parameters Experiment 2

Parameter AM NTM
Training set size (# samples) Varying from 7423 until 15,515 7423 until 23,599
Test set size (# samples) 1856 1856
Number of repetitions 5 5

Total number of models 270 345
trained

Ratio of generated data to Start at 0 %to 53% in steps of  Start at 0 %to 69% in steps of
real-recorded data 1% 1%

Input features 5 38
Epochs per training 145 84
Hidden size 8 4

4.2.2. Expected outcome

For this experiment, a similar outcome to experiment 1 is expected. However, since the recorded
dataset is not being replaced this time, its original structure keeps on contributing to the combined
dataset. Therefore the model might become more ’flexible’ as soon as more generated data is mixed
in, allowing for more samples to be classified as normal. This is because the generated datasets have
slightly different statistics compared to the real-recorded dataset, while still being classified as normal
data. So instead of a shift, like in experiment 1, an expansion can be expected here. This might
cause more false negatives in both models, but especially the AM with its low variation on its features
might suffer most from this. The same requirement is hold where lowered performance metrics are
considered a degradation if they drop lower than the standard deviation of the metrics in the case no
generated data is being used for training yet.
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4.3. Experimental Results
After running both experiments and collecting the results, several plots have been made. They will be
presented in Section 4.3.1 for experiment 1 and in Section 4.3.2 for experiment 2.

4.3.1. Experiment 1

For experiment 1, the results from the list in Section 4.1.2 have been collected and will be presented
here. At first, the behaviour of the raw logit output of the Network Traffic and the AMs are displayed in
Figures 4.1 for the NTM and in Figure 4.2 for the AM. It can be seen that for the NTM the logits stay
fairly constant up to 48%. From then on the logits 1 and 0 from when anomalous data was presented
(true label 1) increase slightly. A sharp change in the logit values can be observed after more than
90% of the training dataset consists of generated data. The 'O’ logit for true label 0 sharply decreases
while the '0’ logit for anomalous samples increases sharply. The same applies for the 1’ logits. The
percentage of generated data in the combined dataset from which the mean reaches outside of the
standard deviation range at 0% (the baseline experiment), can be observed in Table 4.3.

Network Traffic model logit output experiment 1
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Figure 4.1: The raw logit output of the NTM in experiment 1. The mean of 5 repetitions is plotted for each logit with a shadow
around the mean indicating the pooled combination of the standard variation in logits of each run. The logit number indicates for
which label the prediction holds, while the number after 'true’ indicates the actual label of the samples.

Table 4.3: Percentages to which the mean of the logits of the NTM reach outside of the range of the standard deviation of the
baseline model logits.

NTM Logit Percentage Average logit value at  Type of
the percentage change
Logit O for label O 100% 2.3145 Decrease
Logit 1 for label O 100% -2.2596 Increase
Logit O for label 1 22% -2.7079 Increase
Logit 1 for label 1 96% 1.2222 Decrease

Table 4.4: Percentages to which the mean of the logits of the AM reach outside of the range of the standard deviation of the
baseline model logits.

AM Logit Percentage  Average logit Type of change
value at the
percentage
Logit O for label O 100% 2.7586 Decrease
Logit 1 for label O 100% -2.3022 Increase
Logit O for label 1 - - Remains within bounds
Logit 1 for label 1 - - Remains within bounds

For the AM, the logits remain very constant. Only at 100% the logits that belong to normal samples
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Application model logit output experiment 1
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Figure 4.2: The raw logit output of the AM in experiment 1. The mean of 5 repetitions is plotted for each logit with a shadow
around the mean indicating the pooled combination of the standard variation in logits of each run. The logit number indicates for
which label the prediction holds, while the number after 'true’ indicates the actual label of the samples.

start to reach outside of the standard deviation range at the baseline. The actual average logit values
they change to can be observed in Table 4.4.

The next plots to be presented are the confusion matrices of the different models. The confusion
matrices have been plotted for all three models separately. The NTM’s confusion parameters are dis-
played in Figure 4.3a, for the AM in Figure 4.3b and the VM in Figure 4.3c. They stay fairly constant
with low percentages of generated data mixed in the combined dataset, but they do change. In Table
4.5 are again the percentages on when the data starts to deviate outside of the standard deviation at
the baseline.

Table 4.5: Percentages at which the mean of the confusion parameters of each model reaches outside of the range defined by
the standard deviation of the baseline model parameters, including the corresponding average counts and direction of change.

Model Confusion metric Percentage Average count Type of change
at that
percentage

Network Traffic True positives 45% 257.6 Decrease
False positives 100% 1.8 Increase
True negatives 100% 1594.2 Decrease
False negatives 45% 1.4 Increase

Application True positives 10% 211.8 Decrease
False positives 39% 1.6 Increase
True negatives 39% 1640.4 Decrease
False negatives 10% 1.2 Increase

Voting True positives 10% 469.8 Decrease
False positives 39% 1.6 Increase
True negatives 39% 13814 Decrease
False negatives 10% 2.2 Increase

The next data that will be represented are the output metrics of all three models. These include the
Accuracy, the Recall score, the Precision score and F1-score of the trained models. The output metrics
for the Network Traffic- and the AM, are based on their own test sets. The output metrics of the VM are
based on the final test set. These output metrics are plotted in Figure 4.4. Their deviations are shown
in Table 4.6. It can be seen that for the NTM, the values stay within range until more than 45% of the
combined dataset consists of generated content. However, for the AM and therefore also the VM, the
output metrics already start to deviate when 10% or more of the combined training dataset consists of
LLM generated data.
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(a) The confusion matrix over different percentages of generated data
in the combined training dataset of the NTM in experiment 1. The mean
of 5 repetitions is plotted for each type with a shadow around the mean
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(b) The confusion matrix over different percentages of generated data
in the combined training dataset of the AM in experiment 1. The mean
of 5 repetitions is plotted for each type with a shadow around the mean
indicating the standard deviation over the 5 repetitions.
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(c) The confusion matrix over different percentages of generated data in
the combined training dataset of the VM in experiment 1. The mean of 5
repetitions is plotted for each type with a shadow around the mean indi-
cating the standard deviation over the 5 repetitions.

Figure 4.3: Confusion matrices over different percentages of generated data in the combined training dataset for all three models
in experiment 1.
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(b) The output metrics over different percentages of generated data in
the combined training dataset of the AM in experiment 1. The mean of
5 repetitions is plotted for each metric with a shadow around the mean
indicating the standard deviation over the 5 repetitions.

(a) The output metrics over different percentages of generated data in
the combined training dataset of the NTM in experiment 1. The mean of
5 repetitions is plotted for each metric with a shadow around the mean
indicating the standard deviation over the 5 repetitions.
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(c) The output metrics over different percentages of generated data in
the combined training dataset of the VM in experiment 1. The mean of
5 repetitions is plotted for each metric with a shadow around the mean
indicating the standard deviation over the 5 repetitions.

Figure 4.4: Output metrics over different percentages of generated data in the combined training dataset for all three models in
experiment 1.

The final plot will contain the overall trust score of the voting system. This will be displayed in Figure
4.5. The percentages from which the trust scores start to deviate outside the range of the standard
deviation of the baseline experiment, are displayed in Table 4.7. It can be seen that the trust scores
for testing data with labels 0 and 1 eventually move out of the range. This happens for the data with
label O after 17% of LLM generated data has been mixed in with the real-recorded data for the training
datasets. For data with label 1 this happens almost immediately at 1%. The trust score for data with
label 2 does stay within boundaries and even decreases slightly when more generated data is mixed
in.



54

4. Measurements

Table 4.6: Percentages at which the mean of the output metrics of each model reaches outside of the range defined by the
standard deviation of the baseline model parameters, including the corresponding average values and direction of change.

Experiment 1

Model Output parameter  Percentage Average value Type of change
at that
percentage
Network Traffic Accuracy 45% 0.9992 Decrease
Precision 100% 0.0000 Decrease
Recall 45% 0.9946 Decrease
F1-score 45% 0.9973 Decrease
Application Accuracy 10% 0.9988 Decrease
Precision 10% 0.9953 Decrease
Recall 10% 0.9944 Decrease
F1-score 10% 0.9948 Decrease
Voting Accuracy 10% 0.9983 Decrease
Precision 10% 0.9979 Decrease
Recall 10% 0.9953 Decrease
F1-score 10% 0.9966 Decrease
Average of trust scores per sample type in experiment 1
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Figure 4.5: Trust score of Voting system compared to the percentage of LLM generated data in the training dataset.

Table 4.7: Percentages at which the trust score of the Voting system starts to reach outside of the range defined by the standard
deviation of the baseline model trust scores.

Trust score Percentage Average trust Type of change
score at that
percentage

Test samples with 17% 0.9938 Decrease

label O

Test samples with 1% 0.5068 Increase

label 1

Test samples with - - Always remains lower

label 2 than baseline experiment
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4.3.2. Experiment 2

For experiment 2, the results will be given in a similar matter to the results of experiment one in Section
4.3.1. The difference however, is that in this experiment LLM Generated data has been added on top
of the real-recorded data. Therefore, the total percentage of generated data in the graphs will never
reach the full 100%, but stay below this.

At first, the behaviour of the raw logit output of the Network Traffic and the AMs are displayed in Fig-
ures 4.6 for the NTM and in Figure 4.7 for the AM. It can be seen that for the NTM the logits stay fairly
constant up to 44%. From then on the logit 1 from when anomalous data was presented (true label 1)
increase slightly, while logit ‘0’ seem to decrease again slightly. The percentage of generated data in
the combined dataset from which the mean reaches outside of the standard deviation range at 0% (the
baseline experiment), can be observed in Table 4.8.
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Figure 4.6: The raw logit output of the NTM in experiment 2. The mean of 5 repetitions is plotted for each logit with a shadow
around the mean indicating the pooled combination of the standard variation in logits of each run. The logit number indicates for
which label the prediction holds, while the number after 'true’ indicates the actual label of the samples.

Table 4.8: Percentages to which the mean of the logits of the NTM reach outside of the range of the standard deviation of the
baseline model logits.

Logit Percentage Average logit value at  Type of change
the percentage
Logit O for label 0 - - Does not reach outside
of the range
Logit 1 for label O 62% -3.4602 Decrease
Logit O for label 1 44% -2.7328 Increase

Logit 1 for label 1 47% 1.9196 Increase
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Figure 4.7: The raw logit output of the AM in experiment 2. The mean of 5 repetitions is plotted for each logit with a shadow
around the mean indicating the pooled combination of the standard variation in logits of each run. The logit number indicates for
which label the prediction holds, while the number after 'true’ indicates the actual label of the samples.

Table 4.9: Percentages to which the mean of the logits of the AM reach outside of the range of the standard deviation of the
baseline model logits.

Logit Percentage Average logit Type of change

value at the

percentage
Logit O for label 0 - - Remains within bounds
Logit 1 for label O 49% -3.8747 Decrease
Logit O for label 1 - - Remains within bounds
Logit 1 for label 1 - - Remains within bounds

For the AM, the logits do seem to shift. However, due to their large standard variations, only logit 1 for
label O falls out of bounds. It can be observed that the distance between the logits (so the difference
between logit 0 for label 0, logit 1 for label 1 and the logits O for label 1 and 1 for label 0) increases.
Creating a stronger separation between the logits. The actual average logit value to which logit 1 for
label 0 changes to can be observed in Table 4.9.

The next plots to be presented are the confusion matrices of the different models. The confusion
matrices have been plotted for all three models separately, just like with the results of experiment 1.
The NTM’s confusion parameters are displayed in Figure 4.8a, for the AM in Figure 4.8b and the VM in
Figure 4.8c. They stay fairly constant over the whole range of percentages of generated data mixed in
the combined dataset, but the confusion parameters of the AM does change. Table 4.10 shows again
the percentages on when the data starts to deviate outside of the standard deviation of the baseline
values. It can be seen that when more than 6% of the training data consists of LLM generated data,
the True positives slightly increase and the False Negatives slightly decrease.
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Table 4.10: Percentages at which the mean of the confusion parameters of each model reaches outside of the range defined by
the standard deviation of the baseline model parameters, including the corresponding average counts and direction of change.

Model Confusion metric Percentage Average Type of change
count at that
percentage
Network Traffic True positives - - Remains within bounds
False positives - - Remains within bounds
True negatives - - Remains within bounds
False negatives - - Remains within bounds
Application True positives 6% 212.2 Increase
False positives - - Remains within bounds
True negatives - - Remains within bounds
False negatives 6% 0.8 Decrease
Voting True positives - - Remains within bounds
False positives - - Remains within bounds
True negatives - - Remains within bounds
False negatives - - Remains within bounds
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1500+ 1500
10001 —e— True Positives 1000 —e— True Positives
€ False Positives € False Positives
> . > .
8 7501 —— True Negatives 8 750 —+— True Negatives
—o— False Negatives —o— False Negatives
500+ 500
2501 250
0 &——+—+—+—¢—¢—¢—— 01 * * * * *
0 10 20 30 40 50 60 70 0 10 20 30 40 50

% of generated data in the combined dataset

(a) The confusion matrix over different percentages of generated data
in the combined training dataset of the NTM in experiment 2. The mean
of 5 repetitions is plotted for each type with a shadow around the mean

indicating the standard deviation over the 5 repetitions.
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(b) The confusion matrix over different percentages of generated data
in the combined training dataset of the AM in experiment 2. The mean
of 5 repetitions is plotted for each type with a shadow around the mean

indicating the standard deviation over the 5 repetitions.
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(c) The confusion matrix over different percentages of generated data in the combined
training dataset of the VM in experiment 2. The mean of 5 repetitions is plotted for
each type with a shadow around the mean indicating the standard deviation over the 5

repetitions.

Figure 4.8: Confusion matrices over different percentages of generated data in the combined training dataset for all three models

in experiment 2.
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The next data that will be represented are the output metrics of all three models. These include the
Accuracy, the Recall score, the Precision score and F1-score of the trained models. The output metrics
for the Network Traffic- and the AM, are based on their own test sets. The output metrics of the VM are
based on the final test set. These output metrics are plotted in Figure 4.9. Their deviations are again
put in a table and they can be observed in Table 4.11. It can be observed that the Application and the
VMs do have a slight decrease in all four output parameters starting at 28% of generated data mixed

in the training datasets.
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Figure 4.9: Output metrics over different percentages of generated data in the combined training dataset for all three models in
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experiment 2.
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Table 4.11: Percentages at which the mean of the output metrics of each model reaches outside of the range defined by the
standard deviation of the baseline model parameters, including the corresponding average values and direction of change.

Model Output parameter Percentage Average Type of change
value at that
percentage
Network Traffic Accuracy, Precision, - - Remains within
Recall, F1-score bounds
Application Accuracy 28% 0.9985 Decrease
Precision 28% 0.9953 Decrease
Recall 28% 0.9915 Decrease
F1-score 28% 0.9934 Decrease
Voting Accuracy 28% 0.9980 Decrease
Precision 28% 0.9979 Decrease
Recall 28% 0.9941 Decrease
F1-score 28% 0.9960 Decrease

The final plot contains the overall trust score of the VM. This will be displayed in Figure 4.10. The
percentages from which the trust scores start to deviate outside the range of the standard deviation of
the baseline experiment, are displayed in Table 4.12. It can be seen that only the trust score for test data
with label 1 increases after more than 11% of generated data is mixed in the combined training datasets.
The trust score for data with label 2 does change significantly as well, but this only decreases further,
approaching 0.5 at high percentages. It should be mentioned that, despite the AM did not receive more
generated data in its training than 53%, the plot does continue to 69%. This is due to the NTM still
receiving generated data in its training set, simply because more generated samples were available.
Therefore the only change in inputs from 53% onward is taken by the NTM.
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Figure 4.10: Trust score of Voting system compared to the percentage of LLM generated data in the training dataset.

Table 4.12: Percentages at which the trust score of the Voting system starts to reach outside of the range defined by the standard
deviation of the baseline model trust scores.

Trust score Percentage Average trust Type of change

score at that

percentage
Test samples with label 0 - - Always remains lower than baseline experiment
Test samples with label 1 11% 0.5081 Increase

Test samples with label 2 - - Always remains lower than baseline experiment







Discussion

In this chapter, the findings from background research in Chapter 2, the analysis of the design in Chapter
3 and the findings from the experiments in Chapter 4 will be discussed to provide answers to the initially
posed research questions in Chapter 1. Furthermore, the limitations involved with this work will be
discussed and last a brief look will be taken into what possible work still lies ahead after this thesis and
what future work could consist off.

5.1. Results and problem solution

5.1.1. IDS trained with generated data

In the beginning of this thesis, three major research questions were proposed. This section will dive
into finding answers to those questions. To start with question 1, where the question was "to what ex-
tend Al-generated data can supplement or replace real-world data in training deep learning-based IDS
models, it is key to observe the findings of the experiments that have been performed in Chapter 4. The
two experiments were aimed at finding the influence of ever increasing percentages of Al generated
data on the performance of both the application and the NTM. This question aims at finding out what
happens in general when generated data is mixed in with real-recorded data and what those models
then are capable of. For that it is mostly interesting to dive into the results of experiment 2.

In experiment 2, it can be observed straight away in the final trust scores of Figure 4.10 that, despite
the trust score of anomalous data with label 1 slightly increasing when more generated data is mixed
into the training datasets of the models, the trust score for data with label 2 actually decreases more
when generated data is added in. And on top of that the average trust scores for samples with label
0 does increase. This signifies that the models have actually increased the capability to distinguish
normal from anomalous data. When comparing the output metrics of the different models in Figure 4.9,
it becomes clear that most of this is due to the contribution of the AM. While the output metrics of the
NTM stay fairly constant, the output metrics of the AM seem to follow a capricious trend once the per-
centage of generated data increases. In some instances, some of the output metrics drop slightly down
only for them to rise above their previous trend shortly after. In general they are improving with more
generated data being added. This impact plays a direct role in the performance of the VM as can be
seen in the same Figure, where the output metrics also generally increase once more than 40% of the
training dataset consists of generated data. This does explain why mostly the trust score belonging to
the anomalous data with label 2 is improving. This is the data that is marked anomalous by application
content. It is the type of samples with either a broken temperature, humidity or PM sensor, anomalies
that the AM is specifically trained to detect. This behaviour is again confirmed by observing the raw
logit output in Figure 4.7. Where the logits indicate a stronger confidence in detecting the correct label
as soon as more generated data is added. The logit for ‘0’ increases slightly for data with label 0, as
soon as it is trained with more generated data. So does the logit for ‘1’ for data with label 1. While they
decrease even stronger when data of the opposite label is proposed to them. This increase in distance
between their two outcomes shows that the model can distinguish anomalous data better from real data
when generated data is added to the training mix. With False negatives and False positive predictions
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reaching almost 0 as can be observed in Figure 4.8. What could play a role here is the increase in
sample size for the models. As was written by Alwosheel et al. [3], large models need large datasets to
be trained on. By increasing the dataset artificially it seems the model benefitted in performance from
seeing a wider variety of data while still being presented with the original recorded dataset to remain
fitted to the user case, instead of degrading.

How different it is for experiment 1, where replacing real-recorded training data with generated data
causes a decreased performance of all models in different amounts. The NTM seems not to be affected
much at first, where its output metrics only start to drop sharply when close to a 100% of generated data
is mixed in, according to Figure 4.3a. For the application and therefore the VM (that depends in a great
manner from the behaviour of each single model), the story is different. The performance of this model
seems to decrease almost from the start. At 10% of generated data mixed into their training sets, the
AM’s output metrics already leave the boundaries set by the baseline model, for them to start dropping
sharply at 45% and up. Figure 4.3 could provide us with a clue to why this happens. When observing
the progress of the confusion matrix of the AM, it is observed that the amount of False positives seem
to rise exponentially after more than 60% of generated data is added to the training dataset (where the
average false positive count actually already leaves the pre determined bounds at 39%). This to the
cost of the True negative count that decreases sharply.

To explain why this might happen, it is important to look more into the data itself that is being used
to train the models. After all, a deep learning model is merely forming predictions based on an abstract
image of the distribution of the training data it received. In particular the AM data sparks great interest
due to the performance of the AM in both experiments. In Sections 3.3.4 for the real-recorded data and
3.4.2 for the generated data, the statistics belonging to the real and generated datasets are discussed.
There it was found that the real-recorded AM data proves to be of a quite constant nature. It has to be
mentioned that the time of the year in which this data was recorded is usually not known for its great
temperature differences, where autumn marks the crossover from hot summer days to a cooler winter.
Since the air humidity is also directly dependant on the air temperature, there are no great fluctuations
to be measured here as well. And with the absence of smog filled days that could occur in the summer
when the wind is usually calmer, the PM counter also showed quite a constant behaviour. All this to-
gether forms a very narrow range for the model to shape itself to. Therefore, when this real-recorded
data is being replaced by generated data (of which the distribution will be discussed more in Section
5.1.2 of the discussion), the shallow range in which the recorded data would fit well is all of a sudden
expanded. And with this greater variance of the mixed data, samples where a broken sensor indicates
a radically different value from the mean (either very high or usually for this experiment it would produce
a 0) might all of a sudden be marked as normal instead. While adding the data to the original dataset
as was done in experiment 2, makes the model not lose its knowledge about the real-recorded data,
merely extending the precision of the barrier between normal and anomalous data.

For the NTM in experiment 1, it seems that generated data does not affect the model as much as
what would be expected from the WD analysis earlier in Section 3.4.2. Only when 100% of the data is
replaced by generated data and therefore no original recorded data is part of the training set any more,
the model will start to consider many of the normal real-recorded samples to be anomalous. With the
model starting to fall slightly out of its bounds by 45% or more of the combined dataset being filled with
generated data. The reason why it might be relatively tolerant to the introduction of generated data
could be due to the volatility of NTT parameters. Opposite to the AM data with its relatively constant
measurements, the NTT data has relative larger variances due to the nature of the technology respon-
sible for the packet delivery. It seems that the LSTM architecture therefore reacts with more tolerance
on data with a larger variance.

One of the research papers that served as inspiration for this thesis [29] suggests something simi-
lar when generating imagery with deep learning based models in order to feed these back into the
training of the same model. In this paper it is suggested that the collapse of the model could be pre-
vented as long as in each cycle a certain ratio of realistic data is combined with the artificially generated
dataset. This poses a stronger support for the methods of experiment 2, to add generated data on top
of real-recorded samples instead of removing the real-recorded data.
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To summarise this analysis, it seems that the LSTM architecture used in this thesis is in general ad-
justing very well to the variance of the training data it is offered. Therefore, it really depends on the
distribution of the data that is used to train it, how tolerant these models are to the influence of LLM
generated data once real-recorded data is being replaced. With more fluctuating data the impact of
adding generated data to the training set is relatively marginal. With data that has a less variant dis-
tribution like temperature readings or PM counts, the model fits itself tighter to the distribution, prone
to making more mistakes. By adding the generated data to the original recorded dataset the perfor-
mance of the models however is improved. The increased dataset size could be the reason behind
this improvement.

5.1.2. Quality of synthetic data

Question 2 put forward the inquiry to 'Whether synthetic data can accurately capture the temporal and
contextual dependencies present in real sensor measurements’. This has been researched for most
part in the data analysis of Section 3.3.4 and Section 3.4.2. This question mostly focusses on replacing
the real-recorded sensor measurements for the AM with LLM generated data. When observing the gen-
erated data and comparing this with the real-recorded data, it seems that the LLM has managed well to
capture the distribution of the environmental measurements, the temperatures were slightly lower than
those of the recorded dataset and the humidity therefore slightly higher, but not to what seems out of
the ordinary for these places in the Netherlands when considering their current climate statistics.

For the PM values, slightly higher counts were generated by the LLM. Although this does reflect a
more global representation of the average fine dust particle count in the air and the counts were still
below the limits of what is considered abnormal to the air quality in the Netherlands, it was significantly
different from the average counts that were recorded through the weather stations. The blame cannot
be found in lack of online references for the LLM to base its decisions on. Altough the few sources that
specifically measure the particle count in the Netherlands fall into insignificance compared to the vast
amount of sources available to the LLM for its training, the information is there. This could be one of
the factors explaining why the AM lost some of its performance with the replacement of real-recorded
data by generated data. An indicator suggesting strongly that the recorded data could be replaced
by the generated data, however, is the WD that was calculated between the two datasets. With the
WD between the generated and recorded datasets being significantly lower than the WDs calculated
among the recorded dataset itself. However, most of the high WDs that were found when performing
these calculations are most likely due to the anomalous behaviour of the weather station in Den Hoorn.
Since this was used to produce anomalous data for the AM dataset and for the NTT dataset, it is shorter
on normal samples compared to the other weather stations. This could be the reason why Den Hoorn
appeared in most of the ’largest’ WDs.

Although the statistics do not show a clear indication that the generated AM data is unsuitable for
training the AM, it has been concluded in practice that replacing the real-recorded dataset with gener-
ated data does not improve the model. Only when supplementing the recorded data set with generated
data was an improvement (albeit marginal) was detected. So, it seems that synthetic data can indeed
accurately capture the temporal and contextual dependencies present in real sensor measurements
to a certain limit. It will not be able to fully replace the real recordings when it comes to generating an
application deep-learning-based IDS.

5.1.3. Performance over percentage

Last but not least, question 3 considered the ratio of real-to-synthetic data and how it affects model
performance. It has already been partially made clear in Section 5.1.1 that the influence of generated
data depended greatly on the fact if it was added on top of the recorded dataset, or if it replaced the
original recorded dataset, with the latter eventually causing performance degradation. Initially an es-
timation or prediction was made in Section 3.4.2, that for the AM data, virtually all the recorded data
would be replaceable by the generated data without causing performance degradation. For the NTM,
it was predicted that the model could experience performance degradation when more than 13% of
the combined training dataset would consist of LLM generated data. It turned out when reviewing the
results in Section 4.3, that the WD distance does not provide enough information to make a prediction
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on the limits of how much generated data can be mixed in. The AM data turned out to be far less
replaceable than predicted, whereas the NTM only suffered from performance degradation as soon as
all the real-recorded data was replaced with artificially generated data. So then the question remains:
what is the impact of the ratio of real-to-synthetic data on model performance?

This is a question that can partially be answered. It is observed that depending on how the generated
data is added, the model can either increase in performance slightly (for as far as this could improve
from the base model) or decrease in performance. However, it did not appear that making 10% or less
of the combined dataset by replacing or adding, had any significant influence on the model’s perfor-
mance. It is suggested however, that adding generated data on top of real-recorded samples will have
preference over replacing recorded data. And that real-recorded data will still remain of big importance
for the performance of deep learning based IDS. Inserting artificial data can make improvements, but
have to be crafted with great consideration.

5.2. Limitations

This thesis has experienced some limiting factors that reduced the generality of the researched topic to
a certain amount. To start, the context that was chosen for this thesis (the environmental measurement
application) has shown to be a relatively simple context to train an IDS for. The data that was recorded
is of a relatively constant nature and therefore showed that an LSTM model can fit itself with ease to
the dataset that it delivers. This means that, although this allows one to have a more thorough under-
standing of the type of data that was recorded, the possibility for improving a model is taken away. It
is a topic of great interest to investigate if LLM generated data could have caused a more significant
improvement of the baseline models when it is added on top of real-recorded data. But with only 1
registered false negative and 2 false positives, there is not much space for improvement any more.

On top of this, the scope of research is also quite limited. Since no significant previous research was
found on training deep learning based IDS’ with artificially generated data, a certain baseline had to be
set to investigate the general impact of the generated data on these model’s performances. However,
to restrict the scope of this thesis, it is therefore not suitable to try different model architectures or dif-
ferent LLM’s already. This could serve as future work however.

Another limiting factor is that the performance of the deep learning models is greatly dependant on
the content of the data. It could be that with different applications, the impact of generated data could
be very different. Therefore it is not advised to use conclusions from this thesis as a general method
for replacing recorded dataset with LLM generated data. It serves merely as a basis to show that with
some applications it can indeed replenish AM data and possibly improve model performance with this.
But more research will be needed to transform this into a general statement.

Last but not least, the NTT data could have been more extensive. The recording software on the
server and the environmental measurement application did not allow for more thorough recording of
different kinds of NTT data. This would again extend the scope of this thesis in such a way that the core
topic would fall into insignificance through the jungle of different set-ups. This again argues in favour
of a comparative research with different contexts to create a more general statement.
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5.3. Future Works

As mentioned in the previous section, there are many topics of interest flowing forward from this the-
sis. While this thesis serves as an opening to research on deep-learning IDS trained with artificially
generated data, it proves to be very context specific. Therefore different set-ups and contexts should
be tried and tested.

For example, the use of auto encoders in combination with the LSTM to remove the need for labelled
training data could sincerely improve the performance of IDS. It would serve a great interest to inves-
tigate the behaviour of such an IDS when trained partially with LLM generated data.

More complex contexts should also be researched. While this thesis focused merely on the basis
and what the influence of LLM generated data is on a relatively simple IDS, more complex data types
with more features and more space for error would allow research on the possible improvements that
could be made on an IDS when generated data is added to the training dataset.

Furthermore, different LLMs should also be considered for generating the training datasets. This the-
sis has focused on one of them, to keep the scope limited. However, it should be considered that the
accuracy of the generated data relates heavily on the LLM it is generated by. Therefore it is advised
to perform a comparative study on generated datasets by LLM'’s in the context of deep-learning based
IDS.






Conclusion

This thesis serves as an opening to the research topic of the use of LLM generated datasets into
the training of deep-learning based IDS. In the context of a small distributed environmental measure-
ment application, AM data in the form of temperature, air humidity and fine particle counts have been
recorded over a period of a week. Along with this AM data, the NTT data belonging to the http traffic
between the collecting server and the measurement stations has been collected and recorded using
Zeek. These datasets have been used to train multiple deep learning models with the Long-Short-
Term Memory architecture to establish two base models. One that is used to detect anomalies on the
AM data and one that served to detect anomalies on the incoming network traffic. Following this, and
using a pre-established prompting strategy, a widely available publicly accessible LLM was used to
generate synthetic datasets containing application and NTT data. These have been combined with the
recorded datasets in two different experiments to investigate the impact of artificially generate data on
the performance of the base models. The Wasserstein distance has been used as an estimator to pre-
dict with what percentage of generated data, a decline in performance of these two models would occur.

It has been observed that, when replacing the recorded dataset progressively with the generated data
samples, the AM experiences a performance decline starting with 10% of the combined dataset con-
sisting of generated data samples. However, when adding the generated data to a combined dataset
without replacing the original recorded data, it has been observed that the performance of the base
models is largely preserved, even slightly improved. This has been argued to be highly dependant,
however, on the distribution of the recorded datasets, where it seems that data with in general a higher
variant nature is less affected by the replacement by artificially generated data. The Wasserstein, al-
beit useful to compare datasets on their distributions, turned out not to be a significant predictor on the
influence of adding generated data samples to the combined dataset and the from this arising model
performance.

It is advised for future research to investigate different contexts with different data types on the perfor-
mance of deep-learning based IDS when artificially generated data is added to the training set. More
complex applications allow for the investigation on possible improvement of such models by introducing
artificially generated data, if the baseline performance does not reach a performance limit. Furthermore,
different LLMs should be tried and tested in a comparative study to discover the impact of these on the
quality of the generated data and therefore the influence on an IDS.

This thesis concludes with a partial victory: that the incorporation of artificially generated application

and NTT data can, within certain constraints as identified in the findings, lead to modest performance
improvements in deep-learning-based IDS models.
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