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Timetable Scheduling for Passenger-Centric Urban Rail Networks:
Model Predictive Control based on a Novel Absorption Model

Xiaoyu Liu, Azita Dabiri, and Bart De Schutter, Fellow, IEEE

Abstract— Timetable scheduling plays a key role in daily
operations of urban rail transit systems, as it determines
the quality of service provided to passengers. In order to
develop efficient timetable scheduling methods, it is necessary
to develop a proper model to integrate timetable-related and
passenger-related factors in urban rail network efficiently. In
this paper, a novel passenger absorption model for passenger-
centric urban rail networks is established. The model explicitly
integrates time-varying passenger origin-destination demands
and the departure frequency of each line for real-time timetable
scheduling. Then, a model predictive control (MPC) method
for the timetable scheduling problem is proposed based on
the developed model. The resulting MPC optimization problem
can be formulated as a mixed-integer programming (MILP)
problem, which can be solved efficiently by using the existing
MILP solvers. The effectiveness of the absorption model and
the corresponding MILP-based MPC approach is illustrated
through the case study based on two Beijing subway lines.

I. INTRODUCTION

Urban rail transit has become one of the most important
public transportation modes in big cities (e.g., Beijing,
London, New York) because of its safety, stability, high
efficiency, and sustainability. The main goal of the urban
rail transit systems is to provide satisfactory service to
passengers. Timetable scheduling is regarded as an effective
way to improve the quality of service and to reduce the
operation costs under the infrastructure limitations. With
the rapidly growing passenger demands in recent years, it
has become increasingly challenging to generate a high-
quality passenger-centric timetable where both passenger-
related factors and operator-related factors in urban rail
networks are jointly taken into account.

Many studies in railway timetable scheduling focus on
optimizing arrival and departure times of trains at each
platform in the railway network, with the aim of minimizing
objectives such as passenger travel times [1], passenger
waiting times [2], station crowdedness [3], deviation from
the planned timetable [4], or a combination of them. In the
railway network, passenger demands are often represented
as several time-varying origin-destination (OD) pairs, which
can be obtained according to entering and exiting flows
of stations or historical data of automatic fare collection
systems. Passenger OD demands would largely influence the
performance of a timetable. An efficient passenger-centric
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timetable should properly take passenger OD demands into
account [3], [5], [6].

The departure frequency (i.e., how many trains depart from
a platform during a certain period) significantly influences
the quality of service, as it determines an upper bound
on the transport capacity. As passenger demands are time-
varying, the departure frequency in railway networks varies
throughout a day, e.g., the departure frequency of metro
networks in peak hours is usually higher than in off-peak
hours so as to transport more passengers. Passengers prefer
high-frequency lines so that they have a better chance of
boarding trains without large waiting times. On the other
hand, higher departure frequencies will lead to higher oper-
ational costs. In this context, optimizing departure frequen-
cies for each platform is more important than determining
specific departure and arrival times for attending passenger
demands and improving the quality of service of railway
transportation systems [7]. Once the departure frequency has
been determined, the detailed departure and arrival times
can be determined at the lower level with a more detailed
train operation model and/or passenger flow model, which is
however not in the scope of this paper.

Most research related to optimizing transit frequencies is
conducted in the context of urban transit networks, e.g., bus
networks [8], [9]. However, the urban rail transit system
has its own characteristics, i.e., train braking distances are
relatively long, and trains operate with strict constraints of
signalling systems. An efficient departure frequency control
method is required for urban rail networks to meet the
time-varying passenger demands while considering operation
costs and infrastructure constraints. De-Los-Santos et al. [10]
used an exact algorithm and a heuristic approach to design
line frequencies and train capacities to maximize the profit
of metro networks. Canca et al. [6] developed a mixed-
integer nonlinear programming approach to optimize line
frequencies and train capacities in dense railway rapid transit
networks. However, these studies do not consider the detailed
number of passengers accurately, leaving an open gap of
further improving the passenger satisfaction.

Formulating the timetable scheduling problem generally
leads to a constrained control problem. Model predictive con-
trol (MPC) is a well recognized effective real-time method
to control constrained systems [11], [12]. In [13], a real-
time timetable scheduling approach was developed based
on the switching max-plus-linear models to minimize the
operational costs and train delays. An MPC method was
designed to deal with train rescheduling problems in the
complex station areas in [14]. In [15], a state space model
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was developed to describe the passenger load of trains and
the evolution of departure time, and an MPC approach is
then proposed. By adjusting timetables and passenger loads,
the headway and timetable deviations of a metro line is op-
timized. In [16], MPC was also used for railway disruptions,
and the MPC optimization problem was transformed into
an MILP problem to reduce the computational complexity.
The successful application of MPC in the above studies
has inspired us to develop an efficient MPC approach for
timetable scheduling of urban rail transit networks. This
also implies the development of a novel model is crucial
for the application of MPC approach in real-time timetable
scheduling.

The main contributions of this paper are as follows:

1) A novel passenger absorption model that can explic-
itly handle time-varying passenger origin-destination
demands in urban rail networks is proposed.

2) In contrast to most of the existing models, the absorp-
tion model deals with passenger flows by involving
departure frequencies. So the transport capacity of the
network can be optimized while keeping a balanced
trade-off between model accuracy and computational
efficiency.

3) An MPC-based approach is developed for the timetable
scheduling problem based on the proposed model
where the MPC optimization problem can be trans-
formed into a mixed-integer linear programming
(MILP) problem, which can be solved efficiently by
existing MILP solvers.

The remainder of the paper is organized as follows. In
Section II, a novel passenger absorption model is proposed
for urban rail network. In Section III, a model predictive
control scheme is used for determining the number of trains
departing at each platform, and the MPC optimization prob-
lem is transformed into MILP problem. Section IV provides
a case study based on two Beijing subway lines. Finally, Sec-
tion V summarizes the paper and provides recommendations
for future research.

II. PASSENGER ABSORPTION MODEL

Passenger demands are generally represented by time-
varying origin-destination matrices. Incorporating time-
varying passenger demands is a challenging task in timetable
scheduling problems, as it would greatly increase the compu-
tational burden. Passenger demands usually change gradually
throughout the day without sudden changes. Therefore, we
discretize the planning time span into several periods of
length T , where passenger demands in each period are
assumed to be constant. The number of trains departing at
each platform during each period is the decision variable in
this model. Fig. 1 provides a typical time-varying passenger
arrival rate and the approximate profile of the arrival rate for
the passenger absorption model. In real life, the passenger
flow data are typically collected periodically, e.g., the total
flows over each half hour are recorded and stored in Beijing
Subway. Therefore, the piecewise constant approximation is

consistent with the utilization of practical passenger flow
data.

t

,p ml Arrival rates

Approximation

T 2T

Fig. 1. Illustration of piecewise constant approximation of passenger arrival
rates.

In urban rail transit systems, the line indicates the route
of one specific type of train services with the same stopping
platforms/stations. Generally, different lines use different
tracks and platforms in urban rail transit systems.

In the passenger absorption model, the number of passen-
gers remaining at a platform at each period can be updated
as follows:

np,m (k + 1) =np,m (k) + λp,m (k)T

+ narrive,transp,m (k)− nabsorbp,m (k) ,
(1)

where np,m (k) is the number of passengers waiting at
platform p with station m as their destination at the beginning
of period k; λp,m (k) denotes the passenger arrival rate
at platform p with station m as their destination during
period k; nabsorbp,m (k) represents the number of passengers
at platform p with station m as their destination absorbed by
trains during period k, and narrive,transp,m (k) is the number of
transferring passengers arriving at platform p during period
k with station m as their destination.

The number of passengers nwait
p (k) waiting at platform p

for boarding trains during period k is

nwait
p (k) = np (k) + λp (k)T + narrive,transp (k) , (2)

where np(k) =
∑

m∈S

np,m(k), λp(k) =
∑

m∈S

λp,m(k), and

narrive,transp (k) =
∑

m∈S

narrive,transp,m (k), with S the set of all

stations in the urban rail network.
Then, the total number of passengers nabsorbp (k) absorbed

by trains at platform p during period k can be calculated by

nabsorbp (k) = min
(
nwait
p (k) , Cp (k)

)
, (3)

where Cp(k) is the total remaining capacity of trains visiting
platform p during period k.

The number of passengers nabsorbp,m (k) absorbed by trains
at platform p with station m as their destination during period
k can be approximated by

nabsorbp,m (k) =
λp,m (k)

λp (k)
nabsorbp (k) , (4)
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which means the proportion of absorbed passengers with
different destinations is assumed to be equal to the proportion
of passengers arriving in the current period. As λp,m(k)
and λp(k) are known constants that can calculated based on
historical data, (4) corresponds to a linear relation between
nabsorbp,m (k) and nabsorbp (k).

The total capacity provided by trains visiting platform p
during period k can be computed by

Cp (k) = fp(k) · Cmax −
∑
m∈S

ntrainp,m (k) +
∑
m∈S

nalightp,m (k),

(5)
where fp(k) represents the number of trains visiting platform
p during period k, Cmax is the maximum capacity of a train,
ntrainp,m (k) is the number of passengers on board of trains
arriving at platform p with station m as their destination
during period k, and nalightp,m (k) denotes the number of
passengers alighting from platform p with destination m
during period k.

In this paper, all trains are assumed to depart from the
starting platform of a line, visit every platform of the
line, and finally arrive at the terminal platform, i.e., short-
turn, shunting, and stop-skipping are not considered. In this
context, the number of trains departing at each platform
along a line is connected to the number of trains departing
at the first platform of the line. As there are several trains
arriving at a platform during period k, we can define ψp as
the average time for a train departing from the first platform
of a line to arrive at the current platform1. Then, we define

δp = floor

{
ψp

T

}
, (6)

γp = rem {ψp, T} , (7)

where floor {x} denotes the largest integer smaller than or
equal to x, and rem {ψp, T} refers to the remainder of the
division of ψp by T . Hence, we have

ψp = δpT + γp, 0 ≤ γp < T. (8)

Therefore, fp(k), which is the number of trains visiting
platform p during period k can be approximated by

fp (k) =
T − γp
T

fline(p)(k − δp) +
γp
T
fline(p)(k − δp − 1) ,

(9)
where line (p) defines the starting platform of the line
corresponding to platform p.

Due to safety requirements, the number of trains arriving
at platform p during period k should also satisfy

fp(k)
(
hmin
p + τmin

p

)
≤ T, (10)

where hmin
p represents the minimum headway between two

trains at platform p, and τmin
p is the minimum dwell time at

platform p.

1ψp can be determined based on the historical data of the timetable.

The number of passengers ntrainp,m (k) on board of trains
when trains arrive at platform p during period k can be
calculated by

ntrain
p,m (k)=

T−r̄ppla(p)

T
ndepart

ppla(p),m
(k) +

r̄ppla(p)

T
ndepart

ppla(p),m
(k−1) ,

(11)
where ndepart

ppla(p),m
(k) denotes the number of passengers de-

parting from the predecessor platform of platform p with sta-
tion m as their destination during period k. As several trains
arrive at platform p during period k, r̄ppla(p) represents the
average running time of trains from the predecessor platform,
for the line to which platform p belongs, to platform p. Since
we aim at determining the number of trains over a relatively
long time window, we assume that T ≫ r̄ppla(p).

The number of passengers ntransp,q,m (k), transferring from
platform p to platform q with station m as their destination
during period k, can be computed by

ntransp,q,m(k) = βtrain
p,q,m(k) ntrainp,m (k),∀q ∈ plat(p)/{p}, (12)

where plat(p) denotes the set of platforms at the same station
as platform p, βtrain

p,q,m(k) is the splitting rate of passengers
with station m as their destination transferring from platform
p to q ∈ plat(p) during period k, with∑

q∈plat(p)

βtrain
p,q,m(k) = 1. (13)

Then, the number of passengers nalightp,m (k) alighting from
trains at platform p with destination m during period k can
be calculated by

nalightp,m (k)=


∑

q∈plat(p)/{p}
ntransp,q,m (k) , if m ∈ S/{sta(p)},

ntrainp,m (k) , if m = sta(p),
(14)

where sta(·) defines a mapping between a platform and its
corresponding station.

Therefore, the number of passengers ndepartp,m (k) departing
from platform p with station m as their destination during
period k can be calculated by

ndepartp,m (k) = ntrainp,m (k)− nalightp,m (k) + nabsorbp,m (k) . (15)

The arrival rate of passengers transferring from the other
platforms of the station and arriving at platform p during
period k is

narrive,trans
p,m (k)=

∑
q∈plat(p)/{p}

(
T − θtransq,p

T
ntrans
q,p,m (k)

+
θtransq,p

T
ntrans
q,p,m (k − 1)

)
,

(16)

where θtransq,p represents the average passenger walking time
for passengers from platform q to platform p.

III. MODEL PREDICTIVE CONTROL FOR REAL-TIME
TIMETABLE SCHEDULING

Based on the passenger absorption model proposed in
Section II, the total number of passenger wp(k) at platform
p who cannot board the train during period k is
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wp(k) = nwait
p (k)− nabsorbp (k) , (17)

where P is the set of all platforms in the considered urban
rail network. Then, the total passenger travel time in the
network during period k can be described by

Jpass(k)=
∑
p∈P

(
wp(k)T + ndepart

p (k)r̄p + narrive,trans
p (k)θtransq,p

)
.

(18)
It is obvious that Jpass(k) can be minimized by using as

many trains as available running with the minimum headway;
however, the operational cost of using too many trains is
usually very high. In real life, adding trains would lead to
additional cost, e.g., energy consumption, crew scheduling
costs, and maintenance costs. Hence, a penalty term is
included to make a trade-off between passenger satisfaction
and operational costs. Therefore, the objective function of
the timetable scheduling problem is

J =

k0+N−1∑
k=k0

Jpass(k) + ξ
∑
p∈P

fp(k)E

, (19)

where ξ is a weight balancing the two objectives, E repre-
sents the average operational cost for the departure of one
train at a platform, and N is the number of periods in the
planning window.

Therefore, the optimization problem for real-time
timetable scheduling based on the proposed passenger ab-
sorption model at period k0 is min

f(k0)
J =

k0+N−1∑
k=k0

(
Jpass(k) + ξ

∑
p∈P

fp(k)E

)
s.t. (1)−(5), (9)−(12), (14)−(17),

(20)

where f(k0) collects the variables fp(k0 + k) of all the
platforms for k = 0, 1, · · · , N − 1, i.e.,

f(k0) = [fp(k0 + 1), · · · , fp(k0 + k), · · · , fp(k0 +N − 1)]
T
.

(21)
Solving optimization problem (20) leads to a sequence of

decision variables for period k0 to k0 +N − 1, and in MPC
only the first decision variable for k = k0 is implemented,
and at the next period the prediction window is shifted for
one period, resulting in a new optimization problem.

The MPC optimization problem (20) is a nonlinear non-
convex optimization problem. Sequential quadratic program-
ming (SQP) algorithm is typically used in many fields to
solve nonlinear noncovex optimization problems [1], [17].
However, SQP might result in a local optimal solution for
problem (20), and should be implemented with multi-start
SQP to improve the solution quality.

Another approach is to transform the nonlinear optimiza-
tion problem (20) into a mixed-integer linear programming
(MILP) problem by using the method in [18], [19]. Define a
auxiliary binary variable ρk,p and an auxiliary variable µk,p

and let
µk,p = nwait

p (k)− Cp (k) . (22)

Then, the statement µk,p ≤ 0 ⇔ ρk,p = 1 is true if and only
if {

µk,p ≤Mk,p (1− ρk,p) ,
µk,p ≥ ε+ (mk,p − ε) ρk,p,

(23)

with mk,p and Mk,p are the minimum value and the max-
imum value of fk,p, respectively, and ε is a small positive
number. Therefore, (3) can be rewritten as

nabsorbp (k) = ρk,pn
wait
p (k) + (1− ρk,p)Cp (k) . (24)

It is worth noting that there still some nonlinear terms in
(24), i.e., ρk,p · nwait

p (k) and ρk,p · Cp (k). The products
of binary variables and real valued variables can also be
transformed to linear terms by using the method in [18],
[19]. Define an auxiliary real-valued variable zk,p = ρk,p ·
nwait
p (k). Therefore, zk,p = ρk,p · nwait

p (k) is equivalent to
zk,p ≤Mn ρk,p,
zk,p ≥ mn ρk,p,
zk,p ≤ nwait

p (k)−mn(1− ρk,p),
zk,p ≥ nwait

p (k)−Mn(1− ρk,p),

(25)

where mn and Mn are the minimum and maximum values
of nwait

p (k), respectively. Similarly, ρk,p ·Cp (k) can also be
transformed into linear inequalities [18], [19].

Based on the transformation, the MPC optimization prob-
lem can be written as an MILP problem of the following
form:{

min
f(k0)

J = cT(k0)f(k0) + dT(k0)z(k0)

s.t. A(k0)f(k0) +B(k0)z(k0) ≤ b(k0),
(26)

where f(k0) contains the decision variables of all platforms
in the urban rail network of the planning window, z(k0) rep-
resents the auxiliary binary variable, c(k0) and d(k0) denote
the constant vectors of the problem in the current planning
window. The constraint A(k0)f(k0) +B(k0)z(k0) ≤ b(k0)
represents all the mixed-integer constraints in a matrix form.

As we can start with a feasible solution of the overall
system, i.e., the departure frequency of the basic timetable,
and we can always use the basic departure frequency, so
that a feasible solution can always be found. Therefore, the
recursive feasibility of MPC can be satisfied.

IV. CASE STUDY

In this section, we perform the case study to illustrate the
proposed passenger absorption model and the corresponding
MPC approach based on a small part of subway network
from Beijing subway network.

As shown in Fig. 2, we select two lines from Beijing
subway network. The network includes two subway lines
and each line has two directions. The network contains 19
stations and 40 platforms.

We use MATLAB (R2019b) at a computer with an Intel
Xeon W-2223 CPU and 8GB RAM for simulation. Passenger
demands of the network are generated based on real-life
passenger flow data of the Beijing subway network. In
the collected information, the passenger flow data of the
automatic fare collection system are varying every half hour.
Therefore, we set T = 1800 s in the case study. The main
parameters related to the simulation are listed in TABLE I.
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Fig. 2. Real-life network of 2 lines from Beijing subway network.

TABLE I
PARAMETERS FOR THE METRO NETWORK

Parameters Line 9 Line 14
Regular dwell time 60 s 60 s
Minimum dwell time 30 s 30 s
Regular headway 180 s 270 s
Minimum headway 108 s 108 s
Train capacity 2400 persons 2400 persons
Average transfer time 60 s 60 s
Period time 1800 s 1800 s

A. Assessment of the Absorption Model

The most accurate passenger-centric timetable scheduling
model we found in the literature is the model of [5], [20].
For compactness, we regard the model of [5], [20] as
“accurate model” in the remaining part of the section. Then,
we compare the accuracy and efficiency of the passenger
absorption model with the accurate model. The passenger
absorption model focuses on the departure frequency at each
period and does not involve detailed arrival and departure
times of trains. Therefore, instead of comparing the numbers
of passengers as a function of time, we compare the numbers
at the end of each period. In the undersaturated or saturated
situation, the capacity provided by trains when trains arrive
at platforms, are larger than or equal to the required capacity;
thus, all passengers are able to board the trains in time.
Hence, we select the oversaturated situation for simulation,
where efficient optimization approaches are important to
facilitate more passenger to board the trains in time.

The cumulative number of waiting passengers (CBP) and
the cumulative number of boarding passengers are two cru-
cial factors related to passenger satisfaction. The simulation
is conducted based on the passenger flow data from 7:00.

As Fig. 3 shows, the values of CWP and CBP are close to
that of accurate model. The simulation time of the accurate
model for the considered time window is 9.03s while the sim-
ulation time of the absorption model is 0.08s. The simulation
time of the absorption model is reduced significantly, which
implies that the absorption model can deal with the timetable
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Fig. 3. Comparison of the absorption model and the accurate model.

scheduling problem more efficiently. The simulation results
thus indicate that the absorption model can make a balanced
trade-off between model accuracy and computation burden.

B. MPC for Timetable Scheduling of Urban Rail Networks

In this section, we perform case study to show the ef-
fectiveness of the developed MILP-based MPC approach.
The prediction time window is 1.5 hours, i.e., the prediction
horizon is 3, and the case study is conducted for 10 periods.

The MILP problem is solved by using gurobi solver
implemented in MATLAB (R2019b). For the SQP algorithm,
we apply the fmincon function in the MATLAB Optimiza-
tion Toolbox. The basic timetable is generated according to
the regular dwell time and regular headway in TABLE I. The
performance, including the solution quality and the solution
time, is compared with that of the basic timetable.

TABLE II
COMPARISON OF PERFORMANCE AND COMPUTATION TIME

CORRESPONDING TO DIFFERENT APPROACHES

Method Performance CPU time (s)
tavrg tmax

Basic timetable 1.0298 · 105 - -
SQP-based MPC 8.9841 · 104 60.1 77.6
MILP-based MPC 8.5447 · 104 23.5 27.6

The resulting MILP problem has 23584 continuous vari-
ables and 156 binary variables. The simulation results are
shown in TABLE II. We can find that, in this case study, both
SQP-based MPC and MILP-based MPC can largely improve
the performance compared with the basic timetable, with the
improvement of 12.76% and 17.03%, respectively. Instead
of keeping constant departure frequency during the whole
time window, SQP-based MPC and MILP-based MPC can
adjust the departure frequency based on the real-time pas-
senger demands, thus the performance is improved. SQP can
fall into sub-optimal solutions of the nonlinear non-convex
optimization problem, which will influence the performance
of SQP-based MPC.
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To illustrate the performance of each approach, the per-
formance of each period are shown in Fig. 4. We can found
from Fig. 4 that the performance obtained from MILP-based
MPC is better than that of SQP-based MPC. Furthermore,
the average CPU time of MILP-based MPC is reduced with
a factor about 3 compared with SQP-based MPC. MILP-
based MPC performs best with respect to the solution time
and solution quality. The simulation results indicate that the
MILP-based approach can be used in real time to determine
departure frequencies in urban rail networks.
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Fig. 4. The value of objective function at each time step.

V. CONCLUSIONS

In this paper, a novel passenger absorption model has
been proposed for urban rail network timetable scheduling
considering time-varying passenger origin-destination de-
mands. The model divides the planning time window into
several periods. By optimizing the number of trains visiting a
platform during each period, an upper bound of the transport
capacity per period is determined, so that passengers can be
absorbed by trains at the platform. An MPC approach is
developed for the real-time timetable scheduling problem.
The passenger absorption model allows us to transform
the MPC optimization problem into a mixed-integer linear
programming problem, which can be solved efficiently by
the existing solvers. Simulation results indicate that the ab-
sorption model can make a balanced trade-off between model
accuracy and computational burden. Furthermore, we also
shown that MILP-based MPC can help to greatly reduce the
computation time while ensuring good control performance.

Our future work will involve developing two-level control
methods to incorporate a more detailed train operation model
and/or a more detailed passenger flow model into the passen-
ger absorption model, so that the practically implementable
timetable can be generated while keeping a balanced trade-
off between computation time and control performance.
To solve the timetable scheduling problem for large-scale
networks, we will investigate efficient distributed control
approaches. Future work will also investigate the potential
of extending the absorption model to more general case
of railway networks, including across-line operation, short-
turning, shunting, and stop-skipping.
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