
 
 

Delft University of Technology

Light diffuseness metric, Part 1
Theory
Xia, Ling; Pont, Sylvia; Heynderickx, Ingrid

DOI
10.1177/1477153516631391
Publication date
2017
Document Version
Final published version
Published in
Lighting Research and Technology

Citation (APA)
Xia, L., Pont, S., & Heynderickx, I. (2017). Light diffuseness metric, Part 1: Theory. Lighting Research and
Technology, 49(4), 411-427. https://doi.org/10.1177/1477153516631391

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/1477153516631391
https://doi.org/10.1177/1477153516631391


Light diffuseness metric Part 1: Theory
L Xia MSca, SC Pont PhDa and I Heynderickx PhDb

aDepartment of Industrial Design, �-lab (Perceptual Intelligence Laboratory),
Delft University of Technology, Delft, The Netherlands
bDepartment of Human Technology Interaction, Eindhoven University of
Technology, Eindhoven, The Netherlands

Received 15 September 2015; Revised 3 December 2015; Accepted 26 January 2016

The light density, direction and diffuseness are important indicators of the spatial
and form-giving character of light. Mury presented a method to describe, measure
and visualise the light field’s structure in terms of light density and direction
variations in three-dimensional spaces. We extend this work with a theoretical and
empirical review of four diffuseness metrics leading to a novel metric proposal DXia.
In particular, the relationships between these diffuseness metrics were studied using
a model named ‘probe in a sphere’. Diffuseness metric DXia re-frames the
diffuseness metric of Cuttle in an integral description of the light field. It fulfils all
diffuseness criteria and has the advantage that it can be used in a global, integrated
description of the light flow and diffuseness throughout three-dimensional spaces.

1. Introduction

Since the lighting profession emerged, lighting
standards around the world have been con-
cerned almost exclusively with the delivery of
luminous flux onto planes.1 However, it is the
distribution of light that determines the
appearance of a space and the objects inside
it. Inspiringly, this concept has been well
acknowledged by photographers,2 painters,3,4

designers5 and architects,6,7 Rather than think-
ing about the illumination as a medium that
makes things visible, modern designers prefer
to see lighting principally in terms of how it
influences the appearance of people’s sur-
roundings and creates certain atmospheres.8–13

In their psychophysical research,
Koenderink et al.14 found that human obser-
vers have expectations of what an object would
look like when it was introduced at an arbitrary

location in a scene. Schirillo15 confirmed that
human observers have a mental representation
of the light in a three-dimensional space
through both direct and indirect evidence of
our awareness of the light field. The light field
in natural scenes is highly complicated due to
intricate optical interactions, containing low
and high frequencies in the radiance distribu-
tion function. Nonetheless, studies show that
the human visual system is able to distinguish
the intensity, the primary illumination direc-
tion, and the diffuseness, which are three basic
(low-order) properties of a light field.14,16–18

Furthermore, research showed that these low
order properties of the light field stay rather
constant within a certain geometry of the
scene19 and that they are sufficient to describe
the appearance of most natural materials
because the diffuse scattering characteristic of
these materials acts as a low pass filter.20–23

By introducing the notion of radiant ‘light
density’ and the notion of ‘light vector’,
Gershun24 described the quantity and transfer
direction of the radiant power through space
in his 5-dimensional function of the light
field. Mury25 used spherical harmonic (SH)
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decompositions to represent natural light as a
combination of components of different
orders. He found that the zeroth order
component of the SH decomposition corres-
ponds to Gershun’s ‘density of light’, which
describes a constant illumination from all
directions and is usually known as ‘ambient
light’ in computer graphics; the first order
component was found to correspond to the
‘light vector’ as defined by Gershun, which
describes the net transport of radiant energy.
However, neither Gershun nor Mury men-
tioned diffuseness of light in their mathemat-
ical descriptions of the physical light field.

The local light diffuseness describes the
isotropy of a light distribution around a point
in a space. It ranges from fully collimated
light via hemispherical diffuseness to com-
pletely diffuse light. Fully collimated light
comes from a single direction; in contrast,
completely diffuse light comes from a sphere
of directions. Light diffuseness can strongly
influence the appearance of scenes and objects
in it, because shading, shadowing and vignet-
ting effects co-vary with the diffuseness, as
can be seen in Figure 1. Direct sunlight is a
typical example of collimated light, an over-
cast sky of hemispherical diffuse light and a
polar whiteout of completely diffuse light.
Collimated light creates an effect of focusing
by generating hard, crisp-edged body sha-
dows and a large brightness contrast, like the
visual effect on sculptures in a museum
created by spotlights. Hemispherical diffuse
light is the level of diffuseness that we
encounter in daily life most frequently, for
instance under a cloudy sky. Completely
diffuse light is characterised by a totally
uniform light distribution and makes three-
dimensional shapes appear flat, e.g. as the
scenery when skiing in the mist.

The influence of the spatial distribution of
light on object shape appearance has been
studied through the notion of ‘modelling
index’ in interior lighting design. Examples
are the ‘ratio between the cylindrical and

horizontal illuminance’ by Hewitt et al.,26 the
‘vector/scalar illumination ratio’ (i.e. the
strength of flow of light) by Cuttle,27,28 and
the vertical and horizontal modelling indica-
tors (VMI and HMI) by Bean.29 Since these
‘modelling indices’ are highly correlated with
the light diffuseness, they are also considered
as diffuseness metrics in our study. But, apart
from using these ‘modelling indices’, we focus
in the rest of this study on the light distribu-
tion, and not its effects on object appearance
or how the resulting optical structures are
interpreted by the human visual system.
Relationships between the light diffuseness
and objects’ appearance are addressed in
detail in other studies.6,30–32

Besides the ‘modelling indices’, other prac-
tical ways to quantify diffuseness have been
proposed. Frandsen proposed the scale of
light to indicate the potential of an illumin-
ation distribution to form shadow patterns
over 3D opaque objects.33 Morgenstern
et al.31,34 proposed the ICE (Illuminance
Contrast Energy), a measure of the contrast
over a white matte spherical gauge object.
Inanici35 used the directional-to-diffuse ratio
to quantify the diffuseness of light by isolat-
ing the diffuse and directional components of
a rendered luminous environment.

Thus, various practically defined diffuse-
ness metrics exist but they differ from each
other by definition and have been imple-
mented in different fields. In order to propose
a general and principled way to define and
measure light diffuseness, we defined criteria
for the diffuseness metric: A. The metric
should describe the full range of diffuseness in
a smooth and monotonic manner, B. It
should be possible to physically measure the
metric, C. The metric should describe the light
distribution directly instead of via the appear-
ance of some object, D. It should be possible
to easily implement the metric in commer-
cially available optical measurement systems
as well as in computer simulations and in a
manner that relates to human perception.
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In the following sections, we give a review
of four well-known diffuseness metrics, which
are (1) the ‘scale of light’ by Frandsen,33 (2)
the ‘ratio between cylindrical and horizontal
illuminance’ by Hewitt et al.,26 (3) the ‘ratio
between illumination vector and scalar’ by
Cuttle,27,28 and (4) the ‘ICE’ by Morgenstern
et al.31 We compare each of these four metrics
to the criteria proposed above. Next, inspired
by Mury’s work on the physical SH repre-
sentation of the light field and by the basic
parameterisation of diffuseness as the balance
between the ambient and directed light, we
prove that Cuttle’s ‘ratio between illumin-
ation vector and scalar’ (hereafter referred to
as DCuttle) is equivalent to the ratio between
the strength of the first order (i.e. the light
vector) and the zeroth order (i.e. the
light density) of the SH representation of the
light field (this ratio is hereafter referred to as
DXia. The diffuseness metric DXia is entirely
based on a mathematical description of the
physical light distribution and fulfils all the
criteria mentioned above.

Since the relationships between these met-
rics were so far unclear, we examined them

via a model named ‘probe in a sphere’. As
Figure 2 illustrates, this model consists of a
probe (usually, a small white sphere with a
Lambertian surface) put right in the centre of
a big spherical light source with a variable
subtended angle. The size of the functional
light source is defined by the subtended angle
� (see the upper arc depicting the spherical
light source in Figure 2). The diameter of the
spherical light source is much larger than the
probe inside (i.e. which basically means that it
is at infinity). Thus, by varying the subtended
angle � from 08 via 1808 to 3608, the degree of
diffuseness varies from totally collimated light
via hemispherical diffuse to completely dif-
fuse light. This model was first implemented
by Cuttle to investigate how the surrounding
luminous field influenced the vector/scalar
ratio.6 The model ‘probe in a sphere’ should
be considered as a physics model (a simplified
representation of something that is either too
difficult or impossible to display directly) for
natural situations (like daylight on a city
square, museum lighting and office lighting).
It allows systematic theoretical studies and
comparisons of metrics. In addition, in our

(a) (b) (c)

Figure 1. The appearance of a penguin statue under light with different diffuseness levels: (a) direct sunlight,
(b) overcast sky above a dark ground surface, and (c) overcast sky above a light ground surface.
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second paper ‘Light diffuseness metric Part 2’
we consider empirically measured light fields.

2. Frandsen’s scale of light

2.1. Theory

Frandsen proposed the scale of light, which
is derived from the comparison between the
size of a light source and that of an
illuminated object. This relationship is
reflected by the self-shadows on an object,
which indicate the degree of light diffuse-
ness.33 Yağmur and Ozturk recently found
that the harshness-softness attribute of cast-
shadows also depends on the scale of light;
the shadows are softer when the luminaire size
increases, or the object size decreases.36

Frandsen’s approach is analogous to our
‘probe in a sphere’ approach. In Frandsen’s
theory, the solid angle of light source (� in our
model) varied from narrow (i.e. 08, colli-
mated) to hemispherically diffuse (i.e. 1808).
As Figure 3(a) shows, when the subtended

angle is smaller than 1808, the white sphere
can be divided into three zones. The top zone
facing the circular light source receives light
from the entire source. The bottom zone
turned away from the source receives no light.
The middle zone receives a varying amount of
light from the source, creating a so-called
semi-shadow. Frandsen scaled the diffuseness
in the range from fully collimated to hemi-
spherical diffuseness based on the ratio of the
area of the semi-shadow to the area of the
whole sphere. Diffuseness then increases from
0% to 100%, as the subtended angle varies
from 08 to 1808. Frandsen scaled this change
into 11 steps with an interval of 10%. The left
part of Table 1 gives detailed information
about the scale of light from a fully collimated
light to a hemispherical diffuse light as
defined by Frandsen (DFrandsen).

The scale of light, however, is hard to
measure in a real environment. It cannot be
judged accurately from the appearance of
objects, for instance using a matte sphere
as a reference, because small steps in diffuse-
ness are hard to be distinguished in this
manner.18,37–39 Moreover, perceived diffuse-
ness is dependent on viewing direction.18,40

Furthermore, Frandsen’s scale with 11 types
of shadows is limited to the range from fully
collimated light to hemispherical diffuse light.
The other half ranging from hemispherical
diffuse to completely diffuse light is ignored.
So, the scale of light does not fulfil criteria A,
B, C and D.

2.2. DFrandsen for the ‘probe in a sphere’ model

In order to be able to compare all metrics,
we extended DFrandsen to the full range of
possible diffuseness. As Figure 3(b) shows,
when the subtended angle is larger than 1808,
the white sphere can be divided into two
zones. The top zone always receives the same
amount of light, as it would from a hemi-
spherical light source. The middle zone
receives a varying amount of light from the
source. The bottom zone disappears because

Spherical light source

White sphere

P1

P2

α

Figure 2. Illustration of the computational model ‘probe
in a sphere’, a white Lambertian sphere is put right in the
centre of a large spherical light source. The size of the
light source varies with the subtended angle �. The outer
spherical light source is assumed to be at infinity.
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every part of the sphere is now illuminated.
As a consequence, we can extend the scale of
light from hemispherical diffuse to totally
diffuse by still using the ratio of the area of
the semi-shadow to the area of the whole
sphere as proposed by Frandsen. As the

subtended angle gets larger, the area of the
top zone increases and the ratio of the semi-
shadow to the area of the whole sphere
decreases, but this ratio always remains
larger than 50%. We used an interval of 5%
in the ratio in order to divide the scale in an
equal number of steps for the extended part of
the range as for the original range from
collimated to hemispherical diffuse. In this
manner, we extended Frandsen’s scale of light
from 0–10 to 0–20. The right part of Table 1
gives detailed information about this
extended scale, and the appearance of a
Lambertian white sphere under the different
scale values is illustrated in Figure 4. The
resulting values are shown in Figure 7(a) and
(b).

3. Hewitt et al.’s cylindrical/horizontal
illuminance ratio

3.1. Theory

People have noticed that compared to
horizontal illumination, which is a provision

Spherical light source(a) (b) Spherical light source

Top zone
Top zone

Middle zone Middle zone

Bottom zone

White sphere White sphere

Figure 3. Illustration of shadowing zones on a white matte sphere according to Frandsen. In (a): when the subtended
angle is smaller than 1808, the white sphere in the centre of the spherical light source is divided into three zones: the top
zone receives light from the entire source, the middle zone receives a varying amount of light from the source, and the
bottom zone receives no light from the source. In (b): when the subtended angle is larger than 1808, the white sphere in
the centre of the spherical light source is divided into two zones: there’s no bottom zone receiving no light.

Table 1. The left part shows the scale of light as defined
by Frandsen, for the range of collimated light to hemi-
spherical diffuse light; the right part shows our extension
of the scale of light, for the range from hemispherical
diffuse to totally diffuse light.

DFrandsen Extended DFrandsen

� Ratio, % Scale � Ratio, % Scale

� 08 0 0 231.78 95 11
11.58 10 1 253.78 90 12
23.18 20 2 271.18 85 13
34.98 30 3 286.28 80 14
47.18 40 4 3008 75 15
60.08 50 5 312.88 70 16
73.78 60 6 325.18 65 17
88.98 70 7 336.98 60 18
106.38 80 8 348.58 55 19
128.38 90 9 3608 50 20
1808 100 10

Light diffuseness metric: Theory 415
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of task illumination, vertical illumination
contributes more to the impression of a
space and helps people to recognise shapes
and faces. Hewitt et al. have shown that the
ratio of horizontal illuminance to mean ver-
tical illuminance gives a reasonable indication
of modelling.26 The average vertical illumin-
ance can be measured using the cylindrical

illuminance, which is defined as the total
luminous flux falling on the curved surface of
a small cylinder at a point of interest, divided
by the curved surface area of the cylinder.41

Instruments exist for the direct measurement
of cylindrical illumination, but their costs are
high. An alternative method for obtaining
cylindrical illuminance was proposed by Duff

a = 180°

a = 231.7° a = 253.7° a = 271.1° a = 286.20° a = 300°

a = 312.8° a = 325.1° a = 336.9° a = 348.5° a = 360°

a ≈ 0° a = 11.5° a = 23.1° a = 34.9° a = 47.1°

a = 60° a = 73.7° a = 88.9° a = 106.3° a = 128.3°

Figure 4. The appearance of a rendered Lambertian white sphere in the centre of a large spherical light source with
variable subtended angle �. The subtended angle varies from 08 via 1808 to 3608, and the corresponding diffuseness
varied from fully collimated light via hemispherical diffuse to totally diffuse light.
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et al., i.e. calculating it from the illuminance
values measured using a cubic illumination
meter.42,43 The ratio between the cylindrical
illuminance (EC) and horizontal illuminance
(Eh) is proposed as an index of modelling for
overhead lighting installations1 and is here-
after referred to as diffuseness metric DHewitt:
A modelling index between 0.3 and 0.6 is
suggested to indicate good modelling.1

The ratio between cylindrical and horizon-
tal illuminance does fulfil the criteria we have
defined for a diffuseness metric. However, it
can only indicate the ‘modelling’ properties of
an overhead lighting installation. For pure
overhead lighting it is assumed to provide a
rough assessment of the relationship between
the rather diffuse light from (inter-reflections)
and the rather directed light from primary
light sources. However, the assumptions are
violated in many real scenes, for instance if
there is also light entering from the side via
windows.

3:2:DHewitt for the ‘probe in a sphere’ model

We calculated DHewitt in the ‘probe in a
sphere’ model by replacing the white sphere
with a small cylinder. The cylinder was placed
with its main axis along the vertical axis in
Figure 2 so that the average illuminance on
the curved surface represents the mean verti-
cal illuminance. DHewitt varied from ‘0’ for
collimated light to ‘1’ for fully diffuse light.
The resulting values as a function of sub-
tended angle � are shown in Figure 7(a) and
(b).

4. Cuttle’s vector/scalar illumination
ratio

4.1. Theory

Hewitt44 and Lynes et al.28 proposed the
concept of the ‘flow of light’ to describe the
potential of light to produce distinct shading
patterns. The ‘flow of light’ concept gives
information on the direction from which the
light comes on average, and on how strongly

directed the net light transport is. Cuttle
et al.44 defined the apparent strength of the
‘flow of light’ by the illumination vector/
scalar ratio (Evector=Escalar), and recommended
it as a modelling index . We refer to
Evector=Escalar as diffuseness metric DCuttle.
The vector component indicates the direction
of the ‘flow of light’. The illumination scalar
equals the average value of the ‘illumination
solid’ over all directions, and it is a measure
of the ambient light. In general, the ‘illumin-
ation solid’ around an illuminated point can
be separated into two components: a vector
component and a symmetric component. The
vector component is totally asymmetric
around the illuminated point, while the sym-
metric component is totally symmetric
around the illuminated point.6,27

Though the illumination vector and scalar
are defined based on the luminous density
distribution in the space, their values and the
metric are explained via the appearance of a
small matte white sphere. The illumination
vector can be reproduced by a distant light
source with the illuminance falling on a small
sphere as illustrated in Figure 5. The magni-
tude of the vector illuminance can then be
approached as the difference between the
illuminance on the top point and the bottom
point of the matte white sphere:

Evector ¼ Ep1 � EP2 ð1Þ

The scalar illuminance value equals the
average illuminance over the whole surface of
the sphere and can be calculated as

Escalar ¼
Evector

4
þ �Esymmetric ð2Þ

where �Esymmetric is the average value of the
symmetric component over all directions.
Thus, the maximum value of DCuttle is 4,
occurring with fully collimated light (i.e. the
vector component only) and the minimum
value is 0, occurring with completely diffuse

Light diffuseness metric: Theory 417
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light (i.e. the symmetric component only). It
has been found that DCuttle values in the range
of 1.2 to 1.8 are preferred for the appearance
of human features in an interview situation.44

Preference studies also showed that people
like the flow of light to be from the top-left/
right rather than from the top, with a
preference for a vector altitude between 158
and 458.44

Later, Cuttle developed a cubic illumin-
ation meter to measure the illumination
vector, the illumination scalar and the
strength of the ‘flow of light’ or DCuttle.

45,46

The cubic illumination meter is a small cube
with six illuminance meters mounted at its six
faces. Thus, Cuttle’s method fulfils all our
criteria for a diffuseness metric.

4.2. DCuttle for the ‘probe in a sphere’ model

The illumination scalar proposed by Cuttle
in equation (2) represents the average illu-
mination over the sphere surface, derived

from the contributions of both the vector and
the symmetrical components. The vector
component contributes Evector=4 to the aver-
age illumination over the matte sphere, which
can be derived analytically. For instance in
Figure 5, the bottom hemisphere receives no
light (Ep2 ¼ 0) and the illumination falling on
the upper hemisphere is directly proportional
to the cosine of the angle # between the
direction of the light source (i.e. the z axis)
and the surface normal. So, the contribution
of the vector component to the average
illumination over the unit sphere follows:

ðEvectorÞscalar¼ðEp1�Ep2Þ

R 2�
0

R �
2

0 cos #ð Þsin #ð Þd#d’

4�

¼ðEp1�Ep2Þ=4

¼Evector=4 ð3Þ

By varying the subtended angle from 08 to
3608, the diffuseness level in our model ‘probe
in a sphere’ varies from fully collimated light
to fully diffuse light while the vector/scalar
illumination ratio varies from 4 to 0 as shown
in Figure 7(a). The normalised form of
DCuttle is

ðDCuttleÞNormalized ¼ 1� ðEvector=EscalarÞ=4 ð4Þ

which is shown in Figure 7(b), with ‘0’
corresponding to fully collimated light and
‘1’ corresponding to fully diffuse light.

5. Morgenstern et al.’s illuminance
contrast energy

5.1. Theory

The contrast of a shading pattern over a
sphere varies with the degree of light diffuse-
ness. Morgenstern et al. defined a new method,
the ICE (Illuminance Contrast Energy) to
quantify this variation.31 If E #, ’ð Þ is the
illuminance over the surface of a unit sphere,
where # is the altitude from the north pole and

Z

x

y

ϑ

ϕ

S

P1

P2

P’

Figure 5. Illustration of a unit matte sphere in Figure 2
under a fully collimated light with the subtended angle �
approaching 08. P1 is the top point of the white sphere
and P2 is the bottom point of the white sphere.
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’ is the azimuth in a spherical coordinate
system, the ICE can be calculated as:

ICE ¼

 
1

4�

Z 2�

0

Z �

0

E #,’ð Þ � �E

�E

� �2

� sin #ð Þd#d’

!1=2 ð5Þ

where �E is the mean illuminance over the
sphere. The value of ICE ranges from 0 for a
completely diffuse light to 1.29 for a distant
point light source. In order to measure the ICE,
Morgenstern et al. used a custom-built multi-
directional photometer with 64 evenly spaced
photodiodes. These 64 photodiodes made low-
resolution but omnidirectional records of the
illumination incident from all directions at a
point in space at a given time. As such, ICE
does not fulfil criterion D, because it cannot be
measured in real scenes without the custom-
built photometer. It does not literally fulfil
criterion C because in order to calculate the
ICE the photometer records have to be trans-
formed to values of the illuminance over the
gauge sphere. Using their photodiode device,
Morgenstern et al. made 570 measurements of
the ICE in six natural environments and 53
measurements in a single day from sunrise to
sunset.31 The mean ICE under these circum-
stances ranged from 0.41 to 0.66.

5.2. DMorgenstern for the ‘probe in a sphere’

model

We calculated the ICE directly from the
illuminance distribution on the small white
Lambertian sphere inside the spherical model
using equation (5). The resulting values as a
function of subtended angle � are shown in
Figure 7(a) and (b). The resulting curve is less
than 6% higher than the DCuttle curve in the
lower and middle part of the diffuseness
range. Overall, the shape of the curve
DMorgenstern in this model clearly closely
resembles the shape of the DHewitt and DCuttle

curves.

6. DXia: framing ‘diffuseness’ in an
integral light field description

From the above review we found that
DMorgenstern and DFrandsen did not fulfil all
criteria for a diffuseness metric.DHewitt fulfilled
all criteria, but was limited to indicate the light
diffuseness properties of overhead lighting.
DCuttle fulfilled all criteria. However, the rela-
tionship between DCuttle and the other proper-
ties of the light field (i.e. light density,
direction) has not been worked out. In this
section, we therefore frame this diffuseness
definition in an integral light field description.
We call the framed metric DXia, which is thus
conceptually the same as DCuttle but mathem-
atically framed in a different way. The descrip-
tion of DXia is based on a mathematical
description of the physical light distribution
in space instead of on the appearance of an
object. DXia fulfils all criteria and has the
advantage that it can be used in a global,
integrated description of the light distribution
in 3D spaces, in which all modes of the
description have a specific physical meaning.
The development of DXia is based on the work
of Mury et al.,19,47,48 i.e. on the physical
interpretation of the spherical harmonics rep-
resentation of the light field in natural scenes,
and extends it with a diffuseness metric.

6.1. Theory

Locally, the light field is a function of
direction and thus a spherical function. We
know that any spherical function f #,’ð Þ can
be reconstructed by the sum of its spherical
harmonics (SH)

f #,’ð Þ ¼
X1
l¼0

Xl

m¼�l

Cm
l Y

m
l ð#,’Þ ð6Þ

where Cm
l are the coefficients, Ym

l ð#, ’Þ are the
basis functions, and l represents the order of
the angular mode. Each mode consists of
2lþ 1 basis functions (l� 0,�l�m� l).
Figure 6 shows the real-valued spherical
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harmonic basis functions up to the second
order. Any mode l can be represented as a
vector of corresponding coefficients
SHl fð Þ ¼ C�ll , C�lþ1l , � � �,Cl

l

� �
and the repre-

sentation of the entire function is a combin-
ation of all the modes, i.e.
SH fð Þ ¼ SH0 fð Þ, SH1 fð Þ, SH2 fð Þ, � � �

� �
.

The strength of each mode l can be calculated
using equation (7)49

d SHlð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

m¼�l

ðCm
l Þ

2

vuut ð7Þ

Ramamoorthi and Hanrahan proved that
for convex Lambertian objects, complex
lighting distributions may be successfully
replaced by the second order approximation
of their SH representation.23 Mury
et al.19,25,47 found that the zeroth order
component of a spherical harmonic corres-
ponds to Gershun’s ‘density of light’. The
zeroth order component is a monopole (see
the first row of Figure 6), essentially the
average radiance over all directions. The first
order component corresponds to Gershun’s

‘light vector’ and describes the net transport
direction of radiant energy. The first order
component can be thought of as a dipole and
consists of a positive and a negative mode (see
the second row of Figure 6). We define our
diffuseness metric as the ratio between the
light vector and the density of light, or in
mathematical SH terms

DXia ¼ d ðL1Þ=d ðL0Þ ð8Þ

DCuttle and DXia are thus conceptually the
same, but mathematically they are framed in
a different manner. So, how are they math-
ematically related to each other and what are
the (dis)advantages of the two approaches? In
order to answer this question, we first express
DXia in terms of the ratio d ðE1Þ=d ðE0Þ which
is the ratio between the first order and zeroth
order SH modes of the irradiance.
Ramamoorthi and Hanrahan23 proved that
for convex Lambertian objects, the relation
between irradiance and radiance of the zeroth
order SH coefficient is

E0
0 ¼ � � L0

0 ð9Þ

Y0
0

Y1
0 Y1

1Y1
–1

Y2
–2 Y2

–1 Y2
0 Y2

1 Y2
2

Figure 6. Plots of real-valued spherical harmonic basis functions. The first row represents the zeroth order, the second
row shows the basis functions of the first order and the third row shows the basis functions of the second order
components. Light grey indicates positive values and dark grey indicates negative values. For a detailed explanation of
the analogy between the SH description and Gershun’s theory, see work by Mury et al.19,25,47
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and of the first order SH is

Em
1 ¼

2�

3
� Lm

1 , m ¼ �1, 0, 1 ð10Þ

Hence
d ðL1Þ

d ðL0Þ
¼

3

2

d ðE1Þ

d ðE0Þ
ð11Þ

Second, we express DCuttle defined as the
ratio between Evector and Escalar, in terms of
d ðE1Þ=d ðE0Þ. To do so, we first examine the
relationship between d ðE1Þ and Evector. Evector

was defined as the maximum value of the
illuminance difference. However, the SH rep-
resentation of the illumination distribution
accounts for the illumination in all directions.
Therefore, we calculated the magnitude of the
vector component over the surface of a sphere
projected along the direction of the light
vector (e.g. the z axis in Figure 5) as:

E0vector ¼ ðEp1 � Ep2Þ �

Z 2�

0

Z �
2

0

cos #ð Þ cos #ð Þ

sin #ð Þd#d’ ¼
2�

3
ðEp1 � Ep2Þ ð12Þ

Thus, the magnitude of the vector compo-
nent over the surface of a sphere E0vector is a
factor of 2�/3 larger than Cuttle’s Evector.

The first order component of the SH
approximation of the light field can be
transformed into linear functions of the
Cartesian coordinates (x, y, z) as follows

Y�11 #,’ð Þ ¼ �

ffiffiffiffi
3
4�

q
sin# sin’¼�

ffiffiffiffi
3
4�

q
y

Y0
1 #,’ð Þ ¼

ffiffiffiffi
3
4�

q
cos#¼

ffiffiffiffi
3
4�

q
z

Y1
1 #,’ð Þ ¼ �

ffiffiffiffi
3
4�

q
sin# cos’¼�

ffiffiffiffi
3
4�

q
x

8>>>><
>>>>:

ð13Þ

According to equations (12) and (13), the
relationship between the magnitude of the

light vector Evector and the magnitude of the
first order SH component d ðE1Þ is

Evector ¼
3

2�
E0vector ¼

3

2�

ffiffiffiffiffiffi
4�

3

r
d E1ð Þ ¼

ffiffiffi
3

�

r
d ðE1Þ

ð14Þ

Subsequently, the relationship between
d ðE0Þ and Escalar is derived. The illumination
scalar is the average illuminance over the
surface of a unit sphere, so Escalar ¼ EO=4�,
where EO is the overall illumination on the
sphere. We find

Escalar

d E0ð Þ
¼

EO=4�

C0
0

¼
1

4�

R 2�
’¼0

R �
#¼0 f #,’ð Þ sin#d#d’R 2�

’¼0

R �
#¼0 f #, ’ð ÞY0

0 #,’ð Þ sin#d#d’

¼
1

2
ffiffiffi
�
p ð15Þ

Knowing all this, we find the relationship
between d ðL1Þ=d ðL0Þ (or DXia) and Evector/
Escalar (or DCuttle) as

Evector

Escalar
¼

ffiffiffiffiffiffiffiffi
3=�
p

1=2
ffiffiffi
�
p

d E1ð Þ

d E0ð Þ
¼ 2

ffiffiffi
3
p 2

3

d ðL1Þ

d ðL0Þ

¼
4ffiffiffi
3
p

d L1ð Þ

d L0ð Þ
ð16Þ

Hence, the ratio between the illumination
vector and scalar is a factor 2

ffiffiffi
3
p

larger
than d ðE1Þ=d ðE0Þ and 4=

ffiffiffi
3
p

larger than
d ðL1Þ=d ðL0Þ. This result indicates that the
diffuseness metric vector/scalar illumination
ratio (DCuttle) is equivalent to the ratio
between the strength of the first order and
zeroth order of the SH representation of the
physical light distribution (i.e. DXia). The only
difference is that DCuttle is derived from the
illuminance and DXia from the luminance.
Since the ratio between Evector and Escalar
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varies from 4 for fully collimated light to 0 for
fully diffuse light, we normalised the metric to
a range 0 to 1. The final normalised form of
DXia is

ðDXiaÞNormalized ¼ 1 � d ðL1Þ=d ðL0Þ=
ffiffiffi
3
p

ð17Þ

The diffuseness metric DXia fulfils all the
criteria we proposed before, and it is easily
quantified and physically described based on
a mathematical representation of the light
field in 3D spaces.

6.2. DXia for the ‘probe in a sphere’ model

We fitted SH representations to the lumi-
nance maps of our model, varying the sub-
tended angle � from 08 to 3608. Then, the
strength of the first and zeroth order compo-
nents as well as their ratio (d ðL1Þ=d ðL0Þ) were
calculated, and the results of DXia are shown
in Figure 7(a). The normalised curves of
DCuttle and DXia in Figure 7(b) indeed overlap.

7. Results and discussion

Figure 7(a) illustrates the relationships
between the five different diffuseness metrics
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Figure 7. The five diffuseness metrics as a function of the subtended angle � in the model ‘probe in a sphere’:
(extended) DFrandsen, DHewitt, DCuttle, DMorgenstern and DXia. In (a) the original metric values and in (b) all diffuseness metrics
normalised to the range (0–1) with ‘0’ corresponding to fully collimated light and ‘1’ corresponding to fully diffuse light.
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mentioned above. To get a better overview of
these relationships, we normalised all diffuse-
ness metrics with ‘0’ corresponding to fully
collimated light and ‘1’ corresponding to fully
diffuse light in Figure 7(b). In Figure 7(b) we
see that the normalised diffuseness metrics
DHewitt, DCuttle, DMorgenstern and DXia give very
similar results for the ‘probe in a sphere’
model. However, there is a difference
between these normalised diffuseness metrics
and DFrandsen. It should be noticed that while
the other diffuseness metrics concern ratios,
the ‘scale of light’ (DFrandsen) is an ordinal
ranking. Since we want the metric to be
perceptually relevant we need psychophysical
data to make an arguable choice for the
best metric. We are not aware of literature
that relates perceptual diffuseness ratings
to systematic variations of the physical dif-
fuseness. We are only aware of perceptual
matching data for diffuseness.14,18,37–39

However, since the ratio-based metrics result
in curves that resemble typical psychometric
curves, we assume that these present the most
plausible options for a perceptually relevant
metric.

Morgenstern et al. made 570 measurements
of the ICE in natural environments.31 The
results showed that the mean ICE ranged
from 0.41 to 0.66 in these environments,
which after normalisation means a range
from 0.5 to 0.7. Cuttle et al. found a prefer-
ence for the Evector/Escalar ratio in the range
from 1.2 to 1.8 for the appearance of human
features in an interview situation.44 This
range corresponds to values between 0.55
and 0.7 for the normalised DCuttle. Thus, this
range coincides with the diffuseness levels of
natural scenes that Morgenstern found and
indicates that human features presented in
lighting environments with natural diffuse-
ness levels are most preferred by human
observers. A DHewitt index in the range from
0.3 to 0.6 was noted to indicate good mod-
elling.1 The latter range corresponds to a
normalised range from 0.3 to 0.6, and so

partly overlaps with natural diffuseness levels,
but also is partly extended towards more
directed light. The latter guideline for the
modelling index, however, was based on tests
using statues of faces instead of real faces. It is
probable that for statue illumination or
museum lighting the light is preferred to be
a bit more directed than natural light.
Regarding DFrandsen, values between 4 and 6
were noted to be the most common diffuse-
ness levels to be encountered in natural
scenes, such as in open scenes with both
the sun and clouds in the sky. Translating
these values into normalised values results
in a range between 0.2 and 0.3, indicating
much more directed light than the natural
or preferred diffuseness levels mentioned
above. Possible reasons for his misestimate
might be that Frandsen did not test his
statement by experiments and, moreover,
neglected half the diffuseness range in his
theory.

Although the perception of light diffuse-
ness is based on the appearance of light
sources and illuminated objects, neither the
vector/scalar illumination ratio nor the first/
zeroth order strength of the SH representa-
tion, strictly, are an index of object appear-
ance. That is because the formation of the
lighting pattern on an object is not only
determined by the light diffuseness, but also
by the light direction and light density, as well
as by the geometric and scattering properties
of surfaces and the viewing direction. That is
why light diffuseness is different from a
‘modelling index’. ‘Modelling indices’
depend on the light diffuseness, but do not
represent the light diffuseness. Instead they
(should) represent how well the lighting con-
ditions make it possible to see 3D shapes in it.
Light direction, light density, and other
environmental characteristics together with
diffuseness determine the appearance of
objects, and so the modelling aspect.

The light diffuseness metrics DCuttle and
DXia describe the relationship between the
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zeroth order and the first order SH compo-
nents. Due to effects of second order SH
contributions, identical values of DCuttle or
DXia may result in different lighting patterns
on an object. The second order SH compo-
nent was called ‘squash tensor’ by Mury
et al.,19,47,48 because of its shape in extreme
cases: a light or dark squash. For instance in
Figure 8, the sphere is illuminated by a light
ring (or dark squash) in Figure 8(a), a
uniform light field in Figure 8(b) and two
opposed light sources (or light squash) in
Figure 8(c). In all three conditions, both the
normalised DCuttle and DXia have a value of 1
(since the light vector is 0), but the illumination
pattern on the sphere is different. Furthermore,
adding anambient term (zeroth order SH term)
to the model ‘probe in a sphere’ simply
contributes an additional uniform illumination
over the surface of the spherical probe but
would not influence the higher order SH
components (e.g. the first order). Thus, such
a change will result in a higher value of the
normalised diffuseness.

Morgenstern et al. proved that the ICE is
the ratio between the energy in the first to
infinite orders and the energy in the zeroth
order components of the SH representation of
the illumination over a Lambertian sphere.
Similar to the effect above, identical values of
the ICE may result in different lighting
patterns on an object. For example, varying
the phase of the SH or shifting energy
between harmonics within a single order

has no effect on the ICE value, but does
change the illumination pattern on an object.
A well-known effect in this area concerns
variations of the light vector direction
with respect to a viewer, which changes the
apparent diffuseness18,27 but not the physical
diffuseness. In future research, we will
investigate how to capture such higher
order angular variations (so-called light tex-
ture32) in descriptions, measurements and
visualisations.

8. Conclusion

In this study, four well-known diffuseness
metrics were reviewed and their relationships
were examined via a model named ‘probe in a
sphere’. We proposed a light diffuseness
metric DXia, which is entirely based on a
mathematical description of the physical light
distribution in a 3D space (the light field) and
fulfils the criteria we defined for diffuseness
metrics. Together with the light density and
direction it forms a global integral description
of the low order properties of the light field
structure. It also allows easy extensions to
descriptions of the high order components of
the light field. Furthermore, the SH represen-
tation based method has the advantage that it
is clear how the parameters relate and which
role they play in the resulting light field.
These properties and their variation in 3D
space reflect the spatial and form-giving
character of light.

(a) (b) (c)

Figure 8. Light patterns on a Lambertian sphere with the light vector being zero: (a) a light ring; (b) uniform light field;
(c) two opposed point light sources.
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