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Abstract

Autonomous Surface Vehicles (ASVs) must operate safely in dynamic and often cluttered maritime environments
such as ports and inland waterways. Achieving reliable situational awareness in these settings remains challenging
due to the limited availability of annotated datasets, the complexity of multi-sensor alignment, and the degradation
of monocular depth estimation at long range. This thesis addresses these challenges by developing a multi-modal
3D object detection framework that combines radar and camera data to improve perception robustness and depth
accuracy.

To support supervised learning and evaluation, a custom dataset was constructed using real-world maritime
sensor data, including radar, camera, and navigation information. Three-dimensional object annotations were
manually created to capture static and moving targets across a wide range of distances.

Other core contributions include a probabilistic radar association strategy that models uncertainty in sensor
measurements, a learnable Radar Gaussian Parameter Network (RGPNet) for dynamic estimation of radar associa-
tion parameters, and a depth-aware mechanism for dynamically adjusting the region used for radar—camera fusion.
These methods are designed to improve object localisation performance, particularly in conditions where sensor
data is sparse, noisy, or spatially misaligned.

The proposed models were evaluated through a series of controlled experiments examining detection performance
across different depth intervals and clutter conditions. The results show that probabilistic radar fusion improves
robustness to noise and depth estimation errors, while depth-aware association strategies enhance localisation at
long range without sacrificing near-field precision. Incorporating adaptive mechanisms into the fusion process was
shown to be particularly effective in scenarios involving large depth variation or limited visual information.

Overall, the findings demonstrate that uncertainty-aware, adaptive fusion methods can significantly improve
3D object detection performance for ASVs. The approaches developed in this work offer a robust foundation
for future research on scalable, data-efficient maritime perception systems for autonomous navigation in complex
environments.
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Chapter 1
Introduction

In the last decennia, developments in Artificial Intelligence (AI) [1], combined with financial and societal demands [2—-
4], have driven significant progress toward automation across the aviation, automotive, and maritime industries [5].
As a result, the transportation sector has been experiencing a rapid technological evolution. While the automotive
industry has historically had a head start, due to earlier support from national governments as well as its massive
industry size [6], the maritime industry’s Autonomous Surface Vehicle (ASV) sector is growing at an impressive
rate, as its market value is projected to grow to $3.29 billion by 2032 [7].

A key driver stimulating the evolution of ASVs is the demand for safety. According to an annual report of
maritime incidents from the European Maritime Safety Agency (EMSA), human error is the primary cause for
most accidents [8]. Notably, more than half of all accidents occur in internal waters, such as port areas and nearby
channels. In these areas, traffic density and navigational complexity are highest. Consequently, this research’s scope
is bounded to inner and outer port environments.

A fundamental prerequisite for safe autonomous navigation is an effective vision system. A vessel cannot avoid
obstacles or plan safe trajectories without accurately perceiving its surroundings. Therefore, robust, reliable, and
context-aware 3D object detection systems are critical components in enabling autonomous vessels to operate safely
and efficiently, particularly in the challenging and dynamic environments of ports.

This thesis project is a collaborative effort between RH Marine Netherlands B.V. and the Delft University of
Technology, aiming to advance the field of multi-modal 3D object detection in maritime settings to enhance the
situational awareness of ASVs. The goal is to design a novel multi-modal 3D object detection model, using radar
and camera data, that has the potential to operate next to RH Marine’s Collision Avoidance System (CAS) [9,10].

1.1 Challenges in maritime 3D object detection

Designing an effective vision system capable of multi-modal 3D object detection in maritime environments introduces
six unique challenges that differentiate this domain from those encountered in automotive or aerial applications.
The first challenge is the scarcity of high-quality, annotated datasets for maritime 3D object detection [11]. Unlike
the automotive domain, where large-scale datasets such as Karlsruhe Institute of Technology and Toyota Institute
(KITTI) [12], Waymo [13] or nuScenes [14] are readily available, maritime datasets are limited in volume, diversity,
and public availability. Moreover, the datasets that do exist are often unlabelled or lack sufficient metadata, making
supervised training of detection models difficult. This scarcity necessitates either the development of custom datasets
or the use of weak supervision, synthetic data, or transfer learning approaches to enable initial model training despite
limited annotations.

In addition to limited data, the spatial distribution of objects in maritime scenes is particularly broad and
variable. Target vessels or obstacles may appear just a few meters away or well over a kilometer in the distance. This
wide dynamic range in object proximity demands highly flexible perception models capable of resolving both near-
field detail and far-field structure. Standard detection architectures, often tuned for more constrained environments
like roads, struggle to maintain accuracy across such varying scales.

Thirdly, more complexity arises from the nature of maritime radar systems. These radars typically perform a
full 360-degree scan, often starting from a reference angle aligned with the bow of the vessel [15,16]. When fusing
radar data with front-view camera images, temporal misalignment has the potential to degrade the effectiveness of
the fusion process. A single radar scan takes time to complete, meaning that the portion of the scan corresponding
to the front view may not be temporally synchronised with the camera frame. As a result, objects in the radar
frame may appear slightly earlier or later compared to their positions in the camera image, which can reduce the
spatial accuracy of detection and introduce inconsistencies in object localisation.

Furthermore, the training of 3D object detection models depends on the quality of the initial 2D detections [17].
Since most 3D detection frameworks build upon 2D bounding boxes, inadequate 2D detection performance can
prevent the model from consistently identifying relevant objects, thereby limiting its ability to learn the features
necessary for accurately predicting 3D attributes such as depth, orientation, and spatial extent. When training
from scratch, this dependency necessitates either transfer learning [18] using a robust 2D detection backbone with
well-optimised regression heads, and a carefully designed training strategy, such as curriculum learning [19], staged



training [20], or multi-task co-adaptation [21], to compensate for early-stage weaknesses. Without such a foundation,
models often struggle to converge or fail to generalise under diverse environmental conditions.

Sensor alignment presents the fifth challenge in dynamic maritime conditions. Maritime radar systems generally
provide range and bearing, but no elevation information, making them insensitive to changes in pitch or roll of
the own ship (OS). In contrast, cameras are directly affected by such oscillations, which are common in maritime
environments due to waves and engine-induced vibrations. Accurate synchronisation and correction of sensor
data, therefore, require high-frequency and precise measurements from an Attitude and Heading Reference System
(AHRS) to maintain alignment between modalities.

Lastly, maritime environments are inherently noisy and unpredictable. External factors such as sunlight glare,
sea spray, fog, and reflections from the water surface introduce significant visual and radar noise. These environ-
mental effects degrade the quality of sensor data and introduce false positives and negatives in both detection and
classification. Developing models that are robust to such conditions remains an open and critical challenge for safe
autonomous navigation in ports and coastal waters.

1.2 Related work

This section provides an overview of research and concepts that underpin the core focus of this thesis: the develop-
ment of a novel multi-modal 3D object detection model using radar and camera data for maritime environments.
First, multi-modal sensor fusion methods are examined to illustrate how combining complementary sensor modalities
can enhance perception robustness and accuracy. Next, two existing multi-modal 3D object detection frameworks
that utilise frustum association are discussed. This is followed by an exploration of a publicly available maritime
dataset used to construct a 3D detection benchmark. Finally, several deep learning training strategies are reviewed
in the context of building robust multi-task detection models.

1.2.1 Multi-modal sensor fusion methods

In the context of autonomous navigation systems, the ability to perceive and understand the surrounding envi-
ronment accurately and robustly is paramount. Relying on a single sensor modality is often insufficient due to
the inherent limitations and vulnerability of each sensing technology. For example, vision-based systems such as
RGB cameras offer rich semantic detail but suffer in poor lighting or adverse weather conditions. In contrast, radar
systems are highly robust under challenging environmental conditions (e.g., fog, rain, or direct sunlight) but provide
lower resolution and less semantic information. By integrating information from multiple sensor modalities, it is
possible to harness the strengths of each sensor while mitigating their individual weaknesses [22].

Multi-modal sensor fusion has been extensively studied in robotics, autonomous driving, and increasingly in the
maritime domain, where sensor reliability and environmental variability are critical. Sensor fusion enables improved
detection accuracy, redundancy for fault tolerance, and more comprehensive scene understanding [23]. The key
challenge lies in how to effectively integrate the different data streams in a manner that is both computationally
efficient and semantically meaningful. Sensor fusion methods are generally categorised into three different levels:
data-level fusion (early fusion), feature-level fusion (intermediate fusion), and decision-level fusion (late fusion)
[24,25].

Data-level fusion involves merging raw data from different sensor modalities before further processing [24]. This
method benefits from being able to take all of the available information into account, potentially leading to a
more comprehensive view of the environment. Feature-level fusion combines feature representations of multiple
sensor modalities after individual preprocessing [26]. This allows each modality to be processed by its own feature
extractor, allowing deep learning models to capture both modality-specific and shared representations. Decision-
level fusion combines the outputs of individual models before making final decisions [25]. This fusion method is the
most interpretable, but is not capable of joint feature learning.

In practice, some models employ a combination of these fusion strategies across different stages of the processing
pipeline, an approach known as hybrid fusion [27]. For instance, raw radar point clouds may be fused with camera
images at the data level, while later-stage feature maps are combined at the feature level before making final
decisions. Hybrid fusion allows designers to exploit the advantages of each fusion level, often leading to improved
robustness and flexibility in complex environments.

Within data- and feature-level fusion, there are different techniques that can be used to effectively combine the
extracted features from each modality. Concatenation and element-wise aggregation are the most straightforward
approaches [28]. Concatenation stacks feature maps or raw data from each modality along the channel dimension.
This technique preserves modality-specific information, but burdens subsequent layers with the task of learning



meaningful joint representations. Element-wise aggregation can be achieved through either addition or multiplica-
tion. This reduces the number of feature maps that need to be processed compared to concatenation, but it does
assume a certain degree of alignment between modalities. Element-wise aggregation allows deep learning models
to emphasise specific modalities, and down-weight less informative modalities, on a per-sample basis. This can
improve robustness in multi-modal settings [29].

Attention-based fusion introduces learnable mechanisms to dynamically weigh features across or within modali-
ties [28]. This allows the model to focus on the most informative signals, improving robustness in conditions where
one modality is degraded. Attention can be implemented in various forms, most notably as self-attention (within
a single modality) or cross-attention (between modalities). These mechanisms are typically built on top of basic
fusion methods like concatenation or element-wise aggregation, refining the merged features rather than replacing
the core fusion operation.

Several attention modules have been proposed for camera-radar or camera-LiDAR fusion. For instance, Spatial
Attention Fusion (SAF) computes a spatial attention map from radar features and uses it to re-weight vision features,
focusing the model on image regions where radar data suggests the presence of objects [30]. The Attentive Feature
Pyramid Network (Attentive FPN) uses Concurrent Spatial and Channel Squeeze & Excitation (scSE) blocks to
highlight relevant radar-informed regions while suppressing irrelevant ones [31]. More advanced techniques such as
Multi-modal Deformable Cross Attention (MDCA) allow flexible spatial alignment between modalities by computing
attention scores based on input features, thus adapting to varying scene configurations [32].

Other recent innovations include Cross-attention Multi-layer Fusion (CAMF) [33], which uses deformable at-
tention to align bird’s-eye view (BEV) feature maps before fusing them via channel and spatial modules, and
LearnableAlign [34], which dynamically aligns features from LiDAR and camera streams using cross-attention
where LiDAR features act as queries. Similarly, Spatially Modulated Cross Attention (SMCA) constrains the at-
tention region around object proposals using 2D Gaussian masks, ensuring attention is concentrated on semantically
relevant areas [35]. These examples demonstrate how attention-based fusion can significantly enhance the precision
and adaptability of sensor fusion in complex, real-world environments.

Modality interaction is a newer fusion technique that preserves the individuality of sensor modalities while
enabling deep, structured interaction between them [36]. Instead of merging features into a single unified represen-
tation, this approach maintains parallel feature streams that exchange information selectively through cross-modal
attention mechanisms. By allowing features to interact without being collapsed into a single vector space, modality
interaction retains modality-specific characteristics while enriching them with complementary cues. Although this
strategy is more computationally intensive than simpler fusion methods, it has been shown to improve performance
in tasks that require high-fidelity reasoning across diverse sensor inputs.

1.2.2 Multi-modal 3D object detection methods

This thesis builds upon and further develops the CenterFusion [37] and CenterFusion++ [38] frameworks. These
models extend the monocular detection capabilities of CenterNet [39] by incorporating radar signals to improve
3D localisation, depth estimation, and object motion prediction in complex driving environments. Both methods
are built around the idea of frustum association, but differ in how and when radar information is fused into the
detection pipeline.

The foundation of both models is CenterNet, a keypoint-based object detector that represents objects by the
center of their 2D bounding boxes [39]. CenterNet predicts a class-specific heatmap, where the peak indicates the
likely location of the object’s center in the image. At each predicted center location, additional regression heads are
used to estimate object properties such as depth, orientation, size, and motion. The network architecture typically
uses a DLA-34 backbone, which aggregates semantic and spatial features across different layers to enable precise
localisation and regression.

CenterFusion extends this approach by introducing a feature-level fusion mechanism using radar data [37].
After the monocular 2D and 3D detections are generated by CenterNet, the model constructs a 3D frustum for
each detected object. This frustum originates from the camera and extends into 3D space, covering the region
where the object is likely to be located. To perform radar association, CenterFusion applies a technique called
pillar expansion, where each radar detection is extruded into a vertical 3D column. This compensates for the lack
of height information in radar and improves spatial coverage within the frustum.

Radar pillars that intersect with the frustum are treated as candidate associations. Among them, the pillar
closest to the camera is selected. Radar attributes are projected into a radar feature map. The radar feature map
includes both depth and radial velocity channels, which providing complementary spatial and motion cues. This
map is then fused with the image feature map, typically through concatenation at the object’s center location.



The fused representation is passed to secondary regression heads, which refine 3D attributes such as depth, size,
orientation, and motion. CenterFusion’s architecture is illustrated in Figure 1.1.
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Figure 1.1: Overview of the CenterFusion architecture [37].

This form of frustum-based radar association is a key innovation in CenterFusion, enabling sparse radar returns
to be selectively incorporated into object-level reasoning without explicit point cloud segmentation or object-level
tracking. However, since the association depends on selecting the closest radar point within the frustum, it remains
sensitive to the quality of the initial monocular 3D predictions. An important parameter in this process is §, which
controls the depth-wise expansion of the frustum. By enlarging the frustum volume, the likelihood increases that
radar returns associated with an object will fall inside the candidate region. This makes the model somewhat more
tolerant to inaccuracies in the initial 3D object location predicted from the image, thus improving robustness in
challenging or uncertain conditions. This effect is illustrated in Figure 1.2.
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Figure 1.2: Visualisation of how the ¢ parameters operates [37].

To address the limitations of associating radar data using only the closest point within a frustum, CenterFu-
sion++ introduces two key improvements: early fusion and a Learnable Frustum Association Network (LFANet)
[38]. Tts architecture is illustrated in Figure 1.3. Early fusion is applied by augmenting the input to the backbone
with radar-derived channels. The resulting image tensor includes standard RGB channels along with projected
radar features: depth, radial velocities (v, v,), and Radar Cross-Section (RCS). The inclusion of RCS as an
additional input channel allows the network to leverage material and shape-related cues, as RCS can reflect object
surface characteristics. Incorporating RCS into the early fusion input was found to improve detection robustness,
especially in challenging conditions. This provides the backbone with fused information from the earliest stages
of processing, enabling better feature learning. To prevent over-reliance on the camera, the authors introduce a
training-time regularisation technique called BlackIn, which randomly masks out the RGB channels to ensure the
network learns to utilise radar features effectively.

BACKBONE I PRIMARY REGRESSION

{ (worvespe] [ omenson ||
- ) B 5

CAMERA

3D BOX
ENCODER

]

i SECONDARY |
: ] \ o=
o0 T | REGRESSION | | ¥
’ ﬂ s i
y ! : #
RADAR N R ] o -
. 0 . g ‘ PILLAR EXPANSION LFANet. foore 'i'_[. 2 4
N ‘ A/ E% %} I ﬁ

Figure 1.3: Overview of the CenterFusion++ architecture [38]. Radar information is fused both early in the
backbone and again using LFANet.



The second major component, LEANet, replaces the single radar point selection method with a fully learnable
mechanism. LFANet operates on a radar-generated snapshot of the frustum in the form of a BEV tensor, which
encodes radar-derived features within the region of interest. This tensor is processed by a convolutional network
that predicts an artificial radar point r*, which represents the most likely 3D location of the object’s center. Similar
to CenterFusion, this point is then inserted into a radar feature map and fused at the object’s image center. The use
of LFANet enables the network to suppress irrelevant or noisy radar points and adaptively associate radar signals
based on scene context.

The variant used in CenterFusion++, LFANet-IMG, is specifically designed to extract semantically rich features
from the radar snapshot. It takes as input a tensor X € R®*F*Mfeat.LFA = where k is the spatial resolution of the
snapshot, and nge.¢,Lra is the number of radar feature channels. The network architecture consists of a series of
convolutional blocks, each comprising a 3 x 3 convolutional layer with ReLU activation followed by a max-pooling
operation. These blocks progressively reduce the spatial dimensions of the input until it reaches 1 x 1, effectively
summarising the entire snapshot into a feature vector of size ny. This vector is then passed through two fully
connected layers: the first with n; neurons and Rectified Linear Unit (ReLU) activation, and the second with three

*

output neurons that regress the artificial radar point r* = [d*, v}, v}], representing estimated depth and velocity
components. This output is then inserted into the radar feature map and used for fusion at the object’s center in
the image. The depth-oriented, semantically expressive architecture of LFANet-IMG yielded better performance

than alternative variants and was therefore adopted in the final model. Its architecture is illustrated in Figure 1.4.

Figure 1.4: Overview of the LFANet architecture [38].

Together, these modifications allow CenterFusion++ to leverage radar data more effectively and robustly than
its predecessor. By performing early fusion and learning to associate radar points dynamically, the model improves
object detection and tracking in sparse or visually degraded conditions, making it particularly suited for use in
maritime environments.

1.2.3 Deep learning model training strategies

Designing and training multi-modal 3D object detection models from scratch presents several challenges, especially
when annotated data is limited or the model architecture incorporates multiple interdependent tasks. To address
these challenges, various training strategies have been developed to improve convergence, generalisation, and mod-
ular learning efficiency. This section discusses three such strategies relevant to this thesis: transfer learning, staged
training, and multi-task co-adaptation.

Transfer learning refers to the practice of pretraining a neural network on one dataset or task, and then fine-
tuning it on a different but related task [18]. This approach is particularly useful when the target dataset is small or
lacks diversity, as the pretrained model already encodes useful low-level and mid-level features that can accelerate
learning. In the context of 3D object detection, transfer learning is often used by initialising a backbone network with
weights pretrained on large-scale 2D object detection datasets such as Common Objects in Context (COCO) [40]
or KITTT [12]. This not only reduces training time but also improves stability and accuracy, especially in the early
stages of training.



Curriculum learning is another training strategy designed to improve model convergence by controlling the order
in which training samples or tasks are introduced [19]. Inspired by the way humans learn, starting with simpler
concepts before tackling more complex ones, this approach allows the model to gradually adapt to increasing
difficulty. In the context of 3D object detection, curriculum learning can involve prioritising well-illuminated or
close-range objects early in training, before exposing the model to more ambiguous, distant, or occluded targets.
This structured learning path can stabilise gradients, reduce overfitting in early stages, and improve generalisation
in scenarios with high data variability, such as maritime environments.

Staged training involves partitioning the model’s learning process into distinct phases, during which different
components of the architecture are trained with varying emphasis [20]. This is particularly effective for models
with separate sub-tasks, such as 2D detection and 3D regression. In early stages, the training may focus primarily
on optimising the 2D detection heads to ensure reliable object localisation in the image plane. Once the model
demonstrates sufficient 2D detection performance, subsequent stages can focus on training the 3D regression heads,
allowing them to learn more effectively from stable feature maps. This phased approach helps avoid unstable
gradients and conflicting objectives between components during joint optimisation. Similar staged training strategies
have been employed in other domains, such as screen content image quality assessment, where one network first
classifies distortion types before a second predicts quality [41]. In multi-modal learning, staged strategies have also
been used to selectively emphasise clean modalities before introducing noisier ones [29].

Multi-task co-adaptation is a training strategy in which all sub-tasks of a model—such as 2D detection and
3D regression—are trained jointly from the start, but with shared representations and loss terms that adaptively
balance the contribution of each task [21]. Instead of training components in isolation or sequentially, this approach
encourages the model to learn features that are simultaneously useful across multiple outputs. In the context
of 3D object detection, the backbone and feature extractors are jointly optimised based on feedback from both
2D and 3D prediction heads. This promotes cross-task generalisation and can lead to more compact and efficient
representations. However, it requires careful design of loss weighting and gradient flow to avoid one task dominating
the learning process.

1.3 Contributions

Reliable multi-modal 3D object detection is essential for enabling ASVs to safely operate in complex and dynamic
maritime environments, such as ports and coastal waters. This thesis contributes to advancing this capability
through both dataset creation and novel model development. The main contributions are:

1. A maritime 3D object detection benchmark dataset: A custom dataset was created to support the
training and evaluation of multi-modal 3D object detection models in maritime environments. This dataset
includes synchronised data acquired from front-facing camera images, marine radar data (both as 2D radar
sweeps and pseudo point clouds), and LiDAR point clouds, along with AHRS and GPS measurements. It
covers a range of port environments and is fully annotated with 3D object labels, enabling benchmarking and
supervised training in a domain where such resources are scarce.

2. A novel frustum association method using a bivariate Gaussian weighting mechanism (Gaus-
sianFusion): This model introduces a novel radar association mechanism based on a bivariate Gaussian
distribution. Unlike CenterFusion [37], which selects only the nearest radar point within a frustum, Gaussian-
Fusion considers all radar points within a frustum, weighting them by their spatial proximity to the frustum
center. A weighted average is then used to form an artificial radar point, which is fused with image features
for 3D regression. This improves robustness to noise, sparsity, and misalignment.

3. A novel learnable frustum association mechanism using neural Gaussian estimation (Gaussian-
Fusion++): Building on the previous method, this variant introduces a lightweight neural network, called
Radar Gaussian Parameter Network (RGPNet) that learns to estimate the bivariate Gaussian parameters
from the radar data within a frustum. The network takes all radar points within a frustum and predicts a
learnable Gaussian distribution to create an artificial radar point. This approach dynamically adapts to scene
complexity and object characteristics, further enhancing the precision of camera-radar fusion under diverse
environmental conditions.

4. Depth-adaptive frustum construction: A novel frustum expansion technique is proposed to address the
difficulty of radar association at longer ranges. The method increases the size of the 3D frustum in proportion
to the predicted object depth, improving radar point inclusion and association quality in distant scenes. While
this technique is still under investigation, it holds promise for improving detection recall at long ranges.



1.4 Outline

This rest of this thesis report is structured into four chapters. Chapter 2 details the construction of the maritime
3D benchmark dataset. Chapter 3 analyses the limitations of baseline detection frameworks and introduces two
novel camera—radar fusion models, GaussianFusion and GaussianFusion++. It also discusses the dyanmic frustum
enlargement module. Chapter 4 describes the training strategies and the evaluation metrics employed. Chapter 5
outlines the experiments, including implementation details and training configurations. It also presents the results
of these experiments, evaluating model performance across multiple metrics to assess robustness, accuracy, and
task-specific effectiveness. Chapter 6 interprets the experimental outcomes and explores the implications of key
findings. It critically analyses how model modifications influence performance and discusses trade-offs between
complexity and robustness in camera-radar fusion. Chapter 7 summarises the main contributions and findings,
and reflects on the overall success and limitations of the proposed approach. Additionally, it discusses potential
directions for future work, including improvements to frustum construction, fusion strategies, dataset annotation,
and robustness in real-world deployment.



Chapter 2
Dataset

This chapter provides a comprehensive overview of the dataset used for training and evaluating the 3D object
detection models developed in this thesis. It begins with a description of the Pohang Canal Dataset [42], a publicly
available collection of maritime sensor data that served as the foundation for this research. The remainder of the
chapter outlines the structured pipeline used to transform the raw data into a usable benchmark, including frame
selection, annotation formatting, radar-to-point cloud conversion, and depth-stratified statistics.

The construction of this fully annotated benchmark dataset forms one of the core contributions of this thesis. It
was developed through the manual curation and annotation of multimodal sensor recordings, enabling supervised
learning and performance evaluation in long-range maritime 3D perception tasks.

2.1 The Pohang Canal Dataset

The dataset used in this thesis originates from the Pohang Canal Dataset [42], a publicly available, multi-modal
maritime dataset designed to support research on autonomous navigation in complex marine environments. Col-
lected over a 7.5 km route in Pohang, South Korea, it spans diverse settings such as a narrow canal, port zones,
and near-coastal waters. These environments introduce varying levels of complexity in traffic, visibility, and sensor
challenges, making the dataset well-suited for benchmarking perception algorithms.

2.1.1 Sensor setup

The data acquisition platform was a 7.9 m-long cruise vessel equipped with a broad suite of perception and navigation
sensors. The sensor suite includes: a stereo RGB camera, an infrared camera, an omnidirectional camera, three
LiDARs (front, port, and starboard) with a range of 120 m, a marine radar with a range of 1654.8 m, a GNSS-
based GPS system with RTK capability, and an AHRS. The stereo and infrared cameras were front-mounted with
hardware-synchronised triggering, while the radar and omnidirectional camera were placed on a vertical slide at the
stern. The sensor configuration is illustrated in Figure 2.1.
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Figure 2.1: Sensor configuration of the Pohang Canal Dataset collection platform [16].

2.1.2 Calibration and synchronisation

Each sensor is provided with intrinsic calibration parameters (e.g., focal length, distortion coefficients) and extrinsic
transformations relative to the AHRS [42]. These include rotation quaternions and translation vectors. The system
architecture consisted of three computers for data logging, with NTP-synchronisation [43] achieved through the
Chrony time-sync library [44]. All data is timestamped in UNIX format [45], allowing for precise temporal alignment
during post-processing.



2.1.3 Sampling rates

Sensors operated at varying frequencies depending on their function:
e Stereo and infrared cameras: 10 Hz

e Omnidirectional camera: 10 Hz (daytime only)

LiDARs: 10 Hz per sensor (asynchronous)
e Marine radar: 1.0-1.3 rotations per second (approx. 1 Hz)

GPS: 5 Hz

AHRS: 100 Hz

2.1.4 Data formats

Each sensor’s output is organised in a clear directory structure. RGB and thermal images are provided as PNG or
JPG files, with stereo images at 2048 x 1080 resolution and thermal images as 16-bit PNGs (640 x 512). Radar
scans are stored as 2D PNG images per sweep at 2048 x 2048 resolution. Omnidirectional camera data includes six
synchronised JPG images (640 x 512) at per timestamp (five horizontal, one top). LiDAR data is provided in binary
format, storing XYZ coordinates, intensity, reflectivity, ambient values, and internal sensor timestamps for each
point. The GPS data is stored in a .txt file and contains information on the latitude, longitude, heading, precision
and quality indicators, and geoid height. The AHRS data is also stored in a .txt file, containing information on the
orientation, angular velocity, and acceleration of the OS [16]. All data is accompanied by timestamp logs.

2.1.5 Motion compensation and trajectory

Accurate motion compensation is critical in maritime environments due to vessel roll, pitch, and yaw dynamics.
The dataset includes a high-fidelity baseline trajectory, estimated using a tightly coupled SLAM framework that
fuses front LiDAR data with AHRS and RTK-GPS measurements via iSAM-based graph optimisation [46]. This
ensures accurate ground truth for both sensor fusion and 3D object detection, even in areas with GPS degradation
such as under bridges.

2.1.6 Use in benchmarking

The dataset’s rich sensory coverage, precise calibration, and dynamic maritime scenarios make it uniquely suited for
training and evaluating multi-modal 3D object detection frameworks. It supports tasks such as camera—radar and
camera—LiDAR fusion, and long-range maritime perception. However, the dataset does not provide labelled object
annotations. Therefore, all 3D object labels used in this thesis were manually created as part of this research. This
effort not only enabled effective model training and evaluation but also contributed toward developing annotated
benchmarks for maritime computer vision research.

2.2 Dataset construction

To transform the raw multi-modal recordings from the Pohang Canal Dataset [42] into a usable benchmark for 3D
object detection, a structured pipeline was developed for filtering, annotating, and data formatting. This section
outlines the steps involved in refining the dataset, including frame selection, COCO-style annotation design, radar-
to-point cloud conversion, and the creation of a train/validation split suitable for model training and evaluation.

2.2.1 Frame selection and filtering

Initially, raw sensor data contained many frames with little to no relevant information or redundant views. These
were manually filtered out to improve dataset quality and reduce unnecessary duplication. Specifically, camera
images lacking meaningful obstacles, or appearing overly similar to adjacent frames, were excluded. Once the
remaining camera images were selected, corresponding LiDAR and radar data were retrieved using their respective
timestamps to ensure temporal consistency.



2.2.2 Annotation format

With the filtered dataset established, annotations were created in the COCO format [40] to facilitate compatibility
with standard object detection and tracking pipelines. The final annotation structure includes the following main
keys:

e images: a list of dictionaries containing metadata about each image

e annotations: a list of dictionaries with object annotations for each image

e categories: a single category entry with {"name": "obstacle", "id": 1}
e attributes: a single attribute entry with {"": 0}

e pointclouds: an empty list (as this is stored in images)

Each entry under images includes the following information:

e id: a unique integer identifier for an image

e file name: file path to the image

e calib: a 3 x 4 camera calibration matrix

e frame_id: indicating frame number (same as id)
e sensor_id: sensor identifier (which is always 1)

e trans matrix: 4 x4 transformation matrix for pose from the camera coordinate frame to the global coordinate
frame

e velocity_trans matrix: 4 X 4 transformation matrix for rotating velocity from the camera coordinate frame
to the global coordinate frame

e width, height: image width and height

e pose_record_trans, pose_record_rot: AHRS-to-global translation vector and quaternion
e cs_record_trans, cs_record_rot: camera-to-AHRS translation vector and quaternion

e radar _pc: radar point cloud projected into the camera coordinate frame

e camera_intrinsic: 3 X 3 matrix capturing camera focal lengths and optical center

This information was derived using available AHRS, GPS, calibration data, and radar projections.

Each entry under annotations includes:

e id: unique identifier for the annotation

e image_id: unique identifier for the corresponding image

e category_id: unique identifier for the category label (always 1)

e dim: object dimensions [height, width, length],

e location, depth: 3D position and depth in the camera coordinate frame
e occluded, truncated: binary indicators for occlusion and truncation

e rotation_y: yaw angle in the x-z plane

e amodel center: [x, y] of the projected center of the obstacle in the image

e alpha: the observation angle of an object relative to the camera’s viewing direction on the image plane
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e iscrowd: crowd flag (always 0)

track_id: object instance ID
e attributes: attribute ID (always 0)
e velocity, velocity_cam: object velocity in both global and camera coordinate frames

e bbox, area: 2D bounding box and its area

2.2.3 Object annotation

To achieve this, each image was first manually annotated by drawing 2D bounding boxes around visible obstacles.
For each bounding box, the following metadata was recorded: a unique annotation ID, track ID (shared across
frames for the same object), visibility of width/length, occlusion and truncation status, movement status, and an
estimate of yaw angle in the camera frame.

To obtain 3D localisation and orientation, LiDAR point clouds were transformed into the camera coordinate
frame. Points falling within each 2D bounding box were extracted by projection, followed by clustering and manual
filtering to remove outliers. The resulting clusters were used to compute:

e Object location: [x, z| centroid and y at object bottom
e Yaw angle: computed using Principal Component Analysis (PCA) [47]

e Dimensions: length estimated as the extent along the yaw angle, width estimated as the extent along the axis
perpendicular to the yaw angle in the ground plane, and height estimated as the vertical extent

Velocities: derived only for moving objects by comparing object displacements across frames using temporally
adjacent LiDAR scans and transformation matrices from the camera to the world coordinate frame

e Camera-frame velocities: obtained by applying the velocity_trans matrix to the global velocity vector

For moving objects, the yaw angle was additionally computed from the camera-frame velocity vector using the
angle between its x and z components. All other metadata were calculated accordingly. The iscrowd field was
always set to 0, reflecting separate annotations for each object.

2.2.4 Radar-based pseudo point cloud generation

LiDAR coverage was limited by range, especially for distant objects. To supplement this, radar data was used.
However, radar was only available in the form of 2048 x2048 PNG images. An example of such an image is shown
in Figure 2.2.

Figure 2.2: Example radar image [42]. White pixels indicate returns.
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Pseudo point clouds were generated by randomly converting white pixels in the radar images into 3D points,
scaled based on the radar’s maximum range and an image’s resolution. The RCS for each point was estimated
heuristically, based on the size of the radar blob and the relative position of the pixel within that blob. This method
of RCS estimation does not account for material properties, which also influence true reflectivity. Consequently, the
RCS values are not physically meaningful and should not be interpreted as accurate indicators of radar reflectivity.
They were retained solely to maintain compatibility with the required point cloud format and for possible future
use, should more reliable estimation methods or material data become available. As the radar data originated from
2D images, no velocity or temporal metadata was available; only spatial coordinates and estimated RCS values
could be recovered.

To ensure compatibility with the CenterFusion pipeline, originally designed for use with the nuScenes dataset [14],
the pseudo point clouds were saved in a .pcd format with 18 fields. Among these, only the X, Y, and Z fields were
assigned meaningful values. The remaining fields were populated with default values (either 0 or NaN) to maintain
the expected data structure. These point clouds were then processed analogously to LiDAR data for the purpose
of generating 3D object annotations. The radar-to-point cloud conversion procedure is summarised in Algorithm 1
in Appendix A.1.

2.2.5 Dataset statistics and train/val split

To characterise the distribution of annotated objects, the dataset contains a total of 991 obstacle annotations, of
which 160 are labelled as moving and 831 as stationary. This reflects a class imbalance that mirrors real-world
scenarios in maritime environments, where stationary objects such as docked vessels, bridge pillars and buoys are
more common than actively moving vessels. In terms of depth distribution, 344 objects are located within 0-100 m,
314 objects fall in the range of 100-250 m, and 333 objects are beyond 250 m. This relatively even spread across
depth ranges ensures that the dataset supports training and evaluation across short, mid, and long-range perception
tasks. Figure 2.3a visualises this depth distribution in a histogram.

After generating the complete set of labels, 3D bounding boxes were visualised on the camera images for
inspection with their corresponding BEV representations. Errors or inconsistencies were corrected manually. T'wo
representative examples are illustrated in Figure 2.3b. The complete dataset consists of 258 camera-radar image
combinations with 991 annotations. The dataset was finally split into a training and a validation set. The training
set contained 206 image-radar combinations with 769 annotations. The validation set contained 52 camera-radar
combinations with 222 annotations. The annotated objects include ships, buoys, and bridge pillars.
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(a) Depth distribution of objects in the dataset. The depth (b) Example of annotated 3D bounding boxes visualised
distribution includes 344 objects at 0-100 m, 314 at 100-250 m, on a camera image with their corresponding BEV repre-
and 333 beyond 250 m. sentations.

Figure 2.3: Overview of annotated object distribution and examples.
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Chapter 3
Methodology

This chapter presents the remaining core methodological contributions of this thesis, which together aim to improve
radar—camera fusion for monocular 3D object detection in maritime environments. Two novel architectures are
proposed: GaussianFusion, which introduces a probabilistic radar association strategy based on Gaussian-weighted
aggregation, and GaussianFusion++, which extends this idea by incorporating the RGPNet, a learnable module
that predicts radar association parameters from scene context. In addition, a dynamic frustum enlargement module
is developed to adapt the radar—camera fusion region based on object distance, addressing the increasing uncertainty
in monocular depth estimation at long range. These components form a robust and adaptive perception pipeline
tailored to the challenges of sparse, cluttered, and visually ambiguous maritime environments.

3.1 GaussianFusion

The GaussianFusion architecture was developed to address two critical limitations in CenterFusion [37]. The first
limitation is that it heavily relies on the accuracy of the initial monocular 3D object detection to estimate depth
and project a frustum with which radar points are associated. This dependence can introduce significant error,
particularly in challenging visual conditions. The second limitation is that the radar point closest to the camera
is associated with the frustum, which is inherently uncertain. This selection strategy effectively assumes that the
closest point corresponds to the correct object, which may not hold true, especially in crowded or noisy scenes, if
the accuracy of the initial monocular 3D object detection is inadequate.

GaussianFusion improves this process by replacing the single-point association mechanism with a novel proba-
bilistic weighting scheme over all radar points inside the frustum. Specifically, it uses a bivariate Gaussian distri-
bution [48] to assign weights to candidate radar points based on their spatial proximity to the predicted center of
the frustum in both horizontal and depth dimensions. Prior research has shown that Gaussian weighting improves
robustness in noisy, sparse, or ambiguous environments [49,50]. Figure 3.1 illustrates this novel frustum association
mechanism.

Frustum Association

Frustum Association

J

Figure 3.1: Visualisation of the bivariate Gaussian frustum association mechanism [37,48]. Radar points are assigned
weights based on their spatial proximity to the predicted object’s center.

The remainder of the pipeline is identical to CenterFusion. Image features are extracted using a DLA-34
convolutional backbone, and object centers are predicted via heatmaps. At each detected center, the model regresses
the corresponding 2D bounding box and initial monocular depth, size, and orientation estimates. From each of
these estimates, a 3D frustum is constructed, and all radar points that fall within a frustum are collected. Instead
of selecting the single nearest radar point per frustum, GaussianFusion computes a weighted combination of all
radar points using a bivariate Gaussian distribution, centered at the bounding box midpoint and monocular depth
estimate. This produces an artificial radar point that is more robust to noise, sparsity, and frustum misalignment.
From this artificial radar point, features, such as depth and velocity, are extracted and written into a radar feature
heatmap at its corresponding location. This is done for every prediction. The final radar feature heatmap is
concatenated to the image features for further processing by secondary regression heads. Figure 3.2 shows an
illustration of the GaussianFusion architecture.

The standard probability density function (PDF) for bivariate Gaussian distribution is given by Equation 3.1 [48]:
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Figure 3.2: Overview of the GaussianFusion architecture.
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The parameters of the distribution are defined as:
e 1, horizontal center of the 2D bounding box (Zmin + Zmax)/2

e 1i,: predicted depth from the monocular 3D object detection module

8N

e o2: variance in the x-direction, set to « - (Zmax — Zmin)> (v is a scale factor)

e o2 variance in the z-direction, set to a - (Zmax — Zmin)> (v is a scale factor)
e p: correlation coefficient between x and z, set to 0 (assuming independence)

While Equation 3.1 represents the canonical form of a normalised bivariate Gaussian PDF, the implementation
for Gaussian-weighting can be simplified by omitting the normalisation constant and computing only the exponential

term in the Gaussian [49, 50]:
1 T — 2 zZ— 2
w(z, 2) x exp (— [( Mx) + ( ,uz> ]) (3.2)
2 O o,

Next, the weights are normalised by dividing by the total weight:

Wy = _w(@i z) (3.3)
E j w<xj’ Zj )

Since the weights are normalised in a subsequent step to ensure they sum to 1, the omitted constant does not
affect the final weighted result. This approach allows for more efficient computation without sacrificing correctness
in terms of radar point influence. This procedure is summarised in Algorithm 2 in Appendix A.1.

An additional advantage of using a Gaussian-weighted fusion strategy in GaussianFusion is that it enables the
use of a significantly larger frustum volume during radar association. In CenterFusion, the frustum must remain
relatively narrow to avoid incorrect associations caused by selecting the single nearest radar point. On the contrary,
GaussianFusion considers all radar points within the frustum. By applying a weighting scheme, an artificial radar
point is generated that is more robust to noise, sparsity, and frustum misalignment.

This Gaussian-based approach is not only more robust to noisy radar returns, but also enables the use of a greater
expanded frustum without sacrificing association quality. The horizontal expansion is governed by a hyperparameter
called €, which enlarges the frustum relative to the bounding box. It is particularly helpful in cluttered or sparse
environments, where a broader inclusion zone increases the likelihood of capturing relevant radar measurements.
Moreover, it provides resilience to slight temporal misalignment between radar and camera data, which is a common
issue when integrating marine radar systems and cameras, as discussed in Section 1.1.

The frustum association mechanism in GaussianFusion can further be tuned using two other key parameters.
The first is «, which is a scale factor that determines the variance of the Gaussian distribution. Smaller values
concentrate weights near the predicted center, while larger values allow a broader inclusion of surrounding radar
points. The second is ¢, which controls depth-wise expansion of the frustum.
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This simple yet effective modification enables GaussianFusion to leverage radar data more flexibly and robustly
than CenterFusion, particularly in scenarios with sparse radar returns or uncertain monocular predictions.

3.2 GaussianFusion-+-+

GaussianFusion++ extends the GaussianFusion architecture by introducing a scene-adaptive radar association
mechanism. The key novelty in this architecture is the RGPNet, a lightweight and interpretable network proposed
in this thesis. RGPNet replaces the LFANet module used in CenterFusion++, which relies on a black-box radar
encoder. Instead of processing raw radar snapshots, RGPNet directly learns the parameters of a bivariate Gaussian
distribution from the radar points within each frustum. This enables a more interpretable and uncertainty-aware
association strategy that adapts to the spatial structure of each scene.

While GaussianFusion improves robustness by applying fixed Gaussian weighting to radar points within a frus-
tum, its parameters are statically derived from monocular predictions and cannot adjust to variations in radar point
distribution or scene complexity. This can result in suboptimal radar-image fusion, particularly in environments
with large depth variation or high sensor noise.

To address this limitation, GaussianFusion++ uses RGPNet to estimate Gaussian parameters dynamically
from the observed radar points. This enables scene-dependent weighting based on proximity to a predicted mean,
improving the model’s ability to handle clutter, sparsity, and uncertainty more effectively.

As in GaussianFusion, a frustum enlargement strategy is applied to increase robustness during radar association.
The parameter e controls horizontal expansion relative to the 2D bounding box width, while § governs depth-wise
enlargement. These parameters ensure that relevant radar points are captured even under imperfect predictions or
temporal misalignment.

3.2.1 Architecture

GaussianFusion++ uses an early fusion strategy in which radar and image features are combined at the input level.
This approach allows the backbone network to learn joint representations from the beginning of the pipeline, which
improves robustness in environments where visual information may be degraded or ambiguous.

At the core of the radar association mechanism is RGPNet. This network takes as input the radar points within
the frustum, defined by the monocular 2D and 3D predictions, and estimates the parameters of a bivariate Gaussian
distribution: g, pt,, 04, 0., and p. These parameters are used to compute a weighted combination of the radar
points, producing a single fused radar point. This artificial point is then embedded into a radar feature map and
combined with the image feature map. The fused representation is subsequently processed by the regression heads
for final object prediction. An overview of the architecture is shown in Figure 3.3.
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Figure 3.3: Overview of the GaussianFusion++ architecture.

3.2.2 RGPNet

RGPNet is a multilayer perceptron (MLP)-based regression network [51]. Its goal is to estimate bivariate Gaussian
parameters from the radar points within a frustum. Two variants were constructed: RGPNet-A and RGPNet-B.
Both variants are inspired by point-based architectures, like PointNet [52]. Each radar point is represented by its
horizontal coordinate projected in the camera image (z) and real-world depth (z), resulting in a 2-dimensional input
channel per radar point. RGPNet-A’s architecture, visualised in Figure 3.4, applies a shared MLP independently
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to each radar point’s feature vector. This channel-mixing structure transforms each point’s input features while
preserving permutation invariance and enabling the network to process unordered sets of variable size [52]. The
shared MLP consists of two fully connected layers and produces a per-point embedding of dimensionality C' = 64.
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Figure 3.4: Overview of the RGPNet-A architecture. N refers to the variable number of radar points. C refers to
the number of channels. H? refers to the hidden state for radar point 1.

Each linear layer is followed by a ReLU activation function [53]. ReLU effectively zeroes out negative values
in the feature vectors passed into it. This allows the network to learn complex, non-linear patterns, and improves
generalisation and computational efficiency. Furthermore, ReLU is well-suited for Kaiming initialisation and efficient
optimisation [54]. Optionally, batch normalisation [55] and dropout [56] can be applied after each linear layer; these
are configurable via training parameters. However, they are omitted in the final model analysed in this thesis,
which solely includes linear transformations and ReLU activations, to maintain architectural simplicity. Moreover,
the effectiveness of batch normalisation has been shown to diminish in shallow networks, where its impact on
convergence and generalisation is typically limited.

After point-wise processing, the resulting feature tensor has shape [N, C]; where N is the number of radar points
in the frustum and C = 64 is the dimensionality of the learnt point-wise feature embeddings. A global feature vector
is then obtained by applying a max pooling operation across the N points, reducing the representation of the [N, C]-
dimensional feature tensor to a single C-dimensional feature vector. This global descriptor captures the most salient
features across the radar point set and is used as input to two output heads:

e Mean Head: Predicts the Gaussian mean (., pt), which represents the estimated center of the radar point
distribution within the frustum:

— 1z is the predicted horizontal position of the object’s center in image coordinates (typically aligned with
the center of the 2D bounding box).

— p. is the predicted depth of the object, corresponding to the expected distance from the sensor.

e Covariance Head: Predicts log(o,), log(c.), and tanh(p), which are transformed representations of the 2D
covariance matrix parameters:

— log(o,) and log(o,) are the natural logarithms of the standard deviations in the horizontal and depth
directions, respectively. Predicting the logarithms directly ensures that the corresponding standard
deviations o, and o, are strictly positive, which is required for a valid Gaussian distribution.

— tanh(p) is the hyperbolic tangent of the correlation coefficient p, which constrains its value to the valid
range (—1,1). This helps ensure that the predicted covariance matrix is numerically stable and remains
positive semi-definite during training.

RGPNet-B, visualised in Figure 3.5, incorporates a token-mixing mechanism inspired by the MLP-Mixer archi-
tecture [57], enabling the model to learn interactions between different radar points within the frustum. To support
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this, the number of radar points N per frustum is fixed across all inputs. Token-mixing treats each radar point
as a token in a sequence and applies linear transformations across the token dimension. Such operations require a
consistent input shape, both for architectural compatibility and for efficient batch processing on modern accelera-
tors such as Graphics Processing Units (GPUs). In this work, N = 128. This size balances spatial coverage with
computational efficiency. It retains enough points to preserve the geometry of individual objects and the diversity
of radar reflections across the frustum, while limiting the influence of densely clustered regions and preventing
over-representation of noisy returns.
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Figure 3.5: Overview of the RGPNet-B architecture. N refers to the fixed number of radar points. C' refers to the
number of channels. H* refers to the hidden state for radar point 4.

To enforce the fixed size N = 128, radar point sets are either truncated or padded to a predefined number of
tokens. If fewer than N points are available, zero-padding is applied, and a binary mask records which points are
real. If there are more than N = 128 points, the set is downsampled using Farthest Point Sampling (FPS). FPS is
a deterministic and geometry-aware sampling technique that selects a subset of points such that the selected points
are as far apart from each other as possible. This encourages spatial diversity and avoids redundant sampling in
dense regions. Compared to random sampling, FPS better preserves the shape and structure of the point cloud,
especially along edges, corners, and sparse regions. FPS is commonly used in point cloud processing tasks and was
introduced in the PointNet++ architecture [58].

Each radar point’s (z, z) coordinate is then projected into a higher-dimensional embedding space using a linear
layer, lifting the raw 2D input into a representation suitable for learning complex spatial patterns. The resulting
tensor has shape [N, C], where C = 64 is the channel dimension. Layer normalisation is applied across the hidden
dimension to stabilise training by standardising feature distributions, thereby mitigating internal covariate shift [55].

To perform token-mixing, the tensor is transposed from [N, C] to [C, N], so that linear layers can operate across
the token dimension N. The token-mixing MLP comprises two linear layers, each mapping N to N, separated by
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a Gaussian Error Linear Unit (GELU) activation [59]. The GELU [59] is a smooth, non-linear activation function
that combines the benefits of ReLU and sigmoid activations. By allowing small negative values to pass through and
preserving non-linearity, GELU improves learning dynamics in deep MLP-based models such as MLP-Mixer [57].
The token-mixing operation enables the network to learn point-to-point interactions across the frustum, capturing
spatial dependencies that are not modelled in channel-mixing architectures such as PointNet [52].

After token-mixing, the tensor is transposed back to [N, C], and layer normalisation is again applied. Each
point is processed independently through a channel-mixing MLP, composed of two linear layers that map C to
C. These layers are separated by another GELU activation. This enhances each point’s representation without
introducing cross-point interactions. By combining token- and channel-mixing the expressive capacity of the model
is enhanced while remaining computationally lightweight and avoiding the complexity of convolutional or attention-
based alternatives.

To further stabilise training and facilitate gradient flow, skip connections are employed in both the token-
mixing and channel-mixing stages. These residual connections add the input of each MLP block back to its output,
allowing the model to learn perturbations around the identity function. This helps mitigate the problem of vanishing
gradients, especially in deeper architectures, and enables the network to retain useful low-level features from earlier
layers. Skip connections are a well-established technique in deep learning and were first introduced in the ResNet
architecture [60]. In the context of MLP-based architectures, such as MLP-Mixer, residual connections have been
shown to be essential for effective training and convergence [57].

To ensure that padded radar points do not influence the final output, a binary mask is used to zero out their
contributions. Specifically, after the token- and channel-mixing stages, the masked feature tensor is set to a large
negative value (e.g., —10%) at all padded positions. Identical to RGPNet-A, a global max pooling operation is then
applied to reduce the [N, C] tensor to a single C-dimensional feature vector per frustum. This global descriptor is
passed to the outputs heads to predict the Gaussian parameters.

Finally, the predicted Gaussian parameters are used to weight radar points in the frustum and compute a fused
artificial radar point. This point is embedded in a radar feature heatmap at the object’s location and concatenated
to the camera features before being used for downstream regression.

Compared to LFANet in CenterFusion++ [38], RGPNet provides a lighter and more interpretable alternative. By
explicitly modelling the spatial distribution of radar points within a frustum using a bivariate Gaussian distribution,
it enables more robust radar association in cluttered or noisy scenes. Additionally, the use of predicted uncertainty,
in the form of covariance parameters, allows the system to adapt its association strategy based on scene complexity,
offering improved generalisation over heuristic or black-box methods.

In summary, RGPNet encodes unordered radar point sets into a compact, Gaussian-parameterised representation
using MLP layers, global max pooling, and dual-headed output prediction. This design makes it well-suited for
downstream sensor fusion and regression tasks in frustum-based 3D perception pipelines.

3.2.3 Loss function

RGPNet is trained using a composite loss function that supervises two objectives: (1) estimating a radar-based
feature heatmap encoding object depth, and (2) learning the parameters of a bivariate Gaussian distribution that
captures the spatial distribution of radar points within a frustum. The heatmap loss provides indirect supervision
to the Gaussian prediction by penalising inconsistencies in the generated radar feature map, while the Gaussian
Negative Log-Likelihood (NLL) loss provides direct supervision by explicitly training the predicted distribution to
match the annotated object locations. The total loss is defined as:

Liotal = ANLL - £80L + Anm - Lam (3.4)

where the weighting factors are set to Agy = 0.8 and Anpr, = 0.2. Since RGPNet is ultimately designed to
produce accurate radar feature heatmaps for downstream fusion, the heatmap loss is given a heavier weight. It plays
a more central role in guiding RGPNet to produce useful spatial features and indirectly supervises the Gaussian
parameters by ensuring the resulting radar heatmap is spatially aligned with the ground truth. Additionally, the
Gaussian NLL loss tends to be more sensitive and numerically less stable due to operations like matrix inversion
and log-determinants. A lower weight helps stabilise training while still allowing the model to learn meaningful
uncertainty estimates.

The heatmap produced by RGPNet represents radar-derived features, such as depth or velocity, encoded into
a 2D spatial grid aligned with image coordinates. This heatmap serves as an intermediate representation that is
fused with image features to improve final 3D object predictions.
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The supervision of this radar heatmap follows a similar approach to that used in LFANet [38], where an L1 loss
is applied between the predicted heatmap H and a ground truth reference H:

1o,
£HM:N2 H; - H;

(3.5)

Here:
e N is the total number of pixels in the heatmap.
° f[l and H; are the predicted and ground truth radar values at pixel ¢, respectively.

The L1 loss, also known as mean absolute error, encourages sharper and more localised predictions compared to
L2 loss, which tends to blur out predictions [61]. This is especially useful in radar settings where the feature maps
are sparse and must retain spatial specificity.

Importantly, this loss provides indirect supervision to the Gaussian parameter prediction. In this way, the model
is encouraged to learn Gaussian parameters that produce feature maps closely resembling the true spatial structure
of radar returns, without explicitly supervising the parameters themselves.

The Gaussian NLL loss directly supervises the predicted Gaussian distribution over radar points within each
object’s frustum. RGPNet outputs five parameters: mean coordinates (fi., it.) and the covariance matrix:

Ug PO 0
D [p%az o (3.6)

The ground truth mean g = [g,, g.] is computed from the 2D bounding box center and annotated object depth.
The Gaussian NLL is given by:

Lnir = = [log [+ (g — p) 27 (g — p)] (3.7)

DN | =

Here:

® [t = [ly, ;] predicted mean of the bivariate Gaussian.

e 3 predicted covariance matrix encoding uncertainty and correlation.

e log |X|: penalises high uncertainty (i.e., large variance), encouraging precise distributions.

e The Mahalanobis distance [62] (g — ) "X~ (g — p): penalises predictions that deviate from the ground truth
while taking the predicted uncertainty into account.

A small value € is added to the diagonal of ¥ to ensure numerical stability and positive definiteness during
inversion.
Each loss serves a distinct but complementary role in training RGPNet:

e Heatmap Loss (L1) ensures that the radar heatmap generated from the predicted Gaussian parameters
aligns with the spatial structure expected from ground truth. It acts as indirect supervision on the Gaussian
parameters, encouraging RGPNet to learn parameters that yield a useful intermediate representation.

e Gaussian NLL Loss directly supervises the predicted Gaussian parameters to ensure they meaningfully
represent the underlying radar point distribution. This is crucial for uncertainty modelling, where the model
learns to express confidence through the predicted variance components of the distribution [63]. Without this
supervision, the model might predict degenerate Gaussians, e.g. overly sharp ones that place all mass near the
object center or overly diffuse ones that spread uncertainty too broadly. that “cheat” to get plausible-looking
heatmaps. These configurations can “cheat” the heatmap loss by producing plausible-looking outputs while
failing to faithfully model the underlying uncertainty.

Together, these losses help RGPNet learn both to understand the distribution of radar data and to draw a
useful representation of it for downstream fusion. If only one loss is used, the model may either: (1) Produce
heatmaps that look plausible but are backed by nonsensical Gaussian parameters (without Gaussian NLL), or (2)
Learn Gaussian parameters that are statistically sound but fail to produce useful spatial features for fusion (without
heatmap loss). Therefore, combining both losses ensures the predicted Gaussian is both correct in theory (Gaussian
NLL) and useful in practice (heatmap).
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Crucially, Ly, is only computed during the training phase for valid frustums, defined as those where a ground
truth object center lies within the frustum. If no such frustums exist in a batch, the total loss is reduced to the
heatmap loss alone.

3.3 Dynamic frustum enlargement

In the original CenterFusion model [37], frustum construction is guided by the 2D bounding box, and monocular
depth, size and orientation estimation. A frustum is then extended using a fixed depth expansion parameter,
denoted as 6. To improve the chance of capturing relevant radar returns, especially under uncertainty in depth
predictions and partial temporal misalignment between the sensors, the frustum is horizontally enlarged through
a parameter called e. The horizontal enlargement factor is 1 + ¢, and the depth-wise enlargement factor is 1 + 4.
This simple yet effective strategy increases the likelihood that radar returns corresponding to the detected object
fall within the frustum volume, which is crucial for the downstream radar association process.

While this fixed enlargement may improve robustness if used correctly, it applies the same degree of expansion
to all objects, regardless of their distance from the sensor. This presents a limitation. Empirically, the error in
monocular depth estimation tends to increase with distance [64]. As objects get farther away, the accuracy of
the predicted depth diminishes due to lack of visual cues and diminishing pixel resolution. Consequently, a fixed-
size frustum may no longer be large enough to include relevant radar points for distant objects, leading to poor
association and degraded 3D detection performance. On the other hand, excessively increasing the frustum’s size
can lead to the inclusion of irrelevant radar returns, increasing false positives and degrading detection precision.

Conversely, for objects that are very close to the sensor, monocular depth estimation is typically more reliable.
Using an unnecessarily large frustum in such cases increases the chance of including unrelated radar returns,
introducing noise into the fusion process. Hence, there is a strong motivation to design a frustum enlargement
strategy that adapts to the estimated object depth.

To address this issue, an adaptive frustum enlargement module, one of the key novelties of this thesis, is proposed.
Rather than applying a constant horizontal and depth-wise frustum expansion, this module computes the horizontal
and depth-wise frustum expansions as a function of the predicted depth. The goal is to dynamically increase the
frustum size for distant objects, where depth predictions are generally less accurate, while keeping it compact for
nearby objects to retain precision.

Empirical studies and benchmark analyses, such as those conducted on the KITTI dataset [12], have shown that
the error in monocular depth estimation grows superlinearly, and in many cases, approximately quadratically with
the actual distance to the object [65]. This behaviour stems from the geometric properties of monocular vision
systems, where small inaccuracies in pixel space translate into increasingly large metric errors as depth increases.
Furthermore, the scarcity of texture, reduced pixel resolution, and diminished parallax cues at long ranges all
contribute to compounding depth uncertainty. To account for this non-linear degradation in accuracy, the adaptive
frustum enlargement function is defined to grow quadratically with the predicted depth, as shown in Equation 3.8:

8 = Opase + k - depth® (3.8)

The same function is used for horizontal and depth-wise frustum enlargement, though the scaling factor £ may
be tuned separately depending on the axis. This formulation ensures minimal frustum expansion for close-range
objects, where depth predictions are generally reliable, while aggressively enlarging the frustum for distant objects,
where greater tolerance is needed to accommodate uncertainty and ensure successful radar-point association. The
scaling parameter k controls how rapidly the frustum expands with depth and must be chosen carefully to prevent
excessive enlargement at mid-range distances. In practice, k should be very small, typically around 1076, to ensure
that the frustum expansion does not grow uncontrollably at large depths. This preserves precision at short range
while still accommodating the increased uncertainty typical of distant objects.
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Chapter 4
Experimental setup

This chapter outlines the experimental setup used to train and evaluate the proposed 3D object detection models.
Given the limited size and domain specificity of the maritime dataset, careful attention was paid to both the training
strategy and the evaluation protocol. The first section details the multi-phase training procedure, including transfer
learning, staged learning, and multi-task optimisation. The second section presents the evaluation metrics used to
assess model performance in both 2D and 3D domains. Together, these components form the foundation for
reproducible and meaningful comparison of model variants under realistic maritime conditions.

4.1 Training strategy

To effectively train the proposed 3D object detection models in a data-scarce maritime setting, a carefully designed
multi-phase training strategy is necessary. This strategy consists of three key components: pretraining on a custom
2D dataset [18], staged learning [41], and multi-task co-adaptation [21]. Each step is motivated by the unique
challenges associated with maritime perception and the structural dependencies between 2D detection and 3D
regression.

Given the limited size of the custom 3D dataset, pretraining was essential to initialise the backbone and 2D
detection heads with strong feature representations. To this end, a CenterNet model with a DLLA-34 backbone was
trained on a custom 2D dataset provided by RH Marine [39]. This dataset exclusively contains images of maritime
objects, such as vessels, acquired in realistic settings. It comprises 5624 images with 15214 annotations, split into a
training set with 3831 images and 9097 annotations, and a validation set with 1793 images and 6117 annotations.

Before training on this dataset, the CenterNet model was initialised using weights from a version of CenterNet
pretrained on the COCO dataset [40]. From this pretrained model, the DL A-34 backbone and the output heads
relevant for detecting boats were extracted and reused. This transfer learning approach provides a strong initiali-
sation not only for low- and mid-level visual features in the backbone, but also for the task-specific outputs of the
detection heads. Since the COCO dataset includes a wide variety of object categories, including watercraft, this
allowed the model to start from weights already attuned to maritime object characteristics, thereby accelerating
convergence and improving performance on the custom ship-focused dataset.

CenterNet was trained using early stopping [66] based on validation loss, and the final weights of its backbone and
2D detection heads were subsequently used to initialise the CenterFusion [37], GaussianFusion, CenterFusion++ [38],
and GaussianFusion++ models. The purpose of this pretraining stage was not to maximise performance on the
2D dataset itself, but rather to ensure that the initialised model had learned to extract meaningful visual features.
This is critical because the downstream 3D detection heads rely on robust 2D detections to guide learning 3D
characteristics, such as depth, orientation, size and velocity [17].

However, pretraining alone is not sufficient. The backbone must ultimately learn to extract features that are
jointly useful for both 2D and 3D tasks. To achieve this, a staged learning scheme was employed, which gradually
shifts the model’s focus from 2D to 3D. In the first phase, the backbone is frozen for 5 epochs and the model
concentrates on refining the 2D heads. During this phase, the weights of the 2D loss terms are increased by a factor
of 2, while the weights of the 3D loss terms are decreased by a factor of 10. This allows the model to fine-tune 2D
performance on the 3D dataset before introducing the complexity of 3D regression.

After 5 epochs, the second training phase begins, encompassing the next 15 epochs. Here, the backbone is
unfrozen, and the model starts learning shared representations for both tasks. The 2D losses are reduced by a
factor of 2 compared to phase one, and the 3D losses are increased by a factor of 5. Although the backbone is
now updated by both tasks, the emphasis remains on 2D detection to ensure that spatial localisation in the image
remains strong.

In the final phase, which begins after epoch 20, the training emphasis shifts toward 3D feature learning. The 3D
losses are increased by a factor of 4 compared to phase two, and the 2D losses are halved again. At this stage, the
model focuses primarily on refining its 3D predictions. This phased approach ensures that the model first masters
the simpler task of 2D detection, which provides the foundation for learning more complex spatial representations
in 3D.
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Throughout all stages, a multi-task co-adaptation training paradigm is applied [21]. The model is trained end-
to-end, with both the 2D and 3D loss gradients contributing to the optimisation of shared layers. This encourages
the network to develop representations that are jointly informative for both types of tasks, improving robustness
and efficiency.

Finally, early stopping, based on the nuScenes Detection Score (NDS) metric, is applied in the final phase
to prevent overfitting. NDS is a comprehensive metric that balances detection accuracy and localisation quality,
making it well suited for multi-task models in complex, real-world environments such as ports [14].

To validate the importance of the proposed multi-phase training strategy, CenterFusion was trained for 40
epochs both with and without it. When trained without pretraining or staged learning, the model achieved an
mean Average Precision (mAP) of only 0.1405. In comparison, training CenterFusion with the full strategy, which
includes pretraining on a maritime 2D dataset and staged loss weighting, resulted in a significantly higher mAP of
0.4165. Since mAP reflects the model’s ability to detect objects accurately and consistently, achieving a high value
is essential for robust obstacle detection. This substantial difference in performance confirms the critical role of the
proposed training strategy in data-scarce maritime environments.

4.2 Evaluation metrics

The performance of the proposed models is evaluated both qualitatively and quantitatively. The qualitative eval-
uation consists of visualising the predictions by overlaying 3D bounding boxes on the original camera images and
rendering the predicted objects in BEV. This allows for a visual assessment of spatial accuracy and can reveal
systematic failure cases that are not evident from numerical scores alone.

The quantitative evaluation includes both 2D and 3D metrics. For the 2D task, Average Precision (AP) is
reported [67]. This metric summarises the detector’s precision and recall performance across a range of confidence
thresholds. Each predicted object is assigned a confidence score between 0 and 1, representing the model’s certainty
that an object is present. By varying this threshold, one can trade off between precision (how many detections are
correct) and recall (how many ground truth objects are detected).

To compute these metrics, we define three quantities: true positives (TPs), false positives (FPs), and false
negatives (FNs). A predicted bounding box is considered a TP if its Intersection over Union (IoU) with a ground
truth bounding box exceeds a given threshold. Predictions not matched to any ground truth, based on this threshold,
are counted as FPs. Ground truth objects without any matched predictions are counted as FNs. The IoU threshold
used to define TPs can vary, typically ranging from 0.5 to 0.95 in steps of 0.05 when computing COCO-style AP.
Precision and recall are defined as:

TP

Precision = m (41)
TP

l= —— 4.2

Recall = 757 7n (42)

To compute AP, the model’s predictions are first sorted by decreasing confidence score. The precision and recall
are then calculated at each threshold, forming a precision-recall curve. AP is defined as the area under this curve,
providing a single scalar value that reflects the model’s detection performance across all operating points:

1
AP:/ Precision(r) dr (4.3)
0

In this work, AP is reported following the COCO convention [40], averaging AP over multiple ToU thresholds
ranging from 0.50 to 0.95 in steps of 0.05. This provides a more rigorous evaluation of localisation quality than
using a single fixed threshold. Since the custom dataset involves a single object class, this averaged AP value is
equivalent to mAP. It is important to note that this definition of mAP differs from the one used in the official
nuScenes benchmark [14]. The nuScenes mAP is calculated using center distance thresholds in BEV and averaged
over multiple object classes. Therefore, this work’s mAP is not directly comparable to the nuScenes benchmark,
although both aim to capture detection quality.

For the 3D task, four TP metrics are reported: Avergae Translation Error (ATE), Average Scale Error (ASE),
Average Orientation Error (AOE), and Average Velocity Error (AVE). These are calculated only for matched
detections. If a detection is assigned to a ground truth bounding box with an IoU of at least 0.5, then these
are considered a match. Matching is performed greedily, meaning that predictions are sorted by confidence score
and each is matched to the highest IoU ground truth bounding box that has not already been matched, provided
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the IoU is above the threshold. This ensures a one-to-one correspondence between predictions and ground truths.
ATE measures the unbounded Euclidean distance between predicted and ground truth centers. ASE quantifies the
relative error in predicted object size after aligning orientation and translation (1 — 3D IoU). AOE captures the
yaw angle error in radians, and AVE measures the unbounded Euclidean difference in velocity vectors. The Average
Attribute Error (AAE), typically included in the nuScenes benchmark, is excluded here since the model does not
predict object attributes.

To evaluate how detection performance varies with distance, the TP metrics are stratified across three depth
intervals: 0-100 m, 100-250 m, and beyond 250 m. This stratification provides insight into how detection quality
changes with distance, particularly when adjusting frustum enlargement parameters.

As an overall performance measure, NDS is used, which aggregates detection accuracy and localisation quality
into a single value [14]. In the nuScenes definition, NDS combines mAP with the mean of the five 3D metrics over
all classes, described as:

1 .
NDS:l—0 5-mAP + Z (1 — min(1, mTP))

mTPcTP

Here, mAP refers to the nuScenes mAP and TP = {mATE, mASE, mAOE, mAVE, mAAE} includes all TP
metrics averaged over all classes, used in the nuScenes benchmark. For calculating NDS, all TP metrics are
bounded between 0 and 1 before being subtracted from 1. Half of NDS is based on the detection performance and
the other half is based on the quality of the TP metrics.

Since this work excludes attribute classification and solely consists of single class objects, an adjusted NDS
formula is computed:

(4.4)

4-mAP+ Y (1—min(1,TP))
TPeTP

NDS = é (4.5)

Here, mAP refers to this work’s mAP, and TP = {ATE, ASE, AOE, AVE} includes the four TP metrics used
in this work. To ensure comparability within the NDS calculation, all TP metrics are bounded between 0 and 1
before being subtracted from 1. However, the normalisation procedure differs slightly from the original nuScenes
benchmark. ATE can become much larger compared to the nuScenes benchmark due to the extended maximum
range of 1654.8 m and the superlinear degradation of depth estimation at greater distances [42,65]. Therefore, ATE
is clipped to the range [0, 100] and then divided by 100 to keep it within [0, 1]. AVE is normalised by dividing
by the 9.4, which is the maximum velocity in the dataset. Similarly, AOE, which ranges from 0 to 7 radians, is
normalised by dividing by 7. Half of the adjusted NDS is based on the detection performance, and the other half
reflects the quality of the TP metrics. This adjusted NDS captures a model’s combined performance on object
detection and 3D localisation quality, while remaining consistent with the IoU-based matching protocol.

While all the above metrics provide valuable insights into different aspects of detection quality, mAP is the
most important metric used in this thesis. This is because it directly reflects whether objects are detected at all.
If objects are not detected in the first place, then accurate localisation, scale estimation, orientation prediction, or
velocity estimation becomes irrelevant. As such, mAP is used as the primary basis for comparison across methods.
Nonetheless, the other metrics are also analysed where they reveal meaningful patterns or help explain performance
differences not captured by mAP alone.
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Chapter 5
Experiments

This chapter presents a series of controlled experiments aimed at evaluating the influence of key architectural and
methodological modifications introduced in this work. Each experiment is designed to isolate a specific aspect of
the detection pipeline and assess its impact on overall system performance under realistic maritime conditions. The
evaluation is conducted using the same annotated dataset, metrics, and training procedures described in Chapters 2
and 4. In every experiment, the models were trained for 40 epochs.

The first experiment investigates the effect of fixed frustum enlargement parameters on radar—camera fusion
performance. By training the four models under different configurations of horizontal and depth-wise enlarge-
ment, this experiment examines how increasing the frustum volume influences detection and localisation accuracy.
Additionally, two ablation studies are conducted to investigated the effects of horizontal frustum enlargement.

The second experiment extends the frustum enlargement approach by introducing a dynamic module that adjusts
the size of the frustum as a function of the predicted object depth. This depth-adaptive strategy is motivated by the
observation that monocular depth estimates tend to degrade superlinearly with distance [65]. This means that it is
highly probable that different depths have different optimal frustum enlargement values. A quadratic enlargement
function, shown in Equation 3.8, is applied to both horizontal and depth axes, with the aim of increasing robustness
to localisation errors at long range. All models are retrained with this dynamic module to evaluate whether adaptive
frustum sizing leads to improved detection performance across different depth intervals.

The third experiment focuses on the role of uncertainty modelling in the Gaussian weighting process. Specifi-
cally, it compares the performance of GaussianFusion when trained with different values for scale factor a, which
determines the variance of the Gaussian distribution within a frustum. A larger « results in a broader, flatter
distribution, allowing radar points that are further from the predicted object center to contribute more to the
construction of the artificial radar point. In contrast, a smaller o concentrates the weights more tightly around the
predicted object center. By comparing different settings for a, this experiment seeks to understand how different
levels of uncertainty affect localisation performance.

Finally, the fourth experiment explores the impact of introducing token-mixing in RGPNet, the radar-based
parameter estimation network used in GaussianFusion++. Two variants are considered: RGPNet-A, which applies
independent point-wise transformations, and RGPNet-B, which includes token-mixing layers to allow structured
interactions between radar points within the frustum. The goal is to evaluate whether modelling inter-point depen-
dencies improves the estimation of Gaussian parameters and contributes to more effective fusion and downstream
prediction.

For all experiments, the models are trained for 40 epochs using the same pre-initialised CenterNet [39] backbone
and the training strategy described in Section 4.1. Evaluation is performed on the fixed validation set using both
aggregated and stratified metrics. Performance is tracked across three distance intervals: near (< 100 m), mid (100
250m), and far (> 250m). The evaluation metrics include mAP, ATE, ASE, AOE, AVE, and NDS, all defined in
Section 4.2.

In addition to standard detection metrics, a threshold sweep analysis is conducted for the best-performing
configuration of GaussianFusion++. This procedure evaluates all confidence thresholds from 0.01 to 0.99 to identify
the threshold that maximises the F1 score, which balances precision (positive prediction accuracy) and recall
(detection completeness). The corresponding optimal precision, recall, and F1 score values are reported to support
intuitive interpretation and practical decision-making.

In Experiments 1 and 2 GaussianFusion++ is configured with the RGPNet-A variant, which does not incor-
porate token-mixing. This decision allows an initial assessment of whether the simpler point-wise architecture can
adequately learn to estimate the Gaussian parameters for constructing the artificial radar point. The impact of
introducing token-mixing in RGPNet-B is investigated separately in Experiment 4 to determine whether modelling
inter-point dependencies further enhances the performance of GaussianFusion+-+.

Together, these experiments provide a structured and comprehensive analysis of the design decisions made in this
thesis, offering empirical evidence for the effectiveness of proposed techniques in multi-modal 3D object detection
for autonomous surface vessels.
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5.1 Experiment 1: Static frustum enlargement

This experiment evaluates the impact of fixed frustum enlargement parameters on the performance of the four
radar-camera fusion models: CenterFusion [37], GaussianFusion, CenterFusion++ [38], and GaussianFusion++-.
Frustum enlargement refers to expanding the spatial volume within which radar points are associated with image-
based detections. As described in Chapter 3, this is controlled by two parameters: e for horizontal enlargement and
0 for depth-wise enlargement.

In addition to these parameters, a fixed scale factor a« = 0.1 is set to configure the variances used in the
bivariate Gaussian weighting. Specifically, the variances are computed as 02 = 0.1 X (Zmax — Tmin)> and o2 =
0.1 X (2max — zmin)2. The chosen scale factor o = 0.1 balances the trade-off between weighting radar points tightly
near the predicted object center and allowing sufficient spread to tolerate moderate monocular prediction errors
and sensor misalignments, which is critical for robust radar-camera association in maritime conditions.

The motivation for this experiment arises from two key observations. First, fixed-size frustums may fail to capture
relevant radar points when monocular predictions are imprecise, particularly at long range. Second, in the custom
dataset, temporal misalignment between radar and camera frames introduce spatial discrepancies. Horizontally
widening the frustum may mitigate this effect by increasing the likelihood of capturing valid radar returns despite
such misalignment.

To investigate these effects, each model was trained twice under four static frustum configurations:

e Baseline: ¢ =0, 6 = 0 (no enlargement);
e Mild enlargement: ¢ = 0.5, § = 1;

e Moderate enlargement: ¢ =2, § = 3;
e Strong enlargement: ¢ =5, § = 8.

Additionally, two targeted ablation studies were conducted for GaussianFusion++ to better understand the
independent effects of horizontal and depth-wise enlargement. The first ablation uses ¢ = 2, § = 0 to isolate
the role of horizontal widening alone, verifying whether lateral expansion meaningfully mitigates radar—camera
misalignment. The second ablation uses € = 2, § = 8, matching the strongest depth enlargement while employing
a moderate horizontal value instead of the extreme ¢ = 5. This helps determine whether the highest horizontal
expansion is excessive and provides guidance for setting balanced parameters in the dynamic frustum enlargement
experiment.

This experiment is designed to test the hypothesis that GaussianFusion and GaussianFusion++-, which use prob-
abilistic radar point weighting, are more robust to excessive frustum enlargement and radar noise than CenterFusion
and CenterFusion++-.

5.1.1 Aggregated results

Figure 6.1 presents the detection performance across different static frustum enlargement settings, evaluated using
mAP and NDS. For CenterFusion and GaussianFusion, the results remain relatively stable across all configurations,
with minor variation in both mean values and standard deviations. This suggests that these models are less sensitive
to static frustum enlargement in terms of detection accuracy. In contrast, CenterFusion++ and GaussianFusion+-+
exhibit more pronounced changes. Notably, GaussianFusion++ shows increased variance in mAP, particularly
at the baseline and strong enlargement settings, indicating a higher sensitivity to frustum configuration in those
regimes.

Figure 6.2 reports the TP metrics (ATE, ASE, AOE, AVE) across all static frustum enlargement configura-
tions. The ATE results indicate that CenterFusion and CenterFusion++ are more sensitive to the choice of frustum
parameters. For CenterFusion, the mean ATE remains relatively stable, but its standard deviation increases notice-
ably with stronger enlargement. CenterFusion++, by comparison, shows substantial variation in mean ATE across
different configurations. GaussianFusion and GaussianFusion++4, on the other hand, display greater robustness. In
particular, GaussianFusion++ maintains a stable ATE mean across all settings.

The ASE metric displays a consistent trend across all configurations: CenterFusion and GaussianFusion perform
similarly and less favourably, while CenterFusion++ and GaussianFusion++ consistently achieve lower ASE val-
ues. This suggests that the models with learnable frustum association mechanisms offer better alignment between
predicted and ground truth box shapes, regardless of frustum size.
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Experiment 1: mAP with Standard Deviation Experiment 1: NDS with Standard Deviation
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Figure 5.1: Aggregated detection performance metrics (mAP, NDS) for all models under different static frustum
enlargement configurations (Baseline, Mild, Moderate, Strong). Each subplot visualises the trend for CenterFusion,

GaussianFusion, CenterFusion++, and GaussianFusion++.

In contrast, the AOE and AVE metrics do not exhibit any clear or interpretable patterns in response to frustum
enlargement. The observed fluctuations appear to be model-specific and lack consistent trends, implying that
frustum size has a limited or unpredictable effect on orientation and velocity estimation in this setup.
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Figure 5.2: Aggregated TP metrics (ATE, ASE, AOE, AVE) for all models under different static frustum enlarge-

ment configurations.

The exact numerical values for each model and setting are reported in Tables A.2.1 to A.2.4 in Appendix A.2.1.
Qualitative results are shown in Figures A.2.2 and A.2.9.

5.1.2 Stratified results

Table 5.1 shows the stratified ATE for each frustum setting. For the baseline (e = 0, § = 0), CenterFusion++
achieves the lowest ATE across all ranges. With mild enlargement (¢ = 0.5, 6 = 1), GaussianFusion has the
lowest near ATE (11.60), while GaussianFusion++ achieves the lowest mid ATE (25.30). CenterFusion++ achieves
the lowest far ATE (56.85). At moderate enlargement (¢ = 2, § = 3), CenterFusion++ achieves the lowest near
ATE (12.67), while GaussianFusion++ achieves the lowest mid ATE (26.76). GaussianFusion has the lowest far
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ATE (71.35). For strong enlargement (¢ = 5, 6 = 8), CenterFusion shows the lowest near ATE (11.60), while
GaussianFusion++ achieves the lowest mid ATE (23.14) and far ATE (74.63).

Table 5.1: Stratified ATE of all four models under different static frustum enlargement settings. Metrics are
stratified by distance: near (< 100m), mid (100-250m), and far (> 250 m).

€ ) ‘ CenterFusion ATE | ‘ GaussianFusion ATE | ‘ CenterFusion++ ATE | ‘ GaussianFusion++ ATE |
‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far
00 O 16.3046  31.0006  92.7482 15.5870  29.3846  76.7594 12.5640 27.3747 76.1477| 13.0389  27.4766  78.8957
+ + + + + + + + + + + +

0.8533 1.5908 5.7646 1.3361 2.9892 6.1452 0.6896 1.6799 3.4650 0.6715 4.8702 3.2615
05 1 16.8668  27.7418  94.4933 11.5989 27.5696  67.7507 13.2966  25.4198 56.8536| 15.1290 25.3007 76.4312
+ + + + + + + + + + + +
3.4663 0.5417 13.8371 0.2850 1.9105 12.4417 2.3926 0.4057 6.7222 0.0395 4.6962 9.6272
20 3 14.8869  33.1271  85.6156 13.9287  27.4767  71.3455| 12.6705 31.8922  83.1106 12.7511  26.7614 72.1311
+ + + + + + + + + + + +
2.2026 0.9757 13.8920 2.3296 0.6802 4.2708 0.9315 6.9502 13.5347 0.0954 0.0760 13.2548
50 8 11.5971 33.8632  88.5907 15.0350  29.4297  75.3748 14.4180  28.6653  85.0196 15.0784  23.1434 74.6340
+ + + + + + + + + + + +
0.0489 0.2012 13.6119 1.3511 3.5187 1.1483 3.1719 0.2714 1.8801 2.3797 1.1509 0.3419

As visualised in Figure 6.3, CenterFusion consistently exhibits the highest ATE at far range, indicating the
poorest localisation performance in that distance interval. At moderate and strong enlargement levels, Gaussian-
Fusion++ outperforms all other models in the mid- and far-range categories. In contrast, for the baseline and mild
enlargement settings, CenterFusion++ generally achieves the lowest ATE across almost all distance intervals.

Experiment 1: Stratified ATE for Baseline enlargement Experiment 1: Stratified ATE for Mild enlargement
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Figure 5.3: Stratified ATE results for CenterFusion, GaussianFusion, CenterFusion++, and GaussianFusion++
under different static frustum enlargement configurations (Baseline, Mild, Moderate, Strong). Each plot shows the
ATE grouped by depth ranges: 0-100m, 100-250 m, and beyond 250 m.

Table 5.2 presents the stratified ASE for all static frustum enlargement configurations. GaussianFusion+-+
consistently achieves the lowest ASE across all distance ranges and settings, with a single exception at mid-range
under mild enlargement, where CenterFusion++ attains the best performance in scale estimation. In general, the
ASE values for all models tend to decrease with increasing range, indicating better alignment between predicted
and ground truth box shapes at farther distances. These stratified results reinforce the trend observed in the aggre-
gated ASE histogram in Figure 6.2, where CenterFusion++ and GaussianFusion++ demonstrate overall superior
performance in scale estimation. The stratified histograms in Figure 6.4 visualise these findings.
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Table 5.2: Stratified ASE of all four models under different static frustum enlargement settings. Metrics are
stratified by distance: near (< 100m), mid (100-250m), and far (> 250 m).

€ 5| CenterFusion ASE | | GaussianFusion ASE | | CenterFusion4++ ASE | |  GaussianFusion++ ASE |
| Near Mid Far | Near Mid Far | Near Mid Far | Near Mid Far
0.0 0.0 0.4944 0.4700 0.3074 0.5086 0.4634 0.3163 0.4401 0.3862 0.2851 0.4246 0.3717 0.2258
e EI= EE e EE EE EE EE e EE e eI

0.0172 0.0016 0.0080 0.0061 0.0250 0.0139 0.0325 0.0148 0.0072 0.0043 0.0041 0.0155
05 1.0 0.5293 0.4386 0.3352 0.4950 0.4350 0.2865 0.4425 0.3828 0.2482 0.4371 0.3875 0.2410
+ + + + + + + + + + + +
0.0363 0.0118 0.0045 0.0271 0.0013 0.0044 0.0259 0.0371 0.0204 0.0109 0.0202 0.0282
2.0 3.0 0.4886 0.4718 0.3082 0.4954 0.4330 0.3142 0.4538 0.3838 0.2574 0.4408 0.3755 0.2500
+ + + + + + + + + + + +
0.0327 0.0441 0.0443 0.0158 0.0308 0.0437 0.0094 0.0261 0.0156 0.0315 0.0385 0.0220
5.0 8.0 0.4489 0.4108 0.3040 0.4848 0.4295 0.2932 0.4442 0.3977 0.2484 0.4359 0.3660 0.2376
+ + + + + + + + + + + +
0.0222 0.0064 0.0064 0.0378 0.0038 0.0077 0.0032 0.0079 0.0203 0.0100 0.0015 0.0008
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Figure 5.4: Stratified ASE results for CenterFusion, GaussianFusion, CenterFusion++, and GaussianFusion++
under different static frustum enlargement configurations (Baseline, Mild, Moderate, Strong). Each plot shows the
ASE grouped by depth ranges: 0—-100 m, 100-250 m, and beyond 250 m.

The stratified results for AOE and AVE follow the same trend observed in the aggregated analysis: no clear or
interpretable patterns emerge as a consequence of using different frustum enlargement settings. The results appear
highly variable and model-dependent, without consistent behaviour across distance ranges or configurations. As
these findings offer limited insight into the effects of static frustum settings on orientation and velocity estimation,
the corresponding figures are presented in Appendix A.2.1 for completeness.

5.1.3 Ablation study: The effect of horizontal frustum enlargement

To better understand the influence of horizontal frustum enlargement in isolation, an ablation study was conducted
for GaussianFusion++. Specifically, two pairwise comparisons were performed: one to assess the effect of adding
horizontal expansion alone, and another to investigate whether very strong horizontal expansion is necessary when
combined with strong depth-wise enlargement.

Table 5.3 presents the aggregated performance metrics for these ablation settings. Comparing the baseline
configuration (e = 0,d = 0) with moderate horizontal expansion only (¢ = 2,6 = 0) shows that the addition of
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horizontal enlargement results in a higher mAP (0.4411 vs. 0.4276) and a lower ATE (32.51m vs. 35.75m). Small
improvements are also observed for ASE, AOE, and AVE, and the NDS increases from 0.5902 to 0.6074.

For the second pairwise comparison, the configuration with very strong horizontal and depth-wise expansion
(e =5, = 8) is compared to the setting with moderate horizontal and strong depth-wise expansion (¢ = 2,0 = 8).
In this case, the moderate horizontal expansion achieves a slightly lower mAP (0.4068 vs. 0.4092) and a slightly
lower ATE (31.90m vs. 33.78 m), along with a higher NDS (0.5941 vs. 0.5874).

Table 5.3: Aggregated performance metrics for GaussianFusion++ comparing ablation settings with standard static
frustum settings.

€ 5| mAP 4 ATE | ASE | AOE | AVE | NDS
e=0 6§=0 0.4276 35.7586 0.3527 0.7614 0.3372 0.5902
e=2 6=0 0.4411 32.5102 0.3454 0.6371 0.2987 0.6074
e=5 6=38 0.4092 33.5373 0.3590 0.6580 0.3154 0.5874
e=2 6=38 0.4068 31.9007 0.3586 0.4976 0.3573 0.5941

Table 5.4 shows the same results stratified by distance intervals. For the baseline versus moderate horizontal
expansion (¢ = 0 vs. ¢ = 2, both with § = 0), lower ATE values are observed across near and far distance ranges
when moderate horizontal enlargement is applied. Minor improvements in ASE and AVE are also visible.

In the second comparison (¢ =5 vs. € = 2 with § = 8), moderate horizontal expansion yields lower ATE across
all depth ranges, as well as slightly lower ASE and AOE values.

Table 5.4: Stratified performance metrics for GaussianFusion++ comparing ablation settings with standard static
frustum settings. Metrics are stratified by distance: near (< 100m), mid (100-250m), and far (> 250 m).

€ 5 ‘ ATE | ‘ ASE | ‘ AOE | ‘ AVE |
‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far
0.0 O 13.0389 27.4766 78.8957 0.4246 0.3717 0.2258 0.7691 0.7632 0.7472 0.1698 0.3244 0.5914
20 0 9.9349 29.9278 68.4272 | 0.4167 0.3516 0.2347 0.6007 0.5999 0.7385 0.1487 0.2900 0.5261
50 8 15.0784 23.1434 74.6340 0.4359 0.3660 0.2376 0.5885 0.6877 0.7190 0.1482 0.2942 0.5880
2.0 8 12.8828 22.2018 68.6582| 0.4328 0.3582 0.2639 0.4381 0.5667 0.4853 0.1796 0.3169 0.6364

Based on these results, it is evident that adding horizontal frustum enlargement does improve localisation
accuracy, especially at farther ranges. However, excessive horizontal expansion introduces irrelevant radar points
and increases noise, thereby diminishing overall performance. Consequently, horizontal enlargement can be beneficial
within certain threshold boundaries.

5.2 Experiment 2: Dynamic frustum enlargement

The goal of this experiment is to evaluate the effect of a dynamic frustum enlargement module on the performance
of the four radar—camera fusion models. This module implements a depth-adaptive frustum expansion based on the
quadratic function defined in Equation 3.8, allowing the frustum size to increase with the predicted object depth.

The motivation for introducing a dynamic frustum enlargement module stems from a key limitation observed
with fixed enlargement settings: when a model is trained with a fixed frustum configuration, it optimises its
parameters specifically for that setting. This behaviour can lead to suboptimal performance because the optimal
frustum size likely depends on the object’s distance. Due to the nature of monocular depth estimation, prediction
errors increase superlinearly with distance [65]; hence, using a fixed enlargement does not provide adequate tolerance
for distant objects and may include unnecessary noise for near objects. To overcome this, a dynamic module aims
to adapt the frustum size automatically, allocating smaller frustums for closer, more accurately predicted objects,
and larger frustums for distant objects where greater uncertainty must be accommodated.

To investigate this effect, all four models are trained using the same dynamic frustum module with the follow-
ing parameters: €pgse = 0.5, Spase = 1, and k = 5 x 1075, These values are selected based on the quantitative
and qualitative results from Experiment 1, ensuring a stable yet flexible enlargement that grows quadratically
with depth. Additionally, informed by the ablation study findings, the horizontal frustum enlargement param-
eter € is explicitly bounded to prevent excessive enlargement at greater depths. Specifically, € is computed as
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€ = min (Gbase + k - depth?, 2)7 which ensures that horizontal enlargement remains within the empirically deter-
mined optimal range while still being depth-dependent. Visualisations of the resulting depth-wise and horizontal
enlargement functions are provided in Figure 5.5.

As an additional verification step, two ablation studies are conducted. The first focuses on the GaussianFusion
model and includes two targeted configurations. First, the horizontal enlargement bound is removed to re-validate
the ablation findings from Experiment 1 and to assess whether restricting horizontal growth remains necessary
under dynamic enlargement. Second, the horizontal enlargement is again bounded at a maximum of 2, but the
quadratic scaling factor is increased to k = 7.5 x 107° to enable faster frustum growth with depth. This ablation
isolates the sensitivity of GaussianFusion to both the shape constraints and the growth rate of the frustum under
dynamic expansion.

The second ablation study examines whether different radar—camera fusion models benefit from different dynamic
enlargement rates. Specifically, CenterFusion++ and GaussianFusion++ are retrained using an increased quadratic
scaling factor of k = 1 x 105, while all other enlargement parameters remain fixed. These two models are selected
because, unlike CenterFusion and GaussianFusion, they incorporate neural network modules for frustum-level radar
association. By comparing their performance under this more aggressive frustum growth, this ablation aims to
determine whether models that rely on learnable radar association strategies exhibit different optimal dynamic
enlargement parameters.

This experiment is designed to test the hypothesis that a depth-adaptive frustum enlargement improves the
robustness and overall localisation performance of all models across various depth ranges, compared to static
frustum configurations.
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Figure 5.5: Dynamic frustum enlargement functions for depth-wise (left) and horizontal (right) directions, illustrat-
ing the depth-adaptive behaviour used in the proposed module. Depth-wise enlargement ¢ starts at 1. Horizontal
enlargement ¢ starts at 0.5 and is capped at 2.

5.2.1 Aggregated results

Table 5.5 presents the aggregated performance metrics for all four models using the dynamic frustum enlargement
configuration with €pgse = 0.5, Opase = 1, and k = 5 x 1076, Under this setting, GaussianFusion++ achieves the
highest mAP (0.4204) and the lowest ASE (0.3643), while CenterFusion++ obtains the lowest ATE (27.2527) and
the lowest AVE (0.3462). CenterFusion records the lowest AOE (0.5597). Representative qualitative results for
each model under this configuration are provided in Figures A.2.12 and A.2.13 in Appendix A.2.2. Aggregated
histograms comparing the dynamic enlargement configuration are shown in Figure A.2.14 in Appendix A.2.2.

Table 5.5: Aggregated performance metrics for all four models with the dynamic frustum enlargement module,
shown in Equation 3.8, using €pqse = 0.5, dpase = 1, and k =5 x 1076,

Model | mAP 1 ATE | ASE | AOE | AVE | NDS ¢t
CenterFusion 0.4080 35.5027 0.4313 0.5597 0.3829 0.5784
GaussianFusion 0.3923 34.8743 0.4364 0.5711 0.3533 0.5706
CenterFusion++ 0.4009 27.2527 0.3735 0.8286 0.3462 0.5821
GaussianFusion++ 0.4204 32.1465 0.3643 0.6017 0.3940 0.5953
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5.2.2 Stratified results

Table 5.6 reports the stratified metrics grouped by distance intervals. GaussianFusion++ achieves the lowest mid
and far-range ASE (0.3704 and 0.2327, respectively) and the lowest near-range AVE (0.1634). CenterFusion—+-+
achieves the lowest near-range ATE (10.0967) and far-range ATE (50.4306), while CenterFusion achieves the lowest
near and far AOE. These results confirm that the depth-adaptive module improves detection consistency across
distance bands, addressing the increased uncertainty at longer ranges. Stratified histograms illustrating these trends
are presented in Figure A.2.15 in Appendix A.2.2.

Table 5.6: Stratified performance metrics for all four models with the dynamic frustum enlargement module, shown
in Equation 3.8, using €pqse = 0.5, Spase = 1, and k = 5 x 1076, Metrics are stratified by distance: near (< 100m),
mid (100-250m), and far (> 250 m).

Model ‘ ATE | ‘ ASE | ‘ AOE | ‘ AVE |

‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far
CenterFusion 14.2234 27.1027 75.7867 | 0.4842 0.4448 0.3409 0.5376 0.5746 0.5706 | 0.2155 0.3045 0.7161
GaussianFusion 14.0913 27.8162 70.8275| 0.5007 0.4554 0.3285 0.6064 0.5017 0.6102 0.1857 0.3310 0.6007
CenterFusion++ 10.0967 28.9267 50.4306 0.4359 0.3788 0.2741 0.7177 0.9262 0.8653 0.1642 0.3888 0.5597

GaussianFusion++4 13.1166 25.6693 69.8268 | 0.4458 0.3704 0.2327 | 0.5624 0.6145 0.6434 0.1634 0.3680 0.7782

5.2.3 Ablation study: Varying dynamic enlargement settings

The first ablation study is conducted on the GaussianFusion model and investigates the impact of both bounding
the horizontal enlargement and adjusting the frustum growth rate. Table 5.7 presents the aggregated performance
metrics for GaussianFusion under different dynamic frustum configurations. Removing the horizontal enlargement
bound while keeping & = 5 x 107 results in an increase in mAP, a slight gain in NDS, and a small decrease in ASE.
However, it does lead to a significantly higher ATE (39.7939 vs. 34.8743), a small increase in AOE, and a larger
AVE. Increasing k to 7.5 x 10~ while retaining the horizontal bound slightly lowers ASE and AOE but negatively
impact all other metrics.

Table 5.7: Aggregated performance metrics for GaussianFusion with the dynamic frustum enlargement module,
shown in Equation 3.8, using different configurations.

kx107% € bounded | mAP ¢ ATE | ASE | AOE | AVE | NDS ¢
5 Yes 0.3923 34.8743 0.4364 0.5711 0.3533 0.5706
5 No 0.4084 39.7939 0.4268 0.5782 0.3784 0.5731
7.5 Yes 0.3798 35.2186 0.4057 0.5059 0.3839 0.5699

Table 5.8 provides the same ablation results stratified by distance intervals. The configuration with an unbounded
horizontal enlargement parameter exhibits lower near-range ATE but substantially higher far-range ATE (87.8874)
compared to the bounded setting (70.8275), confirming that unrestrained widening particularly affects localisation at
longer ranges where depth errors compound. For near-range localisation, the bounded and unbounded configurations
produce similar enlargement sizes, since the predicted depths are low and the quadratic term remains below the
maximum cap. The small observed difference in near-range ATE is therefore attributed to minor training variation
rather than an actual effect of the bound.

For the configuration with increased k to 7.5x 1079, the stratified results show slightly lower ATE and ASE at far
range compared to the standard setting, indicating that a larger frustum can be beneficial for distant objects where
higher uncertainty must be tolerated. However, performance at near and mid ranges shows minor degradation,
and the differences across all intervals remain small. This suggests that increasing the quadratic scaling factor may
provide marginal gains in localisation at greater depths but does not consistently improve localisation overall.

31



Table 5.8: Stratified performance metrics for GaussianFusion with the dynamic frustum enlargement module, shown
in Equation 3.8, using different configurations. Metrics are stratified by distance: near (< 100 m), mid (100-250 m),
and far (> 250m).

k € \ ATE | \ ASE | \ AOE | \ AVE |

x107%  bounded | Near Mid Far | Near Mid Far | Near Mid Far | Near Mid Far
5 Yes 14.0913 27.8162 70.8275| 0.5007  0.4554  0.3285 | 0.6064 0.5017  0.6102 | 0.1857 0.3310  0.6007
5 No 12.3327 29.8492 87.8874| 0.4600 0.4633  0.3374 | 0.5948  0.4927 0.6669 | 0.1786  0.3255  0.7031
7.5 Yes 16.5912 31.6379 67.1150 0.4892 0.4134 0.2750 | 0.4658 0.5416 0.5103 | 0.1732 0.3030 0.8043

In summary, the results of the first ablation reinforce the conclusion from Experiment 1 that bounding the
horizontal enlargement parameter is essential for maintaining robust localisation at greater depths, as unbounded
widening introduces excessive noise that degrades far-range accuracy. The second ablation indicates that using a
slightly larger quadratic scaling factor can provide marginal improvements in localisation performance for distant
objects by allowing more aggressive frustum growth. However, this benefit comes at the cost of slightly reduced
performance at near and mid ranges. These findings highlight the importance of carefully balancing frustum growth
to accommodate increasing uncertainty with depth while minimising the inclusion of irrelevant radar points.

The second ablation study investigates whether CenterFusion++ and GaussianFusion++ exhibit different op-
timal frustum scaling factors by increasing the dynamic enlargement rate to k = 1 x 10™° while keeping all other
parameters fixed. Table 5.9 presents the aggregated performance metrics for both models under this configuration.
Compared to the baseline setting with k = 5 x 10~%, GaussianFusion++ improves in mAP (from 0.4204 to 0.4273),
ATE (from 32.1465 to 29.6389), and ASE (from 0.3643 to 0.3494), indicating that it benefits from a more aggres-
sive frustum expansion. CenterFusion++, on the other hand, records slightly worse ATE (rising from 27.2527 to
29.9651) and ASE (from 0.3735 to 0.3485), though it shows modest gains in mAP (from 0.4009 to 0.4307), AOE
(from 0.8286 to 0.6789), and NDS (from 0.5821 to 0.6029). The limited degradation in localisation performance for
CenterFusion++ may be attributed to the fact that the majority of training samples lie in depth regions where the
effective enlargement remains close to the base parameters of e = 0.5 and § = 1.

Table 5.9: Aggregated performance metrics for CenterFusion++ and GaussianFusion++ using a higher frustum
scaling factor of k =1 x 1072.

Model (k=1 x107°) | mAP 1 ATE | ASE | AOE | AVE | NDS 1

CenterFusion++ 0.4307 29.9651 0.3485 0.6789 0.3318 0.6029
GaussianFusion++ 0.4273 29.6389 0.3494 0.7343 0.3347 0.5993

Stratified metrics in Table 5.10 further support these trends. GaussianFusion+-+ achieves lower ATE at all
ranges, with improvements at near (from 13.1166 to 11.3251,m), mid (from 25.6693 to 19.7690,m), and far (from
69.8268 to 63.6721,m). It also records lower ASE at near (from 0.4458 to 0.4067), mid (from 0.3704 to 0.3891), and
far (from 0.2327 to 0.2324), and improved AVE at near (from 0.1634 to 0.1573), mid (from 0.3680 to 0.3306), and
far (from 0.7782 to 0.5538). AOE also slightly improves at near (from 0.5624 to 0.6132) and mid (from 0.6145 to
0.7676), but worsens at far (from 0.6434 to 0.8402). In contrast, CenterFusion++ shows a mixed response. ATE
increases at near (from 10.0967 to 13.4347,m) and far (from 50.4306 to 53.6903,m), while slightly improving at mid
range (from 28.9267 to 30.6326,m). ASE increases at near (from 0.4359 to 0.4407) and decreases at mid (from 0.3788
to 0.3552) and far (from 0.2741 to 0.2024). A similar pattern is observed for AVE, which improves at mid (from
0.3888 to 0.3091) but worsens at near (from 0.1642 to 0.1845) and far (from 0.5597 to 0.5818). These results indicate
that GaussianFusion++ consistently benefits from the increased scaling factor, while CenterFusion++ shows a less
uniform response with minor performance degradation at near and far distances.

Table 5.10: Stratified performance metrics for CenterFusion++ and GaussianFusion++ using k = 1 x 107°. Metrics
are stratified by distance: near (< 100m), mid (100-250m), and far (> 250 m).

Model ‘ ATE | ‘ ASE | ‘ AOE | ‘ AVE |
k=1x10"° ‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far ‘ Near Mid Far
CenterFusion++ 13.4347 30.6326 53.6903 0.4407 0.3552 0.2024 | 0.6170 0.7956  0.6147 | 0.1845 0.3091 0.5818
GaussianFusion++ 11.3251 19.7690 63.6721| 0.4067 0.3891 0.2324 0.6132 0.7676 0.8402 0.1573 0.3306 0.5538

In summary, this ablation study demonstrates that radar—camera fusion models with similar architectural en-
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hancements can respond differently to the same frustum scaling strategy. GaussianFusion++ shows robust gains
from a higher dynamic enlargement rate, leveraging the increased radar context to improve localisation and detec-
tion across depth bands. In contrast, CenterFusion++ exhibits more constrained improvements and a degree of
deterioration in localisation accuracy, highlighting the importance of tuning dynamic enlargement parameters to
the characteristics of each model’s radar association mechanism.

5.3 Experiment 3: Uncertainty scaling

This experiment investigates how varying the scale factor « affects the performance of GaussianFusion when using
dynamic frustum enlargement. As described in Chapter 3, the scale factor o determines the variances of the bivariate
Gaussian distribution used to weight radar points within each frustum. Specifically, the variances are computed as
02 = o (Tmax — Tmin)? and 02 = - (Zmax — Zmin)?- The values of x and z depend on the frustum dimensions,
which themselves increase with predicted object depth due to the dynamic enlargement strategy. Consequently, the
absolute uncertainty also grows with depth.

The motivation for this experiment stems from the fact that the influence of the scale factor « on the detec-
tion performance remains unknown and must be systematically investigated. Intuitively, a smaller « tightens the
weighting around the predicted object center, potentially filtering out noise but risking the exclusion of relevant
radar points when monocular predictions are inaccurate. Conversely, a larger a allows a broader inclusion of radar
points, which may enhance robustness at greater depths but could introduce additional noise at close range.

To explore this, GaussianFusion is trained with three different scale factor settings while using the same dynamic
frustum enlargement parameters as in Experiment 5.2 (€pgse = 0.5, Opase = 1, K =5 X 10_6):

e Baseline: a =0.1;
e Low uncertainty: a = 0.05;

e High uncertainty: a = 0.2.

This experiment tests the hypothesis that a higher « may positively influence performance at greater depths,
where the frustum and thus the inherent uncertainty are already larger, while a lower o may be beneficial for
improving performance at closer ranges by tightly focusing the radar point weighting.

5.3.1 Aggregated results

Table 5.11 shows the aggregated performance metrics for GaussianFusion with three different scale factor settings
«, using the dynamic frustum enlargement configuration. The baseline configuration with a = 0.1 achieves a mAP
of 0.3923 and an NDS of 0.5706. The low uncertainty setting (o = 0.05) results in a slightly lower mAP of 0.3829
and an NDS of 0.5607. The high uncertainty setting (o = 0.2) achieves the highest mAP of 0.4173 and an NDS of
0.5745.

The ATE increases from 34.8743 at baseline to 36.2807 for the low uncertainty setting and 40.6204 for the
high uncertainty setting. The ASE decreases slightly with increasing «, from 0.4364 at baseline to 0.4162 at high
uncertainty. The AOE is lowest for the baseline (0.5711), increasing to 0.7177 for low uncertainty and 0.6626 for
high uncertainty. The AVE is lowest for the low uncertainty setting (0.3261), compared to 0.3533 at baseline and
0.3720 for the high uncertainty setting. Representative qualitative results for each model under this configuration
are presented in Figures A.2.16 and A.2.17 in Appendix A.2.3. Aggregated histograms are shown in Figure A.2.18
in Appendix A.2.3.

Table 5.11: Aggregated performance metrics of GaussianFusion using different scale factor settings « and the
dynamic frustum enlargement module (Equation 3.8), with €pq5c = 0.5, Gpase = 1, and k =5 x 1076.

« | mAP 1 ATE | ASE | AOE | AVE | NDS 1t
0.1 (Baseline) 0.3923 34.8743 0.4364 0.5711 0.3533 0.5706
0.05 (Low) 0.3829 36.2807 0.4206 0.7177 0.3261 0.5607
0.2 (High) 0.4173 40.6204 0.4162 0.6626 0.3720 0.5745
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5.3.2 Stratified results

Table 5.12 presents the stratified metrics by distance for each « setting. For ATE, the low uncertainty configuration
(¢ = 0.05) shows the lowest values for near and mid ranges (11.9129 and 26.3541), while the baseline setting shows
the lowest far-range ATE (70.8275). The high uncertainty setting shows higher ATE across all ranges, particularly
at far range (95.4180).

For ASE, the low uncertainty setting achieves slightly lower values for near and far ranges compared to the
other settings. The high uncertainty setting has the lowest mid-range ASE (0.4008). Regarding AOE, the baseline
shows the lowest near and mid-range values (0.6064 and 0.5017), while the low uncertainty setting shows the lowest
far-range AOE (0.7290). The high uncertainty setting yields higher AOE values across all ranges. For AVE, the high
uncertainty setting shows the lowest values for near and mid ranges (0.1414 and 0.2888), while the low uncertainty
setting achieves the lowest far-range AVE (0.5686). To complement the numerical results in Table 5.12, stratified
histograms are presented in Figure A.2.19 in Appendix A.2.3.

Table 5.12: Stratified performance metrics of GaussianFusion using different scale factor settings a and the dynamic
frustum enlargement module (Equation 3.8), with €pqse = 0.5, dpase = 1, and k = 5 x 1076, Metrics are stratified
by distance: near (< 100m), mid (100-250m), and far (> 250m).

a \ ATE | \ ASE | \ AOE | \ AVE |

| Near Mid Far | Near Mid Far | Near Mid Far | Near Mid Far
0.1 (Baseline) 14.0913 27.8162 70.8275| 0.5007 0.4554 0.3285 0.6064 0.5017 0.6102 0.1857 0.3310 0.6007
0.05 (Low) 11.9129 26.3541 83.465 0.4950 0.4394 0.2926 0.7044 0.7225 0.7290 0.1765 0.2990 0.5686
0.2 (High) 15.0089 27.5348 95.4180 0.5043 0.4008 0.3082 0.6727 0.5523 0.7950 0.1414 0.2888 0.8193

5.4 Experiment 4: RGPNet-A vs. RGPNet-B

This experiment investigates the impact of token-mixing within RGPNet for GaussianFusion+4. As detailed in
Section 3.2.2, two variants of RGPNet are considered: RGPNet-A, which relies solely on independent point-wise
transformations (channel-mixing only), and RGPNet-B, which augments this architecture with token-mixing layers
to explicitly model structured interactions between radar points within each frustum.

The motivation for this experiment stems from the insight that radar returns within a frustum often exhibit
local spatial dependencies and geometric patterns, particularly in cluttered maritime environments where reflections
can cluster along object edges or water surfaces. While RGPNet-A treats each radar point independently before
global pooling, it cannot capture such inter-point relationships. By contrast, RGPNet-B introduces token-mixing,
allowing the network to learn spatial interactions across the radar point set. This additional capacity could help
the network generate more reliable and context-aware Gaussian parameter estimates, especially in complex or noisy
scenes.

In this experiment, GaussianFusion++ is trained twice under identical conditions, varying only the RGPNet
variant used for radar parameter estimation. Both configurations employ the same dynamic frustum enlargement
module and training strategy described in previous experiments, ensuring a controlled comparison. The evaluation
focuses on whether token-mixing in RGPNet-B improves overall detection accuracy, localisation, and robustness
compared to the simpler RGPNet-A design.

Additionally, an ablation study is conducted to investigate two specific factors. First, the effect of varying the
maximum number of tokens IV used in RGPNet-B is examined. While Chapter 3.2.2 motivates the choice of N = 128
as a trade-off between geometric coverage and computational efficiency, this ablation empirically evaluates whether
alternative values lead to better performance. Second, RGPNet is replaced with the more complex and widely-used
PointNet++ architecture [58] to determine whether general-purpose point cloud networks offer an advantage over
the specialised, lightweight design of RGPNet. In both cases, GaussianFusion++ is retrained for 40 epochs under
otherwise identical conditions to ensure comparability.

Finally, to assess the practical detection performance of the best-performing configuration identified in this
experiment, a threshold sweep analysis is conducted. This analysis evaluates GaussianFusion++ the best learnable
frustum association mechanism across a range of confidence thresholds to determine the setting that maximises
the F1 score. By examining the precision—recall trade-off, this evaluation provides a complementary perspective
on detection quality beyond standard metrics such as mAP and ATE, and supports a more deployment-oriented
assessment of the model.

This experiment tests the hypothesis that explicitly modelling point-to-point dependencies enhances the qual-
ity of the estimated radar feature representations, resulting in more accurate radar—camera fusion and improved
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localisation performance.

5.4.1 Aggregated results

Table 5.13 shows the aggregated performance metrics for GaussianFusion++ with the two RGPNet variants using
the dynamic frustum enlargement configuration. RGPNet-B achieves a higher mAP of 0.4563 compared to 0.4204
for RGPNet-A. The NDS is also slightly higher for RGPNet-B (0.5993) than for RGPNet-A (0.5953).

The ATE is lower for RGPNet-A (32.1465) compared to RGPNet-B (32.8684). The ASE is slightly lower for
RGPNet-B (0.3573) than for RGPNet-A (0.3643). The AOE increases from 0.6017 for RGPNet-A to 0.9846 for
RGPNet-B. The AVE decreases from 0.3940 for RGPNet-A to 0.3008 for RGPNet-B. Representative qualitative
results for each model under this configuration are provided in Figures A.2.20 and A.2.21 in Appendix A.2.4.
Aggregated histograms are shown in Figure A.2.22 in Appendix A.2.4.

Table 5.13: Aggregated performance metrics of GaussianFusion++ using RGPNet-A and RGPNet-B with the
dynamic frustum enlargement module (Equation 3.8), using €pqse = 0.5, dpase = 1, and k =5 x 1076.

Encoder (k=5 x 1075) | mAP 1 ATE | ASE | AOE | AVE | NDS 1
RGPNet-A 0.4204 32.1465 0.3643 0.6017 0.3940 0.5953
RGPNet-B 0.4563 32.8684 0.3573 0.9846 0.3008 0.5993

5.4.2 Stratified results

Table 5.14 presents the stratified performance metrics for near, mid, and far ranges. For ATE, RGPNet-B achieves
lower values in the near and far ranges (10.3864 and 64.7392) compared to RGPNet-A (13.1166 and 69.8268), while
the mid-range ATE is higher for RGPNet-B (33.4393) than for RGPNet-A (25.6693).

The ASE is slightly lower for RGPNet-B across all ranges. The AOE is higher for RGPNet-B in all distance
intervals. The AVE is lower for RGPNet-B in the near, mid, and far ranges compared to RGPNet-A. The results
presented in Table 5.14 are visualised as stratified histograms in Figure A.2.23 in Appendix A.2.4.

Table 5.14: Stratified performance metrics of GaussianFusion++ using RGPNet-A and RGPNet-B with the dynamic
frustum enlargement module (Equation 3.8), using €pase = 0.5, dpase = 1, and k = 5 x 1076, Metrics are stratified
by distance: near (< 100m), mid (100-250m), and far (> 250 m).

Encoder \ ATE | \ ASE | \ AOE | \ AVE |
k=5x10"% | Near Mid Far | Near Mid Far | Near Mid Far | Near Mid Far
RGPNet-A 13.1166 25.6693 69.8268 | 0.4458  0.3704  0.2327 | 0.5624 0.6145 0.6434 | 0.1634  0.3680  0.7782
RGPNet-B 10.3864 33.4393 64.7392| 0.4426 0.3658 0.2221 | 0.8537 11279  0.9861 | 0.1520 0.2636 0.5656

5.4.3 Ablation study: RGPNet-B with varying token count N vs. PointNet++

This ablation study investigates the influence of varying the fixed radar token count N within the RGPNet-B
encoder on the overall performance of GaussianFusion++. The design of RGPNet-B assumes that N = 128 strikes
a balance between preserving spatial detail and computational efficiency, as described in Section 3.2.2. To validate
this choice, RGPNet-B is also evaluated with N = 64 and N = 256. Additionally, PointNet-++ [58] is included as
a comparative baseline to assess the performance of a widely used, general-purpose radar encoder within the same
learnable frustum association framework.

PointNet—++ is a hierarchical point-based network designed to model local structures and inter-point relationships
using multi-scale grouping, a technique used to extract meaningful geometric patterns from a point cloud. It has
been applied in various 3D vision tasks, including radar and LiDAR point cloud encoding. Its inclusion in this study
serves to assess whether a general-purpose point cloud network can outperform the proposed RGPNet-B encoder
in the context of estimating Gaussian parameters for GaussianFusion++.

As shown in Table 5.15, GaussianFusion++ with RGPNet-B and N = 128 achieves the highest mAP (0.4563)
and NDS (0.5993), confirming the effectiveness of this configuration. In comparison, the same architecture with
N = 64 or N = 256 results in lower mAP and NDS, suggesting that both under- and over-sampling of radar
points reduce performance. Notably, using N = 64 results in the lowest ATE (38.67) among the RGPNet-B
variants, indicating that fewer radar points may reduce noise at the cost of detection performance. On the other
hand, using PointNet++ leads to slightly better ATE (31.96) than any RGPNet-B variant. This suggests that
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PointNet++ enables slightly more precise localisation on matched predictions, but its mAP is significantly lower
(0.3854), indicating a reduced ability to detect objects in the first place.

While PointNet++ achieves lower ATE, it detects fewer objects overall, which is reflected in its low mAP
(0.3854). Since ATE is computed only on TPs, this implies that the precision of PointNet++-enabled detections
may be higher, but the overall recall is lower. In contrast, RGPNet-B with NV = 128 achieves significantly higher
mAP, indicating that it enables more consistent detection across all objects. As object detection is the primary
task of GaussianFusion++, the improvement in mAP is more meaningful than the small gains in ATE offered by
PointNet++.

Table 5.15: Aggregated performance metrics of GaussianFusion++ using different radar encoders with the dynamic
frustum enlargement module (Equation 3.8), using €pgse = 0.5, Opase = 1, and k =5 X 106,

Encoder (k=5 x 107%) | mAP 4 ATE | ASE | AOE | AVE | NDS 1
RGPNet-B (N = 128) | 0.4563 32.8684 0.3573 0.9846 0.3008 0.5993
RGPNet-B (N = 64) 0.4238 38.6683 0.3765 0.6858 0.3080 0.5851
RGPNet-B (N = 256) 0.4190 36.2651 0.3766 0.8449 0.3437 0.5789
PointNet+-+ 0.3854 31.9574 0.3604 0.9095 0.3589 0.5667

Table 5.16 provides additional insights by stratifying performance across distance intervals. RGPNet-B with
N = 128 performs best at near and far distances, with the lowest ATE in both ranges (10.39 and 64.74 respectively),
suggesting that token-mixing at this resolution enables the model to capture both local radar structure and long-
range spatial patterns effectively. However, its ATE at mid-range (33.44) is substantially higher than all other
configurations, which negatively impacts its aggregated ATE. This explains why the overall ATE of RGPNet-B
(N = 128) is slightly worse than PointNet++ despite superior near and far performance.

Table 5.16: Stratified performance metrics of GaussianFusion+-+ using different radar encoders with the dynamic
frustum enlargement module (Equation 3.8), using €pase = 0.5, dpase = 1, and k = 5 x 1076, Metrics are stratified
by distance: near (< 100m), mid (100-250m), and far (> 250 m).

Encoder ATE | \ ASE | \ AOE | \ AVE |

k=5x10"° Near Mid Far | Near Mid Far | Near Mid Far | Near Mid Far

|
RGPNet-B (N = 128) | 10.3864 33.4393 64.7394 0.4426 0.3658 0.2221| 0.8537 1.1279  0.9861 | 0.1520 0.2636 0.5656

RGPNet-B (N = 64) 14.5295 30.007¢& 82.2455| 0.4549  0.3909  0.2520 0.6034 0.8318 0.6161 | 0.1588 0.2875 0.5361
RGPNet-B (N = 256) 11.4883 27.4877 81.2495| 0.4713  0.3859  0.2355 0.9849 0.8055 0.7033| 0.1770 0.2882  0.6418
PointNet+4 10.4797 25.383¢& 65.3347| 0.4275 0.3787  0.2587 0.8665 0.9174 0.9525| 0.1607 0.3418 0.6174

These findings demonstrate that while RGPNet-B with N = 128 exhibits slightly higher mid-range localisation
error, it outperforms all other configurations in near- and far-range localisation and achieves the highest overall
mAP and NDS. As mAP reflects the ability to detect objects reliably, regardless of how precisely they are localised,
the performance gains in detection outweigh the minor localisation trade-off. Therefore, RGPNet-B with N = 128 is
concluded to be the most effective radar encoder for the learnable frustum association module in GaussianFusion++-.

5.4.4 Threshold selection

This subsection presents a threshold analysis for the best-performing configuration of GaussianFusion++, which
uses the RGPNet-B encoder with N = 128. The objective is to identify the confidence threshold that yields the
optimal balance between precision and recall, as measured by the F1 score. The analysis is conducted using a fixed
IoU threshold of 0.5 for determining true positives.

To this end, the detection confidence threshold is swept from 0.01 to 0.99 in steps of 0.01. At each step, the
corresponding precision, recall, and F1 score are computed on the validation set. These results are visualised using
two complementary plots:

e A precision—recall curve, shown in Figure 5.6, which characterises the trade-off between detection accuracy
and completeness across thresholds.

e An F1 score vs. confidence threshold curve, shown in Figure 5.7, which identifies the threshold that maximises
the F1 score.
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The analysis reveals that the best F1 score of 0.8284 is achieved at a confidence threshold of 0.39. This threshold
represents the optimal operating point for deployment when precision and recall are equally important. It is marked
in red on both figures for reference.

Precision-Recall Curve with Best F1 Score
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Figure 5.6: Precision-recall curve for GaussianFusion++ (RGPNet-B, N = 128). The red marker indicates the
confidence threshold (0.39) that achieves the best F1 score.
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Figure 5.7: F1 score as a function of detection confidence threshold. The red marker indicates the threshold (0.39)
that maximises the F1 score.
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Chapter 6
Discussion

This chapter provides a critical analysis of the experimental results in relation to the main objective of this thesis:
designing a novel multi-modal 3D object detection model using radar and camera data to complement RH Marine’s
CAS. The discussion examines how specific architectural modifications and parameter adjustments influence model
behaviour and task-specific performance under realistic maritime conditions. The evaluation metrics are both
aggregated and stratified. This stratification splits the TP metrics (ATE, ASE, AOE, and AVE) into near- (0-
100 m), mid- (100-250 m), and far-range (250+ m) depth intervals. The discussion further considers how the
challenges identified in Section 1.1 can be addressed through the proposed methods and experimental insights. By
highlighting strengths, limitations, and practical trade-offs, this chapter clarifies the contribution of the developed
approaches to improving situational awareness for autonomous surface vessels and lays the groundwork for the
concluding reflections and recommendations for future research.

6.1 Impact of frustum enlargement strategies

Experiment 1 examined how different configurations of frustum enlargement, defined by the horizontal (e) and
depth-wise (0) expansion parameters, affect the performance of the four radar-camera fusion models. The aim was
to determine how varying the frustum volume influences the inclusion of relevant radar points and the resulting
detection accuracy in complex maritime scenarios. Performance was tracked using the task-specific metrics mAP,
ATE, ASE, AOE, and AVE, which are combined to generate NDS. It is anticipated that GaussianFusion and
GaussianFusion++, which rely on probabilistic radar point weighting, would handle larger frustums more robustly
than CenterFusion [37] and CenterFusion++ [38], due to their capacity to mitigate the impact of irrelevant or noisy
radar returns. This section analyses how these expectations align with the experimental outcomes and highlights
key trends observed across different enlargement settings.

The aggregated histograms in Figure 6.1 show that mAP remains stable across different frustum enlargement
levels for CenterFusion and GaussianFusion. CenterFusion++ exhibits a reduction at moderate enlargement, while
GaussianFusion++ exhibits a reduction at strong enlargement. The NDS indicates that CenterFusion’s overall per-
formance is largely unaffected by frustum size, while the other models achieve their highest NDS at mild enlargement
(e=05,0=1).

Experiment 1: mAP with Standard Deviation Experiment 1: NDS with Standard Deviation
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Figure 6.1: Aggregated detection performance metrics (mAP, NDS) for all models under different static frustum
enlargement configurations (Baseline, Mild, Moderate, Strong). Each subplot visualises the trend for CenterFusion,
GaussianFusion, CenterFusion++, and GaussianFusion++.

The ATE results, visualised in Figure 6.2, demonstrate that the level of frustum enlargement directly affects
depth estimation accuracy, which aligns with the fact that radar depth fusion primarily influences translation error.
CenterFusion and GaussianFusion++ reach the lowest ATE at moderate enlargement, whereas GaussianFusion
and CenterFusion++ perform best at mild enlargement. For this setting, the parameters are ¢ = 0.5 and 6 = 1.
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This suggests that probabilistic radar weighting enables more robust depth estimation when the frustum includes
additional radar returns.

Experiment 1: ATE with Standard Deviation Experiment 1: ASE with Standard Deviation
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Figure 6.2: Aggregated TP metrics (ATE and ASE) for all models under different static frustum enlargement
configurations.

A consistent pattern is observed in the ASE across all levels of frustum enlargement, suggesting that ASE is
model-specific. In particular, models employing a learnable frustum association mechanism, CenterFusion++ and
GaussianFusion++,consistently outperform those relying on traditional association methods, CenterFusion and
GaussianFusion. This trend holds regardless of frustum size, reinforcing the conclusion that scale estimation accu-
racy is largely model-dependent. Intuitively, one might expect better depth estimation to correlate with improved
scale estimation, as both are spatially related and may benefit from shared features. However, this hypothesis is
not clearly supported by the experimental results visualised in Figure 6.2.

No systematic trends are observed for AOE and AVE, which is expected since the radar provides only depth and
not velocity information. Consequently, no significant benefit for orientation and velocity estimation is obtained
from radar fusion in this configuration. Including velocity information from the radar data would likely improve
both AOE and AVE, as demonstrated in the original CenterFusion study [37].

Experiment 1: Stratified ATE for Baseline enlargement Experiment 1: Stratified ATE for Mild enlargement
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Figure 6.3: Stratified ATE results for CenterFusion, GaussianFusion, CenterFusion++, and GaussianFusion++
under different static frustum enlargement configurations (Baseline, Mild, Moderate, Strong). Each plot shows the
ATE grouped by depth ranges: 0-100m, 100-250 m, and beyond 250 m.

The stratified ATE in Figure 6.3 confirms that CenterFusion’s depth accuracy degrades most rapidly at long
ranges. This can be observed by CenterFusion consistently producing the highest error beyond 250 meters for
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the baseline, mild, and moderate enlargement settings. GaussianFusion and GaussianFusion++ generally maintain
lower ATE at greater distances, indicating increased robustness to the noise introduced by larger frustums. Cen-
terFusion+-+ achieves a notably low overall ATE as well as a surprisingly low stratified far-range ATE of 56.8536
at mild enlargement (¢ = 0.5 and § = 1). However, since such a small frustum enlargement is generally insufficient
to consistently include the radar points of distant objects, this outcome can be considered coincidental and is best
attributed to the way the model was trained at this configuration rather than to effective radar association. As the
frustum size increases further, CenterFusion++ shows higher ATE again, suggesting that it is more sensitive to clut-
ter and noise as a result of frustum enlargement than the probabilistic weighting methods used in GaussianFusion
and GaussianFusion—++-.

The stratified ASE, shown in Figure 6.4, exhibits a decreasing trend with increasing depth range. This likely
reflects the fact that, at far distances, the dataset contains mostly similar types of vessels, resulting in more consistent
object sizes and thus lower scale estimation error. In contrast, at close range, the variety in vessel sizes is much
larger, making accurate scale prediction more challenging. For stratified AOE and AVE, shown in Figures A.2.10
and A.2.11, no clear or consistent trends are observed, indicating these metrics are less influenced by object distance
in the current setup.

Experiment 1: Stratified ASE for Baseline enlargement Experiment 1: Stratified ASE for Mild enlargement
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Figure 6.4: Stratified ASE results for CenterFusion, GaussianFusion, CenterFusion++, and GaussianFusion++
under different static frustum enlargement configurations (Baseline, Mild, Moderate, Strong). Each plot shows the
ASE grouped by depth ranges: 0-100m, 100-250 m, and beyond 250 m.

The qualitative results in Appendix A.2.1 illustrate these findings in more detail. For CenterFusion, accurate
localisation is achieved when the initial monocular depth estimate is reliable. This can be seen for the cluttered
nearby objects in Figure A.2.4 (mild enlargement) and for the distant object in Figure A.2.2 (baseline). When
the frustum is enlarged too much, however, the inclusion of additional noise reduces depth accuracy, pulling the
detection away from the ground truth as visible in Figure A.2.7 (moderate enlargement).

GaussianFusion shows greater robustness to clutter. In Figure A.2.8 (strong enlargement), one of the two boats
near the center of the BEV image is estimated closer to the true position, although the other remains less accurate.
In Figure A.2.9, GaussianFusion accurately locates the distant moving vessel at the top-centre of the image.

CenterFusion++ does not exhibit clear robustness to noise but delivers more stable and visually cleaner predic-
tions than CenterFusion on average.

GaussianFusion++ achieves the highest level of resilience to noise among all models. Figures A.2.4, A.2.6, and
A.2.8 show that the pair of boats located on the right side of the image is detected closest to the ground truth,
even in scenes with significant clutter.

Overall, these findings indicate that larger frustums are beneficial for capturing radar points when monocular
depth is unreliable but require robust association to limit the impact of clutter. Probabilistic radar point weighting
contributes to more stable depth estimation under complex and cluttered conditions.
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6.2 Benefits of depth-adaptive frustum enlargement

Experiment 2 examined the impact of applying a depth-adaptive frustum enlargement module on the performance
of the four radar—camera fusion models. This experiment addresses the limitation of static frustum enlargement,
which cannot adapt to the increasing uncertainty in monocular depth estimation at larger distances. The dynamic
module uses a quadratic scaling function to adjust both the horizontal and depth-wise frustum dimensions based on
the predicted object depth, maintaining tight frustums for near objects and enlarging them for distant ones where
depth estimates are less reliable. This strategy is expected to improve radar association quality and yield more
robust localisation performance, in the form of a lower ATE, across varying depth intervals for all models.

The aggregated results in Figure A.2.14 show that the mAP for CenterFusion and GaussianFusion remains fairly
consistent across both static and dynamic frustum configurations, indicating limited sensitivity to moderate changes
in frustum size. For CenterFusion++, the mAP under dynamic enlargement is comparable to that of mild static
enlargement, which aligns with the fact that the dynamic module parameters (€pqse = 0.5, dpese = 1) produce a
frustum size that closely matches the mild static setting for depths up to approximately 250 meters, where most
objects in the custom dataset are located. The mAP for GaussianFusion++ with the dynamic frustum configuration
is slightly lower than its mAP at the static baseline configuration.

The NDS results reflect this distinction more clearly. CenterFusion shows minimal variation across configura-
tions. For GaussianFusion and CenterFusion++, the highest NDS is obtained with mild static enlargement, and
a lower but still competitive value is observed with the dynamic frustum enlargement configuration. In contrast,
GaussianFusion++ achieves its highest NDS under dynamic frustum enlargement, indicating that the combination
of probabilistic radar weighting and depth-adaptive frustum sizing improves localisation consistency across different
depth intervals for this model in particular.

The ATE results indicate that CenterFusion and CenterFusion++ benefit the most from the dynamic frustum
enlargement module with respect to localisation. For GaussianFusion, the lowest ATE is observed at mild static
enlargement, and for GaussianFusion++, the best ATE occurs at dynamic enlargement. Among all models, Cen-
terFusion++ achieves the lowest aggregated ATE. This outcome is primarily due to the fact that the dynamic
frustum enlargement closely resembles the mild static enlargement within the depth range that contains the ma-
jority of training objects. Specifically, using €pgse = 0.5, Opase = 1, and k = 5 x 107° results in an enlargement
factor that increases only slightly compared to mild static settings: by approximately 0.05 at 100 meters and up
to about 0.31 at 250 meters. Beyond 250 meters, the quadratic term leads to a progressively larger frustum, but
as most objects are within 250 meters, the aggregated ATE remains similar between the dynamic and mild static
configurations.

The stratified ATE in Figure A.2.15 further clarifies these effects for CenterFusion++. For near-range targets,
the dynamic frustum produces a near-range ATE approximately 31.7% lower than that of mild static enlargement,
possibly due to very small enlargement (0.05 at 100 m) only just including important radar points for LFANet.
In the mid-range, the slight additional enlargement (ranging from 0.05 to 0.3125) compared to the mild static
frustum increases the inclusion of radar clutter, resulting in an approximate 12.1% increase in mid-range ATE.
At far distances beyond 250 meters, the quadratic term enlarges the frustum substantially, allowing the model to
capture radar points that would otherwise be excluded, leading to an improvement in far-range ATE of about 12.7%
relative to mild static enlargement. This trade-off illustrates how dynamic frustum enlargement balances reliable
near-range learning with increased radar coverage at long ranges, while introducing some performance degradation
at mid-range ATE for CenterFusion++ due to additional clutter.

For both GaussianFusion and GaussianFusion++, the stratified ATE results show only minor variations across
configurations. GaussianFusion localises better under the static mild configuration compared to the dynamic one,
though the difference is relatively small. In the case of GaussianFusion++, the dynamic configuration does not yield
the best stratified ATE at near or mid ranges. The lowest near-range ATE is observed with the static moderate
configuration, while the mid-range performance of the dynamic configuration is comparable to that of the static
mild setup. This is expected, as the frustum enlargements in these configurations are very similar, and the model’s
probabilistic radar association mechanism, which continuously weighs radar points based on spatial proximity and
learned uncertainty, effectively mitigates the impact of minor increases in noise. Notably, GaussianFusion++
achieves its best far-range ATE with the dynamic configuration. Overall, the relatively small variation in ATE
across frustum enlargement configurations for both Gaussian-based models underscores their robustness to larger
frustum sizes and noise levels.

An example highlighting the robustness of GaussianFusion++ compared to CenterFusion++ is shown in Fig-
ure 6.5. A single vessel appears near the center of the BEV image, and radar noise is present directly behind it.
The radar noise is spatially close to the vessel’s true location. CenterFusion++ uses a deterministic frustum asso-
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ciation mechanism that creates an artificial radar point to represent the object. In this case, it incorrectly selects a
spurious radar return caused by background clutter, leading to a mislocalisation. In contrast, GaussianFusion++
applies a probabilistic association strategy to create the artificial radar point by learning a bivariate Gaussian over
all radar points within the frustum. This allows it to down-weight noisy returns and emphasise points more likely
to correspond to the true object location. As a result, GaussianFusion++ accurately localises the vessel. This
case highlights the advantage of learning probabilistic radar associations, which improves robustness to clutter and
misaligned radar signals.
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Figure 6.5: Qualitative detection results in a unique scene for CenterFusion++ (first row) and GaussianFusion++
(second row). Each row shows the camera view (left) and the corresponding BEV (right).

The stratified ASE results follow the same pattern as observed with static frustum enlargement settings. Center-
Fusion++ and GaussianFusion++ achieve better size estimation performance than the other models, but dynamic
frustum enlargement does not provide a clear benefit for ASE. For stratified AOE and AVE, no consistent trends
are visible. The higher AOE of CenterFusion++ remains apparent and would likely decrease if trained on a larger
and more diverse dataset.

Overall, Experiment 2 shows that introducing a depth-adaptive frustum enlargement module can improve lo-
calisation performance and maintain robust detection across varying distances. For localisation, CenterFusion and
CenterFusion++ benefit the most from dynamic frustum enlargement, as evidenced by their lower aggregated ATE
compared to all static configurations. The Gaussian-based models, on the other hand, show minimal differences in
performance compared to their best static configurations. This indicates that their probabilistic radar association
mechanisms already provide strong robustness to radar noise and clutter, making them less sensitive to changes in
frustum size than CenterFusion and CenterFusion++.

The depth-adaptive enlargement function used in this experiment was designed based on the assumption that
monocular depth estimation error grows superlinearly with distance [65], and its parameters were selected based
on the results from Experiment 1. Although the chosen quadratic form with the current parameters provides a
good balance between near- and far-range association, further optimisation could refine this balance and enhance
performance. Additionally, different models may benefit from different enlargement functions or parameter settings,
as demonstrated by the ablation study in Section 5.2.3, which showed that each model responds differently to changes
in dynamic frustum scaling. These functions could be quadratic, linear, or follow another suitable form, depending
on the model’s radar association mechanism and sensitivity to clutter.
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6.3 Influence of uncertainty in GaussianFusion

Experiment 3 examined the impact of varying the scale factor o on the performance of GaussianFusion in combina-
tion with dynamic frustum enlargement. The scale factor a governs the spread of the bivariate Gaussian weighting
function. Lower values constrain the weighting tightly around the predicted object center, whereas higher values
broaden the distribution, allowing radar points at greater distances to contribute more substantially.

The aggregated results in Table 5.11 show that increasing « from the baseline (0.1) to a higher uncertainty
setting (0.2) leads to a higher mAP and a slightly increased NDS. This increase in NDS is primarily due to the
stronger influence of mAP in its computation. Other metrics indicate that a higher uncertainty does not improve
localisation. The ATE, which directly reflects the contribution of depth information from radar, is significantly
lower for the baseline setting than for high uncertainty and slightly lower than for low uncertainty. The AOE for
the baseline configuration is also notably better, although further improvements are expected once radar velocity
information is included. The AVE shows a minor benefit for low uncertainty but remains less conclusive due to the
absence of velocity data.

The stratified results in Table 5.12 provide additional context. For ATE, the low uncertainty setting achieves
the lowest errors at near and mid ranges, where monocular depth estimates are generally more reliable and tighter
weighting is effective at suppressing noise. At greater distances, where depth predictions are less accurate, the
baseline uncertainty outperforms both low and high uncertainty settings. The high uncertainty setting does not
yield improvements at far range and generally results in higher translation errors.

These findings are consistent with the qualitative examples in Figure A.2.17. In this figure, the distant vessel
near the center of the BEV is more accurately localised using the baseline uncertainty (o = 0.1) compared to
the low uncertainty setting. Conversely, the near and mid-range objects appear slightly better aligned for the low
uncertainty configuration, supporting the stratified results.

Overall, the results demonstrate a trade-off between noise suppression and sufficient radar point inclusion. A
low a (low uncertainty) can overly limit the association of valid radar points for distant objects, while a high «
(high uncertainty) broadens the weighting excessively, introducing clutter and increasing translation errors without
notable benefit at larger distances. For the current setup, the baseline uncertainty setting (o = 0.1) offers the best
overall balance for depth estimation across all ranges. The observed increase in mAP for o = 0.2 does not translate
to improved depth localisation and mainly affects the NDS due to its heavy weighting for detection accuracy.
Selecting an appropriate « is therefore essential for robust radar—camera fusion in maritime environments. Future
research could explore dynamically adjusting a according to estimated object depth or detection confidence to
further enhance robustness against monocular depth uncertainty.

6.4 Contribution of token-mixing in RGPNet

Experiment 4 investigated the impact of introducing token-mixing in the RGPNet architecture by comparing two
variants: RGPNet-A and RGPNet-B. Both models are used within the GaussianFusion++ pipeline and were trained
under identical conditions using the dynamic frustum enlargement configuration from Experiment 2. The goal was to
evaluate whether structured inter-point reasoning improves the estimation of Gaussian parameters for radar—camera
fusion, and consequently enhances depth-based localisation performance.

RGPNet-A follows a shallow architecture that processes radar points independently using two fully connected
layers, followed by a global max pooling operation. It captures only channel-wise features and ignores spatial
relationships between radar points. RGPNet-B extends this design with a token-mixing MLP block that enables
inter-point communication by operating across a fixed-length radar point sequence. This added depth and com-
plexity allows the model to learn structured spatial patterns within the radar frustum.

The aggregated results in Table 5.13 show that RGPNet-B slightly outperforms RGPNet-A in both mAP and
NDS, indicating improved overall detection quality. More importantly, the stratified ATE results in Table 5.14
reveal that RGPNet-B yields lower localisation error for both near and far-range targets. These improvements align
with the expectation that modelling inter-point structure helps resolve ambiguity when the radar return is either
dense, at near-range, or sparse, at far-range. The qualitative results in Figures A.2.20 and A.2.21 further support
this, as RGPNet-B produces bounding boxes that more accurately align with the ground truth for both nearby and
distant objects.

Interestingly, RGPNet-B performs worse than RGPNet-A at mid-range, where it records a higher ATE. This
suggests that in scenarios where monocular depth estimates are relatively strong, the added complexity of token-
mixing may not provide additional benefit and may even lead to overfitting. This is consistent with established
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findings that deeper networks, such as RGPNet-B, are more prone to overfitting in low-data regimes, while shallower
architectures like RGPNet-A often generalise more reliably [68].

The results of ASE, AOE, and AVE do not exhibit a consistent or theoretically grounded pattern across the two
RGPNet variants and are not expected to be directly influenced by the radar-based depth fusion mechanism. As
such, they are not considered relevant for evaluating the contribution of token-mixing in this context.

Beyond this direct comparison, additional ablation studies provide further insight into the role of token count
and architecture design. Varying the number of radar tokens N in RGPNet-B revealed that N = 128 offers the
best balance between geometric detail and computational efficiency. Smaller values (e.g., N = 64) led to under-
representation of spatial structure, while larger values (e.g., N = 256) introduced unnecessary complexity and
noise. Furthermore, substituting RGPNet-B with a PointNet++ backbone slightly reduced ATE but at the cost
of significantly lower mAP, suggesting that while PointNet++ can localise well when it detects, it does so less
consistently than RGPNet-B.

Finally, a threshold sweep analysis confirmed the practical benefit of the best-performing configuration. Gaus-
sianFusion++ with RGPNet-B achieved an optimal F1 score of 0.8284 at a detection confidence threshold of 0.39.
This balance between precision and recall reinforces the model’s suitability for deployment in safety-critical maritime
applications, where both accurate and consistent detection are essential.

In summary, RGPNet-B demonstrates advantages for nearby and far-away object localisation, while RGPNet-A
excels in the mid-range. On the current benchmark dataset, the two variants perform comparably overall, but the
structured reasoning enabled by token-mixing may prove increasingly beneficial if trained on a larger and more
diverse dataset. The token-mixing design of RGPNet-B, especially when configured with N = 128, strikes a strong
balance between expressiveness and stability, and shows promising potential for deployment-oriented robustness.
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Chapter 7
Conclusion

This thesis investigated methods to enhance situational awareness for ASVs through improved multi-modal 3D
object detection using radar and camera data. The work addressed the unique challenges posed by maritime envi-
ronments, including broad depth variation, radar—camera misalignment, sensor noise, a lack of annotated training
data, and degradation of monocular depth estimation with increasing range.

A fully annotated benchmark dataset was constructed using the Pohang Canal Dataset [42] as a foundation,
enabling supervised learning and evaluation of detection models under realistic maritime conditions. The raw
dataset included synchronised radar and camera images, LiDAR point clouds, and navigation data. These sensor
modalities were used to manually generate 3D object annotations for static and moving maritime objects across
varying distances.

Two novel fusion architectures were proposed. GaussianFusion introduced a bivariate Gaussian weighting mech-
anism for radar association, offering improved robustness to sparse and noisy radar returns. GaussianFusion++
extended this with a learnable radar association network, RGPNet, which estimates the Gaussian parameters based
on radar point sets within a frustum. Two variants of RGPNet were evaluated: a lightweight point-wise version
(RGPNet-A) and a token-mixing version (RGPNet-B) capable of modelling inter-point dependencies.

To improve radar—camera association at long range, a depth-adaptive frustum enlargement strategy was intro-
duced. This method dynamically adjusts the frustum volume in proportion to predicted object depth, enhancing
the inclusion of radar returns when monocular depth estimation becomes less reliable.

Four experiments were conducted to evaluate the proposed contributions. The results demonstrated that Gaus-
sianFusion and GaussianFusion++ achieved more robust depth estimation under large, fixed frustum settings and
reduced sensitivity to clutter compared to existing methods. Depth-adaptive frustum enlargement further improved
localisation at long distances while maintaining near-field precision. The use of token-mixing in RGPNet-B was
shown to slightly enhance performance for near and far objects, with slightly reduced accuracy at mid-range, likely
due to data sparsity and reduced radar resolution within that depth interval.

In summary, this thesis demonstrated that probabilistic radar fusion and depth-aware frustum association can
significantly improve 3D object detection in complex maritime settings. The methods proposed here contribute to
more robust and interpretable perception systems for ASVs, and form a basis for future work on uncertainty-aware
and data-efficient multi-modal fusion in real-world autonomous navigation.

7.1 Future work & recommendations

Although the developed models and methods demonstrate clear improvements for maritime 3D object detection,
several aspects remain open for further investigation and optimisation. These potential research directions include
model refinements, improved frustum enlargement and uncertainty handling, enhanced data quality, and alternative
fusion strategies.

One area for improvement is the radar association mechanism in GaussianFusion. Instead of assuming inde-
pendence in the bivariate Gaussian weighting, the predicted object orientation could be incorporated to estimate a
non-zero correlation coefficient (p). Furthermore, a dynamic scale factor a that adjusts according to object distance
could help the model represent uncertainty more realistically, potentially improving depth estimation at greater
ranges.

RGPNet in GaussianFusion++ could benefit from additional refinements. Pretraining RGPNet on point cloud
data with full annotations may accelerate convergence and produce more reliable Gaussian parameters. A curriculum
learning scheme that gradually increases the influence of the NLL loss could lead to more stable training and more
robust uncertainty modelling. Providing additional inputs such as the predicted object size and orientation might
further improve RGPNet’s ability to detect relevant radar point clusters and estimate the Gaussian parameters
more effectively.

Furthermore, investigating the maximum range at which the camera remains a useful modality is an important
next step. Extending the dynamic depth enlargement approach to cover such long-range scenarios, for example
up to three kilometers, could help identify the point at which radar should take precedence due to diminishing
camera performance. Moreover, the frustum enlargement strategy could be made more adaptive by analysing how
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the predicted object orientation and scale affect the optimal frustum shape. Specifically, future methods should
incorporate predicted object scale into the enlargement function so that smaller objects receive proportionally
greater enlargement, ensuring that frustum size remains contextually appropriate. Introducing fuzzy logic into this
dynamic frustum control could further refine enlargement transitions across distance intervals.

Beyond frustum tuning, more principled methods for compensating temporal misalignment should be explored.
Rather than relying solely on horizontal frustum enlargement, future approaches could directly adjust the radar
data by applying transformations derived from the OS’s velocity, heading, and angular motion. This would enable
different sections of the radar scan to be temporally corrected relative to the camera frame, reducing misalignment
across the entire sweep and improving the consistency of radar—camera fusion. Eliminating horizontal frustum
enlargement altogether would also help minimise the inclusion of noise, further enhancing the precision of the fused
detections.

In addition to radar and camera, incorporating LiDAR into the multi-modal framework could be an interesting
direction for future research. LiDAR provides far more detailed spatial measurements than radar but can be
more sensitive to adverse weather conditions. Evaluating the effect of a probabilistic weighting scheme for frustum
association could prove highly beneficial for robust sensor fusion in harsh weather conditions when LiDAR data is
included. Moreover, integrating Automatic Identification System (AIS) data into the detection process could offer
an initial estimate of object positions, orientations, and velocities at specific moments, which, when combined with
early fusion strategies, might further improve detection accuracy and monocular 3D object detection. However,
since AIS message frequency is typically low, each model must remain robust when AIS data is unavailable or be
able to reconcile the timestamp of the AIS message with the OS’s position and heading at that time, along with its
current navigation state.

Different sensor fusion techniques should also be considered. Incorporating attention mechanisms or explicit
modality interaction modules may help exploit complementary radar, camera, LiDAR, and AIS information more
effectively, particularly in cluttered or visually challenging maritime conditions.

Improving the training dataset remains an essential step towards developing more robust and generalisable
models. Collecting additional data with a broader variety of scenes, weather conditions, traffic scenarios, and
greater distance diversity would enhance the model’s ability to generalise to different operational environments. In
particular, covering a wider range of distances would enable stratified performance evaluation at finer intervals,
supporting a more precise understanding of how to adjust dynamic frustum enlargement. Addressing the current
imbalance by significantly increasing the proportion of moving objects is crucial for improving motion estimation
and velocity prediction accuracy. Expanding the dataset to cover multiple object classes would enable more fine-
grained detection, which is important for safe navigation in complex port areas. Furthermore, embedding velocity
information and RCS directly into the radar data would provide more informative features for radar association
and fusion. A richer and more balanced dataset would also support systematic determination of optimal frustum
enlargement parameters for different depth intervals, allowing more precise radar—camera fusion across a wide range
of distances.

Finally, the effect of dynamic uncertainty scaling on far-range ATE should be studied in greater detail. Analysing
how increased predicted uncertainty influences localisation at long distances could help optimise depth-adaptive
frustum strategies.

By pursuing these research directions, future work can build upon the current framework to develop a more
flexible, reliable, and generalisable multi-modal detection system, thereby improving situational awareness and
operational safety for autonomous surface vessels in complex maritime environments.
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Appendix

A.1 Algorithms

Algorithm 1 Radar image to pseudo point cloud conversion

1: procedure RADARTOPOINTCLOUD(radar_img)
2: img < load_grayscale(radar_img)

3 center < image center

4 img < blacken circular region around center
5: blobs < connected components in img

6 for all blob € blobs do

7 centroid < mean(blob)

8 blob_size < size(blob)

9 has_white < any(pizel = 255)

10: for all pizel € blob do

11: if random() < chance_of_being_chosen(pizel, blob_size, centroid, has_white) then
12: if check_distance_to_existing_points(pizel) then

13: intensity < pixel intensity or local average

14: rcs < estimate RCS from intensity and blob size

15: (x,y) + pixel-to-metric-coords(pizel, center)

16: add (z,y,0,rcs) to point cloud

17: end if

18: end if

19: end for

20: end for

21: return formatted point cloud with z,y, z, rcs, and empty fields for nuScenes format

22: end procedure
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Algorithm 2 Radar-point fusion using a bivariate Gaussian distribution

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

21:
22:
23:
24:
25:
26:

procedure GAUSSIANFUSEDPOINT(pc_dep, bbox, dep, dist_thresh, nonzero_inds, opt)

(hoidxs, w_idzs) < nonzero_inds
values < pc_dep[h_idzs, w_idxs)]
valid < (values < dep + dist_thresh) A (values > max(0, dep — dist_thresh))
if sum(valid) < 1 then
return 0.0
end if
values < values|valid]
xs + w_idzs[valid]
coords «+ stack(zs, values)
mean_x < w
mean_z < dep
mean < [mean_x, mean_z|
w  bbox[2] — bbox|[0]
if opt has gaussian_cov_scale then
o < opt.gaussian_cov_scale
else
a<+ 0.1
end if

COV <—

a - w? 0

0 - (2 - dist_thresh)?

inv_cov < inverse(cov)

dif f < coords — mean

exponent < —0.5 - sum(dif f - inv_cov - dif f)
weights < exp(exponent)

weights < weights/(sum(weights) + 1le—6)
return sum(values - weights)

27: end procedure
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A.2 Extra results

Figure A.2.1 provides comprehensive ground truth data for two representative samples from the validation set. The

left column corresponds to sample 1, and the right column to sample 2. Each column shows, from top to bottom,

the raw camera image without annotations, the same camera image with ground truth 3D bounding boxes projected

onto it, and the corresponding BEV representation with point cloud data and annotated objects. These examples
serve as a consistent reference for visually assessing the quality of the detection results presented in the subsequent

sections of this appendix for all experiments.
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shows sample 2. Each column includes (from top to bottom) the raw camera image, the annotated camera image

Figure A.2.1: Qualitative ground truth data for two scenarios: the left column shows sample 1 and the right column
with ground truth 3D bounding boxes, and the corresponding BEV with point cloud and annotations.
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A.2.1 Experiment 1

Predictions using baseline enlargement

—

BEV max range: 342.5 T,

BEV mox range: 3425 -,

Figure A.2.2: Qualitative detection results on sample 1 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under e = 0 and 6 = 0. Each row shows the camera
view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.
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Figure A.2.3: Qualitative detection results on sample 2 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under e = 0 and 6 = 0. Each row shows the camera
view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.

Click here to jump back to Table A.2.1.
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Predictions using mild enlargement

BEV max range: 342.5 -, -

BEV max range: 342.5 -, -

BEV mox range: 342.5

BEV max range: 342.5

Figure A.2.4: Qualitative detection results on sample 1 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under € = 0.5 and § = 1. Each row shows the
camera view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.
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Figure A.2.5: Qualitative detection results on sample 2 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under € = 0.5 and § = 1. Each row shows the
camera view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.

Click here to jump back to Table A.2.2.
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Predictions using moderate enlargement

BEV max range: 342.5 -, -

BEV max range: 342.5 -, -

- R
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BEV mox range: 342.5

BEV max range: 342.5

Figure A.2.6: Qualitative detection results on sample 1 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under € = 2 and 6 = 3. Each row shows the camera
view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.
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Figure A.2.7: Qualitative detection results on sample 2 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under e = 2 and 6 = 3. Each row shows the camera
view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.

Click here to jump back to Table A.2.3.
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Predictions using strong enlargement

BEV max range: 342.5 -, -

BEV max range: 342.5 -, -

BEV mox range: 342.5

BEV max range: 342.5

Figure A.2.8: Qualitative detection results on sample 1 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under € = 5 and 6 = 8. Each row shows the camera
view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.

56



Figure A.2.9: Qualitative detection results on sample 2 for CenterFusion (first row), GaussianFusion (second row),
CenterFusion++ (third row), and GaussianFusion++ (last row) under e = 5 and 6 = 8. Each row shows the camera
view (left) and the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.

Click here to jump back to Table A.2.4.
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Tables of aggregated results

Table A.2.1 shows the aggregated performance metrics for all four models without any frustum enlargement (e =
0, 6 = 0). In this setting, GaussianFusion++ achieves the highest mAP and NDS as well as the lowest ASE.
CenterFusion++ achieves the lowest ATE, while CenterFusion and GaussianFusion achieve the lowest AOE and
AVE, respectively. Graphical representations of these results can be found in Figures A.2.2 and A.2.3.

Table A.2.1: Aggregated performance metrics for all four models with static frustum parameters e = 0 and § = 0.

Model mAP 1 ATE | ASE | AOE | AVE | NDS ¢t
CenterFusion 0.4164 41.5052 0.4373 0.5304 0.3308 0.5761
+ 0.0087 + 2.1905 + 0.0052 + 0.0894 + 0.0231 + 0.0048
GaussianFusion 0.4068 36.6838 0.4415 0.6838 0.3248 0.5708
+ 0.0061 + 2.3324 + 0.0178 + 0.0709 + 0.0357 + 0.0045
CenterFusion++ 0.3978 34.9797 0.3790 0.6881 0.3894 0.5752
+ 0.0186 + 0.4250 + 0.0049 + 0.0436 + 0.0173 + 0.0085
GaussianFusion+-4 0.4276 35.7586 0.3527 0.7614 0.3372 0.5902
+ 0.0467 + 0.4400 + 0.0066 + 0.1339 + 0.0344 + 0.0182

Table A.2.2 shows the aggregated performance metrics for all four models with mild frustum enlargement

(e = 0.5, 0 = 1). In this configuration, GaussianFusion++ achieves the highest mAP, and the lowest ASE and
AVE. CenterFusion++ achieves the highest NDS, and the lowest ATE and AOE. Graphical representations of
these results can be found in Figures A.2.4 and A.2.5.

Table A.2.2: Aggregated performance metrics for all four models with static frustum parameters e = 0.5 and 6 = 1.

Model mAP 1 ATE | ASE | AOE | AVE | NDS ¢t
CenterFusion 0.4084 40.3542 0.4474 0.7080 0.3614 0.5649
+ 0.0114 + 1.8636 + 0.0178 + 0.0812 + 0.0265 + 0.0040
GaussianFusion 0.4122 32.5332 0.4168 0.6058 0.4162 0.5837
+ 0.0156 + 3.8991 + 0.0070 + 0.1016 + 0.0847 + 0.0187
CenterFusion++ 0.4113 29.0912 0.3700 0.5920 0.3641 0.5946
+ 0.0229 + 2.5761 + 0.0282 + 0.0095 + 0.0325 + 0.0183
GaussianFusion++ 0.4156 34.8968 0.3676 0.6078 0.3395 0.5895
+ 0.0025 + 3.5184 + 0.0209 + 0.0018 + 0.0104 + 0.0082

Table A.2.3 displays the aggregated metrics for all four models with moderate frustum enlargement (e = 2,

4 = 3). In this setting, CenterFusion reaches the highest mAP, and the lowest AOE and AVE. GaussianFusion
achieves the highest NDS. GaussianFusion++ achieves the lowest ATE and ASE. Graphical representations of
these results can be found in Figures A.2.6 and A.2.7.

Table A.2.3: Aggregated performance metrics for all four models with static frustum parameters e = 2 and § = 3.

Model mAP 1 ATE | ASE | AOE | AVE | NDS 1t
CenterFusion 0.4104 40.1490 0.4364 0.5802 0.3408 0.5728
+ 0.0120 + 5.1830 + 0.0162 + 0.0189 + 0.0137 + 0.0034
GaussianFusion 0.4100 33.8420 0.4251 0.6782 0.3727 0.5776
+ 0.0074 + 1.2236 + 0.0298 + 0.0898 + 0.0004 + 0.0051
CenterFusion++ 0.3904 39.2856 0.3742 0.5936 0.3620 0.5709
+ 0.0045 + 5.6265 + 0.0015 + 0.0391 + 0.0679 4+ 0.0057
GaussianFusion+-4 0.3903 33.5362 0.3668 0.7316 0.3585 0.5735
+ 0.0020 + 3.9145 + 0.0304 + 0.0297 + 0.0088 + 0.0091

Table A.2.4 presents the aggregated performance metrics for all four models with strong frustum enlargement

(e =5, 6 = 8). CenterFusion++ shows the highest mAP and the highest NDS in this configuration. GaussianFu-
sion++ achieves the lowest ATE, ASE, AOE, and AVE. Graphical representations of these results can be found in
Figures A.2.8 and A.2.9.
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Table A.2.4: Aggregated performance metrics for all four models with static frustum parameters e = 5 and § = 8.

Model | mAP 1 ATE | ASE | AOE | AVE | NDS ¢t
CenterFusion 0.4041 41.3911 0.3943 0.6610 0.4036 0.5694
+ 0.0068 + 4.2547 + 0.0113 + 0.1310 + 0.0688 + 0.0094
GaussianFusion 0.4030 36.4467 0.4132 0.6811 0.3513 0.5726
+ 0.0073 + 0.0804 + 0.0120 + 0.0283 + 0.0038 + 0.0062
CenterFusion++ 0.4342 37.9459 0.3764 0.6922 0.3244 0.5908
+ 0.0147 + 1.0767 + 0.0107 + 0.0221 + 0.0148 + 0.0036
GaussianFusion++ 0.4092 33.5373 0.3590 0.6580 0.3154 0.5874
+ 0.0546 + 0.3370 + 0.0046 + 0.0902 + 0.0388 + 0.0252

The results presented in Tables A.2.1 to A.2.4 are visualised as histograms in Figures 6.1 and 6.2 in Experiment
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Stratified AOE results

Table A.2.5: Stratified AOE of all four models under different static frustum enlargement settings. Metrics are
stratified by distance: near (< 100m), mid (100-250m), and far (> 250 m).

€ ) | CenterFusion AOE | | GaussianFusion AOE | | CenterFusion++ AOE | | GaussianFusion++ AOE |
| Near Mid Far | Near Mid Far | Near Mid Far | Near Mid Far

0.0 0.0 0.5612 0.4618 0.5874 0.7607 0.5284 0.7931 0.6530 0.7267 0.6826 0.7691 0.7632 0.7472
+ + + + + + + + + + + +

0.1624 0.0414 0.0622 0.1191 0.0545 0.0396 0.0040 0.0670 0.0646 0.0365 0.1768 0.2134
0.5 1.0 0.7082 0.6671 0.7666 0.7256 0.5424  0.5294 0.5589 0.5713 0.6655 0.5893 0.5966 0.6488
+ + + + + + + + + + + +
0.0248 0.0911 0.1539 0.0886 0.1404 0.0897 0.0106 0.0341 0.0957 0.0214 0.0029 0.0177
2.0 3.0 | 0.4978 0.5957 0.6566 0.6769 0.5763 0.8218 0.5549 0.6324 0.5976 0.6279 0.8053 0.7772
+ + + + + + + + + + + +
0.0073 0.1879 0.2125 0.0404 0.1670 0.0626 0.1394 0.0144 0.0641 0.0604 0.1059 0.0507
5.0 8.0 0.6518 0.6637 0.6730 0.7934 0.5692 0.6836 0.6680 0.6638 0.7670 0.5885 0.6877 0.7190
+ + + + + + + + + + + +
0.0637 0.2773 0.1966 0.1119 0.0578 0.1269 0.1597 0.0610 0.0595 0.0523 0.1144 0.1136

Experiment 1: Stratified AOE for Baseline enlargement Experiment 1: Stratified AOE for Mild enlargement
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Figure A.2.10: Stratified AOE results for CenterFusion, GaussianFusion, CenterFusion++, and GaussianFusion++
under different static frustum enlargement configurations (Baseline, Mild, Moderate, Strong). Each plot shows the
AOE grouped by depth ranges: 0-100m, 100-250 m, and beyond 250 m.

Click here to jump back to Experiment 1.
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Stratified AVE results

Table A.2.6: Stratified AVE of all four models under different static frustum enlargement settings. Metrics are
stratified by distance: near (< 100m), mid (100-250m), and far (> 250 m).

€ ) | CenterFusion AVE | | GaussianFusion AVE | | CenterFusion++ AVE | | GaussianFusion++ AVE |
| Near Mid Far | Near Mid Far | Near Mid Far | Near Mid Far
0.0 0.0 0.1250 0.2780 0.7090 0.1268 0.3077 0.6265 0.1899 0.4090 0.6357 0.1698 0.3244 0.5914
+ + + + + + + + + + + +

0.0506 0.0030 0.1944 0.0658 0.0103 0.0338 0.0272 0.0230 0.0555 0.0002 0.0372 0.1839
0.5 1.0 | 0.1524 0.2999 0.7688 0.2037 0.3502 0.7953 0.1700 0.3666 0.6402 0.1761 0.3682 0.5380
+ + + + + + + + + + + +
0.0091 0.0123 0.1143 0.0414 0.0822 0.1014 0.0090 0.0414 0.0499 0.0133 0.0180 0.0303
2.0 3.0 | 0.1556 0.2978 0.6638 0.1596 0.2981 0.7844 0.1716 0.3580 0.6188 0.2015 0.3840 0.5463
+ + + + + + + + + + + +
0.0122 0.0214 0.0532 0.0624 0.0076 0.1193 0.0042 0.1760 0.0296 0.0240 0.0148 0.0120
5.0 8.0 0.1748 0.3396 0.7750 0.1574 0.2992 0.6874 0.1371 0.2781 0.6611 0.1482 0.2942 0.5880
+ + + + + + + + + + + +
0.0528 0.0490 0.1013 0.0319 0.0141 0.0356 0.0332 0.0018 0.0195 0.0010 0.0202 0.1194

Experiment 1: Stratified AVE for Baseline enlargement Experiment 1: Stratified AVE for Mild enlargement
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Figure A.2.11: Stratified AVE results for CenterFusion, GaussianFusion, CenterFusion++-, and GaussianFusion++
under different static frustum enlargement configurations (Baseline, Mild, Moderate, Strong). Each plot shows the
AVE grouped by depth ranges: 0-100m, 100-250 m, and beyond 250 m.

Click here to jump back to Experiment 1.
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A.2.2 Experiment 2

Predictions using dynamic frustum enlargement

BEV mox ronge: 342.5 n

BEV max range: 342.5 -,

BEV mox range: 3425 -,

Figure A.2.12: Qualitative detection results on sample 1 for CenterFusion (first row), GaussianFusion (second
row), CenterFusion++ (third row), and GaussianFusion++ (last row) under dynamic frustum enlargement using
€base = 0.5, Opase = 1, and k = 5 x 1075, Each row shows the camera view (left) and the corresponding BEV (right).
Refer to Figure A.2.1 for the ground truth annotations.
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Figure A.2.13: Qualitative detection results on sample 2 for CenterFusion (first row), GaussianFusion (second
row), CenterFusion++ (third row), and GaussianFusion++ (last row) under dynamic frustum enlargement using
€base = 0.5, Opase = 1, and k = 5 x 1075, Each row shows the camera view (left) and the corresponding BEV (right).
Refer to Figure A.2.1 for the ground truth annotations.

Click here to jump back to Table 5.5.
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Histograms of aggregated results
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Figure A.2.14: Aggregated performance metrics (mAP, NDS, ATE, ASE, AOE, AVE) under dynamic frustum

enlargement using €pqse = 0.5, dpase = 1, and k = 5 x 1076,

GaussianFusion, CenterFusion++, and GaussianFusion++.

Click here to jump back to Table 5.5.
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Histograms of stratified results

Experiment 2: Stratified ATE for Dynamic enlargement
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Figure A.2.15: Stratified metrics (ATE, ASE, AOE, AVE) for CenterFusion, GaussianFusion, CenterFusion++,
and GaussianFusion++ under dynamic frustum enlargement using €pqse = 0.5, dpase = 1, and k = 5 x 1076, Each
plot shows results grouped by depth ranges: 0-100m, 100-250 m, and beyond 250 m.

Click here to jump back to Table 5.6.
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A.2.3 Experiment 3

Predictions using different uncertainty scaling («)

BEV mox ronge: 342.5 n

BEV max range: 342.5 T,

Figure A.2.16: Qualitative detection results on sample 1 for GaussianFusion under different uncertainty scale factors:
a = 0.1 (top row), a = 0.05 (middle row), and a = 0.2 (bottom row). Each row shows the camera view (left) and
the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.
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Figure A.2.17: Qualitative detection results on sample 2 for GaussianFusion under different uncertainty scale factors:
a = 0.1 (top row), a = 0.05 (middle row), and a = 0.2 (bottom row). Each row shows the camera view (left) and
the corresponding BEV (right). Refer to Figure A.2.1 for the ground truth annotations.

Click here to jump back to Table 5.11.
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Histograms of aggregated results
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Figure A.2.18: Aggregated performance metrics (mAP, NDS, ATE, ASE, AOE, AVE) for GaussianFusion under
different uncertainty scale factors () in Experiment 3. Each subplot visualises the trend for a = 0.05, a = 0.1,
and a = 0.2.

Click here to jump back to Table 5.11.
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Histograms of stratified results
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Figure A.2.19: Stratified metrics (ATE, ASE, AOE, AVE) for GaussianFusion under different uncertainty scale
factors (a) in Experiment 3. Each plot shows results grouped by depth ranges: 0-100m, 100-250 m, and beyond
250 m.

Click here to jump back to Table 5.12.
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A.2.4 Experiment 4

Predictions for RGPNet variants

Figure A.2.20: Qualitative detection results on sample 1 for RGPNet-A (top row) and RGPNet-B (bottom row)
under dynamic frustum enlargement. Each row shows the camera view (left) and the corresponding BEV (right).
Refer to Figure A.2.1 for the ground truth annotations.
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Figure A.2.21: Qualitative detection results on sample 2 for RGPNet-A (top row) and RGPNet-B (bottom row)
under dynamic frustum enlargement. Each row shows the camera view (left) and the corresponding BEV (right).
Refer to Figure A.2.1 for the ground truth annotations.

Click here to jump back to Table 5.13.
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Histograms of aggregated results
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Click here to jump back to Table 5.13.
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Figure A.2.23: Stratified metrics (ATE, ASE, AOE, AVE) for RGPNet-A and RGPNet-B under dynamic frustum
enlargement in Experiment 4. Each plot shows results grouped by depth ranges: 0—100 m, 100-250 m, and beyond

250 m.

Click here to jump back to Table 5.14.
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