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2 1. Introduction

1.1. Background
Soil slopes under seepage are common geotechnical structures, such as embank-
ments, dikes, and dams. The stability of such slopes is of great concern to engineers
due to the high potential consequences of failure. Examples include the Juvre dike
breach after a storm surge in Denmark in 1999, and the failure of a peat dike in
Wilnis in the Netherlands in 2003 (Van Baars, 2005) (see Figure 1.1).

(a) (b)

Figure 1.1: Soil slope failures: (a) Juvre dike breach; (b) peat dike failure in Wilnis.

A variety of analysis methods have been developed, initially utilising a factor of
safety (FOS) to define the ratio between the resistance and de-stabilising forces.
Popular methods used to calculate the FOS include the limit equilibrium method
(LEM) and the finite element method (FEM). The LEM approach includes the Fel-
lenius, Bishop, Janbu, Morgenstern–Price, Spencer and Sarma methods. These
approaches divide the soil above the slip surface into a number of slices and con-
sider the force equilibrium in the sliding area, such as forces along the slip surface
and between the slices. Based on different assumptions regarding both the forces
between the slices and the shape of the slip surface, the different approaches were
formulated. For example, the Fellenius method assumes that the slip surface is
circular and there are no inter-slice forces, whereas the Bishop method does take
some account (albeit simplified) of inter-slice forces. The other four methods deal
with non-circular slip surfaces. The FEM approach discretizes the slope domain into
small elements and calculates the stress–strain behaviour in order to investigate
the slope behaviour. FEM can search for the critical slip surface without assuming
its shape in advance, and often follows one of two approaches. One method is
to increase the gravity load (Chen and Mizuno, 1990) and the second approach is
to reduce the strength characteristics of the soil mass, i.e. the strength reduction
method (SRM) (Matsui and San, 1992).

More recently, probabilistic analyses have been used, which utilise the uncer-
tainty in soil property values to determine the probability of failure. Due to the
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natural variability of soils, slopes do fail occasionally, even when the FOS had pre-
viously been calculated to be greater than 1.0. To better reflect the uncertainty
in the slope stability, the reliability index has been proposed, due to it being able
to incorporate the variability of soil parameters. Probabilistic methods range from
simplified methods, such as the first order reliability method (FORM) and point es-
timate method (PEM), to more complex and accurate methods such as the Monte
Carlo method (MCM).

In the probabilistic analysis of slope stability, the precision depends on the es-
timation of the uncertainty existing in the soil parameters. Normally, the variation
in a soil parameter is characterised by a distribution, e.g. normal, log-normal or
Gamma. This distribution is generally based on limited field or laboratory tests of
soil parameters. However, these distributions only provide a general description of
the variation of the soil, e.g. the mean and standard deviation of the soil parame-
ters.

Using probabilistic analyses with given distributions, wide ranges of possible
outcomes are often encountered. In order to narrow down the range, researchers
have found that the local variability, i.e. the spatial correlation of property values,
and the observation of the performance of geotechnical structures can be used.
Indeed, inverse analysis can be considered as a way to reduce the uncertainty in
the stability analysis of a slope under seepage. This thesis investigates this aspect,
with the aim to reduce uncertainty in the behaviour of existing structures.

1.2. Motivation
Accurate prediction of the slope stability for existing structures is important to help
investors protect assets. Currently, the estimation of soil parameters mainly de-
pends on field or laboratory tests. However, there are many in-situ monitoring
devices installed in the field and observations of a structure’s behaviour can be
utilised to improve the estimation of soil parameters, as well as the prediction of a
structure’s behaviour.

Additional complexity in the hydro-mechanical behaviour may also impact the
calculated stability. For example, the hysteresis in the water retention behaviour of
unsaturated soils has a significant impact on the seepage results, i.e. the suc-
tion/pore water pressure, which, in turn, affects the analysis of slope stability.
Therefore, it is essential to incorporate the complex water retention behaviour.

1.3. Aims and objectives
The overall aim of this thesis is to reduce the uncertainty that exists in the stabil-
ity analysis of a slope under seepage. The thesis considers three different ways
to achieve this. One way is to use the hydraulic measurements of geotechnical
projects to improve the estimation of hydraulic parameters. A second way is to
cross-correlate the hydraulic and mechanical parameters so that it can reduce the
uncertainty of strength parameters. The third way is to improve the simulation of
the hydraulic behaviour of unsaturated soils.

In order to achieve the above objectives, the following tasks have been defined:
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• To propose a framework which links the stochastic analysis of seepage and
slope stability with a method of data assimilation, i.e. the ensemble Kalman
filter (EnKF) in this thesis;

• To implement the governing equation of steady state saturated or transient
saturated–unsaturated seepage, considering the spatial variability of hydraulic
parameters, and the EnKF within a finite element code;

• To cross-correlate the hydraulic and mechanical parameters in order to reduce
the uncertainty of strength parameters based on the improved estimation of
hydraulic parameters;

• To investigate the proposed framework for an embankment experiencing both
steady state and transient seepage;

• To incorporate the effect of hysteresis in the soil water retention curve (SWRC)
into saturated–unsaturated seepage and combine the hysteretic effect with
the spatial variability of hydraulic parameters.

1.4. Outline of the thesis
The thesis contains the following chapters:

Chapter 2 reviews the relevant literature. In this chapter, the variability of soil
parameters, specifically hydraulic conductivity, is reviewed, and the cross-correlatio-
ns between different soil parameters is discussed. Then, previous research on the
stochastic analysis of slope stability under seepage is investigated. Finally, the
methods used for data assimilation (or inverse analysis) in geotechnical engineering
are reviewed.

Chapter 3 proposes a framework which first utilises hydraulic measurements
to reduce the uncertainty in the estimation of hydraulic parameters via inverse
analysis using the ensemble Kalman filter (EnKF). Then, the improved estimation
of hydraulic parameters is used to improve the mechanical parameters based on
a cross-correlation between them. Finally, after reducing the uncertainty in the
soil parameters, the impact on slope stability analyses has been investigated. The
proposed framework is investigated for an embankment under saturated steady
state seepage.

Chapter 4 applies the proposed framework presented in Chapter 3 to an em-
bankment under saturated–unsaturated transient seepage. In the transient seep-
age process, the EnKF is again used to improve performance. Additionally, the
influence of the spatial continuity (scale of fluctuation) and the initial estimation of
soil parameters has been investigated.

Chapter 5 aims to improve the accuracy in the stability analysis of slopes under
stochastic seepage by taking a more detailed account of unsaturated soil behaviour.
Specifically, the water retention behaviour is modelled more realistically than in pre-
vious research by considering the hysteretic effect in the water retention behaviour
(represented by the soil water retention curve (SWRC)).
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Chapter 6 presents a probabilistic analysis of the water velocity distribution in
an earth embankment under saturated stochastic seepage, considering the spatial
variability of the hydraulic conductivity. The influence of the velocity distribution is
discussed in relation to the piping failure mechanism.

Chapter 7 presents an overview and the conclusions of the thesis, as well as
several recommendations for future research.
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8 2. Literature Review

2.1. Introduction
This chapter provides a critical overview of literature related to the thesis and is
divided into three main sections. Section 2.2 describes the stochastic analysis of
seepage and slope stability. In Section 2.3, the cross-correlation between different
soil parameters is presented. Inverse analysis methods applied in geotechnical
engineering are reviewed in Section 2.4. The last section, i.e. Section 2.5, provides
some concluding comments on the reviewed work.

In this chapter, the reviewed literature is a general introduction to soil variability
and the numerical methods which are used in the thesis. In the following chapters
additional literature is reviewed, specific to the subject of that chapter. Hence, in
Chapters 3 and 4, literature on reliability methods used in geotechnical applica-
tions is reviewed, including the impact of spatial variability. Additionally, types of
inverse analysis and data assimilation are introduced. In Chapter 5 literature on
the hysteresis observed in soil water retention behaviour is reviewed, with a par-
ticular emphasis on the impact on slope stability. Chapter 6 gives a review of the
assessment of piping.

2.2. Soil variability
Natural soils have long been recognised as heterogeneous materials (Lumb, 1966;
DeGroot and Baecher, 1993). Therefore, the soil property values are spatially ran-
dom variables, which means they are different at different locations. A statistical
description, i.e. probability density function (PDF), can be used to characterise the
pointwise variability of the soil property values. In the PDF, 𝜇 and 𝜎 are the mean
and standard deviation, respectively. The coefficient of variation (𝐶𝑂𝑉), which de-
scribes the dispersion of the variable, is defined as

𝐶𝑂𝑉 = 𝜎
𝜇 (2.1)

2.2.1. Spatial variability of hydraulic conductivity
For hydraulic conductivity, 𝑘, the mean, 𝜇፤, mainly depends on the soil type or
composition. Table 2.1 presents mean values of hydraulic conductivity presented
in the literature.

Nielsen et al. (1973) reported that the 𝐶𝑂𝑉 of hydraulic conductivity of soil
varied from 0.9 to 1.0 and indicated that the distribution of hydraulic conductivity
was log-normal. Carsel and Parrish (1988) investigated the 𝐶𝑂𝑉 of different types
of soil. They found that the 𝐶𝑂𝑉 increased from sand to clay, i.e. 𝐶𝑂𝑉 = 0.524
for a sand and 𝐶𝑂𝑉 = 4.533 for a silty clay. They also found that the distribution
of hydraulic conductivity was log-normal. Rayne et al. (1996) reported the 𝐶𝑂𝑉 of
hydraulic conductivity to be 62.1%, 66% and 43.6% for a sand till by using slug
tests, bail tests and pumping tests, respectively. Gupta et al. (2006) found the 𝐶𝑂𝑉
of a sandy loam to be 111.3% and 109% by using a double ring infiltrometer and
Guelph permeameter, respectively, with the hydraulic conductivity generally being
log-normally distributed. Duncan (2000) reported the 𝐶𝑂𝑉 of hydraulic conductivity
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of saturated clay to be 68–90% and Zhu et al. (2013) gave a range of 𝐶𝑂𝑉 for sand
of 60–100%.

In addition to the mean and coefficient of variation of a soil parameter (e.g. hy-
draulic conductivity), the scale of fluctuation (SOF) is essential to characterise the
spatial nature of the variability. The SOF is defined as the distance within which the
soil property values of two points are significantly correlated. Hence, when the SOF
is much larger than the size of the structure, for example, there is little variation
in the soil property values within the structure. There is only a limited literature
relating to the values of SOF. Phoon and Kulhawy (1999) reported that the vertical
SOF could be from 1 m to 6 m, whereas the horizontal SOF could typically be within
a range of 40–60 m. El-Ramly et al. (2003) reported values of autocorrelation dis-
tance of 10–40 m in the horizontal direction and 1–3 m in the vertical direction. The
SOF and autocorrelation distance are similar in concept, but the SOF is 2 times the
autocorrelation distance for the exponential autocovariance function. Hence, the
values of El-Ramly et al. (2003) were consistent with Phoon and Kulhawy (1999) af-
ter being transformed into SOF. Hicks and Samy (2002a) suggested that the vertical
SOF could be 0.3–3 m and that the degree of anisotropy of the heterogeneity, i.e.
the ratio of horizontal to vertical SOFs, is typically greater than 10. Cho and Park
(2010) indicated that the ratio of the correlation distance in the vertical direction to
that in the horizontal direction was in the range of 1 to 10, and was mainly due to
the geological soil formation process. Firouzianbandpey et al. (2014) studied a sand
layer deposit in Denmark and found that the vertical correlation length was two to
seven times shorter than that in the horizontal direction. In the vertical direction,
the spatial correlation lengths were estimated to be from 0.2 m to 0.5 m.

2.2.2. Cross-correlation between soil parameters
Geotechnical parameters are not always independent of each other and there may
be a strong interdependence between stochastic variables (Nguyen and Chowd-
hury, 1985). Figure 2.1 shows the influence of different correlation coefficients
between two stochastic variables on the distribution of parameters. The correlation
coefficient between two variables is defined as:

𝜌ፗ,ፘ =
𝐶𝑂𝑉(𝑋, 𝑌)
𝜎ፗ𝜎ፘ

= E[(𝑋 − 𝑋)(𝑌 − 𝑌)]
𝜎ፗ𝜎ፘ

(2.2)

where 𝑋 and 𝑌 are the variables, −1 ≤ 𝜌ፗ,ፘ ≤ 1 is the correlation coefficient,
𝐶𝑂𝑉(𝑋, 𝑌) is the covariance of the two variables, and 𝜎ፗ and 𝜎ፘ are the standard
deviation of 𝑋 and 𝑌, respectively. If 𝜌ፗ,ፘ > 0, the variable 𝑌 increases with an
increase in 𝑋. Conversely, if 𝜌ፗ,ፘ < 0, the variable 𝑌 decreases with an increase in
𝑋.

Previous literature mainly considered cross-correlated strength parameters or
hydraulic parameters separately. The effect of the cross-correlation between streng-
th and hydraulic parameters is seldomly investigated (an exception being Arnold and
Hicks (2011)). However, although there is no literature directly showing the cross-
correlation between strength and hydraulic parameters, many studies have implied
its existence.
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Figure 2.1: Different correlation coefficients between two variables (Phoon and Ching, 2014).

Hydraulic parameters are generally considered to be correlated to porosity or
plastic/liquid limit. The well-known Kozeny–Carman equation (Carman, 1937) cor-
relates the saturated hydraulic conductivity with porosity and particle size, and has
been widely applied in research, such as in Le et al. (2015). The equation defines
a relationship in which the hydraulic conductivity increases with increasing porosity
and increasing particle size. Vallejo and Mawby (2000) investigated the influence
of porosity and particle size on the shear strength of granular mixtures and found
that the porosity of the mixture has a strong influence on the shear strength, with
the peak shear strength generally correlating to the minimum porosity. Bartetzko
and Kopf (2007) studied the undrained shear strength and porosity versus depth
relationships of marine sediments. While a spread of results was noted, most field
tests exhibited an increase in shear strength with depth and a decrease in poros-
ity, that is, the porosity and shear strength were negatively correlated. Moreover,
the effect of particle size was also studied; it was shown that the shear strength,
in terms of the coefficient of friction, increased with an increase in quartz content
(and a decrease in clay content). Thevanayagam (1998) investigated the effects of
particle size and void ratio on the undrained shear strength, finding that, in general,
with a lower porosity the shear strength increased. The mixture of particle sizes
influenced the shear strength in a more complex way, with high proportions of a
certain constituent particle size dominating the behaviour, alongside a dependence
on density and confining pressure.

Deng et al. (2011) proposed an improved method to estimate the hydraulic con-
ductivity of Boom Clay, by using an empirical relationship incorporating void ratio
and liquid limit. Holtz and Krizek (1971) studied some triaxial test data and built
two correlation matrices for several soil parameters including the liquid limit, cohe-
sion and friction angle. The correlation matrices contained correlation coefficients
between pairs of different variables, i.e.

𝜌 =
⎡
⎢
⎢
⎣

1 𝜌፱,፲ ⋯ 𝜌፱,፳
𝜌፱,፲ 1 ⋯ 𝜌፲,፳
⋮ ⋮ ⋱ ⋮
𝜌፱,፳ 𝜌፲,፳ ⋯ 1

⎤
⎥
⎥
⎦

(2.3)

Holtz and Krizek (1971) reported that both cohesion and friction are negatively
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correlated to the liquid limit. Ching and Phoon (2014) pointed out that the liquid
limit was correlated with undrained shear strength. Vardanega and Haigh (2014)
indicated that the undrained shear strength is negatively correlated to the liquidity
index, which is a function of the liquid index and plastic index.

Overall, the literature implies that when the porosity decreases, the hydraulic
conductivity decreases as well. Moreover, the decreased porosity causes a friction
angle increase (Bjerrum et al., 1961). A cross-correlation between cohesion and
saturated hydraulic conductivity has also been shown to exist for specific soils, al-
though the coefficient can be either negative or positive. Therefore, it is reasonable
to assume that the effective shear strength variables, 𝑐ᖤ and 𝜙ᖤ , and the hydraulic
parameters can be cross-correlated. However, the correlation properties will de-
pend on how the variation of a soil in a certain locale depends upon the particle
size and/or porosity distributions.

2.3. Stochastic analysis
2.3.1. Stochastic analysis of seepage
The concept of stochastic analysis of seepage has emerged since the 1960s (Warren
and Price, 1961; McMillan, 1966; Freeze, 1975; Gelhar, 1976; Bakr et al., 1978;
Tang and Pinder, 1977). Researchers have employed different methods to deal with
seepage behavior, including spectral analysis, numerical solution of the stochastic
flow equation and the MCM.

Stochastic analysis of seepage requires a representation of the spatial variabil-
ity of the hydraulic conductivity. In early research, stochastic seepage analyses
were undertaken assuming that the hydraulic conductivity in adjacent elements or
blocks were independent (Freeze, 1975). However, the generated heterogeneous
field of hydraulic conductivity was not realistic because soil parameters are inher-
ently correlated in space due to natural depositional processes or to construction
techniques. Bakr et al. (1978) and Smith and Freeze (1979a,b) started to account
for the spatial correlation of hydraulic conductivity. They utilised random fields to
model the spatial variability of soil parameters; such a field is filled with stochas-
tic values of a soil parameter following a specific distribution, with the values at
different locations being variable and correlated. The random fields of hydraulic
conductivity were generated by both the Fourier–Stieltjes representation and the
nearest-neighbor stochastic process model. Vanmarcke (1977) proposed local av-
erage theory and Fenton and Vanmarcke (1990) developed the Local Average Sub-
division (LAS) method to simulate spatially correlated random fields. An advantage
of LAS is that it is compatible with FEM and can be easily implemented in a FEM
program, as the values of each block generated by the LAS can fit in the elements
of the FEM.

Griffiths and Fenton (1993) applied LAS to a water retaining structure overlying
a heterogeneous foundation. This was the first use of LAS in a stochastic seep-
age analysis. They used it to generate spatially correlated random fields, and used
FEM with MCM to study the statistics of the flow rate, exit gradient and uplift pres-
sure. They also compared the stochastic results with deterministic results. The
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results indicated that three quantities (i.e. the flow rate, exit gradient and uplift
pressure) were significantly affected by the heterogeneity of hydraulic conductiv-
ity, i.e. by its standard deviation and spatial correlation. In addition to LAS, there
are various methods to generate random fields, such as the turning bands method
(TBM) (Matheron, 1973), fast Fourier transform (FFT) method (Cooley and Tukey,
1965), and moving average method (Gersch and Yonemoto, 1977). Fenton (1994)
made a comparison of three of the methods, namely FFT, TBM and LAS, in terms
of their run-time and accuracy. When combining random field generators with FEM
analysis, LAS was shown to be able to produce random fields whose statistics are
consistent with the prior distribution of soil parameters. Moreover, it is ideally suited
for use with finite elements, as each local average becomes an element property;
that is, the random field can be mapped directly onto a finite element mesh. Fen-
ton and Griffiths (1996, 1997) extended their previous confined seepage analysis
to investigate an unconfined seepage problem, i.e. seepage in an earth dam. They
analysed the influence of the standard deviation and spatial correlation of hydraulic
conductivity on the free surface and flow rate. Griffiths and Fenton (1997) extended
the confined seepage investigation of Griffiths and Fenton (1993) to three dimen-
sions. Revelli and Ridolfi (2000) studied the influence of heterogeneity on the flow
in a rectangular unconfined aquifer, where the random field of hydraulic conduc-
tivity was generated by the Fourier inverse transform. The consequences on the
free surface position and on the total discharge were investigated. Ahmed (2009)
extended the work of Fenton and Griffiths (1996), regarding free surface flow in
earth dams, by introducing anisotropic heterogeneity in the analysis and used a
fixed FE mesh approach to solve the unconfined flow. Srivastava et al. (2010) used
FLAC 5.0 to analyse steady state seepage flow in a slope with a foundation layer,
and also its corresponding stability. A finite difference approach was used to solve
the flow equation and the (isotropic) hydraulic conductivity was considered as a
random variable. Moreover, the porosity and dry unit weight were related to the
hydraulic conductivity via the Kozeny–Carman equation (Carman, 1937). Therefore,
these two variables were both considered as random variables and calculated based
on hydraulic conductivity, which impacted the subsequent slope stability analysis.
Ahmed (2012) investigated steady state confined flow under a hydraulic structure
with a single sheet pile wall, extending the research of Griffiths and Fenton (1993).
The hydraulic conductivity was modelled as heterogeneous and anisotropic. The
influence of the degree of anisotropy on the hydraulic responses, i.e. the flow rate,
uplift force and exit gradient, was studied.

Gui et al. (2000) studied transient seepage in an earth dam without a foundation
layer, in which the influence of spatial variability of the hydraulic conductivity on
the seepage and slope stability were investigated. The random hydraulic conduc-
tivity was generated by TBM. Le et al. (2012) also investigated stochastic transient
seepage in an earth dam. In their paper, the porosity was considered to be a ran-
dom variable and modelled by LAS. The saturated hydraulic conductivity and the
parameter related to the suction value at which the soil starts to desaturate were
both derived from the porosity. Cho (2012) used the Karhunen–Loéve expansion to
generate two different uncorrelated random fields for an embankment and founda-
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tion. The steady state seepage in an embankment overlying a foundation layer was
studied, and the difference between one case in which a single random field was
used to simulate the embankment and foundation and another case using two ran-
dom fields was investigated. In addition, the sensitivity of the seepage behaviour
in relation to the heterogeneity of the embankment or the foundation separately
was investigated. Zhu et al. (2013) analysed a slope, which had a spatially variable
saturated hydraulic conductivity, subjected to steady state rainfall infiltration. The
random hydraulic conductivity was generated by FFT.

In the three studies of the previous paragraph, the unsaturated zone in the em-
bankment or slope was considered in the seepage analyses. It has been recognised
that the soil water retention behaviour of an unsaturated soil plays an important
role in the simulation of saturated–unsaturated seepage. In the water retention be-
haviour, hysteresis is commonly seen and the effect of hysteresis on seepage has
been investigated in several studies (Yang et al., 2012a; Wu et al., 2012; Bashir
et al., 2015). However, most of these studies are limited to homogeneous do-
mains. For example, Yang et al. (2012a) considered the effect of hysteresis in the
infiltration modelling of a 1D soil column and compared the numerical results to
experimental results done by other researchers. They found that the results with
hysteresis were closer to the experimental results.

Nakagawa et al. (2012) pointed out the importance of considering both hys-
teresis and heterogeneity in the simulation of unsaturated flow, by comparing the
numerical computation with laboratory tests. Yang et al. (2012b) studied a hetero-
geneous one-dimensional soil column in which hysteresis was considered. It was
shown that the hysteretic effect increases the uncertainty in the degree of water
infiltration downwards compared to a non-hysteretic heterogeneous case. Zhang
(2007) studied a 2D slope subjected to rainfall infiltration in which hysteresis was
considered. The author considered several hydraulic parameters used in Fredlund
and Xing’s (1994) equation for simulating the soil water retention curve, e.g. the
saturated hydraulic conductivity and the saturated volumetric water content, as
random variables, and calculated the mean and standard deviation of the FOS. It
was pointed out that the reliability of the slope was underestimated without con-
sidering the effect of hysteresis. However, in the paper, the influence of the spatial
variability of soil parameters, i.e. the SOF, was not analysed. Therefore, due to
the lack of consideration of spatial variability, the influence of modelling hysteresis
in stochastic analyses of 2D saturated–unsaturated seepage needs to be further
investigated.

2.3.2. Stochastic analysis of slope stability
By the 1970s, the emerging field of structural reliability started to influence research
in geotechnical engineering, and slope and embankment reliability analyses were
carried out. Wu and Kraft (1970) took account of uncertainties in the computation
of the failure probability of slopes designed according to conventional practice, and
studied the effect of uncertainties on the optimum design and expected cost. Tang
et al. (1976) also researched the design of slopes based on probabilistic theory.
Meanwhile, Cornell (1972), Alonso (1976) and Vanmarcke (1977) took various un-
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certainties into account and analysed their influence on slope stability uncertainty.
In Alonso’s paper, he pointed out that there were reported failures for computed
safety factors larger than 1.0, indicating that, no matter what FOS is found by
analytical means, there is always some chance of failure. For example, in a het-
erogeneous slope, the local strength parameters (cohesion and friction angle) are
different everywhere. If a weak zone is located along the slope surface, the slope
could fail through the weak zone even if the calculated FOS for the slope as a whole
is greater than 1.0. Therefore, reliability analysis was proposed as a more reason-
able way of understanding safety. In this respect, the reliability index, 𝛽, is defined
as

𝛽 = 𝜇ፅ
𝜎ፅ

(2.4)

where 𝜇ፅ and 𝜎ፅ are the mean and standard deviation of the performance function
𝐹. In slope stability analysis, the performance function can be defined as 𝐹 =
FOS − 1. When the reliability index is determined, the reliability can be calculated
according to the distribution of 𝐹. For example, if 𝐹 is normally distributed, the
reliability is 1 − Φ(−𝛽), where Φ(−𝛽) is defined as the probability of failure (i.e.
the hatched area below the curve in Figure 2.2).
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Figure 2.2: Illustration of reliability index and probability of failure (Baecher and Christian, 2005).

Over the years, several methods have been proposed to conduct probabilistic
analyses of slope stability, e.g. the First Order Second Moment (FOSM) method
(Cornell, 1969, 1970), FORM (Hasofer and Lind, 1974), PEM (Rosenblueth, 1975,
1981), Second Order Reliability Method (SORM) (Madsen, 1985) and MCM. Relia-
bility tools such as FOSM, FORM, PEM and SORM reduce the computational load
by simplifying the problem. However, arising from these simplifications, the uncer-
tainties that exist in problems are not always taken into account well. For example,
if FORM is used to calculate the probability of failure of a slope, only the mean and
standard deviation of the soil strength parameters are used. The local variability of
the strength parameters across the domain is ignored, and hence the slope is still
considered to be homogeneous. Therefore, MCM, which can take the uncertainties
of soil parameters into account more thoroughly, has often been preferred.
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Griffiths and Fenton (1993) proposed the random finite element method (RFEM),
which links together random fields, FEM and MCM, to conduct stochastic analyses
of a confined seepage problem, and Fenton and Griffiths (1996, 1997) extended
this work to an unconfined seepage problem, i.e. seepage through an earth dam.
Hicks and Samy (2002b) used RFEM to study the influence of anisotropy of the
heterogeneity and depth trends in the undrained shear strength on slope reliability.
Griffiths and Fenton (2004) analysed a cohesive slope and studied two scenarios:
one using the “single random variable approach”, meaning that the spatial corre-
lation length was infinity and no local averaging was applied; the other involving
a full RFEM analysis of slope stability. By comparing these two situations, the in-
fluence of spatial correlation length and local averaging on the slope stability was
shown. Hicks and Samy (2004) studied the influence of slope angle for slopes cut
in a clay layer, for spatially varying undrained shear strength, including the influ-
ence of anisotropy of the heterogeneity and strength increasing linearly with depth.
Griffiths and Fenton (2007) applied RFEM in a range of problems, including steady
state seepage, foundation settlement and slope stability. In these problems, the
hydraulic conductivity in the steady seepage analysis, the stiffness in the foundation
settlement analysis and the cohesion in slope stability analysis were considered as
random variables. The random fields were generated based on LAS. Hicks et al.
(2007) and Hicks and Spencer (2008, 2010) implemented RFEM in 3D slope analy-
ses. They compared the results of 2D and 3D analyses of failure in slope, showing
that 3D aspects cannot be ignored. Hicks et al. (2014) extended the investiga-
tions of Hicks and Spencer (2008, 2010) to more closely quantify failure volumes
in 3D slopes, once again considering the spatial variability of the undrained shear
strength. Li et al. (2015a) compared and evaluated the performance of RFEM with
respect to a simplified method proposed by Vanmarcke (1977) in 3D slope analyses,
thereby demonstrating the greater flexibility and robustness of RFEM, especially for
smaller SOFs, whereas Li et al. (2015b) studied the stability of a 3D heterogeneous
slope and focused on the number of discrete failures in the slope. Arnold and Hicks
(2011) applied RFEM to a slope subjected to rainfall. The rainfall infiltration and
slope stability were both modelled by stochastic analysis, in which the hydraulic and
strength parameters were both spatially random variables.

2.3.3. Stochastic analysis considering cross-correlated soil pa-
rameters

The influence of the cross-correlation of soil parameters on stochastic analyses has
been rarely investigated by researchers and engineers. Nguyen and Chowdhury
(1985) first developed a Monte Carlo simulation which took account of correlation
between two variables, i.e. the hydraulic conductivity and the storage coefficient.
They demonstrated the effect of correlation between the two variables on water
level drawdown in the sloping face of an open strip coal mine. Griffiths et al.
(2009) investigated the influence of cross-correlation between strength parameters
(i.e. cohesion and friction angle) on the results of probabilistic slope stability anal-
yses. Fenton and Griffiths (2003) and Cho and Park (2010) studied the influence
of cross-correlation between cohesion and friction angle on the bearing capacity
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of a foundation soil layer beneath a strip footing. Zhang et al. (2005) considered
the cross-correlation between different unsaturated hydraulic parameters (i.e. 𝜃፬,
𝛼, 𝑛 and 𝑘፬ፚ፭) in seepage analyses. However, they did not explicitly show the
effect of the cross-correlation on the final results. Arnold and Hicks (2011) cross-
correlated hydraulic and strength parameters in RFEM analyses of rainfall-induced
slope failure.

2.4. Inverse analysis in geotechnical engineering
In the 1980s, Cividini et al. (1983) made use of the displacements of a foundation to
back calculate the elastic modulus of the founding soil layer. The authors used both
a deterministic method, i.e. the least-squares method, and a statistical method, i.e.
the Bayesian approach. Gioda and Sakurai (1987) studied the use of both deter-
ministic and probabilistic methods in back analyses and their application to different
geotechnical problems. Honjo et al. (1994) implemented the extended Bayesian
method, which can adjust the importance of prior information in the estimation
process, for an embankment on soft clay. Ledesma et al. (1996b) briefly intro-
duced four commonly used methods of inverse analysis; namely, the least-squares
method, the maximum likelihood method, the Bayesian method and the Kalman
filter (KF) approach. Ledesma et al. (1996a) and Gens et al. (1996) implemented
the maximum likelihood method for a hypothetical tunnel excavation problem. The
authors combined this method with the finite element method to back-calculate
the Young’s modulus. Lee and Kim (1999) used the extended Bayesian method in
tunnelling engineering and tried to back calculate four parameters, i.e. the elastic
modulus, the initial horizontal stress coefficient at rest, the cohesion and the in-
ternal friction angle. Zhou et al. (2007) proposed a modified extended Bayesian
method in the estimation of the Young’s modulus for a three-layered embankment.

Kalman (1960) published the so-called KF, in which he described a recursive
solution to the discrete data linear filtering problem. The KF was initially used to
better estimate a set of state variables and uncertainties based on observations.
The method takes account of the observed error and utlises the Kalman gain to
update the values. The Kalman gain is a function of the covariance between the
variables and the measurements. Later, in order to solve problems involving a
nonlinear relationship between the state variables and measurements, the extended
Kalman filter (EKF) was developed. The only difference between the KF and EKF is
that the EKF linearises the relationship.

Bolzon et al. (2002) applied the EKF in the stochastic identification of the material
parameters which govern a cohesive discrete-crack model. Yang et al. (2011b)
made use of the EKF and observations in a tunnel to back analyse the natural
stress in a rock mass.

Evensen (1994) published a paper which proposed a variant of the traditional
KF called the EnKF, which resolved the identified disadvantages which existed in
EKF. The first disadvantage was the use of the approximate closure scheme in the
EKF, i.e. the linearisation of the function which links state variables and measure-
ments together. The other problem was the significant computational requirements
associated with the storage and forward integration of the state error covariance
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matrix (Evensen, 2003, 2009). The EnKF addresses these by utilising an ensemble
of forward models (i.e. many different calculations with different but statistically
equal input parameters) to calculate the covariance model. This method has been
widely used in meteorology and oceanography, such as in weather forecasting and
navigation (Zheng et al., 2010). Burgers et al. (1998) discussed an analysis scheme
using EnKF and compared two different cases, with and without perturbations in
the observations, to illustrate the importance of using random perturbations in ob-
servations. For applications in engineering, Hommels et al. (2005) used the EnKF
combined with the finite element method to conduct inverse analysis of the stiff-
ness of an embankment located on a layered foundation. Hommels and Molenkamp
(2006) presented an inverse analysis of a 1D foundation problem by using the EnKF
combined with RFEM. Krymskaya et al. (2009) applied a variant, referred to as the
iterative EnKF, in a history matching analysis in reservoir engineering. Hommels
et al. (2001) pointed out a major advantage of using EnKF, i.e. it is not necessary
to have access to the source code of a (finite element) program to implement EnKF.

In geotechnical engineering, measurements of pore water pressure (PWP) have
rarely been used in the back analysis of seepage problems. Zhang et al. (2013)
applied the Bayesian method to back calculate hydraulic parameters by utilising the
measurements of PWP and investigated the effect of uncertainty in the hydraulic
parameters on the prediction of rainfall infiltration; however, although the slope
stability was influenced by the prediction of rainfall infiltration, the spatial variability
of the hydraulic parameters was not taken into account. In hydrology, it has been
shown that EnKF has been able to improve the estimation of hydraulic parameters
based on the measurements of PWP. Chen and Zhang (2006) applied the EnKF in
a transient 2D model of saturated flow and showed that the EnKF can improve
the estimation of the local variability of hydraulic conductivity based on the pore
pressure head. Xu et al. (2013) combined the EnKF with parallel computation and
tested this new strategy in a 3D transient saturated groundwater flow analysis.

2.5. Conclusions
Soil variability can be large and causes wide uncertainties in geotechnical reliability
analyses. Previous research has shown that inverse analysis can be a useful tool
to improve the precision of soil parameters based on measurements. Firstly, it can
improve the estimation of the distribution of soil parameters, e.g. the mean and
standard deviation. Then, the improved estimation of the soil parameter statis-
tics can improve the stochastic analysis of the boundary value problem. Research
has applied inverse analysis in geotechnical engineering by using displacements,
stresses or strains. However, the PWP has rarely been used in inverse analysis, es-
pecially in geotechnical engineering. In addition, the influence of cross-correlation
between the hydraulic and mechanical parameters on slope stability has so far re-
cieved little attention.
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Reduction of Slope Stability

Uncertainty Based on
Hydraulic Measurement via

Inverse Analysis

The determination of slope stability for existing slopes is challenging, partly
due to the spatial variability of soils. Reliability-based design can incorporate
uncertainties and yield probabilities of slope failure. Fieldmeasurements can
be utilised to constrain probabilistic analyses, thereby reducing uncertainties
and generally reducing the calculated probabilities of failure. A method to
utilise pore pressure measurements, to first reduce the spatial uncertainty
of hydraulic conductivity, by using inverse analysis linked to the ensemble
Kalman filter, is presented. Subsequently, the hydraulic conductivity has
been utilised to constrain uncertainty in strength parameters, usually leading
to an increase in the calculated slope reliability.

This chapter has been published in Georisk: Assessment and Management of Risk for Engineered Sys-
tems and Geohazards, 10(3): 223-240 (2016) (Vardon et al., 2016). Kang Liu, the second author,
contributed significantly to this paper, in particular, contributing to the initial theoretical development,
and was responsible for the implementation and investigation of performance.
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3.1. Introduction
Conventional methods for the determination of slope stability are deterministic, with
soil properties characterised as constants for a given soil layer. The results tend
to be expressed as a single number; that is, by a FOS (Fredlund and Krahn, 1977;
Griffiths and Lane, 1999). However, natural soils are highly variable and heteroge-
neous (Phoon and Kulhawy, 1999). The limitations of deterministic methods, which
do not explicitly account for variability and uncertainty related to soil parameters,
have been highlighted, for example, by Vanmarcke (1977), Gui et al. (2000) and
Cho (2007), and it has been shown that they can over- or underpredict the true
FOS.

Reliability-based methods for geotechnical applications have been developing
since the 1970s; from simpler methods such as the first order second moment
method, first order reliability method (Hasofer and Lind, 1974) and point estimate
method (Rosenblueth, 1975), to more complex methods such as RFEM (Griffiths
and Fenton, 1993). In RFEM, random fields of spatially varying soil properties are
linked with finite elements within a Monte Carlo simulation. Such analyses require
a knowledge of the distributions of the soil parameter values, including the scale of
fluctuation, which is the distance over which variables are significantly correlated
(Fenton and Vanmarcke, 1990). These data can be derived from field tests (e.g.
cone penetration tests (CPTs) and piezometers), laboratory tests and previous expe-
rience. However, the overall distribution of soil parameters is a general description
of soil parameter variability, whereas, if the local variability was captured better,
the overall uncertainty could be reduced (Lloret-Cabot et al., 2012).

In geotechnical engineering, many projects are equipped with tools to moni-
tor the project performance, for example, through measurements of displacement,
strain, pore pressure and so on. These measurements cannot be directly incorpo-
rated into conditional random fields to reduce the uncertainty of soil parameters,
as they measure system responses and not soil properties. However, a general
way to make use of these measurements is inverse analysis, which can be used
to back-calculate the soil parameters (e.g. Cividini et al., 1983; Gens et al., 1996;
Honjo et al., 1994; Ledesma et al., 1996a).

Honjo et al. (1994) indicated that inverse analysis methods can generally be
categorized into two types: direct methods and indirect methods. Direct methods
need to build a unique explicit relationship between parameters and measurements,
so that the relationship can be inverted. However, due to the complexity of most
engineering problems, it is virtually impossible to build such a relationship. Indirect
methods are iterative procedures and make use of the forward relationship between
parameters and measurements.

A number of indirect methods exist. These include the maximum likelihood
method, which considers the measurements as random quantities and estimates a
set of parameters which are statistically the most likely, that is, to maximise the
probability of achieving the measured data; and Bayesian methods, which consider
the parameters to be random and the distribution of parameters which are able to
produce the measured data are estimated. The KF is a scheme which uses ongo-
ing measurements to better estimate parametric inputs. In the case of the EnKF,
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an ensemble of potential parameters is used, making it a variant of the Bayesian
approach (Ledesma et al., 1996b).

Ledesma et al. (1996b) and Gens et al. (1996) implemented the maximum like-
lihood method in a synthetic problem of tunnel excavation. The authors combined
this method with the FEM to back-calculate Young’s modulus. Wang et al. (2013,
2014) utilised the maximum likelihood method in analysing a slope failure and an
excavation, respectively, to improve the estimation of soil parameters based on field
measurements such as slip surface inclination and ground settlement. The applica-
tion of the maximum likelihood method was found to better explain the slope failure
mechanism and also the prediction of wall and ground responses in the staged ex-
cavation.

Lee and Kim (1999) used the extended Bayesian method in tunnelling engi-
neering and tried to back-calculate four parameters, that is, the elastic modulus,
the initial horizontal stress coefficient at rest, the cohesion and the internal fric-
tion angle. Zhou et al. (2007) proposed a modified extended Bayesian method
in the estimation of the Young’s modulus for a three-layered embankment. Pa-
paioannou and Straub (2012) utilised Bayesian updating to improve the estimation
of the reliability of an excavation, with a sheet pile retaining wall, in sand, based on
non-linear deformation measurements. Zhang et al. (2013) applied the Bayesian
method to back-calculate hydraulic parameters by utilising measurements of pore
water pressure and investigated the effect of uncertainties in the hydraulic param-
eters on the prediction of slope stability, but without considering the spatial vari-
ability of hydraulic parameters. Zhang et al. (2014) further investigated the effect
of measurement data duration and frequency in the Bayesian updating of hydraulic
parameters.

Kalman (1960) developed the KF, which was initially used to estimate a set of
variables and uncertainties and, based on a set of observations, improve the esti-
mation. Later a number of variants were developed, such as the EKF and the EnKF.
The EnKF requires no linearisation when updating state variables which are gov-
erned by a non-linear relationship, in contrast to the EKF. Hommels et al. (2005)
and Hommels and Molenkamp (2006) utilised the EnKF and observations of settle-
ments to improve the estimation of Young’s modulus. Yang et al. (2011b) made
use of the EKF and observations of displacement in a tunnel to back-analyse the
natural stress in the rock mass.

The majority of the inverse analysis methods given above only made use of di-
rect measurements which were directly related to the undetermined parameters.
For example, the measurements used in Chen and Zhang (2006) were pressure
head, so the corresponding uncertain parameter was hydraulic conductivity. In
Hommels and Molenkamp (2006), the parameter and measurement were stiffness
and settlement, respectively. This limits the choice of information which could con-
tribute to the determination of parameters, although, as the underlying differences
in material behaviour come from, in general, differences in composition, stress state
or stress history, it is likely that material parameters are correlated (Nguyen and
Chowdhury, 1985; Ching and Phoon, 2013). Fenton and Griffiths (2003) and Cho
and Park (2010) studied the influence of cross-correlation between cohesion and
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friction angle on the bearing capacity of a strip foundation. Griffiths et al. (2009)
investigated the influence of cross-correlation between Mohr–Coulomb strength pa-
rameters (i.e. cohesion and friction angle) in probabilistic analyses of slope stability.
Zhang et al. (2005) considered the cross-correlation between different unsaturated
hydraulic parameters in seepage analysis, and Arnold and Hicks (2011) considered
the cross-correlation of hydraulic and strength parameters in stochastic analyses of
rainfall-induced slope failure.

In this chapter, a theoretical study of the uncertainty in the factor of safety
(with respect to the stability) of embankment slopes under steady-state seepage
conditions is presented. The work takes advantage of the fact that instrumenta-
tion is often available in geotechnical projects, but also that, in soils, pore pressure
measurements are cheaper, easier to install and more reliable than stress/strain
measurements. In addition, it takes account of the cross-correlation between ma-
terial properties; specifically, it proposes that the hydraulic conductivity, cohesion
and friction angle are cross-correlated. Therefore, the pore pressure measurements
can be used to reduce the uncertainty in the slope stability, via more accurate effec-
tive stress and shear strength estimations. The proposed method first utilises the
EnKF inverse analysis method to better determine the hydraulic conductivity field;
then the cohesion and friction angle are cross-correlated with hydraulic conductivity
so that the estimation of slope stability can be improved.

The purpose of this chapter is to present, demonstrate and evaluate the robust-
ness of the new method within a controlled (albeit simplified) environment. This
has been facilitated by the use of synthetic (i.e. numerically generated) “measure-
ments”, so that full knowledge of the solution is available and the results can be
properly tested. First the method is presented, and this is followed by a series of
analyses to examine the effects of the various parameters on the overall calculated
uncertainty. These results will be used to guide future studies involving real field
situations.

3.2. Framework and theoretical formulation
3.2.1. Framework of the overall analysis
The framework of the proposed numerical approach is shown in Figure 3.1. The
flow chart shows that it can be split into two parts: inverse and forward analyses.
Inverse analysis is possible where there are measurements available, that is, pore
pressures in this chapter. Synthetic data have here been used to provide a fully
known solution against which the method can be tested, and are sampled to provide
a proxy for real measurements. In the remainder of the chapter, these sampled data
are referred to as “synthetic measurements”.

The analysis starts with an estimation of the hydraulic conductivity in the field,
which is the distribution of hydraulic conductivity characterised by its mean, stan-
dard deviation and scales of fluctuation. Based on this statistical characterisation
of the hydraulic conductivity an RFEM analysis can be undertaken, whereby mul-
tiple realisations of the hydraulic conductivity field are generated and analysed to
give a distribution of computed pore water pressure fields. Then, via the EnKF, the
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Figure 3.1: Flowchart of the numerical approach.

ensemble of realisations are compared to the synthetic measurements, so that the
estimation of the hydraulic conductivity field can be updated/improved.

The forward analysis benefits from the output of the preceding inverse anal-
ysis. The updated hydraulic conductivity field improves the computed pore pres-
sure field, which in turn affects the effective stress field. In addition, by using the
cross-correlation between the hydraulic conductivity and strength parameters, the
strength parameters can also be updated. Another RFEM analysis is then carried
out, this time to obtain a probabilistic description of the slope stability. However,
the EnKF method cannot be used to update the slope stability, as the shear strength
cannot be easily/directly measured in a non-destructive way. The improvements
achieved during the inverse and forward analysis stages, that is, with respect to
pore water pressure and strength parameters, cause a reduction in the uncertainty
in the calculated FOS of the slope.

In order to facilitate the understanding and evaluation of the model, in the anal-
yses in Section 3.3 the following simplifications were adopted: (i) a one-directional
coupled analysis; (ii) no flow in the unsaturated zone; (iii) linear elastic, perfectly
plastic constitutive behaviour, with a Mohr–Coulomb failure surface; and (iv) steady-
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state seepage.

3.2.2. Slope stability under seepage conditions
In this chapter, a one-way coupled slope stability analysis has been undertaken.
First, the pore pressure distribution due to steady-state seepage has been analysed;
next, the influence of the pore pressure distribution has been incorporated in the
slope stability analysis.

Steady state seepage
The governing mass conservation equation for steady-state saturated groundwater
flow in 2D is utilised, with the deformation of the domain and compressibility of
water being neglected. Therefore, the governing equation is (Smith et al., 2013)

𝜕
𝜕𝑥 (𝑘፱

𝜕ℎ
𝜕𝑥) +

𝜕
𝜕𝑦 (𝑘፲

𝜕ℎ
𝜕𝑦) = 0 (3.1)

where ℎ = 𝑧 + 𝑝/𝛾፰ is the hydraulic head, in which 𝑧 is the elevation, 𝑝 is the
pore pressure and 𝛾፰ is the unit weight of water, and 𝑘፱ and 𝑘፲ are the hydraulic
conductivity in the 𝑥 and 𝑦 directions, respectively.

Over the domain, the hydraulic conductivity is taken as a spatially random vari-
able so that a stochastic seepage analysis can be undertaken.The hydraulic con-
ductivity is lognormally distributed (Griffiths and Fenton, 1993) and RFEM is applied
to incorporate the uncertainty existing in the hydraulic conductivity. Griffiths and
Fenton (1993) first applied RFEM to stochastic seepage in the foundation of a water
retaining structure. Since then, a series of stochastic seepage studies have been
undertaken using this method. Some have focused on the seepage itself (Fenton
and Griffiths, 1996), whereas others have studied the influence of stochastic seep-
age on slope or embankment stability (Le et al., 2012). RFEM is the combination
of LAS, to create “random fields” of material parameters, FEM and MCM. Generally
speaking, the stochastic seepage simulation can be realized in three steps. Firstly,
LAS is used to generate a random field of hydraulic conductivity based on the statis-
tical values of hydraulic conductivity, i.e. the mean 𝜇፤ and standard deviation 𝜎፤,
and the scale of fluctuation 𝜃፤ reflecting the spatial correlation of hydraulic con-
ductivity at different locations. Then, FEM is used to compute the pore pressure,
seepage velocity, etc. Finally, the process is repeated multiple times as part of a
MC simulation (Hicks and Samy, 2004).

In this study, a fixed FE mesh is used to solve Equation 3.1, and also prescribed
hydraulic head (Drichlet) boundary conditions. However, in this saturated uncon-
fined flow problem there are initially unknown boundary conditions, which are the
position of the phreatic surface and the exit point on the downstream surface of
the embankment. During the computation, an iterative process is adopted to de-
termine the exact positions of the exit point and phreatic surface (Chapuis and
Aubertin, 2001; Chapuis et al., 2001). An outer iteration loop is used to determine
the position of the exit point and an inner iteration loop is used to determine the
position of the phreatic surface. The outer iteration stops when the nodes on the
downstream surface of the embankment which are above the exit point have no
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positive pore water pressure. The inner iteration stops when the hydraulic head at
every node converges.

In the fixed mesh method, the hydraulic conductivity at each Guass point in
the domain is modelled based on its pore pressure 𝑝. When 𝑝 ≥ 0, the hydraulic
conductivity is equal to 𝑘 and, when 𝑝 < 0, the hydraulic conductivity is zero (Bathe
and Khoshgoftaar, 1979). Hence, the elements in the dry region are effectively
removed from the computation and those in the wet region are still active.

Slope stability
The slope stability analysis uses the results of the previous seepage analysis to
define the pore water pressure, in order to generate the effective stress field. The
effective stress vector 𝝈ᖤ = [𝜎ᖤ፱ 𝜎

ᖤ
፲ 𝜏፱፲ 𝜎

ᖤ
፳]ዞ can be expressed as

𝝈ᖤ = 𝝈 − 𝑝𝐦 (3.2)

where 𝝈 is total stress vector generated by the gravitational load, 𝐦 = [1, 1, 0, 1]ዞ
for 2D plane strain analysis and 𝑝 is the pore water pressure.

The slope stability analysis considers an elastic, perfectly plastic soil with the
Mohr–Coulomb failure criterion (e.g. Smith et al., 2013) and the FOS of the slope
is computed using the strength reduction method (Griffiths and Lane, 1999), that
is:

𝑐ᖤ፟ = 𝑐
ᖤ/FOS (3.3)

𝜙ᖤ፟ = arctan(
tan𝜙ᖤ

FOS ) (3.4)

where 𝑐ᖤ and 𝜙ᖤ are the effective cohesion and friction angle, and 𝑐ᖤ፟ and 𝜙ᖤ፟ are
the respective factored shear strength parameters corresponding to slope failure.

3.2.3. Stochastic FE analysis
Due to the spatial variability of the soil parameters, FEM is combined with random
field theory within a stochastic (Monte Carlo) process. This involves multiple simula-
tions (i.e. realisations) of the same problem, a procedure often referred to as RFEM
(Griffiths and Fenton, 1993). In each realisation of an RFEM analysis, a random field
of material properties is generated, based on the point and spatial statistics of the
material properties. RFEM has proved to be an efficient approach for conducting
stochastic slope stability analyses (e.g. Hicks and Samy, 2002b, 2004).

Random field generation for single variable
LAS (Fenton and Vanmarcke, 1990) has been applied to generate the random fields.
This method generates standard normal fields, in which the spatial variation of prop-
erty values is related to a correlation function incorporating the scale of fluctuation.
The standard normal field is then transformed to the appropriate distribution based
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on the mean and standard deviation of the variable being modelled, and also post-
processed to account for different scales of fluctuation in different directions (Hicks
and Samy, 2004).

For the application in this chapter, as the distribution of hydraulic conductiv-
ity is usually considered to be log-normal (Griffiths and Fenton, 1993; Zhu et al.,
2013), the natural log of hydraulic conductivity, ln(𝑘), follows a normal distribu-
tion. Hence the standard normal random field is transformed into a normal field
of ln(𝑘). An exponential Markov correlation function has been used to build the
covariance function relating the spatial correlation between the variable values at
different locations, that is:

𝜌(𝜏) = exp(− 2
𝜃ደዲ፤

𝜏) (3.5)

where 𝜏 is the lag distance between two points in a random field, and 𝜃ደዲ፤ is the
scale of fluctuation of ln𝑘. Fenton and Griffiths (2008) indicated that 𝜃ደዲ፤ ≈ 𝜃፤
(where 𝜃፤ is the scale of fluctuation of 𝑘), and this relationship has been adopted
in this chapter.

Random field generation for multiple variables
In this chapter, three variables are spatially random, that is, hydraulic conductiv-
ity, cohesion and friction angle. The chapter makes use of the inter-dependence
between these parameters (Nguyen and Chowdhury, 1985) to cross-correlate the
random fields. Cross-correlated parameters are first transformed into standard nor-
mal space and the dependence between the parameters is defined via a correlation
matrix (Fenton and Griffiths, 2003),

𝜌 = [
1 𝜌ደዲ፤,፜ 𝜌ደዲ፤,Ꭻ

𝜌ደዲ፤,፜ 1 𝜌፜,Ꭻ
𝜌ደዲ፤,Ꭻ 𝜌፜,Ꭻ 1

] (3.6)

where 𝜌 represents the correlation (in standard normal space) between the param-
eters identified by the first and second subscripts. The matrix is decomposed by
Cholesky decomposition, that is, 𝝆 = 𝐋𝐋ዞ, and used to generate correlated random
field values from initially uncorrelated random field values, via:

𝐆፝፞፩፞፧፝ = 𝐋𝐠።፧፝፞፩፞፧፝ (3.7)

[
𝐺ደዲ፤
𝐺፜
𝐺Ꭻ

]
፝፞፩፞፧፝

= 𝐋 [
𝑔ደዲ፤
𝑔፜
𝑔Ꭻ

]
።፧፝፞፩፞፧፝

(3.8)

where 𝐆፝፞፩፞፧፝ is a vector of correlated values and 𝐠።፧፝፞፩፞፧፝ is a vector of uncorre-
lated values.
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3.2.4. Inverse analysis via the EnKF
Evensen (1994) proposed the EnKF based on the traditional KF (Kalman, 1960),
to reduce parameter uncertainty based upon measured data. In this chapter, the
EnKF is linked to the random field approach to better capture the local variability of
hydraulic conductivity. In the approach of Evensen (1994) the measurements are
time dependent, but here the measured data are fixed in time and hence the EnKF
has been used independent of time.

Herein, the EnKF follows an iterative process, in which each iteration contains
two steps: forecast and update. For applying the EnKF to stochastic seepage, a
state vector has to be constructed to incorporate both the unknown local hydraulic
conductivities and measurements of hydraulic head. This is expressed as:

𝐱። = (
𝐤
𝐡 ) = (

(ln(𝑘ኻ) ln(𝑘ኻ) ⋯ ln(𝑘ፍᑜ))ዞ
(ℎኻ ℎኼ ⋯ ℎ፦)ዞ ) (3.9)

where subscript 𝑖 represents an ensemble; 𝐤 is the vector of logarithmic hydraulic
conductivity, ln(𝑘), as the EnKF can only be applied to normally distributed vari-
ables (Chen and Zhang, 2006); 𝐡 is the vector of hydraulic heads computed at the
measurement locations; and 𝑁፤ and 𝑚 are the number of unknown hydraulic con-
ductivity values and hydraulic head measurements, respectively. In this case, the
number of unknown hydraulic conductivity values is equal to the number of Gauss
points in the foundation of the FE mesh. In the EnKF, an ensemble of 𝑁 state
vectors is used to simulate the initial estimation of the hydraulic conductivity field,
that is, 𝐱 = (𝐱ኻ, 𝐱ኼ, ⋯ , 𝐱ፍ).

In the forecasting step of each iteration, the ensemble of state vectors is fore-
casted to the second (i.e. update) step by the model describing the problem, that
is, 𝐱፭ = F(𝐱፭ዅኻ), where 𝑡 is the iteration number in the EnKF. In this case, the
seepage model is utilised to compute the hydraulic heads for all realisations of the
ensemble, based on the updated hydraulic conductivity fields from the end of the
previous iteration.

After the forecasting step, the computed hydraulic heads at the measurement
locations in the forecasted ensemble of state vectors are compared with the col-
lected “real” hydraulic head measurements. The ensemble of state vectors is then
updated (with respect to hydraulic conductivity) by

𝐱፮፭ = 𝐱፟፭ + 𝐊𝐆(𝐃 − 𝐇𝐱፟፭ ) (3.10)

𝐃 = (𝐡ኻ, 𝐡ኼ, ⋯ , 𝐡ፍ) (3.11)

𝐡። = 𝐡∗ + 𝝐። (3.12)

where 𝐱፮፭ is the matrix containing the ensemble of updated state vectors, of dimen-
sions (𝑚 + 𝑁፤) × 𝑁, and 𝐱፟፭ is the corresponding matrix of state vectors resulting
from the forecasting step; 𝐃 is the matrix of measurement data perturbed by noise,
of dimensions 𝑚 × 𝑁; 𝐡። is a vector of perturbed measurements; 𝐡∗ is the vector
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of real measurements; and 𝝐። is a vector of measurement errors added to the real
measurements in order to create perturbed measurements. Each element in the
error vector 𝝐። is randomly selected from a normal distribution with a zero mean
and a variance defined by the input measurement error. Here, 𝐑 is a matrix based
on 𝝐።, that is:

𝐑 = 𝐞𝐞ዞ
𝑁 − 1 (3.13)

𝐞 = (𝝐ኻ, 𝝐ኼ, ⋯ , 𝝐ፍ) (3.14)

Also, with reference to equation 3.10, 𝐇 is the measurement operator which
relates the state vector to the measurement points; it is in the form of 𝐇 = [𝟎 ∣ 𝐈],
where 𝟎 is an 𝑚 × 𝑁፤ null matrix and 𝐈 is an 𝑚 × 𝑚 identity matrix. 𝐊𝐆 is the
Kalman gain derived from the minimization of the posterior error covariance of the
ensemble of state vectors, that is:

𝐊𝐆 = 𝐏፟፭𝐇ዞ(𝐇𝐏፟፭𝐇ዞ + 𝐑)ዅኻ (3.15)

𝐏፟፭ =
1

𝑁 − 1(𝐱
፟
፭ − 𝐱

፟
፭ )(𝐱፟፭ − 𝐱

፟
፭ )ዞ (3.16)

where 𝐏፟፭ is the error covariance matrix of the ensemble of forecasted state vectors,
and 𝐱፟፭ is the ensemble mean of 𝐱፟፭ , that is, 𝐱

፟
፭ = 𝐱፟፭ 𝟏ፍ, where 𝟏ፍ is a matrix in

which each element is equal to 1/𝑁.
At the end of the iteration process, the ensemble mean is considered to be the

best estimate of the hydraulic conductivity field, and the pore pressures generated
using this result are passed to the slope stability analysis in Section 3.2.2 and utilised
to generate correlated strength parameters in Section 3.2.3. The implementation
of this aspect is undertaken utilising the subroutine found in Section 5 of Evensen
(2003).

3.3. Model performance
In this section, an illustrative example is presented, to show how the proposed
approach can affect the uncertainty in the calculated slope stability via the use of
only hydraulic measurement data.

Figure 3.2 shows the geometry of an embankment overlying a foundation. The
embankment is 4 m high, with upstream and downstream side slopes of 1∶2. It is
4 m wide at the crown and 20 m wide at its base. The upstream water level is 4 m
above the base of the embankment and the downstream water level is at 0 m. The
soil foundation is 40 m wide and 5 m deep, and the lateral and bottom boundaries
of the foundation are assumed to be impermeable.
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Figure 3.2: Geometry of the embankment and foundation (dimensions in ዱ).

3.3.1. Application of EnKF in stochastic seepage
Results
As previously stated, the results of an arbitrary realisation have been selected to
represent the actual spatial variability of hydraulic conductivity at the site, which
means that the hydraulic conductivity is known at all points, that is, in contrast
to a real situation where it would not be known everywhere. In the analysis, the
embankment is assumed to be homogeneous, whereas the foundation is heteroge-
neous. This is for simplicity, to enable a better understanding of the performance
of the model. Moreover, the hydraulic conductivity is assumed to be isotropic, that
is, the same in the vertical and horizontal directions, again for simplicity. The FE
mesh size is 1.0 by 1.0 m, as shown in Figure 3.5(e), and the elements are 4-noded
bi-linear elements with four Gaussian integration points. The cell size in the ran-
dom field is 0.5 by 0.5 m, which means that each of the four integration points
are assigned a different cell value from the random field. Hence 800 hydraulic
conductivity values are generated in the foundation layer for the inverse analysis.

Initially 500 realisations were generated for the ensemble. The mean and stan-
dard deviation (log-normal distribution) of the hydraulic conductivity for the random
field generation were both selected to be 10ዅዀ m/s. The scale of fluctuation was se-
lected to be anisotropic (Lloret-Cabot et al., 2014) and within realistic bounds, with
the vertical and horizontal scales of fluctuation for the foundation being 1.0 and
8.0 m, respectively (Hicks and Onisiphorou, 2005; Firouzianbandpey et al., 2014;
Cho and Park, 2010; Suchomel and Mašın, 2010). It is anticipated that these initial
values can be estimated from laboratory tests, or soil databases, where sufficient
similar material is available. Such tests have previously been utilised to generate
input statistics for RFEM analyses or parameter variations in parametric FEM anal-
yses. Moreover, the initial estimated scale of fluctuation and degree of anisotropy
of the heterogeneity could be estimated from CPT data (e.g. Lloret-Cabot et al.,
2014).

The realisation selected to provide the measured data is shown in Figure 3.3(a),
with the discrete nature of the hydraulic conductivity values in the figure being due
to single values being assigned to each Gauss point. Figure 3.3(b) shows that the
initial estimate, based on the mean of 500 realisations, approximates to the input
mean of 𝑘 = 10ዅዀ m/s. Figures 3.4(a) and 3.4(b) show the error in the hydraulic
head values, generated by the initial estimation of the hydraulic conductivity and
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the updated hydraulic conductivity, respectively, that is:

𝝐።፧።፭።ፚ፥ = 𝐡።፧።፭።ፚ፥ − 𝐡፫፞፟፞፫፞፧፜፞ (3.17)

𝝐፮፩፝ፚ፭፞፝ = 𝐡፮፩፝ፚ፭፞፝ − 𝐡፫፞፟፞፫፞፧፜፞ (3.18)

where 𝝐።፧።፭።ፚ፥ and 𝝐፮፩፝ፚ፭፞፝ are the initial and updated errors in hydraulic head, re-
spectively, and 𝐡፫፞፟፞፫፞፧፜፞, 𝐡።፧።፭።ፚ፥ and 𝐡፮፩፝ፚ፭፞፝ are the hydraulic heads calculated
from the reference hydraulic conductivity field, and the initial and updated estima-
tions of the hydraulic conductivity field, respectively. Figures 3.4 (c)–(e) show the
reference, initial and the updated pore water head distributions. It is seen that
the geometry of the system controls the overall shape of the distribution, with only
relatively minor perturbations due to the heterogeneity. However, these perturba-
tions are large enough (~0.3 m) to give more information on the local hydraulic
conductivity distribution.

-12.2

-16.2

-15

-14

-13

ln(k)(a)

(b)

(c)

Figure 3.3: Initial and updated estimations of the logarithmic hydraulic conductivity, ደዲ(፤), field com-
pared to the reference case (፤ inዱ/ዷ): (a) reference field of ደዲ(፤) in the foundation; (b) initial estimation
of ደዲ(፤) field (taken to be the mean of the ensemble) and (c) updated estimation of ደዲ(፤) field after
inverse analysis (mean of the ensemble).

The number of synthetic measurements used in the analysis was first chosen to
be 88, with the locations of the measuring points shown in Figure 3.5(a) as solid
dots. Three further patterns of measuring points were also used, that is, 44 (Figure
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Figure 3.4: Error in hydraulic head (in meters) based on the initial and updated hydraulic conductivity
fields relative to the reference hydraulic conductivity field: (a) error between reference and initial hy-
draulic conductivity fields; (b) error between reference and updated hydraulic conductivity fields; (c)
reference pore pressure head field; (d) initial pore pressure head field and (e) updated field.

5(b)), 24 (Figure 3.5(c)) and 12 (Figure 3.5(d)) points, where the full column of
synthetic measurements is used in each measurement configuration. The element
and local Gauss point numbering are given in Figure 3.5(e). All monitoring points
for the synthetic measurements have been located in the foundation, for two rea-
sons: (i) for long term field measurements, ensuring that the points are saturated
increases the reliability of the sensors; and (ii) the foundation of an embankment
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Figure 3.5: Locations of measuring points: (a) measurement point locations for ዂዂ observation points;
(b) measurement point locations for ኾኾ observation points; (c) measurement point locations for ኼኾ
observation points; (d) measurement point locations for ኻኼ observation points and (e) mesh, element
and local Gauss point numbering.

is more likely to be highly heterogeneous.
Each element in 𝝐። (equation 3.12) has been selected from a normal distribution,

with a zero mean and a variance chosen to be 10ዅዀ mኼ, for the hydraulic head
measurement. The variance is related to the precision of the measurement tools.
A variance of 10ዅዀ mኼ means that the accuracy of the synthetic measurements of
hydraulic head are required to be ±0.003 m (i.e. 3𝜎).

In this illustrative example, the authors use 50 iteration steps of the EnKF. The
updated estimated hydraulic conductivity field (the average of the final updated
values of the 500 ensemble members), arising from the EnKF results, is shown
in Figure 3.3(c) and displays a clear local variability. The hydraulic head errors
resulting from this updated field are small, as shown in Figure 3.4(b). Figure 3.6
shows the comparison between the 800 reference values of the local hydraulic



3.3. Model performance ..

3

33

conductivity field, the initial estimation of the local hydraulic conductivity field and
the updated estimate of the local hydraulic conductivity field, based on averaging
the 500 ensemble members. Figures 3.6(a)–(c) shows the comparisons at the ends
of iteration steps 1, 5 and 50, respectively, while the sequential numbering of the
Gauss points used in Figures 3.6(a)–(c) is shown in terms of depth in Figure 3.6(d).
It can be seen that the estimation of the local hydraulic conductivity field improved
quickly. After 5 iterations, there is no significant change in the estimation.

Sensitivity analysis of EnKF
A sensitivity analysis has been undertaken to study the influence of various aspects.
In order to evaluate the final results, the root mean square error (RMSE) of the
hydraulic head has been used. This is defined as

RMSE = √ 1
𝑁፡

ፍᑙ
∑
።።዆ኻ

(ℎ፭።። − ℎ፞።።)
ኼ

(3.19)

where 𝑁፡ is either the number of unknown hydraulic head values in the foundation
layer (i.e. the total number of nodes in the foundation), or the number of measure-
ment points (i.e. 𝑚), and superscripts 𝑡 and 𝑒 represent the true and estimated
values, respectively. The lower the RMSE, the better the result. For this analysis the
hydraulic conductivity, although being the variable updated, has not been used in
the RMSE calculation due to the steady state calculations used. Specifically, due to
the steady state nature of the simulations, the results of the hydraulic conductivity
are not unique; only the relative differences between the hydraulic conductivities
at different points are. Hence, it is the hydraulic head values which have been used
and optimised in the EnKF.

Measurement error. Figure 3.7 shows the RMSE resulting from different mea-
surement error variances. The solid lines represent the RMSE values when only the
measurement points are taken into account, whereas the dotted lines include all of
the unknown hydraulic head values in the foundation layer. In all cases, the size
of the ensemble was 500 members. Considering the RMSE for only the measured
points, the error is generally seen to reduce with each iteration step. When the
input variance of the measurement error is equal to or lower than 10ዅዀ mኼ, the
RMSE for the measured points reduces to almost zero and has therefore been used
in the further analyses presented in this chapter. This clearly illustrates that the
method is able to optimise the results based upon the measured data. Considering
the RMSE for all the unknown hydraulic head values, in all cases the RMSE initially
reduces before converging. Note that, in this method, for each iteration of the
EnKF a different ensemble of random errors (𝝐። from equation 3.12) was used. An
alternative algorithm was also examined where the same random ensemble was
used; however, with this algorithm, the results were found not to converge for
larger values of the measurement error. It is seen that, where the measurement
errors are small, the majority of the improvement occurs within 10 iteration steps.
For larger errors convergence is slower, although the improvement continues with
more iteration steps for all cases.
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RMSE values with only the measurement points taken into account and the dotted lines include all of
the unknown hydraulic head values in the foundation layer.

Ensemble size. Another important aspect of the EnKF is the size of the ensemble.
Several cases with different sizes to see the influence have been analysed, although,
in all cases, the input variance of the measurement error was 10ዅዀ mኼ. Figure
3.8 shows the RMSE for different ensemble sizes; once again, with the solid lines
representing RMSE values based on only the measured points and the dotted lines
for RMSE values based on all the unknown hydraulic head values in the foundation
layer. Figure 3.8 shows that, when the size of the ensemble is too small (i.e. 200),
the RMSE oscillates. It was found that, for the problem analysed, 500 ensemble
members were sufficient, although for other problems this may not be the case.
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3.3.2. Prediction of seepage uncertainty
Initially, there is only knowledge about the global distribution of hydraulic conduc-
tivity in the whole foundation and there is no information about the local variability
of the hydraulic conductivity. Before the inverse analysis was applied, a stochastic
seepage analysis was carried out to predict the seepage behaviour based on the
global distribution of hydraulic conductivity.

Figure 3.9 shows the comparison of results from the stochastic seepage analysis
before and after inverse analysis. It can be seen from Figure 3.9(a) that the range
of inflows is reduced, which indicates an improvement in the estimation of the
hydraulic conductivity. In Figure 3.9(b), it is seen that there is a significant change in
the cumulative distribution function (CDF); in particular, an increase in the gradient
indicates a reduction in the uncertainty. Note that, although the absolute values
of the inflow are not important in this case, due to the steady state nature of
the analyses, the reduction in uncertainty represents a much improved hydraulic
conductivity field with respect to the local comparative variations.

3.3.3. Slope stability with improved seepage behaviour estima-
tion

The improved prediction of pore water pressure in the foundation has been imported
into the slope stability analysis. The slope stability has been computed based on the
unimproved and improved pore pressure fields. The saturated unit weight of both
the embankment and foundation is 20 kN/mኽ. The unsaturated unit weight of the
embankment is 13 kN/mኽ. The Young’s modulus and Poisson’s ratio are 10኿ kPa and
0.3, respectively. The dilation angle is chosen to be zero, and so are the following
chapters. The strength parameters (cohesion and friction angle) of the foundation
follow truncated normal distributions (i.e. with any negative values discarded),
whereas constant strength parameters are used for the embankment and these are
selected to be equal to the mean values assumed for the foundation. The mean
cohesion and friction angle are 10 kPa and 30ኺ, respectively. The coefficient of
variation of cohesion is 0.2 (Arnold and Hicks, 2011) and the coefficient of variation
of the friction angle is chosen to be 0.15 (Phoon and Kulhawy, 1999). The scale
of fluctuation is related to the deposition process (Firouzianbandpey et al., 2014),
so it is assumed that the scale of fluctuation of the cohesion and friction angle are
equal to each other and also identical to the scale of fluctuation of the hydraulic
conductivity. However, note that this assumption is not implicit to the method and
that the method is also applicable to the case where different scales of fluctuation
exist for different parameters. The cross-correlations are included using the method
defined in Section 3.2.3.

Before the stochastic analysis of slope stability, a mesh convergence analysis was
undertaken using the mean strength parameters. The FOS of the slope calculated
by the strength reduction method for the mesh used here (element size of 1.0 by
1.0 m) was 1.95 and a denser mesh discretization (element size of 0.5 by 0.5 m)
resulted in a calculated FOS of 1.97. Therefore, considering the balance between
accuracy and efficiency, the mesh size of 1.0 by 1.0 m was considered suitable
for this analysis. It should be noted that, as a non-associated (dilation angle of
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Figure 3.9: Probability distributions of the total inflow based on the initial and updated hydraulic con-
ductivity fields, based on ኿ኺኺ realisations (ensemble members): (a) PDF of total inflow and (b) CDF of
total inflow.

zero) elastic-perfectly-plastic Mohr–Coulomb model was used to represent the soil,
there will be a degree of mesh dependence. This mesh dependence in FEM when
using simple/complex constitutive models, which may be overcome by using (for
example) non-standard continua, has been investigated by others, e.g. Conte et al.
(2010); Tschuchnigg et al. (2015).

The distribution of FOS from the slope stability analysis without improvement of
the pore pressure prediction, and for uncorrelated strength parameters, is shown in
Figure 3.10 in light grey and approximated by a normal distribution. The distribution
of FOS for the slope with the updated hydraulic conductivity (based on the measured
data), for uncorrelated strength parameters, is shown hatched.

The mean and standard deviation of the FOS in the original case are 1.95 and
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Figure 3.10: Probability distributions of FOS based on the initial and updated pore pressure fields, based
on 500 realisations: (a) PDF of FOS and (b) CDF of FOS.

0.12, whereas the mean and standard deviation of the FOS in the updated case
are 2.02 and 0.11. Hence there is a modest reduction in the uncertainty and an
increase in the computed slope reliability when considering updated pore pressure
simulations. Note that the increase in the mean FOS is due to the specific distri-
bution of pore pressures within the foundation layer and the associated changes in
shear strength; for another spatial distribution of pore pressure, it could be possi-
ble for the mean FOS to decrease when using updated pore pressure simulations.
The slight reduction in the standard deviation is explained by a reduction in the
possible effective stress variations in the analysis, due to the constrained hydraulic
conductivity field.
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3.3.4. Slope stability by using improved hydraulic conductiv-
ity estimation and strength parameters cross-correlated
with hydraulic conductivity

In this section, the previous improved estimations of pore pressure are again im-
ported into the slope stability analysis. However, due to the cross-correlation pro-
posed between hydraulic conductivity and strength parameters, and between the
shear strength components themselves, updated strength parameters have also
been used in the slope stability analysis.

This section proposes that the hydraulic conductivity can be correlated with the
shear strength properties of the soil. While little experimental data have previously
been analysed in this manner, both properties have been investigated in terms of
porosity and particle size. Relevant literature has been reviewed in Section 2.2.2 of
Chapter 2.

The correlation matrix that has been used, for illustrative purposes, is

𝜌 = [
1 −0.5 −0.2

𝜌ደዲ፤,፜ 1 −0.5
𝜌ደዲ፤,Ꭻ 𝜌፜,Ꭻ 1

] (3.20)

As reviewed in the previous literature, it is proposed that, as a soil gets denser,
the permeability will decrease and the friction angle and cohesion will increase
(e.g. Bartetzko and Kopf, 2007; Carman, 1937; Thevanayagam, 1998). Moreover,
a lower permeability may also be apparent if there are more smaller, for example,
clay particles, which may then result in a higher cohesion. Therefore, a negative
cross-correlation between hydraulic conductivity and both the friction angle and
cohesion has been considered. The effect of the cross-correlation has been investi-
gated in detail in Section 3.3.5. As for the cross-correlation between cohesion and
friction angle, Arnold and Hicks (2011) indicated that normally there is a negative
correlation between these two strength parameters. Rackwitz (2000) suggested
that the correlation coefficient between friction angle and cohesion is negative and
around -0.5, although El-Ramly et al. (2006) and Suchomel and Mašın (2010) found
that the cross-correlation between cohesion and tangent of friction angle is −0.06
and −0.0719, respectively, for the same marine clay. Therefore, in this study,
two different cases were analysed; one considered the cross-correlation between
cohesion and friction angle, and the other did not.

It can be seen, in Figure 3.11, that there is a further reduction in slope sta-
bility uncertainty when the cross-correlations between the hydraulic and strength
parameters are accounted for. The mean and standard deviation of FOS, which
are based on the updated hydraulic conductivity and cross-correlated strength pa-
rameters with hydraulic conductivity, are (a) 1.97 and 0.10 when the cohesion and
friction angle are uncorrelated (𝜌፜,Ꭻ = 0); and (b) 2.00 and 0.06 when the cohesion
and friction angle are negatively correlated (𝜌፜,Ꭻ = −0.5). Figure 3.11(c) sum-
marises the results in the form of cumulative distribution functions. It can be seen
that the reliable FOS, for example, at the 95% confidence level, increases from 1.76
for the initial distribution of hydraulic conductivity, to 1.82 for the updated distri-
bution of hydraulic conductivity, to 1.90 when the shear strength properties are
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Figure 3.11: Probability distributions of FOS for four different cases: (a) PDF of FOS (᎞ᏨᏪᑜ,ᑔ ዆ ዅኺ.኿,
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3.3.5. Sensitivity of the numerical approach
This section focuses on the sensitivity of the numerical approach with respect to
both the number of synthetic measurements and the degree of cross-correlation
between the hydraulic conductivity and strength parameters.

Number of measurement points
In the previous illustrative example, the number of measurement points is 88. In
order to investigate the influence of the number of measurement points, three
further configurations of measurement points have been considered; these are for
12, 24 and 44 points, at the locations shown in Figure 3.5.

It can be seen from Figure 3.12 that, when the number of measurement points
is 12, the RMSE of hydraulic head for the measured points is higher than in the
other three cases, indicating more error. Figure 3.13 shows the standard deviation
of the inflow (the sums of the fluxes flowing into the model domain) against the
number of measurement points. As the number of measurement points increases,
the standard deviation of the calculated inflow decreases. However, it can be seen
that, even when the number of measurement points is small, that is, 12, there is
still a significant reduction in the standard deviation, illustrating that the hydraulic
conductivity field is better captured.
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Figure 3.12: RMSE of hydraulic head for different numbers of measurement points.

Influence of cross-correlation between hydraulic conductivity and strength
parameters
This section studies the sensitivity of the FOS distribution to different correlation
coefficients. Table 3.1 gives the scenarios which have been studied. Scenario 1 is
to keep 𝜌ደዲ፤,፜ constant and change 𝜌ደዲ፤,Ꭻ. Scenario 2 is the opposite. Scenarios 1
and 2 do not take account of the cross-correlation between cohesion and friction
angle. In Scenario 3, the cohesion and friction angle are cross-correlated.
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Figure 3.13: Standard deviation of total inflow for different numbers of measurement points.

Table 3.1: Scenarios for the sensitivity analysis of the cross-correlation coefficients.

Scenario Analysis 𝜌ደዲ፤,፜ 𝜌ደዲ፤,Ꭻ 𝜌፜,Ꭻ 𝜇ዐዙዝ 𝜎ዐዙዝ

1 1 −0.5 −0.5 0 1.954 0.079
2 −0.5 −0.2 0 1.973 0.097
3 −0.5 −0.1 0 1.980 0.101
4 −0.5 0.2 0 2.002 0.108
5 −0.5 0.5 0 2.028 0.109

2 6 −0.3 −0.2 0 1.983 0.103
7 0 −0.2 0 2.000 0.107
8 0.3 −0.2 0 2.020 0.107
9 0.5 −0.2 0 2.034 0.106

3 10 −0.5 −0.2 −0.5 1.996 0.062
11 −0.5 −0.2 −0.2 1.982 0.085

In the case which does not utilise inverse analysis, 𝜇ዐዙዝ = 1.95 and the standard
deviation of FOS is 0.122. The 𝜇ዐዙዝ for the case which utilises inverse analysis, but
does not take account of cross-correlation between any of the parameters, is 2.02
and the standard deviation of FOS is 0.108. Table 3.1 shows that there can be a
further improvement in 𝜇ዐዙዝ and the standard deviation, irrespective of the cross-
correlation.

It can be seen in Figure 3.14(a) that, in Scenario 1, when the cross-correlation
𝜌ደዲ፤,Ꭻ increases, 𝜇ዐዙዝ also increases. The increase in 𝜇ዐዙዝ is related to the hydraulic
conductivity in the foundation. In Figure 3.3(a), the “real” values of hydraulic con-
ductivity near the embankment toe, through which the slip surface passes, are rela-
tively large compared to those in other areas of the foundation. After using inverse
analysis, the improved estimation of the hydraulic conductivity also gives higher
local values in this area. Therefore, when 𝜌ደዲ፤,፜ is constant and 𝜌ደዲ፤,Ꭻ changes
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Figure 3.14: Fitted normal distributions of FOS for different coefficients of cross-correlation: (a) influence
of ᎞ᏨᏪᑜ,ᒣ; (b) influence of ᎞ᏨᏪᑜ,ᑔ and (c) influence of ᎞ᑔ,ᒣ.

from negative to positive values, it means that the friction angle, which is cross-
correlated with the improved estimation of 𝑘, increases near the embankment toe.
The increase of friction angle results in an increase of shear strength which causes



..

3

44 3. Reduction of Slope Stability Uncertainty

the higher calculated FOS. Meanwhile, Table 3.1 shows that the standard deviation
also increases with 𝜌ደዲ፤,Ꭻ. The shear strength is the combined effect of cohesion
and friction angle, so when 𝜌ደዲ፤,Ꭻ increases and 𝜌ደዲ፤,፜ is negative and constant, the
range of shear strength becomes wider with the increase of the correlation coef-
ficient. The uncertainty in FOS is strongly related to the range of shear strength;
hence, the wider the range of shear strength, the larger the standard deviation of
FOS. In Figure 3.14(b), the variations of the mean and standard deviation of FOS
for Scenario 2 are similar to those for Scenario 1.

In Figure 3.14(c), when the cohesion and friction angle are negatively cross-
correlated, the standard deviation of FOS can be further reduced compared to the
case in which the cohesion and friction angle are uncorrelated.

In this section, it has been shown that the cross-correlation can play an impor-
tant role in the final distribution of FOS; in particular, by reducing the uncertainty
and thereby generally increasing the FOS corresponding to a confidence level of, for
example, 95%. Further research on the values of the cross-correlations, in general,
is needed.

3.4. Conclusions
In this chapter, a method to reduce the uncertainty in slope stability analyses via
field observations, inverse analysis and the RFEM is presented. It is shown, via the
use of a synthetic dataset, that the method can be used to reduce the uncertainty
in calculated factors of safety and, in general, reduce the calculated probabilities of
failure. It is anticipated that this may contribute significantly to the assessment of
existing geotechnical infrastructure.

The main workflow is to first make use of the hydraulic measurements (i.e. pore
pressures) to directly improve the estimation of local hydraulic conductivity via in-
verse analysis. The updated hydraulic conductivity can generate better predictions
of the seepage behaviour in the domain. Meanwhile, due to the cross-correlation
between hydraulic parameters and strength parameters, the strength parameters
(i.e. cohesion and friction angle) can be indirectly updated based on the updated
hydraulic conductivity. The updated predictions of both seepage behaviour and
strength parameters are simultaneously imported into the slope stability analysis.
It is shown that the slope stability computation can not only be improved by the bet-
ter prediction of the seepage behaviour (i.e. the uncertainty reduced), but also be
further improved by cross-correlating the hydraulic and strength parameters. This
represents an improvement from previous research in which the hydraulic parame-
ters were updated based on hydraulic measurements and the strength parameters
were updated based on displacements.

This method is extended to include time dependency in Chapter 4, as a further
step to reduce uncertainty in predictions and reduce the amount of measurement
data points required.
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Sequential Reduction of

Slope Stability Uncertainty
Based on Temporal Hydraulic

Measurements via the
Ensemble Kalman Filter

A data assimilation framework, utilising measurements of pore water pres-
sure to sequentially improve the estimation of soil hydraulic parameters and,
in turn, the prediction of slope stability, is proposed. Its effectiveness is
demonstrated for an idealised numerical example involving the spatial vari-
ability of saturated hydraulic conductivity, 𝑘፬ፚ፭. It is shown that the estima-
tion of 𝑘፬ፚ፭ generally improves with more measurement points. The degree
of spatial correlation of 𝑘፬ፚ፭ influences the improvement in predicted perfor-
mance, as does the selection of initial input statistics into the data assim-
ilation, thereby supporting an initial site investigation as part of the data
acquisition process.

This chapter has been submitted to Computers and Geotechnics.

45



..

4

46 4. Sequential reduction of slope stability uncertainty

4.1. Introduction
The slope stability of an embankment subjected to cyclic water level fluctuation
is crucial in geotechnical engineering (Huang et al., 2014; Polemio and Lollino,
2011; Serre et al., 2008), with the distribution of pore water pressure (PWP) under
seepage being particularly relevant in any slope stability assessment (Cho, 2012;
Zhu et al., 2013). To accurately estimate the PWP, a precise determination of the
soil hydraulic parameters is required. However, because it is not realistic to conduct
in-situ testing everywhere, some uncertainty remains due to the spatial variability
of material properties between measurement locations. This causes difficulty in
accurately predicting the seepage behaviour and distribution of pore pressures,
and, thereby, the embankment stability.

Data assimilation, which can utilise field measurements, is one method of im-
proving the prediction of slope behaviour, because it can improve the estimation
of soil parameters. Most previous studies related to slope back-analysis (or data
assimilation) have focused on soil shear strength parameters (Gilbert et al., 1998;
Ledesma et al., 1996b; Zhang et al., 2010), in which the utilised measurements
were mainly displacement or stress/strain. PWP measurements are seldom used in
geotechnical engineering, although, in hydrology, it has already been proven that
such measurements improve the estimation of hydraulic parameters (Zhou et al.,
2014). In geotechnical engineering, the improved accuracy of hydraulic parame-
ters not only benefits the estimation of PWP but also the prediction of slope stability
(Vardon et al., 2016).

A limited number of studies have investigated the influence of improved hy-
draulic parameters on slope stability, although they have usually ignored the spa-
tial variability of parameter values. For example, Zhang et al. (2016) applied the
Bayesian method to back-calculate hydraulic parameters by utilising PWP measure-
ments and investigated the effect of uncertainty in the parameters on the prediction
of slope stability, but without incorporating spatial variability. In contrast, Vardon
et al. (2016) linked the ensemble Kalman filter (EnKF) (Evensen, 1994, 2003) with
the random finite element method (RFEM) (Griffiths and Fenton, 1993) in steady
state seepage to back-calculate the hydraulic conductivity based on PWP measure-
ments. They cross-correlated hydraulic conductivity with the strength parameters
(cohesion and friction angle) and investigated the influence of the improved hy-
draulic conductivity on the distribution of the factor of safety (FOS). Meanwhile,
Jafarpour and Tarrahi (2011) indicated that an imprecise knowledge of the spa-
tial continuity could induce erroneous estimations of soil property values, whereas
Pasetto et al. (2015) investigated the influence of sensor failure on the estimation
of 𝑘፬ፚ፭, focusing on two cases with two correlation lengths. The results demon-
strated that the identification of 𝑘፬ፚ፭ was more accurate for the larger correlation
length. Hommels et al. (2001) compared the EnKF with the Bayesian method, and
concluded that the EnKF was easier to implement and could sequentially improve
the estimation of parameters once further data became available.

This chapter accounts for the spatial variability of 𝑘፬ፚ፭, which plays a dominant
role in rainfall infiltration as pointed out by Rahardjo et al. (2007). In addition,
the EnKF is applied to improve the estimation of the 𝑘፬ፚ፭ field by using (in this
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instance, numerically generated) ‘measurements’ of PWP. Due to the existence of
spatial variability, the spatial correlation length and arrangement and number of
measurement points can have an influence on the data assimilation. Therefore,
these aspects are also investigated.

The chapter is organised as follows. Firstly, the formulations of stochastic tran-
sient seepage, the EnKF and slope stability are introduced. Then, a synthetic ex-
ample is analysed, to demonstrate the sequential reduction of the uncertainty in
𝑘፬ፚ፭ and the influence on the subsequent prediction of slope stability. Finally, an
investigation into the influence of the pointwise statistics and spatial continuity of
𝑘፬ፚ፭ on the data assimilation process via the EnKF, utilising synthetic data, has been
undertaken.

4.2. Formulation
4.2.1. Framework of the overall analysis
Chapter 3 utilised hydraulic measurements in steady-state seepage to reduce slope
stability uncertainty via the EnKF. The formulation of the numerical approach was
also given. This chapter extends the research to transient seepage, as illustrated
by the framework shown in Figure 4.1.

With reference to Figure 4.1 (a), the analysis starts by generating an initial
ensemble of realisations of the spatial variation of 𝑘፬ፚ፭, based on the probability
distribution and scales of fluctuation of 𝑘፬ፚ፭ (i.e. multiple random field realisations
of 𝑘፬ፚ፭ are generated). The initial ensemble of 𝑘፬ፚ፭ is imported into a stochastic
transient seepage process. When the time 𝑡 reaches 𝑡ኻ, the measurements that
have been acquired from the field can be used in the data assimilation process;
that is, the EnKF is applied to improve the estimation of 𝑘፬ፚ፭ for all realisations
in the ensemble, based on the measured data. The slope reliability can also be
calculated, although, as it is the first time the EnKF is used in the transient seepage
process, there is no immediate improvement in the estimated pore pressure. The
two options are represented by calculation boxes A and B in Figures 4.1 (b) and 4.1
(c), respectively. The analysis then continues until the time reaches 𝑡ኼ, whereupon
the computation of pore water pressure resulting from the improved estimation of
𝑘፬ፚ፭ (calculated at 𝑡ኻ) can be used to compute the slope reliability. At the same
time the EnKF can again be applied to get an updated estimation of 𝑘፬ፚ፭, since new
PWP measurement data have been acquired. As the analysis proceeds still further,
the data assimilation continues to 𝑡ኽ, 𝑡ኾ and so on, with calculation box A or B being
followed at each stage.

4.2.2. Slope stability assessment under transient seepage
The governing equation of 2D transient unsaturated–saturated flow is based on
mass conservation, as described in Chapter 5. To solve it, both the soil water reten-
tion curve (SWRC), which describes the relationship between the suction head, ℎ፬,
and the volumetric water content, 𝜃, and the saturated–unsaturated hydraulic con-
ductivity relationship are necessary. The Van Genuchten–Mualem model (Mualem,
1976; van Genuchten, 1980) has been used to describe the relationship between
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Figure 4.1: Framework of the numerical approach incorporating transient seepage: (a) Overall flow
chart; (b) Details of calculation box A; (c) Details of calculation box B.
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ℎ፬ and 𝜃. In this chapter, the effect of hysteresis is not taken into account, in order
to simplify the computation. This behaviour is explored in Chapter 5. The hydraulic
conductivity of an unsaturated soil can also be derived using the van Genuchten
(1980) model. Figures 4.2 (a) and 4.2 (b) show the volumetric water content and
hydraulic conductivity of the unsaturated soil, respectively, as functions of the suc-
tion head.

�

�

s

r

0
Suc�on head hs [m]

V
o

lu
m

e
tr

ic
 w

a
te

r 
co

n
te

n
t 
 

 [
-]

 

1

hs,ae

Controlled

by n

ksat

0
Suc�on head hs [m]

H
y

d
ra

u
li

c 
co

n
d

u
c�

v
it

y
 [

m
/d

] 
hs,ae

(a) (b)

Figure 4.2: The relationships between suction head and (a) volumetric water content and (b) hydraulic
conductivity.

As in Chapter 5, Bishop’s effective stress, incorporating the influence of both
suction and water content, has been combined with the extended Mohr−Coulomb
failure criterion to calculate the shear strength.

4.2.3. Soil parameter random fields
The spatial variability of soil parameters is simulated by the generation of random
fields, which are based mainly on the statistical distributions and spatial correlations
of the parameters. The distribution of a soil parameter is often assumed to be nor-
mal or log-normal, and characterised by the mean and standard deviation. In this
paper, the distribution of 𝑘፬ፚ፭ is considered to be log-normal (Griffiths and Fenton,
1993; Zhu et al., 2013), so that the natural log of 𝑘፬ፚ፭, ln𝑘፬ፚ፭, follows a normal
distribution. The spatial correlation of soil parameters is here characterised by the
SOF, 𝑙, which is the distance over which parameters are significantly correlated. A
more detailed description of the SOF is given in Fenton and Griffiths (2008).

In this chapter, the random fields have been generated using local average
subdivision (LAS) (Fenton and Vanmarcke, 1990), using the computer module im-
plemented by Hicks and Samy (2002b, 2004). After the random fields of soil pa-
rameters (in this case 𝑘፬ፚ፭) have been generated, the values are imported into the
finite element program at the Gauss point level and then used in computing the
seepage and/or slope stability behaviour. The combined use of random fields and
the finite element method (FEM) is often referred to as the random finite element
method (RFEM).
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4.2.4. Ensemble Kalman filter (EnKF)
The ensemble Kalman filter, developed by Evensen (1994, 2003), has been linked
with RFEM using the implementation described in Chapter 3. The difference be-
tween this chapter and Chapter 3 is that, here, the measurement of PWP is from a
transient seepage process, so that the analysis is able to capture additional infor-
mation as time progresses. Theoretically, the EnKF can be applied at any time that
measurements are acquired. However, because it requires a lot of computational
effort, in this chapter, the EnKF has been applied at selected practical time steps
during the transient seepage process. During each application of the EnKF, no sub-
sampling methods have been applied; the recorded data at the specific timestep
have been selected, i.e. selective data thinning has been used.

4.3. Illustrative analysis
An idealised embankment subjected to cyclic water level fluctuation has been taken
as an example to demonstrate the behaviour of the proposed approach; that is,
in sequentially improving the estimation of 𝑘፬ፚ፭ by using PWP measurements and
thereby the influence of the updated hydraulic parameters on the prediction of slope
stability.

The geometry of the embankment is shown in Figure 4.3. Its height is 12 m, and
the width of the crest and base are 4 m and 52 m, respectively. The embankment
experiences a water level fluctuation on the upstream side, with WL1 and WL2
being the highest and lowest water levels. The downstream water level remains at
foundation level (𝑧 = 0 m). The bottom boundary is impermeable and fixed.

0

z

x

4m

52m

1
2
m

WL1

WL2

1:
2 1:2

Figure 4.3: Geometry of the embankment.

The water level fluctuation has been simulated by the summation of two si-
nusoidal curves (Figure 4.4). 𝑇ኻ = 1000 days is the time period of sinusoidal 1
(component 1 in Figure 4.4) and 𝑇ኼ is the time period of sinusoidal 2 (component 2
in Figure 4.4), in which 𝑇ኻ = 3𝑇ኼ. The small arrows in the figure indicate the times
at which the pore water measurement data were acquired and the EnKF applied,
while the numbers along the top of the figure indicate which application of the EnKF
the arrows refer to. The slope stability analyses have been done directly before the
2nd, 4th, 6th, 8th, 10th and 12th data assimilations.

In the embankment, the heterogeneity of 𝑘፬ፚ፭ has been characterised by its
probability distribution, i.e. as characterised by the mean, 𝜇, and standard devi-
ation, 𝜎, of 𝑘፬ፚ፭, and by the SOF. The mean and coefficient of variation of 𝑘፬ፚ፭
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Figure 4.4: Water level fluctuation simulated by two sinusoidal curves.

are assumed to be 1.0 × 10ዅዂ m/s and 1.0, respectively, whereas the vertical and
horizontal SOFs of 𝑘፬ፚ፭ are assumed to be 𝑙፯ = 1.0 m and 𝑙፡ = 8.0 m, respec-
tively. The mechanical parameters and other hydraulic parameters are assumed to
be deterministic and are listed in Table 4.1.

Table 4.1: Parameter values for the illustrative example.

Parameter Symbol Unit Value

VGM parameter for the curve 𝛼፝ mዅኻ 0.1
Fitting parameter for VGM model 𝑛 - 1.226
Saturated volumetric water content 𝜃፬ - 0.38
Residual volumetric water content 𝜃፫ - 0.0038
Stiffness 𝐸 kPa 1.0 × 10኿
Poisson’s ratio 𝜈 - 0.3
Effective cohesion 𝑐ᖤ kPa 15
Effective friction angle 𝜙ᖤ ኺ 20
Specific unit weight 𝐺፬ - 2.02
Note: VGM denotes the Van Genuchten–Mualem model, described in Section 4.2.2

LAS has been used to generate 1000 random fields as initial ensemble members.
It has also been used to generate a single reference realisation, based on the same
statistics as used for the ensemble. This is to represent ‘real’ values of hydraulic
conductivity (as might be obtained from the field) and has been used in the seepage
analysis to produce ‘real’ data of PWP to be assimilated.

Two indicators are used to evaluate the performance of the EnKF:

RMSE = √ 1
𝑁፤

ፍᑜ
∑
፣዆ኻ
((ln𝑘፣፬ፚ፭)

፫
− (ln𝑘፣፬ፚ፭)

፞
)
ኼ

(4.1)
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SPREAD = √ 1
𝑁፤

ፍᑜ
∑
፣዆ኻ
VAR(𝑗) (4.2)

where RMSE is the root mean square error and SPREAD is a measure of the un-
certainty of the ensemble members, and in which 𝑗 is the Gauss point number, 𝑁፤
is the number of random field cells in the embankment, superscripts 𝑟 and 𝑒 indi-
cate the ‘real’ and ensemble mean values, respectively, and VAR(𝑗) is the ensemble
variance for each unknown 𝑘፬ፚ፭, computed over all the ensemble members.

4.4. Results
4.4.1. Example analysis
This section demonstrates the capability of the EnKF in sequentially improving the
estimation of the spatially varying 𝑘፬ፚ፭, as well as the subsequent prediction of
slope stability.

Estimation of 𝑘፬ፚ፭ via the EnKF
The number of measurement points used in the EnKF is 63, and the locations are
shown in Figure 4.11 and Table 4.2. Figure 4.5 shows the comparison between
the reference ln𝑘፬ፚ፭ field, and the initial and improved estimations of the same
field. It is seen that, after data assimilation, the estimated local variability of 𝑘፬ፚ፭
is significantly improved.

Figure 4.6 shows the reduction of the RMSE and ensemble spread of 𝑘፬ፚ፭.
Whereas the RMSE decreases quickly in the first few assimilation steps and be-
comes stable thereafter, the SPREAD decreases continuously. Based on Equation
4.1, the decrease in RMSE indicates that the estimation of 𝑘፬ፚ፭, i.e. the ensemble
mean of 𝑘፬ፚ፭, becomes closer to the ‘real’ value. Based on Equation 4.2, the de-
crease in SPREAD indicates that the variability of 𝑘፬ፚ፭ at each Gauss point becomes
smaller.

Figure 4.7 compares, for each Gauss point in the finite element mesh, the en-
semble mean of ln𝑘፬ፚ፭ with the reference ln𝑘፬ፚ፭. The straight diagonal line in the
figure indicates a perfect match between the two quantities. Therefore, the closer
to the line a circle (representing a Gauss point value) is, the closer the ensemble
mean 𝑘፬ፚ፭ of this point is to the reference 𝑘፬ፚ፭. The colour of the circle represents
the numbering of the Gauss points, i.e. from 1 to 2784. In addition, the size of the
circle indicates the ratio of the horizontal to vertical coordinates of the points, i.e.
𝑥/𝑧. Figure 4.7 shows the ensemble means of ln𝑘፬ፚ፭ getting closer to the reference
ln𝑘፬ፚ፭ as the number of assimilation steps increases.

Prediction of the slope stability
The improved estimation of 𝑘፬ፚ፭ results in an improvement in the estimation of
PWP. This influences the effective stress, which, in turn, influences the prediction
of slope stability. Figure 4.8 shows the distributions of FOS with and without data
assimilation, i.e. the probability density function (PDF) and cumulative distribution
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Figure 4.5: Improved estimation of ደዲ፤ᑤᑒᑥ field (፥ᑧ ዆ ኻ ዱ and ፥ᑙ ዆ ዂ ዱ): (a) Reference field; (b)
Initial estimation before assimilation; (c) Improved estimation after 1st assimilation step; (d) Improved
estimation after 11th assimilation step.

function (CDF) at different times, as well as the corresponding improved ln𝑘፬ፚ፭
random fields. The solid vertical line represents the ‘real’ FOS calculated using the
PWP derived from the reference 𝑘፬ፚ፭ field. It is seen that the prediction of slope
stability can be improved via data assimilation using PWP measurements, due to
the standard deviation of the FOS decreasing compared to the original distribution.
This is mainly due to the decreased ensemble spread of 𝑘፬ፚ፭ (Figure 4.6), which
reduces the uncertainty in the estimation of PWP and, in turn, the uncertainty in
the slope stability.

Note that Figure 4.8 (e) shows the mean of the predicted FOS just before the
10th assimilation step to be less accurate than before the 8th assimilation (Figure
4.8 (d)). This is because the error between the ‘real’ PWP and computed PWP
increases. The error is defined as:
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Figure 4.6: RMSE and SPREAD as a function of assimilation step.
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Figure 4.7: Ensemble mean ደዲ፤ᑤᑒᑥ versus reference ደዲ፤ᑤᑒᑥ: (a) before data assimilation; (b) after 1st
data assimilation step; and (c) after 11th data assimilation step.

Error = √ 1
𝑛𝑛

፧፧

∑
፣዆ኻ

1
𝑁

ፍ

∑
።዆ኻ
(PWP፞።,፣ − PWP፫፣)

ኼ
(4.3)

where 𝑛𝑛 is the number of element nodes, 𝑁 is the number of ensemble members,
and PWP፞ and PWP፫ are the computed PWP and ‘real’ PWP based on the reference
hydraulic conductivity field, respectively. Figure 4.9 shows the variation of Error
(in terms of PWP head) with time. It is seen that the Error increases at 𝑡 = 5𝑇ኼ,
causing the mean of the FOS in Figure 4.8 (e) to move to the right relative to
the ‘real’ solution and the standard deviation of the FOS to increase. The Error
increase is due to the increased uncertainty in the PWP, which is due to the transient
drying–wetting seepage process. The uncertainty in the PWP changes with time,
partly due to the non-linearity of the SWRC and partly because some soils are still
drying while others could be wetting. Figures 4.8 (f), 4.8 (l) and 4.8 (r) are the
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results at 𝑡 = 2𝑇ኻ, revealing that the mean of the predicted FOS starts getting
closer to the reference FOS again.

To further illustrate this, the computation of the seepage process and slope
stability have been extended to 8𝑇ኼ. Figure 4.10 (a) shows the variation of the
computed mean FOS and reference FOS with time, and Figure 4.10 (b) shows the
variation of the standard deviation of FOS with time, with and without data assimila-
tion. As expected, the standard deviation is significantly smaller when incorporating
data assimilation, although it fluctuates with time as the process continues (due to
the fluctuating external loading).

4.4.2. Sensitivity to the number of measurement points
Estimation of 𝑘፬ፚ፭
The estimation of the spatial variability of 𝑘፬ፚ፭ requires PWP sensors to be installed
to capture the local variability. In this section, the influence of different numbers
of measurement points on the estimation of 𝑘፬ፚ፭ is investigated. These points
are assumed to be located at selected finite element nodes, as shown in Figure
4.11 (b), in which the numbers indicated below the embankment are the allocated
serial numbers of the columns of measurement points. In order to investigate the
influence of the number of measurement points, different numbers of measurement
points were used by selecting different combinations of columns. The details are in
given Table 4.2.

Table 4.2: Scenarios of different numbers of measurement points.

Scenario Columns selected Number of measurement points

1 ±12,±10,±8,±6,±4,±2, 0 155
2 ±12,±9,±6,±3, 0 103
3 ±10,±5, 0 63
4 ±7, 0 45
5 ±12, 0 25
6 Points in ±10,±5, 0 (“—”) 8
7 Points in ±5, 0 (“/”) 3

Note: ± indicates both positive and negative column numbers, the symbol ‘—’ and ‘/’
indicates the position of the points in scenarios ዀ and ዁, respectively.

The input mean and standard deviation of 𝑘፬ፚ፭ are the same as in the previous
section, as are 𝑙፯ and 𝑙፡. Figure 4.12 shows the influence of the number of mea-
surement points on the estimation of 𝑘፬ፚ፭. It is seen that the RMSE and SPREAD
decrease with increasing number of measurement points, albeit with less of an
impact on the RMSE above 63 points.

Estimation of slope stability
The influence of the number of measurement points on the prediction of slope
stability is shown in Figure 4.13. It can be seen that, counter-intuitively, the un-
certainty in the FOS for 63 measurement points is slightly less than that for 103
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Figure 4.9: Error in PWP versus time.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 1T2 2T2 T1 4T2

Time t

5T2 2T1 7T2 8T2 3T1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
ta

n
d

a
rd

 d
e

v
ia

!
o

n
 o

f 
F

O
S

 [
-]

Original

Updated

F
O

S

Reference FOS

Updated mean of FOS

(a)

(b)

Figure 4.10: FOS and standard deviation of FOS versus time for the original and updated ensembles.

measurement points. This is because the uncertainty in the FOS is also influenced
by the measurement locations. To illustrate this, Figure 4.14 shows a comparison
between two different configurations of 63 measurement points: the original con-
figuration defined in Table 4.2, and a second in which the 63 points are located in
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Figure 4.11: FE mesh (a) and location of measurement points (b).
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Figure 4.12: Sensitivity of RMSE and SPREAD to the number of measurement points.

Columns 0, 𝑝𝑚3 and 𝑝𝑚12. The uncertainty in the FOS for the second configura-
tion is greater due to the different spatial distribution of measurements throughout
the embankment as a whole.

4.4.3. Influence of spatial continuity on the data assimilation
The spatial continuity has been proven to be influential in the estimation of 𝑘፬ፚ፭
when the EnKF is applied in the data assimilation process (Chen and Zhang, 2006;
Jafarpour and Tarrahi, 2011; Pasetto et al., 2015). When the SOF is large, the local
𝑘፬ፚ፭ is more likely to be correlated over a relatively long distance. Therefore, it is
hypothesized that, for the same number of measurement points, when the SOF (𝑙)
is larger, the assimilated results should give a better estimation of 𝑘፬ፚ፭. This has
been investigated for both isotropic and anisotropic random fields.



4.4. Results ..

4

59

1.05 1.  1 1.15 1.  2 1.25 1.  3 1.35 1.  4 1.45 1.  5
0

5

10

15

20

25

FOS

P
ro

b
a

b
il

it
y

 d
e

n
si

ty
 f

u
n

c!
o

n

Original (distribu!on fit)

25 points

45 points

63 points

103 points

Original (histogram)

FOS of reference 

field

30

155 points

Figure 4.13: Influence of the number of measurement points on the distribution of FOS.
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Figure 4.14: Comparison of FOS distributions for two different configurations of ዀኽmeasurement points.

Isotropic fields
For isotropic random fields, 𝑙፯ is equal to 𝑙፡. Three different values have been
studied here, i.e. 𝑙፯ = 𝑙፡ = 2, 8, 64 m, as illustrated by typical random fields shown
in Figures 4.16 (a), 4.17 (a) and 4.18 (a), respectively. It is seen that, with an
increase in the SOF, the domain becomes nearer to a homogeneous field.

Figure 4.15 shows that the RMSE and SPREAD for the three SOFs decrease with
an increase in the number of assimilation steps. Moreover, when the SOF is larger,
the RMSE is smaller which indicates the updated estimation of 𝑘፬ፚ፭ is more accurate.
The SPREAD is also less for a larger SOF. Figures 4.16–4.18 compare the reference
and updated ln𝑘፬ፚ፭ fields for different values of 𝑙.
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Figure 4.15: Variation of RMSE and SPREAD with SOF for isotropic random fields.
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Figure 4.16: Improved estimation of ደዲ፤ᑤᑒᑥ field (፥ᑧ ዆ ፥ᑙ ዆ ኼ ዱ): (a) Reference field; (b) Improved
estimation after 11th assimilation step based on ዀኽ measurement points.

Figure 4.19 shows that the original standard deviation of the FOS increases
with an increase in SOF. When the EnKF is applied, by comparing the original and
updated standard deviations, it is seen that the reduction of the standard deviation
of the FOS is greatest for the largest SOF.

Anisotropic fields
In practice, due to the depositional process of soil, the horizontal SOF tends to
be larger than the vertical SOF. In this section, the vertical SOF is assumed to be
constant, i.e. 𝑙፯ = 1 m, and the horizontal SOF is 𝑙፡ = 2, 8, 64 m. The larger 𝑙፡
leads to horizontal passages of lower resistance to water flow. Figures 4.5 (a), 4.21
(a) and 4.22 (a) show typical random fields for the three horizontal SOFs.

In Figure 4.20, the number of measurement points is 63, except for 𝑙፡ = 2 m
when two different numbers of measurement points are compared, i.e. 63 and 103.
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Figure 4.17: Improved estimation of ደዲ፤ᑤᑒᑥ field (፥ᑧ ዆ ፥ᑙ ዆ ዂ ዱ): (a) Reference field; (b) Improved
estimation after 11th assimilation step based on ዀኽ measurement points.
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Figure 4.18: Improved estimation of ደዲ፤ᑤᑒᑥ field (፥ᑧ ዆ ፥ᑙ ዆ ዀኾ ዱ): (a) Reference field; (b) Improved
estimation after 11th assimilation step based on ዀኽ measurement points.

It was found that, when 𝑙፡ = 2 m, the RMSE does not decrease monotonically when
63 measurement points are used. Since the horizontal SOF is small, indicating that
the soil property values are correlated over a small distance, more measurement
points have also been considered for this case. Figure 4.20 shows that the RMSE
decreases when 103 measurement points are used. For 𝑙፡ = 8 and 64 m, the RMSE
decreases with increasing number of assimilation steps. The SPREAD decreases
with the number of assimilation steps and the extent of the reduction increases with
an increase in 𝑙፡ (and with an increase in the number of measurement points).

Figures 4.21 and 4.22 compare the reference and updated ln𝑘፬ፚ፭ fields for 𝑙፡ = 2
and 64 m, respectively. The case with 𝑙፡ = 8 m is shown in Figure 4.5.

In Figure 4.23, when the EnKF is not applied there is no significant difference in
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the standard deviations of the FOS. However, when the EnKF is applied, it is seen
that the reduction in the standard deviation of the FOS is significant and is highest
for 𝑙፡ = 8 m. This indicates that the reduction of the uncertainty does not simply
increase with an increase in the horizontal SOF.

4.4.4. Influence of initial ensemble statistics
So far, the generated ensembles have been based on the same spatial statistics
as used to generate the ‘real’ field. This section investigates the impact (on the
analysis) of generating ensembles from inaccurate input statistics.

Influence of inaccurate SOF
In the previous analyses, the SOF of 𝑘፬ፚ፭ was used to generate the initial ensemble
members via LAS. Chen and Zhang (2006) briefly analysed the influence of an
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Figure 4.21: Improved estimation of the ደዲ፤ᑤᑒᑥ field (፥ᑧ ዆ ኻ ዱ and ፥ᑙ ዆ ኼ ዱ): (a) Reference field;
(b) Improved estimation after 11th assimilation step based on ዀኽ measurement points; (c) Improved
estimation after 11th assimilation step based on ኻኺኽ measurement points.
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Figure 4.22: Improved estimation of the ደዲ፤ᑤᑒᑥ field (፥ᑧ ዆ ኻዱ and ፥ᑙ ዆ ዀኾዱ): (a) Reference field; (b)
Improved estimation after 11th assimilation step based on ዀኽ measurement points.

inaccurate integral scale (similar to the SOF) and found that a small deviation (i.e.
of 20%) in its value had no significant impact on the assimilation results. However,
they also pointed out that wrong information on the statistical anisotropy could
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Figure 4.23: Comparison between the original and updated distributions of FOS for different ፥ᑙ (፥ᑧ ዆
ኻ ዱ).

have a long-lasting effect on the updated ln𝑘፬ፚ፭ field and that the effect is difficult
to eliminate. Therefore, this section analyses a few cases in which 𝑙፡ is assumed
to deviate from the ‘real’ value, i.e. 50% smaller, 50% larger and 100% larger. In
addition, a limiting case where the SOF is assumed to be infinity has been analysed,
so that the generated initial ensemble members are based only on the probability
distribution of 𝑘፬ፚ፭, i.e. on the mean and standard deviation.

Figure 4.24 shows the comparison of the RMSE and SPREAD between the cases,
whereas Figure 4.25 shows the reference and updated ln𝑘፬ፚ፭ fields corresponding
to the 11th assimilation step, which can be compared with the updated field based
on the correct SOF of 𝑙፡ = 8 m in Figure 4.5 (d). Figure 4.25 (b) shows that no
spatial variability is modelled in the updated ln𝑘፬ፚ፭ field when the starting SOF is
infinity. Moreover, Figure 4.24 (b) shows that the SPREAD with no spatial variability
decreases to zero, which implies that the updated estimation of 𝑘፬ፚ፭ does indeed
converge to a single value. Therefore, it can be concluded that the EnKF cannot
determine the local variability of 𝑘፬ፚ፭ without the input of spatial variability in the
ensemble members. This can be explained by the calculation of the Kalman gain. If
no spatial correlation is initially considered, i.e. the field is homogeneous, in each
state vector the corresponding values of hydraulic conductivity will be the same
(because 𝑘፬ፚ፭ is the same throughout the mesh). Then the Kalman gain gives a
uniform change in the update of 𝑘፬ፚ፭, since there is only a uniform property value
in each ensemble. Therefore, the Kalman gain results in the same updates for all
local 𝑘፬ፚ፭ for each ensemble, so that the algorithm is not able to search for local
variability of 𝑘፬ፚ፭ in the reference field.

Influence of inaccurate mean and standard deviation
The influence of the initial mean and standard deviation of 𝑘፬ፚ፭ has also been
investigated, as the initial bias has an influence on the updated estimation of 𝑘፬ፚ፭
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Figure 4.24: Influence of inaccuracy in ፥ᑙ on variation of RMSE and SPREAD.

(Dee and Da Silva, 1998). First, only the value of the mean was changed. Then,
the values of both the mean and standard deviation were changed. Table 4.3 lists
the inaccurate values used in the data assimilation process. In both cases, accurate
SOFs were used.

Table 4.3: Inaccurate mean and standard deviation of ፤ᑤᑒᑥ used in the EnKF.

Case Mean (m/s) Standard deviation (m/s) 𝑙፯ (m) 𝑙፡ (m)

Accurate 1.0 × 10ዅዂ 1.0 × 10ዅዂ
1 8Inaccuarate 1 5.0 × 10ዅዂ 1.0 × 10ዅዂ

2 5.0 × 10ዅዂ 5.0 × 10ዅዂ

Figures 4.26 and 4.27 compare results between using accurate and inaccurate
initial conditions. It is seen that, if only the mean value is inaccurate, there is a big
error in the updated estimation of 𝑘፬ፚ፭ (see Figure 4.27 (b)). This may be explained
by Figure 4.28, which shows the three input distributions of 𝑘፬ፚ፭ with different
means and standard deviations. It is seen that, when the mean is inaccurate and
the standard deviation is relatively small, there is almost no overlap between the
area under the solid line (representing the correct distribution) and the dash−dotted
line (representing the inaccurate distribution). The results indicate that, when the
initial mean is uncertain, it is better to choose a larger standard deviation in order
to get acceptable back-calculated results. This is because, if the initial estimation of
the mean and standard deviation is inaccurate, choosing a larger standard deviation
for generating the initial ensemble enables the realisations to cover a larger range
of values, which, in turn, helps in searching out the correct values of 𝑘፬ፚ፭ during
the data assimilation process. Note that, in Figure 4.28, the distribution curve of
𝑘፬ፚ፭ based on accurate statistics almost overlaps with the distribution curves of 𝑘፬ፚ፭
taken from the reference field (Figure 4.27 (a)) and the estimated field (Figure 4.27
(c)).
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Figure 4.25: Improved estimation of ደዲ፤ᑤᑒᑥ field based on ዀኽmeasurement points and various estimates
for ፥ᑙ relative to ፥ᑙ ዆ ዂ ዱ: (a) Reference field; (b) Improved estimation (no SOF); (c) Improved
estimation (፥ᑙ ዅ኿ኺ%); (d) Improved estimation (፥ᑙ ዄ኿ኺ%); (e) Improved estimation (፥ᑙ ዄኻኺኺ%).

4.5. Comparison between static and temporal mea-
surements

This section compares the difference between using static measurements from
steady-state seepage and temporal measurements from a transient seepage pro-
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Figure 4.26: Variation of RMSE and SPREAD for cases with accurate and inaccurate initial conditions.
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Figure 4.27: Improved estimation of ደዲ፤ᑤᑒᑥ field with inaccurate initial conditions: (a) Reference field;
(b) Improved estimation after 11th assimilation step with inaccurate mean only; (c) Improved estimation
after 11th assimilation step with both inaccurate mean and standard deviation.

cess. For the static measurements, the water level is assumed to be constant at
WL1 and the PWP measurements are used to iteratively update the estimation of
𝑘፬ፚ፭.

Figure 4.29 shows the variation of RMSE and SPREAD for the cases using tempo-
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Figure 4.29: RMSE and SPREAD for static and temporal measurements.

ral and static PWP measurements, while Figure 4.30 shows the updated estimation
of the ln𝑘፬ፚ፭ field for the two cases. The two figures demonstrate the improve-
ment is better when using temporal measurements, due to more information being
available for tuning the results.

4.6. Conclusions
It has been shown that the measurement of PWP can contribute to an improved
estimation of 𝑘፬ፚ፭. In the transient seepage process, once the measurement of PWP
is acquired, the EnKF can be used to improve the estimation of 𝑘፬ፚ፭ and, thereby,
the estimation of seepage behaviour and slope stability. Significantly, the temporal
analysis gives more information for tuning results than a steady-state analysis as
implemented in Chapter 3. It has been found that the accuracy of the estimation
of 𝑘፬ፚ፭ increases with an increasing number of measurement points, although the
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Figure 4.30: Improved estimation of ደዲ፤ᑤᑒᑥ field: (a) Reference field; (b) Improved estimation after
11th assimilation step using temporal measurements; (c) Improved estimation after 11th assimilation
step using static measurements.

uncertainty reduction in the FOS does not monotonically increase with the increasing
number. However, it should be noted that, whatever the number of measurement
points, the uncertainty in the slope stability can be reduced to a certain extent.

It has also been found that the spatial continuity of 𝑘፬ፚ፭, as reflected by the
magnitude of the SOF used in random field simulations, has an influence on the
estimation of 𝑘፬ፚ፭ and thereby on the estimation of slope stability. The RMSE of
𝑘፬ፚ፭ is smaller for a larger 𝑙 for the same number of measurement points. In
addition, the SPREAD of 𝑘፬ፚ፭ reduces as 𝑙 gets larger. These results indicate that,
when the soil parameters are correlated over a longer distance, the improvement
in the estimation of 𝑘፬ፚ፭, when using the EnKF based on the same number of
measurement points, is greater. For slope stability and isotropic spatial variability,
the reduction of the uncertainty in the FOS increases with an increasing 𝑙. However,
for anisotropic spatial variability (for 𝑙፯ constant and relatively small compared to
the height of the embankment), the reduction of the uncertainty in the FOS does not
simply increase with an increasing degree of anisotropy, i.e. 𝑙፡⁄𝑙፯ , for the analyses
presented in this chapter. In addition, although the original standard deviation of
the FOS is almost the same for the three values of 𝑙፡ considered, the updated
standard deviation of the FOS shows significant differences for the different 𝑙፡.

Last but not least, the initial ensemble statistics of 𝑘፬ፚ፭ have been investigated.
It was found that the EnKF cannot work out the local variability of 𝑘፬ፚ፭ based only
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on the measurement data; that is, without considering the spatial variability in the
input ensemble. However, even a relatively inaccurate estimation of the SOF, as
input for the initial ensemble, can give an updated estimation of 𝑘፬ፚ፭ that is almost
identical to that obtained using the correct SOF. In addition, when the variation of
𝑘፬ፚ፭ is not captured well, it is better to assume a larger standard deviation for 𝑘፬ፚ፭.
This is so that the initial ensemble covers a greater range of values, which helps
when searching the parameter space during the assimilation process.

The chapter has only utilised synthetic data to validate the proposed frame-
work, so further work is needed to apply this method to a real project with real
measurements.



5
Combined Effect of Hysteresis

and Heterogeneity on the
Stability of an Embankment

under Transient Seepage

The stability of most earth embankments is strongly influenced by the wa-
ter content of the soil. The water content directly influences the suction or
pore pressure in the soil, as well as the mass of material, thereby affecting
the stress state and strength, and leading to changes in the stability. These
aspects are coupled by the so-called soil water retention behaviour, which
is observed to be a hysteretic phenomenon. Moreover, soils are known to
be spatially variable or heterogeneous in nature, which can lead to preferen-
tial flow paths and stronger or weaker zones. In this chapter the behaviour
of a heterogeneous earth embankment subjected to cyclic water level fluctu-
ation, including the impact of hysteresis, is investigated. The soil property
values governing the unsaturated hydraulic response of the embankment are
considered as spatially random variables, with the mechanical property val-
ues considered deterministic in order to isolate the impact of the hydraulic
behaviour. The Monte Carlo Method (MCM) is used to conduct probabilistic
analyses and an assessment of the relative influence of material properties
illustrates that the saturated hydraulic conductivity, 𝑘፬ፚ፭, plays a dominant
role in the slope stability. Moreover, in the initially drying condition, the av-
erage FOS and the 95th percentile FOS of the slope considering hysteresis
are smaller than those without considering hysteresis, at all times, while the

This chapter has been published in Engineering Geology, 219: 140-150 (2017) (Liu et al., 2017) and
initial results in IOP Conference Series: Earth and Environmental Science, 26(1): 012013 (2015) (Liu
et al., 2015b).
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variability of the FOS considering hysteresis is larger than that when not
considering hysteresis. In practice, this means that slopes under seepage
conditions, which are assessed to have a low FOS, should be assessed in-
cluding the hysteretic behaviour to ensure stability.
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5.1. Introduction
Slopes under seepage conditions, with both saturated and unsaturated zones, are
common and of great concern in geotechnical engineering (Chen and Zhang, 2006;
Rahardjo et al., 2010). The saturated‒unsaturated seepage in the slope has a
significant impact on the slope stability, via changes in shear strength and volumetric
weights, and is strongly related to the water retention behaviour of the unsaturated
soil (Gui et al., 2000; Le et al., 2012; Zhu et al., 2013; Zhang et al., 2015, 2016).

The soil water retention curve (SWRC) describes the relationship between the
suction head, ℎ፬, and a measure of the water content, in this chapter the volumet-
ric water content (VWC), 𝜃, and in addition impacts the hydraulic conductivity, 𝑘,
which further affects the distribution of pore water pressure (PWP) in the soil (Lam
et al., 1987; Yang et al., 2012a). Hysteresis in the water retention behaviour of
unsaturated soils describes a non-unique relationship between ℎ፬ and 𝜃, and thus
also between ℎ፬ and 𝑘 (Jaynes, 1984; Pham et al., 2005; Wu et al., 2012). More-
over, due to the existence of hysteresis, the VWC in the soil under cyclic drying and
wetting processes may exhibit a significantly different response as compared to the
non-hysteretic case (Ma et al., 2011). Indeed, the differences in the PWP and VWC
induced by the hysteresis in the SWRC contribute to a hysteretic shear strength
response which affects the stability and reliability of the slope (Bishop, 1960).

However, to simplify seepage analyses the effect of hysteresis is commonly ig-
nored (e.g. Tsaparas et al., 2002; Le et al., 2012), even though it may generate
inaccurate predictions of the distributions of PWP and VWC. Tami et al. (2004)
investigated the variation in the suction profile in a soil column with a hysteretic
SWRC. It was found that, due to the hysteresis, the suction at the newly reached
steady state after a certain period of infiltration was significantly affected by the
initial water content prior to the infiltration process. Yang et al. (2012a) studied
the variation of matric suction and VWC in a soil column under cyclic precipita-
tion and evaporation. It was found that the computed results were closer to the
experimental results when considering hysteresis.

Recently, several researchers have investigated the effect of hysteresis on the
stability of soil slopes. Ebel et al. (2010) pointed out that simulations ignoring hys-
teresis could underestimate the potential for landslides. Ma et al. (2011) conducted
an experimental and numerical study of a soil slope to assess the effect of hystere-
sis, both on the hydraulic response and the slope stability. It was found that the
distribution of water content was influenced by hysteresis and that the calculated
FOS of the slope considering hysteresis recovered quickly after rainfall and was
larger than that without considering hysteresis for any given time.

Most research that includes the effect of hysteresis focuses on homogeneous
soils. Conversely, if the heterogeneity of soil property values is taken into account,
the impact of hysteresis is typically not accounted for (Arnold and Hicks, 2010, 2011;
Zhu et al., 2013). However, Nakagawa et al. (2012) highlighted the importance of
considering both hysteresis and heterogeneity in the simulation of unsaturated flow
by comparing numerical results with experimental data. Very few studies have in-
corporated hysteresis and heterogeneity in the assessment of slope stability. Yang
et al. (2012b) accounted for the effect of hysteresis and spatial variability of soil
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property values, i.e. of the saturated hydraulic conductivity and some SWRC fit-
ting parameters, in a one-dimensional infiltration problem. It was shown that the
combined effect of hysteresis and heterogeneity of soil property values increased
the uncertainty in the estimation of the ability to prevent penetration in soil covers,
compared to the non-hysteretic but heterogeneous case. Zhang (2007) incorpo-
rated both hysteresis and heterogeneity into the stability analysis of a 2D slope
under cyclic precipitation and evaporation, with the analysis starting on the wet-
ting SWRC. The results suggested that simulations without considering the effect
of hysteresis may underestimate the slope reliability.

This chapter investigates the slope stability of an embankment under transient
seepage, i.e. due to a cyclic external water level. However, it extends the research
of Chapter 4 in that the effects of both hysteresis and heterogeneity of the soil
property values on the seepage response are considered. First, the mechanical
and stochastic model framework for slope stability under saturated‒unsaturated
seepage is briefly introduced. Next, the numerical implementation of the frame-
work is explained, and a specific example then utilised to investigate the impact
of considering hysteresis for a homogeneous embankment. Finally, the effect of
spatial variability of the soil property values is considered, by conducting a proba-
bilistic analysis of the slope stability and comparing the results of the hysteretic and
non-hysteretic cases.

5.2. Formulation
5.2.1. Governing flow equation
The governing equation of 2D transient unsaturated‒saturated flow is based on
mass conservation. In the flow analysis, the soil skeleton is considered to be rigid,
which means that any volume change during the seepage process is not accounted
for. Therefore, the governing flow equation, in incremental form, is (e.g. Celia
et al., 1990)

𝜕
𝜕𝑥 (𝑘፱

𝜕ℎፏፖፏ
𝜕𝑥 ) + 𝜕

𝜕𝑧 (𝑘፳
𝜕ℎፏፖፏ
𝜕𝑧 + 𝑘፳) = 𝐶(ℎፏፖፏ)

𝜕ℎፏፖፏ
𝜕𝑡 (5.1)

where 𝑘፱ and 𝑘፳ are the hydraulic conductivities in the 𝑥 and 𝑧 directions, respec-
tively, ℎፏፖፏ is the PWP head, 𝑡 is time and 𝐶(ℎፏፖፏ) = 𝜕𝜃/𝜕ℎፏፖፏ is the specific
moisture capacity function with 𝜃 being the VWC. The same description of mass
conservation can be used for heterogeneous porous media (e.g. Gui et al., 2000)
with an appropriate selection of hydraulic conductivities at each location.

5.2.2. Water retention behaviour
The SWRC is a function relating the suction head, ℎ፬, with 𝜃. The suction head is
defined as the negative component of ℎ and is represented by

ℎ፬ = −ℎፏፖፏ = 𝑠/𝛾፰ = (𝑢ፚ − 𝑢፰)/𝛾፰ (5.2)

where 𝑠 is the matric suction, 𝑢ፚ is the pore air pressure, which is assumed to be
atmospheric in this paper, 𝑢፰ is the PWP and 𝛾፰ is the unit weight of water.
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The van Genuchten (1980) model is frequently used to describe the SWRC (e.g.
Gui et al., 2000; Sivakumar Babu and Murthy, 2005; Phoon et al., 2010) as it can
give a good approximation of the experimental results of many soil types (e.g. Han
et al., 2010). It is given by

𝑆 = ᎕ዅ᎕ᑣ
᎕ᑤዅ᎕ᑣ =

ኻ
[ኻዄ(ᎎ|፡ᑇᑎᑇ|ᑟ)]ᑞ

ℎ < 0
𝑆 = 1 ℎ ≥ 0

(5.3)

where 𝑆 is effective degree of saturation, 𝛼 is a parameter which is approximately
the inverse of the air-entry suction head, ℎ፬,ፚ፞, and 𝜃፬ and 𝜃፫ are the saturated and
residual VWC, respectively (see Figure 5.1 (a)). Due to the hysteretic behaviour
described by the water retention curve, the main wetting and drying curves have
different values of 𝛼, i.e. 𝛼፰ ≈ 1/ℎ፬,ፚ፞,፰ > 𝛼፝ ≈ 1/ℎ፬,ፚ፞,፝. The model parameter 𝑛
defines the slope of the water retention curve, which is here assumed to be identical
for the main wetting and drying responses, and𝑚 is a curve fitting parameter which
is here approximated (Mualem, 1976) by

𝑚 = 1 − 1/𝑛 (5.4)
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Figure 5.1: The relationships between suction head and; (a) VWC, and (b) hydraulic conductivity.

The hydraulic conductivity of the unsaturated soil is typically a function of the
effective degree of saturation (Figure 5.1 (b)). It can be derived from the SWRC by
using the van Genuchten (1980) model, for which one common expression is

𝑘 = 𝑘፬ፚ፭√𝑆 [1 − (1 − 𝑆፧/(፧ዅኻ))
፦]

ኼ
(5.5)

where 𝑘፬ፚ፭ is the saturated hydraulic conductivity of the soil. It can be seen from
Figure 5.1 that, due to the hysteresis in the SWRC, there will be also hysteresis in
the hydraulic conductivity function with respect to the suction head.

Jaynes (1984) compared four methods of modelling hysteresis in the water re-
tention behaviour, i.e. in approximating the curves between the main wetting and
drying curves, referred to as scanning curves, (see Figure 5.1 (a)), and found that
the performance of the four methods were equally good in the numerical simula-
tion of hysteretic flow. Furthermore, the author pointed out that, due to simplicity,
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linear scanning curves were often used in numerical analyses. Therefore, as this
paper is not considering a specific soil, this approach has been adopted here to de-
scribe the transition from wetting to drying and vice versa (Figure 5.1 (a)), utilising
parameter 𝜅 to define the gradient of the curves.

5.2.3. Slope stability assessment
Slope stability equilibrium is solved using a linear elastic, perfectly plastic material
model. Bishop’s effective stress combined with the extended Mohr−Coulomb failure
criterion has been used to model the shear strength (Bishop, 1960):

𝜏፬፬ = 𝑐
ᖤ + 𝜎፭ tan𝜙

ᖤ + 𝜒𝑠 tan𝜙ᖤ (5.6)

where 𝜏፬፬ is the shear strength, 𝑐ᖤ and 𝜙ᖤ are the effective cohesion and friction
angle, 𝜒 is a scalar parameter defining the suction-induced effective stress, 𝑠 is the
matric suction and 𝛼፭ is the total stress normal to the sliding plane (Cai and Ugai,
2004). In this chapter, the suction stress, 𝜒𝑠, is defined as

𝜒𝑠 = 𝑆𝑠 = ᎕ዅ᎕ᑣ
᎕ᑤዅ᎕ᑣ 𝑠 𝑠 > 0

𝜒𝑠 = 𝑆𝑠 = 𝑠 𝑠 ≤ 0 (5.7)

where the suction stress is assumed to equal the effective degree of saturation
(Vanapalli et al., 1996). When the suction is negative, i.e. there is a positive PWP,
the conventional effective stress is used.

The unit weight, 𝛾, of the unsaturated soil is a function of 𝜃 (Tsai and Chen,
2010) and can be expressed as

𝛾 = [(1 − 𝜃፬) 𝜌፰𝐺፬ + 𝜌፰𝜃] 𝑔 (5.8)

where 𝜌፰ is the density of water, 𝐺፬ is the specific gravity of the soil particles and
𝑔 is the gravitational acceleration.

5.2.4. Spatial variability of soil properties
The heterogeneity of the soil is considered by some soil property values being spa-
tially random variables following normal or lognormal distributions. The point statis-
tics of the variables are described by the distribution type, mean, variance and
cross-correlation between different variables. The 𝐶𝑂𝑉 is a normalised measure of
the variability, defined as Equation 2.1.

The soil property values are also spatially correlated due to the deposition pro-
cess. The scale of fluctuation, 𝑙, is the distance over which parameter values are
significantly correlated (Fenton and Vanmarcke, 1990). In addition, the deposition
process causes different scales of fluctuation in the horizontal and vertical direc-
tions. Hence, the ratio of the horizontal scale of fluctuation to the vertical scale of
fluctuation is referred to as the degree of anisotropy of the heterogeneity, 𝜉 (Hicks
and Samy, 2002b, 2004), i.e.

𝜉 = 𝑙፡
𝑙፯

(5.9)
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where 𝑙፡ and 𝑙፯ are the horizontal and vertical scales of fluctuation, respectively.
For more information about the statistics of soil property values, the reader may

refer to Phoon and Kulhawy (1999).

5.3. Numerical implementation
5.3.1. Slope stability under transient seepage
The flow and slope stability analyses both use finite element (FE) programs that
have been developed based on Smith et al. (2013); that is, using 4-node quadrilat-
eral elements for the flow analysis and 8-node quadrilateral elements for the slope
stability analysis. First, a flow analysis is performed and the variation of suction
stress and VWC with time, i.e. 𝜒𝑠(𝑡) and 𝜃(𝑡), are computed. Next, the suction
stress and VWC from the flow analysis are imported into the slope stability FE pro-
gramand mapped onto the Gauss points for computing the effective stresses due
to gravitational (self-weight) loading.

The governing flow equation has been solved by using the modified Picard iter-
ation method (Celia et al., 1990; Lehmann and Ackerer, 1998). In the flow analysis
program, the VWC for the main drying and wetting curves is computed via Equation
5.3. The water retention behaviour along the linear scanning curve is computed
via an algorithm proposed by Yang et al. (2011a), in which the VWC at the current
time, 𝑡 + 1, is determined as a function of the current change in suction head and
the previous VWC, i.e. 𝜃፭ዄኻ = 𝑓(Δℎ፭ዄኻ፬ , 𝜃፭).

If the PWP at the Gauss point is negative, the soil unit weight is updated by
Equation 5.8 in the FE slope stability analysis; otherwisethe unit weight is equal
to the saturated unit weight. The strength reduction method (Griffiths and Lane,
1999) has then been applied to compute the FOS of the slope. In this method, the
FOS is defined as the factor by which the original shear strength is reduced in order
to cause the slope to fail (see Equations 3.3 and 3.4).

5.3.2. Probabilistic simulation
For modelling soil heterogeneity, the Local Average Subdivision (LAS) method (Fen-
ton and Vanmarcke, 1990) has been used to generate stationary, spatially corre-
lated, random fields of soil parameter values. In this chapter, the exponential
Markov correlation function has been used to model the correlation between the
parameter values at different locations:

𝜌(𝜏) = 𝑒𝑥𝑝 (−2𝑙 𝜏) (5.10)

where 𝜏 is the lag distance between two points at different locations in space within
the random field, and 𝑙 is the scale of fluctuation.

The Monte Carlo Method (MCM) has been used to investigate the characteristics
of the slope stability under stochastic transient seepage. Each Monte Carlo simu-
lation involves multiple realisations of the problem, in which each random field is
based on the same set of statistics, but yields a unique representation of the spatial
variation in a material property. Individual random fields are generated for each
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soil parameter in standard normal space, and then transformed into physical space.
The random field cell values of the parameters, generated by LAS, are mapped onto
the finite element mesh at the Gauss point level.

In this investigation, for the purpose of comparing non-hysteretic and hysteretic
responses, 1000 realisations was found to be sufficient, as well as being consistent
with other studies, e.g. Griffiths and Fenton (2004), Hicks and Spencer (2010) and
Santoso et al. (2011).

5.4. Slope stability example
A heterogeneous embankment subjected to cyclic external water level fluctuation
has been taken as an example to demonstrate the influence of the combined effect
of hysteresis and heterogeneity on slope stability. For comparative purposes, the
investigation has also included non-hysteretic and homogeneous analyses.

The geometry of the embankment is shown in Figure 5.2. Its height is 12 m, and
the width of its crest and base are 4 m and 52 m, respectively. The embankment
experiences a water level fluctuation on its upstream side. WL1 and WL2 are the
highest and lowest water levels, whereas line A−A (at 𝑥 = 34 m) and point B
(at 𝑥 = 28 m) denote the observation cross-section and point where results are
recorded. The downstream water level remains at foundation level (𝑧 = 0 m), and
the bottom boundary of the embankment is impermeable and fixed.
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Figure 5.2: Geometry of the embankment.

The water level fluctuation with time has been simulated by the summation of
two sinusoidal curves with two different frequencies (denoted by functions 𝐶ኻ and
𝐶ኼ in Figure 5.3). For both curves, the mean and amplitude are 3.5 m and 3 m
respectively, whereas the time period of 𝐶ኻ, termed Tኻ (and equal to 10 days), is
three times that of 𝐶ኼ. The resulting water level fluctuation, shown by the green
line in Figure 5.3, has a maximum water level of 10 m (WL1) and a minimum water
level of 4 m (WL2).

The parameter values of the deterministic homogenous case, in which the spatial
variability of parameters is not included, are listed in Table 5.1, with the SWRC
properties following Yang et al. (2011a) and the mechanical properties following
Hicks and Spencer (2010). The specific gravity is typical of an organic soil, i.e. ~2,
as is the hydraulic conductivity, at 1 × 10ዅዀ m/s. The SWRC is given in Figure 5.4.
In the non-hysteretic case, the drying property values are used (as explained in
Section 5.5.1). For the heterogeneous case, in which several hydraulic parameters
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Figure 5.3: Water level fluctuation simulated by the sum of two sinusoidal curves.

are spatially random, the distributions of these parameters are listed in Table 5.2.
Nielsen et al. (1973), Freeze (1975) and ASCE (2008) have shown that 𝑘፬ፚ፭ can be
assumed to be log-normally distributed, and a 𝐶𝑂𝑉፤ᑤᑒᑥ of 0.9 to 1.0 was reported
in Nielsen et al. (1973). 𝛼፝ has also been described as log-normally distributed
(Carsel and Parrish, 1988; Russo and Bouton, 1992; De Rooij et al., 2004) and, in
Carsel and Parrish (1988), 𝐶𝑂𝑉ᎎᑕ is from 0.203 to 1.603. Russo and Bouton (1992)
suggested a normal distribution for 𝑛, while Carsel and Parrish (1988) indicated that
𝐶𝑂𝑉፧ is from 0.033 to 0.203. De Rooij et al. (2004) showed that the distribution of
𝜃፬ is log-normal, while Carsel and Parrish (1988) reported that 𝐶𝑂𝑉᎕ᑤ is from 0.15
to 0.355. In De Rooij et al. (2004), 𝐶𝑂𝑉᎕ᑣ is equal to 0.031 and the distribution is
assumed to be log-normal.

Table 5.1: Parameter values for the homogenous case.

Parameter Symbol Unit Value

Saturated hydraulic conductivity 𝑘፬ፚ፭ m/d 0.0864
VGM parameter for the main drying (and non-
hysteretic) curve

𝛼፝ mዅኻ 0.1

VGM parameter for the main wetting curve 𝛼፰ mዅኻ 0.2
Fitting parameter for VGM model 𝑛 - 1.226
Saturated VWC 𝜃፬ - 0.38
Residual VWC 𝜃፫ - 0.0038
Slope of the scanning curve 𝜅 - 0.00006
Stiffness 𝐸 kPa 1.0 × 10኿
Poisson’s ratio 𝜈 - 0.3
Effective cohesion 𝑐ᖤ kPa 15
Effective friction angle 𝜙ᖤ ኺ 20
Specific unit weight 𝐺፬ - 2.02
Note: VGM represents the van Genuchten−Mualem model described in Section 5.2.2.
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Table 5.2: Statistical distributions of the hydraulic parameters

Parameter 𝑘፬ፚ፭[m/d] 𝛼፝[mዅኻ] 𝑛[−] 𝜃፬[−] 𝜃፫[−]

Distribution Lognormal Lognormal normal Lognormal Lognormal
𝜇 0.0864 0.1 1.226 0.38 0.0038
𝜎 0.0864 0.05 0.08 0.06 0.0002
𝐶𝑂𝑉 1.0 0.5 0.065 0.16 0.053
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Figure 5.4: SWRC used in the analyses.

5.5. Results
In the following numerical investigation, the effects of hysteresis, parameter varia-
tion and heterogeneity are systematically investigated. In Section 5.5.1, hysteresis
in isolation, i.e. a homogenous embankment, has been studied, in Section 5.5.2
the influence of the variable parameters is investigated and in Section 5.5.3 the
impact of hysteresis on a spatially variable embankment has been presented. Table
5.3, summarises the items investigated in each sub-section.

Table 5.3: Outline of numerical investigation

Sub-section Hysteresis Parameter sensitivity Spatial variability

5.1 �
5.2 � �
5.3 � �
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5.5.1. Influence of hysteresis on the seepage and stability of a
homogeneous embankment

Several analyses were initially undertaken to find an optimal mesh size and time
step which would ensure both accuracy and efficiency. A standard finite element
size of 0.5 m (vertical) by 1.0 m (horizontal) was selected and the time step was
chosen to be 0.05 d.

The hysteretic water retention behaviour significantly influences the water flow
and soil suction distributions in the embankment, and thereby the slope stability.
Figure 5.5 shows the variation of the FOS with time. It increases from the initial
conditions, illustrating the benefit of undertaking transient analysis. For both the
hysteretic and non-hysteretic cases, the FOS is seen to react to the change in water
level, where, if the water level is high, the FOS is low and vice versa. Figure 5.5
shows that, at any instant in time, the FOS of the hysteretic case is always smaller
than that of the non-hysteretic case, due to the selection of the main drying curve
as the starting point of the transient seepage analysis for both cases. The reason
for choosing the main drying curve is that Ebel et al. (2010) reported it to be the
most easily measured in the laboratory and therefore the most frequently used.
In addition, in the numerical example, the embankment first experiences water
level drawdown, i.e. a drying process. If the non-hysteretic SWRC is instead taken
to be the wetting curve, a difference in the FOS between the non-hysteretic and
hysteretic cases would still exist, although the FOS of the hysteretic case would
then be bigger than that of the non-hysteretic case.
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Figure 5.5: FOS variation with time.

In Figure 5.5, the hysteretic case reacts quicker to changes in water level due
to the variation of VWC with suction moving along the scanning curve, and this,
in general, leads to a more significant and faster reduction in the FOS when the
water level rises. The largest difference coincides with the highest water level and
lowest FOS (ignoring the first part which is affected by the initial conditions). It is
emphasised that, in this analysis, all properties are constant throughout the domain
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and no heterogeneity is considered. Section 5.5.3 provides a demonstration of the
impact of considering heterogeneity alongside hysteresis.

Figure 5.6 compares the PWP head and VWC variation with time between the
non-hysteretic and hysteretic cases, at three depths along cross-section A−A (see
Figure 5.2). It can be seen that the VWC of the hysteretic case is usually larger or
equal to that of the non-hysteretic case, and that the PWP head of the hysteretic
case is also usually larger or equal to the non-hysteretic case. The larger the VWC,
the larger the overturning moment due to the greater soil weight; in addition, the
smaller suction head results in a smaller shear resistance to sliding. Therefore, the
combined effects lead to the FOS in the hysteretic case being smaller than in the
non-hysteretic case (Figure 5.5).
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Figure 5.6: PWP head and VWC versus time at different depths (points ኻዅኽ in Figure 5.2): (a) and (b)
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In Figure 5.6, it is seen that the PWP head in the hysteretic case can change
more rapidly than that in the non-hysteretic case, due to the suction head moving
along the scanning curves. In addition, it can be seen that the pore pressures
are more sensitive to boundary condition (i.e. external water level) changes in the
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hysteretic case, with a similar change for different depths as seen from the blue
curves in the left plots of Figure 5.6. In the non-hysteretic case, the red curve
describing the highest point (Figure 5.6 (a)) does not change significantly with a
change of boundary condition, whereas that describing the lowest point is almost
as sensitive as in the hysteretic case. The response delay of the non-hysteretic case
during transient seepage can be explained by referring to the wetting and drying
process in a soil column (Yang et al., 2011a, 2012a).

The state at any point in the slope domain may be categorised into three types:
always unsaturated, saturated‒unsaturated and always saturated. The suction vari-
ations at typical points representing these three cases are illustrated in Figure 5.7,
which shows the variation of the VWC with suction for points 1–3 shown in Figure
5.2. Figures 5.7(a) and (b) denote point 1 which is always in the unsaturated con-
dition; Figures 5.7(c) and (d) denote point 2 which changes between saturated and
unsaturated conditions; and Figures 5.7(e) and (f) denote point 3 which is always
in the saturated condition. In Figure 5.7, it can be noted that the suction in the hys-
teretic case shows larger variation than that in the non-hysteretic case, due to the
suction head varying in the area enclosed by the main drying and wetting curves.

5.5.2. Relative importance of hydraulic parameters
To investigate the hydraulic parameters that are here represented by statistical dis-
tributions, i.e. 𝑋𝑋𝑋 = [𝑘፬ፚ፭ , 𝛼፝ , 𝑛, 𝜃፬ , 𝜃፫], a sensitivity analysis has been undertaken
to assess their relative importance on the embankment response under both non-
hysteretic and hysteretic conditions. Gardner et al. (1981) suggested the use of the
correlation coefficient derived from Monte Carlo simulation to evaluate the relative
importance of the input parameters on the output. Hence, one thousand values
from the distribution of each parameter (Table 5.2) have been randomly sampled,
and assembled into a 1000 × 5 input matrix:

[
𝑋𝑋𝑋ኻ
⋮

𝑋𝑋𝑋ኻኺኺኺ
] = [

𝑘፬ፚ፭,ኻ 𝛼፝,ኻ 𝑛ኻ 𝜃፬,ኻ 𝜃፫,ኻ
⋮ ⋱ ⋮

𝑘፬ፚ፭,ኻኺኺኺ 𝛼፝,ኻኺኺኺ 𝑛ኻኺኺኺ 𝜃፬,ኻኺኺኺ 𝜃፫,ኻኺኺኺ
] (5.11)

No correlation is assumed between the parameters, although physically likely due
to the dependence on grain size, minerology and density, as the purpose of this
investigation is to assess which of the parameters is important in controlling the
system response.

Each combination of the random values of the five parameters (one row in the
matrix) were utilised in a transient seepage analysis (with the domain being taken
as homogeneous). The Pearson correlation coefficient was then utilised to give a
measure of the correlation between two variables, and is defined as

𝜌፱ᑚ ,ዐዙዝ =
𝐶𝑂𝑉(𝑥። , FOS)
𝜎፱ᑚ𝜎ዐዙዝ

=
𝐸[(𝑥። − 𝜇፱ᑚ)(FOS − 𝜇ዐዙዝ)]

𝜎፱ᑚ𝜎ዐዙዝ
(5.12)

where 𝑥። is the 𝑖th random variable in 𝑋𝑋𝑋, 𝜌፱ᑚ ,ዐዙዝ is the Pearson correlation coeffi-
cient, 𝐶𝑂𝑉(𝑥። , FOS) is the covariance of the two variables, and 𝜎፱ᑚ and 𝜎ዐዙዝ are the
standard deviation of 𝑥። and FOS, respectively.
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Figure 5.7: VWC versus suction at points along profile A−A at different depths: (a) and (b) ፳Ꮃ ዆ ዃ ዱ;
(c) and (d) ፳Ꮄ ዆ ዀ ዱ; and (e) and (f) ፳Ꮅ ዆ ኺ ዱ.

Figure 5.8 shows the Pearson correlation coefficients between the FOS and dif-
ferent hydraulic parameters for the non-hysteretic case at time 𝑡 = 2Tኼ. The black
values are for the entire data set and the red values are for FOS below 1.25. It can
be seen that the FOS increases with an increase in 𝑘፬ፚ፭, but decreases with increas-
ing 𝛼፝, 𝑛 and 𝜃፬. The positive relationship between 𝑘፬ፚ፭ and FOS is because, when
𝑘፬ፚ፭ is large, the outflow of water is faster, leading to a higher FOS. The negative
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correlations between FOS and 𝛼፝, 𝑛 and 𝜃፬ may be explained with the aid of Figure
5.9, which illustrates the sensitivity of the SWRC equation to the different param-
eters, and by recalling that a lower FOS is generally obtained for higher VWC and
lower suction. With reference to Figure 5.9, for curves ..1 and ..2 , the only differ-
ence is in the value of parameter 𝜃፬, where 𝜃፬ኻ > 𝜃፬ኼ. An increase in 𝜃፬ means that
the detained water in the embankment increases, which induces a lower FOS. For
curves ..2 and ..4 , the only difference is parameter 𝛼፝, where 𝛼፝ኼ < 𝛼፝ኾ. For the
same VWC, the suction is larger for 𝛼፝ኼ and this causes a higher FOS. For curves
..2 and ..3 , the only difference is parameter 𝑛, where 𝑛ኼ < 𝑛ኽ. For the same VWC,

the suction is larger for 𝑛ኼ and this causes a higher FOS. Figure 5.8 shows that 𝜃፫
has almost no influence on the FOS, because the suction cannot reach the range
of values where the value of 𝜃፫ has a large influence. The values of the Pearson
correlation coefficients for FOS < 1.25 were calculated to investigate whether FOS
closer to failure had similar correlations to those of the whole dataset. All trends
are similar, in that positive correlations remain positive and vice versa, although
the correlations are lower due to the removal of higher calculated FOS. However,
there is still a strong positive correlation between FOS and 𝑘፬ፚ፭.
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Figure 5.8: Correlation between FOS and different hydraulic parameters for non-hysteretic case at ፭ ዆
ኼዞᎴ.

Figure 5.10 shows the correlation coefficients as a function of time. The left
vertical axis applies to the solid lines and the right axis applies to the dashed lines.
In Figure 5.10, the correlation coefficients significantly decrease for three hydraulic
parameters, i.e. for 𝑘፬ፚ፭, 𝛼፝ and 𝑛, whereas the correlation for 𝜃፬ and 𝜃፫ remain
fairly stable. This is due to the impact of the propagation of water in the embank-
ment, induced by the upstream water level fluctuation, towards the downstream.
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Figure 5.9: Sensitivity of the SWRC equation to model parameters.

At the end of the first main cylce (Tኻ = 10 d) the water level has returned to its
highest point, so that the unsaturated zone in the sliding area has become smaller.
In addition, the water flowing into the embankment due to the increasing exter-
nal water level has not had time to drain out from the downstream side. These
factors result in the FOS reducing, even when 𝑘፬ፚ፭ is relatively high and 𝛼፝ and
𝑛 are relatively small. Hence, when the data of the three parameters versus FOS,
for 𝑡 = Tኻ = 3Tኼ, are plotted in the same way as in the first three plots in Figure
5.8 (though not shown here), the dots become more scattered and the correlation
coefficients decrease.

As was seen in Figure 5.8, Figure 5.10 shows that the saturated hydraulic con-
ductivity has the largest influence on the FOS, while the residual VWC has almost
no influence. Indeed, the correlation coefficient between the FOS and 𝑘፬ፚ፭ remains
high in comparison with the other parameters, even at its lowest point, which indi-
cates that 𝑘፬ፚ፭ plays a dominant role in the final computation of the FOS. Therefore,
only the heterogeneity of 𝑘፬ፚ፭ has been incorporated into the transient seepage
analysis in the following section. This conclusion is also supported by other studies
reported in literature. Rahardjo et al. (2007) pointed out that the saturated hy-
draulic conductivity played a dominant role in rainfall infiltration compared to other
hydraulic parameters. Avanidou and Paleologos (2002) and Chen et al. (1994a,b)
also suggested that the saturated hydraulic conductivity was the most important
parameter in unsaturated heterogeneous soils. Zhang et al. (2005) studied rainfall-
induced slope failure in a heterogeneous slope. In the study, only the saturated
hydraulic conductivity, saturated volumetric water content, the parameter related
to the air entry value and the slope of the water retention curve were considered to
be variable, because these four parameters were considered to be important and
influence the computation of slope stability. The residual volumetric water content
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was considered to be not important.
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Figure 5.10: Correlation coefficients between FOS and different hydraulic parameters at several specific
times: (a) non-hysteretic case and (b) hysteretic case.

5.5.3. Influence of hysteresis on the seepage and stability of a
heterogeneous embankment

In this section, a spatially variable saturated hydraulic conductivity is used and both
hysteretic and non-hysteretic SWRCs are considered; all other parameters are con-
stant. As an indicative example, the scale of fluctuation, 𝑙ደዲ፤ᑤᑒᑥ , has been taken to
be 1.0 m in both the vertical and horizontal directions, i.e. giving isotropic variabil-
ity, and 1000 realisations have been performed. Note that, for more comprehensive
conclusions on the influence of spatial variability, further studies are needed.

Influence of hysteresis on stochastic seepage
In Figure 5.11, the VWCs at Point B from Figure 5.2 at 𝑡 = Tኻ = 10 d are compared
(one dot from each realisation), with the blue dots representing the non-hysteretic
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case and the red dots representing the hysteretic case. It can be seen from Figure
5.11 that the results of the hysteretic case show larger variation. The variation is
also not limited along a single line in 𝜃‒ℎ፬ space, as in the non-hysteretic case, but
varies in a wider area. Note that, because 𝑘፬ፚ፭ was the only randomized parameter,
the main drying curve in the SWRC is the same for both the non-hysteretic and
hysteretic cases. This means that, in the non-hysteretic case, the spatial variability
can only cause the scattering of blue dots located along the main drying curve in the
SWRC. However, in the hysteretic case, the hysteretic behaviour allows the suction
to vary along the scanning curve. When the spatial variability is added into the
hysteretic effect, this causes the suction to vary in the area enclosed by the main
drying and wetting curves.
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Figure 5.11: VWC versus suction head at Point B at ፭ ዆ ዞᎳ ዆ ኻኺ የ based on ኻኺኺኺ realisations.

Influence of hysteresis on the stability of the heterogeneous slope
The factor of safety has been calculated for each realisation and a log-normal dis-
tribution fitted to the resulting ensemble distribution of FOS. Table 5.4 gives the
mean 𝜇ዐዙዝ and standard deviation 𝜎ዐዙዝ of the FOS for both the non-hysteretic and
hysteretic cases. The mean of the FOS at all times was smaller for the hysteretic
case than for the non-hysteretic case. In addition, the standard deviation of the
FOS was usually higher for the hysteretic case. The reason is that, in the hysteretic
case, the hysteresis in the water retention behaviour induced much more variation
in the PWP and VWC, because the PWP and VWC could vary in the area enclosed
by the main drying and wetting curves. Therefore, the uncertainty in the FOS is
larger for the hysteretic case.

Figure 5.12 shows the cumulative distribution functions (CDF) of FOS for both
the non-hysteretic (dashed line) and hysteretic cases (solid line) at different times.
The limit value of the FOS (dash-dotted line) represents the FOS calculated in a
homogeneous non-hysteretic analysis based on the mean value of 𝑘፬ፚ፭. From the
results in Figure 5.12, it is seen that if a deterministic method is used to analyse
the safety of the embankment slope, there is a high probability of overestimating
the FOS (in this case, by up to 20% compared to a 95% reliability). Moreover,
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Table 5.4: Statistical information of the FOS based on 1000 realisations

Case Time 𝑡 𝜇ዐዙዝ 𝜎ዐዙዝ Case Time 𝑡 𝜇ዐዙዝ 𝜎ዐዙዝ

Hysteretic

1Tኼ 1.199 0.0374
Non-
hysteretic

1Tኼ 1.221 0.0364
2Tኼ 1.233 0.046 2Tኼ 1.278 0.045

Tኻ = 3Tኼ 1.182 0.0467 Tኻ = 3Tኼ 1.245 0.0488
4Tኼ 1.232 0.049 4Tኼ 1.274 0.0475
5Tኼ 1.253 0.0535 5Tኼ 1.311 0.0529

based on the comparison between the solid and dashed lines, it can be concluded
that, if only the heterogeneity is considered while the hysteretic effect in the SWRC
is ignored, the computed probability of slope failure would be lower. This proves
that, although the contribution to the variation in results due to the uncertainties in
the material properties and the hysteresis can be different (the former factor could
be larger if there are strong uncertainties in the parameters), both factors play an
important role and should be considered in the analysis.

1 1.1 1.2 1.3 1.4 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5

t = 1T2 t = 2T2 t = T1 = 3T2 t = 4T2 t = 5T2

FOS FOS FOS FOS FOS

Hystere!c Non-hystere!c Limit value of FOS

C
u

m
u

la
!

v
e

 d
is

tr
ib

u
!

o
n

 f
u

n
c!

o
n

 [
-]

Figure 5.12: Cumulative distribution functions (CDFs) for both non-hysteretic and hysteretic cases at
different times. The solid line is the CDF for the hysteretic case and the dotted line for the non-hysteretic
case. The dash-dotted line shows the factor of safety calculated without considering heterogeneity or
hysteresis.

5.6. Conclusions
The combined effect of hysteresis in the water retention behaviour and heterogene-
ity of an unsaturated soil on the stability of an embankment under transient seepage
has been investigated. The stability and reliability of the embankment show signif-
icant differences with analyses which ignore either or both of these factors.

Under the influence of both hysteresis and heterogeneity, the PWP and VWC in
the transient seepage process have a larger variation than would otherwise be the
case. Considering slope stability, in the initially drying condition, the mean of the
FOS for the hysteretic case is smaller than that of the non-hysteretic case. More-
over, the standard deviation of the FOS is usually larger. It has been found that,
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due to hysteresis in the water retention behaviour, the influence of the heterogene-
ity of soil property values on slope stability could be amplified. Furthermore, in the
sensitivity analysis of hydraulic parameters, it was found the saturated hydraulic
conductivity, 𝑘፬ፚ፭, plays a dominant role in slope stability compared to other hy-
draulic parameters. Further studies on the impact of spatial variability on these
processes are needed to provide comprehensive conclusions.



6
Probabilistic Analysis of

Seepage Velocity Distribution
under Earth Embankments

for Internal Stability

Internal stability, or piping, has been attributed as a major cause of dam
and embankment failures. Current national prediction models to predict pip-
ing use the hydraulic gradient between the upstream and downstreamwater
levels as an indicator. No explicit consideration is made regarding preferen-
tial pathways, although piping usually initiates from a discrete downstream
location and recent research indicates that piping happens when the water
velocity reaches a critical value. The local seepage velocity is strongly re-
lated to the inherent spatial variability, or heterogeneity, of the soil. Based
on stochastic seepage analysis, local velocities in and under an embankment
are investigated. The results show that, when the coefficient of variation of
hydraulic conductivity is small, the location of the maximum local velocity is
typically near the downstream toe of the embankment, as for a determinis-
tic analysis. In contrast, increasing the coefficient of variation scatters the
possible locations of the maximum local velocity. Two typical situations are
identified: one situation where the maximum local velocity is close to the
downstream ground surface, and the other where the maximum local veloc-
ity is far from the downstream ground surface and located near the center
of the foundation soil layer. In the first situation it is easier to reach a crit-
ical value to initiate piping because the maximum local velocity is near the
ground surface, but it is also relatively easy to protect against. In contrast,

Parts of this chapter have been published in Proceedings of 5th International Symposium on Geotechnical
Safety and Risk, 671-676 (2015) (Liu et al., 2015a).
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in the second situation it is easier to form a passage for piping development
once piping is initiated. This is due to the velocity increasing towards the
center of the foundation. Additional analyses have demonstrated that the
heterogeneity of the hydraulic conductivity not only increases the exit gradi-
ent of the velocity, but also influences the global kinetic energy and kinetic
energy distribution significantly.
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6.1. Introduction
Piping has been attributed as a major cause of dam failures, with about half of all
failures being due to piping (Foster et al., 2000). It usually happens in the presence
of a water barrier, with a high water level on one side and a low level on the other.
The hydraulic head difference induces a water flow in the structure (Sellmeijer and
Koenders, 1991) and, when the flow reaches a critical rate, it starts to erode soil
particles from the downstream surface (piping initiation). Subsequently, the internal
erosion progresses in the upstream direction and a piping channel or slit is formed
(piping development). Finally, if the piping process does not come to a halt, the
erosion channels progress to the upstream surface, and then the erosion through
the channels can accelerate significantly and the water barrier can be “undermined”
and collapse.

Water Dike

Founda�on

Heave Water Dike

Founda�on

(a) (b)

Figure 6.1: Sketch of piping initiation (a) and piping development (b).

Accurate analysis of whether piping is going to happen is essential in the design
and management of water barriers. Figure 6.1 briefly shows the process of piping
initiation and development. Current models to predict piping initiation and devel-
opment are Bligh’s model, Lane’s model and Sellmeijer’s model (Bligh, 1910; Lane,
1935; Sellmeijer and Koenders, 1991). The first two are empirical, whereas the
latter is conceptual (Sellmeijer, 2006). However, all these models use the hydraulic
gradient as an indicator of the state governing piping occurrence. Bligh’s model
relates the hydraulic head difference across the structure, 𝐻፜, to the length of the
seepage path, 𝐿. The critical value of the ratio 𝐻፜/𝐿 is related to the soil type.
Lane’s model is similar to Bligh’s model, except that it accounts for the horizontal
and vertical seepage lengths separately, in order to account for the influence of
the different permeabilities in the horizontal and vertical directions. In Sellmeijer’s
model, the critical value of 𝐻፜/𝐿 is related to additional factors, which include the
sand bedding angle, the sand particle size and the geometry of the water barrier.
However, piping normally initiates from a very local downstream position. There-
fore, local bahaviour close to the downstream ground surface is important, and this
is strongly related to the inherent heterogeneity of the soil.

Recent research has illustrated that hydraulic velocity is an indicator of piping
potential (Sivakumar Babu and Vasudevan, 2008), and can be an improvement to
using simply the hydraulic gradient (Richards and Reddy, 2012). The velocity is a
function of both the hydraulic conductivity and hydraulic gradient. However, due to
the heterogeneity of hydraulic conductivity, the hydraulic gradient across the entire
structure cannot be seen as directly proportional to local velocity, and therefore the
local velocity distribution within the domain is of interest and forms the main focus
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of this chapter.
The chapter investigates the local velocity distribution under an earth embank-

ment, induced by the spatial variability of the foundation hydraulic conductivity, and
considers its influence on the potential for piping. Section 6.2 introduces stochastic
seepage computed by RFEM. Section 6.3 presents stochastic analyses of velocity
distribution, including a parametric study relating to the statistics of hydraulic con-
ductivity. Section 6.4 includes a discussion on the influence of soil heterogeneity
on piping. Section 6.5 calculates the exit gradient related to the piping initiation.
Section 6.6 investigates the kinetic energy distribution in the whole domain under
the influence of heterogeneity.

6.2. Stochastic seepage analysis
The local velocity distribution is computed in a seepage analysis. In this chapter,
a 2D steady state seepage problem with constant boundary conditions has been
analysed. The governing equation of steady state groundwater flow in 2D is shown
in Equation 3.1.

The equation is spatially discretised using the FEM with the Galerkin weighted
residual method. A no-flow condition in the unsaturated zone is assumed for sim-
plicity and an iterative procedure (Chapuis and Aubertin, 2001; Chapuis et al., 2001)
has been adopted to determine the phreatic surface and exit points on the down-
stream surface of the embankment.

6.3. Probabilistic analysis of seepage in and under
an embankment

The example 2D steady state seepage problem analysed herein is shown in Figure
6.2. A 4 m high earth embankment is constructed on a 5 m deep foundation over-
lying a firm base. The width of the embankment crest and foundation are 4 m and
40 m, respectively. The upstream and downstream side slopes are both 1∶2, and
the upstream and downstream water levels are 4 m and 0 m, respectively (where
the coordinate origin is at the top left corner of the foundation). For simplicity, the
embankment is considered to be homogenous and only the foundation is hetero-
geneous. This is also because the main focus is on the role of the foundation in the
seepage process. Although the geometry of the embankment and foundation are
symmetrical, the problem is not symmetrical because of the boundary conditions
and the heterogeneous hydraulic conductivity profile in the foundation.

The hydraulic conductivity of the embankment and mean hydraulic conductivity
of the foundation are both chosen to be 10ዅዀ m/s, consistent with a sand mate-
rial. Duncan (2000) suggested that the coefficient of variation (𝐶𝑂𝑉፤ = 𝜎፤/𝜇፤) of
hydraulic conductivity of saturated clay is 68−90%, whereas Zhu et al. (2013) sug-
gested that, for saturated sand, it is 60−100%. However, in order to get a detailed
overview of the influence of the coefficient of variation of hydraulic conductivity on
the statistical characteristics of the maximum local velocity, a much wider range of
𝐶𝑂𝑉፤ was used; i.e. 𝐶𝑂𝑉፤ = 𝜎፤/𝜇፤ = 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0. The degrees
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Figure 6.2: Geometry of the embankment and foundation (dimensions in ዱ).

of anisotropy of the heterogeneity considered were 𝜉 = 𝜃፡/𝜃፯ = 1, 8, 20 (where
subscripts ℎ and 𝑣 refer to the horizontal and vertical directions, respectively), and
the vertical scale of fluctuation has been fixed at 𝜃፯ = 1.0 m. The mesh for the
FEM computation uses four node quadrilateral elements of size 0.5 m by 0.5 m,
except for some distorted elements to model the upstream and downstream slope
surfaces. The cell size in the random field generation is half of the FE mesh size, so
that each of the four integration points in every finite element has a different cell
value from the random field.

Figure 6.3 shows typical random fields of the hydraulic conductivity, 𝑘, for two
degrees of anisotropy, in which the darker zones represent lower values of 𝑘. Figure
6.3 shows that, when the degree of anisotropy increases, the local variation of the
hydraulic conductivity is not as great. Of course, when the 𝐶𝑂𝑉፤ increases, the
range of the hydraulic conductivity also increases.

1.2e-005
k

1e-5

1e-6

1e-7
6.66e-008

5.76e-006
k

5e-6

4e-6

3e-6

2e-6

1e-6

1.08e-007

Figure 6.3: Example random fields for different hydraulic conductivity statistical values (unit: ዱ/ዷ): (a)
Typical random field for ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኻ ; (b) Typical random field for ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኼኺ.

In each realisation, the velocity was calculated at the four integration points of
each element, and the maximum local velocity within the foundation was identified.
The statistical results of the velocity distributions for 500 and 1000 realisations
were compared for selected values of the coefficients of variation and degrees of
anisotropy (i.e. 𝐶𝑂𝑉፤ = 1.0, 6.0 and 𝜉 = 1, 8, 20), and little difference was found in
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the results of the mean and standard deviation of the maximum velocity (see Table
6.1). Therefore, 500 realisations were deemed adequate to get reasonable results
for the complete range of input statistics considered. Figure 6.4 further illustrates
the close agreement between using 500 and 1000 realisations, by showing example
histograms of the maximum velocity, in which the continuous lines represent fitted
lognormal distributions. It is seen that the lognormal distributions fit the histograms
reasonably well. Figures 6.5 and 6.6 show the computed velocity distributions for
two typical realisations.

Table 6.1: Mean and standard deviation of maximum velocities based on different numbers of realisations
for different ፂፎፕᑜ and ᎛.

𝐶𝑂𝑉 𝜉 500 realisations 1000 realisations

𝜇፯ᑞᑒᑩ (m/s) 𝜎፯ᑞᑒᑩ (m/s) 𝜇፯ᑞᑒᑩ (m/s) 𝜎፯ᑞᑒᑩ (m/s)
1.0 1 0.9741 × 10ዅዀ 0.3663 × 10ዅዀ 0.9724 × 10ዅዀ 0.3497 × 10ዅዀ

8 0.9412 × 10ዅዀ 0.3616 × 10ዅዀ 0.9373 × 10ዅዀ 0.3609 × 10ዅዀ
20 0.9231 × 10ዅዀ 0.4073 × 10ዅዀ 0.9143 × 10ዅዀ 0.3770 × 10ዅዀ

6.0 1 1.1338 × 10ዅዀ 0.6495 × 10ዅዀ 1.1335 × 10ዅዀ 0.6189 × 10ዅዀ
8 1.1372 × 10ዅዀ 0.8384 × 10ዅዀ 1.1343 × 10ዅዀ 0.8310 × 10ዅዀ
20 1.1678 × 10ዅዀ 1.1687 × 10ዅዀ 1.1561 × 10ዅዀ 1.1488 × 10ዅዀ

The mean, 𝜇፯ᑞᑒᑩ , and standard deviation, 𝜎፯ᑞᑒᑩ , of the maximum local veloc-
ity are influenced by the statistical values of the foundation hydraulic conductivity.
Figures 6.7 and 6.8 show that 𝜇፯ᑞᑒᑩ and 𝜎፯ᑞᑒᑩ are functions of the coefficient of
variation of the foundation hydraulic conductivity 𝐶𝑂𝑉፤. In Figure 6.7, 𝜇፯ᑞᑒᑩ is not
sensitive to 𝜉. The value of 𝜇፯ᑞᑒᑩ is larger than the deterministic maximum local
velocity, 𝑣፦ፚ፱፝ = 6.86×10ዅ዁ m/s, for all values of 𝐶𝑂𝑉፤ considered. This is due to
the water preferring a path with a low resistance to flow through, and that, under
the same hydraulic gradient, a lower resistance path causes a higher velocity. In a
heterogeneous domain the local variation of the hydraulic conductivity is significant
compared to the uniform hydraulic conductivity in a homogeneous domain (based
on the mean). In Figure 6.7, 𝜇፯ᑞᑒᑩ initially increases with increasing 𝐶𝑂𝑉፤, after
which a slight decrease occurs. The velocity is a function of the hydraulic conductiv-
ity and hydraulic gradient. It can be seen from Figure 6.9 that, due to the lognormal
statistics, the hydraulic conductivity distribution curves shift to the left with an in-
creasing 𝜎፤ (indicated by an increasing 𝐶𝑂𝑉፤). When 𝜎፤ is relatively small, i.e.
𝐶𝑂𝑉፤ < 3, the distribution becomes wider with an increase in 𝜎፤. This means that
the maximum value of the hydraulic conductivity increases, whereas the minimum
value decreases. The increasing range of possible values for the hydraulic conduc-
tivity could cause the local hydraulic gradient to become larger, and this could be
the reason for the local increase of velocity. However, when 𝐶𝑂𝑉፤ is greater than
4.0, the distribution curves become narrower. It can be seen from Figure 6.9 that
the maximum value of the hydraulic conductivity also starts to decrease at higher
values of 𝐶𝑂𝑉፤, which may be the reason for the slight decrease of 𝜇፯ᑞᑒᑩ in Figure
6.7. Figure 6.8 shows that 𝜎፯ᑞᑒᑩ increases monotonically with an increase in 𝐶𝑂𝑉፤
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Figure 6.4: Probability density functions of the maximum velocity: (a) ኿ኺኺ realisations, ፂፎፕᑜ ዆ ኻ.ኺ and
᎛ ዆ ኻ; (b) ኻኺኺኺ realisations, ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኻ; (c) ኿ኺኺ realisations, ፂፎፕᑜ ዆ ዀ.ኺ and ᎛ ዆ ዂ; and
(d) ኻኺኺኺ realisations, ፂፎፕᑜ ዆ ዀ.ኺ and ᎛ ዆ ዂ.
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Figure 6.5: Typical realisation in which the maximum local velocity is close to the slope toe (ፂፎፕᑜ ዆ ኻ.ኺ
and ᎛ ዆ ኼኺ) (unit: ዱ/ዷ).

and that, for the same value of 𝐶𝑂𝑉፤, 𝜎፯ᑞᑒᑩ increases with an increase in 𝜉.

6.4. Brief discussion of local velocity distribution with
reference to piping

The previous section analysed the general features of the local velocity distribution
due to the spatial variability of the foundation hydraulic conductivity, e.g. the dis-
tribution of maximum local velocity based on 500 realisations and its sensitivity to
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Figure 6.6: Typical realisation in which the maximum local velocity is near the centre of the foundation
(ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኼኺ) (unit: ዱ/ዷ).
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Figure 6.8: Standard deviation of the maximum local velocity versus ፂፎፕᑜ of the foundation.

different input statistics. However, the value of the maximum local velocity is only
one necessary condition for piping. Another factor is the location of the maximum
local velocity.

This section investigates the location of the maximum local velocity in all real-
isations, which is strongly influenced by the variability of the foundation hydraulic
conductivity. Among the realisations, those cases which have the maximum local
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Figure 6.9: Probability density functions of hydraulic conductivity for different ፂፎፕᑜ.

velocity near the ground surface on the downstream side are more inclined to ini-
tiate piping. Therefore, this section highlights several special situations in which
different locations of the maximum local velocity are found.

When the 𝐶𝑂𝑉፤ of the foundation hydraulic conductivity is quite small, i.e.
𝐶𝑂𝑉፤ = 0.1, the locations of the maximum local velocity from 500 realisations
are found to aggregate into a small area, independent of the degree of anisotropy,
𝜉. This area is located near the downstream slope toe, as seen in Figure 6.10. In
the figure, coloured blocks are used to represent the Gauss points and different
coloured blocks represent the frequency of occurrence of the maximum local ve-
locity from 500 realisations. This aggregation is reasonable considering the small
variation of the foundation hydraulic conductivity over the whole domain. When
the variation of the foundation hydraulic conductivity is small, the whole field is
similar to the homogeneous case. For a homogeneous field, the maximum local
velocity is also at the downstream slope toe (as in Figure 6.10), and is controlled
by the geometry and boundary conditions. A simple engineering solution that may
be applied in this case is to provide toe protection.

High

Low

Figure 6.10: Locations of the points with maximum local velocity from ኿ኺኺ realisations (ፂፎፕᑜ ዆ ኺ.ኻ and
᎛ ዆ ኻ).
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When the 𝐶𝑂𝑉፤ increases to 1.0 and the degree of anisotropy is 𝜉 = 20 (or
𝜉 = 1, 8), the locations of the maximum local velocity from 500 realisations are
more scattered over the domain, as seen in Figure 6.11, although still focused
towards the toe. This is due to the significant variation of the foundation hydraulic
conductivity in the random fields. Among the 500 realisations, two typical situations
can be identified. One is when the maximum local velocity happens close to the
ground surface (Figure 6.5); the other is when the maximum local velocity happens
under the dyke (Figure 6.6), at a wide variety of locations. Hence the location of the
maximum local velocity is not as simple to determine as in the situation when the
𝐶𝑂𝑉፤ is small (i.e. 𝐶𝑂𝑉፤ < 1.0), in which the maximum local velocity aggregates
into a small area near the downstream slope toe. For 𝐶𝑂𝑉፤ > 1.0, the spatial
distribution of maximum velocity locations is similar to Figure 6.11, based on 500
realisations.

High

Low

Figure 6.11: Locations of the points with maximum local velocity from ኿ኺኺ realisations (ፂፎፕᑜ ዆ ኻ.ኺ and
᎛ ዆ ኼኺ).

Figure 6.5 shows that the maximum local velocity is close to the ground surface,
whereas Figure 6.6 shows that the location of the maximum local velocity may be, in
certain cases, far from the ground surface. As mentioned already, piping occurrence
can be linked to critical hydraulic velocity. In the first situation it is easier to reach
a critical value to initiate piping because the maximum local velocity is near the
ground surface. In contrast, in the second situation it is easier to form and maintain
a passage for piping development once piping has been initiated. This is due to
the velocity towards the center of the foundation increasing. If piping has been
initiated near the toe in the second situation, the higher velocity near the center of
the foundation may worsen the situation and promote piping progression. Note that
Kanning (2012) investigated the path of piping progression, by linking flow velocity
with the spatial variability of soil grain size in developing a criterion for assessing
the potential for soil erosion. Although not considered in this thesis, the linkage of
spatial variability in both velocity (due to hydraulic conductivity) and grain size is a
logical future step forward.

6.5. Exit gradient related to piping initiation
In the previous section, the influence of the spatial variability of hydraulic conduc-
tivity on the local velocity distribution has been qualitatively discussed in relation
to the maximum local velocity and piping initiation or progression. This section will
present a quantitative analysis related to the piping initiation.
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Terzaghi (1922) proposed a theoretical criterion to calculate the critical exit gra-
dient, 𝑖፜, for piping initiation. It is valid for internally stable soils (in which the
grain-size distribution is good) and defined as

𝑖፜ = (1 − 𝑛፩) (
𝜌፬ − 𝜌፰
𝜌፰

) (6.1)

where 𝑛፩ is the porosity, and 𝜌፬ and 𝜌፰ are the density of the soil solids and water,
respectively.

Van Beek et al. (2014) presented an extensive survey, based on previous lab-
oratory experiments and field tests relating to the study of piping and critical exit
gradients. The results of 𝑖፜ were compiled, with all values being around 1.0 to 1.1.
Terzaghi’s criterion does not include the effects of spatial variability. However, in
the analysis of Van Beek et al. (2014), it was pointed out that spatial variability
could be the cause of the scatter in the interpretation of experimental results (e.g.
Figure 6.12 taken from Van Beek et al. (2014)).
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Figure 6.12: Calculated exit distance (፝፱ ዆ ፚ ∗ ፝ᎷᎲ) versus seepage length (Van Beek et al., 2014).

The distribution of local water velocity has been considered to be an index to
predict piping in previous literature, because it accounts for the combined effect of
hydraulic conductivity and hydraulic gradient. Therefore, instead of 𝑖፜, the critical
local velocity, 𝑣፜, has been used here to predict piping initiation. The 𝑣፜ is assumed
to be derived from 𝑖፜ and the mean hydraulic conductivity. Hence, in order to
predict piping initiation, the local velocity along the downstream boundary (Figure
6.13) has been investigated.

In Figure 6.13, the local velocity in the hatched boundary area is used to predict
piping initiation. The maximum local velocity in the hatched area, 𝑣፛፦ፚ፱, is compared
to the calculated critical velocity, 𝑣፜, and the factor of safety (FOS) relating to piping
initiation is defined as:
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Figure 6.13: Downstream area relating to piping initiation.

FOS = 𝑣፜
𝑣፛፦ፚ፱

(6.2)

where 𝑣፜ = 𝜇፤𝑖፜ = 1.0×10ዅዀ×1.0 = 1.0×10ዅዀ m/s, in which 𝑖፜ has been selected
to be 1.0 in this example.

Figure 6.14 shows the PDF and cumulative distribution function (CDF) of the
FOS related to piping initiation when 𝐶𝑂𝑉፤ = 1.0 and 𝜉 = 1. The vertical solid
line in Figure 6.14 (a) indicates the FOS when the foundation is considered to
be homogenous, i.e. FOS = 1.0 × 10ዅዀ/6.86 × 10ዅ዁ = 1.46. It can be seen
that the heterogeneity has a significant influence on the estimation of the FOS.
In Figure 6.14 (b), when the FOS is smaller than 1.0 it is considered that piping
initiation will occur, so that the probability of failure in this case is 17.6%. Figure
6.15 shows the comparison of the position of the 𝑣፛፦ፚ፱ between the homogenous
and heterogeneous cases. The solid and open circles represent the Gauss points
of the finite elements, with the red open circle denoting the location of 𝑣፛፦ፚ፱ for
the homogenous case. For the heterogeneous case (𝐶𝑂𝑉፤ = 1.0 and 𝜉 = 1), the
possible locations also include the blue open circles in Figure 6.15.
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Figure 6.14: PDF and CDF of FOS related to piping initiation (ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኻ).

Figure 6.16 summarises the probability of failure as a function of both 𝐶𝑂𝑉፤ and
𝜉. For all cases, it is found that the probability of failure increases with increasing
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Gauss point

Gauss point with vb
max
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Figure 6.15: Close-up of the downstream toe area showing the locations of ፯ᑓᑞᑒᑩ as open circles (ፂፎፕᑜ ዆
ኻ.ኺ and ᎛ ዆ ኻ).

𝐶𝑂𝑉፤ when the 𝐶𝑂𝑉፤ is smaller than 1.0, but then decreases for larger values of
𝐶𝑂𝑉፤. This can be explained based on the results of the previous sections. The
reason for the increase is that, when 𝐶𝑂𝑉፤ is smaller than 1.0, the maximum local
velocity of the whole domain, 𝑣፦ፚ፱, aggregates in a small area near the downstream
slope toe. Specifically, it only occurs at a few Gauss points (see Figure 6.17 (a)) and,
therefore, 𝑣፦ፚ፱ is generally equal to 𝑣፛፦ፚ፱ (relating to the hatched area defined in
Figure 6.13). In addition, the variation of the hydraulic conductivity is limited within
a smaller range when 𝐶𝑂𝑉፤ is small and 𝑣፦ፚ፱ is dominated by the range of the
hydraulic conductivity. Because of these two reasons, when 𝐶𝑂𝑉፤ increases from
0.1 to 1.0, the range of the hydraulic conductivity becomes larger so that it causes
a higher maximum local velocity over the whole domain, which is the reason for
the increase of 𝑣፛፦ፚ፱. The increase of 𝑣፛፦ፚ፱ causes the increase in the probability
of failure.
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Figure 6.16: Probability of failure as a function of ፂፎፕᑜ and ᎛.

When 𝐶𝑂𝑉፤ is greater than 1.0, the location of 𝑣፦ፚ፱ is scattered throughout the
whole foundation. Meanwhile, there is no significant difference in the mean of 𝑣፦ፚ፱
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Figure 6.17: Frequency and locations of Gauss points with ፯ᑞᑒᑩ for different ፂፎፕᑜ.

when 𝐶𝑂𝑉፤ is greater than 1.0 (Figure 6.7). However, the scattering is much more
obvious with the increase of 𝐶𝑂𝑉፤ (see Figure 6.17 (b) and (c)), which leads to a
smaller 𝑣፛፦ፚ፱. Due to this reduction, the probability of failure initiation decreases
when 𝐶𝑂𝑉፤ is greater than 1.0.

In Figure 6.16, there is no obvious tendency for a variation of the probability
of failure of piping initiation with the degree of anisotropy for anisotropic cases,
although there is a difference between the isotropic (𝜉 = 1) and anisotropic cases,
i.e. there is a reduction when 𝜉 > 1. The reason for the difference between isotropic
and anisotropic cases may be that, for anisotropic fields, there could be preferential
horizontal flow which would reduce the local velocity upwards. However, Figure 6.16
shows negligible difference between the anisotropic analyses possibly because of
𝑣፛፦ፚ፱ being only studied in a thin layer of elements at the downstream boundary
and the degree of anisotropy affecting the distribution of the hydraulic conductivity
over the whole foundation. Fenton and Griffiths (2008) also found that the exit
gradient of a water retaining structure shows no clear variation with the scale of
fluctuation of the hydraulic conductivity (for their analyses based on isotropic spatial
variability).

6.6. Influence of heterogeneity on the kinetic energy
of seepage

Richards and Reddy (2014) proposed a method which uses the kinetic energy to
predict the initiation of piping. In this section, the influence of the heterogeneity
on the kinetic energy is investigated.

The local kinetic energy of the water, 𝐸፥, is defined as
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𝐸፥ =
1
2𝑀፟𝑣

ኼ
፬ (6.3)

where 𝑀፟ is the mass of fluid and 𝑣፬ is the pore seepage velocity. The 𝑣፬ is calcu-
lated from the computed Darcy flow velocity 𝑣:

𝑣፬ =
𝑞
𝐴፩

= 𝑣𝐴
𝐴፩

= 𝑣
𝑛፩

(6.4)

where 𝑞 is the discharge, 𝐴፩ is the area of the voids in the cross-section, and 𝐴 is
the total area of the cross-section.

Equations 6.3 and 6.4 can be combined as

𝐸፥ =
1
2𝑀፟𝑣

ኼ
፬ =

1
2𝜌፰𝑉𝑛፩ (

𝑣
𝑛፩
)
ኼ
= 1
2𝜌፰𝑉

𝑣ኼ
𝑛፩

(6.5)

where 𝑉 is the volume of soil and, since it is a 2D plane strain problem, 𝑉 = 𝐴. The
global kinetic energy 𝐸፠ is the integral of 𝐸፥ across the whole domain.

In Figure 6.18, the PDFs and CDFs of 𝐸፠, when 𝐶𝑂𝑉፤ = 1.0 and 𝜉 = 1, 20,
are shown. The vertical solid line indicates the value of 𝐸፠ when the foundation is
homogeneous, i.e. 𝐸፠,፡፨፦፨ = 1.07 × 10ዅዂ J. Figure 6.18 shows that heterogeneity
of the hydraulic conductivity can result in a larger global energy compared to that
of the homogeneous case. In addition, the largest value in the distribution can be
significantly larger than the smallest value.

Figure 6.19 shows the distribution of 𝐸፥ for the homogeneous case, whereas Fig-
ure 6.20 shows the realization of 𝐸፥, and the corresponding random field of hydraulic
conductivity, for the realisation (out of 500) for which 𝐸፠ is the maximum (for both
sets of input statistics illustrated in Figure 6.18). It can be seen from the hydraulic
conductivity field, in Figure 6.20 (b), that the higher local hydraulic conductivity
forms a passage of preferential flow (indicated by the red line) which generates
higher 𝐸፥ (Figure 6.20 (a)). For comparative purposes, Figure 6.21 shows similar
results for three other realisations when 𝐶𝑂𝑉፤ = 1.0 and 𝜉 = 1, corresponding to 𝐸፠
being the 2nd, 5th and 10th largest among the 500 realisations. In Figure 6.20 (d),
the higher local hydraulic conductivity at the center of the foundation causes the
higher 𝐸፥ at the center (Figure 6.20 (c)). A comparison between Figures 6.19 and
6.20 shows that the heterogeneity of the hydraulic conductivity not only increases
the value of the 𝐸፥, but also influences its spatial distribution significantly. In addi-
tion, it can be seen that the area of higher 𝐸፥ in the heterogeneous foundation is
larger than that in the homogeneous foundation, especially for the larger value of
𝜉.

The results in Figures 6.18 and 6.20 show that, for higher degree of anisotropy,
the global kinetic energy is likely to increase and the connected elevated zones are
also likely to increase, which increases the likelihood of piping to grow if initiated.

Figure 6.22 shows the variation of the mean of 𝐸፠ against 𝐶𝑂𝑉፤ for 𝜉 = 1, 20.
For 𝜉 = 1, the figure shows that the mean of 𝐸፠ decreases with an increase in
𝐶𝑂𝑉፤, and can be explained by the earlier Figure 6.9. As 𝐶𝑂𝑉፤ increases, the
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Figure 6.18: PDFs and CDFs of ፄᑘ: (a) PDF for ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኻ; (b) CDF for ፂፎፕᑜ ዆ ኻ.ኺ and
᎛ ዆ ኻ; (c) PDF for ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኼኺ; and (d) CDF for ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኼኺ.

4.9e-011

Energy

4e-11

3e-11

2e-11

1e-11

1.2e-022

Figure 6.19: Distribution of ፄᑝ for homogeneous case (unit: ዔ).

distribution of hydraulic conductivity shifts towards the left, so that smaller values of
hydraulic conductivity are likely to be assigned to the random field cells. As 𝐸፠ is the
integral of 𝐸፥ over the whole domain, the increased possibility of a small hydraulic
conductivity decreases the value of 𝐸፠ according to Equation 6.5. For 𝜉 = 20, the
connected elevated zone of kinetic energy increases due to the increased spatial
correlation of hydraulic conductivity. This causes the mean of 𝐸፠ to increase.
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Figure 6.20: Realisation with the maximum global kinetic energy for ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኻ ((a) and
(b)) and ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኼኺ ((c) and (d)): (a) kinetic energy (unit: ዔ); (b) hydraulic conductivity
(unit: ዱ/ዷ); (c) kinetic energy (unit: ዔ); and (d) hydraulic conductivity (unit: ዱ/ዷ).

6.7. Conclusions
This chapter has briefly studied the influence of spatial variability, in the foundation
hydraulic conductivity, on the local seepage velocity through and beneath an em-
bankment. An investigation into the variability of a number of features known to
influence the internal stability was presented, i.e. local velocity, hydraulic gradient
and kinetic energy.

It has been shown that, when the foundation is only weakly heterogeneous
with respect to hydraulic conductivity, it is easy to narrow down the zone in which
piping may initiate. The maximum local velocity occurs in a small area close to the
downstream slope toe and toe protection could be installed.

However, when the foundation shows strong heterogeneity in hydraulic conduc-
tivity the problem becomes more complex due to the significant variation of the
maximum local velocity over the domain. Generally, this variation can be catego-
rized into two types:
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Figure 6.21: Realisations with high global kinetic energy for ፂፎፕᑜ ዆ ኻ.ኺ and ᎛ ዆ ኻ: (a) 2nd highest
(unit: ዔ); (b) hydraulic conductivity (unit: ዱ/ዷ); (c) 5th highest (unit: ዔ); (d) hydraulic conductivity
(unit: ዱ/ዷ); (e) 10th highest (unit: ዔ); and (f) hydraulic conductivity (unit: ዱ/ዷ)



6.7. Conclusions ..

6

109

M
e

a
n

 o
f 

E
g
 (

J)

0.0E+00

2.0E-09

4.0E-09

6.0E-09

8.0E-09

1.0E-08

1.2E-08

1.4E-08

1.6E-08

0 1 2 3 4 5 6

COVk

!=1

!=20

Figure 6.22: Mean of ፄᑘ versus ፂፎፕᑜ for different degrees of anisotropy.

(1) The maximum local velocity is located under the foundation, far from the
downstream ground surface. The high local velocity zone is surrounded by smaller
velocity zones. It is easier to form a passage for piping development once piping is
initiated due to a higher drag force;

(2) The maximum local velocity occurs near the downstream ground surface. It
is easier to reach critical conditions to initiate piping.

In the quantitative analysis of the exit gradient and kinetic energy related to pip-
ing initiation, it was found that the heterogeneity of hydraulic conductivity increased
the possibility of piping initiation. Due to the heterogeneity, the exit velocity gra-
dient is generally higher than that of the homogeneous case. Meanwhile, in the
computation of kinetic energy, it was found that the global kinetic energy 𝐸፠ can
also be higher than that of the homogeneous case and the distribution of the local
kinetic energy 𝐸፥ was significantly different from the homogeneous case. In ad-
dition, 𝐸፠ decreases with an increase of 𝐶𝑂𝑉፤; in particular, higher values of the
degree of anisotropy lead, in general, to higher global levels of kinetic energy and
pathways of locally elevated kinetic energy, which, in turn, leads to an increased
risk of piping growth (once initiated).
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7.1. Conclusions
Soil slopes under seepage are common geotechnical structures, e.g. dams or dykes.
The seepage flow alters the stress state of the structures, thereby affecting their
stability. However, this also offers an opportunity—pore pressure measurements
are more simple (and cheaper) than stress/strain measurements—to better deter-
mine the material properties and therefore safety. Since natural soils are variable
materials, deterministic methods of analysing slope stability, e.g. a single FOS,
have significant disadvantages. Probabilistic methods, which have been developed
since the 1960s, are gradually taking the place of deterministic methods. How-
ever, in probabilistic analyses of seepage and slope stability, the input values of soil
parameters have errors because the field and laboratory tests of soil parameters
are limited in number. Therefore, only a general distribution of the soil parame-
ter values is often possible, with local spatial variability generally being difficult to
capture. However, this approach often leads to large uncertainties and therefore
conservative design. Inverse analysis, which makes use of observation data, can
be used to improve the estimation of soil parameters (in general, and in space)
and thereby reduce the statistical estimate of uncertainty in the prediction of slope
stability. As soil properties used in analyses, e.g. cohesion, friction angle, hydraulic
conductivity, etc., all derive from the soil composition, it is also logical that they are
not independent. This can be used to further reduce uncertainties. Meanwhile, the
complexity of the hydraulic behaviour of unsaturated soils increases the difficulty
of saturated–unsaturated seepage analysis. In order to improve the estimation of
unsaturated slope stability, a more realistic hydraulic model is required to simulate
the flow in the soil.

In this thesis, a data assimilation method, called the EnKF, has been linked with
a probabilistic method, i.e. RFEM, to reduce the statistical estimate of uncertainty
existing in the stability analysis of a slope subjected to seepage. The proposed
numerical approach makes use of hydraulic measurements (hydraulic head or pore
water pressure in this thesis) to back-calculate the hydraulic parameters (hydraulic
conductivity in this thesis). Based on the data assimilation, the local variability of
hydraulic parameters can be better estimated. Also, the improved estimation of
the hydraulic parameters results in a better estimation of the seepage behaviour
and, as seepage behavour influences the stability of the structure, so a better es-
timation of the slope stability is possible. In addition, because of likely correlations
between different soil parameters, the strength parameters (i.e. cohesion and fric-
tion angle) can also be improved based on the improved estimation of hydraulic
parameters, and this in turn benefits the stability analysis. Furthermore, a more
realistic hydraulic model is considered, which can simulate the hysteretic behaviour
of unsaturated soils and better predict saturated–unsaturated seepage.

In all cases, by reducing uncertainty the range of calculated factors of safety
is also reduced, and, in most cases, this improves the calculated reliability, even
when the mean factor of safety reduced. It is seen that, as more information is
used in the analyses, the statistical estimate of uncertainty reduces. This includes
the better estimation of initial parameter distributions and more measurement data,
both with respect to space and time.
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In this work, only theoretical analyses have been undertaken and further exper-
imental or field work is needed to confirm the findings and confirm the practicality
of the method. Costs have also not been examined; however, although the cost of
detailed instrumentation and advanced analysis are not insignificant, they are likely
to be far cheaper in many cases than extensive refurbishment.

Specific conclusions regarding this thesis are listed as follows:

(i) A numerical approach, linking data assimilation (EnKF) with stochastic analysis
(RFEM), has been proposed to reduce the statistical estimate of uncertainty
in the stability analyses of slopes under steady or transient state seepage
based on field hydraulic measurements. This approach proves that hydraulic
measurements can be beneficial to slope stability estimation, in addition to the
common way of using measured stress/strain response in inverse analyses, as
conducted by previous researchers reported in the literature.

(ii) The EnKF improves the estimation of the hydraulic parameters. This leads
to an improvement in the estimation of the seepage behaviour (including the
pore water pressures), as well as in the estimation of strength parameters as
long as there is cross-correlation between them.

(iii) When the EnKF is used, the input values used to generate the initial ensemble
of unknown parameters needs careful selection in order to get a reasonable
result. For example, the EnKF cannot work out the local variability of 𝑘፬ፚ፭
without considering the spatial variability in the input ensemble. It should be
noted that, if the variation of a parameter is not estimated well, it is better to
assume a larger standard deviation in order to get acceptable results. This is
because it allows the generated initial ensemble values to cover a larger range,
which helps in searching for the correct values of the parameter.

(iv) In transient seepage analysis, it has been found that the spatial continuity
(reflected by the scale of fluctuation) has a significant influence on the back-
calculated results via the EnKF. Even when the original standard deviations of
the FOS are close to each other for different values of the scale of fluctuation,
after using the EnKF, the updated estimation of the standard deviation of the
FOS is clearly seen to be different.

(v) Hysteresis in the water retention behaviour of unsaturated soils causes a sig-
nificant difference in the FOS between non-hysteretic and hysteretic cases.
In stochastic saturated–unsaturated seepage analysis, 𝑘፬ፚ፭ is found to be the
most influential parameter compared to other parameters used for the van
Genuchten SWRC. When the heterogeneity of 𝑘፬ፚ፭ is considered at the same
time, the distributions of FOS can be significantly affected, which, in turn, af-
fects the estimation of slope reliability. Since the drying curve is generally
used for a non-hysteretic analysis and the soil is assumed to be in the dry-
ing condition initially (Ebel et al., 2010; Tsai and Chen, 2010), the mean of
the FOS for the hysteretic case is found to be smaller than that for the non-
hysteretic case. Moreover, the standard deviation of the FOS is usually larger
in hysteretic analysis.
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(vi) The heterogeneity of hydraulic conductivity shows a significant influence on
stochastic steady-state seepage, and specifically on the distribution of local
velocity and kinetic energy. Due to the existence of heterogeneity, the maxi-
mum local velocity could occur at various locations within the structure, which
affects the prediction of piping initiation and development. Analysis shows
that the exit velocity gradient at the downstream boundary has an increased
probability of exceeding the critical exit gradient because of the heterogeneous
hydraulic conductivity, especially when degree of anisotropy is high.

7.2. Recommendations for future research
There are some aspects which have not been investigated in this thesis due to time
and knowledge limitations. For future research, a few recommendations are listed
as follows:

(i) The measurements used in the data assimilation in this thesis are synthetic,
rather than real field observation data. The proposed framework to reduce
the statistical estimate of uncertainty in the slope stability could be applied in
a real project in future research.

(ii) Soil property correlations should be investigated. It is seen that knowledge
of such correlations can reduce uncertainty/increase reliability, although the
knowledge of such correlations is limited.

(iii) The seepage process does not consider the influence of soil deformation, i.e.
it is an uncoupled seepage analysis. Therefore, for future work, a fully coupled
seepage analysis would be interesting in which the influence of soil mechanical
behaviour is incorporated. If there is measurement of strain or displacement,
the inverse method can also be applied to back-calculate the mechanical pa-
rameters.

(iv) The seepage analysis could be extended to 3D. The heterogeneity of soil hy-
draulic parameters in the third dimension (i.e. perpendicular to the cross-
section analysed in a 2D problem) increases the variability of the seepage be-
haviour, which may have a significant influence on the stability of a relatively
long 3D slope.

(v) The data assimilation of seepage and the probabilistic analysis of slope stability
are time-consuming processes, because multiple random fields have to be
generated (and the problem analysed repeatedly) in order to model the range
of possible responses due to the spatial variability of soil parameters. Parallel
computing could be a useful and feasible option to increase the efficiency of
such analyses.

(vi) Combining conditional random fields with the EnKF could also be interesting.
The conditional random field can directly reduce the uncertainty of the hy-
draulic parameters as long as there are measurements of those parameters,
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so the combination of these two methods can further improve the estimation
of hydraulic behaviour and thereby the estimation of mechanical response.

(vii) The piping mechanism could be further investigated, so that a better knowl-
edge of piping susceptibility and possible early warning of piping failure could
be observed/predicted.

(viii) In this thesis, an elastic-perfectly-plastic model is used to simulate the soil
mechanical behaviour. More complicated models could be used to better sim-
ulate the stress-strain behaviour, considering, for example, strain-softening
behaviour. However, these models are known to cause grid dependence in FE
solutions without special treatment. Future research should consider the influ-
ence of the soil model and heterogeneity on grid dependency, and investigate
possible mitigation measures.
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Summary

Embankments, dikes and dams are common structures in geotechnical engineering,
with considerable societal value. In these structures, slow water flow, i.e. seep-
age, often occurs. Therefore, the stability of such slopes under seepage is of great
concern to engineers, because of the potential consequences of failure. In order to
predict slope stability, a single factor of safety is often calculated, but this approach
is unable to represent the actual condition of slopes because it ignores the spatial
variability and uncertainty of soil properties. More recently, probabilistic methods,
which can account for the uncertainty of soil parameters, have been developed and
widely used. In probabilistic analysis, the input values, e.g. the distribution of soil
parameter values, are needed. However, these are generally only a global descrip-
tion of the site, whereas the local spatial variability often cannot be well measured.
To improve the estimation of the local variability of soil parameters, inverse anal-
ysis employing observed data has been applied in this thesis. In addition, a more
accurate description of the hydraulic behaviour of unsaturated soils has been used
to better simulate the flow in these structures.

The main purpose of this thesis is to more reliably predict slope stability un-
der seepage. A framework which links stochastic analysis, i.e. the random finite
element method, with the ensemble Kalman filter has been proposed. By using
this approach, hydraulic measurements have been used to reduce the uncertainty
in the estimation of hydraulic parameters, and thereby improve the estimation of
pore water pressures and slope stability. The approach has been applied to both
steady-state and transient seepage analyses. In both cases, the estimation of the
local variability of hydraulic conductivity has been significantly improved and the un-
certainty reduced. Moreover, in the transient seepage analysis, the improvement
in the estimation of hydraulic conductivity using temporal measurements is better
than that in the steady-state seepage analysis via static measurements. However,
care must be taken when selecting initial parameters and parameter distributions.

In this thesis, a more realistic model of the hydraulic behaviour of unsaturated
soils has been used in simulating the transient drying-wetting process, where the
hysteretic water retention behaviour of unsaturated soil has been considered. The
combined effect of the hysteresis and spatial variability of unsaturated soils has
been investigated. It is found that, by ignoring this hysteresis, the slope stability
may be overestimated.

In the final part of the thesis, the research has been extended to investigate the
influence of soil heterogeneity on the internal stability of an embankment, i.e. on
the potential for piping initiation and development. The stochastic seepage analysis
showed that heterogeneity of the hydraulic conductivity increases the possibility of
piping initiation. The locations of high local velocity are significantly affected by the
spatial variability of soils.
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Samenvatting

Taluds, dijken en dammen zijn veelvoorkomende geotechnische werken met vaak
een aanzienlijke maatschappelijke waarde. In deze werken vindt vaak trage grond-
waterstroming plaats. Het is voor ingenieurs daarom van groot belang de stabiliteit
van dergelijke hellingen onder invloed van grondwaterstroming te onderzoeken,
vanwege de mogelijke gevolgen voor bezwijken. Om hellingstabiliteit te voorspel-
len wordt vaak een enkele veiligheidsfactor berekend, maar deze aanpak is niet
geschikt om de werkelijke toestand van een helling te beschrijven omdat de ruim-
telijke variabiliteit en onzekerheid van bodemeigenschappen genegeerd worden.
Recentelijk zijn probabilistische methoden ontwikkeld die onzekerheden in grond-
parameters in rekening kunnen brengen. Deze methoden worden op grote schaal
gebruikt. Deze probabilistische analyses vragen om invoerwaarden, zoals de sta-
tistische verdeling van de waarde voor een grondparameter. Deze invoerwaarden
zijn meestal slechts een globale beschrijving van het terrein en lokale ruimtelijke
variabiliteit blijkt vaak niet goed meetbaar. Om de schatting van de lokale varia-
biliteit van bodemparameters te verbeteren wordt in dit onderzoek inverse analyse
toegepast, waarin observatiedata wordt gebruikt. Daarnaast is een meer nauwkeu-
rige beschrijving van het hydraulisch gedrag van onverzadigde grond gebruikt om
de grondwaterstroming beter te simuleren.

Het hoofddoel van dit proefschrift is met grotere zekerheid de stabiliteit van hel-
lingen onder invloed van grondwaterstroming te voorspellen. Hiervoor is een me-
thode voorgesteld die stochastische analyse (de random finite elelemnt method)
combineert met de ensemble Kalman filter. Door deze aanpak kunnen hydrauli-
sche metingen gebruikt worden om de onzekerheid in de schatting van hydraulische
parameters te verminderen, waardoorde schattingen van grondwaterspanning en
hellingstabiliteit verbeterd worden. De aanpak is toegepast op zowel stationaire
als transiënte stromingsanalyses. In beide gevallen is de schatting van de lokale
variatie van doorlatendheid aanzienlijk verbeterd en de onzekerheid gereduceerd.
Bovendien is de verbetering van de schatting van doorlatendheid groter wanneer
tijds-afhankelijke waarnemingsdata wordt gebruikt in transiënte analyses dan wan-
neer statische data wordt gebruikt in stationaire analyses. Echter initiële paramters
en parameterdistributies dienen met zorg te zijn gekozen.

In dit onderzoek is een realistischer model van het hydraulische gedrag van
onverzadigde grond toegepast voor het simuleren van het transiënte proces van
verandering inverzadiging van de grond. Het hysteresegedrag van onverzadigde
grond is hierin meegenomen. Het gecombineerde effect van de hysterese en de
ruimtelijke spreiding van onverzadigde grond is onderzocht. Gebleken is dat door
het negeren van deze hysterese de stabiliteit van de helling overschat kan worden.

In het laatste deel van dit proefschrift gaat in op de invloed van bodemhete-
rogeniteit op de inwendige stabiliteit van een dijk, d.w.z. de mogelijke initiatie-en
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ontwikkeling van piping. De stochastische hydrologische analyse toont aan dat met
de heterogeniteit van de doorlatendheid de mogelijkheid tot initiatie van piping toe-
neemt. De locaties van hoge lokale stroomsnelheden worden aanzienlijk beïnvloed
door de ruimtelijke variatie van de bodem.



Notation

Acronyms

CDF cumulative distribution function

EKF extended Kalman filter

EnKF ensemble Kalman filter

FEM finite element method

FORM first order reliability method

FOS factor of safety

KF Kalman filter

LAS local average subdivision

LEM limit equilibrium method

MCM Monte Carlo method

PDF probability density function

PEM point estimate method

PWP pore water pressure

RFEM random finite element method

RMSE root mean square error

SOF scale of fluctuation

SPREAD uncertainty of the ensemble members

SRM strength reduction method

SWRC soil water retention curve

VGM van Genuchten‒Mualem model

VWC volumetric water content
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Greek Symbols

𝛼 approximately inverse of the air entry suction head in the SWRC

𝛼፝ approximately the inverse of the air-entry suction head in the drying
SWRC

𝛼፰ approximately the inverse of the air-entry suction head for main wet-
ting curve

𝛽 reliability index

𝜒 scalar defining the suction-induced effective stress

𝛾 unit weight of soil

𝛾፰ unit weight of water

𝜅 slope of the scanning curve

𝝐። a vector of measurement errors

𝝐።፧።፭።ፚ፥ initial errors in hydraulic head

𝝐፮፩፝ፚ፭፞፝ updated errors in hydraulic head

𝝆 correlation matrix

𝝈ᖤ effective stress vector

𝜇 mean

𝜇ፅ mean of the performance function

𝜇፤ mean of the hydraulic conductivity

𝜇፯ᑞᑒᑩ mean of the maximum local velocity

𝜈 Poisson’s ratio

𝜙ᖤ effective friction angle

𝜙ᖤ፟ factored effective friction angle at slope failure

𝜌 spatial correlation between variable values at different locations

𝜌፬ density of soil solids

𝜌፰ density of water

𝜌ደዲ፤,Ꭻ correlation coefficient between ln𝑘 and friction angle

𝜌ደዲ፤,፜ correlation coefficient between ln𝑘 and cohesion
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𝜌፜,Ꭻ correlation coefficient between cohesion 𝑐 and friction angle 𝜙

𝜌ፗ,ፘ correlation coefficient between 𝑋 and 𝑌

𝜎 standard deviation

𝜎ፅ standard deviation of the performance function

𝜎፤ standard deviation of hydraulic conductivity

𝜎፭ total stress normal to the sliding plane

𝜎ፗ standard deviation of 𝑋

𝜎ᖤ፱ effective normal stress in 𝑥 direction

𝜎ፘ standard deviation of 𝑌

𝜎ᖤ፲ effective normal stress in 𝑦 direction

𝜎ᖤ፳ effective normal stress in 𝑧 direction

𝜎፯ᑞᑒᑩ standard deviation of the maximum local velocity

𝜏 lag distance between two points in a random field

𝜏፬፬ shear stress

𝜏፱፲ shear stress in 𝑦-direction, acting upon a plane having its normal in
the 𝑥-direction

𝜃 volumetric water content

𝜃፡ horizontal scale of fluctuation of hydraulic conductivity

𝜃፤ scale of fluctuation of hydraulic conductivity 𝑘

𝜃፫ residual volumetric water content

𝜃፬ saturated volumetric water content

𝜃፯ vertical scale of fluctuation of hydraulic conductivity

𝜃ደዲ፤ scale of fluctuation of ln𝑘

𝜉 degree of anisotropy of the heterogeneity

Latin Symbols

𝟎 a null matrix
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𝟏ፍ matrix in which each element is equal to 1/𝑁

𝐱፟፭ ensemble mean of 𝐱፟፭
𝐃 matrix of measurement data perturbed by noise

𝐞 matrix containing vectors of measurement errors

𝐅 model used to forecast the state vector

𝐆፝፞፩፞፧፝ vector of correlated values

𝐠።፧፝፞፩፞፧፝ vector of uncorrelated values

𝐇 measurement operator which relates the state vector to the measure-
ment points

𝐡 vector of hydraulic heads

𝐡∗ a vector of real measurements

𝐡። a vector of perturbed measurements

𝐡።፧።፭።ፚ፥ hydraulic heads calculated from the initial estimations of the hydraulic
conductivity field

𝐡፫፞፟፞፫፞፧፜፞ hydraulic heads calculated from the reference hydraulic conductivity
field

𝐡፮፩፝ፚ፭፞፝ hydraulic heads calculated from the updated estimations of the hy-
draulic conductivity field

𝐈 identity matrix

𝐊𝐆 Kalman gain

𝐤 vector of natural log of hydraulic conductivity

𝐋 triangular matrix decomposed from 𝝆

𝐦 vector used to derive effective stress vector

𝐏፟፭ error covariance matrix of the ensemble of forecasted state vectors

𝐑 matrix based on 𝝐።
𝐱 an ensemble of 𝑁 state vectors

𝐱። state vector for the EnKF

𝐱፟፭ matrix containing the ensemble of forecasted state vectors

𝐱፮፭ matrix containing the ensemble of updated state vectors
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ln𝑘 natural log of hydraulic conductivity 𝑘

ln𝑘፬ፚ፭ natural log of saturated hydraulic conductivity 𝑘፬ፚ፭
VAR(𝑗) ensemble variance for each ln𝑘፬ፚ፭
𝐴 total area of the cross-section

𝐴፩ area of the voids in the cross-section

𝑐ᖤ effective cohesion

𝑐ᖤ፟ factored effective cohesion at slope failure

𝐶𝑂𝑉 coefficient of variation

𝐶𝑂𝑉(𝑋, 𝑌) covariance between 𝑋 and 𝑌

𝐶𝑂𝑉፤ coefficient of variation of hydraulic conductivity

𝐸 elastic stiffness

𝑒 ensemble mean of 𝑘፬ፚ፭
𝐸፠ global kinetic energy of the water

𝐸፥ local kinetic energy of the water

𝐸፠,፡፨፦፨ global kinetic energy of the water in homogeneous case

𝐹 performance function

𝑔 gravitational acceleration

𝐺፬ specific gravity of the soil particles

ℎ hydraulic head

𝐻፜ hydraulic head across the structure

ℎ፞። estimated values of hydraulic head

ℎ፭። true values of hydraulic head

ℎ፬ suction head

ℎፏፖፏ pore pressure head

ℎ፬,ፚ፞,፝ air-entry suction head for the main drying curve

ℎ፬,ፚ፞,፰ air-entry suction head for the main wetting curve

ℎ፬,ፚ፞ air-entry suction head

𝑖 an ensemble
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𝑖፜ critical exit gradient for piping

𝑖𝑖 a counter

𝑗 Gauss point number

𝑘፱ hydaulic conducitivity in the 𝑥 direction

𝑘፲ hydaulic conducitivity in the 𝑦 direction

𝑘፳ hydraulic conductivity in the z direction

𝑘፬ፚ፭ saturated hydraulic conductivity

𝐿 seepage length

𝑙 scale of fluctuation

𝑙፡ scale of fluctuation in the horizontal direction

𝑙፯ scale of fluctuation in the vertical direction

𝑚 number of hydraulic head measurements

𝑀፟ mass of fluid

𝑁 number of ensemble members

𝑛 fitting parameter in the SWRC

𝑁፡ the number of unknown hydraulic head values in the foundation layer

𝑛፩ porosity

𝑁፤ number of unknown hydraulic conductivity values

𝑛𝑛 number of element nodes

𝑝 pore water pressure

𝑞 discharge

𝑟 true value of 𝑘፬ፚ፭
𝑆 effective degree of saturation

𝑠 matric suction

𝑡 iteration number in steady-state or time in transient seepage

𝑇ኻ period of the first sinusoid

𝑇ኼ period of the second sinusoid

𝑢ፚ pore air pressure
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𝑢፰ pore water pressure

𝑉 volume of soil

𝑣፛፦ፚ፱ maximum local velocity at the bottom boundary

𝑣፜ critical local velocity

𝑣፝ deterministic maximum local velocity

𝑣፬ pore seepage velocity

𝑣፦ፚ፱ maximum local velocity of the whole domain

𝑊𝐿 water level

𝑋 a variable

𝑥 coordinate in the horizontal direction

𝑌 a variable

𝑧 elevation or coordinate in the vertical direction
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