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ABSTRACT

Compiler correctness is a cornerstone of reliable software develop-

ment. However, systematic testing of compilers is infeasible, given

the vast space of possible programs and the complexity of modern

programming languages. In this context, di�erential testing o�ers

a practical methodology as it addresses the oracle problem by com-

paring the output of alternative compilers given the same set of

programs as input. In this paper, we investigate the e�ectiveness of

di�erential testing in �nding bugs within the Kotlin compilers devel-

oped at JetBrains. We propose a black-box generative approach that

creates input programs for the K1 and K2 compilers. First, we build

workable models of Kotlin semantic (semantic interface) and syntac-

tic (enriched context-free grammar) language features, which are

subsequently exploited to generate random code snippets. Second,

we extend random sampling by introducing two genetic algorithms

(GAs) that aim to generate more diverse input programs. Our case

study shows that the proposed approach e�ectively detects bugs

in K1 and K2; these bugs have been con�rmed and (some) �xed by

JetBrains developers. While we do not observe a signi�cant di�er-

ence w.r.t. the number of defects uncovered by the di�erent search

algorithms, random search and GAs are complementary as they

�nd di�erent categories of bugs. Finally, we provide insights into

the relationships between the size, complexity, and fault detection

capability of the generated input programs.

CCS CONCEPTS

• Software and its engineering→ Software testing and de-

bugging; Search-based software engineering; Compilers; •

Theory of computation→ Evolutionary algorithms.
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1 INTRODUCTION

Compilers are an essential part of the software development ecosys-

tem. They allow developers to write programs in a high-level lan-

guage, that can be understood by a human, and convert these to a

format that machines can understand. Kotlin is a popular upcoming

high-level programming language that was developed by JetBrains

in 2011, as an alternative to Java. Currently, Kotlin is used by 15.9M

users and it is the main development language for Android.

Up until recently, Kotlin used the compiler that was introduced

with the language when it was released, called K1. This compiler,

however, is limited by its technical debt (i.e., a consequence of soft-

ware that expedited features over maintainability), making it harder

to extend in the future. Therefore, with the release of Kotlin 2.0,

JetBrains is introducing an improved new compiler, called K2. As

K2 is not just a refactored version of K1, but a complete rewrite

of its frontend based on a di�erent architecture, it is important to

make sure that the two versions behave similarly. The new frontend

comprises 115k lines of Kotlin within the 565k core compiler code.

Software veri�cation [9] is a specialized �eld of research that

mathematically checks if a program complies with its requirements.

However, it faces two main limitations when applied to compil-

ers [14]: (1) they do not scale to the size and complexity of compilers,

and (2) they require a model (i.e., oracle) to determine if the output

for a given input is correct. An alternative approach that circum-

vents the oracle problem [8] is di�erential testing [16, 29]. Di�er-

ential testing takes two di�erent versions of the same program,

supplies these with identical inputs, and compares their outputs.

Eventual discrepancies highlight bugs in one of the two versions.

Prior studies have successfully applied di�erential testing to �nd

bugs in compilers for various programming languages, such as

Java [15], C/C++ [27, 40], and JavaScript [22, 23]. However, exist-

ing approaches either require an initial set of programs (seeds) to

mutate [38] or generate programs relying on a context-free gram-

mar (CFG) speci�cation (e.g., [22, 23]). The latter approaches do

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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not account for the rich semantic nuances often accompanying

the grammar speci�cations. In the case of Kotlin, the CFG does

not satisfy simple semantic rules without providing additional con-

text. This increases the likelihood of generating invalid code if no

additional semantic constraints are considered.

This paper presents a case study of black-box di�erential testing

for the Kotlin compilers (K1 and K2 in particular) developed at

JetBrains. We use a block-box approach since high coverage can be

easily achieved with few simple programs according to the Kotlin

developers. Our generative approach uses three stages to produce

valid Kotlin code, addressing the challenges accompanying the

above-mentioned Kotlin speci�cations.

First, our approach truncates the Kotlin speci�cations and re-

places them with two context-aware models, namely the enriched

CFG and the semantic interface. The former is an enriched version

of the CFG augmented with additional constraints. The latter en-

codes the meaning and the semantic relations between di�erent

code segments. Second, our approach implements two categories

of search algorithms that generate valid Kotlin programs based

on context-aware models, namely random search (RS) and genetic

algorithms (GAs). RS simply samples new Kotlin programs by ran-

domly traversing the context-aware models. GAs, instead, evolve

a pool (called population) of randomly generated yet valid Kotlin

programs with the aim of promoting/generating a diverse set of

programs over time. We investigate two �avors of GAs, namely

(1) a single-objective variant that maximizes the program diversity

and (2) a many-objective variant that considers program size as

well. Finally, we perform di�erential testing that aims to identify

inconsistencies in the output of the two compilers under test.

Our experimental results show that RS e�ectively detects dif-

ferential bugs in the K1 and K2 compilers, namely out-of-memory

errors and resolution ambiguity. Furthermore, GAs successfully de-

tect further bugs related to con�icting overloads. While RS and GA

are statistically equivalent w.r.t. the number of compiler bugs they

identify, they are complementary as they uncover di�erent cate-

gories of bugs. We have reported three categories of bugs found by

our approach, and they have been veri�ed and con�rmed by Jet-

Brains developers. Some of these bugs have already been resolved

in more recent compiler releases, while others are planned to be

resolved in future releases.

This paper makes the following contributions:

• A three-stage generative approach that intertwines CFG,

programming language semantics, and meta-heuristic search

for di�erential testing of compilers.

• A case study on the e�ectiveness of random search and meta-

heuristics in testing Kotlin’s K1 and K2 compilers.

• The discovery and analysis of new di�erential bugs reported

to and con�rmed by JetBrains developers.

• An in-depth analysis of the relationship between the char-

acteristics of the generated programs (complexity and size)

and their ability to uncover compiler bugs.

• A replication package with code [12] and data [11].

While our work focuses on Kotlin compilers, our approach can

be applied to other compilers. Our study provides insights into

the behavior of alternative search methods, which are valuable

for compiler developers seeking to enhance the robustness and

reliability of compilers across diverse programming languages.

2 BACKGROUND AND RELATEDWORK

This section provides background information about Kotlin com-

pilers and summarizes the related work in compiler testing and

search-based software testing.

2.1 Kotlin

Kotlin1 is a relatively new language that was developed by JetBrains

in 2011. It is a general-purpose, high-level programming language

that is statically typed and cross-platform. JetBrains developed

Kotlin as an alternative to Java, but now it runs not only on the

JVM, but also on JavaScript, Native, and even WebAssembly. Over

the years, Kotlin has been gaining traction with the developer

community. According to the latest annual report2, Kotlin has 15.9M

users and 90 of the global top 100 companies use Kotlin. In 2019,

Google announced that Kotlin is the preferred language for Android.

The original compiler introduced with the language is called K1.

This compiler has been updated with new features throughout the

years, while at the same time accumulating technical and architec-

tural debt. Recently, JetBrains has been working on a new frontend

for the compiler, called K23. K2 aims to address the existing debt,

speed up the development of new language features, improve the

performance of the compiler, and �x bugs and inconsistencies in

the compiler behavior. Since the K2 compiler is not an iteration of

the old compiler but a complete rewrite of its frontend component,

it is important to ensure the two compilers behave similarly.

2.2 Compiler Testing

In recent decades, researchers and practitioners have invested

tremendous resources to improve compiler testing through au-

tomation [10, 14]. Modern approaches make use of Di�erential

Testing (DT) to heuristically assess di�erent compilers of the same

programming language. They generate code snippets, which are

used as the input for each compiler version with the goal of uncov-

ering di�erences in behavior [29]. Any di�erence in the compiler’s

outcome (i.e., crashes, non-compiling snippets, or errors) highlights

implementation errors that may a�ect real-world applications. By

making use of DT, we can circumvent the test oracle problem [8].

For this study, we make the distinction between test program gen-

eration and programmutation approaches as classi�ed by Chen et al.

[14]. The former generates programs from scratch, without any

external seed, while the latter mutates existing programs to gener-

ate new variations. Test program generation approaches also di�er

in their utilization of the language grammar. Grammar-directed

approaches solely rely on the grammar to generate novel code snip-

pets, whereas grammar-aided approaches heuristically exploit the

grammar, which is often enriched with semantically rich context.

Purdom [35] devised one of the �rst algorithms aimed at testing

the correctness of Context-Free Grammar (CFG) parsers. They use

a grammar-directed approach that applies iterative rewriting rules

beginning with a starting symbol, to eventually exhaust the entire

1https://kotlinlang.org/
2https://www.jetbrains.com/lp/annualreport-2023/
3https://blog.jetbrains.com/kotlin/2023/02/k2-kotlin-2-0/
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grammar speci�cation. Yang et al. [40] propose Csmith, a grammar-

aided test program generation tool aimed at �nding bugs in C

compilers using DT. Csmith fundamentally di�ers from Purdom’s

approach in that it follows a generation pattern that primarily

focuses on the semantic properties of C rather than its grammar.

Livinskii et al. [27] introduce YARPGen, a C/C++ program gen-

eration tool that aims to increase the expressiveness and diversity

of test programs. YARPGen proceeds in a top-down fashion and

does not explicitly utilize a formal language grammar. Instead, it

tracks a type environment that stores all visible composite data

types, which implicitly guide the generative process. The envi-

ronment is iteratively enriched with newly generated types, each

having access to all previous entries. Han et al. [22] introduce

the notion of semantics-aware assembly, which they implement

in the CodeAlchemist tool, aimed at testing the JavaScript en-

gine. The key concept in semantics-aware assembly consists of

building blocks, also referred to as code bricks, a notion similar to

LangFuzz’s code fragments [23]. A code brick consists of a valid

JavaScript abstract syntax tree (AST) that is additionally annotated

with an assembly constraint.

Speci�cation fuzzing approaches envelop a third category of

code generation techniques that generally favor language-agnostic

declarative formulations over system-speci�c approaches. The In-

put Speci�cation Language (ISLa) [37] is one such approach that al-

lows users to annotate a grammarwith semantic, context-dependent

constraints. In this approach, users can introduce annotations that

match the nuances of real programming languages and thus cir-

cumvent implementing narrow-scoped fuzzers. ISLa uses a solver

to iteratively expand the constrained grammar speci�cation, which

allows it to generate code that is both semantically and syntacti-

cally aligned. The Language Speci�cation Language (LaLa) [25]

allows for declarative descriptions of attribute grammars [24] as

a means of introducing semantics to a context-free language. The

LaLa framework translates a given speci�cation into Java classes

that are the input to the fuzzing process. At runtime, the fuzzer

instantiates ASTs that conform to the attribute properties, while

simultaneously checking for fail patterns.

Compared to the related work, we enhance the di�erential test-

ing process by introducing heuristic-based guidance targeting the

Kotlin language. We use similar semantic modelling techniques as

Csmith [40] and YARPGen [27], but we allow users of our tool

to customize the root environment to a much greater extent. Our

implementation enables users to include arbitrary Kotlin code that

is automatically parsed and integrated into the semantic context.

During sampling, we repeatedly query the context and use its con-

stituents (i.e., user-provided classes) to generate new code. Similar

to CodeAlchemist [22] and LangFuzz [23], we structurally de-

compose code. However, in contrast to those approaches, we only

employ decomposition as a means of adding variation to our code

during generation rather than extracting information from exist-

ing code bases. We also decided against using ISLa [37] and LaLa

[25] because of the signi�cant e�ort required to encode the rich se-

mantics of Kotlin within their respective frameworks. Additionally,

the fuzzers of both approaches heavily rely on an enumeration of

random expansions, whereas our approach enables a more sophisti-

cated heuristic search. Finally, Stepanov et al. [38] also targets Kotlin

with its mutation-driven method, which, unlike our approach, relies

on existing code as a starting point for the fuzzier.

2.3 Search-Based Software Testing

Search-based Software Testing (SBST) is a broad umbrella of ap-

proaches and tools aimed at automating the process of generating

test cases [30]. The automation is achieved by utilizing optimization

algorithms (e.g., genetic algorithms) that iteratively evolve a set

of randomly generated test cases toward optimizing given testing

criteria (e.g., branch coverage) [4]. To this aim, meta-heuristics

leverage a �tness function (or objective) to evaluate how closely the

test execution aligns with those goals. Depending on which type of

information the �tness function relies on, SBST techniques can be

classi�ed in white-box and black-box. The former techniques use

the internal information (e.g., coverage data) of the program under

test to assess the “�tness” of the generated tests [30]. The latter

techniques do not require access to the source code (bytecode) but

rely on external information [18], such as input diversity [2].

Previous research has demonstrated the e�ectiveness of SBST

across various testing levels, including unit [20, 31, 32], integra-

tion [19], system levels [6, 18], and concurrency testing [39]. SBST

approaches have shown to be particularly promising, outperform-

ing random testing, in achieving extensive coverage [13, 33], de-

tecting defects [19, 21], or testing cyber-physical systems [1].

In this work, we aim to investigate the e�ectiveness of genetic

algorithms and random search when applied to the detection of

bugs in Kotlin compilers using di�erential testing. As we illustrate

in the next section, our approach is black-box, thus focusing on the

input and output of the compilers under test.

3 APPROACH

Our approach aims to automatically generate 100% valid code that

uncovers defects in the Kotlin compilers. To achieve this goal, we de-

signed a multi-stage approach comprising three phases, as depicted

in Fig. 1. Phase I consists of building workable models of Kotlin

semantic and syntactic language features, which are subsequently

exploited to generate (sample) random code snippets. We elaborate

on this step in Section 3.1. Section 3.2 covers Phase II, in which we

provide guidance to the random sampling process by introducing

search objectives and utilizing Evolutionary Algorithms (EAs).

Phase III performs di�erential testing (DT) on K1 and K2 using

the output of Phase II as compiler input. In this �nal step, we

di�erentiate between three di�erent cases. If both compilers display

the same behavior (i.e., they both successfully compile the code),

no defects have been uncovered. If the two compilers give di�erent

verdicts, (i.e., one compiles the code while the other raises an error,

as shown in Fig. 1), then one of the versions under test is erroneous.

Finally, if either of the compilers crashes, we individually analyze

the cause of the crash through the compiler’s logging mechanism.

3.1 Random Code Generation

In this subsection, we delve into the models that our approach uses

to encompass the structure (syntax) and the meaning (semantics)

of programs. These models serve as the basis for generating valid

Kotlin code and form the foundation of the EAs in Phase II.
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Kotlin Files
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(Syntax)
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Kotlin Code
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Variation

Kotlin Code

K1

Compile

✓

K2

Compile
✗

Phase I - Modeling and Sampling Phase II - Search Phase III - Di�erential Testing

Figure 1: Overview of our approach.

3.1.1 Syntactic Interface. Kotlin is a rich programming language,

the structure of which is de�ned in terms of a formal Context-Free

Grammar (CFG) [3]. The language developers made a full grammar

speci�cation available in the popular antlr4 [34] parser-generator

framework. Though crucial for verifying the structural soundness

of Kotlin code, the CFG poses several practical challenges.

With over 480 symbols and 700+ productions, the Kotlin CFG is

a complex aggregation of structural relations. However, the inher-

ent lack of context of the grammar gives rise to several obstacles

that make straightforward generation algorithms impractical. For

instance, classic grammar-based fuzzers such as the one introduced

by Purdom [35] do not account for the rich semantic nuances often

accompanying CFG speci�cations. In the case of Kotlin, the CFG

cannot satisfy even simple semantic rules such as a variable name

must be de�ned before assignment. When paired with the signif-

icant complexity of the speci�cation, this causes any attempt to

sample the grammar independently to result in invalid code with

an overwhelming likelihood, due to the accumulation of semantic

constraints that are unaccounted for in the grammar.

To address this limitation, we implemented two key operations

that modify the standard Kotlin CFG. First, we selectively trun-

cate the grammar at points in the speci�cation where signi�cant

semantic nuance occurs. This operation preserves the shape in

the grammar (i.e., no new symbols or rules are created, but transi-

tions between symbols are retained), while drastically reducing its

complexity and increasing the likelihood of generating valid code.

Second, we endow each grammar rule with a sample property that

overrides the standard speci�cation of the symbol in the CFG.

We only perform this latter operation on semantically rich sym-

bols that remain in the CFG’s composition after the truncation

step. Simpler nodes (such as cardinality or optionality) do not re-

quire speci�c sample implementations and instead fall back on

their default speci�cation. The fallback mechanism guarantees that

grammar-abiding options are always available, even if individual

sample rules are not implemented. This, in turn, enables a trade-o�

between speci�city and implementation complexity.

The purpose of the sample property is to ensure that grammar

traversal algorithms additionally account for constraints not in-

cluded in the grammar speci�cation. Together, the two operations

simplify and augment the Kotlin CFG in a process we call enrich-

ment (Figure 1, Phase I). The output of this transformation is an

annotated Directed Acyclic Graph (DAG), where nodes correspond

to symbols and edges pertain to rules in the original grammar.

3.1.2 Semantic Interface. To e�ectively utilize the syntactic inter-

face of the enriched CFG, our method requires a corresponding se-

mantic counterpart that encodes the meaning and semantic relation

between di�erent code segments. The abstraction that encompasses

these concepts is hereafter referred to as semantic context.

Our implementation of the semantic context ful�lls three key re-

quirements within the fuzzer. Firstly, it furnishes the enriched CFG

with a mechanism for querying useful information from the avail-

able code. This allows traversal algorithms to discern which pro-

ductions are feasible. Secondly, the context actively tracks changes

to the semantics of a program as it is generated. This mutability

enables an iterative increase in the complexity of the sampled code,

as previously generated code (i.e., variables) can appear again in

later lines. Finally, we construct the semantic context through an ex-

traction process, that parses and extracts information from provided

Kotlin �les. This process ensures the versatility of our approach, as

users can provide arbitrary �les as input to constrain (or broaden)

the generative process.

The context data structure tracks three traits of Kotlin programs.

First, it maintains a set of visible callableswithin reachable code. We

use the term callables in a similar fashion to [38], encompassing all

visible functions, properties, constructors, variables, constants, and

primitives provided to the fuzzer. This data is stored in a _-calculus-

like representation that captures their properties. The context ad-

ditionally accounts for the type hierarchy of its programs and the

constraints related to parameterized types. Lastly, various semantic

constraints are embedded within the queries that the context sup-

ports, including both universal Kotlin rules and context-sensitive

restrictions (i.e., only sample types that at least one callable in the

context can return).

3.1.3 Random Sampling/Search. The �nal step in Phase I combines

the enriched CFG and the semantic context in a straightforward

manner that produces random semantically valid Kotlin code. To do

so, we follow the enriched grammar structure, randomly selecting
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Algorithm 1: Random Sampling

Input :CFG N, Context C, Time budget B

1 �← ∅

2 while ¬ TimeElapsed(B) do

3 2 ← Clone(C)

4 1 ← sample(N, c)

5 �← � ∪ {1}

6 return �

transitions between nodes, while simultaneously querying the at-

tached semantic context.We refer to this procedure interchangeably

as Random Sampling or Random Search (RS).

Algorithm 1 outlines RS. The algorithm begins by initializing

an archive � (line 1) that tracks all generated code. The main loop

(lines 2-5) proceeds by �rst creating a clone of the root context

(line 3) before querying the sample property of the given target

CFG node (line 4). The purpose of the context clone is to ensure

that changes performed in a sampling round do not propagate to

later, independent samples. RS then adds the obtained sample to

the archive (line 5) and returns the collected samples (line 6).

3.2 Evolutionary Fuzzing

Though e�ective at drawing random samples of valid Kotlin code,

Algorithm 1 lacks direction. Speci�cally, it lacks a mechanism that

would allow sampled code to undergo structural changes that in-

crease the likelihood of uncovering compiler defects. To introduce

such a mechanism, we rely on EAs as a framework of performing

iterative changes on randomly sampled Kotlin code in Phase II of

our approach. We �rst address the genetic representation of code,

before describing the variation operators and �nally, formulating

the overarching EA in detail.

3.2.1 Solution Encoding. The individuals that make up the pop-

ulation of the EA consist of independently valid pieces of code,

hereafter referred to as blocks. The goal of this denomination is to

isolate pieces of code that are both syntactically and semantically

self-contained (i.e., that have no external dependencies). Each block

� is comprised of an ordered sequence of snippets [B1, ..., B=], repre-

senting isolated pieces of Kotlin code with inner scopes (i.e., classes,

functions). We order snippets based on the topology of their de-

pendencies to more e�ciently detect and extract self-contained

structures. Each snippet B is itself a 4-tuple ⟨#,Λ, �, � ⟩ with # the

name of the snippet, Λ the _-calculus formatted metadata which

encodes the snippet’s input-output behavior, � a list of snippets B

depends on, and � an ordered list of fragments, the lowest denomi-

nation of our representation. Fragments are simply text-encoded

pieces of Kotlin code that generally correspond to single lines of

code. These generally include statements and expressions.

This hierarchical representation provides two key advantages.

First, it captures the structural composition of the underlying Kotlin

program with increasing levels of granularity. This enables the

design of variation operators that perform complex alterations to

the structure of sampled programs, which sampling alone cannot.

Second, it allows for automated dependency and con�ict analysis.

Since snippets include metadata regarding their signatures and

dependencies, it is straightforward to reason about the con�icts that

may arise when including two snippets in the same block or about

the requirements that removing a snippet may entail. Fragments

include no such metadata, reducing overhead. The dependencies of

a snippet are equivalent to the cumulative dependencies of all of

the snippet’s fragments. In our formulation, fragments are bound to

a single snippet’s scope and are not subject to any further variation

during the search. Because of this, reasoning about the snippet’s

dependencies su�ces to ensure the validity of the code.

3.2.2 Variation Operators. Before describing the variation oper-

ators of our EA, we �rst establish the notion of a self-contained

partition of a block. Given a block � = [B1, ..., B=], we can obtain

a partition �′ = [B′
1
, ..., B′<] starting from a snippet B8 = B′

1
∈ � by

including (i) B8 , (ii) all snippets that B8 directly or indirectly depends

on, (iii) all snippets that directly or indirectly depend on B8 , and (iv)

recursively performing selections (ii) and (iii). The new partition

�′ is a block, as it has no external dependencies.

Using this notion, we de�ne three mutation operators that per-

form changes on arbitrary blocks �. The removal operator �rst

selects a random snippet BA ∈ � and removes its corresponding

self-contained partition �BA ⊆ �. The context-free addition opera-

tor samples a new block �cfa from the root context and appends

its snippets to �. Finally, the context-aware addition operator �rst

merges the context of � with the root context before performing

a sample operation that results in a new block �caa. The mutation

consists of appending the snippets of �caa to �.

We additionally implement a recombination operator that takes

as input two parent blocks�?1 and�?2 and swaps two self-contained

partitions �G1 ⊆ �?1 and �G2 ⊆ �?2 to obtain two new o�spring

blocks �>1 = (�?1 − �G1 ) ∪ �G2 and �>2 = (�?2 − �G2 ) ∪ �G1 . We

perform con�ict analysis prior to recombination such that we only

select pairs of blocks with no con�icting signatures.

3.2.3 Heuristics. We bring together the tools developed in this

section in two formulations of genetic algorithms (GAs). Both algo-

rithms attempt to optimize the diversity of sampled code under the

hypothesis that structurally diverse code is more likely to stress dif-

ferent components of the compiler and thus uncover more defects.

Each algorithm implements a di�erent measure of diversity

through the �tness function involved in the selection mechanism.

To map individuals to a numerical �tness space, we �rst establish a

notion of similarity between blocks. For any two blocks �1 and �2
we de�ne a mapping< : B → N: that transforms blocks of Kotlin

code from the abstract space B to :-dimensional natural number

vectors. Each position of the vector represents the number of times

a particular Kotlin language feature (i.e., if expressions, functions)

appears in the input block, capturing a crude estimation of the struc-

tural composition of the underlying program. Using this mapping,

any common measure of distance 3 : N
: × N: → R (i.e., euclidean

norm) can be used to determine the similarity between two blocks.

Using these notions, we de�ne the population-wide dissimilarity of

a block in � in population % according to Equation (1):

38B (�, %) = min
�8 ∈%−{�}

{3 (<(�),<(�8 ))} (1)

Intuitively, Equation (1) measures the distance between � and

its most similar individual in % . We use this formula to construct

the population-wide diversity �tness function in Equation (2). We
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Algorithm 2: Single-Objective Diversity-based GA

Input :Population size =, CFG N, Context C, Time budget B

1 C ← 1

2 %1, %
∗ ← InitializeAndEvaluatePopulation(=,N, C)

3 while ¬ TimeElapsed(B) do

4 $C ← CreateAndEvaluateOffspring(%C)

5 %C+1 ← SelectIndividuals(%C ,$C , 5
(($ )
DIV

)

6 if
∑

1∈%C+1
5
(($ )
DIV

(1, %C+1 ) >
∑

1∈%∗ 5
(($ )
DIV

(1, %∗ ) then

7 %∗ ← %C+1

8 C ← C + 1

9 return %∗

de�ne 5
(($ )
DIV

as a single-objective (SO) �tness function, which seeks

to minimize a value proportional to the inverse of Equation (1),

e�ectively maximizing dissimilarity:

min
�∈B

5
(($ )

DIV
(�, % ) =

1

1 + 38B (�, % )
(2)

Algorithm 2 describes the Single Objective Diversity Genetic

Algorithm (SODGA) that optimizes 5
(($ )
DIV

. The algorithm begins

by initializing a counter and instantiating the population by means

of RS (lines 1, 2). In addition to the standard population, SODGA

also tracks the most diverse population encountered during the run

in the variable %∗. Next, the algorithm proceeds in a loop (lines

3-8) where the variation operators give rise to o�spring (line 4)

before triaging the population through selection (line 5). In each

generation, the most diverse population is updated if a better (more

diverse) set of individuals emerges (lines 6, 7). After the time budget

has been exhausted, the algorithm returns the population %∗.

The �tness function of SODGA is fundamentally dependent on

each generation’s population, which prevents it from ever con-

verging to a stable solution set. While this is desirable for lengthy

fuzzing campaigns, we propose a second algorithm that aims to

provide a stable converging behavior. In contrast to SODGA, we de-

sign this alternative as a many-objective (MO) approach that seeks

to construct a stable archive of diverse yet small Kotlin programs.

Equation (3) describes the MO �tness function that attempts to

simultaneously minimize the size of generated programs (5BI ) and

maximize the number of each language features present in them

(5;8 from an abstract set of language features L):

max
�∈B

5
("$ )

DIV
(�) =

{

−5BI (�), 5;1 (�), . . . , 5;= (�) | ;8 ∈ L
}

(3)

In contrast to the SO approach, the size objective in MODGA favors

small programs, which helps isolate uncovered defects.

Algorithm 3 describes the implementation of the MO Diversity

GA (MODGA). It �rst initializes an elitist archive (line 1) before

sampling a random initial population (line 2). The main loop pro-

ceeds in standard GA fashion, with an additional archive update

step (line 4) that processes newly generated �les. Selection (line 6) is

carried out by means of Pareto-domination counting [28]. MODGA

returns the elements of the archive at the end of the run.

4 EMPIRICAL STUDY

Our empirical study aims to evaluate RS, SODGA, and MODGA

w.r.t. their capability of uncovering bugs in the Kotlin compiler. We

begin by examining the impact of internal parameter values on

Algorithm 3: Many-Objective Diversity-based GA

Input :Population size =, CFG N, Context C, Time budget B

1 �← InitializeElitistArchive(5
("$ )
DIV

); C ← 1

2 %1 ← InitializeAndEvaluatePopulation(=,N, C)

3 while ¬ TimeElapsed(BC) do

4 �← ProcessNewArchiveEntries(%C , 5
("$ )
DIV

)

5 $C ← CreateAndEvaluateOffspring(%C)

6 %C+1 ← DominationSelection(%C ,$C , 5
("$ )
DIV

);

7 C ← C + 1

8 return �

Table 1: Overview of evaluated algorithms.

Name Fitness Objectives Selection Parameter

RS - - - Simplicity Bias (?1 )

SODGA 5
(($ )
DIV

1 Tournament Distance (;2 or ;∞)

MODGA 5
("$ )
DIV

| L | +1 = 7 Dom. Rank -

each algorithm to gain insights into their behavior. Speci�cally, we

analyze how the notion of expression simplicity in�uences block

generation in RS. Additionally, we investigate the role of the chosen

distance metric in Equation (1) on the performance of SODGA.

Furthermore, we conduct a comparative analysis of the performance

of di�erent algorithms in terms of the number of defects they �nd

during each run. We summarize these goals within the following

research questions:

RQ1. How does expression simplicity impact the properties of �les

generated by RS?

RQ2. How does the distance measure in�uence the properties of �les

generated by SODGA?

RQ3. How e�ective are RS, SODGA, and MODGA in terms of uncov-

ering bugs in the Kotlin compiler?

4.1 Framework

We implemented the methods described in this paper in an open-

source repository4 that includes additional heuristics not detailed

in this study. In addition to the fuzzer implementation, it contains

an extensive framework for thorough customization and analysis

of heuristics. Furthermore, it provides utilities for replicating the

results of this study [11, 12]. This includes functionality that auto-

mates DT and defect classi�cation, as well as the aggregation of

data related to the fuzzer’s performance.

4.2 Con�gurations

We assess the implementation of three distinct algorithms: RS,

SODGA, and MODGA. All implementations operate on a subset of

the Kotlin CFG that includes �ve language features: function decla-

rations5, statements6, assignments7, and four types of expressions8.

This means the output of Equation (3) is a seven-dimensional vector.

4https://github.com/ciselab/kotlin-compiler-fuzzer
5https://kotlinlang.org/spec/declarations.html#declarations
6https://kotlinlang.org/spec/statements.html#statements
7https://kotlinlang.org/spec/statements.html#assignments
8https://kotlinlang.org/spec/expressions.html#expressions
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The �rst entry of the vector denotes the program size, and the re-

maining six entries count the frequency (number) of each language

feature in the corresponding block.

Table 1 lays out the overview of the con�guration for each eval-

uated algorithm. To answer RQ1, we introduce the simplicity bias

parameter that governs the complexity of sampled blocks. This

parameter operates within the sample property of CFG nodes for

the expressions. The bias in�uences the probability of sampling

simple expressions (i.e., function calls and property accesses) as

opposed to more complex counterparts (i.e., if-expressions). The

simplicity bias is expressed as a number ?1 ∈ [0, 1], where ?1 indi-

cates the probability of sampling simple expressions while 1 − ?1 is

the probability of sampling complex ones. Similarly, we experiment

with two distance measure implementations for the 3 function of

Equation (1) that correspond to the ;2 (or Euclidean) and ;∞ norms:

;2 (<(�1),<(�2) =
∑

1≤8≤ |L |+1

√

(<(�1) (8 ) −<(�2) (8 ) ) (4)

;∞ (<(�1),<(�2)) = max
1≤8≤ |L |+1

| <(�1)
(8 ) −<(�2)

(8 ) | (5)

For SODGA and MODGA parameters, we turn to established lit-

erature values to determine the population size and further selection

details. However, applications of evolutionary fuzzing to compiler

testing are scarce, and established evolutionary fuzzing tools like

VUzzer [36] and V-Fuzz [26] make no recommendation in these

regards. As such, we turn to standard values used in search-based

testing literature, particularly of EvoSuite, which uses a popu-

lation size of 50 and a tournament selection with tournament size

of 10 [20, 32]. We apply the mutation and recombination (crossover)

operators described in Section 3.2.2.

Past research by Arcuri and Fraser [7] has shown that default

values can provide solid performance in a broad set of scenarios

in software testing. Though these �ndings provide no guarantees

for the task of compiler testing in particular, we believe these are

sensible starting points that circumvent the expensive requirements

of parameter tuning of all proposed algorithms.

4.3 Experimental Protocol

To understand how the simplicity bias in�uences the nature of gen-

erated �les, we perform several runs of RS with di�erent parameter

settings. We experiment with simplicity bias values between 0.4 and

0.6, as we empirically found that values outside this range either

lead to blocks too large to scale e�ectively, or too small to build

su�ciently complex programs. We collect information regarding

the number of Kotlin programs generated, their size, and the types

of compiler crashes each simplicity bias reveals.

To answer RQ2, we run both SODGA and MODGA with ;2 and

;∞ norms and we analyze the properties of the generated programs

in a manner analogous to that done for RQ1. Finally, we answer

RQ3 by considering the e�ectiveness and e�ciency of RS, and the

GAs with best-performing parameter values (for diversity) based

on the results of the previous experiments (RQs). We measure ef-

fectiveness in terms of the number of di�erential bugs uncovered

by each algorithm at the end of each search/fuzz run. For e�ciency,

we collect the number of bugs uncovered over time (every 180 sec-

onds) and compute the Area-Under-Curve (AUC) of the resulting

bugs-over-time graph. For RQ3, we perform statistical analysis us-

ing the Wilcoxon [17] signed-rank test to determine whether the

underpinning distributions are signi�cantly di�erent.

In total, we ran �ve instances of RS to answer RQ1, three in-

stances of SODGA and MODGA to address RQ2, and ten runs of RS

and SODGA to answer RQ3. Each run lasts 90 minutes for a total

of 28 total fuzzing sessions amounting to 42 hours of fuzzer run-

time. In each run, we store snapshots of the population of SODGA

and of the archive of MODGA every 180 seconds. We carry out all

DT procedures on Kotlin version 1.8.20-RC-release-288, which

contains both K1 and K2 releases in the same package9.

All experiments and runs were executed in isolated containers

using Docker and performed on the same machine using an AMD

Ryzen 7 5800H with 16GB of RAM. Each Kotlin compiler uses the

default 4GB of heap memory.

5 RESULTS AND ANALYSIS

5.1 E�ects of Expression Simplicity

To investigate the impact of the simplicity bias, we analyze the

size and number of �les generated by the Random Search (RS)

algorithm when varying the simplicity bias ?1 . Figure 2 depicts the

relationship between (a) the average size of the Kotlin programs

generated through random sampling and (b) the number of �les

the algorithm outputs in a 90-minute interval.

The average size of a �le decreases from 5,084 characters for a

bias of 0.40 to 2,205 for a bias of 0.45 and 1,545 for a bias of 0.50. The

rate of change diminishes for bias values 0.55 and 0.6, with average

sizes of 1,132 and 941 characters, respectively. This rate of change

follows an exponential trend according to the Anderson-Darling

test of goodness-of-�t (?-value<0.001) [5].

Conversely, the number of generated �les (programs) increases

from 1,157 for the lowest value of bias (0.40) to 8,869 for the highest

(0.60). Values corresponding to biases between the two extremes

follow the same trend, resulting in 2,799, 4,712, and 6,218 �les

generated for simplicity biases of 0.45, 0.50, and 0.55, respectively.

Next, we analyze the relationship between the simplicity bias

and the e�ectiveness of random sampling in identifying di�erential

bugs between the two Kotlin compilers, namely K1and K2. Figure 3

presents a visual representation of the number of defects discovered

through di�erential testing of the generated �les, corresponding

to each tested simplicity bias value. A crucial �nding from these

results is that all defects uncovered by RS are of a single type:

out-of-memory (OOM) errors, speci�cally in the K1 compiler.

All OOM errors encountered in the �ve experimental runs are

triggered by �les with 10,000+ characters. Their distribution among

the simplicity bias values aligns with the distribution of �le sizes

that each value entails. RS with a simplicity bias of 0.40 generates 15

OOM-inducing �les, while higher values of 0.45 and 0.50 produce

three such instances. Simplicity bias values exceeding 0.50 do not

generate such �les, due to their narrower �le size distribution.

Summary RQ1: Lower simplicity bias values cause RS to gener-

ate larger and fewer �les. Bias values of 0.50 or lower occasion-

ally generate �les of over 10,000 characters, which often trigger

OOM errors in K1, but not in K2.

9https://kotlinlang.org/docs/whatsnew1820.html
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Figure 2: Comparison of the number of �les generated by RS and their size.
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Figure 3: The number of defects uncovered by RS with vary-

ing simplicity bias values.

5.2 E�ects of Diversity Interpretation

We begin by analyzing the properties of the Kotlin programs gener-

ated and collected in each snapshot of SODGA and MODGA with

;2 and ;∞ norms. Figure 4 (a) provides the visualization of the evolu-

tion of the average generated �le size over time. For both variations

of SODGA, the mean �le size varies between 1,000 and 3,500 char-

acters, which are well under the threshold of 10,000 characters that

may trigger OOM errors.

The �uctuations stem from the in�uence of the population-

sensitive �tness function. As the population tends towards larger

programs, the diversity-based �tness function (and the selection

operator) promotes smaller programs as they will be more diverse

(i.e., more distant regions of the search space). As smaller programs

take over the population, the trend reverses, and larger programs

again introduce more diversity. This pattern holds true for both

the ;2 and ;∞ norms. However, the latter norm induces more sub-

stantial shifts in program sizes due to its more rigorous measure of

(dis)similarity. Consequently, the ;∞ variant yields both the largest

(3,500) and smallest (900) average program sizes.

In contrast, the elitist archive of MODGA retains �les that are

far smaller than the population of its single-objective counterparts.

Following initial �uctuations in the �rst six snapshots, the average

program size in the population of MODGA stabilizes at around 300

characters. This aligns with the composition of the archive itself,

which also converges to a static set of 70 solutions by the sixth

snapshot. Subsequent changes over time are comparativelyminimal,

with the archive expanding by only three additional entries.

Figure 4 (b) depicts the program size distribution generated by

SODGA and MODGA. The means of the distributions of the two

SODGA variations are comparable: the ;∞ variant produces �les

that are, on average, only 1.50% (1,574 characters) smaller than

;2 (1,598 characters). However, the two distributions substantially

di�er in their third and fourth interquartile, with the ;∞ norm

generating more outliers. MODGA produces �les that are much

smaller and less diverse than either SODGA. This pattern can be

attributed to two primary factors: (1) the size component notably

reduces the archive’s overall size; (2) the archive has a tendency to

retain only a few (less than 10) very large �les, which independently

dominate substantial portions of the search space.

In terms of bug �nding, the genetic algorithms allowed to dis-

cover two bugs. SODGA equipped with the ;∞ norm and MODGA

both independently uncover one defect that causes K1 to raise

an error, while K2 successfully compiles the generated code. Both

instances of the defect emerge as a consequence of the genetic re-

combination operator and could not have been generated otherwise

by RS. We discuss this further in Section 5.4.

Summary RQ2: SODGA behaves similarly when using ;2 and

;∞ norms, with the latter displaying a broader program distri-

bution. MODGA’s archive stagnates after a few iterations and

retains smaller �les. All GAs uncover defects that RS could not

discover.

5.3 Comparative Analysis of the Detected Bugs

To gain additional insights into the comparative performance of

the two classes of algorithms, we compare the defect detection ca-

pabilities of RS and SODGA. To this end, we performed 10 fuzzing

sessions with RS and SODGA w/ ;2. We selected this variant of

single-objective GA since it generates fewer outlier �les than its

;∞ counterpart, and does not su�er from possibly premature con-

vergence like MODGA. Both algorithms are run with a simplicity

bias of 0.5 based on the results of RQ1.

In total, RS uncovers more defects (12 unique bugs) than SODGA

(9 unique bugs). However, theWilcoxon test revealed no statistically
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(a) Mean size of blocks generated by SODGA and MODGA. (b) Block size distribution of SODGA and MODGA.

Figure 4: Block size distribution of SODGA and MODGA.
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Figure 5: Overview of uncovered defects.

signi�cant di�erence w.r.t. the number of detected bugs between RS

and SODGA (? = 0.459). The RS runs reveal one novel defect that

causes K2 to not compile a generated Kotlin program when K1 does.

SODGA additionally �nds 1 OOM error and eight defects of the

same category as the ones addressed in Section 5.2, but no novel

defects emerge. RS achieves, on average, a mean AUC of 0.719 (i.e.,

bug detection over time), which is greater than SODGA’s 0.446.

However, the pairwise statistical analysis suggests these di�erences

are not statistically signi�cant (? = 0.322). In other words, SODGA

and RS show similar e�ciency in �nding bugs over time. Figure 5

provides an overview of the categories of bugs each algorithm un-

covers. Of the 21 bugs found in total, 11 are OOM errors that RS

�nds more frequently (10) than SODGA (1). RS additionally uncov-

ers two instances of a resolution ambiguity defect, and SODGA

distinctly �nds eight instances of con�icting overload errors.

Summary RQ3: RS and SODGA with ;2 norm are statistically

equivalent w.r.t. the number of bugs they uncover and their e�-

ciency (bugs detected over time). However, the two algorithms

are complementary as they �nd distinct categories of defects.

5.4 Bugs Con�rmed by JetBrains Developers

Throughout the experiments carried out in this study, we encoun-

tered several dozen instances of erroneous behavior in the Kotlin

compiler. After individual analysis and consultation with the Kotlin

compiler developer team, we divided these instances into three

distinct categories. This section brie�y analyzes these categories,

their impact on the Kotlin ecosystem, and the fuzzer components

responsible for their detection.

fun main ( ) {

fun p ( ) : Char { return ' c ' }

fun p ( ) : F l o a t { return 1 3 . 0 f }

}

Figure 6: K2 false negative con�icting overloads.

5.4.1 OOM Errors. OOM errors occurring only in the K1 compiler

are common among �les that exceed 10,000 characters in length.

The fact that such �les do not cause equivalent errors in K2 makes

them less important for the scope of this study, as they showcase a

measurable improvement in performance, rather than an issue that

requires developer attention. As a result, we did not report any of

these issues to the developer team, instead focusing on bugs that

a�ect K2. We occasionally encountered code that either (i) triggered

OOM errors in both K1 and K2, or (ii) only triggered OOM errors in

K2. Compiler developers con�rmed several such instances for the

current release of Kotlin, but consider them of minor importance

or even acceptable.

5.4.2 K2 Nested Functions. Figure 6 contains a code snippet that K2

compiles without warnings, while K1 throws a con�icting overloads

error. The latter is the intended behavior. The two p() functions

cause a resolution con�ict that the compiler is meant to warn about.

After experimentation with this instance, we observed that K2 al-

ways resolves a p() function call to the �rst de�nition of the func-

tion, irrespective of the return type or the number of re-declarations.

Notably, this problem only occurs when the de�nitions of p() are

both nested inside a higher-scope function. The Kotlin compiler

developers con�rmed the existence of this bug and assigned it a

medium priority. They plan to �x this error in Kotlin 2.0.

We uncovered several independent instances of this bug, all

generated through GAs. The sampling process that RS depends on

contains a check that prevents the generation of functions with the

same name, which is tracked through the shared context. However,

this constraint is relaxed during recombination, allowing for such

scenarios to emerge during crossover occasionally.

5.4.3 K2 Concurrent Modification Exception. Figure 7 shows an

error that a�ects the ConcurrentModificationException class
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var J _ : Con cu r r en tMod i f i c a t i o nEx c ep t i on =

Concu r r en tMod i f i c a t i o nEx c ep t i on ( )

J _ = J_ ? : Con cu r r en tMod i f i c a t i o nEx c ep t i on (

Con cu r r en tMod i f i c a t i o nEx c ep t i on ( J _ ) )

Figure 7: K2 overload resolution ambiguity.

of the Kotlin standard library. The K2 compiler reports an overload

resolution ambiguity error stemming from the expression in line

4. K1 compiles the code without error. The Kotlin developers veri-

�ed the occurrence of this bug in several recent compiler releases.

The compiler team traced the bug to the resolution and inference

components of the compiler frontend, and, after careful considera-

tion, decided this change is expected. Though any permutation of

algorithm and con�guration described in this study is in principle

capable of generating this, it was RS that initially uncovered it. Find-

ing such bugs depends on covering the input of the fuzzers’ context,

which RS is more e�ective at since it does not incur additional

overhead from operations on higher-level language structures.

6 THREATS TO VALIDITY

Threats to construct validity stem from the connection between

the practical measures employed to quantify theoretical aspects

of the study. In this regard, we use standard DT procedures to

quantify compiler defects and link uncovered defects to static, mea-

surable properties of the generated code. We also employ common

metrics of e�ectiveness and e�ciency that are standard practices

throughout empirical software engineering research.

Threats to internal validity regard factors that could lead to con-

founding the causes of observed phenomena. In our study, the main

obfuscating factor in regards to causality is the heavy reliance on

randomness. We take several measures to address the large degree

of randomness inherent to fuzzing approaches. First, we individ-

ually assess each uncovered defect and analyze the components

of the fuzzer involved in its generation. Through this procedure,

we identify the root causes of generating compiler-crashing code

and isolate the merits and disadvantages of di�erent heuristics.

Second, we ensure the fairness of the comparisons by sharing pa-

rameters between di�erent con�gurations with default values from

the literature. We also perform the comparison using a single imple-

mentation of the tool, that relies on the same sampling process and

genetic operators. Lastly, to assess the e�ectiveness and e�ciency

of our algorithms, we repeat independent runs 10 times and report

average values that are subject to standard statistical analyses.

Threats to conclusion validity a�ect the relation between the

available data and the credibility of the conclusions we derive based

on it. To this end, we base our analysis on over 50,000 generated �les,

and vary the essential hyperparameters of our algorithms to several

sensible values. We additionally perform statistical tests to compare

algorithms representative of their respective class. In particular,

we base our performance conclusions on the application of the

Wilcoxon signed-rank test, which is a statistical procedure that

does not impose unreasonable restrictions on the data distribution.

Threats to reproducibility concern factors that might cause the

application of the same research methods to result in signi�cantly

divergent or con�icting observations. To mitigate this, we supply

the entire code base that implements our approach [12], in addi-

tion to the entire set of generated �les and adjacent preprocessed

data [11]. We also provide extensive documentation to detail our

tool, its con�guration, and its applicability. To ensure that no envi-

ronmental factors interfere with the fuzzer, we use containerization

to isolate the dependency management and runtime of our tool.

7 CONCLUSIONS AND FUTURE WORK

We proposed a generalizable three-stage approach that intertwines

syntax, semantics, and meta-heuristic search. Our method prunes

semantically rich grammar productions and replaces them with

context-aware counterparts to generate valid code programs. We

structure the code that emerges from sampling the enriched gram-

mar structure into a hierarchical representation based on scope and

complexity. This representation forms the basis of an evolutionary

framework that provides guidance to the sampling process.

We introduced two instances of evolutionary algorithms that

are novel to the �eld of compiler fuzzing. The algorithms seek to

drive the population toward a diverse collection of code that exer-

cise di�erent combinations of language features. We implemented

both single- and many-objective formulations of genetic algorithms

(GAs), in addition to the standard random sampling (RS).

We analyzed the behavior and performance of the proposed

approaches in an empirical analysis spanning 50,000 generated

Kotlin �les, which we analyzed through di�erential testing between

the recent K1 compiler and the upcoming K2 version. Our results

uncovered three previously unreported categories of bugs, which

we reported to the Kotlin compiler developer team. The developers

veri�ed and replicated our instances on the current release of the

Kotlin compiler. Compiler developers are either working on �xing

the reported issues, or have already resolved them in more recent

compiler releases. While a comparative analysis between RS and

GAs shows no signi�cant di�erence in the number of bugs they

�nd, their driving mechanisms favor di�erent code patterns, which

in turn materialized in distinct bugs uncovered by each heuristic.

We foresee multiple possible directions for future work.

Further grammar enrichment. The current version supports cus-

tom sample operations for a limited number of Kotlin CFG rules.

Extending these to additional rules would allow the fuzzer to gen-

erate more varied and interesting code e�ciently.

Compiler Integration. The heuristics and �tness functions ex-

plored in this study guide the generative sampling process towards

promising areas of the Kotlin code space. In parallel to those meth-

ods, one could leverage compiler information directly into the

search algorithm. Our tool includes a module that allows the fuzzer

to query for �les that trigger faults, according to DT.

Integration with Mutation Fuzzing Stepanov et al. [38] introduced

a mutation-based fuzzer for Kotlin, that alters input code in a sound

and type-aware manner. Since the variation operators of our GAs

are both vastly di�erent and less powerful than those in the muta-

tion fuzzer, exploring the integration of the two could give rise to

new, otherwise unattainable pieces of code.
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