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Abstract
Evaluation of the hydrological performance of grassed swales usually needs long-term monitoring data. At present, suit-
able techniques for simulating the hydrological performance using limited monitoring data are not available. Therefore, 
current study aims to investigate the relationship between saturated hydraulic conductivity (Ks) fitting results and rainfall 
characteristics of various events series length. Data from a full-scale grassed swale (Enschede, the Netherlands) were uti-
lized as long-term rainfall event series length (95 rainfall events) on the fitting outcomes. Short-term rainfall event series 
were extracted from these long-term series and used as input in fitting into a multivariate nonlinear model between Ks and 
its influencing rainfall indicators (antecedent dry days, temperature, rainfall, rainfall duration, total rainfall, and seasonal 
factor (spring, summer, autumn, and winter, herein refer as 1, 2, 3, and 4). Comparison of short-term and long-term rainfall 
event series fitting results allowed to obtain a representative short-term series that leads to similar results with those using 
long-term series. A cluster analysis was conducted based on the fitting results of the representative rainfall event series with 
their rainfall event characteristics using average values of influencing rainfall indicators. The seasonal index (average value 
of seasonal factors) was found to be the most representative short rainfall event series indicator. Furthermore, a Bayesian 
network was proposed in the current study to predict if a given short-term rainfall event series is representative. It was vali-
dated by a data series (58 rainfall events) from another full-scale grassed swale located in Utrecht, the Netherlands. Results 
revealed that it is quite promising and useful to evaluate the representativeness of short-term rainfall event series used for 
long-term hydrological performance evaluation of grassed swales.

Keywords Long-term hydrological performance · Grassed swale · Saturated hydraulic conductivity · Rainfall event series · 
Bayesian network · Representativeness

Introduction

Grassed swales are vegetated shallow ditches, generally 
suitable along the sides of urban roads, impermeable sites, 
parks, and green spaces (Lu et al. 2023). They can be cou-
pled with or even replace the traditional urban stormwater 
drainage system. Stormwater runoff which flows through a 
grassed swale could be reduced and purified through infil-
tration, settlement, and filtration of soil media and vegeta-
tion (Zhao et al. 2016; Gong et al. 2019; Saudo-Fontaneda 
et al. 2020). The first application of grassed swales dates 
back to the 1940s. These facilities were originally designed 
for the prevention of soil erosion (Fardel et al. 2019). The 
USA has established the stormwater management function 
of BMP (best management practices) measures including 
grassed swales through the federal Clean Water Act in 1972 
(Board 2009). Grassed swales particularly exhibit effective 

Responsible Editor: Philippe Garrigues

Highlights
• Bayesian network-based method was built for long-term 

monitoring and evaluation of grassed swales.
• Saturated hydraulic conductivity (Ks) of a grassed swale was 

correlated with rainfall event indicators.
• Nonlinear fitting results of Ks between short and long rainfall 

event series were compared to screen representative series.
• The minimum representative rainfall event series length was 60 

events.
• Most representative rainfall event indicator was the seasonal 

index.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-024-32355-5&domain=pdf
http://orcid.org/0000-0002-6597-9737


 Environmental Science and Pollution Research

runoff reduction in response to small rainfall events (Saudo-
Fontaneda et al. 2020; Shafique et al. 2018). They can reduce 
peak flow by 4 to 87% (Deletic and Fletcher 2006; Rujner 
et al. 2018) and total runoff by 15 to 82% (Winston et al. 
2018). Significant individual differences in the hydrological 
performance of grassed swales have been reported in previ-
ous studies. These differences may be caused by factors such 
as the initial soil moisture content (Rujner et al. 2018), soil 
characteristics (Davis et al. 2012; Rujner et al. 2016), surface 
roughness, height and density of the grass cover (Deletic 
and Fletcher 2006), hydraulic conductivity (Besir and Cuce 
2018; Rujner et al. 2018), compaction during construction 
(Gregory et al. 2006; Pitt et al. 2008), and maintenance dur-
ing the long-term operation (Saudo-Fontaneda et al. 2020).

The saturated hydraulic conductivity of the filter medium 
is the main factor which controls the long-term hydrological 
performance of grassed swales. In absence of maintenance, 
they are prone to clog by particles and sediment during long-
term operation (Xie et al. 2020). Previous work revealed 
that most rainwater pollutants are trapped in the upper soil 
layer (Dierkes and Geiger 1999). There are only few studies 
focused on the time-varying characteristic of the saturated 
hydraulic conductivity of grassed swales and other BMP 
facilities, such as bioretention cells and green roof (Wang 
et al. 2023). Coustumer et al. (2009) conducted on-site 
experiments on 37 biofilter systems in Australia to investi-
gate the changes in the saturated hydraulic conductivity after 
0.5 to 3 years of operation. Results revealed that the 40% of 
the biofilter systems had low saturated hydraulic conductiv-
ity (<50 mm/h), 43% had medium (50 to 200 mm/h), and 
17% had high (>200 mm/h). Some biofilters with high ini-
tial saturated hydraulic conductivity (> 200 mm/h) showed 
significant reductions after prolonged operation. However, 
facilities with lower initial saturated hydraulic conductivity 
(< 20 mm/h) were less affected over prolonged operation. 
Haile et al. (2016) noted that the saturated hydraulic conduc-
tivity of biofilter media significantly decreased within 5 to 
7 years of operation but remained within an acceptable range 
(212.4–504 mm/h). A bioretention system in Blacksburg, 
USA, exhibited good runoff reduction and infiltration capac-
ity after 7 years of operation (Willard et al. 2017). Paus et al. 
(2014) explored the long-term performance of the infiltration 
function of bioretention systems and found that their infil-
tration capacity were sustained at a constant level for more 
than 6 years. These studies revealed no significant change 
in the long-term infiltration performance of bioretention 
systems. It may attribute to the maintenance activities and 
environmental variations, or it is hard to detect substantial 
alterations in shorter monitoring period. A grassed swale, 
with prolonged operation (9 to 14 years), entirely clogged 
due lack of proper maintenance measures (Al-Rubaei et al. 
2015). Soil or media clogging is the key limiting factor for 

the service life of grassed swales and other similar BMPs 
(Kandra et al. 2014). Soil and vegetation also have a signifi-
cant impact on the peak flow reduction and drainage per-
formance of grassed swales (Saracoglu and Kazezyilmaz-
Alhan 2023). On the one hand, there is a strong correlation 
between the presence of plants and the clogging process 
of the media, because vegetation reduces the runoff flow 
rate, leading to an accumulation of solid particles within the 
media. And on the other hand, during the long-term opera-
tion, dense grassland or vegetation coverage can improve the 
infiltration capacity of soil media (Hunt et al., 2012; Yousef 
et al. 1987). The growth of vegetation roots will form large 
pores and root channels in the media, thereby enhancing 
permeability and preventing clogging (Muerdter et al. 2018).

Previous study revealed that cold climates and repeated 
snowmelt processes can also affect the infiltration capacity 
of the filter medium in a long-term operational grassed swale 
(He et al. 2022). The snow could also affect the performance 
of grassed swales by concentrating the flow in narrow chan-
nels, which reduced the effective area of infiltration, but also 
led to the longer lag times and stored a portion of the runoff 
water within its pack (Zaqout and Andradóttir 2021). With 
the addition of snowmelt water, it is highly significant to 
quantify the combined effects of frozen soils, snowmelt, and 
rainfall on runoff from urban catchments during the melting 
period (Moghadas et al. 2018). Compared with other BMPs 
and urban green space, grassed swales are more likely to be 
affected by the snow melting process because grassed swales 
are usually implemented on the roadsides and become a road 
snow accumulation or deposit areas (Zaqout and Andradót-
tir 2021). When experiencing rain on snow events, an ice 
layer that prevents infiltration may form within the snow 
cover, which helps to generate instantaneous runoff during 
snow rainfall and snowmelt events (Garvelmann et al. 2015). 
While suffering from repeated cycles of freeze–thaw events, 
the infiltration rate could increase or decrease mainly due to 
the soil texture and initial water content, and ice may have 
formed in soil pores and causing lower infiltration rates after 
frequent freeze–thaw cycles (Fouli et al. 2013). However, 
repeated freezing and thawing processes could also change 
the stability of the media structure and the continuity of 
pores, thus producing preferential flow that may promote 
infiltration (Paus et al. 2016).

Long-term hydrological monitoring data is crucial for 
evaluating the long-term hydrological performance of 
grassed swales, clarifying the time-varying characteristics 
of their saturated hydraulic conductivity and the influenc-
ing factors that cause the observed changes. However, the 
optimal duration of the monitoring period and the number 
of rainfall events required to effectively evaluate or predict 
the long-term hydrological performance of grassed swales 
are still difficult to define (Yang et al. 2023). Brown et al. 
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(2013) employed DRAINMOD model to simulate the per-
formance of four bioretention cells using 2-year monitor-
ing data. Abualfaraj et al. (2018) collected monitoring data 
from a green roof over a period of 4 years and compared it 
with the predicted results of the EPA-SWMM model. Brown 
et al. (2013) used 1-year monitoring data to calibrate and 
validate the DRAINMOD model. A water balance approach, 
termed the Soil Water Apportioning Method (SWAM), to 
enable economic assessment of the long-term hydrologic 
performance of green roofs, was developed by Hakimda-
var et al. (2016). It is utilized for the estimation of green 
roof runoff and evapotranspiration (ET) based solely on the 
measurements of local precipitation, substrate moisture, and 
the substrate maximum water storage capacity. Information 
on the assessment of the representativeness of existing moni-
toring data and the enhancement of subsequent monitoring 
strategies for evaluating and predicting the long-term hydro-
logical performance of grassed swales and similar BMPs are 
lacking. Hence, it is crucial to develop a data-driven method 
for monitoring work.

Several relevant studies have investigated the appropriate-
ness of employing various lengths of time series in rainwater 
harvesting research. For example, Mitchell (2010) assessed 
the efficiency of a rainwater harvesting system using rain-
fall data spanning 1, 10, and 50 years for simulation. The 
findings revealed that using 10 and 50 years of data yielded 
comparable results, while a 1-year time series exhibited sig-
nificant variability. Geraldi and Ghisi (2017) concluded that 
a 10-year time series is long enough to lead to results similar 
to those obtained using a 30-year time series rainfall data. 
Geraldi and Ghisi (2018) evaluated the possibility of using 
different short-term time series in 13 cities around the world. 
The results showed that the representativeness was highly 
dependent on the rainfall characteristics, and a 15-year time 
series was adequate to lead to equivalent simulation results.

The statistical approach to identify the time series rep-
resentativeness in research of rainwater harvesting can be 
used for the monitoring and evaluation of the long-term 
hydrological performance of grassed swales. This must 
be investigated by adopting a probabilistic perspective in 
the realm of statistics, outcomes can be represented with 
a degree of probability to indicate their validity (Geraldi 
and Ghisi 2019). Therefore, to forecast the forthcoming con-
ditions as desired in long-term hydrological performance 
simulations, a Bayesian network can be used, which applies 
the Bayes theory through the relationship between nodes that 
are conditionally dependent. Bayesian networks are widely 
used in prediction, inference, diagnosis, decision risk, and 
reliability analysis (Borsuk et al. 2004; Geraldi and Ghisi 
2019; Liu 2020; Li 2020). Bayesian networks can easily 
display the dependency relationship between the variables 
in the form of graphs and tables, which is easier for users 

and decision-makers to understand and utilize. Meanwhile, 
there might be a series of missing data due to some reason 
not being recorded; Bayesian networks can utilize informa-
tion from other data to supplement missing data for improv-
ing the accuracy and reliability of the analysis. In addition, 
Bayesian networks can also remove the noise and errors 
from the collected data by establishing probability models 
for obtaining more accurate and reliable results (Marcot and 
Penman 2019). Therefore, the current study aims to evaluate 
the application of short event series instead of long event 
series for simulations of the saturated hydraulic conductivity 
of grassed swales using a Bayesian network. This study also 
aimed to investigate the relationship between the saturated 
hydraulic conductivity and the event (temperature, rainfall, 
and seasonal) characteristics of various event series lengths 
used in the simulation.

Material and methods

Study sites

Two full-scale grassed swales were selected as study sites 
in the current study. These grassed swales are located in 
Enschede and Utrecht in the Netherlands. The Enschede study 
site is the oldest large-scale grass swale and located in the 
eastern part of the Netherlands (further details available at 
https:// www. clima tescan. org/ proje cts/ 211/ detail). The moni-
toring period was divided into two stages, May 1999 to May 
2002 and November 2020 to October 2021. The monitored 
hydrological variables included antecedent dry days, tem-
perature, rainfall, duration of rainfall, total rainfall (the accu-
mulated rainfall between first rainfall after construction and 
target rainfall), seasonal factors (spring, summer, autumn, and 
winter, herein refer as 1, 2, 3, and 4), and saturated hydraulic 
conductivity (Ks) of filter medium in grassed swales under a 
single rainfall event. A small rain station was installed on a 
building close to the swale for rainfall measurements. Two 
divers were used to measure the atmosphere and the surface 
water level in the swale (Fig. 1). The second swale (Utre-
cht) is located in the central part of the Netherlands (further 
details available at https:// www. clima tescan. org/ proje cts/ 
2523/ detail). The monitoring period was from November 
2020 to October 2021, and monitoring parameters were the 
same as the swale in Enschede. The rainfall data was obtained 
from city government, the inflow and outflow were measured 
through triangular weir, and a diver was used to measure 
the weir head (Fig. 1). The saturated hydraulic conductivity 
(Ks) of both sites was calculated by Ensemble Kalman filter 
method using the data recorded, and this work was conducted 
in our previous study (Yang et al. 2023).

https://www.climatescan.org/projects/211/detail
https://www.climatescan.org/projects/2523/detail
https://www.climatescan.org/projects/2523/detail
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In this study, data from Enschede swale were used for 
statistical analysis and building the Bayesian network. Data 
from Utrecht swale were used for validation of the field 
application. The specific data are listed in Table S1 and 
Table S2.

Classification and characterization of the event 
series

Data collected from 95 events at the Enschede grassed swale 
were selected as reference for the long event series. Each 

Fig. 1  Location and monitoring equipment of two target grassed swales in the Netherlands
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event was described by the six characteristic factors. These 
factors include saturated hydraulic conductivity, antecedent 
dry days, temperature, rainfall intensity, duration of rainfall, 
total rainfall, and seasonal factors. A dataset of 95 events 
was randomly sampled to generate a set of short event series 
with field counts of 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 
65, 70, 75, 80, 85, and 90, and each contained 1000 series 
combinations. Jennings et al. (2010) proposed indicators to 
describe the magnitude (annual average rainfall), variabil-
ity (rainfall standard deviation, and seasonal factors), and 
behavior of rainfall (rainfall duration, antecedent dry days 
before rainfall, and annual average dry days). These indica-
tors were characterized as monthly, daily, and event average 
to describe the magnitude, variability, and behavior of the 
rainfall events (Istchuk and Ghisi 2022). Based on these, six 
indicators (average antecedent dry days, average tempera-
ture, average rainfall, average rainfall duration, average total 
rainfall, and seasonal index) were derived to characterize 
each event series according to the following formula:

where AVG is the average value of characteristic factors from 
the events series, Ri is the value of characteristic factors from 
a single event, and n is the number of events in a series set.

The indicators were classified by establishing three cat-
egories: low, medium, and high. These categories discre-
tized the event characteristics by clustering the event series 
according to the value of the indicators. The calculation of 
the category range considered the amplitude (maximum 
value minus minimum value) of the indicators observed in 
all event series. The overall minimum value was the lower 
limit of the “low” range, and the overall maximum value 
was the upper limit of the “high” range. The amplitude of 
the indicator was divided by three. The value obtained was 
added to the minimum value to obtain the upper limit of 
“low” and was subtracted from the maximum value to obtain 
the lower limit of “high.” The range from the upper limit of 
“low” to the lower limit of “high” was the “medium” range.

Classification of representative event series

The short event series were divided into representative and 
non-representative, with a set of 95 events as the reference 
series. All event series shorter than 95 were considered short 
event series. This study classified representative and non-
representative event series by comparing the similarity of the 
results of multivariate nonlinear fitting between short and long 
event series. In our previous study (Yang et al. 2023), Ks was 
considered as the dependent variable, and other characteristic 
factors were the independent variables. A quadratic function 
was used for multivariate nonlinear fitting. The optimization 

(1)AVG =

∑n

i=1

�
Ri

�

n

fitting formula of short event series was compared with the 
result from reference event series to determine their repre-
sentativeness. The similarity index (Geraldi and Ghisi 2018) 
was used to calculate the similarity between short and long 
event series fitting results. It is commonly used to compare the 
differences in simulation results.

where Sim is the similarity index between short and long 
events series fitting results, Ks

i
L
 is the prediction Ks value of 

ith event by the fitting formula obtained from reference event 
series, Ks

i
s
 is the prediction Ks value of ith event by the fit-

ting formula obtained from short event series, n is the event 
series length, and the value is 95 in this paper.

Geraldi and Ghisi (2017) noted that when the absolute 
value of the similarity index was less than 5%, the short event 
series can obtain results similar to those obtained using long 
event series, defined as a representative series. Meanwhile, 
there were many combinations from the same event series 
length. Therefore, when 90% of the event series were consid-
ered similar, this event series length was considered to provide 
the same result as the reference.

Statistics and analysis of characteristic indicators

Firstly, the statistical analysis used a simple sensitivity analy-
sis (expected value versus predicted value graph) to evaluate 
the impact of event series length. The expected value was the 
indicator value of the reference series, represented as a straight 
line. Scatter point was the predicted value of the short event 
series indicator, distributed on both sides of the straight line. 
The root means square error (RMSE) and the mean absolute 
relative error (MARE) were calculated to compare which 
indicator has greater impact on the representativeness of short 
event series.

Secondly, representative event indicators were classified 
according to the “low,” “medium,” and “high” and was com-
pared to see which category of each indicator has the higher 
representativeness.

where �pre,i is the predicted value of indicators, �exp,i is the 
expected of indicators, and n is the series length.

(2)Sim =
1

n

n∑

i=1

(
Ks

i
L
− Ks

i
s

Ks
i
L

)

(3)RMSE =

√
1

n
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(
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(4)MARE =
1

n
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Establishment and validation of the Bayesian 
network

A Bayesian network was built to assist the decision-making. 
This network used the frequencies of representative series 
obtained through the statistical analysis to evaluate the rep-
resentativeness of new short event series. The construction 
of Bayesian network was based on the Bayesian theory and 
the calculation of conditional probability.

where P(A|B) is the posterior conditional probability of 
event A under the condition of event B, P(B|A) is the poste-
rior conditional probability of event B under the condition 
of event A, and P(A) and P(B) are the probability a priori of 
event A and B. Detailed approach and examples of Bayes-
ian theory application are available in the literature (Borsuk 
et al. 2004; Hinesf and Landis 2014; Xiao et al. 2023).

The construction of the Bayesian network was performed 
in two stages: training and validation. The structure of the 
network had been configured using a Bernoulli Naive Bayes 
type and was configured by the input nodes that conditions 
the output node. The input nodes were the indicators of the 
event series (1–8), including the number of events, the num-
ber of months (the total number of months an event series 
covered), average antecedent dry days, average temperature, 
average rainfall, average rainfall duration, average total rain-
fall, and seasonal index. The output node (9) was the repre-
sentativeness probability, classified as “Yes” or “No.” Each 
node was discretized (in class) to calculate the conditional 
probability. The category of node 1 was defined as the num-
ber of events (5, 10,…, 90). Node 2 to 8 was divided into 
three categories: “low,” “medium,” and “high.” Node 9 was 
classified as “yes” or “no.” The representative event series 
and series characteristics were used to calculate the prior 
probability.

In the training phase, the prior probability was put into 
the node, and the network was set done. In the validation 
stage, the Bayesian network was submitted to a new dataset 
with known results, and the predicted results of the network 
were compared with the actual results. In this case, a boot-
strap verification method was used, which involves resam-
pling the dataset used for training. During the validation 
process, various samples of the short event series were put 
into the network (by setting the characteristics of the short 
event series on the input nodes), and the output values were 
recorded. If the probability of the output node predicting 
a “yes” category was greater than 50%, then the analyzed 
event series was considered representative by the network. 
It was compared with the known results, and a performance 
table (or confusion matrix) was made, which summarized all 

(5)P(A|B) = P(B|A)P(A)
P(B)

case results of the validation test. These cases include true-
positives (TP, network predicted correct when the series was 
representative), false-negatives (FN, network predicted false 
when the series was not representative), true-negatives (TN, 
network predicted correct when the series is non-representa-
tive), and false-positives (FP, network predicted wrong when 
the series was representative). The performance indexes 
were determined from the performance table as follows:

The final performance analysis was performed using 
the receiver operating characteristic curve (ROC), which 
showed the sensitivity versus 1-specificity ratio under differ-
ent thresholds. By analyzing ROC curve, it could be verified 
whether the results obtained from the network were from the 
trend or randomly generated.

Results and discussion

Classification of event series

The event series were characterized and classified using six 
indicators: average antecedent dry days, average tempera-
ture, average rainfall, average rainfall duration, average total 
rainfall, and seasonal index, as shown in Fig. 2. For each 
indicator, the scatter plot showed the difference between the 
short event series and the reference event series. The short 
event series were generated from the reference event series, 
and Fig. 2 shows that the short event series indicator con-
verge into the reference series. In fact, in longer event series, 
more information on event indicators required to make event 
series more representative. Table 1 shows the classification 
of each indicator.

Classification of representative event series

The results obtained by short event series with reference 
series were compared, and short event series were divided 
into representative and non-representative event series. Fig-
ure 3 reveals a high similarity index and 95% confidence 
intervals at the initial stage and then converged into the 

(6)Accuracy =
TP + TN

TP + FN + FP + TN

(7)Error Rate =
FN + FP

TP + FN + FP + TN

(8)True positive rate(TPR or Sensitivity) =
TP

TP + FN

(9)True negetive rate(TNR or Specificity) =
TN

FP + TN
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Fig. 2  Distribution of characteristic indicators under different event series length
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reference series. The similarity index and 95% confidence 
interval were decreased substantially with the increase in 
the number of events. The average similarity index dropped 
below 10% when the event number exceeded above 20. 
When the series length exceeded 40 events, the average 
similarity index was below 5%. In addition, after the series 
length lower 20 events, the time span was more than a single 
year. Therefore, one possible explanation could be that the 
event series within 1 year were different in terms of event 
characteristic indicators, while more similar information was 
obtained after 1 year.

The similarity index calculated for different short event 
series were classified according to < 5%, 5 to 10%, 10 to 
15%, 15 to 20%, and > 20%, as shown in Fig. 3. As referred 
in the “Classification of representative event series” section, 
when the similarity index was less than 5%, it was consid-
ered a representative short event series. Figure 4 shows that 
the proportion of representative events corresponding to 
each series length were 11.5%, 22.6%, 29.7%, 39%, 49.5%, 
57.9%, 63.1%, 72.8%, 80.8%, 87.9%, 94.2%, 97.7%, 99.1%, 

99.8%, 99.9%, 100%, and 100%, respectively. Therefore, 
the minimum representative series length was 60 events. 
When the number of event events exceeded 70, the propor-
tion of representative events exceeded 99%. If the propor-
tion of non-representative events was lower than 20%, the 
minimum representative series length reduced to 50 events. 
Similarly, decision-makers could also choose the evaluation 
criteria for representative events based on specific needs. If 
the similarity index requirement was lower than 10%, the 
minimum representative series length corresponding to a 
non-representative proportion of 10% was 40 events.

The original dataset was resampled to generate a new 
dataset with a series length of 60 events in 500 sets, which 
was different from the previous 1000 sets. The fitting results 
of these 500-event series with the reference series were com-
pared. Results showed that 470 series had a lower than 5% 
similarity index, while the similarity index of the other 30 
series ranged between 5 and 10%. The proportion of non-
representative event series was 6%, which was less than the 
threshold of 10%, proved that 60 was the representative short 
event series length. It is also verified that this classification 
method was practical and effective.

Statistical analysis of characteristic indicators

When the value of characteristic indicators in a representa-
tive short event series (predicted value) was closer to the 
reference series (expected value), the indicator was more 
representative. The RMSE and MARE of these two values 
were calculated, as shown in Table 2. When only compared 
the RMSE value, the seasonal index was the lowest, followed 
by the average antecedent dry days. When only compared 

Table 1  Classification of characteristic indicators of event series

Indicators Category

Low Medium High

Average antecedent dry 
days (d)

0.3–1.3 1.3–2.3 2.3–3.3

Average temperature (℃) 5–8 8–11 11–14
Average rainfall (mm) 4–9.8 9.8–15.6 15.6–21.4
Average rainfall duration (h) 2.5–.5 7.5–12.5 12.5–17.5
Average total rainfall (mm) 600–4700 4700–8800 8800–12,900
Seasonal index 1–2 2–3 3–4

Fig. 3  Comparison of similarity in fitting results between short event 
series and reference series

Fig. 4  Proportional distribution of similarity index for different short 
event series
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the MARE value, the average temperature was the lowest, 
followed by the seasonal index. Overall, the seasonal index 
performed well under both statistical methods, indicated that 
it was a representative short event series indicator that was 
more similar to the reference series. This may be due to the 
obvious seasonal change characteristic of grassed swale sat-
urated hydraulic conductivity. The trend in changes within 
the year was basically consistent while representative event 
series were generally longer than 1 year. Therefore, this indi-
cator was closer to the reference series.

Previous studies revealed that plants had obvious seasonal 
growth characteristics, and the rapid growth in summer 
could improve the infiltration capacity of fillers (Dagenais 
et al. 2018; Fort et al. 2012). The cold climate and low tem-
perature also had a significant impact on infiltration but the 
degree of impacts varied. Soil freezing could hinder runoff 
infiltration but also generated preferential flow to enhance 
infiltration (Lefevre et al. 2009; Muthanna et al. 2007; Paus 
et al. 2016). The influence of antecedent dry days may be 
related to the evaporation process which helped to restore 
the infiltration capacity during drought periods (Boogaard 
2022; Deletic 2000). Evaporation was also closely related to 
temperature and plants (Ebrahimian et al. 2019). Therefore, 
evaporation needs to be monitored in the future research 
which could be a significant representative factor.

Figures 5 shows the frequency distribution of representa-
tive series indicators under different category. For the aver-
age antecedent dry days, events in the “low” category had 
a higher probability of becoming representative, followed 
by the “medium” category, and the “high” category was the 
smallest. For average temperature, events in the “medium” 
category had a higher probability of becoming representa-
tive, followed by events in the “low” and “high” category. 
Average rainfall, average rainfall duration, and average total 
rainfall were three rainfall characteristic indicators; their 
frequency distribution also showed similar characteristics. 
Events in the “medium” category had a higher probability 
of becoming representative, followed by the “low” and the 
“high” category. For seasonal index, representative events 
were mainly distributed in the “medium” category, followed 
by the “high” and the “low” category. There was no trend 
of representative frequency increasing or decreasing with 

the change of category. This might be explained by the 
distribution of representative events, and the RMSE value 
corresponded to the category of each indicator presented in 
Table 3. The RMSE (0.119) of the “low” category of average 
antecedent dry days was smaller than that of the “medium” 
category (0.152), and the proportion of representative events 
corresponding to the “low” category was higher than that 
of the “medium” category. The RMSE (0.387) of the aver-
age temperature in the “medium” category was smaller than 
that in the “low” category (0.437) and the “high” category 
(0.427). The RMSE (410.686) of the “medium” category 
of average total rainfall was smaller than that of the “low” 
category, and the proportion of representative events cor-
responded to the “medium” category was higher than that 
of the “low” category. This trend indicated that the higher 

Table 2  Sensitivity analysis of characteristic indicators

Indicators RMSE MARE

Average antecedent dry days 0.146 9.425
Average temperature 0.434 3.148
Average rainfall 0.914 5.741
Average rainfall duration 0.789 6.245
Average total rainfall 612.921 8.872
Seasonal index 0.127 3.371

Fig. 5  Proportional distribution of representative events under dif-
ferent category of indicators (where 1 ~ 6 are average antecedent dry 
days, average temperature, average rainfall, average rainfall duration, 
average total rainfall, and seasonal index)

Table 3  RMSE value of indicators’ category

Indicators Low Medium High

Average antecedent dry days 0.119 0.152 —
Average temperature 0.437 0.387 0.427
Average rainfall 0.576 0.741 1.136
Average rainfall duration 0.503 0.649 1.066
Average total rainfall 470.742 410.686 —
Seasonal index 0.203 0.116 0.109
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the representative frequency occurred when the distribution 
of category values was uniform. However, for average rain-
fall, average rainfall duration, and seasonal index indicators, 
the frequency of representative events in the corresponding 
category was the low in case of larger RMSE. Conversely, 
frequency of the representative events may not necessar-
ily be the highest in case of the smaller RMSE. This trend 
indicated that the uniformity of the distribution of category 
values was an essential but not enough condition for the 
frequency of event representativeness. It might be due to 
insufficient data and not included all features, which requires 
further research.

Establishment and validation of Bayesian network

Based on the statistical analysis, a Bayesian network was 
established to evaluate the representativeness of a given 
short event series. This network could serve as an auxiliary 
decision-making tool for researchers or engineers to evalu-
ate whether short event series could provide similar results 

compared to long event series. The probabilities used to 
build this network are presented in Tables S3 and S4.

Bayesian network uses a white box concept, which allows 
the repeated experiments and its application to other sce-
narios. The probability used in this study was related to 
the dataset, but it could be improved by adding more event 
samples with new features. Figure 6 shows the Bayesian 
network structure and prior probability of each node. These 
categories were obtained from the discretization of the basic 
dataset, so that each event series indicators could be divided 
into three categories: high, medium, and low. These prob-
abilities were represented as the “arc force” between a given 
node and its conditional node, indicating how much a cat-
egory affects the output. In this network, no category has 
a greater influence than others, and the output result was a 
combination of probabilities of all categories, rather than a 
result determined by a single category.

Bayesian network could be used by adding new short 
event series. The characteristic indicator values of each event 
series were classified into three categories: high, medium, 

Fig. 6  Bayesian network for evaluation of long-term performance of grassed swales
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and low. Then, the nodes 1–8 were set based on the catego-
ries of indicators. The output node (Node 9) would predict 
the representativeness of the estimated event series, given 
by the percentage of “yes” (0–1).

For example, if there was a short series with 50 events 
(node 1), and node 2–8 were classified as “medium,” “low,” 
“medium,” “medium,” “medium,” “low,” and “medium,” 
respectively. Then, the result returned by the Bayesian 
network for this series was “yes,” with the probability of 
representativeness being 81.8%, and the probability of non-
representativeness being 18.2%.

Performance analysis was also conducted by comparing 
the predicted results (output of Bayesian network) with the 
results obtained in experiments (representative and non-
representative short event series). In this study, the data 
used for training was resampled to obtain 4250 short events 
series as the validation dataset. Table 4 shows the calculation 
results of performance indicators of Bayesian network. The 
accuracy of Bayesian network was 80.9% and the precision 
was 89%, the sensitivity was 83.5% and the specificity was 
74.4%. There was no threshold value in previous research 
that determines the significance of the Bayesian network, but 
it was suggested that values greater than 80% were desirable 
for any performance measures (Geraldi and Ghisi 2019). 
Based on the results, this network showed strong robustness 
(high sensitivity) in predicting the representativeness event 
series when they were indeed representative and performed 
no robust (low specificity) in determining non-representative 
event series when they were indeed non-representative.

The final validation results are presented in Fig. 7 that 
illustrated the ROC curve of TPR (Sensitivity) versus FPR 
(1–Specificity). The blue dotted line was a random curve, 
which means the network had no ability to distinguish pos-
itive and negative cases. The red line is the ROC curve, 
which is above the blue line, indicating that the prediction 
results of Bayesian network did not follow the random dis-
tribution, guided by the model constructed with sample data 
and not by fortuity. In addition, the area under curve (AUC) 
value was 0.882, which is the area under the ROC curve. 
More reliable, the predicted results could be achieved if the 
AUC value is close to 1. Therefore, Bayesian network has 
ability to predict reliable results.

Bayesian network has been applied in several areas, such 
as hydrology (Liu 2020) and Sponge City / LID (Hinesf and 
Landis 2014; Li 2020). However, the Bayesian network has 
limited applications in the specific theme of monitoring and 
simulating long-term hydrological performance of grassed 
swales and other similar facilities. Geraldi and Ghisi (2019) 
used Bayesian network to identify representative short-term 
time series in rainwater harvesting simulation, but the limita-
tion of this work was to use the same data for training and 
validating which needed to be proved by new cases. There-
fore, in this study, a new case of Utrecht swale was added 
to prove the network. Moreover, some studies proposed an 
efficient alternative to the use of short series by use of syn-
thetic series (Brommundt and Bardossy 2022; Oliveira et al. 
2015), which is beneficial due the incorporation of random-
ness in the data, generated a series extension from observed 
data. It also provide a new direction for adding man-made 
rainfall events to monitoring process in the future research.

Field applications and future research 
prospective

Field applications

Utrecht grassed swale was used as an example to verify 
the field application of Bayesian network. The verification 
process included two aspects: first one is to determine the 
representativeness of existing hydrological monitoring data 
for grassed swales, and another one is to guide monitoring 

Table 4  Matrix of confusion—Bayesian network performance

Experimental 
results

Predicted results Performance indicators

Yes No

Yes 2528 (TP) 499 (FN) Accuracy—80.9%
Precision—89.0%

No 313 (FP) 910 (TN) Sensitivity—83.5%
Specificity—74.4%

Fig. 7  ROC curve for Bayesian network performance analysis
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work by predicting the representativeness of upcoming rain-
fall events.

The first verification process is similar to the validation 
process in the “Establishment and validation of Bayesian 
network” section where 58 events (Table S2) were assumed 
as a reference event series. The reference dataset was ran-
domly sampled to generate a set of short event series with 
event numbers of 10, 15, 20, 25, 30, 35, 40, 45, 50, and 
55, each containing 1000 event series. Due to regional dif-
ferences in rainfall and other characteristics, the new data-
sets were classified according to the “low,” “medium,” 
and “high” categories of their own characteristic indicator 
values.

The characteristic indicator values of reference event 
series corresponds to the categories of nodes 1–8, which 
were 60, “high,” “low,” “medium,” “medium,” “medium,” 
“medium,” “medium,” and “medium,” respectively, and 
brought them into the Bayesian network, and the output 
result was representative with a probability of 99.9%. Thus, 
it can be used as a reference series. The method presented 
in the “Classification of representative event series” section 
was used to classify representative and non-representative 
event series, and a validation dataset was generated. The pre-
diction results are shown in Table 5 and Fig. 8 (ROC curve).

Table 5 shows that the accuracy, precision, and sensi-
tivity of Bayesian network prediction were all above 80%, 
indicating a high probability of prediction for representa-
tive event series. The lower specificity indicated that the 
ability of the network in predicting non-representative event 
series was not good. In Fig. 8, the ROC curve was above 
the random curve and with a high value of AUC (0.824). 
Thus, the Bayesian network could be applicable to select and 
determine representative short event series of other grassed 
swales.

In the second verification process, it was assumed that 
the monitoring work was carried once a month (first event 
of each month) without the assistance of Bayesian net-
work. Then, a short event series was obtained and the cat-
egories of node 1–8 in the network were set as 15, “high,” 
“low,” “medium,” “medium,” “medium,” “medium,” and 
“medium,” respectively, and the output was non-represent-
ative (probability of representativeness was 0.41%). This 

result was used as a comparison after Bayesian network 
was added in monitoring. If no event occurred, monitoring 
work would begin in November 2020 with the first rainfall 
event of each month being a necessary. Other rainfall events 
would be determined to be monitored or not through Bayes-
ian network (the characteristics of rainfall would be obtained 
through weather forecasting in advance). For example, the 
first rainfall event in November was monitored, and the value 
of node 1–8 was calculated and classified, and then prob-
ability was obtained from the network. Before the second 
rainfall event, the approximate range of indicator values 
for the coming rainfall could be obtained based on weather 
forecasts. These two rainfall events were merged into a new 
dataset, and a new value of node 1–8 was calculated and 
classified, then the second representative probability value 
was obtained. If the value was less than the first value, the 
event would not be monitored. The specific results on rep-
resentative event series generated by the Bayesian network 
are presented in Table S5. The fitting result showed that the 
similarity index between this representative series and the 
reference series was 0.03%, which is less than 5%. Therefore, 
the long-term hydrological monitoring method for grassed 
swales based on Bayesian network was effective, which not 
only ensured the simulation accuracy but also reduced the 
monitoring frequency.

Future research prospective

In this work, a Bayesian network was established based 
on the long-term monitoring data of Enschede grassed 
swale, to determine whether the monitoring data was rep-
resentative in predicting the long-term hydrological effect 

Table 5  Matrix of confusion—Bayesian network performance of field 
application

Experimental 
results

Predicted results Performance indicators

Yes No

Yes 6149 (TP) 834 (FN) Accuracy—81.6%
Precision—85.7%

No 1002 (FP) 2015 (TN) Sensitivity—88.0%
Specificity—66.8%

Fig. 8  ROC curve for Bayesian network application analysis
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of grassed swale. However, this network is limited to areas 
with similar rainfall and climate conditions to Enschede. It 
is recommended to conduct long-term monitoring of grass 
swales under different climatic conditions, and to collect 
and added more characteristic information with regard to 
inflow/outflow, pollutants accumulation, plant growth, and 
human activities (maintenance, etc.) to improve the network. 
In addition, these characteristic factors are also need to be 
quantified and monitored to increase the number of nodes in 
Bayesian network, thus, to improve the accuracy of predic-
tions by the network.

Conclusions

This study aimed to investigate the relation between the satu-
rated hydraulic conductivity simulation results of grassed 
swales’ filter medium and the characteristic indicators of 
various event series lengths used in simulation. The analysis 
showed that 60 events were the shortest representative series 
length according to the classifying rules. And by compar-
ing distribution characteristic of representative events indi-
cators, the seasonal index was a representative short event 
series indicator which was less affected by the change of 
the series length. Based on the findings, a decision-making 
tool was proposed by means of a Bayesian network to help 
stakeholders to determine whether a short hydrological 
monitoring data series was representative or not. From the 
validation results, Bayesian network revealed its significance 
in predicting the representativeness of a short event series 
of grassed swales. The network had robustness in predict-
ing the representativeness event series but performed poorly 
in predicting non-representative series. The application of 
Bayesian network to Utrecht case also showed high predic-
tion accuracy, and the optimized monitoring method based 
on Bayesian network greatly reduced the monitoring fre-
quency while ensuring the accuracy of hydrological simu-
lation. However, more cases and indicators are needed to 
improve the network prediction.
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