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a b s t r a c t

The performance of prognostics is closely related to the quality of condition monitoring signals (e.g.,
temperature, pressure, or vibration signals), which reveal the degradation of the system of interest.
However, typical condition monitoring signals include noise and outliers. Disentangling noise from
these signals is essential to obtain the actual degradation trajectories. Different denoising methods have
been proposed in prognostics. Conventional denoising methods have low complexity but usually do
not preserve edge information and do not involve physical considerations. A promising deep learning
approach is denoising generative models. This approach is popular in Computer Vision, which has
been shown to outperform other classical techniques but has seldom been used in prognostics on 1-D
signals. In this paper, we propose the 1-D Denoising Generative Adversarial Network for Prognostics
and Health Management (1D-DGAN-PHM). The 1D-DGAN-PHM is trained on synthetic data generated
by a custom data generator that infuses physics-of-failure knowledge in paired samples of noisy
and noise-free trajectories. The network consists of two components, a denoising generator and a
discriminator. The denoising generator aims to learn to denoise a 1-D input signal. The discriminator
guides the learning by comparing noise-free signals with signals from the denoising generator.
Advantages of the 1D-DGAN-PHM include the physics-of-failure information in the synthetic data
generator and the model sophistication. In this work, we apply the 1D-DGAN-PHM to denoise the raw
signals derived from NASA’s C-MAPSS simulator of an aircraft turbofan engine. Baseline methods are
Moving Average, Median filter, Savitzky–Golay filter, and a denoising autoencoder. The 1D-DGAN-PHM
produces smooth trajectories and preserves the initial linear degradation of the signals. The 1D-DGAN-
PHM has the most significant improvement in prognosability (on average, 0.73 to 0.81). Data from the
1D-DGAN-PHM resulted in the best MAE (29 to 25 cycles) and RMSE (score of 39 to 36) for a Random
Forest.

The code is publicly available at 1D-DGAN-PHM.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fault diagnostics and failure prognostics can be understood as
he science of making predictions about engineering systems [1].
he fundamental questions of Prognostics and Health Manage-
ent (PHM) are ‘‘When will it break?’’, ‘‘What is the level of
egradation so far?’’ or ‘‘When or why did the fault initiate?’’.
hese questions can be answered in PHM by applying algorithms
o condition monitoring data based on physics-based principles,
ata-driven techniques, or hybrid approaches [2].
An issue frequently encountered in diagnostics and prognos-

ics is how to account for and reduce measurement uncertainty.
his kind of uncertainty relates to condition monitoring data

∗ Corresponding author.
E-mail address: m.lbaptista@tudelft.nl (M.L. Baptista).
ttps://doi.org/10.1016/j.asoc.2022.109785
568-4946/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
being contaminated with noise. Noise is unavoidable in sensor
systems, where there is always a region of uncertainty around
the actual signal. Even though it may not always be possible
to eliminate all the noise, especially for low-level sensors, this
uncertainty element can considerably degrade the performance of
prognostics (and diagnostics) activities. Therefore, developing and
using signal processing methods to address this issue is critical.

The search for efficient denoising (or smoothing) methods is
still a demanding problem in prognostics with no unique solu-
tion [3–7]. It remains a challenge to remove the noise of a sensor
signal while preserving the underlying damage trajectory both in
system condition monitoring and in structural condition monitor-
ing [8,9]. Part of the problem concerns balancing noise reduction
and loss of information. This trade-off is at the core of signal
denoising in PHM: reaching a compromise between removing

noise and preserving details of the original health indicator. The

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Denoising stages. The Generative Adversarial Network (GAN) consists of a denoising generator and a discriminator. The generator tries to produce signals
close to the noise-free signals. The objective of the discriminator is to identify which of the received signals are noise-free signals or mere artificial reconstructions
from the generator. After several rounds of adversarial training, the quality of the reconstructed signal gradually increases, and the signals become more smooth.
goal is to balance several factors simultaneously, such as the noise
level, the signal, and the calculation time.

There are several conventional methods to denoise
-Dimensional (1-D) signals [10]. Techniques such as Moving
verage or Median Filter have low time complexity and require
ittle effort to implement. However, these methods typically do
ot preserve edge information and do not make use of domain
nformation. Deep learning techniques [11] hold promise for
enoising applications and one such technique is Generative
dversarial Networks (GANs) [12].
We propose a GAN model to denoise 1-D signals. Our net-

ork, the 1D-DGAN-PHM (1-D Denoising Generative Adversarial
etwork for Prognostics and Health Management), consists of a
enoising generator and a discriminator. The denoising generator
ims to learn how to denoise the input signal. The discriminator
uides the learning process by comparing the ground truth signal,
ithout noise, and the (denoised) signal that the generator re-
onstructs. The network is trained with synthetic data, consisting
f pairs of noise-free and noisy signals developed for the specific
ase study. The network is general enough to be adapted to differ-
nt case studies by adjusting the synthetic data generator to the
haracteristics of the condition monitoring data. The flowchart of
ur proposed approach is shown in Fig. 1.
In this paper, we show that the proposed 1D-DGAN-PHM

emoves noise from condition monitoring signals while preserv-
ng the degradation patterns in the data. Also, the algorithm is
n edge-preserving smoothing technique. Other smoothing tech-
iques such as Median Filtering or Moving Average Filtering can
ffectively remove noise in some areas of the signal but do not
reserve edges. Edges are of critical importance to prognostics.
or example, the first points of a health monitoring trajectory
re essential to classify and discover the inflection point (i.e., the
tart of the functional failure) of the degradation trajectory. In
ontrast, the last points of a signal are essential to produce correct
emaining Useful Life (RUL) estimations.
This research aims to compare the performance of the 1D-

GAN-PHM network with other methodologies from the PHM
ommunity. We apply several denoising techniques to C-MAPSS
ata (FD001 dataset). These data was generated from the Com-
ercial Modular Aero-Propulsion System Simulation (C-MAPSS)

13], and was publicly released by NASA [14]. It is currently
vailable at NASA’s Prognostic Data Repository.
2

The contribution of this paper is a denoising algorithm based
on a generative modeling approach. We explain how we in-
fuse physics-of-failure knowledge into the training data using
a custom synthetic data generator. We apply different metrics
from prognostics to assess the quality of the denoising. We also
evaluate the influence of the denoising on prognostics. The RUL
estimation is tested on different Machine Learning (ML) models.
The goal here was to test a simple prognostics approach.

The remainder of this article is organized as follows. Sec-
tion 2 reviews denoising techniques in signal processing and in
prognostics. Section 3 describes the case study and methodology.
Results are presented and discussed in Section 4. Section 5 con-
cludes the article where recommendations and future work are
discussed.

2. Background

Prognostics relies on the efficacy of sensors placed at critical
location points to record different kinds of data, such as temper-
ature, pressure, oil debris, acoustic signals, and other variables.
Since sensors are not always reliable, and there is always a degree
of uncertainty in any measurement, operational data can be of
low quality. Two main kinds of errors can occur [15]: systematic
errors and random errors. The main difference between these
two kinds of error is that random errors result in unpredictable
fluctuations around the actual signal values, whereas systematic
errors lead to consistent deviations.

Denoising consists of suppressing the signal’s error part to
approximate the original signal. Despite the apparent simplic-
ity of the denoising task, it is usually non-trivial to reconstruct
data obtained from harsh environments (e.g., engine data). This
difficulty follows mainly from the different sources of noise in
the data. Noise sources can have a different impact along the
measurement process resulting in complex compound effects on
the sensor signals.

Different approaches have been proposed in the literature to
perform the denoising of one-dimensional signals. In prognostics,
Blind Source Separation (BSP) is a popular approach. It separates
the original signal into a set of factors. Independent Component
Analysis (ICA) is one technique to perform blind source separa-
tion. Several authors [16–22] have used ICA in PHM. However,
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espite its effectiveness, ICA is mostly suited for signals subject
o systematic errors. Separation techniques such as ICA do not
eal well with random errors.
Adaptive Noise Cancellation (ANC) is another form of denois-

ng [23]. The idea is to reduce noise by adding a second signal that
ancels the noise component. ANC techniques necessitate little to
o knowledge about the signal and its noise properties.
Even though the ANC was originally based on two sensors, the

elf-Adaptive Noise Cancellation (SANC) approach extended the
ethodology for a one-sensor case by replacing the noise refer-
nce with a lagged version of the original noisy signal. Antoni and
andall [24] provided a brief review on SANC applied to vibration
ignals. It is not convenient to use SANC when the signal-to-noise
atio is poor and non-linear effects are not negligible. These and
ther issues have been described by Antoni and Randall [24], who
roposed solutions to address some of these problems.
Another denoising technique is Fourier filtering. The noisy

ignal is decomposed based on sine and cosine functions using
he Fourier transform. This kind of filtering aims to attenuate or
mplify specific frequencies. The idea is that the Fourier spectrum
f the signal exhibits some peaks that correspond to the noise
requencies and that it is possible to attenuate them. A final
nverse transformation is necessary to obtain the desired result.
he removal of the Fourier spectrum peaks has a significant
rawback: the abrupt removal of all the Fourier coefficients can
ntroduce artifacts and remove critical frequencies from the orig-
nal noiseless signal. Notwithstanding, the method is one of the
ost popular techniques to deal with data corrupted by periodic
oise, namely vibration signals. Contributions of note to PHM are
he works in Ref. [25–29]. A review of these algorithms on bearing
ibration data is provided by Lin and Ye [30].
Denoising techniques based on wavelets [31] have been stud-

ed for quite some time in signal processing. The basic idea is
imilar to that of Fourier filtering. The goal is to represent the
oisy signal as a composition of functions, in this case, wavelet
unctions, generated as scaled and translated versions of a partic-
lar mother wavelet. Antoni and Randall [32] provides a review
f the different wavelet-based denoising methods.
Wavelet denoising methods are appropriate for non-stationary

oise, and several works in PHM have applied them to vibration
ata [27,33–36]. The major limitation of wavelet-based methods
s the difficulty of selecting the most appropriate wavelet function
nd determining the number of decomposition levels.
The previously explained methods are tailored for periodic

oise, but other alternative approaches can deal well with ran-
om noise. Probably the oldest (see Ref. [37]) and simplest de-
oising method is the Simple Moving Average (SMA) filter. This
ilter is a Finite Impulse Response (FIR) filter where each denoised
alue is the mean of the previous measurements. The Exponential
oving Average (EMA) is another popular FIR filter that can be
alculated recursively.
Despite the simplicity of SMA and EMA, these methods tend to

ork well on different kinds of data as they discover both linear
nd non-linear trends. The EMA gives greater weight to the most
ecent measurements, whereas the SMA gives equal importance
o all values. Therefore, the EMA filter responds to signal changes
aster and captures slight signal fluctuations. Trinh and Kwon
38] compared the performance of different filtering approaches,
ncluding the SMA and EMA, on two benchmark datasets of RUL
stimation. Among their findings, the authors recognized the
ifficulty of selecting a single filtering approach for an application
ue to the overfitting effects that can occur when adjusting the
ilters to the training data.

Another interesting study is by Kohler and Lorenz [39] who
ompared a wide range of techniques and evaluation metrics on

ifferent noisy signals. The authors found no clear winner and

3

argued that end performance depends on the error measure. Also,
the authors concluded that the EMA filter was unsuitable for all
scenarios/error measures.

The most negative aspect of FIR filters, such as SMA of EMA,
are limitations when dealing with signals of finite duration. For
example, the SMA and EMA do not have data to calculate the
initial denoised points. This issue can be critical in prognostics,
where the initial and last points of the degradation trajectories
are of central importance for RUL estimation. For example, the
initial measurements can signal the existence of an inflection
point and the start of observable degradation. In turn, the final
measurements are essential to diagnose the failure. No optimal
solution has been found, from a practical viewpoint, to deal
with these edge distortions. Some of these techniques, such as
zero-padding, symmetrization, and smooth padding, are reviewed
by Gopinath and Burrus [40].

Recent studies in deep learning have shown that neural mod-
els can deal with complex multivariate noisy data and success-
fully reconstruct the original noiseless signals. One such approach
is the Denoising Auto-Encoder (DAE) proposed by Vincent et al.
[41]. This techniques is for robust representation learning given
corrupted data as input (see Ref. [42] for detailed explanation).

Motivated by the successful application of DAE in diverse
areas such as speech recognition [43–46], human activity recogni-
tion [47], analysis of biomedical data such as ECGs [48–50], music
source separation [51], energy load forecasting [52] and computer
vision [53–56], a number of scholars in the PHM community
started to adopt DAE to denoise sensor data. For example, Meng
et al. [57] proposed a modified version of the classical DAE for
rolling bearing fault diagnosis. A comparison with a standard DAE
validated the model outcome. Another example of the use of DAE
in fault diagnostics is the work of Liu et al. [58]. The authors
combined a non-linear DAE with a Recurrent Neural Network
(RNN) which improved the data reconstruction.

Even though some authors have used DAE in PHM, the use of
the Stacked Denoising Auto-Encoder (SDAE) has become preva-
lent. The SDAE was originally proposed by Vincent et al. [59]
as a deep network created by stacking several layers of DAEs.
The main advantage of an SDAE over a DAE is its generaliza-
tion power, which allows the network to learn compact input
representations more effectively.

In fault diagnostics, Guo et al. [60] used a Stacked Denoising
Auto-Encoder (SDAE) to denoise and extract relevant features
from raw vibration signals. The authors showed that this kind
of network successfully reduces aleatory uncertainty (random
noise) for bearing rolling and gearbox fault applications. Several
authors [61–63] have combined the SDAE technique with other
methods. For example, Wang et al. [61] combined an SDAE with
a Deep Belief Network (DBN) to learn more complex feature
representation. The drawback of this approach is a large number
of parameters of the model.

Hu et al. [62] used Kernel Principal Component Analysis (KPCA)
as a preprocessing step for the SDAE algorithm. The KPCA is used
to reduce the dimensionality of the data and remove non-relevant
information. Liu et al. [63] combined SDAE with hierarchical
Bayesian modeling to diagnose and forecast fault events. The
main disadvantage of SDAE is that to perform denoising, the
model needs to successfully capture the major structural patterns
of the input in the hidden layers, which may not always happen.

A model that has shown quite promise in a wide range of
tasks is the Generative Adversarial Networks (GANs). Originally
proposed by Goodfellow et al. [12], who outlined the learning
theory of GANs on a game theoretic scenario, these networks
have since shown remarkable capability in diverse domains, such
as image generation [64–67], text to image translation [68,69],

and image to image translation [70–72]. In simple terms, a GAN
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onsists of two networks: a generator and a discriminator. During
he adversarial training process between the two models the
enerator learns how to produce data based on some input. The
iscriminator attempts to distinguish between samples from the
ynthetic database of noiseless images and images generated by
he GAN generator.

The GAN technique is not so explored in PHM. However, a
ork of note is by Wang et al. [73] who addressed the problem of
enoising vibration signals in planetary gearboxes by combining
AN and SDAE. In their work, the GAN is used to capture the
istribution of the original signals and generate new signals with
similar distribution in order to augment the number of training
ault samples. The denoising itself is performed by the SDAE.
nother similar work to ours is by [74] who used a GAN to expand
he set of diagnostics samples for rotating machinery. A work of
ote is that by Lyu et al. [75] who performed restoration of images
orrupted by mixed noise using a GAN.
We note the singularity of our contribution: in this work,

e use the GAN, not for data generation (data augmentation),
ut for 1-D signal denoising. This contribution is motivated by
he promising results of denoising GANs in the computer vision
omain. To our best knowledge, this kind of utilization of GANs
as not been sufficiently explored in the PHM domain.
To the best of our knowledge, no other paper has extensively

tudied the technique of denoising GAN for prognostics. The basic
dea of the 1D-DGAN-PHM approach is to build a synthetic train-
ng dataset composed of pairs of noisy/clean signals and then to
rain a deep denoising Generative Adversarial Network (GAN) to
emove noise from unseen 1-dimensional signals. This approach
s tailored to PHM solutions.

. Methodology

This section starts by describing the research question and
he study’s goal. We then describe the data and case study. We
escribe the methods, metrics, and methods used to achieve the
esearch objectives. In this section, we first present the problem
Section 3.1) and then the research question (Section 3.2). We
escribe the case study in Section 3.3. The measures of feature
mportance are described in Section 3.4. We conclude this section
y describing the main properties of the synthetic data genera-
or (Section 3.5) and the 1D-DGAN-PHM network (Section 3.6).
ection 3.7 describes the prognostics evaluation.

.1. Problem

In prognostics, we consider the evolution of N engineering
ssets (or units) designated as u = {0, . . . ,N}. Time is designated

as n = {1, . . . , T }. A set of features characterizes the behavior of
ach asset. We define the problem of denoising as the transforma-
ion of the mth feature from unit u to a cleaner signal designated
s gu

m(n) after observing the feature evolution over a time interval
f duration n ∈ [0, tobs]. The denoised signal gu

m(n) approximates
he original clean signal xum(n):
u
m(n) ≈ xum(n) (1)

o investigate this study’s research question, we follow the
ethodology described in Section 3.2.

.2. Research question

The research problem relates to developing more accurate
ethods to denoise 1-D trajectory data in PHM. The research
uestion is the following:

RQ: How can we improve the denoising of 1-D degradation
trajectories in PHM?
4

or this research question, we have the hypothesis:

H: Generative adversarial networks (GAN) can outperform the
performance of baseline methods for denoising PHM data.

ibration data and data under different operational conditions
re not in the scope of this study. However, in theory, applying
he studied denoising methods to these kinds of data should be
ossible. To investigate the research question of this study, we
ollow the steps:

• Generate Synthetic Data: A dataset of synthetic trajectories
is created for training the 1D-DGAN-PHM network and the
baseline DAE.

• Train Model: The synthetic data is used to train the 1D-
DGAN-PHM network and the baseline DAE.

• Denoise Data: New data is denoised using the 1D-DGAN-
PHM network or other baseline denoising method.

• Evaluate Features: The indicators of monotonicity, trendabil-
ity and prognosability are used to classify the features after
the denoising.

• Evaluate Prognostics Performance: Different ML models are
used to assess the prognostics performance of the features
after the denoising.

n addition to the Generative Adversarial Network (GAN), we
nvestigate the performance of the classical denoising approaches
f the Median (Med) filter and Moving Average (MA) filter. We
lso compare the filter proposed by Savitzky and Golay [76] (SG).
n addition to the proposed GAN, we implement a Denoising
uto-Encoder (DAE).

.3. Data

The data used in this case study is from the Commercial
odular Aero-Propulsion System Simulation (C-MAPSS) devel-
ped by NASA [13]. The simulator emulates the operation of a
urbofan engine similar to GE90 [13]. The Prognostics Center of
xcellence at NASA Research Ames made public four C-MAPSS
atasets [77] consisting of several run-to-failure trajectories. The
ata are currently available at NASA’s Prognostic Data Repository.
In C-MAPSS data, an engine asset (or unit) is characterized

y 21 prognostics sensors and three additional indicators (Al-
itude, Mach Number, and Throttle Resolver Angle). This paper
tudies the first C-MAPSS training dataset (FD001), which com-
rises data from 100 engines. We selected this dataset as it is
he least complex, with only one operating regime and fault
ode. Our focus is signal denoising and its effects on Remain-

ng Useful Life (RUL) estimation. Handling other datasets would
equire different methodologies to baseline the operating condi-
ions and fault modes. In this study, we selected for denoising 14
on-steady-state signals. Table 1 presents the selected features.

.4. Measures of feature importance

The dependent variable of this study is the quality of the
enoising process, which we measure using prognostics indica-
ors. We evaluate the quality of the trajectories after denoising
sing the popular measures of monotonicity, trendability, and
rognosability proposed by Coble and Hines [78]. These metrics
ave been shown [78–83] to characterize the importance of a
eature (or predictor) for RUL estimation. We hereafter explain
ach metric in detail.
onotonicity characterizes a predictor’s increasing or decreasing

rend. Formally, the monotonicity of a feature is

onotonicity =
1
M

M∑⏐⏐⏐⏐ Nj−1∑
sgn

(
xj(k + 1) − xj(k)

Nj − 1

)⏐⏐⏐⏐ (2)

j=1 k=1
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Table 1
Non steady state condition monitoring features of C-MAPSS data.
Predictor Description Units

T24 Total temperature at LPC outlet ◦R
T30 Total temperature at HPC outlet ◦R
T50 Total temperature at LPT outlet ◦R
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio –
htBleed Bleed Enthalpy –
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

where:

M = number of units
j = number of measurements of a feature on unit j

xj = vector of measurements of a feature on unit j
xj(k + 1) = a measurement of a feature of unit j at time k + 1
j(k) = a measurement of a feature of unit j at time k
gn = signal function

more accurate RUL estimation is expected if a feature shows a
oticeable increasing or decreasing trend over time. Monotonicity
s in the range of [0, 1].
Trendability measures the degree to which the predictor displays
the same shape across a group of units. It is a measure of simi-
larity among the trajectories of the population of units. Formally,
the trendability of a feature is

trendability = min
j,k

⏐⏐corr(xj, xk)⏐⏐, j, k = 1, . . . ,M (3)

where:

M = number of units
Nj = number of measurements of a feature on unit j
xj = vector of measurements of a feature on unit j
xk = vector of measurements of a feature on unit k
corr = Pearson correlation function

When xj and xj have different lengths, we (linearly) interpolate
the shortest vector to match the size of the longer vector. The
trendability metric is in the range [0, 1] and positively correlates
with the importance of the predictor.
Prognosability measures the variance of a predictor at the End
of Life (EoL) for the set of units. Formally, the prognosability of a
feature is

prognosability = − exp
(

stdj(xj(Nj))
meanj|xj(1) − xj(Nj)|

)
(4)

where:

M = number of units
j = index of unit (j = 1, . . . ,M)
Nj = number of measurements of a feature on unit j
xj = vector of measurements of a feature on unit j
xk = vector of measurements of a feature on unit k
meanj = average function of all units

Prognosability is within the range of [0, 1]. The prognostics’ per-
formance is expected to be higher when the prognosability is
close to 1.
5

3.5. Synthetic data generator

An essential problem of 1D-DGAN-PHM is how to construct
the synthetic training set. A generative model such as 1D-DGAN-
PHM needs to learn the mapping from a signal corrupted by
noise to a clean signal based on paired synthetic data since
we do not have C-MAPSS clean trajectories. Because physics-of-
failure considerations are involved in synthesizing these data, we
developed a custom synthetic data generator to model the C-
MAPSS data (see Section 3.3). The generator produces a synthetic
dataset with pairs of trajectories, each with one clean synthetic
trajectory and the same trajectory with noise. We followed three
steps to generate these data: (a) elbow point location, (b) nominal
stage, and (c) faulty stage computation.

Aero-engines (as well as most engineering systems) typically
exhibit two distinct degradation stages over their life course,
the nominal stage and the faulty stage, with an inflection point
dividing the two regions. Baptista et al. [84] have shown that
taking into account this behavior change can significantly im-
pact prognostics performance. When generating the synthetic
data of the C-MAPSS turbofan, it is important to simulate the
engine’s two stages of degradation. In the following subsections,
we describe each step of the synthetic data generator.

3.5.1. Data fitting for elbow point
Sensor trajectories of the same unit should display the exact

inflection point location since the nominal-to-faulty transition is
a property of the component or system. The first step of the
synthetic generator is to compute a random elbow point for a
given synthetic unit. The elbow or inflection point located on
the x-axis is randomly generated according to a density func-
tion. The distribution function of the elbow point location is
obtained by computing all the inflection points found in the
original trajectories (see Fig. 2).

To find the inflection point of a specific unit, we utilize the
Kneedle algorithm, proposed by Satopaa et al. [85]. Before ap-
plying the Kneedle algorithm, it is necessary to construct an
average signal by adding all the features of the unit that exhibit an
increasing trend. Before the averaging process, the original signals
are normalized. The resulting signal is then smoothed using a
Kalman filtering scheme. The Kneedle algorithm [85] is applied to
the filtered signal to estimate the knee point of the unit, i.e., the
location of maximum curvature in the average projection. This
procedure is done for all units.

After obtaining an array of elbow point locations, we fit several
distributions to the data with Maximum Likelihood Estimation
(MLE), compare the Chi-Squared test of independence, and test
for significant difference between observed and fitted distribu-
tions with a Kolmogorov–Smirnov test. More details of the fitting
are provided in Appendix A.1. Fig. 12 summarizes this entire step.

3.5.2. Data fitting for nominal stage slope
After determining the inflection point location, it is important

to define the asset behavior before the elbow point during the
nominal stage. The nominal performance consists of the system
deteriorating gradually at a slow pace before actual fault initia-
tion. To synthesize the first nominal measurements of a new unit,
we synthesize the quasi-linear degradation rate and the noise
level. These variables are selected based on density functions
generated according to the values observed in the original data.

To obtain the distribution function of the slope, we compute
all the degradation rates found in the original trajectories. For
this, we apply Least-Squares Regression (LSR) to the first points
of each trajectory to fit a straight line to the data.

The linear fit method is illustrated in two examples in Fig. 4.
The bold red lines on top of the original signals T24 (Fig. 4(a)) and
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t

Fig. 2. Generation of the density plot of inflection point location. The process for generating the density function of the inflection point consists of four steps: 1 —
Averaging the trajectories of each unit, 2 — Kalman smoothing the average signals, 3 — Kneedle method to estimate the inflection point of each unit and 4 — Fitting
distribution functions to the array of inflection points.
Fig. 3. Histogram and best fitting density functions of slope for signal T24. It is
necessary fit a density function to the slope to obtain the underlying quasi-linear
degradation, and to capture the nominal behavior of each feature.

W31 (Fig. 4(b)) represent the estimated quasi-linear degradation.
As shown, the method works for both increasing and decreasing
signals. The slope of the estimated straight line is an important
variable to characterize nominal behavior in the synthetic dataset.
More details of the fitting are provided in Appendix A.2 (see
Fig. 3).

3.5.3. Data fitting for noise level
It is also necessary to compute the noise levels to produce

noisy synthetic signals paired with noiseless ones. We assume
the noise level is the same throughout the equipment’s lifecycle.
To calculate the noise level of each unit for a given feature, we
apply the βσ procedure proposed by Czesla et al. [86]. Before
calculating the noise level, a translation is performed according to
the estimated linear degradation rate to remove undesired effects
from the ongoing degradation. Fig. 5 illustrates the translation
process with a single unit signal. The translation follows the
equation:

ȳ(n) = y(n) − slope × n, ∀n ∈ {0, p} (5)

where:

p = elbow point location
n = discrete time indicator
ȳ(n) = signal without linear degradation rate
y(n) = noisy signal
p = estimated inflection point
slope= estimated slope of linear degradation rate

As before, we only use the first p ×
2
3 points of the original

rajectories to estimate the noise levels. Note that to estimate
6

the level of noise we apply the noise calculation method to the
original noisy signal and not to a smoothed version. The density
functions for the slope and noise level are sufficient to simulate
signal behavior before inflection point p. More details of the
fitting are provided in Appendix A.3.

3.5.4. Data fitting for faulty stage duration
In the fifth step of the synthetic data generator, it is necessary

to prescribe the behavior of the asset after the elbow point during
the faulty stage. During this stage, the system is degrading at a
more accelerated pace. This stage’s duration is estimated similarly
to the inflection point location with density function sampling.
We obtained the distribution of the faulty stage duration using
a procedure similar to the one described in Section 3.5.1. More
details of the fitting are provided in Appendix A.4.

3.5.5. Trajectory data generation
The faulty stage is generated using curve fitting. We generate

a new final measurement point for each new trajectory according
to the faulty stage duration distribution. Then we fit the fol-
lowing equation with the EoL point and with the final point of
quasi-linear degradation:

f (x) = a(bx)c a, b ∈ R, c ∼ U(0, 10) (6)

We use a random number (c) to characterize the exponential
behavior. The variable c is obtained from an intrinsic Python
subroutine that generates a real random number uniformly dis-
tributed in [0, 10[. The noise level is used to corrupt the data of
the faulty stage signal. At the end of the entire procedure, we have
several hundreds of pairs of noiseless/noisy synthetic signals. In
Fig. 6 we show some final results of our generation procedure.
Figs. 6(a) and 6(b) plot two distinct trajectories of feature T24
synthesized by our generator. The dashed line shows the location
of the inflection point that marks the beginning of the faulty
stage and the end of the nominal stage. The pure signal curves
are generated according to the density functions previously de-
scribed. The dotted points represent the signal corrupted with
noise. Fig. 6(c) shows an example of original T24 data. As can
be observed from the three plots of Fig. 6, the synthetic signals
closely resemble the original signals. These synthetic data are
used to train the GAN. After training the 1D-GAN-PHM network,
the network can be used to denoise the (unseen) C-MAPSS data.

3.6. Denoising Generative Adversarial Network

In this section, we describe the architecture of the 1D-DGAN-
PHM. A Generative Adversarial Network (GAN) [12] consists of
a generator (or generative) network and a discriminator (dis-
criminative) network. The discriminative network is trained to
determine whether a sample is from ‘‘real’’ data or ‘‘fake’’ data

generated by the generative network. The generative network is
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Fig. 4. Calculation of quasi-linear trajectories during the nominal degradation stage. To estimate the quasi-linear trajectory of a signal during the nominal stage we
apply Linear Squares Regression (LSR) to the first points of a smoothed version of the original signal.
Fig. 5. Example of noise calculation procedure. It is necessary perform a translation on the data of each unit before applying the βσ procedure from Czesla et al.
[86] onto the first p ×

2
3 points (p = estimated inflection point) to estimate the noise level of the feature for that unit.
trained to produce realistic examples to deceive the discrimina-
tor. During the adversarial training process, the two networks
compete so that the generator learns to produce the desired
output. The general architecture of the GAN is illustrated in
Fig. 7(a).

In this work, we use a deep convolutional GAN similar to the
one proposed by Radford et al. [87] (see Fig. 7). Mostly motivated
by the work of Radford et al. [87], we made the following changes
to the original formulation of Goodfellow et al. [12]:

• Pooling layers were replaced by strided convolutions in the
discriminator and generator. It has been shown [88] that
by replacing max-pooling layers with strided convolution
layers, we can enhance network accuracy and reduce model
size.

• Batch normalization is used in the generator and discrim-
inator. We use Batch normalization layering to allow ev-
ery layer in the network to learn more independently and
effectively.

• LeakyReLU activation is used for all layers in the discrim-
inator and generator. The advantage of using Leaky ReLU
instead of ReLU is that we avoid the vanishing gradient. Both
ReLU and LeakyReLU implement nonlinear functions in the
network.
7

• Only one fully connected layer is used as the last layer
of the discriminator. A fully connected layer multiplies the
input by a weight matrix and then adds a bias vector.
This layer typically forms the last layers of convolutional
neural networks. We only use one layer for robustness and
simplicity.

• In addition to these changes, the proposed generator func-
tion has the form of an autoencoder to promote a better
denoising function. This architecture is motivated by the
work of Makhzani et al. [89].

The two GAN networks consist of strided convolution layers,
batch normalization layers, and LeakyReLU activations without
max-pooling layers. Fig. 7(b) illustrates the architecture of the
generative network. Formally, the objective of the auto-encoding
generator is to learn an encoding function fE and a decoding
function fD such that:

argmin
θE ,θD

(
Ex∼pd

(
L(fD(fE(x)), x)

))
(7)

where:

θE = weights and bias of the encoder

θD = weights and bias of the decoder
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Fig. 6. Example of synthetic trajectories generated with the goal of training the Generative Adversarial Network (GAN). The first two plots are two synthetic
trajectories of feature T24 and the last plot is an original randomly selected trajectory of T24.
x = synthetic noisy data sample from distribution pd
= loss function

ig. 7(c) illustrates the architecture of the discriminator. The
iscriminator attempts to distinguish between samples from the
ynthetic database of noiseless images and images generated by
he GAN generator. Formally, the discriminator attempts to learn
classifier function fI that satisfies:

argmin
θI

(
Ex∼pd

(
fI (fD(fE(x)))

)
− Ez∼pz

(
fI (z)

))
(8)

Where:

θI = weights and bias of the discriminator net
x = synthetic noisy data sample from distribution pd
z = synthetic noiseless data sample from distribution pz

he functions fD, fE , and fI are learned adversarially. The discrim-
nator learns to distinguish between samples from the two data
istributions while the generator attempts to satisfy the following
in addition to Eq. (7)):

rgmin−

(
Ex∼pd

(
fI (fD(fE(x)))

))
(9)
θE ,θD

8

Where:

θE = weights and bias of the encoder
θD = weights and bias of the decoder
x = synthetic noisy data sample from distribution pd

In our proposed GAN, the 1D-GAN-PHM, the generator is trained
with the dual objective of minimizing the standard reconstruc-
tion error and the adversarial training loss. At the end of the
adversarial learning process, the generator can make data indis-
tinguishable from actual noiseless data to the discriminator. The
generator can then be used to denoise unseen noisy data.

The 1D-GAN-PHM is trained using two different approaches.
In the first approach, the Specialized GAN (1D-DSGAN-PHM),
we apply a different 1D-DGAN-PHM model to each feature. The
Global 1D-DGAN-PHM (1D-DGGAN-PHM) is trained on all data.
Fig. 8 shows the two approaches.

3.7. Prognostics evaluation

It is important to evaluate the quality of the denoised fea-
tures but it is also relevant to assess prognostics performance.
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Fig. 7. The architecture of the Generative Adversarial Network (GAN).
he RUL estimation is performed using three different ML mod-
ls: Multi-Layer Perceptron (MLP), Random Forest (RF), and Sup-
ort Vector Regressor (SVR). We perform 10-fold cross-validation
n the C-MAPSS data denoised by the four selected denoising
echniques.

In prognostics, model evaluation is an essential step to estab-
ish trust [90] and to better interpret [91] the prognostics. We
ave implemented five measures of evaluation: Mean Absolute
rror (MAE), Root Mean Squared Error (RMSE), PHM’08 Score,
rue Positive Rate (TNR), and True Negative Rate (TNR). These
etrics are described in detail in the work of Saxena et al. [92].
9

4. Results and discussion

This section presents the experimental results of the paper.
We compare denoising methods to investigate the effectiveness
of the 1D-DGAN-PHM approach. The comparison is made using
the conventional prognostics metrics and the prognostics evalu-
ation measures described in Section 3.7. We test the denoising
methods of the Median (Med) filter, the Moving Average (MA),
and the Savitzky–Golay (SG) filter. The deep learning denoising
approaches include two versions of the Denoising Auto-Encoder
(DAE) and two versions of the 1D-DGAN-PHM. We apply a dif-
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Table 2
Performance of denoising methods measured by the monotonicity metric. The
closer to one is the best monotonicity score. Best performing models are shown in
bold and gray. The second-best performing models are shown in light gray.

Sensor Raw Classical Denoising Deep Learning

Med MA SG SDAE GDAE SDGAN GDGAN

T24 0.14 0.21 0.30 0.24 0.26 0.56 0.60 0.56
T30 0.11 0.20 0.28 0.23 0.25 0.54 0.54 0.51
T50 0.17 0.29 0.40 0.33 0.36 0.68 0.66 0.64
P30 0.17 0.28 0.37 0.32 0.22 0.65 0.52 0.62
Nf 0.23 0.26 0.35 0.30 0.32 0.58 0.56 0.54
Nc 0.22 0.32 0.39 0.35 0.36 0.56 0.46 0.33
Ps30 0.23 0.34 0.45 0.38 0.40 0.71 0.67 0.62
phi 0.19 0.31 0.41 0.34 0.37 0.69 0.46 0.62
NRf 0.24 0.25 0.35 0.28 0.26 0.60 0.53 0.54
NRc 0.25 0.33 0.42 0.37 0.38 0.59 0.40 0.35
BPR 0.14 0.25 0.35 0.29 0.30 0.61 0.55 0.59
htBleed 0.40 0.21 0.33 0.24 0.25 0.57 0.42 0.56
W31 0.16 0.23 0.33 0.26 0.27 0.61 0.43 0.60
W32 0.13 0.25 0.34 0.27 0.29 0.61 0.49 0.59

Average: 0.20 0.27 0.36 0.30 0.31 0.61 0.52 0.55
Fig. 8. Data Training Approaches. The 1D-DGAN-PHM model is trained using
wo approaches: with all the data and one pair of networks to model each type
f signal.

erent network to each feature in the first version of the Spe-
ialized GAN (1D-SDGAN-PHM) and Specialized DAE (SDAE). The
lobal 1D-DGAN-PHM (1D-GDGAN-PHM) is trained on all data.
he same for the Global DAE (GDAE).

.1. Monotonicity

.1.1. Results
In this section, we evaluate the data before and after denoising.

valuation is performed using the metrics referred to in Sec-
ion 3.4. One of these metrics is monotonicity, a fundamental
roperty in prognostics [78–83]. Monotonicity measures the de-
ree to which a population of signals has a consistently increasing
r decreasing trend. The closer to one the monotonicity is, the
ore noticeable the trend is and the more suitable the data is for
rognostics.
Table 2 shows the significance that denoising can have on the

onotonicity of the prognostics signals. The raw signals score
.20, but the denoising methods can increase the monotonicity
10
to 0.61 (GDAE) on average. The procedures that perform better in
monotonicity are the GDAE and the GDGAN models, both being
models that explore the entire set of training data (0.61 for GDAE
and 0.55 for GDGAN). The SDGAN and the SDAE have acceptable
monotonicity scores but are lower than their global versions (0.31
for SDAE and 0.52 for SDGAN). The difference is less noticeable
between the DGANs. These results suggest the superiority of
the deep learning methods to capture monotonic trends based
on the entire dataset. These global methods are exposed to a
broader range of patterns during training. The specific networks
are tailored to a particular type of sensor. These results seem to
point that the diversity of the training data in the global methods
is an enabler of monotonicity constraints.

The results also suggest the superiority of the deep learning
methods in capturing monotonic trends compared to classical
denoising methodologies. Only the MA method has comparable
results in monotonicity (average score of 0.36) to deep learning.
The MA (score of 0.36) is superior on average to the deep learn-
ing SDAE (score of 0.31). The MA is better than the SDAE for
all sensors, from T24 to W32. The remaining classical methods
have lower average monotonicity scores than the deep learning
methods, including the SDAE, the least performing deep learning
method.

4.1.2. Discussion
Fig. 9 shows three examples of denoising. On the left side,

we show the classical methods, and on the right side, we show
the deep learning approaches. As can be seen, classical denoising
tends to produce noisier signals that are less monotonic. Also, the
classical methods are not edge-preserving and show difficulties
in capturing the quasi-linear degradation of the first data points.
The signals are more oscillatory and noisy at the beginning than
at the remaining trajectory. This can be observed in 9(a), 9(c),
and 9(e). The GDGAN shows superior performance in Figs. 9(b)
and 9(d). The method, however, performs less well in Fig. 9(f).
Only the SDAE has a worse performance (score of 0.19) than the
SDGAN. In contrast, the SDAE is consistently the least performer
in all examples.

We hypothesize that data plays a major role in the perfor-
mance of the specific methods, affecting the performance of the
global methods less significantly. The more representative the
training data, the better the performance of the specific methods.
Nevertheless, the DGANs seem to be less affected by the quality
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Fig. 9. Visualization of denoising methods for randomly selected engines. On the left side, we show the classical techniques from statistics, and on the right side,
the deep learning approaches. The deep learning approaches perform better than the classical denoising methods.
of the training data. The SDAE is more influenced. Overall, the
global methods perform better, even though the specific DGAN
exhibits better particular results punctually. The SDAE is the least
performing method in the deep learning techniques.

The classical methods tend to have worst performance (ex-
cept for the MA, which outperforms the SDAE) than deep learn-
ing. They are not edge-preserving as these methods are non-
parametric and do not have the concept of training/learning.
11
They require some points before they start processing the signal
adequately. Initially, they do not have sufficient data points and
tend to be more oscillatory. The initial edge is critical to the visual
appearance of the signal and for the prognostics. For example, the
initial points are essential to detect the elbow point location. To
prevent this undesired effect, edge-preserving constraints can be
formulated while preserving edges for a given, fixed window size.
An example of such a method is in [93].
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Fig. 10. Visualization of GDAE denoising of NRc. We show on the left side all the raw signals of NRc. On the right side we show the signals after the denoising by
GDAE. As shown, the trendability is minimum because the signal can take very different shapes. By definition, denoising removes noise from the signals but does
not change the underlying shape of the original signals.
Table 3
Performance of denoising methods measured by the trendability metric. The closer
to one is the best monotonicity score. Best performing models are shown in bold
and gray. The second-best performing models are shown in light gray.

Sensor Raw Classical Denoising Deep Learning Denoising

Med MA SG SDAE GDAE SDGAN GDGAN

T24 0.38 0.57 0.70 0.66 0.69 0.86 0.92 0.87
T30 0.27 0.52 0.68 0.60 0.66 0.84 0.71 0.81
T50 0.60 0.75 0.82 0.80 0.83 0.92 0.91 0.00
P30 0.53 0.69 0.79 0.78 0.63 0.93 0.91 0.66
Nf 0.04 0.04 0.15 0.23 0.31 0.62 0.68 0.25
Nc 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
Ps30 0.67 0.82 0.89 0.84 0.88 0.96 0.95 0.00
phi 0.54 0.73 0.83 0.79 0.82 0.95 0.85 0.01
NRf 0.04 0.00 0.20 0.14 0.08 0.57 0.63 0.51
NRc 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
BPR 0.48 0.69 0.75 0.75 0.78 0.93 0.58 0.94
htBleed 0.33 0.49 0.55 0.58 0.60 0.90 0.90 0.93
W31 0.46 0.66 0.78 0.72 0.72 0.93 0.86 0.94
W32 0.47 0.70 0.79 0.73 0.78 0.92 0.92 0.92

Average: 0.34 0.48 0.57 0.54 0.56 0.74 0.70 0.49
4.2. Trendability

4.2.1. Results
Regarding the metric of trendability, the results are shown

n Table 3. Trendability is also a fundamental property in prog-
ostics [78–83]. This measure computes the degree to which a
opulation of signals exhibits the same functional shape. It is
heoretically more straightforward for a prognostics model to
apture degradation trends if different units show similar tra-
ectories. Table 3 characterizes the impact denoising can have
n the trendability of monitoring signals. The original signals
ave a trendability score between 0 and 0.67, with the different
enoising methods significantly impacting these scores.
The best performing model is the GDAE (average score of

.74), followed closely by the SDGAN (average score of 0.70). The
DGAN has nine signals in the top 2 performance while GDAE
as 12. The GDAN also performs well, with six signals in the top
. The SDGAN and the GDAN have zero trendability (2 sensors
or SDGAN and 4 for GDGAN). This follows from the Pearson
orrelation used to measure the trendability between pairs of
12
trajectories. The metric selects the absolute minimum correlation
for each sensor. Zero trendability means that at least one pair of
trajectories were very dissimilar.

4.2.2. Discussion
The denoising methods, in general, tend to increase the trend-

ability of the features significantly. However, the trendability
score is left almost unchanged for the sensors with zero trendabil-
ity, Nc and NRc. This low trendability results from the existence
of one or more abnormal units with a very distinct functional
shape from the remaining signals in the original data. In Fig. 10
we show all the trajectories captured by sensor NRc. We show the
trajectories before (Fig. 10(a)) and after denoising (Fig. 10(b)). The
denoising has a minor effect on the trendability of the trajecto-
ries (score 0.00 to 0.07). By definition, denoising removes noise
from signals, but denoising does not aim to change the original
signals’ underlying shape. The low trendability is hence due to
the original shape of the signals and not the denoising.

Trendability can also signify that some trajectory was not
correctly denoised, as illustrated in Fig. 11. In the Figure, the
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Fig. 11. Visualization of GDGAN denoising of Ps30. We show on the left side all the raw signals of Ps30. On the right side we show all the Ps30 signals denoised
y GDGAN. As shown, the trendability is minimum because the denoising produces erroneous and dissimilar signals to the original ones.
Table 4
Performance of denoising methods measured by the prognosability metric. The
closer to one is the best monotonicity score. Best performing models are shown in
bold and gray. The second-best performing models are shown in light gray.

Sensor Raw Classical Denoising Deep Learning Denoising

Med MA SG SDAE GDAE SDGAN GDGAN

T24 0.81 0.89 0.92 0.83 0.90 0.91 0.93 0.91
T30 0.76 0.83 0.87 0.79 0.86 0.85 0.89 0.86
T50 0.87 0.91 0.94 0.88 0.93 0.93 0.93 0.59
P30 0.84 0.88 0.90 0.85 0.85 0.88 0.89 0.75
Nf 0.66 0.71 0.73 0.67 0.74 0.74 0.76 0.74
Nc 0.29 0.27 0.27 0.30 0.38 0.29 0.38 0.12
Ps30 0.87 0.92 0.94 0.89 0.92 0.93 0.92 0.30
phi 0.85 0.87 0.88 0.85 0.87 0.87 0.87 0.30
NRf 0.66 0.71 0.73 0.67 0.73 0.73 0.74 0.73
NRc 0.33 0.29 0.29 0.32 0.36 0.31 0.48 0.11
BPR 0.84 0.89 0.93 0.86 0.91 0.92 0.92 0.93
htBleed 0.79 0.88 0.90 0.80 0.86 0.88 0.87 0.89
W31 0.83 0.90 0.93 0.84 0.88 0.90 0.89 0.91
W32 0.81 0.89 0.93 0.84 0.89 0.91 0.90 0.91

Average: 0.73 0.77 0.80 0.74 0.79 0.79 0.81 0.65
trendability is low because the GDAN produces signals with very
different shapes. The Global DGAN tends to have this erroneous
behavior more often than the other methods. The specific DGAN
appears to be more protected against this type of effect. In this
case, the best option might be partitioning the signals into two
(or more) sets of features and running the models separately.

4.3. Prognosability

4.3.1. Results
The results of the prognosability analysis are shown in Ta-

le 4. Prognosability is important as it measures the degree of
ariability of the condition indicators at failure. The influence
f denoising in this respect is significant even though not as
xpressive as for the other two metrics. The best method, the
DGAN, obtains an increase of 9% going from 0.73 to 0.81 in
verage score. The SDGAN is the best method in six features.
he second best method, the MA, obtains a similar performance
o the SDGAN with a score of 0.80. The prognosability of the
riginal signals is already high, with the denoising resulting in
slight improvement. This is understandable as removing noise
13
from prognostics trajectories also removes noise at the end of
life, resulting in less variability. However, since denoising does
not aim to change the actual shape of the signals, prognosability
only shows a moderate improvement. In addition, it is more
challenging to address noise at the beginning of a trajectory than
at the end, given the exponential shape of the trajectories.

4.3.2. Discussion
Overall, the tested denoising methods had comparable per-

formance according to the prognosability metric, as seen in the
last row of Table 4. This can be observed more clearly in Fig. 12.
Here, the SDGAN and MA histograms of end-of-life measurements
are not significantly different for the T24 sensor. The SDGAN and
MA were the best prognosable methods. The density of the final
measurements in the original data is flatter and sparser. This
result suggests that denoising is also vital for prognosability and
that deep learning (SDGAN) can produce results as good or better
than classical denoising. The classical and deep learning methods
have similar results regarding best performance.
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Table 5
Performance of different denoising methods measured with prognostics metrics. Best perform-
ing models are shown in bold and gray. The second-best performing models are shown in light
gray.

Data MAE RMSE TPR TNR Score

RF

Raw 28.52 ± 5.46 39.20 ± 8.14 0.39 ± 0.06 0.32 ± 0.07 5.97E+03
Med 28.29 ± 6.97 39.01 ± 10.11 0.40 ± 0.06 0.33 ± 0.08 8.13E+03
MA 28.03 ± 7.54 38.80 ± 10.75 0.40 ± 0.09 0.34 ± 0.09 1.09E+04
SG 26.91 ± 6.93 37.48 ± 10.15 0.41 ± 0.06 0.35 ± 0.08 5.23E+03
SDAE 26.96 ± 6.97 37.83 ± 10.31 0.43 ± 0.07 0.34 ± 0.09 7.78E+03
GDAE 28.95 ± 8.74 41.37 ± 12.97 0.47 ± 0.10 0.31 ± 0.08 1.39E+05
SDGAN 25.46 ± 7.71 36.30 ± 11.44 0.47 ± 0.09 0.36 ± 0.10 1.29E+04
GDGAN 27.51 ± 7.20 38.53 ± 10.93 0.45 ± 0.09 0.31 ± 0.08 5.78E+04

M
LP

Raw 31.25 ± 4.84 40.96 ± 7.81 0.28 ± 0.05 0.25 ± 0.06 7.05E+03
Med 31.80 ± 5.22 41.56 ± 8.18 0.28 ± 0.06 0.24 ± 0.06 1.28E+04
MA 30.49 ± 5.54 40.38 ± 8.20 0.31 ± 0.10 0.27 ± 0.07 3.68E+04
SG 30.58 ± 4.93 40.22 ± 7.44 0.30 ± 0.09 0.26 ± 0.07 7.77E+03
SDAE 30.30 ± 5.13 39.84 ± 7.97 0.30 ± 0.07 0.26 ± 0.06 4.57E+03
GDAE 30.02 ± 5.54 39.29 ± 8.05 0.31 ± 0.11 0.25 ± 0.07 4.20E+03
SDGAN 28.66 ± 5.90 37.86 ± 8.93 0.31 ± 0.10 0.29 ± 0.08 1.41E+04
GDGAN 29.51 ± 5.28 39.06 ± 7.69 0.33 ± 0.08 0.25 ± 0.05 2.51E+12

SV
R

Raw 33.40 ± 4.66 44.74 ± 8.74 0.30 ± 0.06 0.21 ± 0.03 2.31E+04
Med 32.98 ± 4.84 44.29 ± 8.92 0.31 ± 0.06 0.22 ± 0.03 2.58E+04
MA 32.63 ± 4.85 43.83 ± 8.96 0.30 ± 0.07 0.22 ± 0.03 2.54E+04
SG 32.07 ± 4.79 43.23 ± 8.96 0.32 ± 0.07 0.22 ± 0.02 2.26E+04
SDAE 32.00 ± 4.71 43.12 ± 8.91 0.32 ± 0.07 0.22 ± 0.03 1.77E+04
GDAE 32.23 ± 4.79 43.53 ± 9.07 0.32 ± 0.07 0.22 ± 0.03 2.23E+04
SDGAN 31.83 ± 4.86 43.28 ± 9.29 0.34 ± 0.07 0.23 ± 0.04 2.74E+04
GDGAN 33.63 ± 5.02 45.62 ± 9.58 0.32 ± 0.07 0.22 ± 0.03 2.94E+11
r
M

Fig. 12. Visualization of the histogram of prognosability for T24. We show the
ensity of the end-of-life measurements of the two best methods and the raw
ata.

.4. Prognostics performance

.4.1. Results
It is important to evaluate the prognostics performance of the

enoised trajectories since remaining useful life (RUL) estimation
s generally the ultimate goal of prognostics. Table 5 presents
he results of applying the denoised data to predict failure in the
-MAPSS case. We test three machine learning approaches: Ran-
om Forest (RF), Support Vector Regressor (SVR), and Multi-Layer
erceptron (MLP).
The Random Forest (RF) performs better after denoising for all

etrics including the Scoring metric. The Scoring metric was used
uring the original PHM’08 challenge to evaluate the performance
f the different algorithms. It was devised specifically for the C-
APSS prognostics case and aimed to penalize late predictions
14
over early ones. It is an important metric to consider when
measuring a model’s performance. The denoising models, except
for the SG, did not produce as good results as the original dataset
regarding the Scoring metric. Probably this resulted from the de-
noising methods having produced points with marked deviations
from the expected behavior. Such points can lead to high scores.
Because the Scoring metric penalizes errors exponentially, this
could explain the high score values.

In all the other dimensions, the SDGAN is the best performing
method for the RF. In regards to deep learning, the best mod-
els are in this order (≻ represents better performance and ∼

epresents similarity):
AE, RMSE: SDGAN ≻ SDAE ≻ GDGAN ≻ GDAE

TPR: SDGAN ∼ GDAE ≻ SDAE ≻ GDGAN
TNR: SDGAN ≻ SDAE ≻ GDGAN ∼ GDAE

The SDAE model also has acceptable performance, coming
second in the best-performing deep learning list in almost all
metrics. This result suggests that specific deep learning, where
a network is tailored for each data type, is more suitable for
prognostics. The global methods GDAE and GDGAN usually come
last in the different metrics and have significant PHM’08 scores. A
positive remark is the True Positive Rate (TPR) of the GDAE and
GDGAN. The high scores at this metric suggest that the Global
models have a more significant proportion of ‘‘tolerable’’ late
predictions than the other methods. An important consideration
is to have over-predictions that do not surpass the limits of late
estimation.

The SG filter has the second-best performance of all methods
using the RF. This result suggests that simple denoising tech-
niques can be almost as effective as deep learning methods when
the RUL estimation is considerably sophisticated. Interestingly,
the SG filter did not score significantly better than the other
classical methods in the metrics of monotonicity (average score
of 0.31), trendability (average score of 0.54), and prognosability
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Fig. 13. Visualization of RUL Estimation for the Random Forest (RF) model. We show the alpha–λ accuracy on average for the unit and at the start of the unit.
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average score of 0.74). This suggests that the quality of a de-
oised predictor cannot be based solely on the classical metrics
f feature quality.
The Multi-Layer Perceptron (MLP) performs better in all met-

ics after denoising. In contrast with the RF, denoising with
eep learning DAE models promotes better PHM’08 score values
ith the MLP. In this respect, the best-performing models in the
HM’08 score are the SDAE and GDAE. In all other dimensions, ex-
ept the TPR dimension, the SDGAN is the best-performing model,
15
uggesting the superiority of this denoising for prognostics. In
egards to deep learning, the best models are in this order (≻
represents better performance and ∼ represents similarity):
MAE: SDGAN ≻ GDGAN ≻ GDAE ≻ SDAE
RMSE: SDGAN ≻ GDGAN ≻ SDAE ≻ GDAE
TPR: GDGAN ≻ SDGAN ∼ GDAE ≻ SDAE
TNR: SDGAN ≻ SDAE ≻ GDGAN ∼ GDAE
Score: GDAE ≻ SDAE ≻ SDGAN ∼ GDGAN
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The Support Vector Regression (SVR) performs better in all
etrics after denoising. The results suggest the SDGAN is the
est 1D-DGAN-PHM method, a model robust to changes in the
rognostics model. The denoising of the SDGAN works best for
ore complex models, such as the RF and MLP, but can also be
sed with simpler models.

.4.2. Discussion
The inaccuracies shown by the Median (Med), Moving Average

MA), and Savitzky and Golay (SG) filter during the first cycles
 p

16
an be detrimental when elbow point detection methods are
sed to improve the prognostics [84]. The deep learning methods
ppear to be potential approaches that can preserve the initial
inear degradation patterns. GAN and AE models tend to produce
rajectories that exhibit initial linear behavior in line with the
verall trend of the signals. This result is a positive aspect of
he deep denoising models in contrast to the classical methods.
he lack of denoising accuracy at the first data points is often
ranslated into a lack of prognostics accuracy in the first data
oints. For example, consider Figs. 14(a) and 14(b) where we



M.L. Baptista and E.M.P. Henriques Applied Soft Computing 131 (2022) 109785
Fig. 15. Visualization of RUL Estimation for the Support Vector Regression (SVR) model. We show the alpha–λ accuracy on average for the unit and at the start of
the unit.
show a randomly selected engine unit and the RUL estimates. The
first points of Fig. 14(a) oscillate more than the remaining points,
and the α − λ accuracy at the start ranges between 0 and 20%.
In Fig. 14(b) we can observe a less oscillatory behavior at the
start of the equipment life. The SDGAN, in particular can reach
an α − λ accuracy at the start of 30%. This means that 30% of
the predictions fall inside the cone of accuracy of α = 0.2. This
17
ability to preserve edges is a positive aspect of the deep denoising
models in contrast with the classical methods.

Overall, the deep learning methods are more accurate as can
be observed in the α − λ plots of Figs. 13 to 15. The RF and the
MLP models produce acceptable predictions aided by the deep
learning methods, as shown in Figs. 13 to 14. In the RF examples
(Fig. 13), the α − λ accuracy of the unit is the highest for the
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SGAN, attesting again to the superiority of this method. The
econd best method varies according to the unit. It would be in-
eresting to analyze fusion methods for the denoised trajectories
nd their impact on prognostics accuracy. In the MLP examples
Fig. 14), the accuracy is lower probably because of the method’s
esser sophistication. The SDGAN continues to score the highest
n α −λ average accuracy compared to the other methods. In the
SVR examples (Fig. 15), the SDGAN only reaches the top score
in one example. This result can be explained by the inability of
the model to capture relevant patterns from the denoised data.
Each model appears to react differently to each type of denoising,
even though the best denoising method seems to operate better
with the most sophisticated methods. Given these results we find
enough evidence to support our initial research hypothesis:

H: Generative adversarial networks (GAN) can outperform the
performance of baseline methods for denoising PHM data.

. Conclusion

In this work, Generative Adversarial Networks (GANs) are pro-
osed as a denoising approach suitable to remove noise and out-
iers from condition monitoring signals in Prognostics and Health
anagement (PHM). We validate our 1D-DGAN-PHM approach
sing the C-MAPSS case study. The 1D-DGAN-PHM network is
ompared against the classical methods of Median, Moving Av-
rage, denoising auto-encoder and Savitzky and Golay filters.
The deep learning approaches, the autoencoders and the 1D-

GAN-PHM models, appear to be better suited to preserve the
nitial quasi-linear degradation than the classical denoising meth-
ds. The prognostics of the denoised trajectories with the 1D-
DGAN-PHM (specific version) was superior in most evaluation
easures. The model achieved the best prognosability (score of
.81). The positive effects of the SDGAN model in several eval-
ation dimensions (MAE, RMSE, TPR, TNR, and α − λ accuracy)
ncourage further investigation of these models in other domains.
he 1D-DGAN-PHM model can be used in different prognostics
omains, from energy to aerospace. The only requirement is the
xistence of a synthetic generator of pure and noisy signal pairs.
The generality of the DGAN models depends on the quality

f the training set. We have shown that tailoring a DGAN for a
pecific set of signals promotes a better denoising than exposing
he network to all condition monitoring data. Through exposure
o tailored and specific data, the deep generator can be more
obust and produce better prognostics. For future work, it would
e interesting to test alternative denoising strategies, transfer
earning, and generation of training data.
ote: The 1D-DGAN-PHM project is open source, and the code is
ublicly available at 1D-DGAN-PHM. The project is a stand-alone
esktop application written in Python3.7.
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Table A.6
Best distributions for fitting inflection point data. Goodness of fit and results of
Kolmogorov–Smirnov test are presented. The best distribution for the specific
application is the Burr distribution.
Distribution Chi-square p-value

Burr 16.12 0.65 (>0.05)
Exponential Weibull 19.86 0.51 (>0.05)
Johnson SU 20.11 0.91 (>0.05)
Johnson SB 20.13 0.62 (>0.05)
Log Gamma 20.26 0.91 (>0.05)
Generalized Extreme Value 20.90 0.71 (>0.05)
Frechet 20.90 0.71 (>0.05)
Weibull Max 20.90 0.71 (>0.05)
Beta 21.53 0.55 (>0.05)
Gumbel 27.34 0.57 (>0.05)

Fig. A.16. Density plots and histogram of inflection point location. We compared
several distributions in their goodness of fit to our data and the Burr distribution
presented the best results (lowest chi-square value and Kolmogorov–Smirnov
p-value > 0.05).

Appendix. Data fitting (synthetic data generator)

A.1. Elbow point

In our case study, we tested several of the 81 continuous den-
sity functions available at the Python SciPy library. We performed
goodness-of-fit tests on the 81 distributions to see which one was
the best fit for the elbow point data in dataset C-MAPSS (FD001).
In Table A.6 we present the ten best results (according to the
Chi-Square test) of the data fit. We also present in Table A.7 the
parameters of the best fitting distributions. The Burr, Exponential
Weibull and Johnson SU distributions gave the best fitting results
(see Fig. A.16). As shown in the histogram, the data reaches its
peak at ≈100 cycles and the maximum inflection point is reached
at 140 cycles, at sensibly 40% of the maximum equipment life
(362 cycles). We present the probability density function of the
three distributions with the best fit (Burr, Exponential Weibull
and Johnson SU):

f (x, c, d) = cdx−c−1/
(
1 + x−c)d+1 (A.1)

f (x, a, c) = ac
[
1 − exp

(
−xc

)]a−1 exp
(
−xc

)
xc−1 (A.2)

f (x, a, b) =
b

√
x2 + 1

φ

(
a + b log

(
x +

√
x2 + 1

))
(A.3)

To shift and/or scale the distributions use the location and scale
parameters. Specifically, with the transformation x′ = (x - loc) /
scale.

https://github.com/marcialbaptista/1D-DGAN-PHM
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Table A.7
Parameters of best fit distributions for inflection point data. The formal equation for each Probability Density Function
(PDF) is referenced in the table.
Distribution PDF Parameters

1 2 3 (Location) 4 (Scale)

Burr Eq. (A.1) c = 12.43 d = 0.14 −0.46 118.90
Exp. Weibull Eq. (A.3) a = 680.88 c = 5.87 −1174.96 900.43
Johnson SU Eq. (A.3) a = 10.83 b = 5.49 250.51 47.74
p
w
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d
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Table A.8
Best distributions for fitting data of the duration of faulty stage. Goodness of fit
and results of Kolmogorov–Smirnov test are presented. The best distribution for
the specific application is the Inverse Gamma distribution.
Distribution Chi-square p-value

Inverse Gamma 9.08 0.87 (>0.05)
Inverse Gaussian 9.28 0.96 (>0.05)
Log Normal 9.28 0.93 (>0.05)
Johnson SU 9.29 0.93 (>0.05)
Inverse Weibull 9.57 0.81 (>0.05)
NCT 9.68 0.79 (>0.05)
Fatigue Life 9.85 0.97 (>0.05)
Recip. Inv. Gaussian 10.59 0.97 (>0.05)
Alpha 12.21 0.79 (>0.05)
Exponential Weibull 13.89 0.93 (>0.05)

Fig. A.17. Density plots and histogram of faulty stage duration. We compared
several distributions in their goodness of fit to our data with the Inverse
Gamma distribution presenting the best results (lowest chi-square value and
Kolmogorov–Smirnov p-value > 0.05).

Fig. A.18. Histogram and best fitting density functions of slope for signal T24.
It is necessary fit a density function to the slope to obtain the underlying
quasi-linear degradation, and to capture the nominal behavior of each feature.
b

19
Fig. A.19. Density plots and histogram of faulty stage duration. We compared
several distributions in their goodness of fit to our data with the Inverse
Gamma distribution presenting the best results (lowest chi-square value and
Kolmogorov–Smirnov p-value > 0.05).

To assess the asset life duration, we performed goodness-of-fit
tests on 81 distributions to see which one was the best fit for the
faulty stage data in dataset C-MAPSS (FD001). In Table A.12 we
present the ten best results (according to the Chi-Square test) of
the data fit. We also present in Table A.7 the parameters of the
best fitting distributions. The Inverse Gamma, Inverse Gaussian
and Log Normal distributions gave the best fitting results (see
Fig. A.19). As shown in the histogram, the data reaches its peak
at ≈100 cycles and the maximum faulty stage duration is around
300 cycles (≈80% of maximum total lifetime of 362 cycles). We
resent the probability density function of the three distributions
ith the best fit (Inverse Gamma, Inverse Gaussian and Log
ormal) (see Tables A.8–A.10 and A.13).

f (x, a) =
x−a−1

Γ (a)
exp

(
−

1
x

)
(A.4)

f (x, µ) =
1

√
2πx3

exp
(

−
(x − µ)2

2xµ2

)
(A.5)

f (x, µ, σ ) =
1

σx
√
2π

e

(
−

(ln(x)−µ)2

2σ2

)
(A.6)

o shift and/or scale the distributions use the location and scale
arameters. Specifically, with the transformation x′ = (x - loc) /
cale (see Fig. A.17).

.2. Nominal stage slope

To assess the slope, we performed goodness-of-fit tests on 81
istributions to see which one was the best fit for each feature of
ataset C-MAPSS (FD001). In Table A.11 we present the best fit
distribution and parameters) for each of the C-MAPSS features.
s an illustrative example, in Fig. A.18 we show the histogram
f the slope of feature T24. The three best fitting functions are
hown on top of the actual frequency data. The best fitting func-
ion is used to recreate the noise-free quasi-linear degradation
ehavior.
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Table A.9
Parameters of best fit distributions for faulty stage duration data. The formal equation for each Probability Density
Function (PDF) is referenced in the table.
Distribution PDF Parameters

1 2 (Location) 3 (Scale)

Inv. Gamma Eq. (A.8) a = 0.29 −10.49 595.03
Inv. Gaussian Eq. (A.8) µ = 0.35 10.46 333.07
Log Normal Eq. (A.9) µ = 0.59 σ = 15.66 94.24
Table A.10
Parameters of best fit distributions for slope data. The formal equation for each Probability Density Function (PDF) is referenced in
the table.
Parameter Distribution Parameters

1 2 3 4

T24 Gamma 2.25E−01 −5.29E−32 2.86E−03
T30 Johnson SU −8.33E−01 1.71E−01 −2.33E−12 1.07E−11
T50 Half Gen. Normal 8.92E−02 −1.64E−08 5.09E−16
P30 Levy 2.08E−05 6.38E−05
Nf Expon. Power 2.95E−01 −1.53E−31 1.72E−03
Nc Gen. Normal 2.43E−01 1.19E−26 6.93E−07
Ps30 Log Normal 5.21E+00 −2.03E−15 2.12E−05
Phi Johnson SU 2.75E+00 2.12E−01 1.65E−10 1.91E−10
NRf Gen. Gamma 1.47E−01 1.84E+00 −1.61E−32 8.84E−03
NRc Johnson SU −1.04E+00 9.63E−02 7.47E−12 5.56E−11
BPR Half Gen. Normal 1.01E−01 −3.95E−11 1.63E−14
htBleed Expon. Power 2.27E−01 −9.54E−32 2.18E−03
W31 Frechet 2.00E−01 1.58E−32 4.86E−03
W32 Johnson SU 3.15E+00 2.39E−01 2.81E−10 2.32E−10
Table A.11
Parameters of best fit distributions for noise level data. The formal equation for each Probability Density Function (PDF) is referenced
in the table.
Parameter Distribution Parameters

1 2 3 4

T24 Double Gamma 1.66E+00 5.92E−01 5.74E−02
T30 Double Weibull 1.50E+00 6.54E−01 1.24E−01
T50 Double Weibull 1.25E+00 4.26E−01 6.75E−02
P30 Levy-Stable 1.71E+00 1.00E+00 4.65E−01 5.88E−02
Nf Double Gamma 2.94E−01 4.26E−01 7.84E−02
Nc Inverse Gaussian 1.43E−02 −1.29E−01 2.29E+01
Ps30 Laplace 3.85E−01 6.24E−02
phi Double Weibull 1.42E+00 4.11E−01 6.70E−02
NRf Generalized Normal 1.21E−01 4.21E−01 4.00E−10
NRc Double Weibull 1.34E+00 1.58E−01 2.91E−02
BPR Double Weibull 1.39E+00 5.25E−01 8.70E−02
htBleed Chi-Squared 1.61E−01 3.91E−01 3.51E−01
W31 Johnson SB 6.17E−01 1.48E+00 2.39E−01 7.94E−01
W32 Double Gamma 1.35E+00 5.69E−01 5.74E−02
A.3. Noise level

To assess the noise level, we performed goodness-of-fit tests
n 81 distributions to see which one was the best fit for each
eature of dataset C-MAPSS (FD001). In Table A.11 we present
he best fit (distribution and parameters) for each of the C-MAPSS
eatures.

.4. Faulty stage duration

To assess the asset life duration, we performed goodness-of-fit
ests on 81 distributions to see which one was the best fit for the
aulty stage data in dataset C-MAPSS (FD001). In Table A.12 we
resent the ten best results (according to the Chi-Square test) of
he data fit. We also present in Table A.7 the parameters of the
est fitting distributions. The Inverse Gamma, Inverse Gaussian
nd Log Normal distributions gave the best fitting results (see
ig. A.19). As shown in the histogram, the data reaches its peak
t ≈100 cycles and the maximum faulty stage duration is around
00 cycles (≈80% of maximum total lifetime of 362 cycles). We
resent the probability density function of the three distributions
20
Table A.12
Best distributions for fitting data of the duration of faulty stage. Goodness of fit
and results of Kolmogorov–Smirnov test are presented. The best distribution for
the specific application is the Inverse Gamma distribution.
Distribution Chi-square p-value

Inverse Gamma 9.08 0.87 (>0.05)
Inverse Gaussian 9.28 0.96 (>0.05)
Log Normal 9.28 0.93 (>0.05)
Johnson SU 9.29 0.93 (>0.05)
Inverse Weibull 9.57 0.81 (>0.05)
NCT 9.68 0.79 (>0.05)
Fatigue Life 9.85 0.97 (>0.05)
Recip. Inv. Gaussian 10.59 0.97 (>0.05)
Alpha 12.21 0.79 (>0.05)
Exponential Weibull 13.89 0.93 (>0.05)

with the best fit (Inverse Gamma, Inverse Gaussian and Log

Normal):

f (x, a) =
x−a−1

exp
(

−
1
)

(A.7)

Γ (a) x
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f

T
p

Table A.13
Parameters of best fit distributions for faulty stage duration data. The formal equation for each Probability Density
Function (PDF) is referenced in the table.
Distribution PDF Parameters

1 2 (Location) 3 (Scale)

Inv. Gamma Eq. (A.8) a = 0.29 −10.49 595.03
Inv. Gaussian Eq. (A.8) µ = 0.35 10.46 333.07
Log Normal Eq. (A.9) µ = 0.59 σ = 15.66 94.24
f (x, µ) =
1

√
2πx3

exp
(

−
(x − µ)2

2xµ2

)
(A.8)

(x, µ, σ ) =
1

σx
√
2π

e

(
−

(ln(x)−µ)2

2σ2

)
(A.9)

o shift and/or scale the distributions use the location and scale
arameters. Specifically, with the transformation x′ = (x - loc) /

scale.
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