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Near-Precise Parameter Approximation for
Multiple Multiplications on a Single DSP Block

Ercan Kalali and Rene van Leuken

Abstract—DSP blocks are one of the efficient solutions to implement multiply-accumulate (MAC) operations on FPGA’s. However, since

the DSP blocks have widemultiplier and adder blocks, MAC operations using low bit-length parameters lead to an underutilization.

Hence, an efficient approximation technique is introduced. The technique includesmanipulation and approximation of the low bit-length

parameters based upon a Single DSP -Multiple Multiplication (SDMM) execution. The accuracy of the developed optimization technique

was evaluated for different CNNweight bit precisions using the Alexnet and VGG-16 networks and the ImageNet ILSVRC-2012 dataset.

The optimization can be implemented without loss of accuracy in almost all cases, while it causes slight accuracy losses in a few cases.

Through these optimizations, multiple parameter multiplications are performed in a single DSP block at the cost of a small hardware

overhead. As a result of our optimizations, the parameters are represented in a different format on off-chip memory, providing up to 33%

compressionwithout any hardware cost. A prototype systolic array architecture was implemented employing our optimizations on a Xilinx

Zynq FPGA. It reduced the number of DSP blocks by 66.6%, 75%, and 83.3% for 8, 6, and 4-bit input variables, respectively.

Index Terms—Approximate computing, multiple multiplications, DSP blocks, FPGA, systolic array

Ç

1 INTRODUCTION

THE multiply-accumulate (MAC) operation is the main
computation unit for many digital signal processing

applications such as convolutional neural networks (CNN),
image/video processing, and audio recognition [1], [2], [3],
[4], [5] . State-of-the-art CNN algorithms consist of multiple
convolutional layers, each requiring millions of MAC opera-
tions. This substantial computational complexity has led
GPU and FPGA vendors to offer optimized solutions.

DSP blocks in FPGAs are one of the solutions to perform
multiply-accumulate (MAC) operations efficiently. These
blocks have built-in multiplier and accumulator accelerators
instead of using look-up tables (LUTs) to provide high per-
formance and low power. For example, the Xilinx DSP48E1
has a 25� 18-bit multiplier, 25-bit pre-adder, and 48-bit
accumulator. Each DSP block can perform one MAC opera-
tion with high performance and low power consumption.
Hence, the number of parallelMACoperations implemented
is restricted given the number of available DSP blocks on the
FPGA. Furthermore, DSP48 blocks are placed on multiple
DSP columns on the FPGA architecture, which enables the
implementation of multiple MACs efficiently by cascading
multiple DSP48 blocks in each DSP column. The cascaded
connection of the DSP blocks is restricted given the number
of DSP48 blocks in each DSP column. There are a few studies

available in the literature on the efficient use of DSP blocks to
overcome these limitations [6], [7], [8], [9], [10], [11], [12].

Since the DSP blocks have wide multiplier and adder
blocks, MAC operations using low bit-length fixed-point
parameters lead to an underutilization problem. We intro-
duce an efficient parameter approximation technique that
performs the Single DSP - Multiple Multiplication (SDMM)
and increases the DSP utilization ratio. We start with the
manipulation described in [13]. Since the manipulation in
[13] is only employable for a few pre-computed constants,
we first modified it to support performing fixed-point signed
parameter manipulation during hardware runtime. This
modification allows the dynamic control of manipulation of
the millions of parameters to use for the SDMM on the
FPGA. We achieve this using a table lookup technique. Fur-
ther, we implementedmultiple signed fixed-point parameter
multiplications on a single DSP. The traditional MAC imple-
mentation in the DSP block is changed by separating multi-
plication and accumulation operations to implement the
SDMM. While the accumulator hardware available in DSP
block is used for multiple parameter multiplication, parallel
LUTs are employed for the accumulation part of the MAC
operation.

We introduce a novel parameter approximation tech-
nique that modifies the parameter’s value to guarantee that
the bit-length of the manipulated parameter is at most 3,
which reduces the overhead caused by the lookup table used
to store manipulated parameters significantly. It also makes
it easier to multiply more parameters on a single DSP block
since the approximation reduces the bit-length of the manip-
ulated parameters. Additionally, it significantly simplifies
the control complexity of the hardware implementation. To
make sure that all parameter tuples can be implemented
using the SDMM, a novel fine-tuning technique is imple-
mented, which ensures the number of parameter multiplica-
tion per DSP block is fixed. Through these optimizations,

� The authors are with the Department of Microelectronics, Delft University
of Technology, 2628 CD Delft, The Netherlands.
E-mail: {e.kalali-1, t.g.r.m.vanleuken}@tudelft.nl.

Manuscript received 26 April 2021; revised 23 August 2021; accepted 3 October
2021. Date of publication 11 October 2021; date of current version 9 August 2022.
This work was supported in part by EU ECSEL Joint Undertaking, which
funded the NewControl project under Grant 826653-2.
(Corresponding author: Ercan Kalali.)
Recommended for acceptance by G. Constantinides.
Digital Object Identifier no. 10.1109/TC.2021.3119187

2036 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 9, SEPTEMBER 2022

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:52:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5467-5674
https://orcid.org/0000-0002-5467-5674
https://orcid.org/0000-0002-5467-5674
https://orcid.org/0000-0002-5467-5674
https://orcid.org/0000-0002-5467-5674
https://orcid.org/0000-0003-0638-7595
https://orcid.org/0000-0003-0638-7595
https://orcid.org/0000-0003-0638-7595
https://orcid.org/0000-0003-0638-7595
https://orcid.org/0000-0003-0638-7595
mailto:e.kalali-1@tudelft.nl
mailto:t.g.r.m.vanleuken@tudelft.nl


multiple parametermultiplications are performed in a single
DSP block at the cost of a small hardware overhead. For
example, a single DSP block executes 3 8-bit fixed-point
parametermultiplications.

The accuracy loss caused by the introduced approxima-
tion technique and fine-tuning is evaluated using the Alex-
net [14] and VGG-16 [15] networks, and the ImageNet
ILSVRC-2012 dataset [16]. Compared to quantized fixed-
point implementations of the Alexnet and VGG-16, our
approximation and fine-tuning techniques can be imple-
mented without loss of accuracy in almost all cases, while it
causes slight accuracy losses in a few cases.

After the multiplication packing and the parameter
approximation, some pre-calculated values, which are
used for single DSP - multiple parameter multiplication
(SDMM), are stored on the on-chip ROM. Result of this,
the actual parameter values are not necessary to store on
the off-chip memory. Instead, the index values of the ROM
are stored on the off-chip memory. This optimization pro-
vides up to 33% compression on the off-chip memory
without any hardware cost. The compression rate can be
increased by up to 96.23% and 97.03% using Huffman cod-
ing and weight pruning for the Alexnet and VGG-16 net-
works, respectively. Also, the compression caused by the
parameter representation change compensates the on-chip
memory overhead caused by the ROM. It keeps on-chip
memory size the same or less compared to traditional
implementations.

The main contributions of this paper are:

� We introduce a novel multiplication packing tech-
nique for multiplying one input variable with multi-
ple constants as well as variables using a single DSP
block (SDMM). In particular, we significantly reduce
the usage of DSP blocks for FPGA implementations
of CNN inference by packing the weights of a given
CNNmodel using our technique.

� We propose a novel approximation technique that
allows using hardware resources efficiently without
sacrificing accuracy. We achieve this by limiting the
bit length of manipulated parameters.

� We show a compression method that, significantly,
reduces the off-chip memory transfers of parameters
by using a ROM that stores pre-calculated results of
our multiplication packing technique on on-chip
memory. Our compression method guarantees a
reduction of 33%, 25%, and 16.7% for 8, 6, and 4-bit
parameters when coupled with our approximation
technique.

� Finally, we design an area efficient systolic array
architecture implementation. It uses 66.6%, 75%,
and 83.3% fewer DSP blocks for 8, 6, and 4-bit
input variables compared to the baseline FPGA
implementation.

The rest of this paper is organized as follows. Back-
ground information and related works are summarized in
Section 2. In Section 3, our technique is explained. Then, we
describe our processing element architecture in Section 4.
Section 5 explains the prototype systolic array architecture.
Then, Section 6 presents the implementation results. Finally,
the conclusion is given in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 DSP Blocks

Different FPGA vendors provide built-in DSP blocks in their
FPGAs. Although there are some differences between DSP
architectures used by different FPGA manufacturers, all of
these DSP blocks include the optimized hardware blocks
required to handle MAC operations efficiently. Xilinx uses
DSP48E1 and DSP48E2 blocks on different FPGAs. Fig. 1
shows the Xilinx DSP48E1 architecture, which has a 25-bit
pre-adder, 25� 18 multiplier, and 48-bit accumulator.
Xilinx DSP48E2 has a 27-bit pre-adder, 27� 18-bit multi-
plier, and 48-bit accumulator.

DSP48 blocks can be configured differently for different
type of operations. Xilinx DSP blocks can executeMAC oper-
ation using the multiplier and the accumulator available in
the DSP48E1 (DSP48E2) as in (1). Since it has a wide multi-
plier and accumulator, executing a MAC operation on the
DSP block for reduced bit length fixed-point parameters
cause underutilization issue. Using the 25� 18-bit multiplier
for 8� 8-bit multiplication is an example of an underutiliza-
tion problem. To fully utilize the DSP blocks, we develop an
efficient multiplication packing technique, which can exe-
cutemultiple parametermultiplication on a single DSP block
(SDMM)

P ¼ ðA � BÞ þ C: (1)

2.2 Accelerator Design : CNN Use Case

Research conducted on improving the utilization and/or
performance of DSP blocks in the literature generally
employs CNNs as an use-case, because CNNmodels require
millions of MAC executions. We also implemented CNN
inference on the systolic array architecture to evaluate the
performance of our technique.

Convolution computations are still the main reason for the
computational complexity of the CNN models, even if the
state-of-the-art CNN models accommodate different layers
such as pooling and activation. CNNmodels consist of multi-
ple convolution layers, each containing many parallel convo-
lution blocks. For example, VGG-16 has 13 different
convolution layers, each with 64 to 512 parallel convolution
channels. Also, each CNN kernel produces the result by sum-
ming the multiplication result of the CNN weight and input
feature (I) with partial sums. As a result, state-of-the-art CNN
models need to execute millions of multiply-accumulate

Fig. 1. Xilinx DSP48E1 architecture.
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(MAC) operations for classification. Table 1 shows the
required number ofMAC operations for someCNNmodels.

Most of the CNN models are still trained on a GPU using
floating-point weight values. On the other hand, the fact
that CNN inference can be realized with negligible loss of
accuracy using fixed-point reduced bit length CNN weights
has made FPGA and ASIC designs a strong competitor of
the GPU for CNN inference implementations [17], [18], [19].
Since FPGA and ASIC implementations offer high parallel-
ism with low-power consumption, they are used to meet
the intensive computing requirement of CNNmodels.

A systolic array (SA) architecture usually consists of a
combination of processing elements (PE) in two dimen-
sions, each of which can execute one MAC operation [20].
It provides a low-power and high-performance solution
for matrix-matrix multiplications. Since SA architecture
allows data movement between neighboring PEs only, it
reduces the data movement cost significantly. Also, SA
architecture enables data resue with different dataflow
techniques. A SA architecture is widely used for CNN
accelerators implemented on FPGA and ASIC [21], [22],
[23], [24]. Google TPU [23] and Xilinx xDNN [24] are two
well-known examples where SA is used for CNN infer-
ence. We demonstrated the efficiency of our optimizations
on the SA hardware.

2.3 Related Work

Previous publications in the literature about efficient use of
DSP blocks can be classified into 3 groups; (1) optimizations
targeting higher processing throughput, (2) optimizations
enabling multiple parameter multiplications on a single DSP
block, (3) novel DSP designs optimized for multiplication/
MACoperations, which can be used in the future FPGA archi-
tectures. Our multiplication packing technique is in the sec-
ond group.

In [6], the authors investigated on the efficient use of cas-
cade interconnection for DSP blocks to implement convolu-
tion kernels. They reorganized matrix-vector multiplication
operations to make them cascade interconnection friendly,
and implemented on the Xilinx UltraScale+ FPGA. Their
FPGA implementation improved CNN inference latency,
but it does not include an optimization to reduce the usage of
DSP blocks.

A novel method was introduced in [7] to perform two
MAC operations per DSP block with the concatenation of
two 8-bit parameters. This method reduced the DSP block
usage by 50% with the overhead of 11 LUTs and 12 FFs per
MAC operation. The technique in [7] can only be used for 8-
bit parameters, while our technique can support different
parameter bit lengths such as 4, 6, and 8. Our multiplication
packing technique uses less number of DSP blocks than the
technique presented in [7]. Also, our technique has addi-
tional benefits like the compression on off-chip memory by
parameter representation change.

An optimized DSP block (PIR-DSP) architecture was
developed in [8] to implement reduced bit length fixed-point
multiplications efficiently. They used run-time decompos-
able multiplier architecture and added a register file, which
can also be configured as FIFO, to DSP block architecture.
The PIR-DSP architecture increased the performance of the
9� 9-bit MAC operation 6 times compared to using the
Xilinx DSP48E2 block. It also reduced energy consumption
by 31%. Similar to [8], [9] developed a new DSP architecture
based on the Intel Arria 10 DSP architecture. The DSP archi-
tecture given in [9] supports two simultaneous 8-bit parame-
ter multiplications or four simultaneous 4-bit parameter
multiplications. This increased the Arria 10 DSP size by 12%.
On the other hand, it reduced the DSP block usage by 15%
and 30% for 8-bit and 4-bit parameters, respectively. Instead
of using DSP architecture implemented on the state-of-the-
art FPGAs, novel DSP architectures, which can be used for
future FPGAs, were presented in [8], [9]. Since FPGAs using
these architectures are not available and the architectures of
these DSP blocks are different from the existing ones, it is not
possible to compare our multiplication packing technique
with these implementations.

A packing technique is developed in [10] for 2- or 3- bit
multiplications on DSP blocks for block floating-point
implementations of DNN algorithms on FPGA. A packing
technique, which can perform two 8-bit signed parameter
multiplication on an 18� 18-bit multiplier, is introduced in
[11] for Intel Stratix 10 FPGA. This packing technique also
uses 24 extra LUTs per 8-bit signed parameter multiplica-
tion. An improved version of the packing method intro-
duced in [11] is presented in [12]. Instead of 8-bit signed
multiplication, two 7-bit unsigned parameter multiplica-
tions are executed on a single 18� 18-bit multiplier of Intel
FPGAs. Sign-magnitude representation is used for 8-bit
signed numbers. Twelve extra LUTs are used in [12] for
each 7-bit unsigned parameter multiplication. The packing
techniques developed in [11] and [12] can reach high clock
speeds as they target the Intel Stratix 10 FPGA that uses
Intel’s 14nm tri-gate process technology.

Xilinx provides the Deep Learning Processing Unit
(DPU) in [25]. The DPU is an optimized programmable
framework to implement deep learning algorithms effi-
ciently on Xilinx FPGAs. Two different optimizations are
available for MAC operations on a DPU. A DSP dual data
rate (DDR) technique is supported in the DPU. The DSP-
DDR technique, which is used to increase the throughput of
the DSP blocks, enables using a high-frequency clock signal
for DSP blocks. Also, the DPU offers two different resource
allocation options (low-DSP and high-DSP). In case of a
low-DSP usage option, DSP blocks are allocated only for
multiplication operations. In case of a high-DSP usage
option, DSP blocks are allocated for both multiplication and
accumulation operations. The detailed comparison of our
implementation with the DPU is given in Section 6.

A method for constant multiplication packing was devel-
oped in [13]. This method reduced the bit-length of con-
stants by a simple mathematical manipulation. Through the
manipulation presented in [13], the multiple constant multi-
plications can be executed on a single DSP block. This
method carries out the manipulation of the constants using
software and loads them to DSP blocks before runtime. As a

TABLE 1
Number of MAC Required for Convolutions

Alexnet VGG-16 GoogleNet MobileNet

# of MAC (Millions) 666 15300 1233 568
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result of this, only one tuple of constants can be executed on
a DSP block during runtime. Although the technique devel-
oped in [13] works quite efficiently on hardware implemen-
tations used a small number of constants, as the number of
constants to be multiplied is limited by the number of DSP
blocks available in the FPGA, the increase in the number of
constants significantly reduces the utilization efficiency of
DSP blocks. Additionally, state-of-the-art DSP algorithms
need much more multiplications than the number of DSP
blocks available in the FPGA. As a consequence, it is not
possible to implement state-of-the-art DSP algorithms in
FPGA using the technique presented in [13].

Algorithm 1. Parameter Manipulation

input:W
output:MW, n, s
functionmanipulation(W)
ifW > 0 then
whilemod ðW; 2Þ ¼ 0 do
s sþ 1
W  W � 2

end while
end if
W  W � 1
ifW > 0 then
whilemod ðW; 2Þ ¼ 0 do
n nþ 1
W  W � 2

end while
end if
MW  W

end

3 OUR MULTIPLICATION PACKING TECHNIQUE

DSP blocks in FPGAs have wide multiplier and accumula-
tor hardware considering bit-lengths used in various algo-
rithms such as state-of-the-art CNN inference hardware
implementations. The aforementioned causes the underuti-
lization problem for DSP blocks, which can be solved by
performing SDMM. Xilinx introduced a white-paper [26],
which offers a solution to implement two 8� 8 bit multipli-
cations per DSP block using simple concatenation and shift
operations. The method given in [26] is only applicable for 2
8-bit parameters. Recently, Xilinx introduced an other
white-paper [27], which offers a solution to implement three
4� 4 bit multiplications per DSP block for DSP48E2.

Further, a mathematical manipulation method devel-
oped in [13] that can multiply multiple constants with
one variable on a single DSP block. The method given in
[13] is applicable only in cases where there are a small
number of constants since the number of constants that
can be multiplied by this manipulation is limited with
the number of DSP blocks in the FPGA. Thus, it is not
possible to implement state-of-the-art DSP algorithms,
where millions of multiplications are required, using the
method given in [13].

We present an efficient multiplication packing technique,
which allows the SDMM execution, based upon the con-
stant manipulation technique in [13]. First, in Section 3.1,

we briefly explain the constant manipulation. Then, we
introduce our novel parameter approximation technique in
Section 3.2. Finally, our multiplication packing technique is
described in Section 3.3.

I;W;MW; and MWA denote the input variable, fixed-
point parameter, manipulated parameter, and manipulated
approximate parameter. v and c denote the bit lengths of the
input variable and the fixed-point parameter.

3.1 Parameter Manipulation

Xilinx DSP blocks have one multiplier and one accumulator
hardware. As shown in (1), DSP block can be configured for
a MAC operation using one multiplier and one accumula-
tor. We employ this option to configure our SDMM opera-
tion instead of a MAC operation. We executed multiple
multiplications using a multiplier and an accumulator avail-
able in the DSP block. Accordingly, as shown in (2), resour-
ces of the DSP block can be fully utilized by restructuring
the multiplicand such that it consists of a multiplication and
addition operations. This reduces the bit length of the multi-
plicand and shares the multiplication between the multi-
plier and accumulator hardware of the DSP block. The n
and s values are determined to minimize MW as shown in
Algorithm 1

W ¼ 2s � ð1þ 2n �MWÞ: (2)

The multiplication of the parameter (W) with the input
variable (I) can be written as in (3). Eq. (3) uses both the mul-
tiplier and accumulator hardware of the DSP block to
perform a singlemultiplication operation. Eq. (3)makesmul-
tiple parameter multiplication on a single DSP block possi-
ble, since the multiplication operation is shared between the
multiplier and accumulator hardware within the DSP block.
The multiple multiplications are achieved by the concatena-
tion of manipulated parameters for the multiplier and accu-
mulator inputs of the DSP block

P ¼W � I ¼ I � 2s � ð1þ 2n �MWÞ: (3)

3.2 Our Novel Parameter Approximation Technique

The number of parameters (k), which can be multiplied on a
single DSP block depends on the bit-lengths of the input
variable (v) and manipulated parameters (ci � ðsi þ niÞ). We
set the k number for the SDMM to 3, 4, and 6 for 8, 6, and 4-
bit input variables, respectively.

The hardware implementation cost of the constant
manipulation given in Algorithm 1 is higher than the imple-
menting MAC operation using LUTs. As a solution, we
design a Table Look Up based implementation, which
stores the n and s values and the multiplicand input of the
DSP block required for manipulated multiple parameter
multiplication. The aforementioned Look-Up Table archi-
tecture is implemented on on-chip ROM and used as a dic-
tionary for the SDMM. Depending on the input variable bit
length, this Look-Up Table may need up to (ð2vÞk) different
entries. This leads to MBs of on-chip ROM overhead, which
is quite large for the on-chip storage capacity of the state-of-
the-art FPGAs. As a solution, we introduce a novel parame-
ter approximation technique to reduce the size of the on-
chip ROM.
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Our approximation technique gives a constraint over the
mathematical manipulation equation given in (2). The
approximated version of (2) is shown in (4). This approxi-
mation limits the bit length of MW to a maximum of 3,
regardless of theW . Although the value ofMW is limited to
a maximum of 3 bits, 128 of 256 8-bit signed parameters can
be implemented without any error thanks to n and s. The
other 128 values can be implemented with minor changes.
The parameter approximation reduces the number of maxi-
mum different entries for the Look-Up Table to 8192, 16384,
and 16384 for 8, 6, and 4-bit parameters, respectively. These
numbers are found by software simulations

W ¼ 2s � ð1þ 2n �MWAÞ 8MWA 2 ð0; 1; 3; 5; 7Þ: (4)

3.3 Our Multiplication Packing Technique

The multiplication packing technique separates MAC opera-
tion as multiplication and accumulation. Since the hardware
cost of an accumulator is less than amultiplier, accumulation
operation can be implemented using LUTs with a small
hardware cost. Thanks to this, multiplier and accumulator
hardware available in the DSP block can be used for the
SDMM. The proposed multiplication technique is explained
in 4 steps for simplicity; (1) multiplication packing for single
parameter, (2) multiplication packing for signed input vari-
able, (3) multiplication packing for multiple parameters, and
(4) fine-tuning on parameter tuples.

3.3.1 Multiplication Packing for Single Parameter

The input variable (I) is multiplied with the approximate
manipulated parameter as shown in (5). Since the bit length
of MWA is up to 3, multiple multiplications of the MWA

with I is possible by concatenating these multiplications on
the multiplier of the DSP block. The remaining part of the
multiplication with the parameter is executed on the accu-
mulator hardware of the DSP block. As in (5), the multipli-
cation result (MWA � I) is shifted n-bits before the addition.
This means that the least significant n-bits of the multiplica-
tion result are always zero. Hence, instead of performing
addition on the least significant n-bits, the least significant

n-bits of the I is concatenated directly to the addition result,
which reduces the cost of the addition

W � I ¼ ð2s � ð1þ 2n �MWAÞÞ � I
¼ ðI þ ððMWA � IÞ � nÞÞ � s:

(5)

A numeric example is shown in Fig. 2. Fig. 2a shows the
traditional multiplication of I and W . As shown in Fig. 2b,
the bit length of the MW is reduced 5 to 2 with a small
change in W thanks to our approximation technique. The
multiplication of the manipulated approximate parameter
with the input variable is shown in Fig. 2c. TheMWA is mul-
tiplied with I using the multiplier hardware available in the
DSP block. The MSBs of the multiplication result is accumu-
lated with the MSBs of the I using the accumulator hard-
ware available in the DSP block. Finally, concatenation and
shift operations are implemented at the output of the DSP
block.

3.3.2 Signed Multiplication With Manipulation

The aforementioned technique can perform a signed multi-
plicationwith the signed input variable. Still, somemodifica-
tions are necessary on the multiplication packing technique
for signedmultiplication. Since multiple parameter multipli-
cation is performed on a DSP block by concatenating multi-
ple manipulated multiplications, the multiplier hardware in
the DSP block performs multiplication by ignoring the addi-
tion of the sign extension part. Subsequently, the addition of
sign extension bits are executed separately, and the result of
the sign extension is added to the multiplication result in an
intelligent way using accumulator hardware on the DSP
block. That prevents the multiplication operation from using
extra bits caused by the sign extension and makes possible
multiplications of more parameters on a single DSP block.

In case of multiplication packing of exact parameters,
sign extension bits for different parameters are calculated
by using (6). After that, SEx should be concatenated with
I½v� 1 : n� to determine the value that that is used for the
accumulation

Fig. 2. Numeric example of parameter manipulation, (a) Exact multiplication, (b) Parameter approximation, and (c) Manipulated multiplication.
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SEx ¼ ðI½v� 1� � ð2ðm�sÞ �W � 2�sÞÞ½ðc� s� 1Þ : 0�:
(6)

Whereas, the proposed parameter approximation tech-
nique, significantly, simplifies the calculation of sign exten-
sion bits as shown (7). Also, the value calculated in (7) is
used for accumulation directly. It does not need extra concat-
enation. The maskMWA

equals to 1112; 1102; 1002; 0102; and
0002 for theMWA ¼ 0; 1; 3; 5; and 7, respectively

SExA ¼ f maskMWA
& I½v� 1�� �

; ðIo nÞg: (7)

A numeric example of a signed multiplication with the
proposed multiplication packing is given in Fig. 3. Fig. 3a
shows the multiplication of the signed I andW . Fig. 3b gen-
erates the sign extension bits (SExA) using (7). Fig. 3c
presents the signed multiplication.

3.3.3 Accuracy Evaluation of Approximate Signed

Multiplications

We evaluated the accuracy of our multiplication packing
technique, which includes our new parameter approxima-
tion for single parameters of 4, 6, and 8 bits. New metrics
are defined in [28] to evaluate the arithmetic accuracy of
approximate adders/multipliers. We calculated the normal-
ized mean error distance (NMED) and mean relative error
distance (MRED) metrics defined in [28]. According to the
results shown in Table 2, our approximation technique can
work without any error for 4-bit parameters. Since Eq. (4)
can implement signed parameters smaller than 6-bits with-
out any error, multiplication of parameters smaller than 6-
bits can be performed without any error using the parame-
ter approximation technique. It causes negligible losses for
6- and 8-bit parameters. We also compared our approxima-
tion technique with the approximate multiplier designs in
the literature [29], [30], [31], [32], [33], [34]. The results show
that our approximation technique outperforms the approxi-
mate multiplier designs in [29], [30], [31], [32], [33], [34].

3.3.4 Manipulation for Multiple Parameters

First, all parameters to be multiplied on a single DSP block
are manipulated using (4). Afterward, depending on the

input variable bit length, parameter tuples are generated for
the SDMM. For example, each parameter tuple includes 3
parameters for the 8-bit input variable. The parameters
within the given parameter tuple are concatenated as shown
in (8). The second row of the (8) is executed on the multi-
plier hardware available in the DSP block, while the third
row is executed on the accumulator hardware available in
the DSP block. Since the (8) includes sign extension calcula-
tions, it also supports signed multiplication. Final concate-
nation (with I½ni : 0�) and shift (with si) operations are not
shown in (8) for simplicity

fWk; . . .W2;W1g � I ¼

I �
Xk

i¼2
MWAi

� ði� 1Þ � ðvþ 3Þ� �þMWA1

þ
Xk

i¼1
SExAi

� ði� 1Þ � ðvþ 3Þ� �
:

(8)

Eq. (8) is the simplified version of the exact version of the
multiple manipulated parameter multiplication due to the
novel parameter approximation technique. If the approxi-
mation technique is not used, the value of (ci � ðni þ siÞ)

Fig. 3. Numeric example of parameter manipulation (Signed input), (a) Signed multiplication, (b) Generation of sign extension bits, and (c) Signed
multiplication using the multiplication packing.

TABLE 2
Accuracy Evaluation and Comparison of Approximate

Signed Multiplications

Design Bit-Width NMED MRED

Our
8 0.0009 0.005
6 0.0001 0.004
4 0.0000 0.000

[29] 8 0.0261 0.049

[30]
8 0.0035 1.988
6 0.0063 2.658
4 0.0106 2.773

[31] 8 0.0016 0.012

[32] 8 0.0051 0.091

[33] 8 0.0272 0.080

[34] 8 0.0234 0.134

KALALI AND VAN LEUKEN: NEAR-PRECISE PARAMETER APPROXIMATION FOR MULTIPLE MULTIPLICATIONS ON A SINGLE DSP BLOCK 2041

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:52:42 UTC from IEEE Xplore.  Restrictions apply. 



would have to be calculated for each parameter within the
parameter tuple, instead of 3 given in the second and third
lines of (8). The novel approximation ensures that the extra
overhead caused by these calculations on the hardware is
eliminated. In addition, it is necessary to use (6) instead of
(7) for the sign extension, when the proposed approxima-
tion technique is not used.

3.3.5 Fine-Tuning of Parameter Tuples

The input variable bit length (v) is the major term to deter-
mine the number of parameters that can be multiplied on
a single DSP block. Whereas, depending on the parameter
values, it is not always possible to perform a SDMM with
this number. Thus, a fine-tuning of parameters is per-
formed to guarantee that the number of parameter multi-
plication per DSP block is fixed. Unlike the traditional
techniques in which each parameter is independently
tuned, our technique performs fine-tuning on parameter
tuples.

Our fine-tuning technique consists of three steps. First,
the number of parameters that can be multiplied on a single
DSP block is determined based on the bit-lengths of the
input variable and the parameters. 3, 4, and 6 parameters
can be multiplied on a single DSP block for the 8, 6, and 4-
bit input variables (I), respectively. Later, all of the parame-
ter tuples that can be multiplied on a single DSP block is
determined using the fixed number found in the first step.
Finally, the parameter tuple, which cannot be multiplied on
a single DSP block, is replaced by the closest parameter
tuple in the set determined in the second step. The Bray-
Curtis distance formula, which is given in (9), is used to
determine the closest parameter tuple

Cu : 1D Array; v : 1D Array

BC ¼
X
j jui j � j vi j j =

X
jui þ vi j :

(9)

A numeric example of the fine-tuning and parameter
approximation is shown in Fig. 4. Ten different parameter
tuples are shown in the left column of the Fig. 4. The parame-
ter tuples, which cannot be multiplied on a single DSP block,
are tuned using (9). The fine-tuning step reduces the number
of unique parameter tuples to seven. Furthermore, according
to the approximation rule presented in (4), some of the
parameters are approximated. The parameter approxima-
tion reduced the number of unique parameter tuples to two.

Accuracy of the parameter approximation and fine-tuning
techniques for 4, 6, and 8-bit fixed-point parameters and 4, 6,
and 8-bit input variables (I) were evaluated on the Alexnet
and VGG-16 networks. Validation images of the ImageNet
ILSVRC-2012 were used to measure accuracy results. The
error increase caused by the approximation and fine-tuning
is reported in Table 3 compared to a quantized implementa-
tion of the Alexnet and VGG-16. As shown in Table 3, the
parameter approximation and fine-tuning can decrease the
error in some cases, while it causes a slight increase in the
error in other cases. Since Eq. (4) can implement signed
parameters smaller than 6-bits without any error, multiplica-
tion of parameters smaller than 6-bits can be performedwith-
out any error using the parameter approximation technique.

4 PROCESSING ELEMENT (PE) ARCHITECTURE

Our PE architecture is different from the traditional PE archi-
tectures implemented for MAC operation. Traditional PE
implementations can execute one MAC operation per DSP
block using the multiplier and accumulator hardware avail-
able in the DSP block. Our PE architecture is customized for
the SDMM execution. The multiplication and the accumula-
tion operations are executed separately in the implemented
PE architecture. The multiplier and accumulator hardware
available in the DSP block is configured to execute multiple
parameter multiplications. Corresponding accumulations of
these multiple parameter multiplications are executed using
the LUTs available in the FPGA. This brings up two advan-
tages. First, a wide multiplier hardware available in the DSP
block can be fully-utilized for the reduced bit-length parame-
ters. Second, it enables an efficient resource sharing in
FPGAswith a limited number of DSP resources.

The PE architecture is shown in Fig. 5 for the 8-bit param-
eters and the 3 parameter multiplications per DSP block.
The PE architecture is used by scaling for different bit
lengths. This PE architecture consists of four parts; parame-
ter decompression, multiple parameter multiplication, post-
processing, and accumulation.

Fig. 4. Numeric example of the parameter approximation and fine-tuning
(Red Arrow : Approximated).

TABLE 3
Error Increase (%) Caused by the Approximation Technique (CNN Use Case)

CNNModel (W,I) : Bit Lengths of CNNWeight and Input Variable

(8,8) (8,6) (8,4) (6,8) (6,6) (6,4) (4,8) (4,6) (4,4)

Alexnet 0.06 0.02 -0.24 -0.01 -0.11 0.05 0.00 0.00 0.00
VGG-16 -0.04 0.02 -0.11 -0.01 -0.05 -0.03 0.00 0.00 0.00
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In the parameter decompression part, the parameter
decompression is performed using the ROM output. Since
the calculation of the multiplicand input of the DSP block is
independent of the input variable as shown in the second
line of the (8), the multiplicands (’A’ input of the DSP block)
are stored in the ROM for different parameter tuples. Also,
n and s values for each parameter within the parameter
tuple are stored in the ROM. The most significant 24 bits of
the output of the ROM, which stores the multiplicand
given in the second line of the (8), are connected to the
’A’ input of the DSP block directly. The least significant
bits of the WROM output is used to store the shift values
required to generate the ’C’ input of the DSP block. The
’C’ input of the DSP block is generated using the param-
eter decompression part shown in the Fig. 5. Masks (M1,
M2, and M3), which are used to generate the sign exten-
sion bits, are stored in the LUTs, and only 30 6-input
LUTs are necessary for the entire hardware. The parame-
ter decompression hardware needs 35 LUTs for each 3
parameter multiplications (for 8-bit fixed-point parame-
ters). Also, the LUT overhead caused by the parameter
decompression for the entire hardware is reported in
Section 4.

Unlike the traditional PE implementations, SDMM (3
multiplications per PE for 8-bit fixed-point parameters) is
executed in the second part of the design. This achieved
using the multiplier and accumulator hardware available in
the DSP block.

The Eq. (10) shows the ’A’, ’B’, and ’C’ inputs of the
DSP block using (8). Each part is used as the input of
the DSP block. The second row of the (8) is given to the
’A’ input (25-bit) of the DSP block. The input variable is
sent to the ’B’ input (18-bit) of the DSP block. The ’C’
input (48-bit) of the DSP block takes the third row of (8).
The ’A’ input (25-bit) of the DSP block is multiplied with
the ’B’ input (18-bit) of the DSP block, and the result of
the multiplication is accumulated with the ’C’ input of
the DSP block.

The post-processing part (Fig. 5) takes the output of the
DSP block as input and split it into three parts for 3 parame-
ter multiplications. Final concatenation (with I½n� 1 : 0�)
and shift operations (�s) are employed for each part in par-
allel. Subsequently, S blocks perform sign conversion using
the sign bits of parameters

A ¼
Xk

i¼2
MWAi

� ðvþ ði� 1Þ � ðvþ 3ÞÞ� �þMWA1

B ¼ I

C ¼
Xk

i¼1
SExAi

� ði� 1Þ � ðvþ 3Þ� �
:

(10)

Finally, accumulations are performed with the multipli-
cation results to calculate the results of multiple MAC oper-
ations. LUTs are used for the final accumulation.

5 SYSTOLIC ARRAY ARCHITECTURE

A top-level architecture of the prototype systolic array (SA)
hardware is shown in Fig. 6. Since the CNN models are
employed as a use case, the designed systolic array architec-
ture is customized for CNN inference. Four differentmemory
blocks are implemented for on-chip data storage. In addition,
on-chip ROM architecture is used as a dictionary to generate
manipulated DSP inputs. 4, 6, and 8 bit signed fixed-point
parameter multiplications are supported. Depending on the
parameter bit length and the input variable bit length, each
processing element (PE) is designed to execute 3, 4, or 6
parametermultiplications per DSP block.

Four AXI-mapped memory blocks, which have multiple
BRAMs, are used for on-chip data storage. OMem (Fig. 6)

Fig. 5. Our PE architecture.

Fig. 6. Systolic array architecture.
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store output results before sending them off-chip memory.
PMem stores partial sums to reuse it during convolution
operations. IMem stores the input values (I) for convolution
multiplications. Unlike the other 3 memory blocks, WMEM
stores the address values for WROM.

Since the ’A’ input value is independent of the input vari-
able as shown in (10), it is possible to calculate the ’A’ values
for parameter tuples once and store them on the on-chip
ROM. Notice, the shift values, which are necessary for the
calculation of the ’C’ input, do not change with the input
variable (I). Thus, these shift values are also calculated once
and stored on the on-chip ROM. These shift values config-
ure the hardware designed to generate the ’C’ input of the
DSP block. Storing all the required values for all parameter
tuples brings the MBs of on-chip memory overhead, which
is not tolerable considering the on-chip data storage capac-
ity of the state-of-the-art FPGAs. A solution to this memory
overhead problem has been achieved thanks to our parame-
ter approximation technique. Since the developed parame-
ter approximation technique constraints the MWs, it also
reduces the number of possible parameter tuples. This
makes the memory overhead problem manageable. As
shown in Fig. 4, instead of storing the required values for
ten different parameter tuples, the required values are
stored for only two different parameter tuples thanks to our
parameter approximation technique.

Since the WROM stores, the ’A’ input values, and the
shift values required to generate the ’C’ input values, all the
information required to perform the parameter multiplica-
tion can be obtained from WROM. Consequently, there is
no need to store actual parameters on the off-chip memory
and the on-chip WMem. Instead, each parameter tuple can
be represented as an index value of the WROM in the off-
chip memory and on-chip WMEM. The index values stored
in the off-chip memory and the on-chip WMem consist of
the address of the WROM and the sign bits of the parame-
ters in the parameter tuple. For example, a 16-bit address
value is stored for each parameter tuple consisting of 8-bit
fixed-point parameters. The most significant 13-bits are
used to index the WROM, while the least significant 3-bit
stores the sign bits of the 3 parameters. This enables 3x8-bit
parameters to be represented with 16-bit in the off-chip
memory and the on-chip WMem. The parameter represen-
tation change provides 33% compression (Compression
Rate: 66.6%) of the parameters and reduces the access rate
to the off-chip memory by a third without any hardware
overhead. It is also possible to apply other compression

techniques such as Huffman coding and pruning combined
with the parameter representation change (WRC). Table 4
shows the compression performance of the Alexnet and
VGG-16 networks using parameter representation change,
Huffman coding, and pruning. These results were also com-
pared with the Deep Compression [35].

As shown in Table 4, our technique combined with Huff-
man coding and pruning produces comparable results with
the Deep Compression. Only WRC was implemented in the
SA hardware. Compression results obtained using the Huff-
man coding and pruning were reported for analysis and
comparison.

Even though the approximation technique reduces the
WROM size, it is still an overhead for the hardware imple-
mentation. However, the size of the WMem implemented in
this hardware is less than the traditional implementations
because parameters are represented on the WMem by fewer
bits due to parameter representation change. This may com-
pensate for the overhead caused by WROM. As shown in
Fig. 7, the number of parameters stored in on-chip memory
with our hardware is higher than the traditional hardware
implementations in case of the on-chip memory size is
higher than a certain value. This analysis shows that using
WROM may provide advantage instead of being overhead
for hardware implementation. The on-chip memory sizes
are given in Fig. 7 for traditional hardware implementations
and the proposed hardware in this paper (for 4, 6, and 8 bit
parameters). The initial points for our implementation in
Fig. 7 shows the overhead caused by the WROM. After
these initial overhead values, WMEM stores the parameters.

Figs. 8a and 8b show two different PE architectures.
Fig. 8a shows a traditional PE architecture, which executes a
1 MAC operation per DSP block. The PE architecture, which
is shown in Fig. 8b, can execute 2 8-bit parameter multipli-
cations on a single DSP block, while it uses LUTs and FFs
for the accumulation execution. PE architecture shown in
Fig. 8b uses the method presented in [26] to execute 2 multi-
plications per DSP block. The prototype systolic array hard-
ware is also implemented using the PE architecture given in
Figs. 8a and 8b to make a comparison with the PE architec-
ture given in Fig. 5.

Weight stationary (WS) dataflow is used for the proto-
type SA architecture. Weights are initially loaded to PEs,
and the inputs and PSums flow between the PEs. Since each
input is multiplied with different CNNweights for different
kernels in each channel, multiple CNN weights can be mul-
tiplied with one input. WS dataflow allows the reuse of the

TABLE 4
Compression Rates (CONV Layers)

(W,I) CNNModel DC [35] H WRC WRC + H P +WRC + H

(8,8) Alexnet Conv 9.09% (11.0�) 14.65% (6.8�) 66.6% (1.5�) 10.80% (9.3�) 8.96% (11.2�)
VGG-16 Conv 7.28% (13.7�) 14.18% (7.0�) 66.6% (1.5�) 10.17% (9.8�) 8.49% (11.8�)

(6,6) Alexnet Conv — 8.73% (11.5�) 75.0% (1.3�) 6.71% (14.9�) 6.07% (16.5�)
VGG-16 Conv — 8.10% (12.3�) 75.0% (1.3�) 6.10% (16.4�) 5.64% (17.7�)

(4,4) Alexnet Conv — 3.67% (27.2�) 83.3% (1.2�) 4.26% (23.5�) 3.07% (32.6�)
VGG-16 Conv — 3.29% (30.4�) 83.3% (1.2�) 3.77% (26.5�) 2.97% (33.6�)

(W,I): Bit Lengths of W and I, DC: Deep Compression, H: Huffman Coding, WRC: Parameter Representation Change, P: Pruning.
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CNN weights in the PEs during convolution operations.
The goal of using the WS dataflow is to reduce power con-
sumption by reducing the switching on the parameter
decompression hardware.

6 IMPLEMENTATION RESULTS

The prototype systolic array (SA) architecture is synthesized,
placed, and routed for a Xilinx Zynq-7000 ZC706 FPGA using
Xilinx Vivado 18.3. Three different parameter bit lengths (4, 6,
and 8) are supported in the implemented SA architecture. The
implementation results are given in Table 5 for the 12� 12
SA. Since the number of parameters that can be multiplied on
a single DSP block changes based on the input variable bit
length, the number of DSP blocks reported in Table 5 is differ-
ent for the different bit lengths. The number of DSP blocks
given in Table 5 indicates that as the input variable bit-length
decreases, our technique can perform much more multiplica-
tions on a single DSP block. The number of LUTs required for
the accumulation and the overhead caused by the parameter
decompression are also reported in Table 5.

Three different versions of the SA prototype are imple-
mented using different PE architectures; (a) One MAC per

DSP block (1M), (b) two parameter multiplications per DSP
block (2M) and (c) multiple parameter multiplications per
DSP block (SDMM) including the novel approximation
technique and the parameter representation change (multi-
plication packing - MP). Table 6 shows the implementation
results for the three different PE architectures. The imple-
mentation results for 2M are given only for 8-bit parameters
because 2M can supports only a multiplication with 8-bit
parameters. As shown in Table 6, the SA hardware includ-
ing the parameter approximation, multiplication packing
(SDMM), and the fine-tuning techniques reduced the num-
ber of DSP blocks used in the baseline FPGA implementa-
tion (1M) by 66.6%, 75%, and 83.3% for 8, 6, and 4-bit
implementations, respectively. We also synthesized 1M,
2M, and MP implementations of 8-bit parameters on Xilinx
Zybo Z7-10 to analyze the efficiency of our design on low-
cost FPGAs. As shown in Fig. 9, our MP implementation
only uses 60% of available DSP blocks while 1M could not
fit into the Zybo Z7-10 FPGA board.

Alternative packing techniques for 8-bit signed parame-
ter multiplications are developed in [11], [12], [26]. The
packing techniques developed in [11], [12] can pack two 8-
bit signed parameter multiplications on an 18x18-bit multi-
plier available in Intel’s DSP block. [26] (2M) can pack two
8-bit signed parameter multiplications per DSP block on
Xilinx FPGAs. On the other hand, our MP design can per-
form three 8-bit parameter multiplications per DSP block on
Xilinx FPGAs. Accordingly, our MP design uses 33% less
DSP blocks in any case compared to [11], [12], [26]. [11] and

Fig. 7. On-chip memory size analysis, (a) 8-bit parameters, (b) 6-bit
parameters, (c) 4-bit parameters.

Fig. 8. PE architecture (a) One MAC per DSP, (b) Two multiplications per
DSP.

TABLE 5
Implementation Results (12 � 12 PEs)

4-bit 6-bit 8-bit

(6M/DSP) (4M/DSP) (3M/DSP)

FPGA Xilinx Xilinx Xilinx
Zynq Zynq Zynq

LUT
P Decomp. 432 972 1680
Post-P. 576 2016 3769
Accum. 1152 1728 2160

DFF 5732 7667 9244

DSP 24 36 48

BRAM 54 68.5 69

Freq. 250 250 250

TABLE 6
Hardware Comparison (12� 12 PE)

Bit Length Impl. LUT DFF DSP BRAM Freq.

4 1M 235 10167 144 48 270
MP 2356 5732 24 54 250

6 1M 382 11189 144 69.5 256
MP 5459 7667 36 68.5 250

8
1M 475 11973 144 92 250
2M 2773 8343 72 92 250
MP 8217 9244 48 69 250
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[12] requires 24 and 12 extra LUTs per 8-bit signed parameter
multiplication, respectively. OurMP design requires 12 extra
LUTs per 8-bit signed parameter multiplication. [26] (2M)
uses fewer LUTs than our technique, as reported in Table 6.

The SA hardware using our technique is also compared
with the Xilinx DPU as shown in Table 7. the DPUH and
DPUL refer to a high and low DSP usage configurations of
the DPU. As shown in Table 7, the MP uses a fewer number
of DSP blocks than the Xilinx DPUH. Also, the DPUH uses
more LUTs and FFs compared to the MP. In the DPUH,
MAC operations are shared between the LUTs/FFs and the
DSP blocks during hardware synthesis. Also, in the DPUH,
one DSP block can execute one MAC operation only. On the
other hand, only multiplication operations are executed on
the DSP blocks in the DPUL. Similar to the DPUH, the
DPUL shared the multiplication operations between the
LUTs/FFs and the DSP blocks. Accumulation operations
are executed only on the LUTs/FFs. As a result, the DPUL
uses a fewer number of DSP blocks than the MP, but it
needs more than twice the LUTs as the MP.

We also compare the power consumption of the 1M, 2M
and MP for 4, 6, and 8-bit signed parameters. The MP can
implement 6, 4, and 3 multiplications on a single DSP block
for 4, 6, and 8-bit signed parameters, respectively. Hence,
we implemented 6, 4, and 3 MAC calculation blocks to esti-
mate the power consumption of the 1M, 2M and MP for 4,
6, and 8-bit signed parameters, respectively. The Xilinx
Vivado tool is used to estimate the power consumption of
the 1M, 2M, and MP for 4, 6, and 8-bit signed parameters.
All switching activities are stored in SAIF files during post-
implementation timing simulation. The Xilinx Vivado tool
read these SAIF files and estimates the power consumption
of the 1M, 2M, and MP for 4, 6, and 8-bit signed parameters.
As shown in Fig. 10, our MP implementation reduces the
power consumption of the 1M by 64.1%, 54.8%, and 36% for
4, 6, and 8-bit signed parameters, respectively. Also, our MP
implementation reduces the power consumption of the 2M
by 30.0%, 33.3%, and 27.3% for 4, 6, and 8-bit signed param-
eters, respectively.

7 CONCLUSION

In this paper, an efficient parameter approximation tech-
nique was introduced to pack multiplication operations and
perform multiple parameter multiplications on a single DSP
block (SDMM). This was achieved by redeployment of the
accumulator component of the traditional MAC operation
and insertion of a parallel addition component. This method
performs a mathematical manipulation on low bit-length
fixed-point parameters and reduces their bit-lengths using
an efficient approximation. Also, it employs a fine-tuning
step to guarantee that the number of parameter multiplica-
tions per DSP block is fixed. Accuracy of the newly presented
parameter approximation technique was measured using
the Alexnet and VGG-16 networks and the ImageNet
ILSVRC-2012 dataset for different bit lengths. This optimiza-
tion leads to minor increases or decreases in the accuracy
of reduced bit length implementation of the Alexnet and
VGG-16. A prototype systolic array architecture, which used
a processing element that can execute multiple parameter
multiplications per DSP block, was implemented on a Xilinx
Zynq-7000 ZC706 FPGA. This prototype reduced the num-
ber of DSP blocks used in the baseline FPGA implementation
by 66.6%, 75%, and 83.3% for the 8, 6, and 4-bit input varia-
bles. Additionally, 33% compressionwas achieved by chang-
ing the parameter representation.
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