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Abstract: In a concurrent multiscale (FE?) modeling approach the complex microstructure of
composite materials is explicitly modeled on a finer scale and nested to each integration point of
the macroscale. However, such generality is often associated with exceedingly high
computational costs in real-scale applications. In this work, a novel Neural Network (NN) is used
as the constitutive model for the microscale to tackle that issue. Unlike conventional NNs, the
proposed network employs the actual material models used in the full-order micromodel as the
activation function of one of the layers. The NN’s capabilities are assessed (i) for a single
micromodel level, where its performance is compared to that of a Recurrent Neural Network
(RNN), and (ii) for an FE? example. A highlight of the proposed network is the ability to predict
unloading/reloading behavior without ever seeing it during training, a stark contrast with highly
popular but data-hungry models such as RNNs.

Keywords: Neural Networks (NNs); Multiscale; Path-dependency
1. Introduction

Machine learning techniques are an increasingly popular alternative to time-consuming
simulations in various fields. Recognizing this potential, the development and application of such
methods gained traction in recent years in the field of concurrent multiscale analysis. However,
a critical limitation of data-driven models is that they do not perform as well in extrapolation as
they do within their training space. This can be especially critical when they are used as
constitutive models in FE2 where the lack of basic physics-related constraints can cause
numerical instabilities and convergence issues.

On top of that, devising a sampling plan to train Neural Networks (NN) to capture path-
dependent behavior is itself a convoluted task. This is because stresses depend on the strain
history of the material. Thus, independent pairs of strains and stresses cannot fully describe how
the material should evolve. A common approach to handle that is to augment the feature space
with an extra variable that carries information about the history of stress and/or strain:

6' = fun(W,b, €5, a) (1)

where W and b are the model parameters of a NN, €° and 6¢ are the macroscopic strain and the
approximated stress tensors at time step t, respectively, and a is the history variable vector.
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Typically, the previous strain state €~ or the accumulated absolute strain are chosen for that

[1].

Another highly popular alternative is to use Recurrent Neural Networks (RNNs). These networks
can account to some extent for the typical loading/unloading by incorporating information from
previous inputs as in the following parametric regression:

at = fRNN(w! brwh,! bhlst) (2)

where W), and b, represent additional model parameters shared across time to keep track of
history-dependent materials in an implicit way. These parameters describe the evolution of the
so-called hidden state and can capture information from previous iterations without the need
to include previous strain states in the input vector as shown in Eq. (1). This way, the network
ca learn how to process and predict a sequence of strains. As such, RNNs rapidly became a
popular choice to model composite materials with path-dependency [2-4].

Despite their popularity, RNNs are still severely limited by the curse of dimensionality associated
with sampling arbitrarily long strain paths. In this work, a physics-infused network is proposed
to overcome this issue and accelerate concurrent multiscale simulations. In Section 2, the
computational bottleneck in FE2 is briefly discussed, while in Section 3 the main features of the
novel NN are described. Finally, results are presented in Section 4 and conclusions are shown in
Section 5.

2. Multiscale analysis

Let M define the macroscopic domain being modeled subjected to a set of Neumann and
Dirichlet boundary conditions acting on the body surface. To find the internal stresses and
displacement field of such body, a boundary value problem that satisfies the following
equilibrium equation is defined:

div(eM) =0 (3)

where div(+) is the divergence operator. To relate strains and stresses, a constitutive model D
is required:

oM =D (M aM) with &M= (vuM+(VuM)T) (4)

where aM is a history term that accounts for path-dependency and uM is the macroscopic
displacement field. However, in the concurrent multiscale approach, D is not directly formulated
but is instead obtained by nesting a lower scale model to each integration point, as illustrated
in Fig. 1. In that scale, complex materials can be explicitly modeled using simpler constitutive

models and a geometrical representation of the microstructure.

The computational bottleneck arises from the fact that to obtain the internal forces and the
tangent stiffness matrix of a single integration point of the macroscale, an entire FE model is run
instead of a single evaluation of a homogenous material model. To alleviate that, the alternative
explored in this work consists in replacing the solution of a Representative Volume Element
(RVE) subjected to a periodic boundary value problem with a physics-based neural network.

892/1045 ©2022 Maia et al. doi:10.5075/epfl-298799_978-2-9701614-0-0 published under CC BY-NC 4.0 license ToC
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Figure 1. FE? scheme
3. Neural networks

Consider the parametric regression model in Eqg. (2). When training a neural network for o™,
strains are fed its first layer (input) and the values are propagated until the final layer (output)
to give the predicted stresses 6™, which are in turn compared to the ground truth value using
the loss function:

1 1 ~ 2
L==3 5 [le™E") - 8% | (5)

where N is the number of pairs of ! — 6™ obtained from microscopic simulations. Eq. (5) is

then minimized by updating the model parameters according to an optimization algorithm.

3.1 Bayesian Recurrent Neural Network

In practice, RNNs struggle with vanishing gradient problems and are not suitable for long-term
dependent problems. Among other architectures, the Gated Recurrent Unit (GRU) has become
a widely used alternative to circumvent that issue. The GRU contains more operations and
parameters than a regular RNN and can control more precisely the flow of information, being
able to retain or forget information in a long sequence. In this work, a GRU with Variational
dropout (i.e., Gaussian dropout where the rates are learned implicitly by the network) [5], also
referred as Bayesian Recurrent Neural Network (BNN), is used for comparison purposes.

3.2 Adding physics-based material models

The proposed regression model consists of a neural network composed of one fully-connected
material layer followed by a Dense layer, as illustrated Fig. 2. The material layer is responsible
for explicitly incorporating into the network the same physics-based material model used in the
homogenization of the RVE.
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Figure 2. Physics-infused neural network

Two different material models are used to describe the fibers and the matrix of the composite
microscopic models in this work: the first consists of a linear elastic model and the second is an
elastoplastic model M. Since the latter is more complex, it is used to illustrate how its features
are incorporated into the network. Model M takes as input the current strain €® € R™ and the
internal variables from previous time step af~! € RMntvar, where n, and ny,yq,r are the
number of strain components and number of internal variables of the material model,
respectively.

First, neurons are grouped in sets of the size of the input layer (light grey boxes in Fig. 2a) and
only then activated as a subgroup, or fictitious material point. To store the internal variables
used as input/output of the material model, an auxiliary vector h; € R™ntVar is defined. For the
first time step, h]- is initialized as zero for all subgroups.

As information reaches the material layer and the material model is evaluated (or updated),
three features are obtained: the stresses Gf , the updated internal variables o(}F ,and the tangent

stiffness matrix Df € R"= * e, Then, stresses are propagated forward, and the updated internal

variables af are stored in h} so that when new strains sf” are fed to the fictitious material

point j in the next time step, the material model is aware of its own history so far, as illustrated
in Fig. 2b. Finally, to obtain the stiffness matrix, a full backwards differentiation pass is required.

3.3 Decoders

The decoder converts the outputs from the Material layer and combines them into the predicted
macroscopic stress M. In that sense, the decoder acts as the averaging operator in the
multiscale approach. Therefore, weights of the output layer can be seen as the relative
contribution of each fictitious material point to the average macroscopic stress as if they were
obtained from a Gaussian quadrature, which are always positive.

Based on that, four different approaches are investigated: (i) first, no constraints are applied and
the weights can be positive and negative, then weight positivity is enforced either with (ii) a
penalty approach or by applying the (iii) re/u function or the (iv) softplus function on the weights.
For the decoder with the penalty (ii), an extra term is added to the loss function in Eq. (5):

894/1045 ©2022 Maia et al. doi:10.5075/epfl-298799_978-2-9701614-0-0 published under CC BY-NC 4.0 license ToC



Composites Meet Sustainability — Proceedings of the 20" European Conference on Composite Materials,
ECCM20. 26-30 June, 2022, Lausanne, Switzerland

(0.0, w20
p (Wk) - {9 IWkli Wy <0 (6)

where 6 is a penalty parameter term introduced to penalize negative weights wy, in the output
layer. Finally, for the approaches (iii) and (iv), the transformation functions are applied element-
wise on the weight matrix.

It is worth mentioning that the first two decoders are shown as reference results since only (iii)
and (iv) guarantee that, after the transformation, weights will be positive. This is an important
outcome for the FE2 framework because by constraining the decoder to be positive, the spectral
properties of the Jacobian of the material model M are inherited by the network when
calculating the tangent stiffness matrix.

4. Results

In this section, the performance of the proposed physics-infused network, or Material Neural
Network (MNN), is compared to a Bayesian Recurrent Neural Network (BNN). The MNN was
implemented in an in-house Finite Element code using the open-source Jem/Jive C++ numerical
analysis library, while PyTorch was used to construct the BNN. The goal is to demonstrate the
capabilities of the proposed network to capture path-dependent behavior in comparison to a
popular method using exclusively monotonic data for training. The maximum number of epochs
for both networks is 60000. For the BNN, an early stopping criterion of 5000 epochs is used.

The microscopic model consists of an RVE with 9 elastic fibers with properties E = 74000 MPa
and v = 0.2 embedded in an elastoplastic matrix with isotropic hardening. The latter is modeled
using the von Mises yield criterion with properties E = 3130 MPa, v = 0.3 and yield stresses
given by:

_cP
0p = 0 = 64.8 — 33.6 ¢ “ea/ 0003407 (7)
where sgq is the equivalent plastic strain. Plane strain conditions are assumed.

For training the MNN, 18 curves with a priori known directions (black lines in Fig. 3a) are
generated. Each curve consists of 60 pairs of €Y — 6™ with monotonic loading (solid line in Fig.
3b). These directions comprehend typical loading cases used for calibrating mesomodels and
comprise pure uniaxial, shear, biaxial and biaxial with shear cases. The validation set consists of
another 54 monotonic curves in random directions (red lines in Fig. 3a).

0.100

Monotonic loading
0.080F ---- Unloading/reloading

__0.060 4

\,
/
\

<
0.040 e

0.020 g

0.000

10200 30 40 50 60
0.5 Time step [-]

1.0 1.0

(a) Directions as unit load vectors (b) Monotonic and non-monotonic loading

Figure 3. Loading directions in (a) and loading function in (b)
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Based on that, a preliminary study with 10 different initializations was carried out for each
decoder and size of the material layer as shown in Fig. 4. It is clear from the results that using
only 3 fictitious integration points (in contrast, the original FE micromodel comprises 7088
integration points) is enough to accurately represent the homogenized material behavior. We,
therefore, adopt a layer size of 3 points (9 units) with softplus-activated weights for the sake of
parsimony. A similar procedure is followed for the BNN, and a network with a single GRU layer
with 128 units is selected.

20.00

[ No constraints
17.50 [ Penalty

[l ReLU
15.00 = I Softplus

Abs. error [MPa]
S
(=]
o

9 12 15 18
Material layer size [units]

Figure 4. Abs. error for validation set with different combinations of decoder and layer size

4.1 Single scale

In this section, the 18 curves with known directions are kept as a fixed part of the dataset of
both networks, while the BNN is trained with additional random monotonic curves for different
training dataset sizes. The test set consists of 100 random curves with unloading/reloading as

shown in Fig. 3b. Again, 10 different initializations were considered for each case, but only the
best performance is depicted in Fig. 5.

17.50 | o BN,
MNN
15.00
g 12.50 b
= ° ° ° <]
5 10.00
2
—
(]
§~ 7.50
5.00
250 | @
0.00
18 36 72 144 288 576

Number of curves used for training

Figure 5. Networks trained on monotonic data and tested for curves with unloading/reloading

Note that as more curves are added, the BNN’s error decreases, but around 144 curves, the
addition of more monotonic data is no longer useful to the network in this scenario. The initial
error decrease is actually associated with the points before the unloading. Once that part of the
curve is accurate enough, the error in the unloading will remain unchanged (and high) while the
MNN can capture accurately the entire strain path, as illustrated in Fig. 6. Although this is a
simplified scenario, it helps in elucidating the ability of the proposed network to predict non-

896/1045 ©2022 Maia et al. doi:10.5075/epfl-298799_978-2-9701614-0-0 published under CC BY-NC 4.0 license ToC
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monotonic data without the need to extend the training dataset with curves with arbitrary
unloading/reloading cycles, as typically done for RNNs.
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Figure 6. BNN trained on 144 monotonic curves cannot capture unloading/reloading behavior

4.2 Multi-scale

Here, the MNN trained in the previous section is tested as the constitutive model in a multiscale
application. The structure consists of a composite tapered specimen with a length of 128 mm
and a height of 8 mm loaded in transverse tension. The boundary and loading conditions are
shown in Fig. 7, where the load-displacement curve using the full-order solution is plotted along
with the network’s response. Good agreement is observed between the curves.

800.0F
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Figure 7. Load-displacement curves using the full-order solution and the MNN

5 Conclusions

A network with embedded physics-based constitutive models was presented. The network

captures unloading without ever seeing it during training, which is not observed in the BNN

regardless of the number of monotonic curves considered. In the multiscale example, the
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ToC



Composites Meet Sustainability — Proceedings of the 20t European Conference on Composite Materials,

ECCM20. 26-30 June, 2022, Lausanne, Switzerland

proposed approach showed good accuracy in an structure subjected to different strain states
and reduced the CPU time from 9077 s to 3 s (excluding training and data generation times).
Further details on the training of the networks and results over a broader range of test cases will
be presented in a future publication.
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