<]
TUDelft

Delft University of Technology

Code deformation and lattice surgery are gauge fixing

Vuillot, Christophe; Lao, Lingling; Criger, Ben; Garcia Aimudever, Carmina; Bertels, Koen; Terhal, Barbara
M.

DOI

10.1088/1367-2630/ab0199

Publication date
2019

Document Version
Final published version

Published in
New Journal of Physics

Citation (APA)

Vuillot, C., Lao, L., Criger, B., Garcia Aimudever, C., Bertels, K., & Terhal, B. M. (2019). Code deformation
and lattice surgery are gauge fixing. New Journal of Physics, 21(3), Article 033028.
https://doi.org/10.1088/1367-2630/ab0199

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1088/1367-2630/ab0199
https://doi.org/10.1088/1367-2630/ab0199

New jou I‘Ilal Of PhYSiCS Deutsche Physikalische Gesellschaft @ DPG 10P Institute of Physics

The open access journal at the forefront of physics

PAPER « OPEN ACCESS

Code deformation and lattice surgery are gauge fixing

To cite this article: Christophe Vuillot et al 2019 New J. Phys. 21 033028

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 145.94.116.75 on 18/04/2019 at 10:15

https://doi.org/10.1088/1367-2630/ab0199
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/528177972/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
13 November 2018

ACCEPTED FOR PUBLICATION
24 January 2019

PUBLISHED
28 March 2019

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL.

New]. Phys. 21 (2019) 033028 hitps://doi.org/10.1088,/1367-2630,/ab0199

New jou rnal of Ph sics Deutsche Physikalische Gesellschaft @ DPG Published in partnership
y with: Deutsche Physikalische
The open access journal at the forefront of physics I0P Institute of Physics Gf:s”S.Chaﬂ and the Institute
of Physics

PAPER

Code deformation and lattice surgery are gauge fixing

Christophe Vuillot"* ®, Lingling Lao"* ®, Ben Criger"*®, Carmen Garcia Almudéver', Koen Bertels' and
Barbara M Terhal "’

! QuTech, TU Delft, The Netherlands

2 Institute for Globally Distributed Open Research and Education (IGDORE), Sweden

> JARA Institute for Quantum Information (PGI-11), Forschungszentrum Juelich, D-52425, Juelich, Germany

These authors have made equal contributions to the research discussed herein.

E-mail: c.vuillot@tudelft.nl and l.lao@tudelft.nl

4

Keywords: quantum error correction, quantum stabilizer codes, quantum subsystem codes, surface code, quantum code deformation,
fault-tolerant quantum computation

Abstract

The large-scale execution of quantum algorithms requires basic quantum operations to be
implemented fault-tolerantly. The most popular technique for accomplishing this, using the devices
that can be realized in the near term, uses stabilizer codes which can be embedded in a planar layout.
The set of fault-tolerant operations which can be executed in these systems using unitary gates is
typically very limited. This has driven the development of measurement-based schemes for
performing logical operations in these codes, known as lattice surgery and code deformation. In
parallel, gauge fixing has emerged as a measurement-based method for performing universal gate sets
in subsystem stabilizer codes. In this work, we show that lattice surgery and code deformation can be
expressed as special cases of gauge fixing, permitting a simple and rigorous test for fault-tolerance
together with simple guiding principles for the implementation of these operations. We demonstrate
the accuracy of this method numerically with examples based on the surface code, some of which are
novel.

1. Introduction

Quantum computers can implement algorithms which are much faster than their classical counterparts, with
exponential speedup for problems such as prime factorization [1], and polynomial speedup for many others [2].
The main obstacle to constructing a large-scale quantum computer is decoherence, which partially randomizes
quantum states and operations. Although state-of-the-art coherence times are now appreciably longer than gate
times [3, 4], they remain too short for useful quantum computation.

To counter the effect of decoherence on quantum states which are stored or manipulated imperfectly, we can
encode logical qubit states into several physical qubits, and perform non-destructive multi-qubit measurements
of the resulting system to extract information about which errors have occurred, called the syndrome. The spaces
of multi-qubit states used to encode these logical states are called quantum error-correcting codes, and their ability
to correct errors is measured by the distance d, which is the number of independent errors (or error weight)
necessary to alter the state of the logical qubits without being detected. In order to use one of these codes in
practice, it is also necessary to account for the effect of decoherence on operations. For example, a syndrome
measurement may involve a sequence of entangling gates, and the error caused by a faulty gate on a small set of
qubits in the beginning of the circuit may propagate onto many qubits, producing a high-weight error,
increasing the likelihood of a logical error. Measurement results can also be corrupted by decoherence, so
syndrome extraction often has to be repeated. In order to prevent error propagation during repeated
measurement, syndrome extraction circuits must be designed such that a small number of faults (from
imperfect gates or memory errors on data qubits) will result in a small number of errors on the physical qubits,
which can be corrected using noisy syndromes. Given a family of codes of different distances, we can determine a
threshold error rate, the rate beneath which codes with higher distance produce lower logical error probabilities.

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ab0199
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
mailto:c.vuillot@tudelft.nl
mailto:l.lao@tudelft.nl
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab0199&domain=pdf&date_stamp=2019-03-28
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab0199&domain=pdf&date_stamp=2019-03-28
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Several such families of quantum error-correcting codes have been developed, including concatenated codes
[5, 6], subsystem codes such as Bacon—Shor codes [7], and 2D topological codes. The most prominent 2D
topological codes are surface codes [8] derived from Kitaev’s toric code [9], which we will focus on in the
remainder of this manuscript. 2D topological codes can be implemented using entangling gates which are local
in two dimensions, allowing fault-tolerance in near-term devices which have limited connectivity. In addition,
2D topological codes generally have high fault-tolerant memory thresholds, with the surface code having the
highestat ~1% [10].

These advantages come at a cost, however. While other 2D topological codes permit logical single-qubit
Clifford operations to be implemented transversally, the surface code does not. In addition, the constraint that
computation be carried out in a single plane does not permit two-qubit physical gates to be carried out between
physical qubits in different code blocks, precluding the two-qubit gates which, in principle, can be carried out
transversally.

These two restrictions have led to the design of measurement-based protocols for performing single- and
two-qubit logical gates by making gradual changes to the underlying stabilizer code. Measurement-based
protocols that implement single-qubit gates are typically called code deformation [11], and protocols that involve
multiple logical qubits are usually called lattice surgery [12]. A separate measurement-based technique, called
gauge fixing [13], can be applied to subsystem codes, which have operators which can be added to or removed
from the stabilizer group as desired, the so-called gauge operators. During gauge fixing, the stabilizer generators
of the subsystem code remain unchanged, and can be used to detect and correct errors; so decoding is unaffected
by gauge fixing. This is in contrast to code deformation and lattice surgery, where it is not a priori clear which
measurement results to incorporate into decoding, or how to process them. Recently, many different code
deformation and lattice surgery techniques have been devised, most of which use tailor-made analysis or
decoding techniques, see e.g. [14-21].

In this paper, we phrase existing lattice surgery and code deformation protocols as special cases of gauge
fixing, showing that the underlying subsystem code dictates the fault-tolerance properties of the protocol. This
perspective can simplify the analysis of new measurement-based protocols, provided that they are based on
stabilizer codes whose distances can be easily calculated. Also, knowing the stabilizer of the underlying
subsystem code results in clear guidelines for decoding using the measurement results produced by such a
protocol.

The remainder of this paper is organized as follows. In section 2, we review the ideas behind code
deformation and lattice surgery. In section 3, we review the formalism of gauge fixing. Following this, in
section 4, we formulate lattice surgery and code deformation operations as gauge fixing, demonstrating that
fault-tolerant code deformation protocols are in fact based on high-distance subsystem codes. We also show this
explicitly using both well-known and novel protocols. In section 5, we numerically determine the performance
of these protocols. We conclude and discuss potential future research in section 6.

In all figures in this paper, qubits are located on the vertices of the drawn lattice. We refer to the local
generators of the stabilizer group of the surface code as stabilizers or checks. In the figures, black regions signify
X-stabilizers and light gray regions Z-stabilizers, with no stabilizers measured on white plaquettes.

2. Code deformation and lattice surgery

2.1. Code deformation

Code deformation is a technique to convert one code into another by making a series of changes to the set of
stabilizer generators to be measured in each round of error correction. Typically, these protocols use ancillae
prepared in entangled and/or encoded states as a resource. Also, a typical code deformation sequence proceeds
gradually, first expanding the code into a large intermediate code by entangling the original code block with the
ancillae, then disentangling some of the qubits (which may include some or all of the original data qubits),
producing a final code which can then be used for further computation. The initial and final code may differ in
their logical operators, in which case the deformation performs alogical operation. Also, the initial and final
code may differ in their position or orientation within a larger quantum computer.

For example, consider the proposed fault-tolerant procedure for lattice rotation of surface codes shown in
figure 1, similar to the one presented in [22]. One can see five steps which gradually modify the surface code
patch starting at the bottom right of figure 1(a) and ending at the top left of figure 1(e) in a different orientation.
First, three ancillary patches are prepared in fixed states, and placed near the upper left corner of the target patch.
Then, the patch undergoes a two-step growing operation, followed by a two-step shrinking operation.
Advancing one step is done by measuring the operators corresponding to the new stabilizers, some of which
anti-commute with the old ones. Measurement of these new stabilizers will return +1 values at random. This
means that additional corrections, unrelated to errors that may have occurred, are needed in order to enter the

2

I0OP Publishing NewJ. Phys. 21 (2019) 033028 C Vuillot etal

(a) (b) (c)

Figure 1. Fault-tolerant procedure for rotating a surface code by 90° and reflecting it about the x axis (see [12, figure 10] for the
corresponding protocol using smooth/rough boundaries). (a) Initial layout where the 5 x 5 lattice is to be rotated, the three 3 x 4
patches are ancillas in fixed states, fully specified by the stabilizers shown. (b) Intermediate lattice, this step is required to expand the
lattice fault-tolerantly. (c) Fully expanded lattice. (d) and (e) Splitting operations performed to shrink the lattice. (f) By using the two
steps from (a) to (c) at the same time on all corners, one can grow a lattice from distance d to 3d — 4. The surrounding ancillary
patches have (d — 2) x (d — 1) qubits each.

(a) (b) ()

w"EE

® © 0 0 O
Figure 2. A procedure to flip a lattice using code deformation. (a) The lattice to be flipped, and the physical qubits prepared in |+)
states. (b) The flip operation is realized by merging the original lattice with the physical qubits below. (c) Subsequently measuring the
physical qubits at the top in the X basis finishes the flip operation.

new code space (the mutual +1-eigenspace of all new stabilizers). Moreover, to account for noisy operations,
one must simultaneously perform error correction. After one is confident that the encoded state is in the new
code space, one can proceed to the next step.

In section 4, we will demonstrate that, following these five steps, one can fault-tolerantly protect the logical
information at all times with a distance-5 code. We also show that the distance would be reduced to 3 if one were
to omit step (b), going directly from (a) to (c), as one would do when directly adapting the established surface
code rotation method from [12] to rotated surface codes.

This lattice rotation followed by the lattice flip in figure 2 are useful for performing a transversal Hadamard
gate. The transversal Hadamard gate on a surface code patch, performed by applying a Hadamard gate on each
qubit, interchanges X and Z plaquettes. This code transformation can be undone by a lattice rotation, followed
by alattice flip. Moreover, part of this rotation procedure can be used to grow a code with distance d to a code
with distance (3d — 4) in two steps by simultaneously growing all corners, see figure 1(f).

3

I0OP Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Figure 3. Lattice surgery for the rotated surface code. A * + ’label indicates a random sign for the corresponding plaquette in the
stabilizer group. (a) Initial layout, two rotated surface codes. (b) The merged lattice, which is a surface code with random =+ signs on
the newly-measured (red) plaquettes. (c) The splitlattices, in which the original stabilizers are measured again. Random =+ signsare
produced on the boundary X-stabilizers.

This type of code deformation does not, in itself, perform logical operations, but can be used to move patches
of code or to convert between codes where different gates are transversal [16]. Other code deformation
procedures such as moving holes or twists do perform unitary logical Clifford operations [18, 23, 24]. In the next
section, we present another similar procedure which executes a logical measurement.

2.2. Lattice surgery

Lattice surgery is a particular measurement-based procedure that acts non-trivially on the logical information.
By going through two steps of deformation, it implements a joint measurement of logical operators, typically
X, X; or Z1 Z,, where X; and Z; denote the logical operators of the logical qubit j. We will focus on the Z, Z,
measurement and review the protocol used for the surface code [12, 15].

Consider two patches of L x L rotated surface code, as in figure 3(a). Each has a Z logical operator along the
boundary which faces the other patch. In the merge step, one measures the intermediary Z-plaquettes (in red in
figure 3(b)). These plaquettes are such that the product of all outcomes is the outcome of the Z; Z, measurement,
but any subset of these outcomes produces a random result when multiplied together. This ensures that the only
non-stabilizer operator whose eigenvalue can be inferred from these measurements is Z; Z,. These
measurements do not commute with the weight-2 X stabilizers at the joint boundary (in figure 3(b)). The
Gottesman—Knill theorem [25] prescribes how to update the stabilizer after such measurements, namely we only
retain elements in the original stabilizer group which do commute with the newly measured stabilizers. This
implies that the code becomesa 2L x L patch of surface code, apart from some minus signs on the newly-
measured Z-checks. This merge step is very similar to the rotation presented before, except that some logical
information islearned in the process and the additional corrections which fix the state into the new code space
may involve one of the original logical operators (when the number of intermediary plaquettes with —1
eigenvalues is odd). To finish the protocol, the original code space must be restored by performing a splitting
operation, measuring the original stabilizers of the two separate patches instead of the intermediary Z-
plaquettes. Those Z-plaquettes, as in the merge step, anticommute with the boundary X-stabilizers, and will be
removed from the stabilizer group. Their product, equal to Z1Z,, does commute, and will remain as a stabilizer
of the final state. In addition, the boundary X-plaquettes will have random =+ signs which are perfectly
correlated between facing pairs. Therefore, one can eliminate these £ signs by applying some of the former
stabilizers (those supported on the intermediary Z-plaquettes).

One can check (see the algebraic proof in appendix A) that depending on the outcome (£1) of the logical
7,7, measurement, the merge and split operations, respectively My and S.. can be expressed as

M, = [0) (3] + [)(TIl, S, = [00) (3] + ITI) (I, M

M7:

0){01] + [1){T0l, S_ = 1[01)(0| + [T0)(T]. @
They are related to the projections, P, onto the+1 eigenspace of Z, Z, by composition:

P+ = S+OM+, P =S oM.

I0OP Publishing NewJ. Phys. 21 (2019) 033028 CVuillot etal

Figure 4. (a) Two equivalent measurement-based circuits for the CNOT gate. (b) The qubit layout for a CNOT gate between two
surface-code qubits. Cis the control qubit, T'is the target qubit, and A is alogical ancilla.

In particular, lattice surgery allows us to implement the measurement-based CNOT gate [26] ina 2D layout
with onlylocal operations as shown in figure 4. We note that a more general set of operations which can be
implemented by lattice surgery can be constructed using the relation between the merge and split operations
considered here and the three-legged nodes of the ZX-calculus [27]. For the purposes of this work, however, we
will limit our discussion to CNOT gates.

3. Gauge fixing

Gauge fixing [13] is an approach which has been used to implement universal fault-tolerant gate sets in subsystem
codes [28]. A subsystem code is equivalent to a stabilizer code in which some of the logical qubits are not used to
carry any logical information. These logical qubits are called gauge qubits and they can be acted on or measured
without disturbing the states of the other logical qubits, which are used to store and process quantum
information. Then, one way to formally define a subsystem code, C, is to define a subgroup of the Pauli group,
called the gauge group G, containing all the Pauli stabilizers as well as the Pauli operators defining the gauge
qubits. This subgroup is non-Abelian as it contains anti-commuting Pauli operator pairs which represent the
gauge qubit logical operators. The stabilizer group, S, can be derived from G as its center, denoted Z(-), i.e.
containing all elements in G, which commute with all the elements of G

S§=72(9)=C9nNg, 3

where C(G) denotes the centralizer of G in the Pauli group, i.e. all elements in the Pauli group, which commute
with all elements in G. Elements in G which are notin & are the Pauli operators acting non-trivially on the gauge
qubits: this is the set of non-trivial gauge operators £,

Ly =G\S.)

Following this, one can define operators for the actual logical qubits which by definition are elements in
C(S)\S. Ifthese operators act trivially on the gauge qubits, we call these barelogical operators. Bare logical
operators can be multiplied by elements in £, to become dressed logical operators which also act on the gauge
qubits. We can write

Lpare = C(g)\g; Ldressed = C(S)\g %)

Note that with this definition we have, Lyare C Laressed- The distance of the subsystem code Cis the smallest
weight of any of its non-trivial logical operators,
dc = min wt(?). (6)
€€ Ldressed

One advantage of subsystem codes is that to measure stabilizers, one is free to measure any set of checks in
the gauge group as long as this set generates the stabilizer group. By measuring elements in the full gauge group,
one can put the gauge qubits in specific states, permitting different sets of transversal logical gates. This act of
putting the gauge qubits in a specific state is called gauge fixing. The idea is to measure a commuting subset of
gauge operators (all the Z-type gauge operators, for example), obtaining £+1 outcomes and applying the
anticommuting, or conjugate partner operator (an X-type gauge operator in the example), wherever a —1

I0OP Publishing NewJ. Phys. 21 (2019) 033028 CVuillot etal

=

N
©

Figure 5. Venn diagrams depicting the relations between the different sets of Pauli operators concerning the gauge group G of interest,
see main text. (a) For one step, the yellow set represents the old stabilizer group, S,14, and the blue set the new group, Syew. Both are
surrounded by the logical operators, Lojg and Lyey respectively. The gauge group generated by both, G = (S, Snew)» has & asiits
center, shown by the down-left-dashed region outlined in red. The gauge group of interest, G, is outlined in purple and has S, in the
down-right-dashed region outlined in blue as its center. The set of gauge operators defining the gauge qubits, L, is the dotted region.
When switching from S to Spew 0ne fixes the gauge for the elements in the blue dotted region Mg, = Q\Sold. (b) One possible
scenario for two successive steps of deformation. Doing it in two steps, i.e. from Sy — &j, and then from §; — S, permits to use
successively the stabilizer groups Sy and then S, for error correction. Skipping the intermediary steps, one can only use So, which
might offer less protection.

outcome has been obtained. In the example, this would fix all gauge qubits to the |0) state. While the gauge is
fixed in this way, the Z-type gauge operators become elements of the stabilizer group, so S is augmented to some
larger Abelian subgroup of G. Appendix B shows an example of how code conversion between the [7, 1, 3]
Steane code to the [15, 7, 3] Reed—Muller code can be viewed as gauge fixing.

4. Fault-tolerance analysis with gauge fixing

In this section, we show how both code deformation and lattice surgery can be viewed as gauge fixing operations
and therefore, one can use gauge fixing to analyze the fault-tolerance of these operations.

We consider the quantum error-correcting codes before and after a deformation step, denoted as C,4 and
Chew> With stabilizer groups Spiq and Sy, respectively. Both codes are fully defined on the same set of qubits.
The non-trivial logical operators of each code are defined as

Loa = C(Sold)\Solda Lpew = C(Snew)\Snew-

The intuition we follow is to see the two stabilizer codes as two different gauges of the same subsystem code. The
first step, then, is to define a joint subsystem code, C, whose gauge group, G, is generated by both S,jq and Sye»

G == <Sold: Snew>-

The generated group, G, isnot necessarily Abelian, since it contains elements of S,4 which may anti-commute
with some elements of Speyy.

The stabilizer group, S, defined as in equation (3), can be characterized as follows: Elements in the center of
G also have to be in the centralizers of Syjq and Syey . Moreover, being in both centralizers and in G is sufficient to
be in the center, or

S = C(Sold) N C(Snew)m G

See figure 5(a) for a representation of SasaVenn diagram. Note that, in addition to containing Sgig N Spew» S
can also contain some logical operators from either L4 or L, This is the case for the merge operation of
lattice surgery where the logical Z,Z, € Lyqbutalso Z,Z, € Spey and therefore Z,Z, € S. Similarly, for the
split operation Z; Z, € L e butalso in Sy and therefore in S.

As defined above, this subsystem code C indeed admits Syjq and Sye, as two distinct Abelian subgroups of
G. Therefore the codes Sy and Spen correspond to fixing two different sets of states for the gauge qubits of G.
However, for this to function as a subsystem code, one would have to be stabilized at all times by S and thus be
able to measure all values of the stabilizers of S.

This is not the necessarily the case when S contains some elements of £jq 0r £yey, and we have to further
modify G to a gauge group G whose center is solely

6

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Z(g) =S= Sold N Snew-

How do we obtain G from G? This new gauge group, G will be generated by S, 14 and S, in addition to (anti-
commuting) conjugate partners of elements in the sets Mprep = Sotld N Lnew and Mipeas = Snew N Lola- More
precisely, one views M., as a subset of L., and for each independent logical operator contained in M,
adds a chosen conjugated partner within £,,,. One operates similarly for M;.,s by viewing it as a subset of
Lo If we then consider the center of G, we see that all elements in M, and Mpeos are excluded from it since
they anti-commute with some elements in G. This means that the center of G isreduced to Z(G) = Sy1q N Shew
as desired.

The names M y;ep and M e, are chosen to represent their respective roles in the deformation procedure. In
such a procedure one starts from a system encoded in C,4, i.€. stabilized by S,14, and then one measures the new
stabilizers, Spew- When S, contains some elements of L4, then in general these elements will not stabilize the
state of the system, since it can be in any logical state at the beginning of the procedure. Measuring these
operators will return information about the logical state and cannot return information about errors. Thus, by
switching to Sy one also performs alogical measurement of the elements in M ;5.

Itis also possible for S,14 to contain some elements of £,,,. In that case, the state of the system is initially
stabilized by these elements, and remains so, since we only measure operators commuting with them. In this
sense, the deformation procedure will prepare the logical +1 state of elements in M.

We denote the code underlying the code deformation step as C. Its gauge group, G, is represented asa Venn
diagram in figure 5(a). Thus the deformation operation that transforms Cyjg into C,., is realized by switching
what gauge to fix of the code C: in one gauge one obtains C,)4, the other gauge gives C,,..,. Since the deformation
step can also transform logical information, what gauge elements are fixed is subtle. Namely, note that in this
gauge fixing of C'to either code Cg4 o1 C,,ey, the gauge elements in Q\G will never be fixed. Said differently, only
the elements of £, which are in the blue dotted region in figure 5 will be fixed, one can also view these as

elements of Mg, = G \ Sold-

4.1. Fault-tolerance of code deformation
Given an underlying subsystem deformation code C, one can ensure the fault-tolerance of a code deformation
operation by checking three criteria:

1. Code distance: The distance of the subsystem code, C, must be large enough for the desired protection.
Ideally it matches the distances of C,)q and C,.,, so the degree of protection is not reduced during the
deformation step.

2. Error correction: The error correction procedure follows that of the subsystem code C through the code
deformation step.

3. Gauge fixing: To fix the gauge, one has to use operators exclusively from £, = G\ S.

More specifically, criterion 2 means that to perform error correction, one has to reconstruct from the
measurements of Sy, the syndrome given by S. Importantly, criteria 2 and 3 demonstrate that the processes of
error correction and that of gauge fixing are two separate processes with different functionality. Both processes
require the application of Pauli operators (in hardware or in software) to make sure that stabilizer measurements
are corrected to have outcome +1. The error correction process does this to correct for errors, while the gauge-
fixing process does this to move from Coj4 t0 Cyen-

This description holds for one step of deformation, so that for each step in a sequence of deformations one
has to examine the corresponding subsystem code C and its distance. Depending on the sequence, figure 5(b)
illustrates why skipping steps could lead to poor distance and poor protection against errors. This discussion also
assumes that stabilizer measurements are perfect; the effect of noisy stabilizer measurements is considered in the
following section.

4.1.1. Noisy measurements
When one considers noisy syndrome measurements, one needs to ensure that both the stabilizer outcomes and
the state of the gauge qubits can be learned reliably. For 2D stabilizer codes such as the surface code this is simply
done by repeating the measurements. To process this repeated measurement information for the surface code,
one no longer uses the syndrome but the difference syndrome: the difference syndrome is marked as non-trivial
(we say that a defect is present) only when the syndrome value changes from the previous round of measurement.
This difference syndrome or defect gives information about both qubit errors as well as measurement errors.
How do we construct the difference syndrome at the code deformation step T;;in figure 62 At T,; one obtains
the syndrome for the code S,y For those elements in Sy, Which are in S, we know what this syndrome should
have been if no measurement or data errors had occurred since the previous QEC round which measured the

7

I0OP Publishing NewJ. Phys. 21 (2019) 033028 CVuillot etal

Measured stabilizers Processing defects

Time T

v v

_. FixGauge ___

N\ My = +1 Tg
Snew 1[

> Errors

BRIt T4
Sold

J

Figure 6. Schematic drawing of a code deformation procedure with repeated noisy measurements, with time increasing upwards. T
designates the time step at which the code deformation (the switch from measuring the checks of Sy to those of Syey) is performed.
Tgis the time at which one is confident enough about the state of the gauge qubits, taking into account errors, to fix their states. This
means that, after Ty, another logical computation can be performed. (Right) The first round of measurement of Sy, at time T; does
not have a previous value to compare to in order to construct a difference syndrome, i.e. one can only construct defects for S.
Immediately after this step, one can derive the difference syndrome of the full Sy, placing defects accordingly. Using defects before
and after T, one processes error information to infer the value of the gauge operators in Mgy at time T, thus fixing the gauge at T,.

stabilizers of Sy1q. Therefore, we can place defects when the found syndrome changes from what it was expected to
be based on the last round of measurements with Sjg. Spey also contains a subset of elements in £,, namely the
blue dotted region My in figure 5(a). Some of these elements are also contained in £,}4 (down-right-dashed area
in figure 5(a)), i.e. they are elements of M ;.. The eigenvalues of these elements in M ;.. depends on the logical
state and are therefore nota proper syndrome for S, 4. So only after one more round of syndrome extraction with
Shew 0one can mark whether the syndrome for these elements in M,,.,s changes, and either place a defect or not. In
addition, the eigenvalues of the gauge operators in the remaining blue dotted region take random =41 eigenvalues
(since they anticommute with some elements in S4): for these checks, like for the elements in My, there is no
previous record to construct a difference syndrome right away. Again, only after one round of syndrome extraction
with S One can again mark whether the syndrome changed, placing a defect for an element or not. In processing
these new syndromes of S, to do error correction, we should also allow them to be matched with virtual defects
placed beyond the past-time boundary T,;. For example, a measurement error in the first step when the syndrome
israndomly +1 or —1, followed by many rounds without measurement error, produces a single defect and should
be interpreted as the first measurement being incorrect. In this sense, there is only one layer of time where the
defects are those of S asindicated on the right in figure 6.

Given all defect syndromes, minimum-weight matching can be used to decode (see figure 6), to infer some
errors as they have occurred in a window of time before and after Ty and T,; (one may use a sliding window as in
[22]). Let us then imagine that by matching defects in a window which goes beyond a so-called gauge-fixing time
T, one infers a set of measurement and data errors. These errors are projected forwards to the time-slice Tyand
they are used to do three things. One is to correct the value of elements in M., (if any), so that the logical
measurement has been completed and properly interpreted. The second is to determine or fix the gauge, i.e.
determine the outcome of elements My in the blue dotted region of figure 5. As we have argued, these gauge
values may be £1 at random and hence Pauli gauge-fixing corrections can be added in software to make the
outcomes all 41 if one wishes to work with the frame where all elements in Sy, have +1 eigenvalue. These Pauli
gauge-fixing corrections are not error corrections and any set of Pauli operators can be chosen as long as they
solely fix the values of the elements in My, Thirdly, the projected errors provide the usual update of the Pauli
frame for the code S, so together with the gauge-fixing corrections, for the code S,,,,. The whole procedure is
represented schematically in Figure 6; at time T, the code deformation step is finished.

Note that, after T,;, the elements in M., are no longer measured, but their fixed values before the code
deformation now represent logical states prepared by code deformation. Typically, for 2D stabilizer codes, the
time window between T, and T;needs be of size O(d) in order to fix the gauge, where d is the distance of code C.
In some cases, the measurements contain enough redundant information about the gauge operators so that T,
can be equal to T, (e.g. in single-shot error correction schemes based on redundancy of the checks). For example,
this is the case when performing the logical measurement of a patch of code by measuring every single qubit in
the Zbasis. This is also the case for the logical measurement step of the plain surgery technique explained below.

8

I0OP Publishing NewJ. Phys. 21 (2019) 033028 CVuillot etal

Figure 7. Description of the subsystem code, C, which holds during the first step of the grow operation depicted in figures 1(a) and (b).
(a) Generators for the stabilizer group, S, of C. (b) Generators for the whole gauge group G of C. Highlighted in red and blue,
respectively, are gauge operators, elements of L, of Z-type and X-type, respectively. The logical operators, X, Z € Liqre, arealso
represented in brighter colors.

In the remainder of this section, we apply this formalism to the code deformation and lattice surgery
operations discussed earlier.

4.2. Code deformation examples

4.2.1. Grow operations

Gauge fixing, when applied to the growing operations of figures 1 and 2, reveals an underlying subsystem code
with a small number of widely-spaced holes and large boundaries, resulting in a high distance. The stabilizer
group, S, as well as the gauge operators, L,, for the subsystem code Cwhich governs the deformation from
figures 1(a) to (b), are shown in figure 7.

In all figures of this paper, light blue and light red patches individually represent X-type and Z-type gauge
operators, and bright blue and bright red qubit chains are X and Z operators respectively. The grow operation
is changing the gauge from one in which the gauge operators not overlapping between the initially separate
patches are fixed, denoted as { X, X;, Z3, Z,} in figure 7(b), to one in which the overlapping ones are fixed,
denoted as { Z/, Z,, X3, X,}in figure 7(b). The distance of Cis still 5, matching the distance of the initial code.

Now consider what happens if we would go directly from figures 1(a) to (c). The stabilizers and the gauge
operators for this operation are shown in figure 8. Similarly, one fixes the gauge going from separate patches to a
single patch. The distance of the subsystem code for this operation is only 3. Indeed one of the minimum-weight
dressed logical operators is the Z on the qubits in the green box in figure 8(b). That means that, in order to
preserve the code distance, one should perform the intermediary step.

4.2.2. The merging and splitting operations

In this section, we interpret the joint measurement of ZZ by lattice surgery in figure 3(b) as gauge fixing. The
stabilizer group S is generated by all the stabilizers in figure 9(a). The gauge operators, L,, of the gauge group are
given by three representatives of the logical X of the top patch and the intermediary Z plaquettes that anti-
commute with them. They are denoted as (X/, Z/, X3, Z,, X3, Z3) in figure 9(b). Representatives of the bare
logical operators, X, Z € Ly, are thelogical Z of the bottom patch and the logical X of the merged patch
(joining the very top to the very bottom), see figure 9(b). The merge and split operations are realized by fixing
some gauge operators of L,, resulting in new codes Cpyerged OF Cypiirs Tespectively. Note that the weight of X of
the subsystem code, C, is only d and not 2d which is the distance for X of the merged code. Indeed, by using the
gauge operators like X and stabilizers, one can construct a dressed logical X of weight d. Another way of seeing

this is by realizing that one cannot distinguish between two errors of weight g depicted in figures 9(c) and (d). In
the first one, the logical measurement outcome is —1 and there is a string of % X-errors from the bottom to the

middle of the bottom patch. In the second one the logical measurement outcome is 41 and there is a string of g
X-errors from the middle of the bottom patch and the middle (changing the observed logical measurement
outcome to —1). Note also that when performing the splitting operation, one wants to correct the —1 outcomes
for some of the intermediary X stabilizers. They are gauge operators equivalent to, say X{ X;. They have to be
corrected using the Z gauge operators, say Z, in this case. Otherwise one would introduce a logical Z error.

9

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Figure 8. The operators of the subsystem code for the one-step grow operation from figures 1(a) to (c), skipping figure 1(b): (a) the
stabilizers which generate S and (b) the whole gauge group, G, with highlighted gauge operators and logical operators.

(a)

Correct Correct
outcome +1 outcome -1

A HEE BEEAEE

[-] [-]

Figure 9. The operators of the subsystem code, C, for the joint measurement ZZ . (a) The generators of stabilizer group S. (b) The
highlighted operators are either gauge operators in £, or logical operatorsin Lyare. We startin the gauge where the products X/ X;
and X, Xj are fixed, and end in the gauge where Z/, Z;,and Z; are fixed. The distance of the subsystem code is 5, since one can
construct alogical X with this weight by multiplying it with X gauge operators. (c) and (d) Two different scenarios with errors of

weight g with the same observed measurements.

4.2.3. Plain surgery

We now introduce a new technique with the same goal as lattice surgery, namely performing joint
measurements of logical operators, but following a different procedure. The difference between lattice surgery
and the new procedure, plain surgery, will be that the logical measurement is performed with redundancy, so that
this part of the protocol can be made more robust to noise, at the cost of qubit overhead.

The idea is to separate the merging and logical measurement of lattice surgery into two distinct steps. The
first step deforms the two separated blocks into a single code block where the joint logical operators can be
measured redundantly. Since this step merges the codes, but leaves the logical information unchanged, we call it
a plain merge. In the second step, we measure the desired logical operator destructively, similar to the standard
logical measurement of a surface code block. A final deformation step can be used to return to the original code
space.

The layout for the plain merge operation is shown in figure 10(a). The patches are placed with an overlap of
approximately ?, the X-boundary of one facing the Z-boundary of the other. Then they are merged into a single
patch with 3 X-boundaries and 3 Z-boundaries, so two logical qubits. Logical operators far away from the
interface are left unchanged, and the logical information is untouched. When looking at the subsystem code for
this deformation, shown in figure 10(d), one can see that the distance is guaranteed by the offset between the two
patches.

10

I0OP Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Figure 10. (a) and (b) The qubit layouts before and after the plain merge operation. The number of logical qubits is kept constant
during this merge operation. (c) The stabilizers of the subsystem code. (d) The gauge operators and logical operators of the subsystem
code. One can see that the distance is guaranteed by the offset between the two blocks. The distance of the separate surface codesis 11,
and the distance of the subsystem code is 4.

Figure 11. (a) The layout where the qubits in the region highlighted are each to be measured in the X basis. (b) The stabilizers of the
underlying subsystem code C. (c) The gauge operators (in red) and logical operators of the code. One can see that the distance is
guaranteed by the amount of overlap between the two blocks. The distance of the subsystem code is 4.

Then, in this new code, the logical operator X, X; is given by a string starting from the top boundary of the top
patch and ending on the right boundary of the bottom patch. So, by measuring qubits in the X basis in a region away
from the third X-boundary, one can learn X; X, but not X; or X;. This measurement procedure is depicted in figure 11.
One can check that the associated subsystem code has a distance of at least half the overlap between the patches, ~ g

The amount of redundancy in the measurement is also ~ g, which makes this procedure costly in qubit overhead but
as we show in the next section, it appears to offer a better threshold than the standard lattice surgery technique.

5. Numerics

To numerically evaluate the fault-tolerance of quantum computation on rotated planar surface codes, we simulate
logical measurement, rotation, logical CNOT, and plain surgery, using the Gottesman—Knill formalism [25]. These
simulations are carried out using two different error models, the phenomenological model and the circuit-based
model. The phenomenological error model inserts independent X and Z errors on data qubits with equal probability
P> and measurements output the wrong classical value with probability p. The circuit error model inserts errors with
probability p after each operation of the error correction circuit as follows: each single-qubit gate is followed by a X,
Y, or Zwith probability §> each two-qubit gate is followed by an element of { I, X, Y, Z} ®2\ {11} with probability

% ,and each measurement returns the wrong result with probability p. In this work, except when stated otherwise,
the initial logical qubits are prepared without errors when simulating these logical operations.

11

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Measured stabilizers Processing defects

Time /—\ A
(QEC cycles) v v

Snew SneW

R ! e e-t- Correct errors Fix Gauge __ Tg

e S=+1 Mix = +1
d X\ X Errors
S X
S ! A et R 0 Correcterrors ____. T,
Sold = +1
Sold Sold X) Errors
r— Y

~ I~

Figure 12. The simulated version of a code deformation procedure in figure 6. A perfect round (a small time window from red to black
dashed lines) is inserted after each block of noisy d rounds of stabilizer measurements. One processes the defects for Seiq and corrects
errors before the code deformation step T;. Then the defects for S are constructed at time T, to time T, and the ‘defects’ for Mg, are
constructed one round of measurement later. At time T, one processes error information to infer the value of the gauge operators and
then fixes the gauge.

(a) (b)

Performance of a MWPM decoder, Phenomenological Performance of a MWPM decoder, Circuit-level
03 . | | | - 03 _ | | | _
- d=3 - d=3
= @=05 - @=8
& = ad=7 e - d="7
IS I
= 0.2~ SE = 0.2~ -
— E — T
o s
= = = T
g T ES - RS 5} %
] T —
g == % % - g = T
2 01 e - B0l ET
— = 25 — T -
XL ES
L =F
0- I [0- == 7 - | [
2 2.5 3 1 3.5 6
Physical error probability 1072 Physical error probability 1073

Figure 13. Numerical simulations of a fault-tolerant memory operation with the phenomenological error model near its threshold
(~2.75% (a)) and the circuit-level error model near its threshold (~0.5% (b)).

In section 4.1, we have introduced how to construct defects (difference syndromes) for a code deformation step
and how to process these defects to infer errors and fix gauge operators (figure 6). For a realistic implementation of
logical operations, a decoder will infer errors in a time window which may include T;; or T,, by processing the defects
within the window. This means the decoder should be able to match defects across time boundaries, e.g. the defects
before and after code deformation time T. In addition, it needs to construct matching graphs with edges whose
endpoints are on different lattices, e.g. defects of S,,, may be matched to virtual defects beyond the past-time
boundary T,;. However, such a decoder is difficult to implement. In our simulations, we insert perfect measurement
rounds after blocks of d rounds of measurement (figure 12) for ease of implementation, where dis the distance of the
underlying subsystem code. A decoder using the minimum-weight perfect matching algorithm is used and its
performance for a fault-tolerant memory operation, that is, d noisy quantum error correction cycles followed by 1
noiseless cycle, is shown in figure 13. For each operation (except for plain surgery), 10° (10*) iterations were run per
point and confidence intervals at 99.9% are plotted in the figures.

Single-qubit operations: Transversal operations (preparation, Pauli gates, measurement) are usually realized
by performing qubit-wise physical operations. They are intrinsically fault-tolerant and their logical error rates
will be only slightly higher than a logical identity gate (memory). Notably, a transversal Mz (Mx) measurement
does not require several quantum error correction cycles (i.e. T; = Tg) since error syndromes of Z(X)-stabilizers

12

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Performance of logical measurements

0‘5, | | | o
- d=3
.~ d=5 .
o 04]
5
5 0.3 -
o
T 02 -
5D r =
o =
= 01 _ = i
. _ =
0o | -
5.102 0.1 0.15

Physical error probability

Figure 14. Numerical simulations of a transversal Mz measurement near its threshold (~10%).

(a) (b)

Performance of rotation, Phenomenological Performance of rotation, Circuit-level
1 _ | | | _ 1 _ | | | _
- d=3 - d=3
= d=5 - 08 d=5 N
2 987 g7 ® —d=7
< <
~ _ = —~ 0 6 B _ i B
;é 0.6 - L = E= i i - sé ’ = il
—_ = E ~ — 0.4 - = - = -
£ 04- = = = - 8 0 F o=
.go T .go =
| = 0.2~ —= -
0.2 - - = _
0- T .
0 - | | | - | | |
2 2.5 3 o 1 3.5 6 5
Physical error probability 10 Physical error probability 10

Figure 15. Numerical simulations of the rotation procedure in figure 1 without a final flip operation. (a) and (b) The logical error rates
of the rotation procedure with phenomenological error model (the error threshold is around ~2.5%) and circuit error model (the
error threshold is around ~0.45%), respectively.

can be reconstructed from the measurement outcomes of data qubits, this is also the case for the logical measurement
step of plain surgery. For instance, one can measure all the data qubits in the Zbasis to realize a Mz on a planar
surface code. Afterwards, one can compute the Z-syndromes by multiplying the outcomes of corresponding data
qubits of each Z-stabilizer and then correct the X errors and deduce the value of Z . The performance ofa Mz
measurement for planar surface codes is shown in figure 14. In this simulation, we first prepare a logical qubit in state
|0) without errors and then perform a Mz measurement on it with physical measurement error probability p. We
further numerically simulate the proposed rotating procedure (figure 1) and show the results in figure 15. For the
phenomenological error model, the error threshold of a rotation is slightly lower than the threshold of quantum
memory. For the circuit-level error model, its threshold is similar to that of quantum memory.

Two-qubit operations: We also simulate the measurement-based CNOT circuits in figure 4(a) where the split
operations of the first joint measurements are parallelized with the merge operations of the second joint
measurements (see the decomposed circuits in appendix C). The overall error rates and the error thresholds for a
CNOT gate by lattice surgery are shown in figure 16. For each error model, the error threshold of CNOT gates is
similar to the threshold of quantum memory. Moreover, logical errors propagate through the measurement-based

13

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

(a) (b)

Performance of C NOT's, Phenomenological Performance of CNOT's, Circuit-level
1 - | | [— 1 _ | | | _

HH

H

e
D
|
HHH
HiH
|

HH

Logical error rate
HH
H

Logical error rate

0 - | | | - 0 - T | | N
2 2.5 3 1 3.5 6

Physical error probability -1072 Physical error probability -10 *

Figure 16. Numerical simulations of a measurement-based CNOT gate by lattice surgery (the top circuit in figure 4(a)). (a) Total error
rates for CNOT gates with the phenomenological error model near the threshold (~2.7%). (b) Total error rates for CNOT gates with the
circuit-level error model near the threshold (~0.45%). The fact that the crossing points corresponding to plain surgery are higher than
those for lattice surgery and memory operations is curious. While this may be an intrinsic property of plain surgery, it is also possible
that this data is explained by finite-size effects, discrepancy between threshold error rates when comparing even- and odd-sized
lattices, or other confounding factors. While these numerical experiments confirm the validity of gauge fixing as an analytical tool in
fault-tolerant quantum computing, further research is needed to analyse plain surgery in detail.

(a) (b)

Performance of M, Phenomenological Performance of M+, Circuit-level
0.8 - | | | | _ 100 | | I

==

HH
ul

|
HH
|

(=)
D
|
Sl

e
"~
|
H
|

Il
SOOI
Co

Logical error rate
H
H
Logical error rate
—_
o
L

QA
I

e

[N}

|

H

H

|

H

|

ol enlia v lyo]

| | |
1.5 2 2.5 3 3.5 0 0.5 1
Physical error probability.1-2 Physical error probability.1(—2

Figure 17. Numerical comparison of the Mxx joint measurements by lattice surgery (LS) and plain surgery (PS), near the points
where the two lowest-distance implementations of the two protocols produce the same logical error rate. The logical error rates of
Mxx with the (a) phenomenological error model ((b) circuit-level error model) by LS with a crossing between thed = 3andd = 5
near the physical error probability ~2.2% (~0.25%) and by PS with a crossing between the d = 4and d = 6 near the physical error
probability ~3.2% (~0.65%).

CNOT circuits, leading to a disparity of logical error rates on control and target qubits, which is demonstrated
numerically in appendix C. In addition, we compare the joint Mxx measurement using lattice surgery with the
measurement using plain surgery. Figure 17 shows that plain surgery achieves a higher error threshold than lattice
surgery, but with higher logical error rates as a consequence of the increased lattice size required to achieve a given
code distance.

6. Discussion and conclusion

We have illustrated how to describe current measurement-based operations in 2D topological quantum computing
using the gauge fixing technique. We have shown that, by using the formalism of gauge fixing, the fault tolerance

14

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

analysis of these code deformation and lattice surgery protocols is considerably simplified, their error correction and
gauge fixing schemes also become clear. Furthermore, we numerically examined this method with examples on
planar surface codes, including some well-known operations such as lattice-surgery-based CNOT gates and some
novel protocols such as lattice rotation and plain surgery. Although this gauge fixing formalism does not provide
direct guidlines on how to design code deformation protocols for a desired logical operation, it does provide an easy
way to check the fault-tolerance of protocols and search for new ones via iterations of trial and error.

Moreover, this formalism applies not only to 2D topological codes, but more generally to any stabilizer code.
In the general case (non-topological codes), the analysis of fault-tolerance in the presence of measurement errors
becomes more involved, in particular with respect to how much repetition is really needed, see for example
[29, 30]. We leave for future work how to obtain general and simple criteria for fault-tolerance.

Acknowledgments

The authors would like to thank Benjamin Brown for enlightening discussions. LLL acknowledges funding from
the China Scholarship Council. BMT and CV acknowledge support by the European Research Council (EQEC,
ERC Consolidator Grant No: 682726). BMT, KB and CGA acknowledge support from the QuantERA ERA-NET
Co-fund in Quantum Technologies implemented within the European Unions Horizon 2020 Programme (for
the QCDA consortium). KB and CGA acknowledge support from the Intel Corporation.

Appendix A. Algebraic proof of the correctness of the merge and split operations

In this appendix, we denote the set of physical qubits as Q. For any subset of k qubits, s = {j,..., j,} C Q,we
denote the operator composed of a Pauli Z resp. X on each qubit in s as Z(s), resp. X(s), i.e.

Z()=Z;@ - ®Zj, X)) =X;®- @Xj

A.1. Merge operation

The setting for the merge operation is drawn in figure 3(a). The starting code, Cypjs, with stabilizer Sy, consists
oftwoadjacent L x L patches of rotated surface code with the opposite boundaries being supports for their Z
operators. We label the upper logical qubit as 1 and the lower qubit as 2. The new code, Ciyerged> With stabilizer
Shmerged> consists of only one 2L x L patch of rotated surface code.

We define the subsystem code, C, and its gauge group, G, as specified in section 4, see figure 9. Notably, we
exclude from the center of G the logical operator Z,Z, € Sherged- We therefore add X, to G to form G, and so
have X; € L,.Call Z the set of intermediary plaquettes (red plaquettes in figure 3(a)) to be measured to perform
the merge operation. For p € 7 wehave Z(p) € L, these are the gauge operators to be fixed by the merge
operation. For each p € Z, one measures the operator Z(p) and let its outcome be r11,,.

To explain the action of the merge operation at the logical level, we first prove that this operation transforms
code states of the two original L x L patches of surface code into code states of the 2L x L patch surface code with
some X errors. To accomplish this, we use the standard prescription from the Gottesman—Knill theorem [25]. It is
straightforward to see that the original Z checks stay unchanged, and the newly-measured checks, the p € Z, are
added, with sign m,,. The original X checks all commute with the new intermediary Z checks except for the two-body
boundary checks between the two patches, which are also part of £,. Those boundary checks can be merged in pairs
in order to commute with the new Z checks. The situation is then the same as depicted in figure 3(b).

The product of all measurement outcomes gives the desired outcome for the Z, Z, measurement, we denote it as

mp = H mp.

pel

Then one fixes the gauge by applying the conjugate X-gauge operators to the Z(p) with m, = —1. Letuscall ¢,
the set of qubits involved in this fixing operation. Note that when #;, = +1 then the correction is equivalent to a
stabilizer in Sy whereas when m;, = —1, the correction is equivalent to X;. Then, the full merge operation at
the physical qubit level is easily written as

1 -1z 1+Z
Xt - {H M] _ [H ;@] X
peET 2 pel 2

Due to the definition of X (c,,), commuting it through the Z projections eliminates the (—1)"» terms.
To determine the logical operation realized by this procedure, we use encoding isometries of Cy,j;; and
Crnergeds alled Egpji and Epyerged, respectively. These isometries map unencoded logical states to code states in the

15

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

full physical Hilbert space. Since Cy;c contains two logical qubits and Cp,ergeq contains only one, the isometries
have the following signatures:

Esplit: (CZ by (CZ - CZQ) Emerged: (CZ - (CZQ-

Let M, be the operation on the logical level, which can be expressed as
M,,: C* ® C* — C?,

1+ Z(p)
11 1+ 2(p)

MmL = (Emergedy '
peT

] : X(CmL) : Esplit~ (Al)

An important fact about encoding isometries E is that, if Sis a stabilizer of the code and L a representative for
the logical operator L, then

S-E=E, (A2)
L-E=E-L, (A3)

where L is the corresponding physical operator. This means that M,,, , defined in equation (A1), simplifies to
My, = (Emerged) * Egpiic - X772, (A4)

To show this, we use the fact that forall p € Z, Z(p) is a stabilizer of Cyy,ergeq and the correction X (cy) isin Sy
whereas X (c_) is a representative of X in Cyyj;.

To show that the operation M,,, is equal to M, , as defined in equations (1) and (2), one can analyze how
M,,, acts on the computational basis, i.e. we track how it transforms the stabilizers of those states. For example,
the state |00) is stabilized by Z; and Z,, this means that

M+|00> = (Emerged)T . Esplit|00>

= (Emerged)T . Esplit : Zl|00>

= (Emerged)T . ZI . Esplit|00>

=Z- (Emerged)T : Esplit|00>

= Z - M,|00),
and therefore M. |00) is stabilized by Z. Here, we have used the properties of the encoding isometries and the fact
thata representative Z, for Cspiit is also a representative Z for Crnerged- Doing the same with the other stabilizer,
Z,, alsoyields Z as a stabilizer (so Z; Z, yields the identity). One can also verify that M. |00) is not stabilized by

—Z by reversing the previous equalities and therefore (Z) is the full stabilizer group of M|00). Looking now at
M_|00) one can see that Z, also yields Zbut Z; will yield —Z, indeed

M,l()()) = (Emerged)+ : Esplit : Xl|00>
= (Emerged)+ . Esplit - X Zl|00>
= _(Emerged)T . ZI : Esplit : Xl|00>
=—Z- (Emerged)T . Esplit : Xl|00>
= —Z - M_|00).
Hence,]\7I,|00> isboth stabilized by Zand —Z, and is therefore the null vector. In other words, the state |00) will
never give an outcome — 1 for m;, which is what we expect.
The full results (shown in table A1) indicate that
M, = a|0)(00] + B4/1)(11]
M_ = a_|0){(01]| + B.|1)(10],
for some non-zero complex numbers a.. and 3... To complete the proof, we verify that there are no relative
phases or amplitude differences between ay. and 3,.. To see that, one canlook at the action of M,,, on the Bell
states. For M, we look at the Bell state (|00) + |11)) /~/2, stabilized by (X, X, Z, Z,) and for M _ the Bell state

(J01) + |10))/~/2 stabilized by (X, X, —Z,Z,). The important fact is that a representative X; X, for Cypiiisalsoa
representative of X for Cergeq. That is to say

_100) + |11) 0) + |1)
M P—
+ \/E Y+ \/E
~ |01 10 0 1
g lon 10 o)+ 1)
V2 V2
for some non-zero complex numbers ... By linearity of M,,, we can conclude that o, = 3, = /, and that
a_ = - = ~_.In conclusion, we have shown that MmL & M,,, meaning that it performs the desired logical

operation.

16

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

Table Al. How M. transforms the computational basis states characterized
by their stabilizer group.

M, M_
S State S State S State
(21, Zo) 00) (Z) [0) (z, -2 0
(21, =25) o1) (2, -2) 0 (2) |0)
(=21, Z3) [10) (=2, 2) (=2) 1)
(=2, =25 [11) (-=2) 1) (=2, 2) 0

A.2. Split operation
For the Z-split operation one reverses the roles of Cyj; and Cyergea- The starting point is the same as shown in
figure 3(b), without £ terms in the middle. Then, in order to split the patch, one has to split each four-body X stabilizer
in the middle row into a pair of two-body X stabilizers. Those stabilizers are shown with + signs on figure 3(c). They
commute with everything except for the central row of Z-plaquettes. One can see that measuring them will remove
those Z-plaquettes from the stabilizer group, but keep the product of all those plaquettes, the logical Z, Z, of the two
separate patches. Note that it is sufficient to measure only the top (or bottom) row of two-body X-checks as the bottom
(or top) one is then the product of those and the previous four-body X-checks. This also means that the outcomes of
those two-body checks are perfectly correlated between facing pairs. Letting Z be the set of the top row of those checks
and m, = £1 the measurement outcome of the two-body plaquette p, the operation performed is then

11 14+ (=1D)™X(p)

pel 2

Then, to correct to standard surface codes with no remaining minus signs, one has to apply some of the previous
Z-plaquettes that were removed from the stabilizer, correcting the correlated facing X-checks. Labeling the set of
qubits affected by the correction ¢, one has

Z(C) H Jl+(—1)mPX(P) — H Jl‘f‘X(P)

- Z(0).
2 ot 2

pel
This operation corresponds to S, , defined in equation (1). If one wants to implement S_, defined in equation (2),
then one has to additionally apply a logical representative of X on the first patch, X;. The choice of one or the
other version is conditioned by the previous m; outcome that we received during the merging step. Then, to
show that this performs the correct logical operation, we analyze

o I+ X(p)

SML = (Esplit)T . Xl : 5 - Z(c) - Emerged)

peT

which, using the properties of the encoding isometries, S,,, simplifies to
» 1-my

SmL =)(1T ' (Esplit)Jr : Emerged- (AS)

At this point, recalling equation (A4), we can see that
§i = (M)’ = (My)' = S,

which concludes the proof of correctness for the split operation. Note that it was crucial to apply the intermediary Z-
plaquettes (in £,) as the correction. If we had instead applied a string of Z-flips between the faulty X-plaquettes, the
correction would not be absorbed in the encoding map of C,ergeq and moreover would anti-commute with any
representative X of Ciyergea O Xi X5 of Cypiie and therefore flip the phase between the |0) and | 1) states.

Appendix B. Example: code conversion as gauge fixing

To see the utility of gauge fixing for analyzing code conversion protocols, we consider two protocols for
converting from the [7, 1, 3] Steane code to the [15, 7, 3] Reed—Muller code with six gauge Z operators fixed
(see figure B1 for the stabilizers and gauge operators that define these codes). The first, from Anderson et al [31],
is based on the realization that the state |¢))sicane @ %(|O>5teane [0) + |1)steane|1)) is @ code state of the Reed—
Muller code with its horizontal X gauge logical operators fixed, see top-right of figure B2. Conversion from the
Steane code to the Reed—Muller code then involves fault-tolerantly preparing the eight-qubit ancilla state and
fixing the three appropriate Z gauge operators. The state is always stabilized by the Reed—Muller stabilizers,
whose eigenvalues can be reconstructed from the checks which are measured at every round, preserving the code
distance and allowing error correction by syndrome decoding.

The second scheme, from Colladay and Mueller [32], is not based on gauge fixing, and begins with the eight
qubits needed for conversion initialized in the state |0)®3. This ensures that the initial checks anticommute with

17

I0OP Publishing NewJ. Phys. 21 (2019) 033028 C Vuillot etal

o ©
]
_ogiihh
o © o
<o
Steane stabilizers Reed-Muller stabilizers Reed-Muller Gauge Operators

Figure B1. Stabilizers of the Steane and Reed—Muller codes, and Z gauge operators of the Reed—Muller code. Red tinting on a face or
volume indicates the presence of a Z operator on the vertices which make up that face or volume. For example, there are six Reed—
Muller gauge operators of the form Z®4, supported on the red-tinted quadrilaterals seen on the right. Green tinting indicates the
presence of both an X and a Z stabilizer operator.

o
©
]
o
° I = 6 °
Initial Checks (So1q) Final Checks (Spew) stabilizers (S) Gauge Operators (Lg)

Figure B2. Comparison between Steane-to-Reed—Muller conversion schemes from [31] (top) and [32] (bottom). Red and green
tinting match figure B1, blue tinting indicates an X operator supported on the vertices of the tinted face or volume. Tinted vertices/
edges indicate weight-one/two operators supported on the tinted vertex/edge. In the Anderson scheme, the subsystem code which
applies during the code deformation is made explicit; it is the distance-three Reed—Muller code. The Colladay scheme, however, does
not have any X operators in the relevant stabilizer, S, so the distance of the relevant subsystem code is only 1, see section 4. Note:
Gauge operators in the top right should also be present in the bottom right, they are not drawn here for clarity.

any potential X stabilizer supported on the final eight qubits, so that the only operators whose eigenvalues can be
reconstructed from the measured operators are Z operators, preventing the correction of Z errors (see figure B2
for a graphical comparison of these code conversion protocols). The difference in fault tolerance between these
two protocols which accomplish the same task provides us with a good motive to incorporate subsystem codes
into the analysis of code deformation and lattice surgery, considered in the main text.

Examining the Criterion 1 from section 4.1, one can see that the Anderson scheme has an underlying
subsystem code with distance 3, whereas not having any X-stabilizers, the Colladay scheme has an underlying
subsystem code with distance 1.

Appendix C. Disparity in error rates of CNOT gates
A joint measurement is realized by performing a merge and a split operation in sequence. In our simulation, the

circuits in figure 4(a) are decomposed into the ones in figure C1. Figure C2 shows that the rates of X / Z errors
on the control and target qubits are different for the rotated surface code with d = 5. This disparity can be

18

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

(a) (b)
(-1 ; (-1 :
€y — 1 Uzt 10 U128 -
Mergezz (=1 Mergezz (=1
10) m L =M +)] LM
Mergex x ! \Mergex x !
m 1 —TH—(x- D -
(=1 ' (-1)° '
Figure C1. The decomposed circuits (a) and (b) of the top and bottom measurement-based CNOT circuits in figure 4(a).
(a) (b)
Ancilla |6>7 Phenomenological Ancilla |[+), Phenomenological
0' 5 _ | | | _ 05 . [| | _
Ycontrol = X contimol
o 04- — Zcontml T o 04- — zcontrol -
§)_(target E)_(target
é 0.3- Ztarget T = = % % = = sé 0.3- Ztarget .oz i E= == SRS
G - = i = =) B i T T
£02 = =7 - 802- £ = -
go x * g £ =
= £ =
— 01- - = L = = ES B — 01 o= L = = = B
O - | | | - O - | | |
2 2.5 3 2 2.5 3
Physical error probability 1072 Physical error probability 1072
() (d)
Ancilla ’6>, Circuit-level Ancilla |+), Circuit-level
05 ‘ 05 ‘ :
- 7con':rol — Xcontrol
o 0.4 — Zcontrol T o 04 — Zcontrol -
+= v - Y
© i(target s)_(target
8 0.3 Ztarget I - 8 0.3 Ztarget — T m
— + = E=
= - = =
[} o= T o T—
S 0.2 = = - ’g 0.2 = = -
ki = - @ i - =
0.1 . == T o0 S _=FT -
g = = - - o = - | . -
1 3.5 6 1 3.5 6
. o 21073 . e, 21073
Physical error probability Physical error probability
Figure C2. X and Z error rates on the control and target qubits for lattice-surgery-based CNOT operations at distance 5. (a) and (b)
Correspond to the phenomenological error model, (c) and (d) correspond to the circuit-based error model. The disparity in error
rates is explained by error propagation through the measurement-based circuit implementing the CNOT.

explained using a toy model to account for propagation of logical errors through measurement-controlled
corrections. In this toy model, identity gates resultin an X or Z error with probability p (Y errors are assumed
to occur with probability ~p, since the minimum-weight ¥ operator has weight 2d — 1in the surface code).
The merge operations are modeled as ideal joint measurements, followed by an error of the form Xe LI X,
Z @ 1,or1 ® Z, each occurring with probability p, since these are the likeliest logical errors. If a logical Pauli
error occurs, it propagates forward through the circuit, changing the measured eigenvalue for any measurement

19

10P Publishing

NewJ. Phys. 21 (2019) 033028 CVuillot etal

operator with which it anticommutes. For example, ifan X ® 1 error occurs after the Mxx operation in

figure 4(a) (in which the ancilla begins in the |0) state), the measured value b will be mapped to1 — b, causingan
X operator to be incorrectly applied to the target qubit at the end of the CNOT. It is easy to confirm that there
are 7 such first-order errors which resultinan X error on the target qubit, 6 errors which resultina Z error on
the control qubit, and 3 errors which result in the other logical errors shown in figures C2(a) and (c) (a similar
analysis holds for the error rates shown in figures C2(b) and (d)). The biased logical error rates predicted by this
simplified model are in good agreement with the logical error rates observed in simulation, shown in figure C2.
Preventing this bias from growing during the execution of along algorithm, by appropriate selection of
decomposition for CNOTs, is likely an important step in the design of high-performance fault-tolerant circuits
for quantum computation.

ORCID iDs

Christophe Vuillot ® https:/orcid.org/0000-0002-3445-0179
Lingling Lao ® https://orcid.org/0000-0001-6870-5670
Ben Criger ® https://orcid.org/0000-0001-9959-6462

References

[1] Shor P W 1994 Algorithms for quantum computation: discrete logarithms and factoring 35th Annual Sym. on Foundations of Computer
Science, 1994 Proc. (Piscataway, NJ: IEEE) pp 124-34
[2] Jordan S 2011 Quantum algorithm zoo http://math.nist.gov/quantum/zoo/
[3] Riste D, Poletto S, Huang M-Z, Bruno A, Vesterinen V, Saira O-P and DiCarlo L 2015 Detecting bit-flip errors in a logical qubit using
stabilizer measurements Nat. Commun. 6 6983
[4] Kelly]etal2015 State preservation by repetitive error detection in a superconducting quantum circuit Nature 519 66—9
[5] Steane A M 1996 Error correcting codes in quantum theory Phys. Rev. Lett. 77 793
[6] Knill Eand Laflamme R 1996 Concatenated quantum codes Technical Report U.S. Department of Energy (https://doi.org/10.2172/
369608)
[7] Bacon D 2006 Operator quantum error-correcting subsystems for self-correcting quantum memories Phys. Rev. A73 012340
[8] Fowler A G, Mariantoni M, Martinis] M and Cleland A N 2012 Surface codes: towards practical large-scale quantum computation
Phys. Rev. A 86032324
[9] YuKitaev A 2003 Fault-tolerant quantum computation by anyons Ann. Phys., NY 303 2-30
[10] WangD S, Fowler A G and Hollenberg L CL 2011 Surface code quantum computing with error rates over 1% Phys. Rev. A 83 020302
[11] Bombin H and Martin-Delgado M A 2009 Quantum measurements and gates by code deformation J. Phys. A: Math. Theor. 42 095302
[12] Horsman C, Fowler A G, Devitt S and Van Meter R 2012 Surface code quantum computing by lattice surgery New J. Phys. 14 123011
[13] Paetznick A and Reichardt B W 2013 universal fault-tolerant quantum computation with only transversal gates and error correction
Phys. Rev. Lett. 111 090505
[14] Bombin H 2011 Clifford gates by code deformation New J. Phys. 13 043005
[15] Landahl AJand Ryan-Anderson C 2014 Quantum computing by color-code lattice surgery arXiv:1407.5103
[16] BravyiS2016 Fault-tolerant quantum computing by code deformation QIP Tutorial
[17] Poulsen Nautrup H, Friis N and Briegel H] 2017 Fault-tolerant interface between quantum memories and quantum processors Nat.
Commun. 8 1321
[18] Brown BJ, Laubscher K, Kesselring M S and Wootton J R 2017 Poking holes and cutting corners to achieve clifford gates with the
surface code Phys. Rev. X 7 021029
[19] Litinski D and von Oppen F 2018 Lattice surgery with a twist: simplifying clifford gates of surface codes Quantum 2 62
[20] Fowler A G and Gidney C 2018 Low overhead quantum computation using lattice surgery arXiv:1808.06709
[21] Vasmer M and Browne D E 2018 universal quantum computing with 3d surface codes arXiv:1801.04255
[22] Dennis E, Kitaev A, Landahl A and Preskill] 2002 Topological quantum memory J. Math. Phys. 43 4452-505
[23] RaussendorfR and Harrington J 2007 Fault-tolerant quantum computation with high threshold in two dimensions Phys. Rev. Lett. 98
190504
[24] Bombin H 2010 Topological order with a twist: Ising anyons from an abelian model Phys. Rev. Lett. 105 030403
[25] Gottesman D 1998 The Heisenberg representation of quantum computers Proc. XXII International Colloquium on Group Theoretical
Methods in Physics ed S P Corney, R Delbourgo and P D Jarvis
[26] Gottesman D 1999 Fault-tolerant quantum computation with higher-dimensional systems Chaos, Solitons ¢ Fractals 10 1749-58
[27] de Beaudrap N and Horsman D 2017 The zx calculus is a language for surface code lattice surgery arXiv:1704.08670
[28] Poulin D 2005 Stabilizer formalism for operator quantum error correction Phys. Rev. Lett. 95 230504
[29] Campbell E T 2019 A theory of single-shot error correction for adversarial noise Quantum Sci. Technol. 4025006
[30] Fawzi O, Grospellier A and Leverrier A 2018 Constant overhead quantum fault-tolerance with quantum expander codes 59th IEEE
Annual Symposium on Fondations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018 743-54
[31] AndersonJ T, Duclos-Cianci G and Poulin D 2014 Fault-tolerant conversion between the steane and Reed—Muller quantum codes
Phys. Rev. Lett. 113 080501
[32] Colladay K R and Mueller E 2018 Rewiring stabilizer codes New J. Phys. 20 083030

20

https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
https://doi.org/doi.org/10.1109/sfcs.1994.365700
https://doi.org/doi.org/10.1109/sfcs.1994.365700
https://doi.org/doi.org/10.1109/sfcs.1994.365700
http://math.nist.gov/quantum/zoo/
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.2172/369608
https://doi.org/10.2172/369608
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1088/1751-8113/42/9/095302
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1088/1367-2630/13/4/043005
http://arxiv.org/abs/1407.5103
https://doi.org/10.1038/s41467-017-01418-2
https://doi.org/10.1103/PhysRevX.7.021029
https://doi.org/10.22331/q-2018-05-04-62
http://arxiv.org/abs/1808.06709
http://arxiv.org/abs/1801.04255
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/DOI.org/10.1016/S0960-0779(98)00218-5
https://doi.org/DOI.org/10.1016/S0960-0779(98)00218-5
https://doi.org/DOI.org/10.1016/S0960-0779(98)00218-5
http://arxiv.org/abs/1704.08670
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/doi.org/10.1088/2058-9565/aafc8f
https://doi.org/DOI.org/10.1109/FOCS.2018.00076
https://doi.org/DOI.org/10.1109/FOCS.2018.00076
https://doi.org/DOI.org/10.1109/FOCS.2018.00076
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1088/1367-2630/aad8dd

	1. Introduction
	2. Code deformation and lattice surgery
	2.1. Code deformation
	2.2. Lattice surgery

	3. Gauge fixing
	4. Fault-tolerance analysis with gauge fixing
	4.1. Fault-tolerance of code deformation
	4.1.1. Noisy measurements

	4.2. Code deformation examples
	4.2.1. Grow operations
	4.2.2. The merging and splitting operations
	4.2.3. Plain surgery

	5. Numerics
	6. Discussion and conclusion
	Acknowledgments
	Appendix A.
	A.1. Merge operation
	A.2. Split operation

	Appendix B.
	Appendix C.Disparity in error rates of CNOT gates
	References

