

Delft University of Technology

Code deformation and lattice surgery are gauge fixing

Vuillot, Christophe; Lao, Lingling; Criger, Ben; García Almudever, Carmina; Bertels, Koen; Terhal, Barbara
M.
DOI
10.1088/1367-2630/ab0199
Publication date
2019
Document Version
Final published version
Published in
New Journal of Physics

Citation (APA)
Vuillot, C., Lao, L., Criger, B., García Almudever, C., Bertels, K., & Terhal, B. M. (2019). Code deformation
and lattice surgery are gauge fixing. New Journal of Physics, 21(3), Article 033028.
https://doi.org/10.1088/1367-2630/ab0199

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1367-2630/ab0199
https://doi.org/10.1088/1367-2630/ab0199

PAPER • OPEN ACCESS

Code deformation and lattice surgery are gauge fixing
To cite this article: Christophe Vuillot et al 2019 New J. Phys. 21 033028

View the article online for updates and enhancements.

This content was downloaded from IP address 145.94.116.75 on 18/04/2019 at 10:15

https://doi.org/10.1088/1367-2630/ab0199
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/528177972/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

New J. Phys. 21 (2019) 033028 https://doi.org/10.1088/1367-2630/ab0199

PAPER

Code deformation and lattice surgery are gauge fixing

ChristopheVuillot1,4 , Lingling Lao1,4 , BenCriger1,2 , CarmenGarcíaAlmudéver1, KoenBertels1 and
BarbaraMTerhal1,3

1 QuTech, TUDelft, TheNetherlands
2 Institute forGloballyDistributedOpenResearch and Education (IGDORE), Sweden
3 JARA Institute forQuantum Information (PGI-11), Forschungszentrum Juelich, D-52425, Juelich, Germany
4 These authors havemade equal contributions to the research discussed herein.

E-mail: c.vuillot@tudelft.nl and l.lao@tudelft.nl

Keywords: quantum error correction, quantum stabilizer codes, quantum subsystem codes, surface code, quantum code deformation,
fault-tolerant quantum computation

Abstract
The large-scale execution of quantum algorithms requires basic quantumoperations to be
implemented fault-tolerantly. Themost popular technique for accomplishing this, using the devices
that can be realized in the near term, uses stabilizer codeswhich can be embedded in a planar layout.
The set of fault-tolerant operationswhich can be executed in these systems using unitary gates is
typically very limited. This has driven the development ofmeasurement-based schemes for
performing logical operations in these codes, known as lattice surgery and code deformation. In
parallel, gauge fixing has emerged as ameasurement-basedmethod for performing universal gate sets
in subsystem stabilizer codes. In this work, we show that lattice surgery and code deformation can be
expressed as special cases of gauge fixing, permitting a simple and rigorous test for fault-tolerance
together with simple guiding principles for the implementation of these operations.We demonstrate
the accuracy of thismethod numerically with examples based on the surface code, some ofwhich are
novel.

1. Introduction

Quantumcomputers can implement algorithmswhich aremuch faster than their classical counterparts, with
exponential speedup for problems such as prime factorization [1], and polynomial speedup formany others [2].
Themain obstacle to constructing a large-scale quantum computer is decoherence, which partially randomizes
quantum states and operations. Although state-of-the-art coherence times are now appreciably longer than gate
times [3, 4], they remain too short for useful quantum computation.

To counter the effect of decoherence on quantum states which are stored ormanipulated imperfectly, we can
encode logical qubit states into several physical qubits, and performnon-destructivemulti-qubitmeasurements
of the resulting system to extract information aboutwhich errors have occurred, called the syndrome. The spaces
ofmulti-qubit states used to encode these logical states are called quantum error-correcting codes, and their ability
to correct errors ismeasured by the distance d, which is the number of independent errors (or errorweight)
necessary to alter the state of the logical qubits without being detected. In order to use one of these codes in
practice, it is also necessary to account for the effect of decoherence on operations. For example, a syndrome
measurementmay involve a sequence of entangling gates, and the error caused by a faulty gate on a small set of
qubits in the beginning of the circuitmay propagate ontomany qubits, producing a high-weight error,
increasing the likelihood of a logical error.Measurement results can also be corrupted by decoherence, so
syndrome extraction often has to be repeated. In order to prevent error propagation during repeated
measurement, syndrome extraction circuitsmust be designed such that a small number of faults (from
imperfect gates ormemory errors on data qubits)will result in a small number of errors on the physical qubits,
which can be corrected using noisy syndromes. Given a family of codes of different distances, we can determine a
threshold error rate, the rate beneathwhich codes with higher distance produce lower logical error probabilities.

OPEN ACCESS

RECEIVED

13November 2018

ACCEPTED FOR PUBLICATION

24 January 2019

PUBLISHED

28March 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd on behalf of the Institute of Physics andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/ab0199
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
mailto:c.vuillot@tudelft.nl
mailto:l.lao@tudelft.nl
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab0199&domain=pdf&date_stamp=2019-03-28
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab0199&domain=pdf&date_stamp=2019-03-28
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

Several such families of quantum error-correcting codes have been developed, including concatenated codes
[5, 6], subsystem codes such as Bacon–Shor codes [7], and 2D topological codes. Themost prominent 2D
topological codes are surface codes [8] derived fromKitaev’s toric code [9], whichwewill focus on in the
remainder of thismanuscript. 2D topological codes can be implemented using entangling gates which are local
in two dimensions, allowing fault-tolerance in near-termdevices which have limited connectivity. In addition,
2D topological codes generally have high fault-tolerantmemory thresholds, with the surface code having the
highest at∼1% [10].

These advantages come at a cost, however.While other 2D topological codes permit logical single-qubit
Clifford operations to be implemented transversally, the surface code does not. In addition, the constraint that
computation be carried out in a single plane does not permit two-qubit physical gates to be carried out between
physical qubits in different code blocks, precluding the two-qubit gates which, in principle, can be carried out
transversally.

These two restrictions have led to the design ofmeasurement-based protocols for performing single- and
two-qubit logical gates bymaking gradual changes to the underlying stabilizer code.Measurement-based
protocols that implement single-qubit gates are typically called code deformation [11], and protocols that involve
multiple logical qubits are usually called lattice surgery [12]. A separatemeasurement-based technique, called
gauge fixing [13], can be applied to subsystem codes, which have operators which can be added to or removed
from the stabilizer group as desired, the so-called gauge operators. During gaugefixing, the stabilizer generators
of the subsystem code remain unchanged, and can be used to detect and correct errors; so decoding is unaffected
by gauge fixing. This is in contrast to code deformation and lattice surgery, where it is not a priori clearwhich
measurement results to incorporate into decoding, or how to process them. Recently,many different code
deformation and lattice surgery techniques have been devised,most of which use tailor-made analysis or
decoding techniques, see e.g. [14–21].

In this paper, we phrase existing lattice surgery and code deformation protocols as special cases of gauge
fixing, showing that the underlying subsystem code dictates the fault-tolerance properties of the protocol. This
perspective can simplify the analysis of newmeasurement-based protocols, provided that they are based on
stabilizer codes whose distances can be easily calculated. Also, knowing the stabilizer of the underlying
subsystem code results in clear guidelines for decoding using themeasurement results produced by such a
protocol.

The remainder of this paper is organized as follows. In section 2, we review the ideas behind code
deformation and lattice surgery. In section 3, we review the formalismof gaugefixing. Following this, in
section 4, we formulate lattice surgery and code deformation operations as gauge fixing, demonstrating that
fault-tolerant code deformation protocols are in fact based on high-distance subsystem codes.We also show this
explicitly using bothwell-known and novel protocols. In section 5, we numerically determine the performance
of these protocols.We conclude and discuss potential future research in section 6.

In allfigures in this paper, qubits are located on the vertices of the drawn lattice.We refer to the local
generators of the stabilizer group of the surface code as stabilizers or checks. In thefigures, black regions signify
X-stabilizers and light gray regionsZ-stabilizers, with no stabilizersmeasured onwhite plaquettes.

2. Code deformation and lattice surgery

2.1. Code deformation
Code deformation is a technique to convert one code into another bymaking a series of changes to the set of
stabilizer generators to bemeasured in each round of error correction. Typically, these protocols use ancillae
prepared in entangled and/or encoded states as a resource. Also, a typical code deformation sequence proceeds
gradually,first expanding the code into a large intermediate code by entangling the original code blockwith the
ancillae, then disentangling some of the qubits (whichmay include some or all of the original data qubits),
producing afinal codewhich can then be used for further computation. The initial and final codemay differ in
their logical operators, inwhich case the deformation performs a logical operation. Also, the initial and final
codemay differ in their position or orientationwithin a larger quantum computer.

For example, consider the proposed fault-tolerant procedure for lattice rotation of surface codes shown in
figure 1, similar to the one presented in [22]. One can see five stepswhich graduallymodify the surface code
patch starting at the bottom right of figure 1(a) and ending at the top left offigure 1(e) in a different orientation.
First, three ancillary patches are prepared infixed states, and placed near the upper left corner of the target patch.
Then, the patch undergoes a two-step growing operation, followed by a two-step shrinking operation.
Advancing one step is done bymeasuring the operators corresponding to the new stabilizers, some ofwhich
anti-commutewith the old ones.Measurement of these new stabilizers will return±1 values at random. This
means that additional corrections, unrelated to errors thatmay have occurred, are needed in order to enter the

2

New J. Phys. 21 (2019) 033028 CVuillot et al

new code space (themutual+1-eigenspace of all new stabilizers).Moreover, to account for noisy operations,
onemust simultaneously perform error correction. After one is confident that the encoded state is in the new
code space, one can proceed to the next step.

In section 4, wewill demonstrate that, following these five steps, one can fault-tolerantly protect the logical
information at all times with a distance-5 code.We also show that the distancewould be reduced to 3 if onewere
to omit step (b), going directly from (a) to (c), as onewould dowhen directly adapting the established surface
code rotationmethod from [12] to rotated surface codes.

This lattice rotation followed by the latticeflip infigure 2 are useful for performing a transversal Hadamard
gate. The transversal Hadamard gate on a surface code patch, performed by applying aHadamard gate on each
qubit, interchangesX andZ plaquettes. This code transformation can be undone by a lattice rotation, followed
by a latticeflip.Moreover, part of this rotation procedure can be used to grow a codewith distance d to a code
with distance (3d−4) in two steps by simultaneously growing all corners, see figure 1(f).

Figure 1. Fault-tolerant procedure for rotating a surface code by 90◦ and reflecting it about the x axis (see [12,figure 10] for the
corresponding protocol using smooth/rough boundaries). (a) Initial layoutwhere the 5×5 lattice is to be rotated, the three 3×4
patches are ancillas infixed states, fully specified by the stabilizers shown. (b) Intermediate lattice, this step is required to expand the
lattice fault-tolerantly. (c) Fully expanded lattice. (d) and (e) Splitting operations performed to shrink the lattice. (f)By using the two
steps from (a) to (c) at the same time on all corners, one can grow a lattice fromdistance d to -d3 4. The surrounding ancillary
patches have - ´ -() ()d d2 1 qubits each.

Figure 2.Aprocedure to flip a lattice using code deformation. (a)The lattice to be flipped, and the physical qubits prepared in +ñ∣
states. (b)Theflip operation is realized bymerging the original lattice with the physical qubits below. (c) Subsequentlymeasuring the
physical qubits at the top in theX basis finishes theflip operation.

3

New J. Phys. 21 (2019) 033028 CVuillot et al

This type of code deformation does not, in itself, perform logical operations, but can be used tomove patches
of code or to convert between codes where different gates are transversal [16]. Other code deformation
procedures such asmoving holes or twists do performunitary logical Clifford operations [18, 23, 24]. In the next
section, we present another similar procedure which executes a logicalmeasurement.

2.2. Lattice surgery
Lattice surgery is a particularmeasurement-based procedure that acts non-trivially on the logical information.
By going through two steps of deformation, it implements a jointmeasurement of logical operators, typically
X X1 2 or Z Z1 2, where Xj and Zj denote the logical operators of the logical qubit j.Wewill focus on the Z Z1 2

measurement and review the protocol used for the surface code [12, 15].
Consider two patches of L×L rotated surface code, as infigure 3(a). Each has a Z logical operator along the

boundarywhich faces the other patch. In themerge step, onemeasures the intermediaryZ-plaquettes (in red in
figure 3(b)). These plaquettes are such that the product of all outcomes is the outcome of the Z Z1 2 measurement,
but any subset of these outcomes produces a random result whenmultiplied together. This ensures that the only
non-stabilizer operator whose eigenvalue can be inferred from thesemeasurements is Z Z1 2. These
measurements do not commutewith theweight-2X stabilizers at the joint boundary (infigure 3(b)). The
Gottesman–Knill theorem [25] prescribes how to update the stabilizer after suchmeasurements, namelywe only
retain elements in the original stabilizer groupwhich do commutewith the newlymeasured stabilizers. This
implies that the code becomes a 2L×L patch of surface code, apart from someminus signs on the newly-
measuredZ-checks. Thismerge step is very similar to the rotation presented before, except that some logical
information is learned in the process and the additional corrections which fix the state into the new code space
may involve one of the original logical operators (when the number of intermediary plaquettes with−1
eigenvalues is odd). Tofinish the protocol, the original code spacemust be restored by performing a splitting
operation,measuring the original stabilizers of the two separate patches instead of the intermediaryZ-
plaquettes. ThoseZ-plaquettes, as in themerge step, anticommutewith the boundaryX-stabilizers, andwill be
removed from the stabilizer group. Their product, equal to Z Z1 2, does commute, andwill remain as a stabilizer
of the final state. In addition, the boundaryX-plaquettes will have random±signswhich are perfectly
correlated between facing pairs. Therefore, one can eliminate these±signs by applying some of the former
stabilizers (those supported on the intermediaryZ-plaquettes).

One can check (see the algebraic proof in appendix A) that depending on the outcome (±1) of the logical
Z Z1 2 measurement, themerge and split operations, respectivelyM± and S± can be expressed as

= ñá + ñá = ñá + ñá+ +∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ()M S0 00 1 11 , 00 0 11 1 , 1

= ñá + ñá = ñá + ñá- -∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ()M S0 01 1 10 , 01 0 10 1 . 2

They are related to the projections, P±, onto the±1 eigenspace of Z Z1 2 by composition:

= =+ + + - - -◦ ◦P S M P S M, .

Figure 3. Lattice surgery for the rotated surface code. A ‘±’ label indicates a random sign for the corresponding plaquette in the
stabilizer group. (a) Initial layout, two rotated surface codes. (b)Themerged lattice, which is a surface codewith random±signs on
the newly-measured (red) plaquettes. (c)The split lattices, inwhich the original stabilizers aremeasured again. Random±signs are
produced on the boundaryX-stabilizers.

4

New J. Phys. 21 (2019) 033028 CVuillot et al

In particular, lattice surgery allows us to implement themeasurement-based CNOTgate [26] in a 2D layout
with only local operations as shown infigure 4.We note that amore general set of operationswhich can be
implemented by lattice surgery can be constructed using the relation between themerge and split operations
considered here and the three-legged nodes of theZX-calculus [27]. For the purposes of this work, however, we
will limit our discussion to CNOT gates.

3.Gaugefixing

Gaugefixing [13] is an approachwhich has been used to implement universal fault-tolerant gate sets in subsystem
codes [28]. A subsystem code is equivalent to a stabilizer code inwhich some of the logical qubits are not used to
carry any logical information. These logical qubits are called gauge qubits and they can be acted on ormeasured
without disturbing the states of the other logical qubits, which are used to store and process quantum
information. Then, oneway to formally define a subsystem code,C, is to define a subgroup of the Pauli group,
called the gauge group  , containing all the Pauli stabilizers as well as the Pauli operators defining the gauge
qubits. This subgroup is non-Abelian as it contains anti-commuting Pauli operator pairs which represent the
gauge qubit logical operators. The stabilizer group,  , can be derived from  as its center, denotedZ(·), i.e.
containing all elements in  , which commutewith all the elements of G

    = = Ç() () ()Z , 3

where  () denotes the centralizer of  in the Pauli group, i.e. all elements in the Pauli group, which commute
with all elements in  . Elements in  which are not in  are the Pauli operators acting non-trivially on the gauge
qubits: this is the set of non-trivial gauge operators g

  = ⧹ (). 4g

Following this, one can define operators for the actual logical qubits which by definition are elements in
  ()⧹ . If these operators act trivially on the gauge qubits, we call these bare logical operators. Bare logical
operators can bemultiplied by elements in g to become dressed logical operators which also act on the gauge
qubits.We canwrite

       = =()⧹ ()⧹ (), . 5bare dressed

Note that with this definitionwe have,  Ìbare dressed. The distance of the subsystem codeC is the smallest
weight of any of its non-trivial logical operators,


=

Î
ℓ() ()

ℓ
d min wt . 6C

dressed

One advantage of subsystem codes is that tomeasure stabilizers, one is free tomeasure any set of checks in
the gauge group as long as this set generates the stabilizer group. Bymeasuring elements in the full gauge group,
one can put the gauge qubits in specific states, permitting different sets of transversal logical gates. This act of
putting the gauge qubits in a specific state is called gauge fixing. The idea is tomeasure a commuting subset of
gauge operators (all theZ-type gauge operators, for example), obtaining±1 outcomes and applying the
anticommuting, or conjugate partner operator (anX-type gauge operator in the example), wherever a−1

Figure 4. (a)Two equivalentmeasurement-based circuits for the CNOTgate. (b)The qubit layout for a CNOTgate between two
surface-code qubits.C is the control qubit,T is the target qubit, andA is a logical ancilla.

5

New J. Phys. 21 (2019) 033028 CVuillot et al

outcome has been obtained. In the example, this wouldfix all gauge qubits to the ñ∣0 state.While the gauge is
fixed in this way, theZ-type gauge operators become elements of the stabilizer group, so  is augmented to some
larger Abelian subgroup of  . Appendix B shows an example of how code conversion between the  7, 1, 3
Steane code to the  15, 7, 3 Reed–Muller code can be viewed as gaugefixing.

4. Fault-tolerance analysis with gaugefixing

In this section, we showhowboth code deformation and lattice surgery can be viewed as gauge fixing operations
and therefore, one can use gaugefixing to analyze the fault-tolerance of these operations.

We consider the quantum error-correcting codes before and after a deformation step, denoted asCold and
Cnew, with stabilizer groups old and new , respectively. Both codes are fully defined on the same set of qubits.
The non-trivial logical operators of each code are defined as

       = =()⧹ ()⧹, .old old old new new new

The intuitionwe follow is to see the two stabilizer codes as twodifferent gauges of the same subsystemcode.The
first step, then, is to define a joint subsystemcode, C̃ , whose gauge group, ̃ , is generated byboth old and new ,

  = á ñ˜ , .old new

The generated group, ̃ , is not necessarily Abelian, since it contains elements of old whichmay anti-commute
with some elements of new .

The stabilizer group, ̃ , defined as in equation (3), can be characterized as follows: Elements in the center of
̃ also have to be in the centralizers of old and new .Moreover, being in both centralizers and in ̃ is sufficient to
be in the center, or

     = Ç Ç˜ () () ˜ .old new

See figure 5(a) for a representation of ̃ as aVenn diagram.Note that, in addition to containing  Çold new, ̃
can also contain some logical operators from either old or new . This is the case for themerge operation of
lattice surgery where the logical ÎZ Z1 2 old but also ÎZ Z1 2 new and therefore Î ˜Z Z1 2 . Similarly, for the
split operation ÎZ Z1 2 new but also in old and therefore in ̃ .

As defined above, this subsystem code C̃ indeed admits old and new as two distinct Abelian subgroups of
̃ . Therefore the codes old and new correspond tofixing two different sets of states for the gauge qubits of ̃ .
However, for this to function as a subsystem code, onewould have to be stabilized at all times by ̃ and thus be
able tomeasure all values of the stabilizers of ̃ .

This is not the necessarily the case when ̃ contains some elements of old or new , andwe have to further
modify ̃ to a gauge group  whose center is solely

Figure 5.Venn diagrams depicting the relations between the different sets of Pauli operators concerning the gauge group  of interest,
seemain text. (a) For one step, the yellow set represents the old stabilizer group, old, and the blue set the new group, new . Both are
surrounded by the logical operators, old and new respectively. The gauge group generated by both,   = á ñ˜ ,old new , has ̃ as its
center, shown by the down-left-dashed region outlined in red. The gauge group of interest,  , is outlined in purple and has  , in the
down-right-dashed region outlined in blue as its center. The set of gauge operators defining the gauge qubits, g , is the dotted region.
When switching from old to new onefixes the gauge for the elements in the blue dotted region  = ˜⧹fix old. (b)One possible
scenario for two successive steps of deformation. Doing it in two steps, i.e. from  0 1, and then from  1 2 permits to use
successively the stabilizer groups 01 and then 12 for error correction. Skipping the intermediary steps, one can only use 02 which
might offer less protection.

6

New J. Phys. 21 (2019) 033028 CVuillot et al

   = = Ç()Z .old new

Howdowe obtain  from ̃? This new gauge group,  will be generated by old and new in addition to (anti-
commuting) conjugate partners of elements in the sets  = Çprep old new and  = Çmeas new old.More
precisely, one viewsprep as a subset of new , and for each independent logical operator contained inprep

adds a chosen conjugated partner within new . One operates similarly formeas by viewing it as a subset of
old. If we then consider the center of  , we see that all elements inprep andmeas are excluded from it since
they anti-commutewith some elements in  . Thismeans that the center of  is reduced to   = Ç()Z old new

as desired.
The namesprep andmeas are chosen to represent their respective roles in the deformation procedure. In

such a procedure one starts from a system encoded inCold, i.e. stabilized by old, and then onemeasures the new
stabilizers, new .When new contains some elements of old, then in general these elementswill not stabilize the
state of the system, since it can be in any logical state at the beginning of the procedure.Measuring these
operators will return information about the logical state and cannot return information about errors. Thus, by
switching to new one also performs a logicalmeasurement of the elements inmeas.

It is also possible for old to contain some elements of new . In that case, the state of the system is initially
stabilized by these elements, and remains so, sincewe onlymeasure operators commutingwith them. In this
sense, the deformation procedure will prepare the logical+1 state of elements inprep.

We denote the code underlying the code deformation step asC. Its gauge group,  , is represented as a Venn
diagram infigure 5(a). Thus the deformation operation that transforms Cold intoCnew is realized by switching
what gauge tofix of the codeC: in one gauge one obtainsCold, the other gauge givesCnew. Since the deformation
step can also transform logical information, what gauge elements are fixed is subtle. Namely, note that in this
gaugefixing ofC to either codeCold orCnew the gauge elements in  ⧹ ˜ will never befixed. Said differently, only
the elements of g which are in the blue dotted region infigure 5will befixed, one can also view these as

elements of  º ˜⧹fix old.

4.1. Fault-tolerance of code deformation
Given an underlying subsystemdeformation codeC, one can ensure the fault-tolerance of a code deformation
operation by checking three criteria:

1.Code distance: The distance of the subsystem code, C, must be large enough for the desired protection.
Ideally itmatches the distances ofCold andCnew so the degree of protection is not reduced during the
deformation step.

2.Error correction:The error correction procedure follows that of the subsystem code C through the code
deformation step.

3.Gauge fixing:Tofix the gauge, one has to use operators exclusively from   = ⧹g .

More specifically, criterion 2means that to perform error correction, one has to reconstruct from the
measurements of new the syndrome given by  . Importantly, criteria 2 and 3 demonstrate that the processes of
error correction and that of gaugefixing are two separate processes with different functionality. Both processes
require the application of Pauli operators (in hardware or in software) tomake sure that stabilizermeasurements
are corrected to have outcome+1. The error correction process does this to correct for errors, while the gauge-
fixing process does this tomove fromCold toCnew.

This description holds for one step of deformation, so that for each step in a sequence of deformations one
has to examine the corresponding subsystem codeC and its distance. Depending on the sequence, figure 5(b)
illustrates why skipping steps could lead to poor distance and poor protection against errors. This discussion also
assumes that stabilizermeasurements are perfect; the effect of noisy stabilizermeasurements is considered in the
following section.

4.1.1. Noisymeasurements
Whenone considers noisy syndromemeasurements, one needs to ensure that both the stabilizer outcomes and
the state of the gauge qubits can be learned reliably. For 2D stabilizer codes such as the surface code this is simply
done by repeating themeasurements. To process this repeatedmeasurement information for the surface code,
one no longer uses the syndrome but the difference syndrome: the difference syndrome ismarked as non-trivial
(we say that a defect is present) onlywhen the syndrome value changes from the previous round ofmeasurement.
This difference syndrome or defect gives information about both qubit errors aswell asmeasurement errors.

Howdowe construct the difference syndrome at the code deformation stepTd infigure 6? AtTd one obtains
the syndrome for the code new . For those elements in new which are in  , we knowwhat this syndrome should
have been if nomeasurement or data errors had occurred since the previousQEC roundwhichmeasured the

7

New J. Phys. 21 (2019) 033028 CVuillot et al

stabilizers of old. Therefore, we can place defectswhen the found syndrome changes fromwhat itwas expected to
bebased on the last roundofmeasurementswith old. new also contains a subset of elements in g , namely the
blue dotted regionfix infigure 5(a). Someof these elements are also contained in old (down-right-dashed area
infigure 5(a)), i.e. they are elements ofmeas. The eigenvalues of these elements inmeas dependson the logical
state and are therefore not a proper syndrome for Sold. Soonly after onemore roundof syndrome extractionwith
new one canmarkwhether the syndrome for these elements inmeas changes, and either place a defect or not. In
addition, the eigenvalues of the gauge operators in the remaining bluedotted region take random±1 eigenvalues
(since they anticommutewith someelements in old): for these checks, like for the elements inmeas, there is no
previous record to construct a difference syndrome right away.Again, only after one roundof syndrome extraction
with new one can againmarkwhether the syndromechanged, placing a defect for an element or not. Inprocessing
thesenew syndromes of new to do error correction,we should also allow them tobematchedwith virtual defects
placedbeyond thepast-time boundaryTd. For example, ameasurement error in thefirst stepwhen the syndrome
is randomly+1 or−1, followed bymany roundswithoutmeasurement error, produces a single defect and should
be interpreted as thefirstmeasurement being incorrect. In this sense, there is only one layer of timewhere the
defects are those of  as indicated on the right infigure 6.

Given all defect syndromes,minimum-weightmatching can be used to decode (see figure 6), to infer some
errors as they have occurred in awindow of time before and afterTg andTd (onemay use a slidingwindow as in
[22]). Let us then imagine that bymatching defects in awindowwhich goes beyond a so-called gauge-fixing time
Tg, one infers a set ofmeasurement and data errors. These errors are projected forwards to the time-sliceTg and
they are used to do three things. One is to correct the value of elements inMmeas (if any), so that the logical
measurement has been completed and properly interpreted. The second is to determine orfix the gauge, i.e.
determine the outcome of elementsfix in the blue dotted region of figure 5. Aswe have argued, these gauge
valuesmay be±1 at randomand hence Pauli gauge-fixing corrections can be added in software tomake the
outcomes all+1 if onewishes toworkwith the framewhere all elements in new have+1 eigenvalue. These Pauli
gauge-fixing corrections are not error corrections and any set of Pauli operators can be chosen as long as they
solelyfix the values of the elements infix. Thirdly, the projected errors provide the usual update of the Pauli
frame for the code  , so togetherwith the gauge-fixing corrections, for the code new . Thewhole procedure is
represented schematically in Figure 6; at timeTg, the code deformation step isfinished.

Note that, afterTd, the elements inprep are no longermeasured, but their fixed values before the code
deformation now represent logical states prepared by code deformation. Typically, for 2D stabilizer codes, the
timewindowbetweenTg andTdneeds be of sizeO(d) in order tofix the gauge, where d is the distance of codeC.
In some cases, themeasurements contain enough redundant information about the gauge operators so thatTg
can be equal toTd (e.g. in single-shot error correction schemes based on redundancy of the checks). For example,
this is the case when performing the logicalmeasurement of a patch of code bymeasuring every single qubit in
theZ basis. This is also the case for the logicalmeasurement step of the plain surgery technique explained below.

Figure 6. Schematic drawing of a code deformation procedure with repeated noisymeasurements, with time increasing upwards.Td
designates the time step at which the code deformation (the switch frommeasuring the checks of old to those of new) is performed.
Tg is the time at which one is confident enough about the state of the gauge qubits, taking into account errors, tofix their states. This
means that, afterTg, another logical computation can be performed. (Right)Thefirst round ofmeasurement of new at timeTd does
not have a previous value to compare to in order to construct a difference syndrome, i.e. one can only construct defects for  .
Immediately after this step, one can derive the difference syndrome of the full new , placing defects accordingly. Using defects before
and afterTd, one processes error information to infer the value of the gauge operators infix at timeTg, thusfixing the gauge atTg.

8

New J. Phys. 21 (2019) 033028 CVuillot et al

In the remainder of this section, we apply this formalism to the code deformation and lattice surgery
operations discussed earlier.

4.2. Code deformation examples
4.2.1. Grow operations
Gaugefixing, when applied to the growing operations offigures 1 and 2, reveals an underlying subsystem code
with a small number of widely-spaced holes and large boundaries, resulting in a high distance. The stabilizer
group,  , as well as the gauge operators, g , for the subsystem codeCwhich governs the deformation from
figures 1(a) to (b), are shown infigure 7.

In allfigures of this paper, light blue and light red patches individually representX-type andZ-type gauge
operators, and bright blue and bright red qubit chains are X and Z operators respectively. The grow operation
is changing the gauge fromone inwhich the gauge operators not overlapping between the initially separate
patches arefixed, denoted as ¢ ¢ ¢ ¢{ }X X Z Z, , ,1 2 3 4 infigure 7(b), to one inwhich the overlapping ones are fixed,
denoted as ¢ ¢ ¢ ¢{ }Z Z X X, , ,1 2 3 4 infigure 7(b). The distance ofC is still 5,matching the distance of the initial code.

Now consider what happens if wewould go directly from figures 1(a) to (c). The stabilizers and the gauge
operators for this operation are shown infigure 8. Similarly, one fixes the gauge going from separate patches to a
single patch. The distance of the subsystem code for this operation is only 3. Indeed one of theminimum-weight
dressed logical operators is the Z on the qubits in the green box infigure 8(b). Thatmeans that, in order to
preserve the code distance, one should perform the intermediary step.

4.2.2. Themerging and splitting operations
In this section, we interpret the jointmeasurement of Z Z by lattice surgery infigure 3(b) as gaugefixing. The
stabilizer group  is generated by all the stabilizers infigure 9(a). The gauge operators, g , of the gauge group are
given by three representatives of the logicalX of the top patch and the intermediaryZ plaquettes that anti-
commutewith them. They are denoted as á ¢ ¢ ¢ ¢ ¢ ¢ñX Z X Z X Z, , , , ,1 1 2 2 3 3 infigure 9(b). Representatives of the bare
logical operators, ÎX Z, bare, are the logicalZ of the bottompatch and the logicalX of themerged patch
(joining the very top to the very bottom), seefigure 9(b). Themerge and split operations are realized by fixing
some gauge operators of g , resulting in new codesCmerged orCsplit, respectively. Note that theweight of X of
the subsystem code,C, is only d and not d2 which is the distance forX of themerged code. Indeed, by using the
gauge operators like ¢X1 and stabilizers, one can construct a dressed logicalX ofweight d. Anotherway of seeing

this is by realizing that one cannot distinguish between two errors of weight d

2
depicted infigures 9(c) and (d). In

thefirst one, the logicalmeasurement outcome is−1 and there is a string of d

2
X-errors from the bottom to the

middle of the bottompatch. In the second one the logicalmeasurement outcome is+1 and there is a string of d

2
X-errors from themiddle of the bottompatch and themiddle (changing the observed logicalmeasurement
outcome to−1). Note also that when performing the splitting operation, onewants to correct the−1 outcomes
for some of the intermediaryX stabilizers. They are gauge operators equivalent to, say ¢ ¢X X1 2. They have to be
corrected using theZ gauge operators, say ¢Z1 in this case. Otherwise onewould introduce a logicalZ error.

Figure 7.Description of the subsystem code,C, which holds during the first step of the growoperation depicted infigures 1(a) and (b).
(a)Generators for the stabilizer group,  , ofC. (b)Generators for thewhole gauge group  ofC. Highlighted in red and blue,
respectively, are gauge operators, elements of g , ofZ-type andX-type, respectively. The logical operators, ÎX Z, bare, are also
represented in brighter colors.

9

New J. Phys. 21 (2019) 033028 CVuillot et al

4.2.3. Plain surgery
Wenow introduce a new techniquewith the same goal as lattice surgery, namely performing joint
measurements of logical operators, but following a different procedure. The difference between lattice surgery
and the new procedure, plain surgery, will be that the logicalmeasurement is performedwith redundancy, so that
this part of the protocol can bemademore robust to noise, at the cost of qubit overhead.

The idea is to separate themerging and logicalmeasurement of lattice surgery into two distinct steps. The
first step deforms the two separated blocks into a single code blockwhere the joint logical operators can be
measured redundantly. Since this stepmerges the codes, but leaves the logical information unchanged, we call it
a plainmerge. In the second step, wemeasure the desired logical operator destructively, similar to the standard
logicalmeasurement of a surface code block. Afinal deformation step can be used to return to the original code
space.

The layout for the plainmerge operation is shown infigure 10(a). The patches are placedwith an overlap of
approximately d2

3
, theX-boundary of one facing theZ-boundary of the other. Then they aremerged into a single

patchwith 3X-boundaries and 3Z-boundaries, so two logical qubits. Logical operators far away from the
interface are left unchanged, and the logical information is untouched.When looking at the subsystem code for
this deformation, shown infigure 10(d), one can see that the distance is guaranteed by the offset between the two
patches.

Figure 8.The operators of the subsystem code for the one-step grow operation fromfigures 1(a) to (c), skipping figure 1(b): (a) the
stabilizers which generate  and (b) thewhole gauge group,  , with highlighted gauge operators and logical operators.

Figure 9.The operators of the subsystem code,C, for the jointmeasurement Z Z . (a)The generators of stabilizer group  . (b)The
highlighted operators are either gauge operators in g or logical operators in bare.We start in the gaugewhere the products ¢ ¢X X1 2

and ¢ ¢X X2 3 arefixed, and end in the gaugewhere ¢Z1 , ¢Z2 , and ¢Z3 are fixed. The distance of the subsystem code is 5, since one can
construct a logical X with this weight bymultiplying it withX gauge operators. (c) and (d)Twodifferent scenarios with errors of
weight d

2
with the same observedmeasurements.

10

New J. Phys. 21 (2019) 033028 CVuillot et al

Then, in this newcode, the logical operator X X1 2 is givenbya string starting from the topboundaryof the top
patch andendingon the right boundaryof thebottompatch. So, bymeasuringqubits in theXbasis in a regionaway
fromthe thirdX-boundary, one can learn X X1 2 butnot X1or X2. Thismeasurementprocedure is depicted infigure 11.

One cancheck that the associated subsystemcodehas adistanceof at least half theoverlapbetween thepatches,~ d

3
.

The amountof redundancy in themeasurement is also~ d

3
,whichmakes this procedure costly inqubit overheadbut

aswe show in thenext section, it appears tooffer a better threshold than the standard lattice surgery technique.

5.Numerics

Tonumerically evaluate the fault-tolerance of quantumcomputationon rotatedplanar surface codes,we simulate
logicalmeasurement, rotation, logical CNOT, andplain surgery, using theGottesman–Knill formalism [25]. These
simulations are carried out using twodifferent errormodels, thephenomenologicalmodel and the circuit-based
model.The phenomenological errormodel inserts independentX andZ errors ondata qubitswith equal probability
p, andmeasurements output thewrong classical valuewithprobability p. The circuit errormodel inserts errorswith
probabilityp after eachoperationof the error correction circuit as follows: each single-qubit gate is followedby aX,
Y, orZwithprobability

p

3
, each two-qubit gate is followedby an element of { } ⧹{ }⨂I X Y Z II, , , 2 withprobability

p

15
, and eachmeasurement returns thewrong resultwith probability p. In thiswork, exceptwhen stated otherwise,

the initial logical qubits are preparedwithout errorswhen simulating these logical operations.

Figure 10. (a) and (b)The qubit layouts before and after the plainmerge operation. The number of logical qubits is kept constant
during thismerge operation. (c)The stabilizers of the subsystem code. (d)The gauge operators and logical operators of the subsystem
code. One can see that the distance is guaranteed by the offset between the two blocks. The distance of the separate surface codes is 11,
and the distance of the subsystem code is 4.

Figure 11. (a)The layoutwhere the qubits in the region highlighted are each to bemeasured in theX basis. (b)The stabilizers of the
underlying subsystem codeC. (c)The gauge operators (in red) and logical operators of the code.One can see that the distance is
guaranteed by the amount of overlap between the two blocks. The distance of the subsystem code is 4.

11

New J. Phys. 21 (2019) 033028 CVuillot et al

In section 4.1,wehave introducedhow to construct defects (difference syndromes) for a codedeformation step
andhow to process these defects to infer errors andfix gauge operators (figure 6). For a realistic implementationof
logical operations, a decoderwill infer errors in a timewindowwhichmay includeTdorTg, by processing the defects
within thewindow.Thismeans the decoder shouldbe able tomatchdefects across timeboundaries, e.g. the defects
before and after code deformation timeTd. In addition, it needs to constructmatching graphswith edgeswhose
endpoints are ondifferent lattices, e.g. defects of new maybematched to virtual defects beyond the past-time
boundaryTd.However, such adecoder is difficult to implement. In our simulations,we insert perfectmeasurement
rounds after blocks ofd rounds ofmeasurement (figure 12) for ease of implementation,whered is the distance of the
underlying subsystemcode.Adecoder using theminimum-weight perfectmatching algorithm is used and its
performance for a fault-tolerantmemoryoperation, that is, dnoisy quantumerror correction cycles followedby 1
noiseless cycle, is shown infigure 13. For eachoperation (except forplain surgery), 105 (104) iterationswere runper
point and confidence intervals at 99.9%are plotted in thefigures.

Single-qubit operations:Transversal operations (preparation, Pauli gates,measurement) are usually realized
by performing qubit-wise physical operations. They are intrinsically fault-tolerant and their logical error rates
will be only slightly higher than a logical identity gate (memory). Notably, a transversal MZ (MX)measurement
does not require several quantum error correction cycles (i.e.Td=Tg) since error syndromes ofZ(X)-stabilizers

Figure 12.The simulated version of a code deformation procedure infigure 6. A perfect round (a small timewindow from red to black
dashed lines) is inserted after each block of noisy d rounds of stabilizermeasurements. One processes the defects for old and corrects
errors before the code deformation stepTd. Then the defects for  are constructed at timeTd to timeTg and the ‘defects’ forfix are
constructed one round ofmeasurement later. At timeTg, one processes error information to infer the value of the gauge operators and
then fixes the gauge.

Figure 13.Numerical simulations of a fault-tolerantmemory operationwith the phenomenological errormodel near its threshold
(∼2.75% (a)) and the circuit-level errormodel near its threshold (∼0.5% (b)).

12

New J. Phys. 21 (2019) 033028 CVuillot et al

canbe reconstructed fromthemeasurement outcomesof data qubits, this is also the case for the logicalmeasurement
stepof plain surgery. For instance, one canmeasure all the data qubits in theZbasis to realize a MZ onaplanar
surface code.Afterwards, one can compute theZ-syndromesbymultiplying the outcomesof correspondingdata
qubits of eachZ-stabilizer and then correct theX errors anddeduce the valueof Z . Theperformanceof a MZ

measurement for planar surface codes is shown infigure 14. In this simulation,wefirst prepare a logical qubit in state
ñ∣0 without errors and thenperforma MZ measurement on itwithphysicalmeasurement error probabilityp.We

further numerically simulate theproposed rotatingprocedure (figure 1) and show the results infigure 15. For the
phenomenological errormodel, the error thresholdof a rotation is slightly lower than the thresholdof quantum
memory. For the circuit-level errormodel, its threshold is similar to that of quantummemory.

Two-qubit operations:Wealso simulate themeasurement-basedCNOTcircuits infigure 4(a)where the split
operations of thefirst jointmeasurements are parallelizedwith themerge operations of the second joint
measurements (see the decomposed circuits in appendixC). Theoverall error rates and the error thresholds for a
CNOTgate by lattice surgery are shown infigure 16. For each errormodel, the error thresholdofCNOTgates is
similar to the thresholdof quantummemory.Moreover, logical errors propagate through themeasurement-based

Figure 14.Numerical simulations of a transversal MZ measurement near its threshold (∼10%).

Figure 15.Numerical simulations of the rotation procedure infigure 1without a finalflip operation. (a) and (b)The logical error rates
of the rotation procedure with phenomenological errormodel (the error threshold is around∼2.5%) and circuit errormodel (the
error threshold is around∼0.45%), respectively.

13

New J. Phys. 21 (2019) 033028 CVuillot et al

CNOTcircuits, leading to a disparity of logical error rates on control and target qubits, which is demonstrated
numerically in appendixC. In addition,we compare the joint MXX measurementusing lattice surgerywith the
measurement using plain surgery. Figure 17 shows that plain surgery achieves a higher error threshold than lattice
surgery, butwith higher logical error rates as a consequence of the increased lattice size required to achieve a given
code distance.

6.Discussion and conclusion

Wehave illustratedhow todescribe currentmeasurement-basedoperations in 2D topological quantumcomputing
using the gaugefixing technique.Wehave shown that, by using the formalismof gaugefixing, the fault tolerance

Figure 16.Numerical simulations of ameasurement-based CNOTgate by lattice surgery (the top circuit infigure 4(a)). (a)Total error
rates for CNOTgates with the phenomenological errormodel near the threshold (∼2.7%). (b)Total error rates for CNOTgates with the
circuit-level errormodel near the threshold (∼0.45%). The fact that the crossing points corresponding to plain surgery are higher than
those for lattice surgery andmemory operations is curious.While thismay be an intrinsic property of plain surgery, it is also possible
that this data is explained byfinite-size effects, discrepancy between threshold error rates when comparing even- and odd-sized
lattices, or other confounding factors.While these numerical experiments confirm the validity of gaugefixing as an analytical tool in
fault-tolerant quantum computing, further research is needed to analyse plain surgery in detail.

Figure 17.Numerical comparison of the MX X jointmeasurements by lattice surgery (LS) and plain surgery (PS), near the points
where the two lowest-distance implementations of the two protocols produce the same logical error rate. The logical error rates of
MX X with the (a) phenomenological errormodel ((b) circuit-level errormodel) by LSwith a crossing between the d=3 and d=5
near the physical error probability∼2.2% (∼0.25%) and by PSwith a crossing between the d=4 and d=6 near the physical error
probability∼3.2% (∼0.65%).

14

New J. Phys. 21 (2019) 033028 CVuillot et al

analysis of these codedeformation and lattice surgery protocols is considerably simplified, their error correctionand
gaugefixing schemes also become clear. Furthermore,wenumerically examined thismethodwith examples on
planar surface codes, including somewell-knownoperations such as lattice-surgery-basedCNOTgates and some
novel protocols such as lattice rotation andplain surgery. Although this gaugefixing formalismdoes not provide
direct guidlines onhowto design code deformationprotocols for a desired logical operation, it does provide an easy
way to check the fault-tolerance of protocols and search for newones via iterations of trial and error.

Moreover, this formalism applies not only to 2D topological codes, butmore generally to any stabilizer code.
In the general case (non-topological codes), the analysis of fault-tolerance in the presence ofmeasurement errors
becomesmore involved, in particular with respect to howmuch repetition is really needed, see for example
[29, 30].We leave for futurework how to obtain general and simple criteria for fault-tolerance.

Acknowledgments

The authors would like to thank Benjamin Brown for enlightening discussions. LLL acknowledges funding from
theChina Scholarship Council. BMT andCV acknowledge support by the EuropeanResearchCouncil (EQEC,
ERCConsolidator GrantNo: 682726). BMT,KB andCGA acknowledge support from theQuantERAERA-NET
Co-fund inQuantumTechnologies implementedwithin the EuropeanUnionsHorizon 2020 Programme (for
theQCDAconsortium). KB andCGAacknowledge support from the Intel Corporation.

AppendixA. Algebraic proof of the correctness of themerge and split operations

In this appendix, we denote the set of physical qubits asQ. For any subset of k qubits, Q= ¼ Ì{ }s j j, , k1 , we
denote the operator composed of a PauliZ resp.X on each qubit in s asZ(s), resp.X(s), i.e.

= Ä Ä = Ä Ä () ()Z s Z Z X s X X, .j j j jk k1 1

A.1.Merge operation
The setting for themerge operation is drawn infigure 3(a). The starting code,Csplit, with stabilizer split, consists
of two adjacent L×L patches of rotated surface codewith the opposite boundaries being supports for their Z
operators.We label the upper logical qubit as 1 and the lower qubit as 2. The new code,Cmerged, with stabilizer
merged, consists of only one ´L L2 patch of rotated surface code.

We define the subsystem code,C, and its gauge group,  , as specified in section 4, see figure 9.Notably, we
exclude from the center of ̃ the logical operator ÎZ Z1 2 merged.We therefore add X1 to ̃ to form  , and so
have ÎX g1 . Call  the set of intermediary plaquettes (red plaquettes infigure 3(a)) to bemeasured to perform
themerge operation. For Îp we have Î()Z p g , these are the gauge operators to befixed by themerge
operation. For each Îp , onemeasures the operatorZ(p) and let its outcome bemp.

To explain the actionof themerge operation at the logical level,wefirst prove that this operation transforms
code states of the twooriginalL×Lpatches of surface code into code states of the ´L L2 patch surface codewith
someX errors. To accomplish this,we use the standardprescription from theGottesman–Knill theorem [25]. It is
straightforward to see that the originalZ checks stay unchanged, and the newly-measured checks, the Îp , are
added,with signmp. The originalX checks all commutewith thenew intermediaryZ checks except for the two-body
boundary checks between the twopatches,which are also part of g . Those boundary checks canbemerged in pairs
in order to commutewith the newZ checks. The situation is then the same as depicted infigure 3(b).

Theproduct of allmeasurement outcomes gives the desired outcome for the Z Z1 2 measurement,we denote it as


=
Î

m m .L
p

p

Then onefixes the gauge by applying the conjugateX-gauge operators to theZ(p)withmp=−1. Let us call cmL

the set of qubits involved in this fixing operation. Note thatwhen = +m 1L then the correction is equivalent to a
stabilizer in split whereas whenmL=−1, the correction is equivalent to X1. Then, the fullmerge operation at
the physical qubit level is easily written as

 

 
 

+ -
=

+

Î Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟() · () () () · ()X c

Z p Z p
X c

1

2 2
.m

p

m

p
mL

p

L

Due to the definition of ()X cmL
, commuting it through theZ projections eliminates the -()1 mp terms.

To determine the logical operation realized by this procedure, we use encoding isometries ofCsplit and
Cmerged, called Esplit andEmerged, respectively. These isometriesmap unencoded logical states to code states in the

15

New J. Phys. 21 (2019) 033028 CVuillot et al

full physicalHilbert space. SinceCsplit contains two logical qubits andCmerged contains only one, the isometries
have the following signatures:

Q Q    Ä  E E: , : .split
2 2 2

merged
2 2

Let M̃mL
be the operation on the logical level, which can be expressed as





  



Ä 

=
+

Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜

˜ () · () · () · ()†

M

M E
Z p

X c E

: ,

2
. A1

m

m
p

m

2 2 2

merged split

L

L L

An important fact about encoding isometries E is that, if S is a stabilizer of the code and L a representative for
the logical operator L, then

=· ()S E E, A2

=· · ()L E E L, A3

where L is the corresponding physical operator. Thismeans that M̃mL
, defined in equation (A1), simplifies to

= -˜ () · · ()† ()M E E X . A4m
m

merged split 1
1 2

L
L

To show this, we use the fact that for all Îp ,Z(p) is a stabilizer ofCmerged and the correction +()X c is in split

whereas -()X c is a representative of X1 inCsplit.
To show that the operation M̃mL

is equal to MmL
, as defined in equations (1) and (2), one can analyze how

M̃mL
acts on the computational basis, i.e. we track how it transforms the stabilizers of those states. For example,

the state ñ∣00 is stabilized byZ1 andZ2, thismeans that

ñ = ñ

= ñ

= ñ

= ñ

= ñ

+

+

˜ ∣ () · ∣
() · · ∣
() · · ∣

· () · ∣
· ˜ ∣

†

†

†

†

M E E

E E Z

E Z E

Z E E

Z M

00 00

00

00

00

00 ,

merged split

merged split 1

merged 1 split

merged split

and therefore ñ+˜ ∣M 00 is stabilized byZ. Here, we have used the properties of the encoding isometries and the fact
that a representative Z1 forCsplit is also a representative Z forCmerged. Doing the samewith the other stabilizer,
Z2, also yieldsZ as a stabilizer (so Z Z1 2 yields the identity). One can also verify that ñ+˜ ∣M 00 is not stabilized by
-Z by reversing the previous equalities and therefore á ñZ is the full stabilizer group of ñ+˜ ∣M 00 . Looking now at

ñ-˜ ∣M 00 one can see thatZ2 also yieldsZ butZ1 will yield-Z , indeed

ñ = ñ

= ñ

=- ñ

=- ñ

=- ñ

-

-

˜ ∣ () · · ∣
() · · · ∣

() · · · ∣
· () · · ∣
· ˜ ∣

†

†

†

†

M E E X

E E X Z

E Z E X

Z E E X

Z M

00 00

00

00

00

00 .

merged split 1

merged split 1 1

merged 1 split 1

merged split 1

Hence, ñ-˜ ∣M 00 is both stabilized byZ and-Z , and is therefore the null vector. In other words, the state ñ∣00 will
never give an outcome−1 formL, which is whatwe expect.

The full results (shown in table A1) indicate that

a b
a b

= ñá + ñá

= ñá + ñá
+ + +

- - -

˜ ∣ ∣ ∣ ∣
˜ ∣ ∣ ∣ ∣

M

M

0 00 1 11

0 01 1 10 ,

for some non-zero complex numbersα± andβ±. To complete the proof, we verify that there are no relative
phases or amplitude differences betweenα± andβ±. To see that, one can look at the action of M̃mL

on the Bell
states. For +M̃ we look at the Bell state ñ + ñ(∣ ∣)00 11 2 , stabilized by á ñX X Z Z,1 2 1 2 and for -M̃ the Bell state

ñ + ñ(∣ ∣)01 10 2 stabilized by á - ñX X Z Z,1 2 1 2 . The important fact is that a representative X X1 2 forCsplit is also a
representative of X forCmerged. That is to say

g

g

ñ + ñ
=

ñ + ñ

ñ + ñ
=

ñ + ñ

+ +

- -

˜ ∣ ∣ ∣ ∣

˜ ∣ ∣ ∣ ∣

M

M

00 11

2

0 1

2
01 10

2

0 1

2
,

for some non-zero complex numbers γ±. By linearity of M̃mL
we can conclude that a b g= =+ + + and that

a b g= =- - -. In conclusion, we have shown that µM̃ Mm mL L
, meaning that it performs the desired logical

operation.

16

New J. Phys. 21 (2019) 033028 CVuillot et al

A.2. Split operation
For theZ-split operationone reverses the roles ofCsplit andCmerged. The startingpoint is the sameas shown in
figure 3(b),without±terms in themiddle.Then, inorder to split thepatch, onehas to split each four-bodyX stabilizer
in themiddle row into apair of two-bodyX stabilizers. Those stabilizers are shownwith±signsonfigure3(c). They
commutewith everything except for the central rowofZ-plaquettes.One can see thatmeasuring themwill remove
thoseZ-plaquettes fromthe stabilizer group,butkeep theproductof all thoseplaquettes, the logical Z Z1 2 of the two
separatepatches.Note that it is sufficient tomeasureonly the top (orbottom) rowof two-bodyX-checks as thebottom
(or top)one is then theproduct of those and theprevious four-bodyX-checks.This alsomeans that theoutcomesof
those two-bodychecks areperfectly correlatedbetween facingpairs. Letting  be the set of the top rowof those checks
andmp=±1 themeasurementoutcomeof the two-bodyplaquettep, theoperationperformed is then






+ -

Î

() ()X p1

2
.

p

mp

Then, to correct to standard surface codes with no remainingminus signs, one has to apply some of the previous
Z-plaquettes that were removed from the stabilizer, correcting the correlated facingX-checks. Labeling the set of
qubits affected by the correction c, one has

 

 
 

+ -
=

+

Î Î

() · () () () · ()Z c
X p X p

Z c
1

2 2
.

p

m

p

p

This operation corresponds to S+, defined in equation (1). If onewants to implement S−, defined in equation (2),
then one has to additionally apply a logical representative ofX on thefirst patch, X1. The choice of one or the
other version is conditioned by the previousmL outcome that we received during themerging step. Then, to
show that this performs the correct logical operation, we analyze




=

+

Î

-
˜ () · · () · () ·†S E X

X p
Z c E

2
,m

p
split 1 mergedL

mL1
2

which, using the properties of the encoding isometries, S̃mL
simplifies to

=
-

˜ · () · ()†S X E E . A5m 1 split mergedL

mL1
2

At this point, recalling equation (A4), we can see that
= = =   ˜ (˜) ()† †S M M S ,

which concludes theproof of correctness for the split operation.Note that itwas crucial to apply the intermediaryZ-
plaquettes (in g) as the correction. Ifwehad instead applied a string ofZ-flips between the faultyX-plaquettes, the
correctionwouldnot be absorbed in the encodingmapofCmerged andmoreoverwould anti-commutewith any
representative X ofCmerged or X X1 2 ofCsplit and thereforeflip thephase between the ñ∣0 and ñ∣1 states.

Appendix B. Example: code conversion as gaugefixing

To see the utility of gaugefixing for analyzing code conversion protocols, we consider two protocols for
converting from the  7, 1, 3 Steane code to the  15, 7, 3 Reed–Muller codewith six gaugeZ operators fixed
(see figure B1 for the stabilizers and gauge operators that define these codes). Thefirst, fromAnderson et al [31],
is based on the realization that the state yñ Ä ñ ñ + ñ ñ∣ (∣ ∣ ∣ ∣)0 0 1 1Steane

1

2 Steane Steane is a code state of the Reed–

Muller codewith its horizontalX gauge logical operators fixed, see top-right offigure B2. Conversion from the
Steane code to theReed–Muller code then involves fault-tolerantly preparing the eight-qubit ancilla state and
fixing the three appropriateZ gauge operators. The state is always stabilized by the Reed–Muller stabilizers,
whose eigenvalues can be reconstructed from the checks which aremeasured at every round, preserving the code
distance and allowing error correction by syndrome decoding.

The second scheme, fromColladay andMueller [32], is not based on gaugefixing, and begins with the eight
qubits needed for conversion initialized in the state ñÄ∣0 8. This ensures that the initial checks anticommutewith

TableA1.How M̃ transforms the computational basis states characterized
by their stabilizer group.

+M̃ -M̃

 State  State  State

á ñZ Z,1 2 ñ∣00 á ñZ ñ∣0 á - ñZ Z, 0

á - ñZ Z,1 2 ñ∣01 á - ñZ Z, 0 á ñZ ñ∣0
á- ñZ Z,1 2 ñ∣10 á- ñZ Z, 0 á- ñZ ñ∣1
á- - ñZ Z,1 2 ñ∣11 á- ñZ ñ∣1 á- ñZ Z, 0

17

New J. Phys. 21 (2019) 033028 CVuillot et al

any potentialX stabilizer supported on thefinal eight qubits, so that the only operators whose eigenvalues can be
reconstructed from themeasured operators areZ operators, preventing the correction ofZ errors (see figure B2
for a graphical comparison of these code conversion protocols). The difference in fault tolerance between these
two protocols which accomplish the same task provides uswith a goodmotive to incorporate subsystem codes
into the analysis of code deformation and lattice surgery, considered in themain text.

Examining theCriterion 1 from section 4.1, one can see that the Anderson scheme has an underlying
subsystem codewith distance 3, whereas not having anyX-stabilizers, the Colladay scheme has an underlying
subsystem codewith distance 1.

AppendixC.Disparity in error rates of CNOTgates

A jointmeasurement is realized by performing amerge and a split operation in sequence. In our simulation, the
circuits infigure 4(a) are decomposed into the ones infigure C1. FigureC2 shows that the rates of X /Z errors
on the control and target qubits are different for the rotated surface codewith d=5. This disparity can be

Figure B1. Stabilizers of the Steane andReed–Muller codes, andZ gauge operators of the Reed–Muller code. Red tinting on a face or
volume indicates the presence of aZ operator on the vertices whichmake up that face or volume. For example, there are six Reed–
Muller gauge operators of the form ÄZ 4, supported on the red-tinted quadrilaterals seen on the right. Green tinting indicates the
presence of both anX and aZ stabilizer operator.

Figure B2.Comparison between Steane-to-Reed–Muller conversion schemes from [31] (top) and [32] (bottom). Red and green
tintingmatch figure B1, blue tinting indicates anX operator supported on the vertices of the tinted face or volume. Tinted vertices/
edges indicate weight-one/two operators supported on the tinted vertex/edge. In theAnderson scheme, the subsystem codewhich
applies during the code deformation ismade explicit; it is the distance-three Reed–Muller code. TheColladay scheme, however, does
not have anyX operators in the relevant stabilizer,  , so the distance of the relevant subsystem code is only 1, see section 4. Note:
Gauge operators in the top right should also be present in the bottom right, they are not drawnhere for clarity.

18

New J. Phys. 21 (2019) 033028 CVuillot et al

explained using a toymodel to account for propagation of logical errors throughmeasurement-controlled
corrections. In this toymodel, identity gates result in an X or Z error with probability p (Y errors are assumed
to occurwith probability∼p2, since theminimum-weight Y operator has weight -d2 1 in the surface code).
Themerge operations aremodeled as ideal jointmeasurements, followed by an error of the form ÄX ,  Ä X ,

ÄZ , or  Ä Z , each occurringwith probability p, since these are the likeliest logical errors. If a logical Pauli
error occurs, it propagates forward through the circuit, changing themeasured eigenvalue for anymeasurement

FigureC1.The decomposed circuits (a) and (b) of the top and bottommeasurement-based CNOTcircuits infigure 4(a).

FigureC2. X and Z error rates on the control and target qubits for lattice-surgery-based CNOToperations at distance 5. (a) and (b)
Correspond to the phenomenological errormodel, (c) and (d) correspond to the circuit-based errormodel. The disparity in error
rates is explained by error propagation through themeasurement-based circuit implementing the CNOT.

19

New J. Phys. 21 (2019) 033028 CVuillot et al

operatorwithwhich it anticommutes. For example, if an ÄX error occurs after theMXX operation in
figure 4(a) (inwhich the ancilla begins in the ñ∣0 state), themeasured value bwill bemapped to - b1 , causing an
X operator to be incorrectly applied to the target qubit at the end of the CNOT. It is easy to confirm that there
are 7 suchfirst-order errors which result in an X error on the target qubit, 6 errors which result in a Z error on
the control qubit, and 3 errors which result in the other logical errors shown infigures C2(a) and (c) (a similar
analysis holds for the error rates shown infigures C2(b) and (d)). The biased logical error rates predicted by this
simplifiedmodel are in good agreementwith the logical error rates observed in simulation, shown infigure C2.
Preventing this bias from growing during the execution of a long algorithm, by appropriate selection of
decomposition for CNOTs, is likely an important step in the design of high-performance fault-tolerant circuits
for quantum computation.

ORCID iDs

ChristopheVuillot https://orcid.org/0000-0002-3445-0179
Lingling Lao https://orcid.org/0000-0001-6870-5670
BenCriger https://orcid.org/0000-0001-9959-6462

References

[1] Shor PW1994Algorithms for quantum computation: discrete logarithms and factoring 35th Annual Sym. on Foundations of Computer
Science, 1994 Proc. (Piscataway, NJ: IEEE) pp 124–34

[2] Jordan S 2011Quantum algorithm zoo http://math.nist.gov/quantum/zoo/
[3] RistèD, Poletto S,HuangM-Z, BrunoA,VesterinenV, SairaO-P andDiCarlo L 2015Detecting bit-flip errors in a logical qubit using

stabilizermeasurementsNat. Commun. 6 6983
[4] Kelly J et al 2015 State preservation by repetitive error detection in a superconducting quantum circuitNature 519 66–9
[5] SteaneAM1996 Error correcting codes in quantum theoryPhys. Rev. Lett. 77 793
[6] Knill E and LaflammeR 1996Concatenated quantum codesTechnical ReportU.S. Department of Energy (https://doi.org/10.2172/

369608)
[7] BaconD2006Operator quantum error-correcting subsystems for self-correcting quantummemories Phys. Rev.A 73 012340
[8] Fowler AG,MariantoniM,Martinis JM andClelandAN2012 Surface codes: towards practical large-scale quantum computation

Phys. Rev.A 86 032324
[9] YuKitaev A 2003 Fault-tolerant quantum computation by anyonsAnn. Phys., NY 303 2–30
[10] WangD S, Fowler AG andHollenberg LCL 2011 Surface code quantum computingwith error rates over 1%Phys. Rev.A 83 020302
[11] BombínH andMartin-DelgadoMA2009Quantummeasurements and gates by code deformation J. Phys. A:Math. Theor. 42 095302
[12] HorsmanC, Fowler AG,Devitt S andVanMeter R 2012 Surface code quantum computing by lattice surgeryNew J. Phys. 14 123011
[13] PaetznickA andReichardt BW2013 universal fault-tolerant quantum computationwith only transversal gates and error correction

Phys. Rev. Lett. 111 090505
[14] BombinH2011Clifford gates by code deformationNew J. Phys. 13 043005
[15] Landahl A J andRyan-AndersonC 2014Quantum computing by color-code lattice surgery arXiv:1407.5103
[16] Bravyi S 2016 Fault-tolerant quantum computing by code deformationQIPTutorial
[17] PoulsenNautrupH, FriisN andBriegelH J 2017 Fault-tolerant interface between quantummemories and quantumprocessorsNat.

Commun. 8 1321
[18] BrownB J, Laubscher K, KesselringMS andWootton J R 2017 Poking holes and cutting corners to achieve clifford gates with the

surface code Phys. Rev.X 7 021029
[19] Litinski D and vonOppen F 2018 Lattice surgerywith a twist: simplifying clifford gates of surface codesQuantum 2 62
[20] Fowler AG andGidney C 2018 Lowoverhead quantum computation using lattice surgery arXiv:1808.06709
[21] VasmerMandBrowneDE 2018 universal quantum computingwith 3d surface codes arXiv:1801.04255
[22] Dennis E, Kitaev A, Landahl A and Preskill J 2002 Topological quantummemory J.Math. Phys. 43 4452–505
[23] Raussendorf R andHarrington J 2007 Fault-tolerant quantum computationwith high threshold in two dimensions Phys. Rev. Lett. 98

190504
[24] BombínH2010Topological order with a twist: Ising anyons from an abelianmodelPhys. Rev. Lett. 105 030403
[25] GottesmanD1998TheHeisenberg representation of quantum computersProc. XXII International Colloquium onGroup Theoretical

Methods in Physics ed S PCorney, RDelbourgo and PD Jarvis
[26] GottesmanD1999 Fault-tolerant quantum computationwith higher-dimensional systemsChaos, Solitons&Fractals 10 1749–58
[27] de BeaudrapN andHorsmanD2017The zx calculus is a language for surface code lattice surgery arXiv:1704.08670
[28] PoulinD 2005 Stabilizer formalism for operator quantum error correction Phys. Rev. Lett. 95 230504
[29] Campbell E T 2019A theory of single-shot error correction for adversarial noiseQuantum Sci. Technol. 4 025006
[30] FawziO,Grospellier A and Leverrier A 2018Constant overhead quantum fault-tolerance with quantum expander codes 59th IEEE

Annual Symposium on Fondations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018 743–54
[31] Anderson J T,Duclos-Cianci G and PoulinD 2014 Fault-tolerant conversion between the steane andReed–Muller quantum codes

Phys. Rev. Lett. 113 080501
[32] ColladayKR andMueller E 2018Rewiring stabilizer codesNew J. Phys. 20 083030

20

New J. Phys. 21 (2019) 033028 CVuillot et al

https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0002-3445-0179
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-6870-5670
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
https://orcid.org/0000-0001-9959-6462
https://doi.org/doi.org/10.1109/sfcs.1994.365700
https://doi.org/doi.org/10.1109/sfcs.1994.365700
https://doi.org/doi.org/10.1109/sfcs.1994.365700
http://math.nist.gov/quantum/zoo/
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.2172/369608
https://doi.org/10.2172/369608
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1088/1751-8113/42/9/095302
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PhysRevLett.111.090505
https://doi.org/10.1088/1367-2630/13/4/043005
http://arxiv.org/abs/1407.5103
https://doi.org/10.1038/s41467-017-01418-2
https://doi.org/10.1103/PhysRevX.7.021029
https://doi.org/10.22331/q-2018-05-04-62
http://arxiv.org/abs/1808.06709
http://arxiv.org/abs/1801.04255
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/DOI.org/10.1016/S0960-0779(98)00218-5
https://doi.org/DOI.org/10.1016/S0960-0779(98)00218-5
https://doi.org/DOI.org/10.1016/S0960-0779(98)00218-5
http://arxiv.org/abs/1704.08670
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/doi.org/10.1088/2058-9565/aafc8f
https://doi.org/DOI.org/10.1109/FOCS.2018.00076
https://doi.org/DOI.org/10.1109/FOCS.2018.00076
https://doi.org/DOI.org/10.1109/FOCS.2018.00076
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1088/1367-2630/aad8dd

	1. Introduction
	2. Code deformation and lattice surgery
	2.1. Code deformation
	2.2. Lattice surgery

	3. Gauge fixing
	4. Fault-tolerance analysis with gauge fixing
	4.1. Fault-tolerance of code deformation
	4.1.1. Noisy measurements

	4.2. Code deformation examples
	4.2.1. Grow operations
	4.2.2. The merging and splitting operations
	4.2.3. Plain surgery

	5. Numerics
	6. Discussion and conclusion
	Acknowledgments
	Appendix A.
	A.1. Merge operation
	A.2. Split operation

	Appendix B.
	Appendix C.Disparity in error rates of CNOT gates
	References

