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Abstract

Adaptive optics are widely used to correct the wavefront distortion imposed by at-
mospheric turbulence. Focal plane phase retrieval from intensity measurements has
advantages due to the ease of implementation, potential broader application, less com-
putations, low cost, high system bandwidth, simplified hardware and less calibration.
To cope with the non-linear relation between focal plane intensity and wavefront phase
the use of Machine Learning is investigated. A supervised learning deep Convolutional
Neural Network is used to assess the feasibility for deriving a direct mapping between
a single out of focus CCD intensity measurement and the Zernike modes belonging to
it. A model of a typical free space optical communication system is used to asses 13
different CNN architectures. The first 35 Zernike modes(disregarding tip/tilt) were re-
trieved from Kolmogorov based CCD intensity measurements of size 70x70 with constant
amplitude, turbulence strength of 1 ≤ D/r0 ≤ 6, 7 ≤ D/r0 ≤ 12 and 13 ≤ D/r0 ≤ 18
and a SNR of 22dB. The convergence of a 128 channel six layer CNN with kernal size
3 using stride resulted in a mapping providing a residual wavefront error of 5nm, 21nm
and 74nm after reconstruction of the wavefront. The results prove that a CNN can
be used to map out of focus intensity data directly onto the Zernike coefficients of the
wavefront. The CNN is validated by an experimental setup which was used to generate
real input and output data. With a turbulence strength of 5 ≤ D/r0 ≤ 15 the mean
squared phase error was found to be 72nm. The use of a deep CNN for phase retrieval
implementation in free space optical communications is promising and can provide fast
and accurate phase retrieval with relatively simple hardware and faster computations.
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Chapter 1

Introduction

1-1 Background

Already in 1608 the first telescope was invented in the Netherlands by Hans Lippershey
after which new developments in the field of optics took a flight. Over the years the
quality and aperture of telescopes kept increasing, partially due to the curious minds
of astronomers. After many advances Huygens found in the mid 50’s that starlight
is mostly coherent until it reaches the earths atmosphere causing seeing conditions to
degrade significantly. After a period of research to this it is now known that due to
the chemical composition and state of the atmosphere electromagnetic waves undergo
dispersion, distortion, absorption, reddering and refraction when propagating through
this medium[2], where the contribution of each individual phenomena is also largely
dependent on the wavelength of the subjected electromagnetic wave.

In the contemporary society we live in we highly rely and depend on a backbone of ter-
restrial and free space means of communication[3] using these electromagnetic waves or
more specifically Radio Frequency (RF) waves. High bandwidth RF data links make sure
that global communication and data exchange is of low latency and high throughput[3].
Various global players such as Intelsat, Eutelsat and Echostar make use of large, complex
and costly systems to guarantee our dependency on communications. Though with the
ever growing demand on availability and throughput the systems providing these services
are growing bigger, more complex and more expensive[4]. Apart from that, free space
RF spectrum has become congested making it difficult for the International Telecom-
munications Union (ITU) to allocate frequency bands to users without constraints on
usage due to the risk of interference.

Due to these indicated issues high throughput, low interference systems in the visible
light spectrum and abutting frequencies are finding their way to the stage. These optical
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systems, using a focused beam penetrating through free space, enabled the development
of communication systems transceiving at orders of magnitude higher data-rates. This
without having to de-conflict different users due to the low divergence of the emitted
beam and with that the need to file for a license at the ITU. Additionally, due to the
low divergence of the beam less power is required which opens up opportunities in space
based implementations where the available power budgets are often constraining link
throughput.

Unfortunately the wavelength used for such systems brings new challenges to over-
come when transceiving through the atmosphere. Atmospheric conditions are constantly
changing and with that many variables influence the performance of a Free Space Op-
tical Communications (FSOC) system. Clouds, fog, snow and rain absorb and scatter
the laser beam causing attenuation of the transmitted beam and with that increasing
bit error rate[2] or in the case of cloud deck making communications impossible. At-
mospheric turbulence is a form of scattering causing various phenomena that make the
optical wavefront deform[5]. This turbulence can cause beam wander or spreading and
scintillation which further degrades the link. Also other influences such as beam diver-
gence, pointing loss, system noise, vibrations cause the optical link to degrade further.
Though apart from clouds, for which no apparent cloud penetrating solution is available,
atmospheric turbulence is often the most severe[2].

This turbulence causes the light to travel different path lengths resulting in a phase shift
in the emitted bundle. In the 1950’s the concept of Adaptive Optics (AO) was already
found to be suited for the correction of this phase aberration in the distorted wavefront[6].
Though it took another 20 years before the first techniques were implemented which were
continuously improved from of that moment.

1-2 The principle of adaptive optics

Figure 1-1 shows two implementations of an AO system. On the left the Wavefront
Sensor (WFS) is placed after the Deformable Mirror (DM) so that a closed loop system
can be realized since a residual error can be measured. On the right the open loop
control implementation is shown, this has as advantage that the control system does not
have to account for the corrections applied by the DM. A downside is that in order to
implement open loop control the DM has to be modeled very accurately to prevent DM
states that not fully counter the wavefront due to a lack of feedback.

AO provide a means to correct a distorted wavefront so that the incoming electromag-
netic waves can be effectively propagated to a focal plane where often a science instru-
ment or detector is placed. By implementing a DM in the AO system the path length
of the Electro Magnetic (EM) waves can be altered by deflecting the mirror surface.
This way a phase shift in the wavefront can be countered as much as possible. As the
wavelength of visible light and abutting frequencies are in the range of Nanometers the
DM needs to be able to realize deflections on this small scale too.
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1-3 Goal of this research 3

Figure 1-1: Two general implementations of an AO system. On the left a closed loop
implementation where the WFS is placed after the DM. On the right an implementation in
open loop with the WFS placed before the DM.

1-3 Goal of this research

1-3-1 Problem

Various wavefront sensing techniques exist such as pyramid sensors[7] and interferometers[8]
but FSOC AO systems most often rely on a Shack-Harmann (SH) wavefront sensor[5]
to retrieve the phase. Although good performance is achieved with this method it has
downsides too. Due the lenslet array the resolution is limited and since the dynamic
range and sensitivity are inherently coupled as (1-1) and (1-2) present. Here θmin is the
sensitivity and θmax the dynamic range. Increasing the focal length f results in a higher
sensitivity but also a lower dynamic range. Further is a SH wavefront sensor often more
suited for setups of high optical power which is often not available on FSOC systems.
Also in challenging environments(e.g. low elevation angle, high turbulence) a limited
count of contributing lenslets can cause difficulty in retrieving the phase. Further sig-
nificant computational power must be made available for the phase retrieval algorithms,
careful calibration is required and hardware is costly. For these reasons Focal Plane (FP)
WFS can be a viable alternative when comparable performance to a SH WFS can be
reached.

θmin = δymin
f

(1-1)

θmax = d/2
f

(1-2)

A CCD detector in the FP can only measure intensity, making it impossible to directly
retrieve the wavefront phase. For this reason iterative algorithms such as the Gerchberg-
Saxton (GS) calculate the wavefront based on a cycle of Fourier transforms and its reverse
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to iteratively determine the wavefront phase based on a measured intensity. Other more
advanced algorithms exist but the iterative nature limits the computation speed[9][10].
Implementing such algorithms on state of the art systems as under development at
De Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO) is
challenging as requirements demand an operating frequency of 5000Hz for high turbulent
environments.

As the transformation from FP intensity data to wavefront phase is non-linear the use of
Machine Learning (ML) can be interesting as it might can provide a means to find a direct
mapping between intensity measurement and phase so that iterative algorithms become
superfluous, a possible broader range of turbulent states can be handled, hardware is
simplified and calibration is of less essence.

1-3-2 Goal

Neural networks have already been used often to find (non-linear) mappings between
sensory input and system output. Especially in the last decade ML established itself in
a very broad field of applications, such as health care, manufacturing, education, finan-
cial modeling, policing, and marketing. This is partially due to software packages that
bring these techniques to the doorstep of a non-computer scientist[11][12]. To investi-
gate whether ML, or in this case more specifically a Neural Network (NN) can provide a
solution to the presented non-linear focal plane phase retrieval problem the goal of this
research is to;

Investigate if a Feed Forward Neural Network (FFNN) can be used to find a mapping
between FP intensity images and the wavefront phase for an open loop adaptive optics
setup meant for free space optical communications.
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1-3-3 Report structure

Figure 1-2 presents the processing sequence from incoming electromagnetic field E to
the commanding of the DM. Here X represents a 2D array holding pixel values of the
out of focus plane, ŷ is a vector holding the wavefront mode coefficients retrieved by the
NN and ŷDM a vector holding the command voltages for the DM actuators. The figure
also shows the DM control as a step but as the DM commanding is straight forward and
not defined as a research goal, the training of a NN for this task is superfluous and out
of scope.

Figure 1-2: The steps from incoming wavefront to DM actuation by the use of NN’s

To enable the training of a NN chapter 2 of this report focuses on the generation of
E, X and reference NN output y in the shape of the Zernike modes present in the
wavefront. By the use of this model data can be generated with which an investigation
to the phase retrieval from the focal plane data can be started. Chapter 3 focuses on the
generation of a set of NN architectures by training a basic architecture to distill which
hyperparameters are important. Thereafter the NN architectures are evaluated on input
data for different turbulence parameters in chapter 4. To validate the results of chapter
4 an experimental setup is build to prove the working principle of the found results as
will be elaborated on in chapter 5. In chapter 6 the found results are discussed and
conclusion are drawn.
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Chapter 2

Input- output data model

Before a Neural Network (NN) for phase retrieval or prediction can be trained, input and
output data has to be available for training. Therefore a model is created that provides
input data X and reference output y, this chapter describes the developed model for
this purpose. The NN to be designed for phase retrieval would then have as goal to find
a mapping of X onto y.

2-1 Model layout

The model will be build as a sequence of operations. First phase screens representing the
turbulence have to be created as source of the distortion. Secondly this turbulence has to
be propagated through the optical system towards the Wavefront Sensor (WFS) which is
a defocused Charge Coupled Device (CCD). Thirdly the complex electromagnetic field
has to be translated to a 2D pixel array by modeling the CCD.

Figure 2-1 shows a general Adaptive Optics (AO) setup of which the red part has to be
modeled to acquire input and output data. The camera at the end of the chain can be
either a single mode fiber or a CCD for pointing, acquisition and tracking camera but is
not relevant for the data model. For the purpose of generating X and y the AO setup
from source to WFS has to modeled as will be elaborated on in the following subsections.

In order to work with representative dimensions and quantities the De Nederlandse
Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO) Ofelia AO bread-
board [13] is used as reference. Ofelia stands for Optical Feeder Link Adaptive optics and
is the most recent Free Space Optical Communications (FSOC) ground station bread-
board at TNO and is meant to evolve into a full scale FSOC ground station in the near
future. In the basis the system is build as full duplex closed loop system incorporating a
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8 Input- output data model

Figure 2-1: The schematic layout of the optical system that is partially modeled for simu-
lations.

0.1m Aperture, a Shack-Harmann (SH) WFS, tip-tilt sensor, Focus Camera (FC), Point
Ahead Mirror (PAM), fast steering mirror and Deformable Mirror (DM).

2-2 Phase screens

The first step is to provide the source disturbance to the model. At TNO a computa-
tional tool called Helsinki is available to generate realistic turbulence data based on a
Kolmogorov[14] spectrum and for which various turbulent layers can be stacked based
on a C2

n profile. The output of the tool is both a sequence of 2D phase and amplitude
frames. For the purpose in this research a disadvantage of Helsinki is that, depending
on the parameters used, it takes a long time to generate the frames even on a cluster of
PC’s( 500 frames in 3 days on TNO cluster). Training a NN without the risk of over-
fitting would require a multiple in the range of 10000 to 100000 when referring similar
problems with 2D imagery input[15]. For this reason it was chosen to not use this high
fidelity model but to generate a custom input.

Since the main question to answer is whether the phase can be retrieved from the Focal
Plane (FP) in the shape of Zernike coefficients it is decided to create a model specifi-
cally for this research purpose. This has as advantage that full control of the input is
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guaranteed and the relation between the Zernike modes to retrieve and the presented
phase disturbance is pure and without noise(apart from CCD detector). To prove the
concept it is also chosen to fix the amplitude of the turbulence to one. This again is to
isolate the problem to only phase retrieval.

The following subsections describe the functions that have been used to generate the
phase screens based on the stated here above.

2-2-1 Zernike modes

The incoming aberrated wavefront is often expressed by the use of Zernike coefficients[16]
developed by the Dutch physicist Frits Zernike. These coefficients are used extensively in
various fields to describe the wavefront. Also for phase retrieval the coefficients are used
to express the wavefront phase and often form an intermediate step before translating
these to DM commands. There are positive and negative Zernike polynomials, the
positive Zernikes are defined by 2-1 and the negative by 2-2.

Zmn (ρ, φ) = Rmn (ρ)cos(mφ) (2-1)

Z−mn (ρ, φ) = Rmn (ρ)sin(mφ) (2-2)

Here the radial polynomial R is provided by;

Rmn (ρ) =
(n−m)/2∑
k=0

(−1)k(n− k)!
k!((n+m)/2− k)!((n−m)/2− k)!ρ

n−2k (2-3)

Here ρ represents the radius and φ azimuthal angle. Further n ≥ m. for values where
m ⊂ 0 the polynomial is named negative.

A specific Zernike is often referred to by the J number which represents the polynomial
ordering number. This number is provided by Eq. (2-4). Though often the polynomial
ordering number is simply called a mode, as will also be the case in this report.

J = n(n+ 2)m
2 (2-4)

Zernikes are orthogonal on the unit disk and often the low order modes are depicted by
a specified name. The first five modes are piston(Z0

0 ), tip(Z−1
1 ), tilt(Z1

1 ), defocus(Z0
2 ),

and astigmatism(Z−2
2 and Z2

2 ).

The Ofelia DM with 57 actuators is a very capable device though it is chosen to design
the model for the retrieval of the first 35 Zernike modes as these already represent 98.8%
of the total phase error and is enough to prove the concept. For clarity the modes to
retrieve are shown in Figure 2-2.
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10 Input- output data model

Figure 2-2: The first 35 modes that the NN will be tough to retrieve.

2-2-2 Randomizing phase screens

With increasing mode number less contribution to the overall phase φ is delivered. In
order to generate a realistic phase pattern this has to be incorporated in the model. To
do so an analysis of a Kolmogorov[14] turbulence by Noll[1] provides us with equations
for the mean square residual phase error as are provided here in Table 2-1.

Table 2-1: Zernike-Kolmogorov mean square residual phase errors(∆J) as by Noll[1]

∆1 = 1.0299(D/r0)5/3 ∆12 = 0.0352(D/r0)5/3

∆2 = 0.582(D/r0)5/3 ∆13 = 0.0328(D/r0)5/3

∆3 = 0.134(D/r0)5/3 ∆14 = 0.0304(D/r0)5/3

∆4 = 0.111(D/r0)5/3 ∆15 = 0.0279(D/r0)5/3

∆5 = 0.088(D/r0)5/3 ∆16 = 0.0267(D/r0)5/3

∆6 = 0.0648(D/r0)5/3 ∆17 = 0.0255(D/r0)5/3

∆7 = 0.0587(D/r0)5/3 ∆18 = 0.0243(D/r0)5/3

∆8 = 0.0525(D/r0)5/3 ∆19 = 0.0232(D/r0)5/3

∆9 = 0.0463(D/r0)5/3 ∆20 = 0.0220(D/r0)5/3

∆10 = 0.0401(D/r0)5/3 ∆21 = 0.0208(D/r0)5/3

∆11 = 0.0377(D/r0)5/3 ∆J ∼ 0.2944J−
√

3/2

Based on these residual errors a randomization method for the generation of phase
screens can be derived with Frieds parameter r0 and aperture D as input. By using this
method unlimited test frames can be generated which is convenient for training NN’s.

M. Noppen Master of Science Thesis
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The Kolmogorov-Zernike residual error from Table 2-1 can be written as;

∆J = cJ(D/r0)5/3 (2-5)

Here cJ represents the coefficients used for each J mode. ∆J is the summed Kolmogorov-
Zernike residual phase error of the modes higher then J . When a mode is picked and all
higher modes are subtracted the phase contribution of that specific mode is found as is
defined in (2-6).

φJ = cJ(D/r0)5/3 − cJ+1(D/r0)5/3 = (cJ − cJ+1)(D/r0)5/3 (2-6)

With that random phase screens can be generated based on a random uniform distri-
bution for each J-mode. Since φJ is a variance the square root has to be taken so that
sigma becomes: σJ =

√
φJ and zero mean µ.

yJ ∼ N (µ, σJ) (2-7)

Here y are the random Gaussian J-mode coefficients that can be multiplied by the
corresponding Zernike mode profile which is scaled to a value so that the standard
deviation equals one. With that an overall input phase screen φin is defined by:

φin =
Jmax∑
J=1

yJ
ZJ√∑n

i=1 |ZJ,i−Z̄J |
2

n

(2-8)

Here ZJ is a 2D array holding the corresponding Zernike of mode J , n is the number of
elements in ZJ , Z̄J the average and φin the resulting phase screen that can be used to
propagate to the focal plane as described in the next section.

The reference output for the NN is defined by a vector y holding a specified range of
Zernike coefficients as defined in Eq. (2-9) where yJmin is the lowest mode to retrieve
and yJmax the maximum mode.

y = [yJmin , yJmin+1, yJmin+2, ..., yJmax ]T (2-9)

2-3 Propagation

With φin and Ain being respectively the input phase and amplitude of the incoming
wavefront, the propagation towards the WFS detector can be described using Fourier
theory as provided by Goodman[17]. First the complex electromagnetic field Ein is
determined by;

Ein = Aine
iφin (2-10)
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12 Input- output data model

Next a simplified beam splitter is modeled for which the phase shift and the absorption
by the reflective layer are neglected.

Eprop = Einr (2-11)

Here r is the reflectance of the beam splitter. Next a convex lens converges the light to
the out of focus WFS. Assuming a perfect lens the following equations are added.

φd =
Rd −

√
x2 + y2 +R2

d

2πλ (2-12)

Here φd is the phase shift due to the local difference in path length created by the lens.
Rd is the divergence radius of the lens, x and y are the local coordinates in the focal plane
and λ is the wavelength. Next the Fourier electric field in the focal plane is provided by
the discrete 2D Fourier transform.

EFPf = F(Eprop + eiφd)F(El) (2-13)

Eq. (2-13) provides a unique solution as the Fourier Transform is performed on a 2D
array[18]. Further El is an extra term accounting for the out of focus setup as is provided
by Eq. (2-14).

El = le
2iπ
λ
RFP

R
(2-14)

Here R = x2 +y2 + l2, RFP =
√
R and l is the distance between the lens and the camera

sensor.
The final EM field at the focal plane then becomes;

EFP = F(EFPf )−1 (2-15)

2-4 CCD

A CCD is modeled to find the digital intensity pattern, for this an existing TNO Matlab
script "Add_noise.m" by R. Saathof is adopted and slightly altered.
Starting with the presented electric field EFP at the CCD only the intensity Id can be
measured in W/m2 so that;

Id =| EFP |2 (2-16)

This intensity has to be transformed to a digital signal in the format of pixel values in
an image. To do so the detector is modeled by the following equations.
First the number of received photons n on the detector surface is calculated based on
the received power Pi and the sampling rate fs,

nr = Pi
Epfs

(2-17)
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Here Ep = ch
λ , with c being the speed of light and h Planck’s constant. From the received

photons only a part is detected due to the detector properties;

n = nrQeraff t (2-18)

Here nr is the read out noise in electrons, Qe the quantum efficiency in the range 0 to
1, ra the duty cycle, ff the fill factor and t the transmission factor.

Knowing the total number of photons collected and the intensity distribution over the
number of photons per pixel is calculated by;

Ipixel = Id∑
Id
n (2-19)

Due to dark current dc noise is added to the above array.

I = Ipixel + dcfs (2-20)

Now that the number of photons per pixel including dark current is know Analog to
Digital (AD) conversion is done for 0 < I < fw, where fw is the maximum number of
photons one pixel on the detector can hold.

Ddig = (2b − 1) I
fw

+ 1 (2-21)

In Ofelia the Xenix Cheetah-640-CL[19] detector is used as WFS with properties as in
Table 2-2. Using these parameters combined with a received power Pin = 1∗10−6, out of
focus of 20% with respect to the focal length of the lens and various turbulence strengths
the input frames X become as depicted in Figure 2-3
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14 Input- output data model

Figure 2-3: Example detector images for four different turbulence strengths ranging from
very low (D/R0 = 2) to very(D/r0 = 20) turbulence based on the first 35 modes and a
20% defocus.
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Table 2-2: Xenixs Cheetah-640-CL properties

Property Value

Quantum efficiency 0.7
Dark current 1.9e5e−/s/pix

Framerate(@full res.) 800
Max resolution 640 x 512

Pixel size 20µm
Readout noise 180e−
Duty cycle 0.1

ADC resolution 14
Full well 80000photons

Sample rate 2000Hz
Fill factor 0.9
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Chapter 3

CNN designs and hyperparameter
selection

The 2D pixel intensity pattern X, as captured by a Charge Coupled Device (CCD), is
an image holding features on the wavefront phase φ which is often retrieved by iterative
algorithms such as the Gerchberg-Saxton algorithm[20] or more advanced variants[9]
and alternatives[21]. This chapter will focus on retrieving φ from X by the use of a
Convolutional Neural Network (CNN).

With out of focus input image X ∈ R2 and corresponding wavefront phase φ expressed
in Zernike coefficients by y ∈ R as defined in Chapter 2, the goal is to find a mapping of
X onto y. This mapping is to be found by the Neural Network P as depicted in Eq. (3-1)

P : X → y (3-1)

Depending on the chosen architecture, P holds multiple coefficient matrices that are to
be found by a learning process based on gradient descent algorithms typically named
backpropagation in Machine Learning (ML). Various so called optimizers can be used
and will be tested in this chapter, though this report shall only focus on the forward prop-
agation through the NN as this defines the architecture of the NN. A basic description
of the optimization algorithms used for backpropagation are added as reference[22][23].

In the field of ML the best way to extract spatial information in so called features from
images is by using a CNN[24]. Many success stories are available partly due to the
availability of image datasets such as MNIST[25], SVHN[26], CIFAR-10/100[27] and
Imagenet[28] on which many Neural Network (NN)’s are benchmarked and competitions
are held. Since matching a CNN architecture to a specific problem is not an exact
science, lessons learned and practitioners rule of thumb have to be used in order to

Master of Science Thesis M. Noppen



18 CNN designs and hyperparameter selection

reduce the number of tuneable hyper-parameters to confine the search space for an
optimal architecture.

Figure 3-1 reveals the task of the CNN, here the first 35 Zernike modes(piston removed)
propagated from pupil to the out of focus plane are shown. Any random wavefront
phase can be represented increasingly accurate by combining increasingly higher order
Zernikes[1]. For this thesis the first 35 modes are selected due to the hardware available
and the fact that these modes already represent 98.8% of the presented wavefront(see
chapter 2) and is enough to prove the concept as a more accurate estimation of lower
modes would be more beneficial then retrieving even higher order modes. The task of the
CNN is to find features in intensity images that provide a measure for the contribution
of each Zernike mode in the wavefront phase, the mode coefficient. The higher the
radial mode of the Zernike the more difficult it will be to extract the coefficient since
the incorporated power of higher modes decreases fast.

Figure 3-1: Propagation from pupil to out of focus plane for the first 35 Zernike
modes(piston discarded)

The out of focus plane is used because it provides a better spread of the information.
In an ideal in focus situation all the information concentrates in just a few pixels, which
makes it very unlikely that features of the wavefront can be extracted or distinguished
in enough detail. Figure 3-2 shows this principle, here the right image shows the out of
focus intensity measurement of a wavefront which is likely to provide a better information
source then the in focus(near perfect PSF) image on the left. In chapter 4 this hypothesis
has been evaluated.
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3-1 CNN building blocks 19

Figure 3-2: Example image of a wavefront propagated to the in focus plane(left) and out
of focus plane(right). The right image shows better spatial separation of the information
as it is spread more over the detector.

3-1 CNN building blocks

The following subsections provide a general introduction to the elements the CNN con-
sists of and elaborates on choices for the CNN architecture.

3-1-1 Convolutional layers

A standard, commonly used convolutional layer consists of three subsequent parts. First
there is the convolution, secondly the neuron activation and in order to reduce the array
size pooling layers can be added. Since the input size of the CNN is a square array of
large size(100x100 up to 200x200) it is evident that a deep CNN will have to be used
when referring to achievements on the Imagenet dataset[28]. This dataset consists of
256x256 images on which successful CNN implementation had at least four subsequent
convolutions and often more[29][30].

Convolutional layers are computationally expensive due to the many matrix multiplica-
tions involved. For a square input array with leg size M , kernel size K and number of
channels C the required number of element wise matrix multiplications Q are;

Q = C(M −K + 1)2 (3-2)

and the needed Floating Point Operations (FLOPS) per element wise matrix multipli-
cation of the filter and partial image, summation and averaging are:

FLOPS = 2K2 + 1 (3-3)

With that the total amount of FLOPS for one full convolution becomes:

FLOPS = 2CK2(M −K + 1)2 + 1 (3-4)

After at least one convolution one can speak of a feature map which is a mapping of the
input data onto the feature space holding accentuated or diminished characteristics of the
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input. To the featuremap a bias is added to provide flexibility to the activation functions
as it allows a lateral shift in the activation function ad described in 3-2-1 . Each element
in the feature map is pulled through an activation function after each convolution to
provide non-linearity to the otherwise linear transformation of the convolutions. Out of
a broad range of activation functions the Rectified Linear Unit (ReLu) is baselined for
the design and is provided in (3-5)

f(x) =
{

0 for x < 0
x for x ≥ 0

(3-5)

The reason to choose the ReLu above sigmoids, tanh or others is because ReLu’s function
well in deep networks due to the capacity to handle the phenomena of fading gradients
when back propagating through the network for a weight update. Sigmoids as in (3-6)
or tanh as in (3-7) have less suited derivatives since the gradients weaken exponentially
when back-propagating through multiple activation layers while the derivative of a ReLu
is a constant. Due to the expected deep architecture this is a critical argument to choose
ReLu’s for adding non-linearity.

σ(x) = 1
1 + e−x

(3-6)

σ(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x
(3-7)

Another advantage of the ReLu is that it is computationally efficient, it comprises one
comparison and one multiplication making a 2 FLOPS total. Tanh and sigmoids require
more sophisticated methods for approximating the outcome since the Central Processing
Unit (CPU) needs to approximate these by a combination of simpler functions. Depend-
ing on the input value a tanh can easily consume more then 10 FLOPS[31] making them
computationally expensive.
With this the computational cost of adding bias and the execution of the ReLu becomes:

FLOPS = 2C(M −K + 1)2 (3-8)

The third component of the standard convolution layer is the pooling layer. This oper-
ation reduces the size of the feature maps by averaging the sum of multiple neighboring
matrix entries and replacing these with one average value. This way a 2D array can be
resized from 200x200 to 100x100 by using a pooling size P = 2 (meaning a 2x2 pooling).
The operation for either average pooling or maximum pooling comprises the following
amount of FLOPS:

FLOPS = P 2(M/P )2 (3-9)

When summing and rearranging (3-4), (3-8) and (3-9) the computational cost of one full
convolutional layer becomes:

FLOPSconv = (2CK2 + 2C)(M −K + 1)2 + P 2(M/P )2 + 1 (3-10)
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As indication for one convolution, activation and pooling with an input image of size
200x200, 32 channels and filtersize 3x3 this results in 24877761FLOPS ≈ 0.025GFLOPS.
Knowing that mid-end contemporary GPU’s can do up to 4TFLOPS(NVIDEAGTX1060),
160000 of these convolution can theoretically be performed per second.

3-1-2 Kernal considerations

More recent implementations of CNN’s disposed the pooling layers and uses a stride
higher then one for the 2D convolution in order to reduce size. Stride represents the
stepping size of the kernal over the input image or featuremap as is shown in Figure 3-3.

Figure 3-3: A filter moving over an image with a stride of two with the resulting featuremap
on the right.

Since in theory a higher stride causes a loss of information Springenberg et al[32] inves-
tigated how this compares to using pooling for reducing the resolution of the features in
the feature maps. Springenberg stated ’In particular, as opposed to previous observa-
tions, including explicit (max-)pooling operations in a network does not always improve
performance of CNNs. This seems to be especially the case if the network is large enough
for the dataset it is being trained on and can learn all necessary invariances just with
convolutional layers.’ With this in mind some of the to be tested CNN architectures will
be designed on this principle.
In addition to the above Simonyan[33] experimented with the implementation of multiple
subsequent small 3x3 filters in between of pooling layers instead of using one larger
7x7 filter and having a pooling layer after each convolution. The reason to do this
was to reduce the computational cost of the convolutions since a 7x7 filter requires
2 ∗ 72 + 1 = 99FLOPS according to (3-3) while 3 subsequent 3x3 convolutions require
3 ∗ (2 ∗ 32 + 1) = 57FLOPS. The architectures are trained on a classification task for
224x224 Red Green Blue (RGB) images. It was found that the datasets generalizes well
over a variety of different datasets and have matching or outperforming results compared
to more complex but less deep CNN’s. This shows the importance of having enough dept
in the NN which will be accounted for in the test architectures which follow in 3-2.
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Another recent method presented by Rastegari et al[34] demonstrated the use of binary
kernals, meaning that the kernal weights could only be one or zero. This dramatically
decreases the computational load and showed to perform well on the ImageNet dataset
but again information loss is evident due to which this method will not be regarded as
the primary goal is to first be able to retrieve the phase from intensity measurements.

3-1-3 Fully connected layers

Convolutions are needed to extract features from the input pixels and output a repre-
sentation of the data with reduced dimensions. This representation has to be followed
up by dense layers to provide the abiltiy to translate the representation of the data to
Zernike modes. Fully connected or often called dense layers can provide this ability. In
Figure 3-4 three subsequent layers of neurons are shown. The output of each neuron is
fed to all neurons in the subsequent layer but not before it is multiplied by a weight.
When zooming in on one neuron as in Figure 3-5 the internal workings are shown. In

Figure 3-4: Three subsequent fully connected layers

the neuron the inputs are multiplied with the weights, are summed, bias is added and
the activation function g provides the output of the neuron. With that the activation
value a of neuron i becomes:

ai = g(
i∑
1
xiwi + b) (3-11)

Here xi is a vector with the incoming values from the foregoing layer and wi the weight
vector for neuron i. One can decide to not connect all neurons to each other to create
subregions. Though when looking at the objective and Figure 3-1 the input is a modal
image on which each pixelvalue is a combination of all modes due to which no regions
for specific modes exist. Therefore fully connected layers are a must to be able to
differentiate between modes.

Generally the first dense layer after the CNN has the same size as the CNN output after
which the size is quickly reduced in three to four layers to the wanted output size which
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Figure 3-5: The components of a neuron in a dense layer

is the number of Zernike modes to retrieve. As this is common and since there is no
reason to do otherwise this implementation is chosen.
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3-2 Mathematical representation of the starting architecture

To gain insight in the set of architectures to further analyze a more general CNN is
defined first to eliminate hyper parameters that have little to no influence on the networks
convergence. For an input X with size 150x150 often three to five subsequent standard
convolutional layers are used with max-pooling layers in between followed by a few dense
layers. Therefore a basic configuration based on three convolutions is chosen to start
with as schematically depicted in Figure 3-6.

Figure 3-6: Starting architecture for instantaneous mode retrieval from intensity measure-
ments. On the left the input image is shown which is processed by three convolutions to
size 32x7x7, flattened to a 1D vector of size 1568 and fed through three dense layers.

To provide detailed insight to the computations the CNN performs the mathematical
operations of one discrete forward pass executed for the mapping P as defined in 3-1 are
described below.

First the 2D pixel data X of size 150x150 is normalized to prevent spurious weight
updates during training as provided in (3-12).

Xnorm = X

2nbits (3-12)

Here nbits is the resolution of the detector in bits and Xnorm is the normalized input to
the first 2D discrete convolution as provided in (3-13).

Y1(i, j, c) =
C∑
c=1

M∑
m=0

N∑
n=0

K1(m,n, c)Xnorm(i−m, j − n) (3-13)

Where; 0 ≤ i < M +N − 1 and 0 ≤ j < M +N − 1

Y1 is a 3D array holding C featuremaps of size ij, K1 is a 3D array holding C 2D kernals.
M and N are respectively the legsize of the square input array and kernal.
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After the convolution the bias term B1 ∈ R3 is added to the output of the convolutions
to provide flexibility for the subsequent ReLu activation function;

Y2 =
{

0 for Y1 +B1 < 0
Y1 +B1 for Y1 +B1 ≥ 0

(3-14)

Thirdly the 3D array holding the activation output Y3 is downsized by an average pooling
function described by;

Y3(i, j, c) =
C∑
c=1

∑P
m=0

∑P
n=0 Y3(i−m, j − n, c)

P 2 (3-15)

Since the architecture consists of three convolutional layers, Eq. (3-13), (3-14) and (3-15)
are repeated another two times in order to arrive at Y9;

Y4(i, j, c) =
C∑
c=1

M∑
m=0

N∑
n=0

K2(m,n, c)Y3(i−m, j − n, c) (3-16)

Y5 =
{

0 for Y4 +B2 < 0
Y4 +B2 for Y4 +B2 ≥ 0

(3-17)

Y6(i, j, c) =
C∑
c=1

∑P
m=0

∑P
n=0 Y5(i−m, j − n, c)

P 2 (3-18)

Y7(i, j, c) =
C∑
c=1

M∑
m=0

N∑
n=0

K3(m,n, c)Y6(i−m, j − n, c) (3-19)

Y8 =
{

0 for Y7 +B3 < 0
Y7 +B3 for Y7 +B3 ≥ 0

(3-20)

Y9(i, j, c) =
C∑
c=1

∑P
m=0

∑P
n=0 Y8(i−m, j − n, c)

P 2 (3-21)

Due to the matrix size reducing pooling layers of Eq. (3-15), (3-18) and (3-21) the
resulting matrix Y9 is of size 7x7x32 and has to be vectorized to the column vector a0
of size 1568 before feeding to the dense layers.

a0 = vec(Y9)T (3-22)

a0 is fed to the first dense layers with a tangens hyperbolicus activation so that the CNN
output ŷ becomes;
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a1 = tanh(a0W0 + b0) (3-23)

a2 = tanh(a1W1 + b1) (3-24)

ŷ = tanh(a2W2 + b2) (3-25)

Here a1 and a2 are the actuation values of dense layer one and two, W0 ∈ R2 is of size
1568x1000, W1 ∈ R2 of size 1000x500 and W2 ∈ R2 of size 500x34. b0, b1 and b2 are
vectors respectively of size 1568, 1000 and 500.

During the CNN training the Zernike vector output ŷ is used to calculate the error or
loss with the reference output y as defined in Eq. (2-9) by;

loss =
∑

(ŷ − y)2 (3-26)

With input X and y being an example pair (X, y) of a larger dataset X ∈ X and y ∈ y
with V entries, the CNN mapping P as defined in Eq. (3-1) for this CNN architecture
becomes P(Xi) = ŷi for a single input pair . Combined with the error function Eq. (3-26)
the value U to minimize by the backpropagation process is defined by;

U = 1
V

V∑
i=1

(
∑

(P(Xi)− yi)2) (3-27)

So that the minimization problem is defined by;

min
X∈X

U (3-28)

U is minimized using the process of backpropagation to update the weight matrices W2,
W1, W0 and biases b2, b1 and b0 in the dense layers, followed by the kernals K3, K2, K1
and biases B3, B2 and B1 of the convolutions. This update process is based on gradient
descent principles which are out of scope of this thesis though various often used inbuilt
algorithms of Tensorflow are tested in the next section.

3-2-1 Findings for the starting architecture

For the evaluation of the starting architecture the in- and output model defined in chapter
2 is used to generate data for the first 35 Zernike modes with a turbulence strength of
D/r0 = 10. The starting architecture was evaluated for the following combinations of
hyper-parameters:

• Batchsizes of 2, 4, 8, 16 and 32.

• Learningrate varying from 10−3, 10−4, 10−5 and 10−6
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• Optimizers: A method for stochastic optimization (ADAM)[35], Gradient Descent
(GD), Stochastic Gradient Descent (SGD)

After training the CNN with the varying parameters it is found that the batch-size
has little to no influence on the training process. Further it is found that the Learning
Rate (LR) greatly influences the convergence when chosen too big. Just as with common
gradient optimizers a too large stepsize can cause the algorithm to step over a (local)
minimum or even diverge. For the CNN it is found that for a LR of 10−4 or smaller no
noticeable decrease in the loss function is noticed. To remain on the safe side a LR of
10−5 is chosen for the to be tested CNN’s.

ADAM is an advanced optimizer that computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients. It
gained a lot of popularity since 2014 and is suited for a broad range of NN’s. For the
starting architecture it provides convergence to a loss 30% lower then the other optimiz-
ers. Therefore it is the baselined optimizer for the architectures where the learning rate
α = 10−5, combined with a first moment exponential decay rate β1 = 0.9 and second
moment exponential decay rate β2 = 0.999 are chosen as these are common parameters
to use.

Increasing the amount of dense layers resulted in no significant change to the loss, there-
for the amount of dense layers is fixed to three with a tangens hyperbolycus as activation
function and the layer size is to decrease gradually. Since the activation al of a tangens
hyperbolicus is always −1 ≤ al ≤ 1 a final layer is added in which only a linear scaling
is performed by a weight vector.

3-3 Architectures

With the learned in the above sections a subset of architectures is defined for which the
most important hyperparameters are set. This set of architectures is non-exhaustive and
merely a subset of all possible definitions based on gathered information in this chapter.
The architectures are provided a numbered name and are briefly described in the list
below. Table 3-3 provides the detailed architectures and the layers they consist of.

• M001: With a kernal size of three, stride as implemented by Springenberg[32] is
used to downsize the input by using six sequential convolutions.

• M002: The same architecture as M001 but with double the channels.

• M003: With a stride of three as implemented by Springenberg[32] the input is
flattened to a 1024 size vector after 4 convolutions. To support the stride of 3 a
kernal of size 5 is used.

• M004: The same architecture as M003 but with double the channels.

Master of Science Thesis M. Noppen



28 CNN designs and hyperparameter selection

• M005: With a stride of three as implemented by Springenberg[32] the input is
flattened to a 512 size vector after 3 convolutions. To support the stride of 5 a
kernal of size 7 is used.

• M006: The same architecture as M005 but with four times the number of channels.

• M007: Based on Simonyan[33] multiple small kernals instead of one bigger one
is used in between of pooling layers to reduce size. 2 pooling layers of size 4 are
needed to downsize the input within a reasonable amount of layers.

• M008: The same architecture as M007 but with double the channels.

• M009: Conventional CNN setup with a kernal of size 3 followed by a pooling layer
of size 4. Four layers are implemented and the last pooling layer is of size 3 so that
a vector of size 512 is created.

• M010: Conventional CNN setup with a kernal of size 3 followed by a pooling layer
of size 3. 5 layers are needed to downsize to a vector of size 512.

• M011: The same architecture as M010 but with double the channels.

• M012: Conventional three layer CNN setup with kernal size 5 and pooling layers
of size 4. The last pooling layer is of size 5 so that a vector of size 1024 can be
created.

• M013: The same architecture as M012 but with double the channels.
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Table 3-1: Specification of CNN architectures to be evaluated(part 1). Abbreviations are; k = kernal size, s = stride or
size for pooling layers, c = number of channels, p = padding, o = layer output size.

Model
Name FLOPS Layers(activation function skipped for estatics)

M001 36.6
MFLOPS

k = 3*3
s = 2
c = 32
p = 2

o=75*75*32

k = 3*3
s = 2
c = 64
p = 2

o=38*38*64

k = 3*3
s = 2

c = 128
p = 2

o=19*19*128

k = 3*3
s = 2

c = 256
p = 2

o=9*9*256

k = 3*3
s = 2

c = 512
p = 2

o=5*5*512

k = 3*3
s = 2

c = 512
p = 2

o=3*3*512

flatten
1*4608

dense
1*1000

dense
1*500

dense
1*y

scalar
1*y

M002 72.2
MFLOPS

k = 3*3
s = 2
c = 64
p = 2

o=75*75*64

k = 3*3
s = 2

c = 128
p = 2

o=38*38*128

k = 3x3
s = 2

c = 256
p = 2

o=19*19*256

k = 3*3
s = 2

c = 512
p = 2

o=9*9*512

k = 3*3
s = 2

c = 1024
p = 2

o=5*5*1024

k = 3*3
s = 2

c = 1024
p = 2

o=3*3*1024

flatten
1*9216

dense
1*1000

dense
1*500

dense
1*y

scalar
1*y

M003 46.8
MFLOPS

k = 5*5
s = 3
c= 32
p = 3

o=50*50*32

k = 5*5
s = 3
c= 64
p = 3

o=17*17*64

k = 5x5
s = 3
c= 128
p = 3

o=6*6*128

k = 5x5
s = 3
c= 256
p = 3

o=2x2x256

flatten
s=2

1x1024

dense
1*1000

dense
1*500

dense
1*y

scalar
1*y

M004 92.5
MFLOPS

k = 5*5
s = 3
c= 64
p = 3

o=50*50*64

k = 5*5
s = 3
c= 128
p = 3

o=17*17*128

k = 5x5
s = 3
c= 256
p = 3

o=6*6*256

k = 5x5
s = 3
c= 512
p = 3

o=2x2x512

flatten
s=2

1x2048

dense
1*1000

dense
1*500

dense
1*y

scalar
1*y

M005 70.9
MFLOPS

k = 7*7
s = 5
c = 32
p = 2

o=30*30*32

k = 7*7
s = 5
c = 64
p = 2

o=6*6*64

k = 7*7
s = 3

c = 128
p = 2

o=2*2*128

flatten
1x512

dense
1x256

dense
1*128

dense
1*y

scalar
1*y

M006 293.7
MFLOPS

k = 7*7
s = 5

c = 128
p = 2

o=30*30*128

k = 7*7
s = 5

c = 256
p = 2

o=6*6*256

k = 7*7
s = 3

c = 512
p = 2

o=2*2*512

flatten
1x2048

dense
1x1000

dense
1*500

dense
1*y

scalar
1*y

M007 36.7
MFLOPS

k = 3*3
s = 1
c = 32
p = 2

o=150*150*32

k = 3*3
s = 1
c = 32
p = 2

o=150*150*32

pool
s = 4

o=38*38*32

k = 3*3
s = 1
c = 64
p = 2

o=38*38*64

k = 3*3
s = 1
c = 64
p = 2

o=38*38*64

pool
s = 4

10*10*64

k = 3*3
s = 1

c = 128
p = 2

o=10*10*128

pool
s = 4

o=3*3*128

flatten
1*1152

dense
1*576

dense
1*288

dense
1*y

scalar
1*y

M008 82.1
MFLOPS

k = 3*3
s = 1
c = 64
p = 2

o=150*150*64

k = 3*3
s = 1
c = 64
p = 2

o=150*150*64

pool
s = 4

o=38*38*64

k = 3*3
s = 1

c = 128
p = 2

o=38*38*128

k = 3*3
s = 1

c = 128
p = 2

o=38*38*128

pool
s = 4

o=10*10*128

k = 3*3
s = 1

c = 256
p = 2

o=10*10*256

pool
s = 4

o=3*3*256

flatten
1*2304

dense
1*1152

dense
1*576

dense
1*y

scalar
1*y



Table 3-2: Specification of CNN architectures to be evaluated(part 2). Abbreviations are; k = kernal size, s = stride
or size for pooling layers, c = number of channels, p = padding, o = layer output size.

Model
Name FLOPS Layers(activation function skipped for estetics)

M009 38.5
MFLOPS

k = 3*3
s = 1
c = 64
p = 2

o=150*150*64

pool
s = 4

o=38*38*64

k = 3*3
s = 1

c = 128
p = 2

o=38*38*128

pool
s = 4

o=10*10*64

k = 3*3
s = 1

c = 256
p = 2

o=10*10*256

pool
s = 4

o=3*3*256

k = 3*3
s = 1

c = 512
p = 2

o=3*3*512

pool
s = 3

o=1*1*512

dense
1*256

dense
1*128

dense
1*y

scalar
1*y

M010 28.2
MFLOPS

k = 3*3
s = 1
c = 32
p = 2

o=150*150*32

pool
s = 3

o=50*50*32

k = 3*3
s = 1
c = 64
p = 2

o=50*50*64

pool
s = 3

o=17*17*64

k = 3*3
s = 1

c = 128
p = 2

o=17*17*128

pool
s = 3

o=6*6*128

k = 3*3
s = 1

c = 256
p = 2

o=6*6*256

pool
s = 3

o=2*2*256

k = 3*3
s = 1

c = 512
p = 2

o=2*2*512

pool
s = 2

o=1*1*512

dense
1*256

dense
1*128

dense
1*y

scalar
1*y

M011 75.5
MFLOPS

k = 3*3
s = 1
c = 64
p = 2

o=150*150*64

pool
s = 3

o=50*50*64

k = 3*3
s = 1

c = 128
p = 2

o=50*50*128

pool
s = 3

o=17*17*128

k = 3*3
s = 1

c = 256
p = 2

o=17*17*256

pool
s = 3

o=6*6*256

k = 3*3
s = 1

c = 512
p = 2

o=6*6*512

pool
s = 3

o=2*2*512

k = 3*3
s = 1

c = 1024
p = 2

o=2*2*1024

pool
s = 2

o=1*1*1024

dense
1*512

dense
1*256

dense
1*y

scalar
1*y

M012 41.2
MFLOPS

k = 5*5
s = 1
c = 32
p = 2

o=150*150*32

pool
s = 4

o=38*38*32

k = 5*5
s = 1
c = 64
p = 2

o=38*38*64

pool
s = 4

o=10*10*64

k = 5*5
s = 1

c = 128
p = 2

o=10*10*128

pool
s = 5

o=2*2*128

flatten
1*512

dense
1*512

dense
1*256

dense
1*y

scalar
1*y

M013 84.0
MFLOPS

k = 5*5
s = 1
c = 64
p = 2

o=150*150*64

pool
s = 4

o=38*38*32

k = 5*5
s = 1

c = 128
p = 2

o=38*38*128

pool
s = 4

o=10*10*128

k = 5*5
s = 1

c = 256
p = 2

o=10*10*256

pool
s = 5

o=2*2*256

flatten
1*1024

dense
1*1024

dense
1*512

dense
1*y

scalar
1*y



Chapter 4

Evaluation of CNN architectures

4-1 Evaluation parameters

For the evaluation of the Convolutional Neural Network (CNN)’s defined in section 3-3,
input X and reference output y are generated with the model as defined in chapter 2.
Pixel frames of size 150x150 are created as cutout from a larger pixel array where padding
was added to prevent border effects by the Fourier Transform. The first 35 modes are
incorporated for D/r0 = 2, 8, 14, 20 representing a very low to very high turbulent state.
The batch size is fixed to 8 and the Learning Rate (LR) to 1−5 as found in chapter 3-2-1.
Further an out of focus of 50mm on a focal length of 300mm is used. During training tip
and tilt are dismissed by not incorporating these modes in the reference output vector
so that y = [yJmin , yJmin+1, yJmin+2, ..., yJmax ]T with yJmin = 4 and yJmax = 35 at the
output to prevent these significant modes from dominating the learning process, also the
extraction of higher modes is also more interesting from of a research perspective.

The only noise in the modeled system is introduced by the detector of which the Signal
to Noise Ratio (SNR) is defined by Eq. (4-1) and is 22dB for a representative input
power for Free Space Optical Communications (FSOC) of Pi = 1mW and the Xenix
cheetah CCD as with specifications as provided in Table 2-2.

SNR = Qe(Pi/Ep/fs)√
Qe(Pi/Ep/fs) +Ndark + δ2

readout

(4-1)

The CNN is coded in Python and uses the Tensorflow[36] package in a dedicated Conda
environment with Cuda drivers installed as in appendix A. With Python as main execu-
tion environment the Matlab engine runs in the background to generate input data on
the fly. The computation graphs for the architectures are defined in a dedicated python
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32 Evaluation of CNN architectures

file and all hyper parameters can be controlled from of a Microsoft Excel worksheet.
The training process can be followed by a very simple Graphical User Interface (GUI).
Screenshots of the GUI and worksheet can be found in appendix B. The full code is
delivered on USB with this thesis.

With an unlimited source of input data due to the created model new epoch data frames
and reference outputs are generated freshly during training. Due to this there is no need
to separate an existing dataset in a train, test and evaluation part which will reduce the
risk of over fitting significantly.

4-2 Evaluation with modeled input and output

13 models have been evaluated, each for 4 different turbulence strengths. On average the
training took 14 hours per model. Models 1 to 7 were run for 600 Epochs with an epoch
size of 1000 images and models 8 to 13 were run 400 epochs as these CNN’s already
converged by then. The loss is defined by Eq. (4-2), where y is the reference output, ŷ
the Neural Network (NN) output and J the Zernike mode number.

loss =
35∑
J=4

(yJ − ŷJ)2 (4-2)
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Figure 4-1: The training loss for all models and the various turbulence strenghts filtered
by a moving average filter of size 500.

Figure 4-1 presents the training loss for each turbulence strength in a separate subplot
and is filtered by a moving average filter of framesize 500. Model M010 and M011
are dismissed as these networks where unable to converge. Loading epoch train data
dynamically during training appears advantageous as it denies the model to overfit to
the input data as can be seen by the intermediate spikes in the plot, which indicate the
loading of a fresh epoch.

It is observed that the performance degrades with increasing turbulence strength and
that M001 and M002 outperform the other models. M002 has the same architecture as
M001 but with double the channels. Therefore this indicates that more channels(feature
maps) benefit the model outcome, this is also supported by the other architectures
where the same phenomena is observed. More channels provide the ability to extract
more features which seems logical as the input data has a more or less arbitrary shape
instead of defined features as is often the case for a classification task where for instance
the lines of a car form a feature. For this problem it seems that the featuremaps function
as a bin system and with that a higher amount of bins results in a more accurate/less
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generic placement in a bin.

Moreover, using stride outperforms pooling layers for reducing the dimensions of the
input. Increasing the kernel size has a negative effect on the performance due to which we
can conclude that using kernel size 3x3 for feature extraction performs best as choosing
even smaller kernels eliminates the working principle of the convolution.

As M002 proved the best performance, Figure 4-2 depicts the loss of M002 in more
detail. The loss for respectively D/r0 = 2, D/r0 = 8, D/r0 = 14 and D/r0 = 20 are
0.0008, 0.007, 0.02 and 0.07rad2. When running the model on a fresh data set comprising
40000 new input images the loss is higher but with a same ratio between the turbulence
strengths. The test losses are provided in Table 4-1.

Figure 4-2: Filtered train loss for model M002 on four different turbulence strengths

Figure 4-3 shows the Mean Squared Error (MSE) per mode from of the fourth mode(no
piston, tip and tilt). Overall it is noted that the error variance is of the same order of
magnitude as the error itself which results in uncertainty in the retrieved phase modes.

When transforming ŷ to a phase image in R2 and taking the MSE with the reference
phase y one arrives at φMSE as presented in Eq. (4-3) with φref and φ̂ representing
respectively the reference phase and CNN output phase in radians and in R2 as provided
by Eq. (4-4) and Eq. (4-5). For D/r0 = 2 the resulting phase error is 15nm which is
equal to a φMSE/λ = 1% of the wavelength making it feasible to implement the CNN
in a real setup. For D/r0 = 8 the error is 15% of the wavelength which is to large for
only a measurement error especially when other error sources are still to be included.
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Figure 4-3: Mean squared error and variance per mode and turbulence strength.

φMSE =
∑n
i=1

∑n
j=1(φref (i, j)− φ̂(i, j))2

n
(4-3)

φref =
Jmax∑
J=1

yJ
ZJ√∑n

i=1

∑n

j=1 |ZJ (i,j)−Z̄J |2

n

(4-4)

φ̂ =
Jmax∑
J=1

ŷJ
ZJ√∑n

i=1

∑n

j=1 |ZJ (i,j)−Z̄J |2

n

(4-5)

.
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Turbulence strength Test loss Mean squared phase error
D/r0 = 2 0.002rad2 15nm
D/r0 = 8 0.036rad2 226nm
D/r0 = 14 0.133rad2 896nm
D/r0 = 20 0.307rad2 2238nm

Table 4-1: Test loss and mean squared phase error for model M002 and various turbulence
strengths.

A detailed analysis of the model convergence revealed that the biases of the kernals have
an even spread in negative and positive values which indicates that sufficient flexibility
in the model was available during training. Also Figure 4-4 shows the trained weights
of the fifth convolution. From this seemingly random figure we can conclude that all
weights in the kernals have converged and that no dead areas(all zeros or ones) exist in
the CNN.

Figure 4-4: The trained weights of the 3x3 kernals in the fifth convolution. Yellow repre-
sents a 1 and blue a 0.
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4-3 Evaluation with a kolmogorov phase

Now that a model is selected on a near perfect propagation of Zernike phase screens
it is also tested on a Kolmogorov[14] turbulence. Also the model is augmented with
more channels in the first layers to provide more ’bins’ for feature extraction. Of the
first three convolutional layers the number of channels is doubled so that these layers
have respectively 128, 256, 512 and 1024 channels as can be seen in Figure 4-5. Further
the input image size is reduced to a cutout of 70x70 pixels as little to no information
is present on the image edges and the model is named M102. With these alterations
the computational load sums to a total of 40 MFLOPS for one forward pass. This
theoretically means that a Geforce GTX1060 graphics card would be able to run it at
approximately 10kHz. Although the computations on a GPU will not be performed
this efficient as latencies and memory bandwidth can be very restricting the order of
magnitude of the load is realistic nevertheless.

Figure 4-5: Model M102 consisting of six convolutional layers with kernalsize = 3x3, stride
= 2 and ReLu activation.

Phase screens based on a Kolmogorov structure function are generated with an outer
scale L0 = 2m and an inner scale l0 = 0.005m. The aperture remains D = 0.1m and r0
is varied to generate turbulence strengths D/r0 of 2, 4, 6 and 8. These lower turbulence
strengths are chosen as a more severe turbulence was not feasible in section 4-2. The
reference Zernike mode output y is created by a linear optimization algorithm that fits
the Zernike profiles to the Kolmogorov phase.

Figure 4-6 presents the input data as it would be for the higher turbulence strenghts up
to D/r0 = 20 as used in 4. Figure 4-7 depicts the input to the CNN which is used for the
evaluation of the Kolmogorov turbulence. It can be seen that the speckle pattern due
to the turbulence is more realistic using a Kolmogorov spectrum as compared to using
Zernikes.
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Figure 4-6: A Kolmogorov turbulence consisting of three phase layers of various strengths
propagated to the 20% out of focus plane. Compared to pure Zernikes the speckle pattern
is better visible.

Figure 4-7: A Kolmogorov turbulence consisting of three phase layer for lower turbulence
strengths propagated to the 20% out of focus plane. Compared to pure Zernikes the speckle
pattern is better visible

4-3-1 In focus intensity measurements

Figure 4-8 shows the in focus intensity images of the same phase screens. Extracting
the phase information from an in focus image has practical advantages because many
Adaptive Optics (AO) systems already have a Focus Camera (FC) in their basic design
and the input frame could be chosen much smaller which reduces the size of the CNN.

Intuitively one can see that it would be more difficult to extract information from the
intensity pattern as the spatial spread of information is very limited. An evaluation of
the M102 model(M002 with double the feature maps) showed that the CNN is unable to
find a mapping as all weights in the model converge to zero. This indicates that using
an in focus camera in combination with a CNN to retrieve the phase is not feasible, even
for lower modes(3 ≤ J ≤ 14). Training a CNN for tip and tilt retrieval from the in focus
image might still be possible but is considered outside the scope of this report.
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Figure 4-8: A Kolmogorov turbulence consisting of three phase layer of various strengths
propagated to the in-focus plane. Compared to pure Zernikes the speckle pattern is better
visible

4-3-2 Results

Training model M102 for 700 epochs with an epochsize of 1000 resulted in the training
loss as depicted in Figure 4-8. Due to the extra feature maps the model was able to
converge further, though the spikes in the unfiltered data in the background indicate
the model experiences difficulties due to overfitting. This is also confirmed as the mean
squared wavefront error on a 40000 frame test dataset is 94nm, 364nm, 718nm and
1263nm for respectively the lowest to highest turbulence strength.

Figure 4-9: A Kolmogorov turbulence consisting of three phase layer of various strengths
propagated to the in-focus plane. The large spikes in the background indicate overfitting
to the epoch data.

A rerun on the exact same model but with a very small epoch size of 100 frames and
refreshing this epoch every 10 epochs improves the training significantly as the test
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results are comparative to the train results. Table 4-2 presents the outcome. It is
noted that the MSE wavefront error is higher compared to the Zernike phase which
can be explained as the Kolmogorov phase introduces a more sophisticated phase screen
including high frequency components that are not captured in the first 35 modes due to
which it can be regarded an additional noise signal to handle by the CNN.

Turbulence strength Test loss Mean squared phase error
D/r0 = 2 0.004rad2 37nm
D/r0 = 4 0.019rad2 133nm
D/r0 = 6 0.037rad2 287nm
D/r0 = 8 0.069rad2 455nm

Table 4-2: Test loss and mean squared phase error for model M102 and a Kolmogorov
phase without overfitting.

The convergence and reduction of the loss fucntion during training of the CNN as shown
in figure 4-9, but also as found in section 4-2, has proven that a mapping P can be found
to directly relate the out of focus intensity image to the Zernike modes present in the
wavefront.
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4-4 Kolmogorov phase with varying turbulence strength

In a practical implementation multiple CNNs could be trained and switched among in
real time when the strength of the turbulence changes. Therefore model M102 is also
trained against a dataset with varying D/r0. For training the same parameters as in 4-3
are used but for each phase frame D/r0 is randomly generated on a uniform distribution
within the range 1 ≤ D/r0 ≤ 6, 7 ≤ D/r0 ≤ 12 and 13 ≤ D/r0 ≤ 18. After training the
mean squared residual error per mode was found and presented in Figure 4-10.

Figure 4-10: Mean squared residual phase error after training with bounded D/r0

Frankly the mean squared residual phase error is drastically reduced compared to train-
ing on fixed turbulence strengths. Apparently training on a more diverse dataset ame-
liorates the convergence of the kernals. The overall performance indicators are shown in
Table 4-3 where the mean squared phase error again is based on (4-3).

Turbulence strength Test loss Mean squared phase error
D/r0 = 1− 6 0.00059rad2 5nm
D/r0 = 6− 12 0.0022rad2 21nm
D/r0 = 12− 18 0.0077rad2 74nm

Table 4-3: Test loss and mean squared phase error for model M102 and a Kolmogorov
phase without overfitting.

Figure 4-11 presents a selection of the featuremaps that are the result of the convolutions.
As expected no clear features are shown as would be the case with for instance a car where
often lines or edges are highlighted in the featuremaps. Although low order aberrations
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can be distilled from Focal Plane (FP) images by the human eye no clear distinction of
these modes is found in the featuremaps.

Figure 4-11: Four different featuremaps on the columns for five subsequent convolutional
layers on the rows.
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Chapter 5

Experiment

5-1 Goal of the experiment

With the found results based on modeled input and output data an experimental setup
is build to generate real data on which the found Convolutional Neural Network (CNN)
is trained and evaluated to demonstrate the working principle. This chapter describes
the experimental setup used, the tests performed and presents the results.

5-2 Hardware setup

Figure 5-1 presents the schematic layout of the experimental setup. An existing TNO
setup was used as basis and used a visible light spectrum laser which aided the calibration
process. The hardware items in the setup are listed here below:

1. 0.02mW 635nm laser point source.

2. 50mm convex lens for collimating the beam(f=250)

3. Diaphragm resizing the beamwidth to 13mm.

4. Deformable mirror

5. Convex lens(f = 200mm)

6. Convex lens(f = 60mm) to resize the beam to 4mm.

7. Beamsplitter
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8. Imperx 400 microlenslet Shack-Hartmann wavefront sensor as in Figure 5-2.

9. FO442SB IEEE 1394 monochrome CCD focus camera with a resolution of 1392x1024
pixels, framerate of 15fps and a pixelsize of 6.45µm. The camera is placed 20%
out of focus on a focal length of f=150mm of the preceding lens.

The used Deformable Mirror (DM) is an OKO 37 channel mirror with the piezo elec-
tric actuators arranged in a hexagonal grid covering a circular surface of 15mm. The
maximum deflection at the center of the mirror is 9µm.

Figure 5-1: Hardware layout of experimental setup.

Figure 5-2: 400 microlenslet Schack-Hartmann wavefront sensor used in the experimental
setup.
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5-2-1 Calibration

Before the DM was placed the setup was calibrated using a static mirror. After the
correct alignment procedures were followed to line up the optics the Shack-Harmann (SH)
Wavefront Sensor (WFS) was calibrated with existing software. A new reference grid was
generated and the power of the laser was adjusted for optimal performance. Figure 5-3
presents the CCD intensity pattern gathered by the WFS with an overlaying grid of 304
active lenslet spots used to reconstruct the wavefront from. Figure 5-4 shows a snapshot
of the 20% out of focus Focus Camera (FC) with the static mirror installed.

Figure 5-3: Calibrated SH WFS with the grid points defined for the static mirror setup.

Figure 5-4: Out of focus snapshot of the focus camera using the static mirror(right)
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5-2-2 Process steps

Due to time and resource restrictions the decision was made to separate the learning
process from the data generation with the test setup. Therefore the test setup was only
used to generate the in- and output data X and y which was then stored to the hard
drive, after which the training of the CNN was performed separately. This speeded up
the data generation and allowed for an intermittent learning process due to which risk
on setup failure(long experiment) was mitigated.

Figure 5-5 provides the steps required to acquire the data. First a Zernike phase screen
is generated based on the input model as defined in Chapter 2. Based on this phase
screen a DM actuator command is generated and send via USB to a Digital Analog
Converter (DAC), generating the input voltages for the DM. After confirmation that
the DM is set a snapshot is taken with the out of focus camera which is then stored as
an input image X.

Simultaneously with the taken snapshot the wavefront as generated by the DM is recon-
structed by the SH WFS on a realtime computer(existing hardware and software[37])
and sent to the Control PC on which the main loop runs. From the reconstructed phase
the Zernike coefficients are calculated and stored to disk as reference output y. This is
needed because the generated Zernike phase screens with the model deviate from the
actual wavefront set by the DM due to suboptimal DM software control.

Matlab is used to control the overall software loop and the generation of the phase
screens. Python is used to connect the FC and the extraction of the subregion from
a snapshot. The DM control is initiated by Matlab which calls a custom windows
executable that takes a vector of size 37 representing the DM actuator setting for a
specific wavefront.
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Figure 5-5: Process flow for the generation of experimental data.

5-3 Generated data

Due to latency in the system(DM controller), used hardware, computations, shutter and
acquisition time it takes an average of 2.5 seconds to process a single frame. Therefore
the amount of frames that could be generated was limited, though a representative
dataset was generated consisting of 85000 frames. As no advanced drivers were available
for the DM control a basic program was created that maintained the individual ratios
of the Zernike modes in accordance with Noll but could not accurately set the DM with
a specific turbulence strength. Therefore D/r0 was calculated afterwards based on the
retrieved phase of the SH WFS using Eq. (5-2) which is typically used for a Kolmogorov
spectrum but will also provide a good estimate here as the individual Zernike mode
contributions are proportional to the Noll residual error. Figure 5-6 presents a histogram
of the turbulence strength distribution in the dataset. As seen in 4-4, training on a
spread of turbulence strenghts improves the convergence of the CNN. 90% of the data
is generated between 5 < D/r0 < 15 which supports this finding.

φvar = 1.03(D/r0)5/3 (5-1)

So that D/r0 becomes;

D/r0 = φ
3/5
var

1.03 (5-2)
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Figure 5-7 shows a few example plots of the generated data with on top the retrieved
phase by the SH WFS and at the bottom the recorded FP image corresponding to this
phase. To fully capture the intensity pattern the cutout from a full size snapshot was
set to 170x170.

Figure 5-6: Histogram of the experimental dataset showing the distribution of the turbu-
lence strength.
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Figure 5-7: Example data generated by the experimental setup. On top the phase screen
as retrieved by the SH WFS and at the bottom the recorded FP intensity pattern of size
170x170 pixels.

5-3-1 Eperimental results

Due to the enlarged input image size X the model is slightly altered to fit this input.
With the convolutional layers as in M102 the resulting output size of the sixth convolu-
tion has become 3x3x1024, therefore the weight matrix to the first dense layer is altered
to a size of 1000x9216 to provide a proper fit. Also the computational cost has increased
to 154MFLOPS which is nearly a four time increase.

Figure 5-8 presents the convergence of to a loss of 0.61rad2 after approximately 100000
batches.
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Figure 5-8: Train loss on the experimental data with convergence to a loss of 0.061rad2.

The reference Zernike modes to which the CNN was trained are retrieved from the SH
WFS phase screens by a gradient descent routine that minimizes the residual phase error
to a 4 decimal accuracy on the Zernike mode coefficients.

The first 20 modes were retrieved on a test dataset(not seen by the CNN before) of 5000
frames with an accuracy as provided in Figure 5-9.

Figure 5-9: Test loss per mode on the experimental dataset

After reconstruction of the wavefront phase based on ŷ and the use of Eq. (4-3) to (4-5)
the mean squared phase error becomes 72nm. The used SH WFS introduces an average
wavefront error between λ/50 to λ/25[38], which for the laser used equals to 12.7nm
to 25.4nm. The results on the Kolmogorov phase for comparable turbulence strength
resulted in a wavefront error of 21nm as shown in table 4-3. This error is purely due to
the CNN mapping P, therefor the total error introduced by the experimental setup is
estimated to be ∼ 51nm. Taking this into account it is shown that the CNN is able to
derive a direct mapping on a real dataset, which answers the primary research question.
Namely, that a CNN can be used for phase retrieval from a single out of focus focal
plane image and provides competitive accuracy with respect to SH WFS.

M. Noppen Master of Science Thesis



Chapter 6

Discussion & Conclusions

As the relationship between focal plane intensity measurements and wavefront phase is
non-linear but of value for usage in free space optical communications, this research was
conducted to investigate whether a neural network is able to find a direct mapping from
the one onto the other. More specifically, whether a deep convolutional neural network
is able to find a fast and accurate mapping from out of focus intensity measurements
onto the Zernike mode coefficients of the presented phase.
A model approach is used to generate perfect zero noise Zernike representations of the
wavefront phase using the residual mean squared phase error per Zernike mode as pro-
vided by Noll[1] on which random Gaussian representations of the turbulence phase were
generated(Eq. (2-5) to (2-8)). The phase screens are propagated with a constant am-
plitude to the out of focus plane where the electromagnetic field is transformed to an
intensity measurement by a CCD camera. Representative system parameters were used
for the optical model based on the TNO Ofelia breadboard in which for realism only
detector noise was added with a SNR of 22dB.
Using the model 13 CNN architectures were designed and evaluated. For turbulence
strengths of D/r0 = 2, 8, 14 and 20 the model named M001 proved best convergence to
a mean squared phase error as defined in 4-3 of respectively 15nm, 226nm, 896nm and
2238nm on a wavelength of λ = 1550nm and disregarding tip and tilt. The architecture
consisted of six sequential convolutional layers using a stride of 2 to reduce the input
dimensions, followed by 3 dense layers with an output layer of size 32 representing the
Zernike modes 4 to 35. A Rectified Linear Unit (ReLu) activation function was used.
From the evaluated architectures it is found that using stride outperforms pooling layers,
also increasing the amount of kernels benefits the accuracy. A learning rate of lr < 0.0001
for the ADAM optimizer proves to be sufficiently small and the batchsize has little
influence on the learning process. A kernal size of 3x3 performs best, especially when
regarding the high computational load concerned with larger kernels.
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Subsequently the model is evaluated for the phase retrieval of a Kolmogorov phase with
a doubling of the kernels in the first three layers so that 128, 256, 512, 1024, 1024
and 1024 channels for respectively layer 1 to 6 are used. The model is renamed to
M102 and the computational load is increased to 30.4MFLOPS for an input image
size of 70x70. Trained on a random uniformly distributed range of turbulence strengths
between 1 ≤ D/r0 ≤ 6, 7 ≤ D/r0 ≤ 12 and 13 ≤ D/r0 ≤ 18 the model converged
to a mean squared residual phase error of respectively 5nm, 21nm and 74nm for the
retrieval of the first 35 Zernike modes when disregarding tip and tilt. Training on a
range of turbulence strengths greatly improves the training process. Although difficult
to prove this is likely due to the spread in the input data that causes the gradients that
update the weight matrices to be more agile, and with that it becomes less likely for the
weights to converge to local minima. Moreover, the fact that a Zernike mode coefficient
representation of the phase is not necessarily unique to the wavefront could actually aid
the training process as it functions as dropout. This might also support the fact that
only one intensity measurement suffices for retrieving the phase.

To validate the modeled results an experimental setup was build to generate real data
that served as in- and output to the CNN. A dataset of 80000 frames for training and 5000
frames for evaluation with a turbulence strength varying roughly between 5 ≤ D/r0 ≤ 15
was generated. With the SH WFS accuracy between 12.7nm − 25.4nm serving as ref-
erence error tolerance, the phase was retrieved for the first 20 Zernike modes with a
mean squared residual phase error of 72nm. The final error is larger then the modeled
implementation as the PSF is larger and more noise is present. Since the CNN imple-
mentation, used hardware and hardware configuration have not yet been fully optimized,
enough potential for further testing is available when regarding aforementioned benefits
of the concept.

The CNN architecture as implemented on the experimental setup has a computational
load of 154MFLOPS for one forward pass which is largely due to the big input image size
of 170x170. On a contemporary mid-end GPU like the NVIDEA GTX1060(4.0TFLOPS
on 32bit floating point numbers) this results in a theoretical operating frequency of
25.9kHz, which is a five-fold of the Ofelia breadboard requirement. Although this number
is merely a rough estimate as factors such as memory bandwidth, memory latency and
level of parallel processing will limit the performance, it is realistic to believe that a
trained CNN for FP phase retrieval can be run sufficiently fast for demanding high
turbulent environments.

Overall it can be concluded that focal plane phase retrieval by the use of a CNN is
feasible for a real setup. The dimensions of the CNN make realtime execution possible,
especially when regarding recent CNN implementations on FPGA’s[39][40] and the suit-
ability for parallel processing. Placing the CCD closer to the focal point can also cause a
significant speed up as the the dimensions of the input image can then be reduced. How
this translates to CNN performance should be investigated. This research can provide
new ideas to wavefront retrieval in FSOC systems as it can simplify hardware require-
ments and induce cost reductions. There is no need for wavefront detection and the
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corresponding reconstruction calculations that often need iterative optimization in the
realtime system. Although the experiment did not reach competing performance to SH
WFS and no fluctuation in received intensity was incorporated, the method shows good
potential when further optimization of the CNN architecture and hardware configuration
is conducted. Considering the CNN the most important conclusions are summed below.

6-1 Conclusions

• Deep Convolutional Neural Networks are able to retrieve the wavefront phase
Zernike modes from a single out of focus intensity measurement and could be
implemented in a real system.

• The convergence of the CNN and with that the residual phase error is improved
when using stride instead of pooling layers for size reduction. Increasing the
amount of kernals(and thus featuremaps) is beneficial for the convergence too.

• The used dataset for training has great influence on model convergence. For train-
ing and evaluation a diverse dataset of varying turbulence strengths should be
used.

• The non-uniqueness of the Zernike mode coefficients with respect to the intensity
image is beneficial for the training process as it tends to functions as drop out,
providing agility to the weight matrices.

6-2 Recommendations

The performed research has been conducted using a fixed amplitude but this would not
be the case in a real implementation. Therefore follow on research on how this impacts
the performance of the CNN should be prioritized.

The CCD detector has been placed 20% out of focus to capture the spatial pattern
though this position was only based on an educated estimatation. The ideal position in
the focal plane proved not feasible but a near focal placement should be investigated.

High accuracy tip and tilt retrieval by a CNN in the focal plane has not been investigated
but from the found results and practical perspective/benefit this should be investigated.
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Appendix A

Python and driver setup

In order to make use of fast computation on a NVIDIA GPU the following steps need
to be undertaken for creating a suited python environment.

First the right driver and back-end needs to be installed in order to run Tensorflow.
Therefore do the following on a Linux machine:

• Open new terminal and install ’sudo apt install nvidia-cuda-toolkit’

• install nvidia driver: ’sudo apt install nvidia-384 nvidia-384-dev’

• install other import packages: ’sudo apt-get install g++ freeglut3-dev build-essential
libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev’

• CUDA 9 requires gcc 6: ’sudo apt install gcc-6’ and ’sudo apt install g++-6’

• Download the Cuda toolkit version 9.0:
’wget https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/cuda
_9.0.176_384.81_linux-run’

• ’chmod +x cuda_9.0.176_384.81_linux-run’

• ’sudo ./cuda_9.0.176_384.81_linux-run –override’

Next a Python environment needs to be created which allows the written code for this
project to be run.

• Install anaconda from https://www.anaconda.com/download/linux and choose the
newest version
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• Restart machine

• Open terminal

• Create a new python 3.5 environment: ’conda create –name ’python35Tensorflow’
python=3.5’

• Activate the environment: ’source activate python35Tensorflow’

• Install the packages below by:

• ’pip install tensorflow-gpu==1.8’ OR ’pip install tensorflow’ for cpu version

• ’pip install keras’

• ’pip install pandas’

• ’pip install matplotlib’

• ’pip install matlab’

• ’pip install tkinter’

• ’pip install xlrd’

The packages here above require other dependencies, Conda will intall these necessary
packages automatically.

In order to make python communicate with Matlab and vice versa the python engine
needs to be installed by Matlab. To do so undertake the following steps:

• Make sure you are using Matlab 2014b or higher to have support of the Mat-
lab/Python API.

• Open Matlab and insert ’matlabroot’ in the command window. Append this di-
rectory with ’extern/engines/python’

• In a terminal: cd "matlabroot/extern/engines/python"

• Install the engine: python setup.py install

• It can be that the engine is not installed for the right python environment. If so go
to the site-packages folder of the default python installation and copy the folder
’matlab’ to the location where the required python version is installed.
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Appendix B

Training GUI and Parameter sheet

Figure B-1: GUI to follow the training progress. The blue bars indicate the reference phase
and the red bars the CNN output.
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Figure B-2: Configuration Excel file that holds the settings and hyper parameters needed
for training the CNN.
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Glossary

List of Acronyms

AD Analog to Digital

AO Adaptive Optics

ADAM A method for stochastic optimization

CCD Charge Coupled Device

CNN Convolutional Neural Network

CPU Central Processing Unit

DM Deformable Mirror

DAC Digital Analog Converter

EM Electro Magnetic

FC Focus Camera

FFNN Feed Forward Neural Network

FLOPS Floating Point Operations

FP Focal Plane

FSOC Free Space Optical Communications

GUI Graphical User Interface

GD Gradient Descent

GS Gerchberg-Saxton
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64 Glossary

ITU International Telecommunications Union

LR Learning Rate

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

PAM Point Ahead Mirror

ReLu Rectified Linear Unit

RGB Red Green Blue

RF Radio Frequency

SH Shack-Harmann

SGD Stochastic Gradient Descent

SNR Signal to Noise Ratio

TNO De Nederlandse Organisatie voor toegepast-natuurwetenschappelijk
onderzoek

WFS Wavefront Sensor
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Nomenclature

Table B-1: Nomenclature codes part 1

Symbol Meaning

a0 connecting vector from convolutional to dense layer
cJ Noll residual error coefficient
d Lens diameter
D Aperture
Ddig Digital 2D detector output
τ0 Atmospheric coherence time
A Amplitude of the electric field
fs Sample frequency
f Focal length
fw Full well photon count
r0 Fried’s parameter
φ Wavefront phase
φd Wavefront phase after propagation
φin Wavefront phase of input data
φMSE Mean squared wavefront error
E Electrical field
Ein Electrical field of input data
EFP Electrical field in the focal plane
Id Intensity
Pi Received power
P Neural Network mapping
nr Number of received photons
h Planck’s constant
Qe Quantum efficiency
ff Pixel fill factor
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Table B-2: Nomenclature codes part 2

Symbol Meaning

ra Duty cycle
Ipixel Number of photons received on one detector pixel
fw Full well capacity of detector
dc Dark current on detector
α Learning rate
β1 First moment exponential decay rate
β2 Second moment exponential decay rate
θmin Sensitivity
ρ Radius
∆J Mean squared resisual phase error
J Polynomial ordering number(mode number)
F 2D mirror surface
S MSE
λ Wavelength
L0 Outer scale of the Kolmogorov spectrum
l0 Inner scale of the Kolmogorov spectrum
D Aperture
Wi Weight matrix of layer i
X 2D intensity pixel array
X Dataset holding multiple X
Xnorm Normalized 2D input array
Yδ Matrix output of CNN layer δ
M Leg size of input array
K Kernal size
Kδ 3D kernal for CNN layer δ
P Pooling layer size
C Number of channels in a NN
C2
n Atmospheric turbulence strength profile

Q Number of matrix multiplications
FLOPS Floating point operations
FLOPSconv Floating point operations for one convolutional layer
ai Activation of neuron i
xi Neuron input from neuron i in precessing layer
wi weight for input i
bi bias vector of layer i
B bias matrix
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Table B-3: Nomenclature codes part 3

Symbol Meaning

y Reference Zernike modes of the wavefront
ŷ Neural Network output Zernike modes
yJ Zernike mode coefficient J
yJmin Lowest Zernike mode coefficient
yJmax Highest Zernike mode coefficient
yDM DM command signal
N Number of elements in array
Rmn Radial polynomial of order m and n
U CNN minimization objective
V Number of entries in dataset
Zmn Zernike polynomial of order m and n
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