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Preface
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as a stand-alone document. The report focuses on methods and concepts that have
actually been implemented in the simulation code developed for the project. For
a more complete treatment of the different perturbing forces acting on satellites
or a more comprehensive overview of integration methods, the interested reader is
encouraged to consult the report of the literature study (Hofsteenge, 2012).

I would like to take this opportunity to express my gratitude toward my thesis
supervisor, Ron Noomen, for his helpful guidance during the project. Our weekly
meetings not only made sure I remained on the right track, but were also useful
in keeping me inspired, despite any difficulties encountered. I would also like to
thank my fellow MSc students on the ninth floor of the Faculty of Aerospace En-
gineering for the pleasant working atmosphere. Finally, I would like to thank my
parents for supporting me throughout my academic career.

Robin Hofsteenge

Delft, December 1, 2013
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Abstract

Space debris poses a significant problem for the space sector. This problem relates
to potential collisions of debris objects with active satellites, which in many cases
will lead to catastrophic damage. Due to the absence of natural decay mechanisms
in the higher regions of space, debris objects in these regions have very long orbital
lifetimes. In order to assess the hazards posed to active satellites, it is relevant to
be able to predict how the orbits of these debris objects behave on long timescales.

A simulation code in C++ has been created for this thesis project, capable of ef-
ficient propagation of space debris trajectories over long periods of time (typically
a century or more), while taking into account various relevant perturbing forces.
The simulation code can be applied to simulate the orbits of debris objects with a
wide range of area-to-mass ratios, from intact satellites to tiny flecks of paint. The
results produced with the simulation code have been verified to be consistent with
results presented in recent research papers on space debris.

An extensive performance comparison has been made regarding the efficiency
of different computational methods for carrying out accurate, long-term integra-
tions of space debris orbits. Both traditional integration methods and symplectic
integration methods were tested, the latter of which are interesting because of their
energy conservation properties. All methods were also combined with different
formulations of the equations of motion.

Of the methods tested, the Dormand-Prince 8(7) integration method combined
with Gauss’ form of Lagrange’s planetary equations in modified equinoctial el-
ements was found to be the most efficient. The performance of the symplectic
integration methods was markedly less for this application than for the integration
of completely Hamiltonian systems, though it was certainly acceptable.

The simulation code was also applied to predict the long-term orbital evolu-
tion for debris objects in GEO and GNSS graveyard orbits. While proposed GEO
graveyard orbits were found to be safe, graveyard orbits in the GNSS region were
found to be susceptible to resonances induced by the luni-solar perturbations, and
hence, require a careful selection of the initial orbital parameters. In all cases,
debris objects with high area-to-mass ratios were determined to be dangerous to
active satellites, regardless of the initial conditions of the graveyard orbit.
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Chapter 1
Introduction

Space debris is a large problem for spaceflight, and is bound to become an even
larger problem in the future. In fact, if no countermeasures are taken, vast increases
in the amount of space debris might even make spaceflight in the vicinity of the
Earth impossible in the future (Klinkrad, 2006). This makes space debris both an
interesting and a relevant topic for research.

This thesis project focuses on simulating the long-term evolution of space de-
bris orbits, primarily in two distinct regions of space: the geostationary region and
the region in which the satellites of GPS and other global navigation satellite sys-
tems (GNSS) reside. In this report, these regions will simply be referred to as the
GEO and GNSS regions, respectively. Since there is no atmosphere to speak of in
these regions of space, there is practically no decay due to atmospheric drag. As a
result, debris objects in these regions generally have very long orbital lifetimes.

Simulating the orbits of debris objects over long periods of time is not an easy
task. The methods to be used for this must remain accurate over long timescales,
but also need to be efficient. An important goal of this thesis project is to as-
sess which methods are the most efficient for the computation of long-term space
debris trajectories for specified accuracy requirements, and to quantify the differ-
ences in efficiency between methods with varying degrees of complexity. Of spe-
cial interest here are a set of relatively new methods, called symplectic integration
methods. Because of their underlying mathematical structure, they have excel-
lent energy conservation properties when applied to Hamiltonian systems, like the
n-body problem. Simulating the trajectories of space debris objects involves the
integration of perturbed Hamiltonian systems, though, and it will be interesting to
see how the performance of symplectic integrators holds up when applied to these
systems.

To perform the simulations of space debris orbits and test the different com-
putational methods, a simulation code in C++ was created for this thesis project,
capable of propagating the orbits of debris objects over several centuries, while
taking into account various relevant perturbing forces. The simulation code is able
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to simulate the orbits of debris objects with diverse characteristics, ranging from
full satellites and upper rocket stages to tiny flecks of paint and detached surface
coatings. In addition to the assessment of different computational methods, the
simulation code will also be used for testing the suitability of different graveyard
orbits for preventing collision hazards with active satellites over long periods of
time.

The report is structured as follows. In Chapter 2, a general introduction to the
problem of space debris will be given and a number of important aspects related
to it will be discussed. Then, Chapter 3 will provide an overview of the debris
populations in the GEO and GNSS regions of space. Existing research regarding
debris in these regions will also be considered in this chapter. After that, Chapter
4 will go into detail about the different perturbing forces that were included in the
force model and how they were modeled. Chapter 5 continues with a short review
of astrodynamics and introduces different ways in which the equations of motion
can be formulated, as well as a number of relevant coordinate systems. Traditional
integration methods will be treated in Chapter 6, along with a number of concepts
that are relevant for all integration methods. Following that, symplectic integration
methods will be covered in Chapter 7. Then, Chapter 8 will go into detail about
the verification of the simulation code. After that, Chapter 9 will provide a detailed
performance comparison of the computational methods that were implemented in
the simulation code. Then, the long-term orbital developments of debris objects in
graveyard orbits will be considered in Chapter 10. Finally, the main conclusions
of this thesis project and a number of recommendations for future research will be
presented in Chapter 11.



Chapter 2
Space Debris

Space debris or orbital debris has been defined by the Inter-Agency Space Debris
Coordination Committee (IADC) as “all man-made objects including fragments
and elements thereof, in Earth orbit or re-entering the atmosphere, that are non-
functional” (IADC, 2002). This chapter will provide some background information
on space debris. First, the historic development of the space debris population will
be outlined, followed by a brief discussion on the dangers related to space debris.
After that, a short overview of the space debris environment will be given. Then,
the major sources of space debris will be identified and the characteristics of debris
objects that are important in orbit simulations will be determined. Finally, the
guidelines that have been defined regarding space debris will be discussed.

2.1 History

On October 4, 1957 Sputnik 1 was launched, becoming the first artificial satellite
in orbit around the Earth. After that date, many launches into space would follow,
mainly conducted by the United States and the (former) Soviet Union.

The first in-orbit break-up event in space history occurred on June 29, 1961,
after the US Transit-4A satellite was launched on a Thor-Ablestar rocket. 77 min-
utes after the injection and separation of the Transit-4A and two additional pay-
loads, the Ablestar upper stage exploded at an orbital altitude of around 900 km.
This distributed its dry mass of 625 kg across at least 298 trackable fragments, of
which nearly 200 were still in orbit 40 years later. This break-up event instanta-
neously increased the number of man-made objects in space by at least a factor 3.5
(Klinkrad, 2006). Since this event, space debris has been the largest contributor to
the observable space object population, with in-orbit explosions being the largest
source.

In August 1964 the first geostationary satellite, Syncom-3, was launched. Since
then, over 800 objects have been placed in or near the geostationary orbit (GEO).
The first spacecraft explosion in GEO occurred 14 years after the Syncom-3 launch,

21



2.1. History 22

in June 1978. As a reaction to this, the Czech astronomer Loboš Perek wrote a
paper in 1979, titled ”Outer Space Activities Versus Outer Space”, and was the
first to recommend space debris mitigation measures (Portree and Loftus, 1993).
His recommended measures, which included the re-orbiting of GEO spacecraft into
a disposal orbit at the end-of-life (EOL), are still applicable today.

Figure 2.1 shows the historic evolution of the number of cataloged orbital ob-
jects tracked by the Space Surveillance Network (SSN) of the United States Strate-
gic Command (USSTRATCOM). As can be seen, the number of cataloged objects
increased steadily over the years, with some smaller and larger peaks in between.
It should be noted that the graph only indicates objects that are trackable by the
29 tracking stations of the SSN. For low Earth orbits (LEO), this means that only
debris objects of diameters of 10 cm and larger are included, whereas for higher
orbits the minimum detection diameter is larger (USSTRATCOM, 2011).

Figure 2.1: The evolution of the number of cataloged objects in orbit (ESA, 2013).

In recent years, some notable events happened with regard to space debris.
In 2007, China performed an anti-satellite test, using a missile to destroy an old
weather satellite. This event added more than 3,000 new objects to the space de-
bris population (NASA, 2010). The abrupt rise in the number of trackable objects
visible in Figure 2.1 for the year 2007 is a result of this test.

Furthermore, the first collision between two intact satellites in orbit around the
Earth occurred on February 10, 2009. This collision involved a defunct Russian
Kosmos satellite and a functioning US Iridium communications satellite and added
over 2,000 pieces of trackable debris to the debris population. The effects of this
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event are also visible in Figure 2.1.

2.2 Dangers Related to Space Debris

Debris objects pose a potential collision hazard to satellites and other spacecraft.
Because the relative velocities between debris objects and spacecraft can be ex-
tremely high, ranging from 0 to 15 km/s, the energy involved in collisions between
the two can be enormous. In many cases, the processes taking place do not fall into
the categories normally known from solid-state physics. The materials of both the
impacting object and the satellite wall may liquefy, evaporate or even ionize, and
the metal droplets, solidifying again, will splash into the inside of the satellite. In
addition, the accompanying shock waves can tear apart the entire satellite structure
(Rex, 1998). In order to study such impacts in a laboratory environment on Earth,
objects in the range of a centimeter need to be accelerated to velocities of around
10 km/s (or 36,000 km/h). Such shots are about the upper limit of what is possible
in the military field of armor-piercing projectiles.

Consequently, shielding spacecraft against debris objects that exceed a cer-
tain size is virtually impossible. The International Space Station (ISS) has special
shielding against space debris, but even these shields can only be effective in with-
standing impacts of particles smaller than 1 cm (NASA, 2010). Collisions with
larger objects need to be avoided by maneuvering the ISS in advance.

As the energy associated with collisions is often extremely large, the impact of
a debris object of any significant size will generally result in the loss of the space-
craft. In addition, many new debris objects will be formed, which in turn increases
the probability for future collisions. According to a scenario proposed by NASA
scientists Kessler and Cour-Palais (1978), called the Kessler Syndrome, this may
eventually lead to a cascade of collisions which could render space exploration,
and even the use of satellites, unfeasible for many generations. Therefore, careful
study of the space debris problem and the application of suitable counter-measures
is considered essential for the future of spaceflight.

2.3 The Space Debris Environment

The higher the orbital altitude, the longer space debris objects will typically remain
in orbit. If a debris object is left in an orbit below 600 km, the orbit will normally
decay within several years due to aerodynamic drag and eventually the object will
experience severe aerodynamic heating. Most debris objects do not survive this
severe heating during re-entry and burn up in the atmosphere. Objects which do
survive are most likely to fall into the oceans or onto sparsely populated regions of
land. Up till now, no serious injury or property damage due to re-entering debris
has been confirmed (NASA, 2011).

At altitudes of around 800 km, orbital decay generally takes several decades.
Above 1,000 km, debris objects will normally continue to orbit the Earth for a



2.4. Sources of Space Debris 24

century or more, as the atmosphere at these altitudes is extremely tenuous.
A global overview of the cataloged objects in space is shown in Figure 2.2.

As can be seen in the figure, most orbital debris resides within 2,000 km of the
Earth’s surface. Within this region, the amount of debris varies quite strongly
with altitude. The largest concentrations of debris are found around 800 - 850
km (NASA, 2011). Moreover, another clear peak in the number of objects can be
observed in the geostationary region, at an altitude of roughly 36,000 km. More
information about the debris situation in this region will be given in Chapter 3. The
debris environment of the region in which the satellites of GPS and other satellite
navigation systems reside will also be discussed in that chapter.

Figure 2.2: A global overview of the cataloged objects in space. The geostationary
ring is indicated in yellow (ESA, 2009).

2.4 Sources of Space Debris

Space debris can originate from a number of different sources. The most important
sources are (NASA, 2011):

• Upper stages of launch vehicles: When a satellite is brought into orbit, the
upper stage of the launch vehicle usually has about the same final velocity
as the satellite it was carrying and will remain in a similar orbit.

• Derelict satellites: Once a satellite is no longer functional it becomes a de-
bris object. If no end-of-life de-orbit is carried out, it may remain in space
for a very long time. This is especially the case for satellites in high Earth
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orbits, where it is generally not feasible to apply an end-of-life impulse large
enough for a de-orbit and where the atmosphere is so tenuous that there is
almost no natural decay to speak of.

• Explosion fragments: Explosions of satellites and rocket bodies (see Figure
2.3) are the dominant source of in-orbit fragmentations, responsible for the
vast majority of more than 200 registered break-up events (ESA, 2009). The
main cause of in-orbit explosions is related to the residual fuel that remains
in tanks or fuel lines of discarded satellites and rocket stages. Over time,
the deteriorating effects of the harsh space environment on the mechanical
integrity of components can lead to leaks and/or mixing of fuel components,
which could trigger self-ignition.

• Collision fragments: Collisions also lead to in-orbit fragmentations, but
up till now only a few registered collisions have occurred. The number of
break-up events due to explosions far exceeds the amount of break-ups due
to collisions (ESA, 2009). This may change, however, as the number of
debris objects increases and the collision probabilities rapidly increase with
it.

• Solid rocket motor effluents: When firing solid rocket motors, slag and
dust particles are released. These particles are very small in size, ranging
from a few micrometers to several millimeters.

• Surface fragments: Under the influence of ultra-violet radiation, atomic
oxygen and impacting micro particles, the surfaces of objects in space start
to degrade. This can lead to the detachment of paint and surface coatings,
resulting in micrometer- to millimeter-sized debris.

• Mission related objects: Some objects are only needed for part of a space
mission and are released into space once they are no longer required. A
few examples of such objects are launch adapters, apogee kick-motors and
covers for optical instruments.

• Lost equipment: Over the years, a number of different items have been lost
by astronauts during extra-vehicular activities. These items include gloves,
cameras, screwdrivers and quite a few other objects. However, most of them
have burned up in the atmosphere relatively quickly.
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Figure 2.3: Debris creation at the explosion of a rocket body (ESA, 2009).

2.5 Characteristics of Debris Objects

Debris objects can be very diverse, ranging from defunct satellites to used rocket
stages and from paint flakes to residues from solid rocket motor firings. These
objects all have different masses, sizes, reflection coefficients and other properties.
In the simulations, which characteristics are of importance depends on the forces
that are taken into account.

Gravitational forces depend on the mass of the object. However, it is the re-
sulting acceleration of the object that is important, and this quantity is independent
of the mass of the object. Furthermore, since all debris objects are negligibly small
compared to the sizes of the celestial bodies that have any significant gravitational
effect on them, debris objects are usually modeled as point masses as far as gravi-
tational attraction is concerned. As a result, the physical properties of an object do
not have an influence on how the object is affected by gravity in the simulations.

The effect that solar radiation pressure has on the trajectory of an object, on
the other hand, is highly dependent on the physical properties of the object. As
will be detailed in Section 4.5, the acceleration due to radiation pressure is linearly
dependent on the radiation pressure coefficient CR. Moreover, as solar radiation
can be seen as a flux of energy, its effect on the acceleration of an object is directly
proportional to the cross-sectional area of the object, A. Finally, the force on an
object due to solar radiation is not dependent on the mass of the object, m. Hence,
as a result of Newton’s second law, the resulting acceleration is inversely propor-
tional to m. The latter two properties are often combined to form the area-to-mass
ratio A/m. Together with the radiation pressure coefficient, this ratio determines
how the trajectory of an orbiting object will be affected by solar radiation pressure.

There are also other properties of debris objects that influence how certain
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forces act on these objects. An example is the drag coefficient CD, which scales the
aerodynamic force. However, as will be discussed in Chapter 4, the aerodynamic
force and many other forces are very small at GEO and GNSS altitudes compared
to other perturbing forces and will be neglected in the simulations. Therefore, the
properties that will characterize different debris objects will be the radiation pres-
sure coefficient CR and the area-to-mass ratio A/m. When varying object parame-
ters in the simulation, these properties will be combined into one factor: CR ·A/m.
This factor is also called the effective area-to-mass ratio in the remainder of the
report.

As will become clear in Section 4.5, CR is defined such that it will always have
a value between 1 and 2. A/m, on the other hand, can have values as low as 0.01
m2/kg for intact satellites and values as high as 40 m2/kg or more for pieces of foil
used in multi-layer insulations of spacecraft (Schildknecht et al., 2008). Therefore,
in literature often only the area-to-mass ratio is mentioned when discussing debris
objects. In this report, the area-to-mass ratio will be used when generally discern-
ing between different types of debris objects, while the exact value of CR ·A/m will
be listed when simulation results are shown.

2.6 Guidelines Regarding Space Debris

According to Rex (1998), space debris reached the highest political levels for the
first time in 1988, when US President Reagan announced the policy that “all space
sectors will seek to minimize the creation of space debris”. This was after years
of research in the US and awareness-raising conferences by various institutes. A
year earlier, in 1987, ESA set up the Space Debris Working Group (currently called
the ESA Space Debris Advisory Group (SDAG)) to focus on space debris related
aspects of all ESA space projects. Realizing that all space-faring nations needed
to cooperate on the problem, NASA, ESA and the Russian, Chinese, Japanese and
other space agencies pooled their knowledge in the Interagency Space Debris Co-
ordination Committee (IADC) in 1993. The primary purposes of the IADC are to
exchange information on space debris research activities between member space
agencies, to facilitate opportunities for cooperation in space debris research, to re-
view the progress of ongoing cooperative activities and to identify debris mitigation
options (IADC, 2011).

Up till now, no international treaty has been established yet that mandates be-
havior to minimize space debris. However, it is in the best interest of society to
minimize the growth of the space debris problem. Therefore, many space agencies
have defined guidelines regarding space debris. In the context of this thesis report,
it is mainly important to consider the end-of-life guidelines that have been formu-
lated for satellites in the GEO and GNSS regions of space. An overview of the
guidelines for these regions employed by various space agencies is given in Tables
2.1 and 2.2. Although they do vary in details, the general objective of each of the
guidelines is the same: at end-of-life, the spacecraft needs to be put in such an orbit
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that it will not pose harm to other, still operational spacecraft.

Table 2.1: End-of-life guidelines for satellites in the GEO region, as defined by
various space agencies (Klinkrad, 2006).

GEO region
NASA re-orbit above GEO so that ∆H1,geo [km] > 300+1,000 A/m
JAXA re-orbit above GEO so that ∆H2,geo [km] > 200+0.022 a ·CR ·A/m
CNES re-orbit above GEO so that ∆H3,geo [km] > 235+1,000 CR ·A/m
RSA re-orbit above GEO so that ∆H4,geo [km] > 200

Table 2.2: End-of-life guidelines for satellites in 12-hour circular orbits (e.g. GPS
satellites), as defined by various space agencies (Klinkrad, 2006).

GNSS region

NASA
re-orbit so that either [Hp > 2,500 km and Ha < 19,900 km]
or [Hp > 20,500 km and Ha < 35,288 km]

JAXA
re-orbit so that either [Hp > 1,700 km and Ha < 19,900 km]
or [Hp > 20,500 km and Ha < 35,288 km]

CNES no requirement for a disposal maneuver
RSA only a general recommendation for EOL lifetime limitation



Chapter 3
The GEO and GNSS Debris
Environments

As was mentioned in the introduction, this thesis project primarily focuses on de-
bris in the GEO and GNSS regions of space. This chapter takes a closer look at the
debris situations in these regions. First, the debris population in the GEO region
will be examined, followed by an overview of existing research on the long-term
orbital development of debris in that region. After that, the debris population in
the GNSS region will be considered, and an overview will be given of existing
research on the long-term behavior of orbits of debris objects in that region.

3.1 The GEO Debris Environment

Orbits with an altitude of 35,786 km above the equator have the unique property
of having an orbital period equal to the rotational period of the Earth. Such orbits
are called geosynchronous orbits. A special kind of geosynchronous orbit is the
geostationary orbit, being a circular geosynchronous orbit with zero inclination.
As the name implies, a satellite in a geostationary orbit remains at a fixed position
with respect to the surface of the Earth. This is very convenient for a wide variety
of applications, making the geostationary region arguably the most valuable region
of space.

3.1.1 Debris Population in the GEO Region

The historic growth of the number of trackable objects in the GEO region is shown
in Figure 3.1. In the figure, a distinction is made between geostationary and super-
geostationary objects, the latter referring mainly to objects in super-GEO grave-
yard orbits. It can be seen that the number of objects in the GEO region steadily
increases with about 30 objects per year.

29
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Note that this concerns trackable objects. Objects which are too small to be
detected – of which there are likely many more – are not included in the figures.
Using telescopes built for detecting space debris objects as small as∼15 cm can be
observed in the geostationary ring. However, it is hard to estimate object sizes from
telescope observations, as objects change their brightness depending on attitude,
phase angle and albedo (Jehn et al., 2006).

Much of the debris that cannot be detected has resulted from a number of in-
orbit explosions in the geostationary region. The distribution of this debris is often
taken into account using break-up models (Ikeda et al., 2008). As a result, the
quantity of smaller objects in the population has a large uncertainty related to it.

Figure 3.2 shows the spatial density of objects larger than 10 cm in the GEO
region that are included in the debris population of ESA’s Meteoroid and Space
Debris Terrestrial Environment Reference (MASTER) model.

Figure 3.1: The evolution of the number of trackable GEO and super-GEO catalog
objects over time. In the division used in the plot, the term ’payloads’ indicates
active and non-active satellites, whereas the term ’objects’ refers to other objects,
such as rocket bodies and boost motors (Klinkrad, 2006).
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Figure 3.2: The spatial density of debris objects larger than 10 cm in GEO versus
altitude and declination according to the MASTER-2001 model (Klinkrad, 2006).

As can be seen in Figure 3.2, the vast majority of objects larger than 10 cm is
concentrated in or near geostationary orbit, with orbital altitudes of around 35,786
km and declinations in the range of zero degrees. According to Klinkrad (2006),
objects which are no longer controlled undergo a cyclic variation in inclination
with a period of 53 years and an amplitude of about 15◦ due to luni-solar pertur-
bations in concert with stabilizing Earth oblateness effects. This explains the ridge
in the figure across declinations of around ±15◦ at near-constant geosynchronous
altitude.

Figure 3.3: The spatial density of debris objects larger than 1 mm in GEO versus
altitude and declination according to the MASTER-2001 model (Klinkrad, 2006).

Figure 3.3 shows the MASTER population for objects larger than 1 mm in the
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GEO region. Clearly, the peak in object density is still at the conditions of the
geostationary orbit, but the relative object density in surrounding areas is much
larger than was the case for larger debris objects (cf. Figure 3.2). This is due to
the fact that many small debris objects originate from in-orbit explosions, which
lead to a large range of velocity vectors for the explosion fragments. Note that
the object densities in Figure 3.3 are estimates based on simulations, rather than
measured quantities. Also note that the object densities in the figure are about a
factor 1,000 higher than in Figure 3.2.

3.1.2 Existing Research

An important point to consider regarding orbital debris in the GEO region is that
the relative velocities between debris objects and satellites are significantly smaller
than in LEO. This is a result of the fact that virtually all satellites in the GEO region
have been launched into geostationary orbits, meaning they almost all started in
prograde orbits with (roughly) the same altitude and inclination. Hence, typical
collision velocities in GEO rarely exceed more than a few km/s (Matney, 2004).

In fact, the relative speed is usually a factor 5 or 10 smaller than in LEO,
with the kinetic energy being many tens of times smaller. This means that, in
general, catastrophic collisions in GEO require larger objects than in LEO. Objects
of smaller sizes are often also harmful, but lead to a reduction in capability instead
of destruction of the spacecraft. Nevertheless, given the unique characteristics of
geostationary orbits, debris in the GEO region is carefully studied.

Anselmo and Pardini (2005) examined the dynamical evolution of objects re-
leased in geostationary orbits, with area-to-mass ratios ranging from 1 to 50 m2/kg.
The study included both short-term (a few months) and long-term (54 years) sim-
ulations. The results indicated that the orbits of some objects developed eccentric-
ities of up to 0.8, while still retaining mean motions of one revolution per day. It
was concluded that for A/m > 40 m2/kg, orbital decay was attained in less than 40
months due to the eccentricity rise, while for lower values of A/m, a lifetime of at
least two decades was found.

At NASA’s Orbital Debris Program Office, a similar kind of study on the orbital
evolution of debris in the GEO region was performed, using A/m values in the
range of 0.1 to 35 m2/kg (Liou and Weaver, 2005). The simulation results indicated
that solar radiation pressure could cause the orbit of a high A/m object to undergo a
significant yearly variation of eccentricity, of which the amplitude would increase
with increasing A/m values. Also, the orbits of debris objects with A/m values of
20 m2/kg or higher were found to yield maximum eccentricities of 0.55 or higher.
Pieces of MLI blankets were identified as being the most likely sources of such
debris. The existence of such debris objects with extremely high area-to-mass
ratios (ranging from 1 to more than 40 m2/kg) has been confirmed using telescope
observations (Schildknecht et al., 2008).

Next to the smaller debris objects discussed above, inactive satellites are also
an important part of the debris population in the GEO region. While these debris
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objects have significantly smaller area-to-mass ratios, they do have much larger
masses than most other debris objects, resulting in a large damage potential in case
of collisions.

Lewis et al. (2004) studied the stability of disposal orbits at super-GEO alti-
tudes by simulating the evolution of these orbits over 200-year periods. The results
indicated that the initial perigee and eccentricity of a disposal orbit were the most
important factors for maintaining the orbit above the protected region. The evo-
lution of the disposal orbit was also found to be sensitive to the initial lunar right
ascension of the ascending node (RAAN) and the RAAN and argument of perigee
of the disposal orbit, though these sensitivities were only minor.

At TU Delft, the long-term evolution of super-geostationary disposal orbits
was also investigated by Van Kints (2005). In this study, it was found that cir-
cular disposal orbits for objects with properties typical for geostationary satellites
(A/m = 0.02 m2/kg, CR = 1.3) showed stable characteristics, with no secular ef-
fects for the eccentricity evolution. It was concluded that the recommended ap-
proach of the IADC was effective for preventing collision possibilities with active
geostationary satellites, also over long periods of time.

3.2 The GNSS Debris Environment

The satellites of GPS and other global navigation satellite systems (GNSS) are
located in a specific region of space, with altitudes of around 20,000 km above the
Earth’s surface. Given the fact that daily life becomes increasingly dependent on
applications of GNSS, the debris situation in this region of space is highly relevant.

3.2.1 Debris Population in the GNSS Region

An overview of the number of cataloged super-LEO objects with the semi-major
axes of their orbits is given in Figure 3.4. In this figure, it can be seen that there
are relatively large concentrations of objects at semi-major axes of around 26,500
km and 42,500 km. The latter peak represents the geostationary region, which was
discussed in Section 3.1.

The region around a semi-major axis of 26,500 km (or altitude of roughly
20,000 km) is the GNSS region, in which nearly all navigation satellites are lo-
cated. The GNSS constellations consist of relatively large numbers of satellites
that share the same altitude, but are divided over a number of orbital planes. This
ensures that there are always enough satellites visible from any location on the
Earth to accurately calculate the position of the user. Orbital data on the major op-
erational and planned satellite constellations in the GNSS region is given in Table
3.1. Next to the GPS (United States), Glonass (Russian Federation) and Galileo
(European Union) systems, China is developing the Beidou/Compass navigation
system. This system will consist of a combination of geostationary satellites and
MEO satellites and is aimed to provide global coverage by 2020 (Jin, 2013).
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Figure 3.4: The number of cataloged super-LEO objects with their corresponding
semi-major axes. The diagram is based on data from June 2003 (Klinkrad, 2006).

Figure 3.5: The number of cataloged objects per mean motion bin of 0.1 rev/day.
The diagram is based on data from the two-line element catalog of January 2011
(Leloux, 2012).
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Table 3.1: Orbital data on operational and planned satellite constellations in the
GNSS region (Klinkrad, 2006), (Wang et al., 2009).

Constellation Hp Ha i Satellites No. of Satellites
[km] [km] [◦] + spares planes per plane

Glonass 19,132 19,132 64.8 24 + 3 3 8 (+1)
GPS/Navstar 20,182 20,182 55.0 24 + 3 6 4 (+0/1)
Beidou 21,500 21,500 55.0 27 + ? 3 9 (+?)
Galileo 23,616 23,616 56.0 27 + 3 3 9 (+1)

Similar to Figure 3.4, Figure 3.5 gives an overview of the number of cataloged
objects in space. This figure is based on more recent data (status January 2011)
provided by the Space Surveillance Network of the United States Strategic Com-
mand. As stated in Section 2.1, the data only includes objects of 10 cm or larger
for LEO, while the detection threshold is significantly larger for the GNSS region.

Based on Figure 3.5, a rough estimate of the number of trackable objects in
the GNSS region can be made. This region roughly spans the altitude range from
18,000 km to 24,000 km (see Table 3.1). This range approximately corresponds
to a regime of mean motions between 1.6 and 2.3 rev/day. Adding the numbers of
objects between these boundaries in Figure 3.5 yields that there were around 1,000
trackable objects in the GNSS region of space in January 2011. Though this is
only a rough approximation, it does provide an order of magnitude regarding the
number of relatively large objects in the orbital regime used by the GNSS satellites.
Based on the plots, it can also be concluded that the GEO region contains about 2
to 3 times as many trackable debris objects as the GNSS region.

3.2.2 Existing Research

A number of different researchers have studied the long-term evolution of the or-
bits of debris objects in the GNSS region. Chao and Gick (2004) focused on the
eccentricity evolution of disposal orbits of GPS, Glonass and Galileo satellites.
They found that orbits that are initially near-circular may evolve into orbits with
large eccentricities (up to 0.7 over 150 years). The underlying causes of this turned
out to be resonances induced by the Sun/Moon and J2 secular perturbations. These
resonance effects were found to be strongly dependent on the inclination and alti-
tude of the orbit. Another finding of the study was that Glonass satellites would
start to enter the orbital regime used by the GPS constellation after 40 years.

A series of studies into debris behavior in the GNSS region was also carried
out by Anselmo and Pardini. In one study, the long-term orbit behavior was inves-
tigated for debris objects with a large range of area-to-mass ratios, using different
force model options (Anselmo and Pardini, 2009). It was found that for both low
and high area-to-mass ratios, the orbital evolution was dominated by geopotential
and luni-solar resonances. This confirms the findings of Chao and Gick (2004).
Furthermore, it was noted that the direct solar radiation pressure would induce a
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near-yearly oscillation of eccentricity and semi-major axis, whose amplitude would
grow with increasing A/m values.

In a subsequent study (Anselmo and Pardini, 2010), it was stated that optical
observations indicated that there was much more space debris with high area-to-
mass ratios than previously anticipated. This concerned debris with A/m values
hundreds or thousands of times greater than those of intact satellites. Simulations
indicated that eccentricities of up to 0.7 could be reached for debris objects with
such high A/m values, while the semi-major axes and mean motions of the orbits
would remain close to the values of the original GPS orbits. Moreover, it was found
that the lifetime of debris from GPS orbits with CR ·A/m values of up to∼55 m2/kg
exceeded one century. However, the lifetime would decrease rapidly to just a few
months for values above this threshold.

In yet another study performed by Anselmo and Pardini (2011), the orbital
evolution of the first upper stages for the Galileo and Beidou satellites was exam-
ined. It was concluded that the upper stage disposal strategies used for Beidou and
Galileo are quite successful in preventing long-term interference with the naviga-
tion satellite constellations, provided that accidental breakups are prevented.

The results of the studies mentioned above were obtained using numerical sim-
ulations. Deleflie et al. (2011) used semi-analytical methods instead to study the
long-term behavior of debris objects in the GNSS region. In the results, it is em-
phasized that the choice of initial conditions is critical. Especially the maximum
eccentricity that can be reached is highly dependent on the initial conditions of the
orbit, reaching a value of 0.7 or more in some cases, within a typical timescale of
200 years. This eccentricity growth corresponds well with the results obtained in
the other studies. It should be noted that once such high eccentricities are reached,
atmospheric drag starts to play a role and burn-up in the atmosphere is likely to
follow.



Chapter 4
Force Model

The orbit of a satellite or debris object about the Earth is primarily determined by
the Earth’s gravity field. To first approximation, the mass distribution of the Earth
can be assumed to be radially symmetric. In that case, the orbit has the shape of a
conic section and is called a Keplerian orbit (Wakker, 2010).

However, in reality the mass distribution of the Earth is not radially symmet-
ric and furthermore, there are other forces than the Earth’s gravity that affect the
trajectory. These additional forces, including those resulting from the non-radially
symmetric part of the Earth’s mass distribution, make the real orbit deviate from a
Keplerian one.

Since the additional forces are quite small compared to the main gravitational
force, these forces are called perturbing forces or perturbations. The resulting orbit
is called a perturbed Keplerian orbit.

In this chapter, an overview will be given of the various forces that play a role
and a choice will be made regarding the forces to be taken into account for the
simulation of orbits in the GEO and GNSS regions of space. After that, the forces
that are taken into account will be discussed individually and it will be shown how
they have been modeled in the simulation code.

4.1 Overview

In the literature survey preceding this thesis (Hofsteenge, 2012), the various per-
turbing forces acting on satellites and debris objects were discussed and compared.
On the basis of this comparison, a choice has been made regarding the specific
forces to be taken into account in the simulations. For completeness, a short
overview of the forces that are acting will be provided in this section, including a
short discussion on the forces to be included in the simulations. How these forces
are modeled will be discussed in the subsequent sections.

An overview of the orders of magnitude of the forces that are acting, related
to the distance from the center of the Earth, is given in Figure 4.1. Note that the
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vertical axis has the unit [km/s2].

Figure 4.1: The magnitude of various perturbations as function of the distance from
the center of the Earth (Montenbruck and Gill, 2005).
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Since this thesis project is focused on the GEO and GNSS altitude regimes,
the two dotted lines at the right-hand side of the figure indicate the most important
areas of the graph. Clearly, all perturbations at these altitudes are at least three
orders of magnitude smaller than the main gravitational acceleration of the Earth
(indicated by GM). The J2,0-term of the Earth’s gravity field yields the largest per-
turbing acceleration (also called the J2-effect), closely followed by the gravitational
attractions of the Moon and the Sun. Note that the perturbing accelerations due to
deviations in the Earth’s gravity field decrease with increasing altitude, whereas
the influence of the gravitational attraction of other celestial bodies increases with
altitude.

The acceleration due to solar radiation pressure is one to two orders of magni-
tude smaller than the acceleration caused by the Moon and the Sun and is roughly
in the same range as the acceleration due to the J2,2-term of the Earth’s gravity
field. However, this is for objects that have the characteristics of an intact satellite.
For objects with very high area-to-mass ratios, such as pieces of MLI and paint
flakes, solar radiation pressure will have a much larger perturbing effect. For these
objects, the line for solar radiation pressure in Figure 4.1 may be shifted several
orders of magnitude upwards.

The acceleration due to albedo at the GEO and GNSS regions is roughly two
orders of magnitude smaller than the acceleration due to solar radiation pressure.
In addition, there are many uncertainties associated with the modeling of albedo.
Modeling its effect also requires a relatively high number of arithmetic operations
due to the geometric aspects that are involved and will likely have a significant
impact on the computation time required for simulations. For these reasons, albedo
will not be included in the force model.

The perturbation caused by the Earth’s dynamic solid tide is also multiple or-
ders of magnitude smaller than the perturbation due to solar radiation pressure, and
is usually only included for geodetic missions, which require extremely accurate
orbit computations. Still smaller are the effects due to relativity and the gravity of
Venus and Jupiter. These effects will also not be taken into account in the simula-
tions.

Finally, the effect of atmospheric drag is completely negligible in the GEO and
GNSS regions of space. Figure 4.1 illustrates this: even at an altitude of 10,000
km, the perturbations due to relativity and the perturbations due to the gravitational
attraction of Venus and Jupiter will already be larger.

In some of the previous research mentioned in Sections 3.1.2 and 3.2.2, atmo-
spheric drag was actually taken into account in case the orbit of the debris object
would become highly eccentric and the perigee altitude would become smaller than
1,000 km. Generally, the object would then burn up in the atmosphere after a rela-
tively short time. To take this effect into account, the simulation code developed for
this thesis project continuously checks whether the altitude of the object is below
1,000 km. If this is the case, the simulation is stopped, based on the assumption
that atmospheric drag will lead to reasonably fast decay. This way of handling
drag removes the necessity of implementing a full-scale atmospheric model and
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seems appropriate for the application of investigating the long-term developments
of orbits that nominally remain within much higher altitude regimes.

Considering the above, the force model used in the simulations will include
the main gravitational acceleration of the Earth, as well as a number of perturba-
tions. These perturbations are the third-body perturbations due to the Sun and the
Moon. The gravitational effects of other celestial bodies will not be taken into
account, as they are simply too small to be worth the extra computation time. So-
lar radiation pressure will be included in the simulations, as its effect can be very
noticeable, especially in case debris objects with high area-to-mass ratios are con-
sidered. Eclipses will also be taken into account. Deviations in the gravity field
of the Earth will also be accounted for by means of an expansion in spherical har-
monics. Based on the magnitudes of the geopotential coefficients and comparisons
with other research, the maximum degree and order of the geopotential coefficients
will be set to four in the simulations. However, this number can easily be increased
or decreased in the simulation settings. The other perturbations mentioned in this
section will not be modeled in the simulations, as their effect would be relatively
unnoticeable and would not be worth the extra computational effort.

4.2 Central Gravitational Force

The central gravitational force is the force which is responsible for the main char-
acteristics of the actual orbit. If only the central gravitational force is taken into
account, an unperturbed Keplerian orbit will result, given appropriate initial con-
ditions. In that case, it is assumed that the total mass of the Earth is concentrated
at the center of the coordinate system, and the gravitational law can be stated as
(Montenbruck and Gill, 2005)

r̈ =−GM⊕
r3 r (4.1)

in which r is the position vector of the orbiting object from the center of the Earth,
G is the universal gravitational constant, M⊕ is the total mass of the Earth and r is
the distance of the orbiting object from the center of the Earth.

Although completely Keplerian orbits are interesting from a theoretical point
of view, in reality all orbits will deviate from them to some degree. Therefore,
using only the formulation of Equation 4.1 as equation of motion will not result in
sufficiently realistic trajectories. Though the right-hand side of Equation 4.1 will
remain the most important acceleration, other acceleration components will have
to be added to it, induced by various perturbing forces. These perturbing forces
will be treated in the remaining sections of this chapter.

4.3 Deviations in the Earth’s Gravity Field

As stated in the introduction of this chapter, the Earth does not have a radially
symmetric mass distribution. In order to take this into account, it is convenient to
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use a representation for the acceleration using the gradient of the gravity potential
U (Montenbruck and Gill, 2005):

r̈ = ∇U (4.2)

For a radially symmetric mass distribution the potential is usually expressed as:

U =
GM⊕

r
(4.3)

An expression valid for an arbitrary mass distribution can be obtained by summing
up the contributions created by individual mass elements dm = ρ(s)d3s:

U = G
∫

ρ(s)d3s

|r−s|
(4.4)

In this equation, ρ(s) represents the mass density at some point with position vec-
tor s inside the Earth and |r−s| is the distance of the orbiting object from this
location (see Figure 4.2).

Figure 4.2: The contribution of a small mass element to the geopotential for an
arbitrary mass distribution (Montenbruck and Gill, 2005).

In order to evaluate the integral in Equation 4.4, the inverse of the distance |r−s|
may be expanded using Legendre polynomials. For r > s (with s = ‖s‖), which
is true for all points r outside a circumscribing sphere, the following expression
holds (Montenbruck and Gill, 2005):

1
|r−s|

=
1
r

∞

∑
n=0

( s
n

)n
Pn(cosγ) with cosγ =

r ·s
rs

(4.5)

In this equation, γ is the angle between r and s, and Pn(u) is the Legendre polyno-
mial of degree n, defined as

Pn(u) =
1

2nn!
dn

dun (u
2−1)n (4.6)
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By using the addition theorem of Legendre polynomials, the following expression
can be obtained:

Pn(cosγ) =
n

∑
m=0

(2−δ0,m)
(n−m)!
(n+m)!

Pn,m(sinφ)Pn,m(sinφ
′)cos(m(λ −λ

′)) (4.7)

in which λ and φ are the longitude and geocentric latitude corresponding to the
object’s position vector r, respectively. Similarly, λ ′ and φ ′ indicate the same
quantities for a point with position vector s inside the Earth. Moreover, δ0m repre-
sents the Kronecker delta δn,m for n = 0, which is equal to 1 if m = 0 and equal to
0 otherwise. Finally, Pn,m indicates the associated Legendre polynomial of degree
n and order m, which is defined as

Pn,m(u) = (1−u2)m/2 dm

dum Pn(u) (4.8)

Using the previous expressions, the Earth’s gravity potential can be written as:

U =
GM⊕

r

∞

∑
n=0

n

∑
m=0

Rn
⊕

rn Pn,m(sinφ)(Cn,m cos(mλ ))+Sn,m sin(mλ )) (4.9)

with coefficients Cn,m and Sn,m given by

Cn,m =
2−δ0,m

M⊕

(n−m)!
(n+m)!

∫ sn

Rn
⊕

Pn,m(sinφ
′)cos(mλ

′)ρ(s)d3s (4.10)

Sn,m =
2−δ0,m

M⊕

(n−m)!
(n+m)!

∫ sn

Rn
⊕

Pn,m(sinφ
′)sin(mλ

′)ρ(s)d3s (4.11)

where R⊕ is the equatorial radius of the Earth.

Geopotential coefficients with m = 0 are called zonal coefficients and describe the
part of the potential that is independent of longitude. As a result of the definitions
in Equation 4.11, Sn,0 is zero for all n. Often, the following notation is used for the
other zonal coefficients:

Jn =−Cn,0 (4.12)

The remaining geopotential coefficients are called tesseral (n > m) and sectorial
(n = m) coefficients.

Using the geopotential coefficients, the acceleration due to the Earth’s gravity field
can be written as

r̈ = ∇
GM⊕

r

∞

∑
n=0

n

∑
m=0

Rn
⊕

rn Pn,m(sinφ)(Cn,m cos(mλ )+Sn,m sin(mλ )) (4.13)

Note that Equation 4.13 uses an infinite sum to compute the acceleration. However,
it is neither realistic nor feasible to add an infinite number of terms. Therefore, the
sum is usually truncated at a certain order m and degree n.
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For calculating the Earth’s gravity potential at a given location, recurrence re-
lations are used for the evaluation of the Legendre polynomials. Making use of the
addition theorems for Legendre polynomials, the computations can be done more
efficiently using the following definitions (Montenbruck and Gill, 2005):

Vn,m =

(
R⊕
r

)n+1

Pn,m(sinφ)cos(mλ ) (4.14)

Wn,m =

(
R⊕
r

)n+1

Pn,m(sinφ)sin(mλ ) (4.15)

such that the gravity potential can be written as

U =
GM⊕
R⊕

∞

∑
n=0

n

∑
m=0

(Cn,mVn,m +Sn,mWn,m) (4.16)

To begin with, the first zonal terms are computed with

V0,0 =
R⊕
r

(4.17)

W0,0 = 0 (4.18)

V1,0 =
zR⊕
r2 ∗V (0,0) (4.19)

W1,0 = 0 (4.20)

The other zonal terms (with n≥ 2) are calculated with the recurrence relations

Vn,0 =

(
2n−1

n

)
zR⊕
r2 Vn−1,0−

(
n−1

n

)
R2
⊕

r2 Vn−2,0 (4.21)

Wn,0 = 0 (4.22)

The sectorial terms, in turn, are computed using

Vm,m = (2m−1)
[

xR⊕
r2 Vm−1,m−1−

yR⊕
r2 Wm−1,m−1

]
(4.23)

Wm,m = (2m−1)
[

xR⊕
r2 Wm−1,m−1−

yR⊕
r2 Vm−1,m−1

]
(4.24)

Finally, the tesseral terms are calculated with

Vn,m =

(
2n−1
n−m

)
zR⊕
r2 Vn−1,m−

(
n+m−1

n−m

)
R2
⊕

r2 Vn−2,m (4.25)

Wn,m =

(
2n−1
n−m

)
zR⊕
r2 Wn−1,m−

(
n+m−1

n−m

)
R2
⊕

r2 Wn−2,m (4.26)
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Once the Vn,m and Wn,m terms have been computed, the acceleration components
can be calculated by summing the partial accelerations for each component:

ẍ = ∑
n,m

ẍn,m (4.27)

ÿ = ∑
n,m

ÿn,m (4.28)

z̈ = ∑
n,m

z̈n,m (4.29)

where the partial accelerations are given by

ẍn,m
(m=0)
=

GM
R2
⊕
[−Cn,0Vn+1,1] (4.30)

ẍn,m
(m>0)
=

GM
R2
⊕

1
2
[(−Cn,mVn+1,m+1−Sn,mWn+1,m+1)

+
(n−m+2)!
(n−m)!

(Cn,mVn+1,m−1 +Sn,mWn+1,m−1)]

(4.31)

ÿn,m
(m=0)
=

GM
R2
⊕
[−Cn,0Wn+1,1] (4.32)

ÿn,m
(m>0)
=

GM
R2
⊕

1
2
[(−Cn,mWn+1,m+1 +Sn,mVn+1,m+1)

+
(n−m+2)!
(n−m)!

(−Cn,mWn+1,m−1 +Sn,mVn+1,m−1)]

(4.33)

z̈n,m =
GM
R2
⊕
(n−m+1)[−Cn,mVn+1,m−Sn,mWn+1,m] (4.34)

A full derivation of the equations listed above can be found in Cunningham (1970).
It should be noted that the acceleration is given in an Earth-fixed reference frame.
In order to obtain the acceleration in an inertial reference frame, the acceleration
vector needs to be multiplied with a time-dependent rotation matrix which accounts
for the rotation of the Earth.

Gravity Model

The values of the geopotential coefficients are dependent on the gravity model that
is used. Over the years, many gravity models have been created for the Earth and
improvements are still being made. In the past decade, multiple satellites were
launched with the specific purpose of determining the Earth’s gravity field with
a very high accuracy. Nevertheless, in the simulations only coefficients up to a
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relatively low order and degree will be used, as adding more terms will have an in-
creasingly large effect on the required computation time, while the gain in overall
simulation accuracy significantly decreases once the degree and order of the coef-
ficients get past a certain point. Therefore, the accuracy of the established JGM-3
gravity field model (Tapley et al., 1996) is deemed more than sufficient for this
application. The coefficients of JGM-3, which have been used in the simulation
code, can be found in Appendix A.

4.4 Gravitational Attraction of the Sun and the Moon

In addition to the gravitational attraction of the Earth, an object orbiting the Earth
experiences gravitational attraction by all other bodies in the universe. By examin-
ing the gravitational law (Equation 4.1), it can be concluded that only bodies with a
large mass and a relatively small distance from the object yield a gravitational force
that is of any significance compared to the gravitational attraction of the Earth. As
can be seen in Figure 4.1, the gravitational accelerations due to celestial bodies
other than the Earth are much smaller than the gravitational acceleration caused
by the Earth itself. Moreover, the perturbing accelerations produced by the Sun
and the Moon are at least four orders of magnitude larger than the accelerations
produced by the other celestial bodies. Hence, only the perturbing gravitational
attraction of the Sun and the Moon will be taken into account. In literature, these
perturbing accelerations are occasionally referred to as the luni-solar perturba-
tions.

Using Newton’s law of gravity, the gravitational attraction of a point mass M
representing a celestial body can be stated as follows:

r̈ = GM
s−r
|s−r|3

(4.35)

In this equation, r and s are the geocentric coordinates of the orbiting object and
point mass M, respectively.
It should be noted, however, that r̈ represents the acceleration with respect to an in-
ertial reference system (Montenbruck and Gill, 2005). In such a coordinate system,
the Earth is not at rest, but experiences an acceleration due to M equal to

r̈ = GM
s

|s|3
(4.36)

Taking this into account leads to the following expression for the acceleration of
the satellite relative to the center of the Earth, due to the gravitational force of body
M (Montenbruck and Gill, 2005):

r̈ = GM

(
s−r
|s−r|3

− s

|s|3

)
(4.37)

Figure 4.3 illustrates this concept. In the top part of the figure, the accelerations
with respect to a non-Earth-centered inertial reference frame are shown. Clearly,
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the accelerations of both the orbiting object and the Earth are pointed toward the
perturbing mass, with the magnitude of the acceleration decreasing as the distance
from the perturbing mass increases. The lower part of Figure 4.3 shows the accel-
erations with respect to an Earth-centered frame. In this case, the orbiting object
experiences an acceleration away from the Earth when it is on the line connecting
the Earth and the perturbing body, but is pulled toward the Earth whenever it is
in a position perpendicular to this line. Since the position of a satellite or debris
object is generally described with respect to the Earth, the lower part of Figure 4.3
illustrates most clearly the effect of a perturbing mass on the trajectory of an object
orbiting the Earth.

Figure 4.3: The acceleration due to a perturbing mass expressed in two different
frames (Montenbruck and Gill, 2005).

Equation 4.37 can be used to calculate the perturbing acceleration due to the grav-
itational attraction of any celestial body. To use it, however, the position of the
perturbing body needs to be known in the Earth-centered reference frame used for
describing the motion of the satellite. In the simulation code, series expansions are
used for approximating the coordinates of the Sun and the Moon in this reference
frame at any point in time. A detailed description of the routines that are used for
this is given in Appendix B.

4.5 Solar Radiation Pressure

When radiation emitted by the Sun reaches an object in orbit, the object experiences
a small force, resulting from the absorption or reflection of photons. In contrast to
gravitational perturbations, the perturbation due to solar radiation pressure depends
on the object’s surface area and mass. These quantities are often combined to form
the area-to-mass ratio (A/m) of the object, which determines to a large extent how
much the object will be affected by solar radiation pressure.
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The magnitude of solar radiation pressure is dependent on the solar flux φ ,
which is the amount of energy ∆E that passes through an area A in a time interval
∆t:

φ =
∆E
A∆t

(4.38)

The impulse carried by a single photon of energy Ev is given by

pv =
Ev

c
(4.39)

in which c is the speed of light (Montenbruck and Gill, 2005). Hence, the total
change in impulse of an absorbing body illuminated by the Sun in a time interval
∆t is equal to

∆p =
∆E
c

=
φ

c
A∆t (4.40)

Therefore, the object experiences a force of

F =
∆p
∆t

=
φ

c
A (4.41)

resulting in a pressure of

Pr =
φ

c
(4.42)

The solar flux at a distance of 1 AU from the Sun amounts to

φ ≈ 1367 Wm−2 (4.43)

(McCarthy, 1996). Therefore, the solar radiation pressure near the Earth is approx-
imately

Pr ≈ 4.56 ·10−6 Nm−2 (4.44)

Equation 4.44 is valid under the assumption that the object’s surface absorbs all
incoming photons and is perpendicular to the incoming radiation. In reality, the ob-
ject’s surface will have a reflection coefficient ρ with a value between 0 (complete
absorption) and 1 (complete reflection). The force due to solar radiation pressure
is shown for the two extreme cases in Figure 4.4. In this figure, the unit normal
vector n gives the orientation of the surface A. Furthermore, angle θ is the angle
between this normal vector and the unit vector e� pointing from the object to the
Sun.
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Figure 4.4: The force due to solar radiation pressure for the cases of complete
absorption (ρ = 0) and complete (specular) reflection (ρ = 1) (Montenbruck and
Gill, 2005).

The following expression can be used to calculate the force due to radiation pres-
sure, taking into account a non-zero reflection coefficient (Montenbruck and Gill,
2005):

F =−Pr cos(θ)A[(1−ρ)e�+2ρ cos(θ)n] (4.45)

In practice, the distance between the Earth and the Sun is not constant over the year,
but varies between 147 ·106 km and 152 ·106 km. Accordingly, the solar radiation
pressure also varies over the year. To account for this dependence, the following
equation for the acceleration due to solar radiation pressure can be applied:

r̈ =−Pr
(1AU)2

r2
�

A
m

cos(θ)[(1−ρ)e�+2ρ cos(θ)n] (4.46)

in which r� indicates the instantaneous distance of the object from the Sun (ex-
pressed in the same units as the term 1AU in the numerator).

In many cases, it can be assumed that the surface normal n points to the Sun. In
that case, Equation 4.46 can be simplified to

r̈ =−PrCR
A
m
r�

r3
�
(1AU)2 (4.47)

where r� is the vector from the object to the Sun

r� = r−rSun (4.48)

and CR is the radiation pressure coefficient, given by

CR = 1+ρ (4.49)
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Eclipses

Eclipses play an important role in modeling the effects of solar radiation pressure.
As long as the Sun is completely behind the Earth from the viewpoint of the or-
biting object, no direct solar radiation will reach the object. Also, when the Sun
is partially obscured, the solar radiation pressure will be reduced compared to the
situation of full solar illumination.

Eclipses can be taken into account by modifying Equation 4.47 slightly:

r̈ =−νPrCR
A
m
r�

r3
�
(1AU)2 (4.50)

In Equation 4.50, ν is a shadow function:

ν =


0 if the orbiting object is in umbra (full eclipse)
between 0 and 1 if the orbiting object is in penumbra (partial eclipse)
1 if the orbiting object is in sunlight

Different shadow models can be used for eclipses. The two most common options
are cylindrical and conical shadow models (see Figure 4.5). Although a cylindri-
cal shadow model is easier to apply as it ignores penumbra, it lacks some of the
accuracy of a conical shadow model.

Figure 4.5: Cylindrical and conical shadow models (Hubaux et al., 2012).

Regarding Figure 4.5, it should be mentioned that the angles relating to the penum-
bra are highly exaggerated1 and that in practice, the conical shadow model quite

1In fact, α ≈ 0.26◦ and β ≈ 0.27◦.
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closely resembles the cylindrical shadow model. Additionally, the orbits that are to
be simulated for this thesis project lie in the GEO and GNSS regions of space, and
accordingly, eclipse conditions only occur during relatively small parts of the or-
bits. Therefore, it is decided to keep the eclipse modeling relatively simple and use
a cylindrical shadow model for the simulations. This implies that partial eclipses
are not taken into account and hence, the shadow function ν has a value of either 0
or 1.

To determine whether or not an orbiting object is in eclipse, vector calculus is used.
First, the unit vector pointing to the Sun is determined:

eSun =
rSun

|rSun|
(4.51)

Then, the projection of the object’s position vector on the position vector of the
Sun is computed with

s = r ·eSun

= |r| |eSun|cos(θ)

= r cos(θ)

(4.52)

The condition
s > 0 (4.53)

corresponds to
0 < θ < 90◦

which means that the orbiting object is on the same side of the Earth as the Sun. In
this case, the object is not in eclipse. This condition is illustrated in Figure 4.6(a).

The other condition that is used for checking whether the object is not in eclipse is
given by

|r− seSun|> R⊕ (4.54)

In case this condition is fulfilled, the object is outside a cylinder with the same
radius as the Earth, which fully contains the shadow of the Earth, but also extends
in the opposite direction (see Figure 4.6(b)).

Note that while fulfillment of either condition (4.53) or (4.54) is sufficient to prove
that the object is not in eclipse, both conditions need to be false in order to deduce
that the object is in eclipse. Hence, the simulation code checks for eclipses in the
following way: if either condition (4.53) or (4.54) is satisfied, the object is assumed
to be fully illuminated by the Sun and the illumination factor ν will get a value of
1. If neither condition is fulfilled, the object is determined to be in eclipse and ν

will be set to 0.
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(a) An illustration of the first condition. The object is
not in eclipse if s > 0.

(b) An illustration of the second condition. The object is not in
eclipse if |r− seSun|> R⊕.

Figure 4.6: A graphical representation of the conditions that are used to determine
whether the orbiting object is in eclipse.





Chapter 5
Orbit Formulation

As a result of the force model treated in the previous chapter, the equation of motion
has the following form:

r̈ = r̈Main + r̈Geopotential + r̈Sun + r̈Moon + r̈SRP (5.1)

The trajectory of the space debris object to be modeled is the solution to this
second-order differential equation. Before going into the topic of integration meth-
ods, it is worthwhile to consider in what ways the equation of motion can be for-
mulated, as some ways are more practical and efficient than others.

This chapter starts with a short reminder of the basic laws of astrodynamics
and will continue with a treatment of three coordinate systems that are convenient
to use in astrodynamics. Finally, different methods of modeling perturbed orbits
will be discussed, whose formulations can have a clear effect on the efficiency of
long-term simulations.

5.1 Basic Laws of Astrodynamics

This section provides a brief review of the laws on which astrodynamics is based.
In addition, an overview of some of the most fundamental equations in astrody-
namics is given in Appendix C. It is assumed that the reader is familiar with as-
trodynamics, and hence, this section and Appendix C mainly serve to refresh the
memory on some of the concepts and equations.

Newton’s three laws of motion, formulated in his Principia (1687), read as:

1. Every particle continues in its state of rest or uniform motion in a straight
line relative to an inertial reference frame, unless it is compelled to change
that state by forces acting upon it.

2. The time rate of change of linear momentum of a particle relative to an in-
ertial reference frame is proportional to the resultant of all fores acting upon
that particle and is collinear with and in the direction of the resultant force.

53
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3. If two particles exert forces on each other, these forces are equal in magni-
tude and opposite in direction.

Newton’s law of gravity, governing the attraction between two point masses, is
stated as:

Two particles attract each other with a force directly proportional to their
masses and inversely proportional to the square of the distance between
them.

Kepler’s laws of planetary motion read as:

1. The orbit of a planet is an ellipse, of which the Sun is located in one of the
foci.

2. The radius vector of the planet sweeps out equal areas in equal intervals of
time.

3. The ratio between the square of the period and the cube of the major axis of
an elliptical orbit is equal for all planets.

The laws listed above translate into (the equations for) unperturbed Keplerian or-
bits.

5.2 Coordinate Systems

There are multiple coordinate systems that can be used for orbit modeling. The
choice of coordinate system can depend on multiple factors, such as ease of im-
plementation, computational efficiency and geometric interpretation. In the next
sections, three different coordinate systems that are convenient for orbital mechan-
ics will be discussed.

5.2.1 Cartesian Coordinates

A Cartesian coordinate system consists of three axes that are mutually orthogonal.
In most cases, these axes are called the x-, y-, and z-axis, respectively. In the
description of objects orbiting the Earth, it is convenient to choose an equatorial
coordinate system (see Figure 5.1), which is aligned with the Earth’s rotation axis
and equator. The reference frame is chosen such that the origin of the system is
located at the center of the Earth, the x-y plane coincides with the equatorial plane
and the z-axis points to the north pole. Furthermore, the x-axis is aligned to the
Vernal Equinox (ϒ), corresponding to the intersection of the equatorial plane with
the Earth’s orbital plane.

The position and velocity of an object in orbit around the Earth can now be
specified using a set of six Cartesian coordinates: [x, y, z, ẋ, ẏ, ż], where the last
three parameters are time derivatives of the position coordinates. The combined
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vector of these position coordinates and velocity components is often called a state
vector, as it fully describes the state of a moving particle in 3D space.

An advantage of using Cartesian coordinates for orbit modeling is that it leads
to relatively simple mathematical expressions, from which time derivatives can eas-
ily be obtained. Disadvantages are that the coordinates change relatively quickly,
hence requiring many time steps when integrating, and the fact that it is hard to
interpret what the orbit looks like from a set of position and velocity components.

Figure 5.1: Definition of the equatorial coordinate system (Montenbruck and Gill,
2005).

5.2.2 Orbital Elements

When using Cartesian or polar coordinates, most of the parameters used for de-
scribing the orbit change quite drastically over time. However, it is also possible to
choose certain parameters that remain constant over time for an unperturbed Kep-
lerian orbit. This is the case for the orbital elements [a, e, i, Ω, ω , τ], also called
the Keplerian elements.

The in-plane elements a and e are indicated in Figure 5.2. a is the semi-major
of the ellipse1, being equal to half the length of the longest axis of the ellipse. The
eccentricity, e, determines the shape of the ellipse and is defined as

e =
ra− rp

ra + rp
(5.2)

where ra and rp indicate the radii of apocenter and pericenter, respectively.

1The orbital elements are also defined for parabolic (e = 1) and hyperbolic (e > 1) orbits, but
these definitions will not be treated in this section.
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Figure 5.2: Definition of the in-plane orbital elements (Wakker, 2010).

The definition of the orbital elements i, Ω and ω is shown in Figure 5.3. i is the
inclination, which is the angle between the orbital plane and the reference plane.
Furthermore, Ω is called the right ascension of the ascending node (for an equa-
torial reference plane) and indicates the angle between the reference direction (ϒ)
and the ascending node2, measured in the reference plane. Next, the argument of
pericenter ω is the angle from the ascending node to the pericenter, defining the
orientation of the ellipse within the orbital plane. Finally, the time of pericenter
passage τ is required to link time to the position in orbit. In order to have a param-
eter that is easier to interpret geometrically, the parameter τ is often replaced by the
true anomaly θ , which represents the angle in the plane of the ellipse between the
pericenter and the position of the orbiting object at any point in time. It should be
emphasized, though, that θ does not remain constant over time for an unperturbed
orbit, whereas τ does.

One of the main advantages of using orbital elements is that their physical
meaning is much clearer than that of Cartesian coordinates. Additionally, the or-
bital elements (with the exception of θ ) remain constant for an unperturbed Kep-
lerian orbit and change only slowly for a perturbed orbit. This allows a smoother
integration process than with Cartesian coordinates, which change quite rapidly
over time. Hence, a larger integration step size can be applied when using orbital
elements. However, the expressions that are involved are more complicated than
the ones for Cartesian components, and do contain another disadvantage, which
will be treated in the next section.

2For an object orbiting the Earth, the ascending node is the location where the object crosses the
equatorial reference plane, moving from the Southern hemisphere to the Northern hemisphere.
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Figure 5.3: Definition of the orbital elements that define the orientation of the orbit
in three-dimensional space (Wakker, 2010).

5.2.3 Modified Equinoctial Elements

Though the classical orbital elements have convenient properties, they do unfortu-
nately have an important shortcoming. As will become clear in Section 5.3.3, some
of the equations that are used for propagating the orbital elements become singular
if either the inclination or eccentricity approaches zero. Since geostationary orbits
ideally have both an inclination and an eccentricity of zero, the standard equations
for advancing the orbital elements cannot be used in the simulation code, due to
the existence of these singularities.

Therefore, another set of elements, called the modified equinoctial elements
(MEE) is used. They are formed by combining the classical orbital elements in
such a way that the singularities that arise in the equations of motion disappear,
and hence, the new equations of motion can be used for all types of orbits3. The
modified equinoctial elements are defined as (Walker et al., 1985):

p = a(1− e2) (5.3)

f = ecos(ω̄) (5.4)

g = esin(ω̄) (5.5)

h = tan(
i
2
)cos(Ω) (5.6)

3Strictly speaking, the new equations of motion do have a singularity at i = π , but this can be
handled by an appropriate re-definition.



5.3. Modeling Perturbed Orbits 58

k = tan(
i
2
)sin(Ω) (5.7)

L = ω̄ +θ (5.8)

where
ω̄ = ω +Ω (5.9)

Although the modified equinoctial elements are not as easy to interpret geometri-
cally as the classical orbital elements, the advantage of having equations of motion
that can also be used for the numerical propagation of near-circular orbits and or-
bits that lie in the equatorial plane outweighs this disadvantage, making the use of
modified equinoctial elements the better choice for this thesis project.

5.3 Modeling Perturbed Orbits

As was discussed in Chapter 4, various perturbing forces change the orbits of satel-
lites and other objects orbiting the Earth. To take these forces into account, the
equation of motion of an orbiting object relative to a non-rotating geocentric equa-
torial reference frame can be written as (Wakker, 2010):

d2r

dt2 +
µ

r3r =−∇R+f (5.10)

In this equation, R is the perturbing or disturbing potential, which describes all
perturbing accelerations that can be expressed by a potential function. f , in turn,
represents all perturbing accelerations that cannot be written as the gradient of a
scalar function.

In general, Equation 5.10 cannot be solved analytically. Numerical integration
techniques or approximative analytical methods are often used to find its solution
instead. Methods depending on numerical integration techniques are called spe-
cial perturbation methods, generating just one particular trajectory for an orbiting
object, given its initial conditions. Methods employing approximative analytical
methods, on the other hand, are called general perturbation methods and yield ap-
proximative solutions that are applicable for all orbiting objects and for all initial
conditions.

Unfortunately, the use of general perturbation methods involves a tremendous
amount of analytical labor (Wakker, 2010), especially if many perturbing forces are
to be taken into account. Additionally, the achievable accuracy of these methods
is significantly lower than that of special perturbation methods. For these reasons,
general perturbation methods will be considered no further. Instead, the next sec-
tions will focus on the most important special perturbation techniques that exist in
orbital mechanics.
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5.3.1 Method of Cowell

The most straightforward method to compute perturbed satellite orbits is the method
of Cowell (Wakker, 2010). In this method, the equation of motion is written in the
form

d2r

dt2 = ft (5.11)

in which ft represents the total acceleration. Following from Equation 5.10, this
total acceleration is given by

ft =−
µ

r3r−∇R+f (5.12)

Equation 5.11 is then integrated directly using a numerical integration method.
More information about numerical integrators will be given in Chapters 6 and 7.

The most important advantages of Cowell’s method are that is easy to program
due to its simple equations and that it is always applicable. No assumptions or
substitutions have been made that restrict its use to specific situations.

An important drawback of the method, however, is that it makes no use of
the fact that ∇R and f are small, perturbing accelerations. The integration has to
account for the effects of both the central Newtonian gravity field and the pertur-
bations produced by the various perturbing forces. Hence, small integration steps
are required in the numerical integration process. This leads to a relatively long
computation time and a steadily growing integration error due to the accumulation
of round-off errors.

5.3.2 Method of Encke

In contrast to the method of Cowell, the method of Encke makes use of a reference
orbit and only the deviation with respect to that orbit is integrated numerically. The
deviation of the actual trajectory with respect to the reference orbit at a time t is
expressed as

∆r = r−ρ (5.13)

where r is the actual position of the orbiting object and ρ denotes the position of
the orbiting object in case it would follow the unperturbed reference orbit.

Setting up the equation of motion for ∆r eventually leads to the following expres-
sion (Wakker, 2010):

d2∆r

dt2 =
µ

ρ3 [(ρ+∆r) f (q)−∆r]−∇R+f (5.14)

where f (q) can either be computed using a binomial series expansion:

f (q) = 3q
(

1− 5
2

q+
35
6

q2− 105
8

q3 + ...

)
(5.15)
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or using a closed form:

f (q) =
2q

1+2q

[
1+

1
1+2q+

√
1+2q

]
(5.16)

Since in Encke’s method only the perturbing accelerations are integrated numeri-
cally to obtain the deviation with respect to the reference orbit, a larger integration
step size can generally be chosen than in Cowell’s method. Yet, at each integration
step Encke’s method requires more computation time (Wakker, 2010). In general,
however, Encke’s method yields a more efficient computation process than Cow-
ell’s method for small but strongly varying perturbing forces.

If the perturbations accumulate, ∆r may eventually become quite large. In
that case, the reference orbit should be rectified, i.e. a new reference orbit should
be chosen with ∆r = 0 and d∆r

dt = 0 at the instant of rectification. This need for
rectification is a drawback of Encke’s method, especially if the orbit has to be
rectified often during the propagation.

5.3.3 Method of Variation of Parameters

A third method to compute perturbed orbits is the method of variation of parame-
ters, also called the method of variation of orbital elements. This method relies on
the concept of osculating Keplerian orbits. An osculating orbit is the orbit that an
orbiting object would follow if from that moment onward no perturbations would
act on the object anymore (Wakker, 2010). This orbit touches the true (perturbed)
orbit of the object at that particular moment in time, t, and the position and velocity
are the same for both orbits in the point of contact. Since perturbing forces act on
the object, another osculating orbit will be found at another instant in time, t +∆t.

In the method of variation of parameters, a perturbed orbit is viewed as a se-
quence of small parts of a series of osculating Keplerian orbits, of which the orbital
elements vary continuously. This yields a set of first-order differential equations
that describe the variation of the osculating orbital elements with time. By inte-
grating these equations, the osculating orbital elements can be calculated for any
moment in time. From these orbital elements, the position and velocity in the
perturbed orbit at that time can be determined using the transformations valid for
Keplerian orbits.

Since only the differences between the perturbed orbit and a Keplerian ref-
erence orbit are integrated, the method of variation of parameters is in fact very
similar to the method of Encke. The main advantage of using the method of varia-
tion of parameters, however, is that the variation of orbital elements yields a much
clearer picture of the geometric characteristics of the orbital perturbations than the
variation of Cartesian position and velocity components. Furthermore, the method
is used quite often to obtain approximative analytical solutions of the differential
equations. A disadvantage of the method of variation of parameters is that the
expressions that are used are quite complex.
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Lagrange’s Planetary Equations

One set of six simultaneous first-order differential equations that express the ef-
fects of perturbing forces on each of the orbital elements is given by Lagrange’s
planetary equations (Wakker, 2010):

da
dt

=−2
a2

µ

∂ R̃
∂τ

(5.17)

de
dt

=−a(1− e2)

µe
∂ R̃
∂τ
− 1

e

√
1− e2

µa
∂ R̃
∂ω

(5.18)

di
dt

=
cot i√

µa(1− e2)

∂ R̃
∂ω
− 1√

µa(1− e2)sin i

∂ R̃
∂Ω

(5.19)

dω

dt
=

1
e

√
1− e2

µa
∂ R̃
∂e
− cot i√

µa(1− e2)

∂ R̃
∂ i

(5.20)

dΩ

dt
=

1√
µa(1− e2)sin i

∂ R̃
∂ i

(5.21)

dτ

dt
= 2

a2

µ

∂ R̃
∂a

+
a(1− e2)

µe
∂ R̃
∂e

(5.22)

In the equations listed above, a force function notation has been used, with R̃=−R,
where R is the perturbing potential. It should be noted that Lagrange’s planetary
equations are only valid for perturbing forces that can be expressed through a per-
turbing potential.

Moreover, if e = 0 or i = 0, singularities will occur in the equations. Problems
also occur if e and i are not equal to zero, but are very small in magnitude, mak-
ing it impossible to find an analytical solution to the equations. These problems
have nothing to do with the method in itself, but are a consequence of using or-
bital elements as the set of parameters that describe the orbit. If the orbit is likely
to encounter these problems, other elements can be used that produce no singu-
larities for the orbit that is considered, such as the modified equinoctial elements
introduced in Section 5.2.3.
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Gauss’ Form of Lagrange’s Planetary Equations

A limitation of Lagrange’s planetary equations is that they can only be used for
perturbations that can be described by a perturbing potential. This problem can
be circumvented by deriving the equations in a slightly different way. The total
perturbing acceleration is now decomposed into three orthogonal components: a
radial component fS, a component in the orbital plane perpendicular to the radius
vector fN , pointing in the direction of motion, and a component perpendicular to
the orbital plane fW , pointing in the direction of the angular momentum vector (see
Figure 5.4).

Figure 5.4: The geometry of the fS fN fW acceleration frame relative to the orbit
and the equatorial frame (Wakker, 2010).

The conversion from Cartesian components to these components can be done by
means of the following transformation:

r̈SNW =R · r̈xyz (5.23)

where the rotation matrixR is given by

R=

 cΩc(ω+θ)− cisΩs(ω+θ) sΩc(ω+θ)+ cicΩs(ω+θ) sis(ω+θ)

−(cΩs(ω+θ)+ cisΩc(ω+θ)) −(sΩs(ω+θ)− cicΩc(ω+θ)) sic(ω+θ)

sisΩ −sicΩ ci


in which the following abbreviations have been used for the sines and cosines:

sα = sinα

cα = cosα
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Using the radial ( fS), transverse ( fN) and normal ( fW ) components of the acceler-
ation, Gauss’ form of Lagrange’s planetary equations (also simply called Gauss’
equations) can be obtained, being valid for all perturbing accelerations, regardless
of whether these can be derived from a potential function or not (Wakker, 2010):

da
dt

= 2
a2
√

µ p

[
fSesinθ + fN

p
r

]
(5.24)

de
dt

=

√
p
µ
[ fS sinθ + fN(cosE + cosθ)] (5.25)

di
dt

= fW
r
√

µ p
cosu (5.26)

dω

dt
=−

√
p
µ

[
fW

r
p

cot isinu+
1
e

{
fS cosθ − fN

(
1+

r
p

)
sinθ

}]
(5.27)

dΩ

dt
= fW

r
√

µ psin i
sinu (5.28)

dM
dt

= n− fS

[
2r
√

µa
− 1− e2

e

√
a
µ

cosθ

]
− fN

1− e2

e

√
a
µ

(
1+

r
p

)
sinθ (5.29)

Note that in Equation 5.22, use is made of the time of pericenter passage τ , whereas
in Equation 5.29 the mean anomaly M is used. Hence, Equations 5.22 and 5.29 are
different, also in case of an unperturbed orbit (for which τ is constant and M varies
according to M = n(t− t0)).

Also note that the singularities arising if e = 0 or i = 0 are still present in the
equations for the time derivatives of ω , Ω and M.

Gauss’ Equations using Modified Equinoctial Elements

To prevent the singularities associated with the variation of parameters equations
expressed using the orbital elements, the equations can be rewritten using modified
equinoctial elements. Since the force model necessitates the use of Gauss’ form of
Lagrange’s planetary equations, the modified equations will only be shown here for
that form of the planetary equations. Following the work of Roth (1985), Gauss’
equations using modified equinoctial elements are as follows:

d p
dt

= 2

√
p3

µ

1
W

fN (5.30)

d f
dt

=

√
p
µ

1
W

[W sin(L) fS +A(L) fN−g(hsin(L)− k cos(L)) fW ] (5.31)

dg
dt

=

√
p
µ

1
W

[−W cos(L) fS +B(L) fN + f (hsin(L)− k cos(L)) fW ] (5.32)
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dh
dt

=
1
2

√
p
µ

X
W

cos(L) fW (5.33)

dk
dt

=
1
2

√
p
µ

X
W

sin(L) fW (5.34)

dL
dt

=

√
µ

p3W 2 +

√
p
µ

1
W

(hsin(L)− k cos(L)) fW (5.35)

where the following abbreviations have been used:

s = (1− f 2−g2)1/2 (5.36)

X = 1+h2 + k2 (5.37)

W = 1+ f cos(L)+gsin(L) (5.38)

A(L) = f + cos(L)(1+W ) (5.39)

B(L) = g+ sin(L)(1+W ) (5.40)

5.4 Choice of Propagation Methods

The propagation methods discussed in Section 5.3 all have their respective advan-
tages and disadvantages. Furthermore, the choice of the propagation method to
use is linked to the choice of the coordinate system to use for the integration. The
methods of Cowell and Encke are generally used in combination with Cartesian
coordinates, whereas the method of variation of parameters relies on the use of
orbital elements or similar parameters, like modified equinoctial elements.

Of the three propagation methods, the method of Cowell is the easiest one to
implement, as it essentially implies a direct integration of the equations of motion
in Cartesian coordinates. In addition to its ease of implementation, an important ad-
vantage of the method of Cowell is that it always works, given that a small enough
integration step size has been chosen (Wakker, 2010). This makes it a convenient
method to use in a general simulation tool, such as the one to be developed for this
thesis project. Therefore, the Cowell formulation will be included as one of the
options in the simulation code.

In the method of Encke, only the perturbations are integrated numerically,
which allows a larger step size to be used than with the method of Cowell. A
drawback, however, is that the reference orbit needs to be rectified if the devia-
tions from it become too large. Since the orbits of objects with large area-to-mass
ratios will also be modeled in this project, the simulated orbits can develop to be
drastically different from the original orbits (see Sections 3.1.2 and 3.2.2), mak-
ing it necessary to rectify the reference orbit fairly often. As a result, part of the
advantage of using Encke’s method is lost. Additionally, the method of Encke is
fairly similar to the Wisdom-Holman splitting method for symplectic integrators,
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which will be treated in Chapter 7. This particular method also does not have the
drawback of needing periodic rectification of the reference orbit. Because of this,
and in order to keep the number of methods in the simulation code manageable, the
method of Encke will not be implemented. Instead, the Wisdom-Holman splitting
method for symplectic integrators will be included in the simulation code.

The method of variation of parameters is also quite similar to the method of
Encke, in the sense that only the effect of the perturbing forces is integrated nu-
merically. However, in this case the direct effect on the orbital elements or similar
parameters is integrated, instead of the effect on the Cartesian state vector. Be-
cause the orbital elements only show small variations under the effect of perturbing
forces, this approach allows for a relatively stable integration process.

Since non-conservative forces are included in the force model, Gauss’ form
of Lagrange’s planetary equations needs to be used instead of the classical set of
equations. An important drawback of either set of equations is that they produce
singularities for eccentricities or inclinations equal to zero, in case orbital elements
are used for the propagation. As geostationary orbits are both circular and located
in the equatorial plane, a different set of parameters needs to be used to prevent
numerical problems in the simulations.

Because of its favorable properties, the method of variation of parameters will
be used in the simulation code. In order to deal with the aspects mentioned above,
the specific implementation will use Gauss’ form of Lagrange’s planetary equa-
tions combined with modified equinoctial elements.





Chapter 6
Traditional Integration Methods

The problem of predicting the trajectory of a space debris object from specified
starting conditions is essentially an initial value problem, with the equation of mo-
tion being the central differential equation that needs to be solved. This equation
of motion results from the force model (described in Chapter 4) and has the form

r̈ = a(t,r, ṙ) (6.1)

This second-order differential equation needs to be solved for a specified set of
initial conditions. However, when perturbing forces are taken into account, the
equation of motion cannot be solved analytically.

Hence, it is necessary to solve the equation numerically1. The algorithms that
are used for this purpose are called numerical integrators.

In this chapter, a number of commonly used integration methods will be de-
scribed. These will be referred to as traditional integration methods. The next
chapter will go into detail on a relatively new set of integration methods called
symplectic integration methods.

This chapter on numerical integration methods is not meant to be exhaustive.
There are many textbooks available on the subject, and a full discussion of the
various methods that are in existence would require a book in itself. Instead, this
chapter treats a number of concepts that are important in understanding the basics
of how integration methods work and focuses primarily on the integration methods
that have been implemented in the simulation code.

1 Another option would be to approximate the solution using analytical approximations. How-
ever, analytical approximations are not deemed accurate enough for modeling space debris motion
over periods of several centuries, and therefore these methods will not be considered any further in
this report.

67
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6.1 Introduction

The way in which numerical integration works is perhaps most clearly illustrated
by means of an example. For visualization purposes, it is most convenient to in-
troduce some of the concepts for a one-dimensional case. Afterwards, the notions
can be extended to a three-dimensional situation quite easily.

Consider the following initial value problem:

ẏ(t) = y(t)(2− t)t + t−1

y(0) = 1
(6.2)

This problem does not have a closed-form solution. To approximate the solution,
numerical integration methods can be used. In order to have a reference of the
actual solution, a highly accurate numerical solution of the problem is shown in
Figure 6.1.

Figure 6.1: The solution to the initial value problem of Equation 6.2 (Harder,
2012).
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Euler’s Method

The simplest integration method is Euler’s method. In this method, one sample of
the time derivative is used to approximate the slope of the function:

K1 = f (tk,yk) = ẏ(tk,yk) (6.3)

This slope is used to approximate the next function value:

yk+1 = yk +hK1 (6.4)

Equation 6.4 describes Euler’s method. A single step with step size h taken using
this method is often called an Euler step.

Calculating the function value of y at t = 0.5 for the example problem with Euler’s
method yields

K1 = f (0,1) = 1 · (2−0) ·0+0−1 =−1 (6.5)

y(0.5)≈ y1 = y0 +0.5 · (−1)

= 1−0.5 = 0.5
(6.6)

This approximation of the solution is shown in Figure 6.2. Clearly, the correspon-
dence with the actual solution is not very good, since the gradient of the function y
has changed significantly between t = 0 and t = 0.5, while the approximation was
based solely on the slope at t = 0.

Figure 6.2: An approximation of y(0.5) made using Euler’s method (Harder, 2012).
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Mid-Point Method

A slightly more advanced integration method is the mid-point method. In this
method, the slope in the middle of the integration step (K2) is used to approximate
the next function value:

yk+1 = yk +hK2 (6.7)

K2 is calculated using the slope at the start of the integration step:

K1 = f (tk,yk)

K2 = f
(

tk +
1
2

h,yk +
1
2

hK1

)
(6.8)

Computing the value of y at t = 0.5 for the example problem using the mid-point
method gives

K1 = f (0,1) =−1

K2 = f (0.25,1+0.25 · (−1))

= f (0.25,0.75)

=−0.421875

(6.9)

y(0.5)≈ y1 = y0 +0.5 · (−0.421875)

= 0.7890625
(6.10)

As can be seen in Figure 6.3, the approximation made using the mid-point method
is much better than the one made with Euler’s method. However, the prediction can
be improved even more by using a somewhat more complex integration method.
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Figure 6.3: An approximation of y(0.5) made using the mid-point method (Harder,
2012).

Runge-Kutta 4 Method

The Runge-Kutta 4 (RK4) method uses four slopes per integration step to calculate
the solution. These different slopes are given by

K1 = f (tk,yk) (6.11)

K2 = f
(

tk +
1
2

h,yk +
1
2

hK1

)
(6.12)

K3 = f
(

tk +
1
2

h,yk +
1
2

hK2

)
(6.13)

K4 = f (tk +h,yk +hK3) (6.14)

To approximate the value of the solution after time step h, the slopes are combined
in a weighted average, where more weight is given to the slopes at the mid-point
of the interval:

φ=
1
6
(K1 +2K2 +2K3 +K4) (6.15)

This effective slope is then used for taking the integration step:

yk+1 = yk +hφ (6.16)
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Working out the equations for the example problem yields

y(0.5)≈ y1 = 0.7962062 (6.17)

The different slopes used for taking the integration step for the example problem
using the RK4 method are shown in Figure 6.4, along with the corresponding ap-
proximation for f (0.5). Clearly, the approximation made with the RK4 method
closely resembles the actual solution to the problem.

Figure 6.4: An approximation of y(0.5) made using the RK4 method (Harder,
2012).

Comparison

A comparison of the approximations made using the different methods is shown in
Table 6.1. Note that this concerns approximations made using a single integration
step, as was the case in the previous examples. The truncation error is the error
with the actual solution, which results from approximating the continuous integral
by means of a discrete step.
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Table 6.1: A comparison of the approximations of y(0.5) made by the three integra-
tion methods using a single integration step. The true value of y(0.5) is 0.7963901.

Method Value for y(0.5) Truncation error
Euler 0.5 0.2963901
Mid-point 0.7890625 0.0073276
RK4 0.7962062 0.0001839

Clearly, applying Euler’s method results in the largest truncation error, while the
RK4 method yields the smallest truncation error, and the mid-point method gives
a truncation error that lies somewhere in between. Even though for all methods a
step size of h = 0.5 was used, the RK4 method required four function evaluations
for making the step, while the mid-point method needed two and Euler’s method
required only one.

When numerically integrating more complex systems, such as integrating the
equations of motion of a satellite, the computation time required is governed to a
large degree by the number of (force) function evaluations that are needed. There-
fore, it would be most useful to compare different methods based on the accuracy
attained when a similar number of function evaluations are used.

Figure 6.5 shows the approximation of the solution to the example problem
made using Euler’s method with four successive steps. Evidently, the prediction of
the solution obtained in this way is still much worse than the prediction obtained
using the RK4 method (cf. Figure 6.4).
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Figure 6.5: The result of approximating the solution to the example problem using
Euler’s method with four successive steps (Harder, 2012).

More specifically, Table 6.2 lists the approximations that are obtained by applying
the different methods to the example problem, using an equal number of function
evaluations. Even though both Euler’s method and the mid-point method perform
better than before, they are both still less accurate than the RK4 method. Hence,
for solving this example problem, the RK4 method is clearly more efficient than
both the mid-point method and especially Euler’s method.

Table 6.2: A comparison of the approximations of y(0.5) made by the three inte-
gration methods using an equal number of function evaluations. The true value of
y(0.5) is 0.7963901.

Method # of steps Value for y(0.5) Truncation error
Euler 4 0.7190835 0.0773066
Mid-point 2 0.7957524 0.0006377
RK4 1 0.7962062 0.0001839

Although the previously introduced methods are relatively simple integration meth-
ods, the basic aspects of how the integration is performed remains the same for
more advanced methods. In general, more advanced methods are better at dealing
with complex systems than simpler methods. As a result, the choice of the inte-
gration method to use will often depend on the desired level of accuracy and the



6.2. Accuracy and Efficiency 75

characteristics of the problem to be solved.

Vector Equations

While the example problem was a one-dimensional problem, the task of modeling
the motion of a space debris object in orbit around the Earth is of course a three-
dimensional problem. Fortunately, the concepts explained before can easily be
extended to a three-dimensional situation by using vectors.

For integration purposes it is convenient to state the equation of motion as a
first-order differential equation of the form

ẏ = f(t,y) with y, ẏ,f ∈ Rn (6.18)

This form can always be obtained from the second-order differential equation for
the acceleration

r̈ = a(t,r, ṙ) (6.19)

by combining position r and velocity ṙ in the 6-dimensional state vector

y =

(
r

ṙ

)
(6.20)

which satisfies the form of Equation 6.18 (Montenbruck and Gill, 2005):

ẏ = f(t,y) =
(

ṙ

a(t,r, ṙ)

)
(6.21)

Equation 6.21 is a first-order differential equation, which is in general easier to in-
tegrate than a second-order differential equation like Equation 6.19. The methods
described in the next sections will make use of the function f(t,y), as defined in
Equation 6.21.

6.2 Accuracy and Efficiency

When performing a numerical integration, there are several sources that induce er-
rors in the calculation. For long-term orbit integrations, the most important sources
of errors are the following (Milani and Nobili, 1988):

• Truncation (or discretization) errors, caused by the replacement of contin-
uous differential equations by finite-difference equations. Truncation errors
can be mitigated by using smaller integration steps.

• Round-off errors, resulting from the limited accuracy with which computers
store numbers. Round-off errors accumulate, meaning that the total error
resulting from them increases if more integration steps are used.
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• Instabilities, that can arise in two ways: either if the step size h is chosen too
large or if the dynamical system happens to be chaotic.

• Errors in the physical model, which occur if forces or system parameters are
approximated in an inaccurate way or if perturbations that have a noticeable
effect on the orbital motion are neglected.

The main factors for assessing the performance of an integrator are accuracy and
speed. These two factors often conflict with each other, as high accuracy, in gen-
eral, requires a small step size, leading to long computation times.

A factor that takes both accuracy and speed into account, and is therefore a
good measure for comparing different integrators, is efficiency. Usually, a certain
accuracy is desired, implying that the total error over the integration should be
kept below a certain (pre-defined) threshold. The integrator that satisfies this re-
quirement and is able to complete the integration in the shortest amount of time is
considered to be the most efficient integrator for that particular situation. Which
integrator is the most efficient depends on the desired accuracy and on the proper-
ties of the orbit to be modeled. Hence, there is not one ideal integrator that is the
best one to use in every single case.

6.3 Fixed Step Size Methods

Fixed step size methods use an integration step size h that is constant for the entire
integration interval, making them relatively straightforward to implement. How-
ever, the fact that the step size is fixed implies that the integration method makes
no distinction between parts of the system that are simple to integrate and parts that
are harder. Consequently, the efficiency of fixed step size methods is generally not
optimal for systems that exhibit a range of different behaviors over the integration
interval.

6.3.1 Runge-Kutta 4

The RK4 method was already shown for a one-dimensional case in the introduc-
tion. Using the notation of Equation 6.21, the method can be extended to a three-
dimensional situation. First of all, the approximate solution after a single integra-
tion step can be written in the general notation

y(t0 +h)≈ y0 +h ·φ= η(t0 +h) (6.22)

In this notation, φ is called the increment function. For the RK4 method, the incre-
ment function is calculated by taking a weighted average of four slopes calculated
within the integration step:

φRK4 =
1
6
(k1 +2k2 +2k3 +k4) (6.23)
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where the four slopes are calculated with

k1 = f(t0,y0) (6.24)

k2 = f(t0 +h/2,y0 +hk1/2) (6.25)

k3 = f(t0 +h/2,y0 +hk2/2) (6.26)

k4 = f(t0 +h,y0 +hk3) (6.27)

The RK4 method is designed to approximate the exact solution up to terms of order
h4 and is therefore called a fourth-order method (Montenbruck and Gill, 2005). The
local truncation error of the method is bound by a term of order h5:

eRK4 = |y(t0 +h)−η(t0 +h)| ≤ const ·h5 (6.28)

In literature, this statement about accuracy is often written in the following form:

y(t0 +h) = y0 +h ·φRK4 +O(h5) (6.29)

where the O symbol gives the order of magnitude of the local truncation error. The
nomenclature is such that a method of order p has a local truncation error on the
order of O(hp+1).

6.3.2 General Runge-Kutta Methods

Although there are many more Runge-Kutta methods than just RK4, they all share
the same structure. In each of the methods, the slope is evaluated at multiple points
within an integration step and a weighted average is taken to obtain the increment
function φ.

For a general s-stage2 Runge-Kutta method, the increment function is defined as

φ=
s

∑
i=1

biki (6.30)

with slope functions

k1 = f(t0 + c1h,y0) (6.31)

ki = f(t0 + cih,y0 +h
i−1

∑
j=1

ai jk j) (i = 2...s) (6.32)

This leads to an approximation of

η(t0 +h) = y0 +h ·φ (6.33)

Each Runge-Kutta method is fully described by the coefficients ai j, bi and ci, which
are chosen in such a way that the order of the local truncation error is as high as
possible.

2 s indicates the number of function evaluations that are required to form the increment function.
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A common way of denoting the coefficients of Runge-Kutta methods is by means
of a Butcher tableau. In such a table, all coefficients are listed in the following
way:

c1
c2 a21
c3 a31 a32
...

...
...

. . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

For example, the Butcher tableau for the RK4 method looks as follows:

ci ai j

0
1
2

1
2

1
2 0 1

2

1 0 0 1

bi
1
6

1
3

1
3

1
6

Because all Runge-Kutta methods share the structure of Equations 6.30 to 6.32,
each Runge-Kutta method can be fully defined by a single Butcher tableau.

6.4 Adaptive Step Size Methods

In addition to fixed step size methods, there are also methods which vary the step
size during the integration. These adaptive step size methods change the step size
such that each integration step contributes uniformly to the total integration er-
ror. As a result, these methods tend to be quite efficient, as no more time than is
necessary is spent on parts that are easy to integrate, while the step size is automat-
ically decreased for harder parts, making sure that the local error remains within
the specified bounds.

6.4.1 General Aspects

Since the coefficients of an integration method are not uniquely determined by
the condition of maximum order, it is possible to find various Runge-Kutta meth-
ods with an equal number of stages (Montenbruck and Gill, 2005). In addition,
methods of neighboring order can be found which rely on he same set of function
evaluations. These methods are called embedded Runge-Kutta methods, and they
allow an easy estimation of the local truncation error, which can be used for effi-
cient step size control.
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An s-stage embedded method gives two independent approximations of orders p
and p+1:

η(t0 +h) = y0 +h ·
s

∑
i=1

biki

η̂(t0 +h) = y0 +h ·
s

∑
i=1

b̂iki

(6.34)

with local truncation errors

e = |y(t0 +h)−η(t0 +h)| ≤ chp+1

ê = |y(t0 +h)− η̂(t0 +h)| ≤ ĉhp+2 (6.35)

Because ê is smaller than e by the order of h, it is possible to get an estimate of
the local truncation error of the method of order p from the difference of the two
solutions:

e = |y−η| ≈ |η̂−η| (6.36)

Although this could also be accomplished with arbitrary methods of neighboring
order, embedded methods have the advantage of only requiring s evaluations of the
force function instead of 2s−1, since the same set of function evaluations is used
for both η̂ and η.

The notation RKp(q) is generally used for denoting embedded Runge-Kutta
methods, implying that the specific method is of order p with an embedded method
of order q for step size control.

Step Size Control

A common technique for step size control is based on limiting the local truncation
error e, making use of the error estimate available with embedded methods. The
process works as follows (Montenbruck and Gill, 2005):

Once a single integration step has been performed with step size h, the local trun-
cation error is estimated using

e(h)≈ |η̂−η| (6.37)

If this error is larger than a specified tolerance ε , the integration step will be per-
formed again using a smaller step size h∗. Since for the method of order p, e(h) is
proportional to hp+1, the local truncation error for the new step size will be equal
to

e(h∗) = e(h)
(

h∗

h

)p+1

≈ |η̂−η|
(

h∗

h

)p+1

(6.38)
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This new truncation error needs to be smaller than ε . Solving Equation 6.38 for h∗

results in the maximum allowed step size for repeating the step:

h∗ = p+1

√
ε

e(h)
h≈ p+1

√
ε

|η̂−η|
h (6.39)

In practice, a safety factor is often used in order to avoid another unsuccessful step.
In the simulation code, the value computed with Equation 6.39 is multiplied by 0.8
for this reason.

In addition, rapid oscillations of the step size are not desired either. Therefore,
minimum and maximum values for the change in step size have been specified in
the simulation code. These values make sure that the factor with which the step
size changes always lies between 0.1 and 4.

6.4.2 Runge-Kutta-Fehlberg 5(6)

Runge-Kutta-Fehlberg 5(6) is a method by Fehlberg (1968), consisting of a method
of order 5 with an embedded method of order 6 for step size control and a total of
8 stages. In this report, it is abbreviated as RKF56. The Butcher tableau for the
RKF56 method is as follows:

ci ai j

0
1
6

1
6

4
15

4
75

16
75

2
3

5
6 - 8

3
5
2

4
5 - 8

5
144
25 -4 16

25

1 361
320 - 18

5
407
128 - 11

80
55

128

0 - 11
640 0 11

256 - 11
160

11
256 0

1 93
640 - 18

5
803
256 - 11

160
99

256 0 1

b̂i
7

1408 0 1125
2816

9
32

125
768 0 5

66
5
66

bi
31
384 0 1125

2816
9
32

125
768

5
66 0 0

Note that because this is an embedded Runge-Kutta method, there are two sets
of b-coefficients. The first row of coefficients (b̂i) gives the sixth-order accurate
method, while the second row (bi) gives the coefficients of the fifth-order accurate
method. In this case, the lower-order method is used to propagate the solution,
while the higher-order method is only used for step size control.

6.4.3 Dormand-Prince 8(7)

The Dormand-Prince 8(7) method, often abbreviated as DOPRI8, is a method by
Prince and Dormand (1981). It uses 13 function evaluations to obtain an eighth-
order approximation of the solution. The Butcher tableau for the DOPRI8 method
is shown in Figure 6.6.
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Figure 6.6: The Butcher tableau for the DOPRI8 method (Montenbruck and Gill,
2005).
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The first row of coefficients at the bottom of the Butcher tableau (b̂i) corresponds
to the eighth-order method, whereas the second row (bi) gives the coefficients of
the seventh-order method. In contrast to the RKF56 method introduced in the
previous section, the DOPRI8 method uses the higher-order method to propagate
the solution, while the lower-order method is used for error estimation.

6.5 Choice of Integration Methods

The RK4, RKF56 and DOPRI8 methods have been implemented in the simulation
code. All of these methods have the option of being used in combination with Cow-
ell’s method or with Gauss’ form of Lagrange’s planetary equations with modified
equinoctial elements. This yields six different options, all of which are tested in
the performance comparison of Chapter 9.

The RK4 method has been chosen because it is a very well-known method and
serves well as a reference for comparison for the other methods that are tested.
That being said, it is also a fairly simple method and it is not expected to be the
most efficient one for integrating the relatively complex system.

DOPRI8, on the other hand, is a more sophisticated method, which, according
to Montenbruck and Gill (2005) and Hairer et al. (1987), can be recommended as
a general-purpose method for a wide range of applications. Also, because it is an
adaptive step size method, it is expected to be efficient for different kinds of orbits
and well able to deal with irregularities in the force model.

The RKF56 method lies somewhere in between the RK4 and DOPRI8 methods,
both in terms of complexity and expected performance. Because the method used
for propagating the solution is only one order higher than the RK4 method, it will
be interesting to see how much of a difference it makes that the RKF56 method is
an adaptive step size method, rather than a fixed step size method like RK4.

Of course, many more integration methods exist than have been treated in this
chapter, which focused on the methods that have actually been implemented in the
simulation code. An overview of integration methods that also includes a number
of other methods can be found in the literature survey preceding this thesis report
(Hofsteenge, 2012).

An interesting category of these other methods is posed by the multi-step meth-
ods. Multi-step methods use function values of the current step, as well as those
from several previous steps to integrate to the next step. This requires storage of
previous function values (called backpoints), but generally reduces the total num-
ber of function evaluations that are needed. Therefore, multi-step methods could
certainly be considered for long-term integrations of space debris orbits.

However, multi-step methods require the force function f(t,y) to be continu-
ous and smooth throughout the set of backpoints (Berry, 2004). In this light, the
force due to solar radiation pressure forms a problem, as it is discontinuous when
encountering eclipse boundaries. Since solar radiation pressure is one of the most
important perturbations in the situations to be modeled for this thesis project (pri-
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marily when using high area-to-mass ratios), this aspect needs to be taken into
account. One way to avoid the corresponding integration error is to restart the inte-
gration at the point of the discontinuity. Yet, these restarts would be required twice
for each orbital revolution in which eclipse is encountered, as the orbiting object
moves in and out of eclipse. Although this would not necessarily make multi-step
methods poor methods to use, it would certainly have an impact on their perfor-
mance.

Furthermore, one of the main research interests of this thesis lies in investigat-
ing how the performance of symplectic methods compares with the performance
of more established traditional methods. For this reason, and the fact that within
the time frame of the thesis project only a limited number of methods can be im-
plemented and tested, multi-step methods and other methods such as extrapolation
methods have been left out, in favor of having the option to include and test sym-
plectic integration methods. These relatively new methods will be described in the
next chapter.





Chapter 7
Symplectic Integration Methods

Symplectic integration methods are quite unlike the methods described in the pre-
vious chapter. One of their major strengths lies in their energy preservation prop-
erties, making them particularly useful for long-term integrations. The main appli-
cation of symplectic methods in orbital mechanics has been the integration of the
n-body problem, which implies integration of a purely Hamiltonian system. In that
application, symplectic integrators exactly conserve the angular momentum vector
(Kinoshita and Nakai, 1992).

In this thesis project, however, symplectic methods will be applied to the in-
tegration of space debris orbits pertaining to the force model described in Chapter
4. This involves the integration of a perturbed Hamiltonian system. Since the ap-
plication of symplectic methods to the modeling of space debris orbits is relatively
new, it is largely unclear how these methods compare with the traditional methods.
This makes symplectic methods an interesting category of integrators to investigate
for this thesis project.

A detailed description of the theoretical background of symplectic methods
could be given in this chapter. However, from the point of view of this thesis, the
application is more important than the mathematical intricacies involved. There-
fore, this chapter primarily describes the concepts that are necessary for under-
standing how symplectic integrators work and how they can be implemented. A
more in-depth treatment of symplectic methods, including the underlying mathe-
matics, can be found in the works of Hairer et al. (2006) or Fecko (2006).

7.1 Exponential Operators

Exponential operators are frequently used in the notation of symplectic integration
methods. In order to facilitate the understanding of the subsequent sections, this
section provides a short overview of the most important properties of exponential
operators. In the equations below, A, B and C are operators.

85
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Important to note is that the commutative law generally does not hold for operators.
Hence, in general, AB 6= BA. Therefore, it is convenient to define the quantity

[A,B] =AB−BA (7.1)

which is called the commutator ofA and B. Note that the order is important, so that
[A,B] = −[B,A]. The operation of Equation 7.1 is also called Lie multiplication
in literature (Eidelman, 2000). Lie multiplication also has the property of linearity

[A,(βB+ γC)] = β [A,B]+ γ[A,C] (7.2)

and the corresponding product rule is given by

[A,(BC)] = [A,B]C+B[A,C] (7.3)

Operators which have these characteristics are called Lie operators.

The exponential operator of A is defined as

eA =A0 +
1
1!
A1 +

1
2!
A2 + · · ·=

∞

∑
n=0

An

n!
(7.4)

Following the previous definition, the product of two exponential operators is given
by

eAeB =

(
∞

∑
i=0

Ai

i!

)(
∞

∑
k=0

Bk

k!

)

=

(
A0 +

1
1!
A1 +

1
2!
A2 +

1
3!
A3 + · · ·

)
·
(
B0 +

1
1!
B1 +

1
2!
B2 +

1
3!
B3 + · · ·

)
= I +

1
1!
A1 +

1
1!
B1 +

1
2!
A2 +

1
1!1!
A1B1 +

1
2!
B2

+
1
3!
A3 +

1
2!1!
A2B1 +

1
1!2!
A1B2 +

1
3!
B3 + · · ·

=
∞

∑
i=0

i

∑
k=0

Ai−k

(i− k)!
Bk

k!

(7.5)

An important question is whether exponential operators commute, i.e.

eAeB = eBeA ? (7.6)

Checking this using Equation 7.5 yields that

eAeB− eBeA = · · ·= [A,B]+ 1
2!
[(A+B), [A,B]]+ · · · (7.7)
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Hence, if A and B do not commute, then the exponentials do not commute either.

Another important question is whether the standard rule for multiplication of ex-
ponents is valid for exponential operators, i.e.

eAeB = eA+B ? (7.8)

Using the power series definition of Equation 7.4 together with Equation 7.5 results
in

eA+B− eAeB = · · ·= 1
2!
(AB+BA)−AB+ · · ·=− 1

2!
[A,B]+ · · · (7.9)

Thus, the standard rule for multiplication of Equation 7.8 is only valid if operators
A and B commute.

7.2 Hamiltonian Mechanics

Symplectic integration methods are designed for the integration of Hamiltonian
systems. These are systems which can be described by Hamiltonian mechanics,
which essentially is a reformulation of classical mechanics. Since Hamiltonian
mechanics is an extensive topic in itself, this section will only address some of the
basics that are necessary to understand the integration methods.

Central to Hamiltonian mechanics is the concept of the Hamiltonian H. This
quantity is equal to the total energy of the system that is described. For closed
systems, the Hamiltonian is equal to the sum of the kinetic and potential energy in
the system:

H= T +V (7.10)

where T is the kinetic energy and V is the potential energy of the system.

A system with d degrees of freedom is described with the generalized coordinates

q = (q1, · · · ,qd)
T (7.11)

These can be chosen as any set of coordinates. In a Cartesian coordinate frame,
these will be x, y and z. Using generalized coordinates, the kinetic energy has the
form

T ≡ T (q, q̇) (7.12)

and the potential energy is of the form

V ≡V (q) (7.13)

The Lagrangian of the system is defined as

L = T −V (7.14)
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The generalized coordinates q obey the following set of differential equations,
which are called the Euler-Lagrange equations (Hand and Finch, 2008):

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0 ( j = 1, · · · ,d) (7.15)

Consequently, the solution of these differential equations describes the motion of
the system.

Using the Lagrangian, a more general definition of the Hamiltonian can be given:

H(p,q) = pT q̇−L(q, q̇) (7.16)

where the notation p has been used for the vector of generalized momenta, defined
as

p j =
∂L
∂q j

(7.17)

The corresponding equations of motion of the system are described by the Hamil-
ton equations:

d p j

dt
=−∂H

∂q j
(7.18)

dq j

dt
=

∂H
∂ p j

(7.19)

where q j and p j indicate generalized coordinates and generalized momenta, re-
spectively, and j = 1, ...,d.

It should be mentioned that Hamilton’s equations are equivalent to the Euler-
Lagrange equations, and both approaches lead to the same equations for the same
generalized momentum. The main reason to use Hamiltonian mechanics instead
of Lagrangian mechanics is that Hamiltonian systems have a symplectic structure,
which can be utilized by means of symplectic integrators.

7.3 Symplectic Mappings

In symplectic integration, use is made of a 2d×2d matrix J, called the symplectic
identity (Hairer et al., 2006):

J =

[
0 Id
−Id 0

]
(7.20)

where Id is the d×d identity matrix.

Furthermore, a differentiable mapping g : U → R2d (where U ⊂ R2d is an open
set) is called symplectic if the Jacobian matrix g′(p,q) has the following property
at every point:

g′(p,q)T Jg′(p,q) = J (7.21)
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Symplectic mappings have the important property of area preservation. When
applying symplectic mappings to problems in Hamiltonian mechanics, this implies
that the total energy of the system is conserved by definition. Especially when
long periods of time are considered, this property can give symplectic integrators a
significantly higher accuracy than traditional integrators.

7.4 Symplectic Integrators

7.4.1 General Formulation

Symplectic integrators essentially integrate a trajectory by applying a sequence of
symplectic mappings to a state in order to arrive at a later state. To perform the
actual integration, the Hamiltonian vector field is written as

ẋ= {x,H}=
d

∑
j=1

(
∂H
∂ p j

∂x

∂q j
− ∂H

∂q j

∂x

∂ p j

)
(7.22)

where

x=

(
q

p

)
∈ R2d (7.23)

The notation is often shortened by making use of the differential operator LHx,
which is defined as LHx = {x,H}. The formal solution of Equation 7.22 is then
given by

x(t) = ∑
tn

n!
Ln
Hx(t0) = etLHx(t0) (7.24)

It is not possible to express the operation etLHx in closed form, because the per-
turbed two-body problem is not analytically integrable. However, an explicit so-
lution can be found by breaking the problem up into individually integrable parts.
This solution preserves an approximate value of the Hamiltonian.

7.4.2 Hamiltonian Splitting

Symplectic integration methods for Hamiltonian systems are generally formulated
by splitting the Hamiltonian into two parts:

H=HA +HB (7.25)

These two parts are then integrated sequentially using operators LA and LB, which
are given by

LA = {◦,HA}=
d

∑
j=1

(
∂HA

∂ p j

∂

∂q j
− ∂HA

∂q j

∂

∂ p j

)
(7.26)

and

LB = {◦,HB}=
d

∑
j=1

(
∂HB

∂ p j

∂

∂q j
− ∂HB

∂q j

∂

∂ p j

)
(7.27)
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The equation for an exact propagation of the solution along a time step τ may then
be stated by

x(t + τ) = eτ(LA+LB)x(t) (7.28)

To integrate the two parts sequentially, the exponential is expanded and higher-
order terms resulting from the general non-commutativity of LA and LB are trun-
cated:

x(t + τ) =

(
eτLAeτLB− τ2

2
(LALB−LBLA)+ · · ·

)
x(t)

= eτLAeτLBx(t)+O(τ2)

(7.29)

It is important to note that the order of evaluating a sequence of exponential op-
erators is from right to left. Each operator applied to the state vector returns an
updated state vector. The separate steps eτLA and eτLB can be computed exactly, on
the condition that the Hamiltonian is split into integrable parts.

If the second row of Equation 7.29 is used for propagating the system over a
time step τ , an error of order O(τ2) is made, making it a first-order method. This
essentially is a symplectic version of Euler’s method.

In order to obtain a symplectic method accurate to order O(τk), a series of
n propagations over the fractions ci and di of a full time step τ may be chained
together1 :

x(t + τ) = ednτLBecnτLA · · ·ed2τLBec2τLA · ed1τLBec1τLAx(t)+O(τk+1) (7.30)

The coefficients ci and di need to be chosen carefully in order to maximize the
order of the integrator. These ci and di coefficients uniquely define a symplectic
integrator. The specific symplectic integrators that have been implemented in the
simulation code will be treated in the next sections. In addition, the two main
methods for splitting the Hamiltonian will be discussed in Section 7.5.

7.4.3 Kinoshita’s Method

This section concerns a symplectic method described by Kinoshita and Nakai
(1992). As the method is not given a specific name in the paper itself, for brevity
it will simply be called Kinoshita’s method in this report. The corresponding coef-
ficients can be found in Table 7.1. Because d4 = 0, the method requires only three
function evaluations per integration step. However, the local truncation error is of
order τ5, making it a fourth-order symplectic method. Hence, Kinoshita’s method
requires one evaluation of the force model less than the RK4 method to produce a
fourth-order approximation of the solution.

1The mathematical proof for this can be found by using the Campbell-Baker-Hausdorff theorem
(Bourbaki, 1972).
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Table 7.1: The coefficients of Kinoshita’s method (Kinoshita and Nakai, 1992). β

has a value of 21/3.

Coefficient Exact value Numerical Value

c1
1

2(2−β ) 0.675603596075797

c2
(1−β )

2(2−β ) -0.175603596075797

c3
(1−β )

2(2−β ) -0.175603596075797

c4
1

2(2−β ) 0.675603596075797

d1
1

(2−β ) 1.351207192151594

d2
−β

(2−β ) -1.702414384303188

d3
1

(2−β ) 1.351207192151594

d4 0 0

Note that some of the coefficients have negative values. As a result, the method
uses both positive and negative steps in time when performing an integration step.

7.4.4 SABA2n Methods

The SABA2n methods are a set of symplectic methods developed by Laskar and
Robutel (2001). In contrast to Kinoshita’s method, these methods only use positive
steps. According to the authors, this yields significantly better stability properties
for large step sizes than is possible when negative steps are also included.

Laskar and Robutel actually present several sets of methods, of which the
SABA2n set is only one. The name refers to the order in which the sub-steps in
each integration step are made. Since the performance of the different sets seems
equivalent in the comparisons in the paper, only the SABA2n set will be considered
here. The prototype for all SABA2n integrators is given by

eτLK = ec1τLAed1τLB · · ·ednτLBecn+1τLAednτLB · · ·ed1τLBec1τLA (7.31)

Note that this definition implies that the SABA2n integrators are all symmetric. The
index in the name gives the number of function evaluations that are necessary for
each integration step. For this thesis project, three of the SABA2n integrators have
been implemented in the simulation code, being SABA6, SABA8 and SABA10.
Their coefficients are listed in Tables 7.2 to 7.4.
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Table 7.2: The coefficients of SABA6 (Laskar and Robutel, 2001).

Coefficient Value

c1 0.033765242898423986093849222753002695

c2 0.135630063868443757075450979737044631

c3 0.211295100191533802515448936669596706

c4 0.238619186083196908630501721680711935

d1 0.085662246189585172520148071086366447

d2 0.180380786524069303784916756918858056

d3 0.233956967286345523694935171994775497

Table 7.3: The coefficients of SABA8 (Laskar and Robutel, 2001).

Coefficient Value

c1 0.019855071751231884158219565715263505

c2 0.081811689541954746046003466046821277

c3 0.135567033748648876886907443643292044

c4 0.171048883710339590439131453414531184

c5 0.183434642495649804939476142360183981

d1 0.050614268145188129576265677154981095

d2 0.111190517226687235272177997213120442

d3 0.156853322938943643668981100993300657

d4 0.181341891689180991482575224638597810
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Table 7.4: The coefficients of SABA10 (Laskar and Robutel, 2001).

Coefficient Value

c1 0.013046735741414139961017993957773973

c2 0.054421580914093604672933661830479502

c3 0.092826899194980052248884661654309736

c4 0.123007087084888607717530710974544707

c5 0.142260527573807989957219971018032089

c6 0.148874338981631210884826001129719985

d1 0.033335672154344068796784404946665896

d2 0.074725674575290296572888169828848666

d3 0.109543181257991021997767467114081596

d4 0.134633359654998177545613460784734677

d5 0.147762112357376435086946497325669165

7.5 Methods for Splitting the Hamiltonian

As was mentioned in Section 7.4.2, the Hamiltonian needs to be split up in indi-
vidually integrable parts in order to perform the integration. These parts are then
propagated sequentially using symplectic integration methods. Two of the main
methods for splitting the Hamiltonian, which have both been implemented in the
simulation code, will be treated next.

7.5.1 T + V Splitting

A commonly used splitting method consists of splitting the Hamiltonian in a part
composed of the kinetic energy and a part composed of the potential energy of the
system. Hence,

H= T +V (7.32)

or, in the notation of Equation 7.25,

HA = T

HB =V
(7.33)

Using the force model described in Chapter 4, the components become

HA =HKinetic = T

HB =HPotential =VTwoBody +VGeopotential +VSun +VMoon +VSRP
(7.34)

Accordingly, applying the operator eciτLA to the state vector results in the mapping(
q

p

)
7→
(
q+ ciτ

∂T
∂p (p)

p

)
(7.35)
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whereas the operator ediτLB yields the mapping(
q

p

)
7→
(

q

p−diτ
∂V
∂q (q)

)
(7.36)

when applied to the state vector. In practice, the mapping of Equation 7.35 amounts
to propagating the position coordinates by adding the velocity components multi-
plied by a part of the time step to the old position coordinates. The mapping of
Equation 7.36, on the other hand, implies adding the accelerations resulting from
the force model multiplied by a different part of the time step to the momentum
vector. Following Equation 7.30, the position and momentum vectors continue to
be propagated sequentially until the time step is complete.

7.5.2 Wisdom-Holman Splitting

Another useful splitting method is the Wisdom-Holman (WH) method, introduced
by Wisdom and Holman (1991). Using this method, the Hamiltonian is split into
a two-body part HA and a smaller perturbing part HB. The perturbation strength
ratio ε gives the relative magnitude of the perturbations:

ε =HB/HA� 1 (7.37)

For the force model described in Chapter 4, the two parts become

HA =HKepler = T +VTwoBody

HB =HPerturbations =VGeopotential +VSun +VMoon +VSRP
(7.38)

The two-body part can be handled in different ways. In the simulation code, it is
propagated using Kepler’s equation

E(t)− esinE(t) = n(t− τ) (7.39)

Note that in this equation, τ indicates the time of pericenter passage, and not the
integration step size. Since Kepler’s equation cannot be solved analytically, it is
solved by means of the Newton-Raphson method in the simulation code.

Conforming to Equation 7.30, applying the WH splitting method amounts to
sequentially propagating the two-body part and adding the contribution from the
perturbing forces.

Since the central gravitational force is by far the largest force that is acting
(cf. Figure 4.1), and this force is effectively removed from the force model as far
as direct acceleration is concerned, WH splitting allows the integration to remain
stable for very large step sizes. As a result, the WH splitting method is expected
to be able to yield relatively accurate results after long integration intervals within
comparatively short computation times.



Chapter 8
Verification of the Simulation Code

Before applying the simulation code to the situations for which it was created, it is
essential to verify that the code is working correctly and that the results produced
using it accurately represent reality. This is no trivial task, as results that are not
reflective of reality are meaningless from a practical point of view. Therefore, many
aspects of the simulation code will be checked quite extensively in this chapter.

The chapter starts out with an overview of the simulation code, followed by
a test consisting of integrating the two-body problem. After that, the routines for
computing the positions of the Sun and the Moon at any point in time will be
assessed. Then, all major perturbing forces included in the force model will be
tested individually. Finally, long-term predictions made using the simulation code
will be compared with data from existing research.

8.1 Overview of the Simulation Code

For performing the simulations and performance tests of this thesis project, a sim-
ulation code has been written in C++. The code has been built around the Tudat1

framework and expands upon it. The simulation code can be used for long-term
simulations of the orbits of satellites and debris objects with a large range of area-
to-mass ratios, and is essentially applicable to simulations within all regions of
space near the Earth, except LEO. This last exception is in place, because atmo-
spheric drag plays an important role in LEO, and this particular force has not been
taken into account directly. The reason for not including drag in the force model
is because the main application for this thesis project is the simulation of orbits
within the GEO and GNSS regions of space, in which atmospheric drag is com-

1The TU Delft Astrodynamics Toolbox (Tudat) is a C++ library developed and maintained by
staff and students at the Chair of Astrodynamics and Space Missions at the Faculty of Aerospace
Engineering of Delft University of Technology. More information about Tudat can be found in the
literature survey preceeding this thesis project (Hofsteenge, 2012) or on the Tudat website, accessible
at http://tudat.tudelft.nl/.
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pletely negligible. In case a simulated orbit would develop in such a way that the
altitude becomes less than 1,000 km, the simulation is automatically stopped and
the user is notified that this altitude boundary has been crossed. For interpreting
the results, it is then assumed that the debris object will decay relatively shortly
afterwards. The research mentioned in Section 3.2.2 confirms the validity of this
assumption.

A number of different settings and initial conditions can be specified in the
simulation code. These include:

• The initial conditions of the orbit in classical orbital elements.

• The starting epoch in MJD. This is relevant for the initial positions of the
Sun and the Moon, as well as for the orientation of the Earth, which has an
effect on the accelerations resulting from the geopotential model.

• The simulation interval.

• The effective area-to-mass ratio CR ·A/m of the satellite or debris object.

• The perturbing forces to be included in the force model:

◦ Geopotential force up to a specified degree and order.

◦ Gravitational attraction of the Sun.

◦ Gravitational attraction of the Moon.

◦ Solar radiation pressure

• The integration method to be used:

◦ Traditional methods:

− Runge-Kutta 4.
− Runge-Kutta-Fehlberg 5(6).
− Dormand-Prince 8(7).

These methods can be used with either of these formulations:

− Cowell formulation (Cartesian components).
− Gauss’ equations with modified equinoctial elements.

◦ Symplectic methods:

− Kinoshita’s method.
− SABA6.
− SABA8.
− SABA10.

These methods can be used with either of these splitting methods:

− T+V splitting.
− Wisdom-Holman splitting.
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• The accuracy of the integration can be specified using:

◦ Step size for fixed step size methods.

◦ Relative and absolute error tolerances for adaptive step size methods.
Minimum and maximum step sizes can also be specified.

• The format of the output data:

◦ Orbital elements.

◦ Cartesian state vectors.

• The output interval. A reasonable output interval is necessary to keep the
sizes of data files manageable.

A number of functionalities from Tudat have been used, while other functions have
been created specifically for this thesis project. Also, some features from the Boost
and Eigen libraries have been used in the code. These libraries are also utilized in
the code of Tudat itself. Specific parts that are used from Tudat can be found
in the way that integration routines have been implemented and in the way that
forces are handled, although the routines for modeling the individual perturbing
forces have been created for this project. The implementations of RK4, RKF56
and DOPRI8 from Tudat have been used, though some bugs in Tudat have been
found and corrected for the latter two methods (see Section 9.4.1). Tudat has also
been used for coordinate transformations, while the code for the implementation
of Gauss’ equations with modified equinoctial elements has been partially adapted
from existing beta code. Finally, the implementations of the symplectic methods,
including the different splitting methods, have been created specifically for this
project, in accordance with the Tudat structure for numerical integrators.

All parts of the code have been carefully tested and verified. The results of the
verification can be found in this chapter.

8.2 Two-Body Problem

In the absence of perturbations, the trajectory computed by each propagation method
should closely approximate an exact Keplerian orbit. This implies that the orbital
elements should stay virtually constant over the full integration period.

All propagation methods described earlier have been tested for this condition
by deactivating all perturbing forces in the force model. For some of the methods
– the method of variation of parameters and symplectic integration with Wisdom-
Holman splitting, to be specific – this is a trivial affair, as their formulations are
based on numerical integration of the perturbations and an exact solution for the
two-body part. Consequently, the results of these methods will automatically cor-
respond to the exact solution of the two-body problem.
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For the other methods, the degree of conformity with the exact solution is de-
pendent on the integration step size. For small step sizes, all methods have been
verified to produce results that are very close to the ideal Keplerian orbit.

When performing integrations over long periods of time, however, it is gener-
ally undesirable to use exceedingly small time steps for the integration, as doing
so will result in extensive computation times. Therefore, efficiency should also be
taken into account when evaluating propagation methods. This important aspect
will be treated in Chapter 9.

8.3 Positions of the Sun and the Moon

The positions of the Sun and the Moon are used for the computation of their re-
spective third-body perturbations. In addition, the position of the Sun is used for
computing the force due to solar radiation pressure.

As mentioned in Section 4.4, series expansions are used in the simulation code
to compute the positions of the Sun and the Moon at any point in time. Details
about the routines used for this can be found in Appendix B. In order to produce
meaningful simulation results, it is important to verify that the series expansions
have been implemented correctly and yield positions that correspond well to the
physical situation. To check this, the computed positions are compared with the
JPL Horizons ephemeris2. At each point in time, the relative error in position is
determined according to

∆rrelative =

∣∣rJPL−rcomputed
∣∣

|rJPL|
·100% (8.1)

where rJPL is the position vector supplied by JPL Horizons and rcomputed is the
position vector computed by the simulation code.

Table 8.1 shows the relative errors for the position of the Sun computed at
arbitrary3 points in time. As can be seen, the position error starts out very small
and slowly grows as time increases. It should be noted that the entries in the lower
part of the table correspond to epochs that are quite far away from the starting
epoch of 01-01-2014. For example, 50,000 days is roughly 137 years, whereas
200,000 days amounts to about 548 years. Seeing that the position error after
200,000 days is only slightly more than 3 percent, it can be concluded that the
series expansion used for the position of the Sun yields position errors that are well
within reasonable limits for the time frame envisioned for the simulations.

2The JPL Horizons ephemeris is accessible at http://ssd.jpl.nasa.gov/?horizons.
3Though the time epochs in the table are precise values chosen as thousands of days after the

initial epoch, the chosen values have no real relation to the movement of the Sun and are in that
sense arbitrary.
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Table 8.1: Relative position errors for the position of the Sun computed with the
series expansion routine used in the simulation code for different points in time.

Time after Jan. 1, 2014 Relative position error
[days] [years] [%]
1,000 2.74 0.0852
2,000 5.48 0.1102
3,000 8.21 0.1202
4,000 10.95 0.1381
5,000 13.69 0.1582
10,000 27.38 0.2228
20,000 54.76 0.3961
30,000 82.14 0.5328
40,000 109.51 0.6930
50,000 136.89 0.8577
100,000 273.79 1.6547
200,000 547.57 3.1861

In a similar way, Table 8.2 shows the relative position errors for the Moon. Clearly,
the position errors for the Moon are even smaller than for the Sun, only reaching
a value of slightly more than 0.1 percent after 200,000 days. This makes sense, as
the expressions used for the position of the Moon are quite a bit more complex than
those used for the position of the Sun. It could be argued that some terms can be
removed from the series expansions for the position of the Moon (Equations B.18-
B.20), but careful examination of the expressions reveals that many of the smaller
terms are of the same order of magnitude. This makes it hard to determine which
terms can be removed without removing too many of the underlying dynamics.
Furthermore, it is questionable whether it is desirable to deliberately reduce the
accuracy of the force model. Therefore, it is decided to keep the expressions for
the position of the Moon the same as in Appendix B.
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Table 8.2: Relative position errors for the position of the Moon computed with the
series expansion routine used in the simulation code for different points in time.

Time after Jan. 1, 2014 Relative position error
[days] [years] [%]
1,000 2.74 0.0573
2,000 5.48 0.0112
3,000 8.21 0.0538
4,000 10.95 0.0130
5,000 13.69 0.0224
10,000 27.38 0.0304
20,000 54.76 0.0856
30,000 82.14 0.0516
40,000 109.51 0.0850
50,000 136.89 0.0531
100,000 273.79 0.0517
200,000 547.57 0.1244

8.4 Individual Perturbations

In this section, it is checked whether the simulation results for the individual per-
turbing forces are in line with the physical effects that are to be expected in reality.
It should be emphasized that in reality, the perturbing forces never work in isola-
tion as is the case in these simulations. Rather, the forces are working in unison
and the combined effect of the forces on the orbital elements is generally different
from the sum of the individual changes to the orbital elements.

The initial conditions for the simulations performed in this section are those
listed in Table 8.3, unless specified otherwise. The simulation time for each of
the plots is five days. Since the orbital period is almost one day (23h56m04s to be
exact), this corresponds to approximately five orbital revolutions.

Table 8.3: The initial conditions for the simulation results in this section.

Orbital element Initial value
a 42,164 km
e 0
i 0◦

ω 0◦

Ω 0◦

θ 0◦

Starting epoch
Jan. 1, 2014 00:00:00
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8.4.1 J2-Term of the Earth’s Gravity Field

Figure 8.1 shows the effect of the J2-term of the Earth’s gravity field on the orbital
elements a, e and i. Evidently, a and e experience a periodic variation with a period
of approximately one day. Wakker (2010), however, states that the maximum value
of |∆a| is limited to

|∆a|max = 3J2
R2

r0
sin2 i0 (8.2)

This implies that for a zero initial inclination there should be no change in the
semi-major axis due to J2. Nevertheless, Figure 8.1 shows a maximum deviation
in a on the order of 2 · 10−4 km. Though this is not a drastic deviation, it is still
quite noticeable.
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Figure 8.1: The effect of the J2-term of the Earth’s gravity field on the orbital
elements.

The appearance of the deviation in the semi-major axis is a result of the way the
simulation code is set up. In the code, the initial orbital elements are specified
at the beginning. From these elements the Cartesian state vector at the start of
the simulation is computed. In this conversion, the gravitational parameter µ of
the Earth is used. Without any perturbing forces, propagation of the state vector
would result in an orbit that maintains the same orbital elements as specified in the
initial conditions. However, with the J2-effect some mass is effectively added at
the equator. Hence, for an equatorial orbit the gravitational pull is slightly stronger
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than before. Consequently, a higher initial velocity is required to keep a circular
orbit. In other words, the initial Cartesian state vector computed using µ no longer
leads to a circular orbit with the orbital elements as specified, in case the J2-effect
is taken into account.

To counteract this effect, the gravitational parameter that is used for computing
the initial state vector can be slightly adjusted to include the effect of the J2-term.
From the expressions in Section 4.3 it can be derived that the following expression
can be used to achieve this:

µJ2corrected = µ(1+
3
2

J2
R2
⊕

r2 ) (8.3)

In case the gravitational parameter of Equation 8.3 is used for the computation of
the initial state vector, the orbital elements behave as shown in Figure 8.2. Clearly,
the deviations in semi-major axis and eccentricity are both negligibly small in this
case, while the deviation in inclination is also still zero. Hence, for an equatorial
orbit the J2-effect can be fully compensated for by slightly changing the initial state
vector.
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Figure 8.2: The effect of the J2-term of the Earth’s gravity field on the orbital
elements. For this plot, the initial state vector has been adjusted to account for the
J2-effect.

For non-equatorial orbits, the J2-effect will lead to non-zero deviations in the or-
bital elements. Nevertheless, it will not result in secular or long-period changes,
according to Wakker (2010). The maximum deviation in semi-major axis can be
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computed with Equation 8.2, whereas the maximum change in inclination can be
calculated using

|∆i|max =
3
4

J2
R2

r2
0

sin2i0 (8.4)

If the initial conditions of Table 8.3 are used, except for the inclination, which is
set at i = 50◦, the following maximum values are obtained for the semi-major axis
and eccentricity using Equations 8.2 and 8.4:

|∆a|max = 1.84 km

|∆i|max = 1.05 ·10−3 ◦

The results of a simulation with the same initial values are shown in Figure 8.3. As
can be seen, the semi-major axis and inclination oscillate with a period of roughly
half a day, which corresponds to half the orbital period. Furthermore, the maximum
deviations appear to be similar to the values listed above. A closer examination of
the simulation output file has revealed that the maximum values are indeed identi-
cal to the computed values.
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Figure 8.3: The effect of the J2-term of the Earth’s gravity field on the orbital
elements if the inclination has an initial value of 50◦.

In addition to the effects described, J2 also has an important effect on the right
ascension of the ascending node Ω. In contrast to the effects described earlier, this
concerns a secular variation, called the regression of the nodes (Wakker, 2010).
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The corresponding change in Ω after one orbital revolution is given by

∆2πΩ =−3πJ2
R2

r2
0

cos i0 (8.5)

For a geostationary orbit, this comes down to a shift in longitude4 of −48.2′′ per
day. Though the effect is not visible in the plots shown in this section, its conse-
quences will become clear in Section 8.5.

Other terms of the geopotential could also be included in this chapter. How-
ever, J2 is by far the largest effect, overshadowing the effects of the other terms.
Since there are so many terms, it does not seem worthwhile to individually verify
the working of every term of the spherical harmonics data. In addition, there is
almost no data available to perform said verification. Therefore, the verification
of the other parts of the geopotential has been limited to carefully checking the
expressions in the simulation code.

8.4.2 Gravitational Attraction of the Sun

The effect of the gravitational attraction of the Sun on the orbital elements is shown
in Figure 8.4. The dynamics can perhaps be best understood by considering Figure
4.3 again. Essentially, an orbital revolution in this figure can be divided into four
quarters. In two of these quarters, the perturbing mass (in this case, the Sun) is
pulling the orbiting object in the direction of motion, while in the other two quar-
ters, the perturbing mass is pulling in the direction opposite to the orbital motion.
These two effects alternate, leading to a period in which the orbital velocity is in-
creased, followed by a period in which the velocity is decreased, then a period in
which the velocity is increased again, and so on. This leads to a periodic change
in the semi-major axis of the orbit with two peaks per orbital revolution, if the per-
turbing body does not move during the orbital motion. In the case of the Sun, the
coordinates of the perturbing body change only very little during one orbital rev-
olution, and hence, the variation of the semi-major axis in Figure 8.4 has a period
that is very close to half of the orbital period of one day.

The fact that the value of ∆a is almost exclusively positive in the plot is a
result of the initial conditions of the simulation. If the simulation is initiated with
a different starting epoch, the mean value of the oscillation will shift, though the
amplitude of the oscillation will remain roughly the same. The reason for this is
that the plot shows the difference in a with the initial value of 42,164 km. If, due
to the initial geometry, the Sun starts with pulling against the orbital motion and
hence decreasing the orbital velocity, a will decrease first, leading to a negative
value of ∆a in at least the first part of the plot. If, on the other hand, the initial
geometry is such that the Sun starts with increasing the orbital velocity, ∆a will be
positive in the first part of the plot. Under certain conditions, a will first increase
for the maximum amount, after which it will decrease again by the same amount.

4As a result of its zero inclination, Ω is undefined for a geostationary orbit.
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In this case, ∆a will only be positive. This situation occurs almost completely in
the first plot of Figure 8.4.
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Figure 8.4: The effect of the gravity of the Sun on the orbital elements.

The simulation time of the plots in Figure 8.4 is only five days, and therefore only
the short-period effects can be observed; long-period effects and potential secular
effects cannot be checked using these plots. However, these aspects are implicitly
included in Section 8.5, where the working of the force model is verified on longer
timescales.

8.4.3 Gravitational Attraction of the Moon

Figure 8.5 shows the effect of the gravitational attraction of the Moon on the or-
bital elements. The situation is similar to the one pertaining to the gravitational
attraction of the Sun, described in the previous section. It should be noted that the
maximum deviation in the semi-major axis in the case of the Moon is about 2.4
km, whereas it is around 0.8 km for the Sun. Hence, the gravity of Moon clearly
has a larger effect on the orbit than the gravity of the Sun. Following Wakker
(2010), this was to be expected. Additionally, the period of the oscillation in the
semi-major axis seems to be slightly, but noticeably more than half a day. The
reason for this is likely that the position of the Moon changes notably during a
single orbital revolution. This is also presumed to be the cause of the fact that two
subsequent oscillations do not have the same amplitude. A subsequent check in
which the motion of the Moon was deactivated has confirmed that these assertions
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are correct.
Again, long-term effects cannot be verified based on Figure 8.5. These aspects

will be addressed in Section 8.5, however, where the full force model is verified
over a long period of time.
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Figure 8.5: The effect of the gravity of the Moon on the orbital elements.

8.4.4 Solar Radiation Pressure

The effect of the perturbing force due to solar radiation pressure on an orbit with
the initial conditions listed in Table 8.3 is shown in Figure 8.6. The area-to-mass
ratio has a value of 0.01 m2/kg in this case. Clearly the semi-major axis shows
a variation with a period equal to roughly one day, corresponding to one orbital
period. This makes sense, as the force due to solar radiation pressure has a com-
ponent which effectively pushes in the direction of the orbital motion for half of
the orbit and works against the orbital motion for the other half, thereby increasing
and decreasing the semi-major axis.

The inclination also shows a periodic variation with a period of approximately
one day. Note that in this case ∆i is only positive, because the initial inclination is
zero and the inclination itself is defined such that it can only have positive values.
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Figure 8.6: The effect of solar radiation pressure on the orbital elements for an
area-to-mass ratio of 0.01 m2/kg.

If the area-to-mass ratio is changed to 20 m2/kg, while all other conditions remain
the same, the results of Figure 8.7 are obtained. As can be seen, the results are
qualitatively the same as before, but the amplitude of the variations has increased
substantially. In fact, the area-to-mass ratio has increased by a factor of 2,000 and
the magnitude of the deviations in a, e and i has increased by the same factor. This
seems reasonable, as the force due to solar radiation pressure scales linearly with
the area-to-mass ratio A/m (cf. Equation 4.50).
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Figure 8.7: The effect of solar radiation pressure on the orbital elements for an
area-to-mass ratio of 20 m2/kg.

Note that there are no effects of eclipses visible in Figures 8.6 and 8.7. A subse-
quent check of the simulation has confirmed that there are indeed no eclipses taking
place during the five-day period following the initial conditions of Table 8.3. Some
simple geometric calculations reveal that due to its relatively large distance from
the Earth, a geostationary satellite will only experience an eclipse during an orbital
revolution if the angle the solar vector makes with the equatorial plane is smaller
than 8.7◦. Even in the most extreme case, with the solar vector being within the
equatorial plane, a geostationary satellite will only be in eclipse for 4.8% of its
orbital period. Hence, the effects of eclipses on a geostationary orbit are quite
limited.

In order to verify the working of the eclipse routine, a simulation has been per-
formed for a LEO satellite with an orbital altitude of 500 km. A lower altitude
has been chosen in this case as the relative duration of the eclipse period is longer
for low altitudes. Additionally, all orbital elements apart from the semi-major axis
have been chosen to be equal to zero, resulting in a circular, equatorial orbit. To
maximize the eclipse duration, the position of the Sun has been fixed in the equa-
torial plane. The change of the semi-major axis corresponding to the simulation
is shown in Figure 8.8. For comparison, the same quantity is also plotted for a
simulation in which eclipses have not been taken into account (see Figure 8.9).
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Figure 8.8: The effect of eclipses on the semi-major axis variation due to solar
radiation pressure, for a satellite with an orbital altitude of 500 km and an area-to-
mass ratio of 0.01 m2/kg.
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Figure 8.9: The semi-major axis variation for the same orbit as in Figure 8.8, with-
out taking eclipses into account.

As can be seen in the figures, eclipses have the effect of ”cutting off” the peaks
of the oscillation in the semi-major axis. The reason for this is that the perturbing
force due to solar radiation pressure simply stops acting on the satellite once it en-
ters eclipse, immediately preventing further changes to the semi-major axis. Once
the satellite leaves eclipse, the semi-major axis starts changing again. It should be
noted that due to the fact that the shadow of the Earth always extends along the
line opposite to the solar vector, the spacecraft always enters eclipse conditions
after being accelerated by solar radiation and is always decelerated again after ex-
iting eclipse. Hence, irrespective of the specifics of the orbit, an eclipse will always
have the effect of cutting off the peak of the semi-major axis variation in the way
shown in Figure 8.8.

A simple geometric calculation reveals that under the conditions of the simula-
tion, the satellite should be in eclipse for approximately 38% of its orbital period.
Inspection of Figure 8.8 shows that in the simulation, eclipses indeed have a du-
ration of roughly 4

10
th of the orbital period, confirming that the eclipse routine has

been implemented correctly.
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8.5 Long-Term Behavior

Although the correct functioning of the individual perturbing forces has been veri-
fied in Section 8.4, it is also important to check whether the full force model results
in trajectories that are accurate representations of reality. Therefore, the long-term
behavior predicted by the simulation code will be assessed in this section.

According to Wertz (2009), the largest perturbation in GEO is a north-south
drift or inclination change caused by the gravitational interaction with the Sun and
the Moon. If not corrected, this perturbation will cause the inclination to vary
between 0 and 15 degrees over a period of approximately 55 years.

Figure 8.10 shows the change in inclination during a 100-year simulation of a
satellite which starts out in a nominal geostationary orbit. As can be seen, the in-
clination shows a periodic variation with values between 0 and roughly 15 degrees,
with a period of approximately 53 years. This corresponds well with the descrip-
tions from Wertz and other authors (Ikeda et al., 2008), (Matney, 2004), who also
mention a maximum value of about 15 degrees and periods between 50 and 54
years.
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Figure 8.10: The change in inclination over time for a simulation of a satellite with
CR ·A/m = 0.01 m2/kg departing from a nominal geostationary orbit.

For a more complete check of the long-term behavior predicted by the simu-
lation code, it would be meaningful to compare simulation results with data from
published research. However, even though there are a number of research papers
available in which situations have been investigated which are similar to the ones
that are of interest for this thesis project, most authors do not include the exact
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initial conditions used, making it very hard to reproduce the data.
Fortunately, Anselmo and Pardini (2010) have published a paper in which the

long-term orbit developments of objects in GEO and GPS orbits are simulated, and
have stated all initial conditions used for the simulations. The results from this
paper will be used as test cases for verifying the simulation code.

The initial conditions for the GEO test case used by Anselmo and Pardini are
listed in Table 8.4. The object whose orbit was propagated was given a very high
effective area-to-mass ratio of 20.4 m2/kg. The results regarding the long-term
evolution of eccentricity and inclination, as predicted both by Anselmo and Pardini
and the simulation tool developed for this thesis project, are shown in Figures 8.11
and 8.12, respectively.

Table 8.4: The initial conditions for the GEO test case, as specified by Anselmo
and Pardini (2010).

Starting epoch
Dec. 22, 2005 00:00 UTC

Orbital element Initial value
a 42,164.465 km
e 0.0001
i 0.097◦

ω 220.00◦

Ω 50.00◦

θ 301.22◦

Physical property Value
CR ·A/m 20.4 m2/kg
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(a) Results from a numerical simulation carried out by Anselmo and Pardini (2010).
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(b) Results produced using the simulation code developed for this thesis project.

Figure 8.11: The long-term evolution of the eccentricity for an object with CR ·A/m
= 20.4 m2/kg released from a GEO orbit with the initial conditions of Table 8.4.
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(a) Results from a numerical simulation carried out by Anselmo and Pardini (2010).

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35
Inclination

t [yrs]

i [
°]

(b) Results produced using the simulation code developed for this thesis project.

Figure 8.12: The long-term evolution of the inclination for an object with CR ·A/m
= 20.4 m2/kg released from a GEO orbit with the initial conditions of Table 8.4.
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Similarly, the initial conditions used for the GPS test case are listed in Table
8.5. Anselmo and Pardini actually performed simulations with these starting condi-
tions for objects with four different area-to-mass ratios. For the purpose of keeping
the plots clear, only two area-to-mass ratios have been used for the simulations
performed with the simulation code created for this project. The plots for the ec-
centricity and inclination development corresponding to the GPS test case can be
found in Figures 8.13 and 8.14.

Table 8.5: The initial conditions for the GPS test case, as specified by Anselmo
and Pardini (2010).

Starting epoch
Apr. 16, 2007 17:29 UTC

Orbital element Initial value
a 26,560.432 km
e 0.0048672
i 54.5093◦

ω 265.1898◦

Ω 312.7360◦

θ 94.2809◦

Physical property Values
CR ·A/m 0.05 m2/kg,

5 m2/kg



8.5. Long-Term Behavior 115

(a) Results from numerical simulations carried out by Anselmo and Pardini (2010).
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(b) Results produced using the simulation code developed for this thesis project.

Figure 8.13: The long-term evolution of the eccentricity for objects with different
area-to-mass ratios released from a GPS orbit with the initial conditions of Table
8.5.
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(a) Results from numerical simulations carried out by Anselmo and Pardini (2010).
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(b) Results produced using the simulation code developed for this thesis project.

Figure 8.14: The long-term evolution of the inclination for objects with different
area-to-mass ratios released from a GPS orbit with the initial conditions of Table
8.5.
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As can be seen in Figures 8.11 and 8.12, both simulations for the GEO case
predict the same general behavior, with some noticeable discrepancies that seem to
increase over time. Unfortunately, not much information is given in the paper by
Anselmo and Pardini (2010) about the way the forces were modeled. Any small
differences in the force model may have an influence on the future trajectory. In
addition, it should be kept in mind that the area-to-mass ratio for these particular
simulations is very high, amplifying the effect of any discrepancies related to the
modeling of solar radiation pressure. As a result, the cumulative effect may become
quite noticeable over long integration periods. Because little information about the
modeling techniques used for the reference simulations is available, there is no
practical way of finding out what causes the differences. Most importantly, the
differences are small enough that the conclusions from both simulations regarding
the dangers related to such a debris object will generally be the same.

A more exact correspondence with the simulations by Anselmo and Pardini
is found for the simulations for the GPS case, in which somewhat lower area-to-
mass ratios have been used (see Figures 8.13 and 8.14). Almost no differences
can be observed between the plotted data, while the simulation code for this thesis
project has been created completely independently from the research by Anselmo
and Pardini. This indicates that the simulation code is working correctly when
propagating orbits over long periods of time with the full force model activated.

Now that the correct working of the simulation code has been verified using
a range of different simulation cases, it is time to utilize the simulation code for
the applications for which it was created, namely for testing the performance of
different computational methods in predicting the long-term evolution of space
debris orbits (Chapter 9) and interpreting the implications of such predictions for a
number of specified graveyard orbits (Chapter 10).





Chapter 9
Performance Comparison of
Computational Methods

The performance of the different computational methods1 introduced earlier in this
report for carrying out long-term simulations of space debris orbits is assessed in
this chapter. The simulations need to be accurate, such that the predicted trajec-
tories are actually representative of reality. In addition, the simulations must be
carried out efficiently, as it is not feasible to conduct a large amount of simulation
runs if each run takes an excessively long time to complete.

It will be interesting to quantify how much of a difference it makes to choose
a suitable method for this specific application. Moreover, the efficiency of sym-
plectic integrators for integrating space debris orbits is still largely unknown. The
performance plots in this chapter will show how they perform compared to more
traditional methods. The results of this chapter will also be convenient for con-
ducting the long-term debris simulations of the next chapter.

This chapter is structured as follows. First, an overview is given of the different
computational methods that are compared. Following that, the methodology that
is used for the performance tests is discussed. Next, the performance for the two-
body problem is considered, which also serves to showcase a number of important
concepts. Then, the performance plots for multiple relevant test cases of long-term
space debris simulations are presented. Finally, conclusions are drawn regarding
the efficiency of all computational methods considered in this chapter and their
suitability for carrying out long-term propagations of space debris orbits.

1In this context, the term computational methods is used to refer to combinations of both integra-
tion methods and formulations of the equations of motion / Hamiltonian splitting methods.

119
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9.1 Overview

In this chapter, the performance of the different computational methods introduced
in the previous chapters is compared for a range of simulation cases. For clarity, a
short overview of the methods that are compared is provided in this section, along
with references to the parts of the report in which the methods were treated.

The computational methods that are compared are listed below. The part in
brackets at the end of each entry shows the abbreviated notation that is used in the
plots shown in the subsequent sections of this chapter.

• Runge-Kutta 4 with Cartesian components (RK4)

• Runge-Kutta 4 with modified equinoctial elements (RK4 MEE)

• Runge-Kutta-Fehlberg 5(6) with Cartesian components (RKF56)

• Runge-Kutta-Fehlberg 5(6) with modified equinoctial elements (RKF56 MEE)

• Dormand-Prince 8(7) with Cartesian components (DOPRI8)

• Dormand-Prince 8(7) with modified equinoctial elements (DOPRI8 MEE)

• Kinoshita’s method with T+V splitting (Kinoshita)

• Kinoshita’s method with Wisdom-Holman splitting (Kinoshita WH)

• SABA6 with T+V splitting (SABA6)

• SABA6 with Wisdom-Holman splitting (SABA6 WH)

• SABA8 with T+V splitting (SABA8)

• SABA8 with Wisdom-Holman splitting (SABA8 WH)

• SABA10 with T+V splitting (SABA10)

• SABA10 with Wisdom-Holman splitting (SABA10 WH)

In the items listed above, Cartesian components implies that Cowell’s method
is used, i.e. direct integration of the equations of motion formulated in Carte-
sian components (see Section 5.3.1). Furthermore, modified equinoctial elements
means that Gauss’ form of Lagrange’s planetary equations is used, with modified
equinoctial elements as element set in order to prevent singularities (see Section
5.3.3).

Continuing with the traditional integration methods, RK4 is the relatively sim-
ple and commonly used fixed step size integrator described in Section 6.3.1, whereas
RKF56 and DOPRI8 are the more advanced adaptive step size methods treated in
Sections 6.4.2 and 6.4.3, respectively.
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Kinoshita’s method and the SABAn methods are all symplectic integration
methods, described in Sections 7.4.3 and 7.4.4, respectively. These symplectic
methods are combined with either of the two splitting methods discussed in this
report.

In short, T+V splitting implies splitting the Hamiltonian in a part consisting
of all kinetic energy terms and a part consisting of all potential energy terms.
Both parts are advanced sequentially during the integration step (see Section 7.5.1).
Wisdom-Holman splitting, on the other hand, splits the Hamiltonian in a two-body
part and a perturbations part. In the implementation of the simulation code, the
integration is set up such that the two-body part is advanced by solving Kepler’s
equation, while the perturbations part is integrated numerically. Again, the ad-
vancement of the two parts is done sequentially using symplectic schemes (see
Section 7.5.2).

Finally, a distinction is made in this chapter between simulations of the two-
body problem and simulations of the perturbed two-body problem. In short, the
two-body problem implies that only the central gravitational force has been taken
into account, whereas the term perturbed problem indicates simulations in which
the full force model described in Chapter 4 has been activated. Hence, these simu-
lations include the geopotential force, luni-solar perturbations and the force due to
solar radiation pressure (including eclipses), in addition to the central gravitational
force.

9.2 Testing Methodology

The main goal of the performance tests conducted in this chapter is to assess
how efficient different computational methods are at performing simulations of
the long-term evolution of space debris orbits. The application of such simulations
is to determine whether the orbits eventually develop in such a way that a collision
risk with active satellites is created. Because of this application, errors in the ge-
ometry of the orbit are more important than errors regarding the exact position of
the object in the orbit. Consequently, measuring the vector difference between a
computed position and a reference position might lead to wrong conclusions, as an
error in the position of the object within the orbit could lead to a large error, while
the geometry of the computed orbit could in fact be very close to that of the actual
orbit.

Therefore, the errors in semi-major axis, eccentricity and inclination are con-
sidered instead of the vector differences in position. The errors in the other orbital
elements are not included in the performance comparison, because the remaining
orbital elements have much less geometrical meaning for general predictions of po-
tential collision hazards, and including them in the comparison would significantly
increase the number of plots required.

When assessing the accuracy of the computational methods, the maximum er-
rors in the orbital elements are used, as not only the final state of the simulation
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is important, but also the trajectory before it. The maximum error gives an in-
dication of the minimum accuracy that can be expected over the full simulation
period. Another option, sometimes seen in literature, is to plot the differences of
the orbital elements with those of the reference simulation as a function of time.
Though this would provide somewhat more information, it is not considered fea-
sible here, as the relatively large number of methods that are compared would
require a vast amount of plots. Choosing to compare the maximum errors allows
the performances of multiple methods to be combined in single plots, which saves
a considerable amount of space and also facilitates an easier comparison between
the different methods.

In the plots, the required computation time is the parameter that is shown to-
gether with the accuracy of each run. Some comparisons in literature use the step
size or the number of function evaluations as a parameter to display. These pa-
rameters have the advantage that they do not depend on the computer setup that is
used. However, they are not practical to use for the set of methods that are com-
pared in this chapter. First of all, the step size can only be used as a parameter for
fixed step size methods, whereas this comparison also includes variable step size
methods. Moreover, both the step size and the number of function evaluations do
not provide insight in the overhead costs in terms of computation time that differ-
ent formulations have. For example, when using Gauss’ equations with modified
equinoctial elements, multiple conversions from modified equinoctial elements to
Cartesian coordinates are required per integration step for evaluation of the force
model. In addition to that, the Cartesian components of the force need to be con-
verted to radial, tangential and normal components each time the force model is
used. The Wisdom-Holman splitting method for symplectic integrators has similar
requirements. To take all these aspects into account, the actual computation time
required for performing the integration seems to be the best measure to use for
assessing the efficiency of different methods.

In practice, the performance comparison has been performed as follows. First
of all, a simulation run with specified initial conditions and integration settings
is performed. During the integration, the state is saved at specific time intervals.
After the integration has been completed, the computed orbital elements at these
data points are compared with those of the reference data set. Once all errors
with the reference data have been computed, the maximum errors in a, e and i
are determined. These maximum errors are shown in performance plots, which
show the maximum error in a specific orbital element versus the computation time
required to perform the integration over the full simulation period. Hence, each
data point in the performance plots represents a single 100-year simulation run
with specific integration settings.

The computation time varies based on the simulation settings. In the plots,
moving along the horizontal axis in the direction of increasing computation time
implies decreasing the step size for fixed step size methods or choosing more strin-
gent relative accuracy requirements for adaptive step size methods. The computa-
tion time shown in the performance plots is the time required for the actual integra-
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tion process, and does not include input/output and post-processing of the results.
The simulations were carried out on a system with a 3.4 GHz Intel Core i7 3770
CPU and 8 GB of RAM, with no other processes running in parallel.

Of course, the exact computation time will vary significantly based on the com-
puter setup that is used, but the general pattern of how the different methods per-
form relative to each other will be the same regardless of the computer setup.

Regarding the performance plots, it is important to note that a double logarith-
mic scale has been used, in order to display data with a large range of magnitudes,
both in the sense of computation time as in terms of accuracy. As a result, a small
horizontal distance between two curves can easily imply a difference in efficiency
of a factor two or more.

Finally, it should be mentioned that the simulations are quite specific and that
changes in the dynamics of the system can significantly alter the relative perfor-
mance of the methods. If, for example, other forces are added to the force model
or another orbital regime is modeled (e.g. LEO), the results from this chapter do
not necessarily translate to the new situation. Therefore, it should be kept in mind
that the conclusions following from this chapter are mainly applicable to simula-
tions that have similar characteristics as the simulations presented here.

9.3 Two-Body Problem

The two-body problem is a convenient test case for assessing the performance of
different computational methods. Because there are no perturbations, the solu-
tion to the equations of motion is an exact Kepler orbit, with orbital elements that
remain constant in time. As a result of this, the error at each data point can be
computed exactly. Although this is very convenient, it should be noted that the
performance of different methods for the two-body problem does not necessarily
translate to the simulations of the perturbed two-body problem, which are the sim-
ulations of interest for this thesis project.

Nevertheless, the two-body problem is useful for illustrating a number of im-
portant concepts, such as round-off errors and error growth. In addition, the two-
body problem forms an interesting test case for symplectic integrators, as it in-
volves the integration of a completely Hamiltonian system: the exact situation for
which symplectic integrators were originally designed. It will be interesting to see
how the performance of symplectic integrators compares between the simulations
of the two-body problem and the simulations of the perturbed two-body problem.

9.3.1 Round-Off Errors

In general, the accuracy of an integration can be increased by using a smaller step
size, since the global truncation error will decrease as a result. However, there is a
limit to this. Using smaller steps implies that the total number of steps required for
the simulation increases. At each step, the state of the system is stored with a finite
number of digits, inherent to the way in which computers store numbers. Because
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the number of digits is limited, a small round-off error is introduced which adds to
the total integration error.

Although round-off errors are essentially random, they do accumulate over
time. As a result, the contribution of round-off errors to the total integration er-
ror increases as smaller time steps are used. At a certain point, the accuracy gained
by further decreasing the step size will become smaller than the increase in the to-
tal round-off error. Hence, though the computation time will increase substantially,
the accuracy actually becomes worse.

Figure 9.1 shows the effect of round-off errors when performing a 100-year
simulation of a nominal geostationary orbit with the RK4 method. As can be seen
in the plots, the overall error decreases when the step size is decreased from 50 s
to 10 s, but when further decreasing the step size, the error increases instead. The
required computation times corresponding to the data points in the plots are shown
in Table 9.1. Based on this, it can be observed that for this particular example, an
integration with RK4 that takes less than 10 minutes to carry out results in a smaller
maximum error over the 100-year integration period than an integration that takes
more than 7 hours to complete.

Though the smaller step sizes used in the example are not considered feasible
for long-term simulations on account of their corresponding computation times
alone, the existence of round-off errors is important to keep in mind. In essence,
they make it impossible to come arbitrarily close to the solution of a complex
problem by just using increasingly small integration steps. This complicates the
matter of creating an accurate reference to use for the simulations of the perturbed
problem, as will be discussed in Section 9.4.2.

Table 9.1: The computation times corresponding to the data points in the plots of
Figure 9.1.

Integration step size [s] Computation time
0.2 7h37m27s

0.5 3h12m04s

1 1h32m21s

2 48m41s

10 9m13s

20 4m37s

50 1m50s
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(a) The maximum error in semi-major axis for various integration step sizes.
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(b) The maximum error in eccentricity for various integration step sizes.

Figure 9.1: An illustration of round-off errors for a 100-year simulation of a nom-
inal geostationary orbit performed with the RK4 method.
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9.3.2 Error Growth

An important property of the two-body problem is that the orbital energy2, defined
as

E =− µ

2a
(9.1)

remains constant. Therefore, the error in orbital energy, which can be derived from
a, is a good measure to use for the comparison of different integration methods. In
addition, symplectic integrators work in such a way that each sub-step is a map-
ping which exactly conserves the orbital energy, making it a good showcase for
demonstrating what symplectic methods are capable of when integrating Hamilto-
nian systems.

In Figure 9.2, the error in orbital energy over time is shown for three differ-
ent integration methods for a 100-year simulation of a nominal geostationary or-
bit. The number in the legend behind the method shows the integration step size
(e.g. 50 s for RK4) or the relative error tolerance (10−14 for DOPRI8). As can
be observed, the error in orbital energy grows linearly for the RK4 and DOPRI8
methods, while there is no error visible for Kinoshita’s method on this scale.

The relation between error growth and step sizes (for fixed step size methods)
or accuracy specifications (for adaptive step size methods) can be made visible by
plotting the error in orbital energy over time for different integration settings on a
logarithmic scale. This has been done for the plots shown in Figure 9.3. Note that
because of the logarithmic scale, linear relations appear curved in the plots (similar
to plots of logarithmic functions on a normal scale).

Clearly, for both RK4 and DOPRI8, the error growth directly scales with the
step size or accuracy specifications used. The errors in orbital energy for Ki-
noshita’s method, which is a symplectic method, do not seem to increase over time.
The errors also remain many orders of magnitude smaller than the errors found for
the RK4 and DOPRI8 methods. Also worth noting is that the errors for Kinoshita’s
method do not seem to increase when using a larger step size. In fact, the largest
errors are encountered for the runs with the smallest step sizes. This is most likely
a result of the accumulation of round-off errors.

It should be noted that although the step size does not seem to have an influence
on the error in orbital energy in Figure 9.3(c), the step size does need to stay within
reasonable bounds. If too large a step size is chosen (e.g. 5000 s), the error will
become much larger.

2Strictly speaking, the energy considered here is the specific orbital energy. However, for brevity
it will simply be called the orbital energy in this chapter.
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Figure 9.2: The growth of the error in orbital energy over time for three integration
methods. The step sizes and accuracy requirements for the methods were merely
chosen for illustration purposes. Even though RK4 and DOPRI8 show a similar
error growth in this plot, the RK4 simulation took 116.3 s to run, whereas the
DOPRI8 simulation only required 29.1 s of CPU time. The simulation with Ki-
noshita’s method needed 70.4 s to complete, but would show a similar error pattern
when using larger step sizes.
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(a) The error in orbital energy over time when using the RK4 method with dif-
ferent step sizes.
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(b) The error in orbital energy over time when using the DOPRI8 method with
different accuracy settings.
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Figure 9.3: The performance of different methods for a 100-year simulation of a
circular orbit without any perturbing forces.
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9.3.3 Performance for a Circular Orbit

In this section, the performance of different methods for integrating a circular two-
body problem is compared. The initial conditions used for the simulations are
listed in Table 9.2. Because this concerns the integration of a two-body problem,
some methods are not included in the comparison. For the traditional methods,
the formulation using Gauss’ equations with modified equinoctial elements is left
out, as in that formulation only the perturbations are integrated. Since there are
no perturbations in this case, the solution will automatically consist of a set of
constant orbital elements equal to the initial conditions. Similarly, the Wisdom-
Holman splitting method for the symplectic integrators will also be excluded from
the comparison, since it solves the two-body part using Kepler’s equation instead
of via numerical integration.

Table 9.2: The initial conditions used for the simulations in this section.

Orbital element Initial value
a 42,164 km
e 0
i 0 ◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

The performance plots resulting from the simulations are shown in Figure 9.4.
The error in inclination has not been plotted, because for the two-body problem,
there is no force acting in a direction perpendicular to the orbital plane. As a result,
the inclination will remain the same as at the start of the simulation, irrespective of
the integration method used.

From the first plot, it is quite evident that the symplectic methods perform much
better than the traditional methods regarding the error in semi-major axis. Also,
Kinoshita’s method seems to have a clear edge over the SABA2n methods, which
all have roughly the same performance. Although for the same step size SABA10
is more accurate than SABA6, the fact that each step for SABA10 takes longer to
compute compensates for this. Hence, the data points, shown by the markings on
the lines, do not overlap, but the lines created by connecting the data points are
virtually identical for all SABA2n methods. Because of this, there seems to be no
real advantage to using any of the SABA2n integrators over the others. Regarding
the traditional methods, DOPRI8 is the most efficient, while the RK4 and RKF56
methods show a relatively similar performance.

When looking at the performance related to the error in eccentricity, the sit-
uation is different. This time, the traditional methods show better performance
than the symplectic methods, with the DOPRI8 method being the most efficient
and the RK4 and RKF56 methods showing roughly equal efficiency again. Of the
symplectic methods, Kinoshita’s method again clearly outperforms the SABA2n



9.3. Two-Body Problem 130

methods.
The dominance of the symplectic methods regarding the semi-major axis ac-

curacy can easily be explained. As mentioned in Chapter 7, symplectic integrators
actually apply a sequence of symplectic mappings to the state in order to arrive
at a later state. Under the action of these mappings, the total energy of the sys-
tem is conserved. Since the orbital energy only depends on the semi-major axis
(cf. Equation 9.1), only the value of the semi-major axis is implicitly conserved
by the mappings. As a result, the value of the eccentricity is by no means as well-
preserved as the value of the semi-major axis.

In any case, the efficiency of the symplectic methods, and Kinoshita’s method
in particular, for integrating the circular two-body problem is remarkable. When
only looking at the semi-major axis, millimeter-level accuracy can be reached for
a 100-year simulation within less than 10 seconds of computation time by using
Kinoshita’s method. For reference, trying to reach this level of accuracy with the
RK4 method would require over 300 seconds of computation time.
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Figure 9.4: The performance of different methods for a 100-year simulation of a
circular orbit without any perturbing forces.
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9.3.4 Performance for a Highly Eccentric Orbit

In this section, a two-body problem for a highly eccentric orbit is considered. The
initial conditions (see Table 9.3) are the same as in the previous section, only the
eccentricity has been changed to 0.7, leading to perigee and apogee distances of
12,649 km and 71,679 km, respectively. Although the orbital period remains the
same as for the orbit of the previous section, the velocity is not uniform anymore
over the orbit. Instead, the velocity when passing perigee (7.32 km/s) is much
higher than the velocity at apogee (1.29 km/s). Because of this, it is expected that
the adaptive step size methods will gain a relative advantage with respect to the
fixed step size methods when comparing this situation to the previous one.

Table 9.3: The initial conditions used for the simulations in this section.

Orbital element Initial value
a 42,164 km
e 0.7
i 0 ◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

The results of the simulations are shown in Figure 9.5. As can be seen in
the plots, the minimum computation time required for getting relatively accurate
results has significantly increased for most methods. Notable exceptions are the
RKF56 and DOPRI8 methods, which are both adaptive step size methods. Clearly,
these are better at dealing with the variable behavior encountered over the orbit
than the other methods, which are all fixed step size methods.

The symplectic methods still show strong performance, though they are not
as dominant as they were for the circular case. In fact, for semi-major axis ac-
curacy levels better than about 1 km, the DOPRI8 method is actually more effi-
cient than Kinoshita’s method. The SABA2n methods, in turn, are surpassed by
the RKF56 method for relatively modest accuracy requirements. Additionally, the
RKF56 method is clearly preferable over the RK4 method for this simulation case,
while the performances of both methods were quite similar for the circular orbit.

Although the symplectic methods are designed for integrating Hamiltonian sys-
tems, such as the system in this example, the fact that they are fixed step size meth-
ods clearly has an impact on efficiency in this case. Relatively small integration
steps need to be taken at the parts of the orbit near perigee to ensure small errors.
Because the step size is fixed, the parts near apogee that are significantly easier
to integrate need to be integrated with the same small step size. This is an inher-
ent disadvantage of fixed step size methods. Adaptive step size methods, on the
other hand, will optimize the step size based on the dynamics that are encountered,
leading to a more efficient integration process. The advantages of this are clearly
visible in the results of this section.
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Figure 9.5: The performance of different methods for a 100-year simulation of a
highly eccentric orbit (e = 0.7) without any perturbing forces.
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9.4 Perturbed Problem

Although the tests regarding the two-body problem are mainly interesting from a
theoretical perspective, the performance tests for the perturbed situations have the
most practical implications for this thesis project. These tests will actually show
which methods are the most efficient for integration of the equations of motion in-
cluding perturbations, which predict how the orbits of satellites and debris objects
will develop over long periods of time.

First, some important remarks related to the simulations of the perturbed prob-
lem are made, followed by a discussion about the choice of suitable reference sim-
ulations. Then, the performance of all computational methods is tested by means
of four distinct simulation cases, in which different perturbed orbits are propagated
over a period of 100 years. The conclusions which can be drawn from these sim-
ulations, as well as the simulations of the two-body problem, are presented at the
end of the chapter.

9.4.1 Important Remarks

Before considering the results of the simulations of the perturbed problem, some
important remarks are in order for a better understanding of both the results and
the implementation process.

Note on Wisdom-Holman Splitting

As described in Section 7.5.2, the Wisdom-Holman splitting method for symplectic
integrators has been implemented in such a way that the two-body part is solved by
means of Kepler’s equation while the perturbations part is integrated numerically.
The state vector is propagated by sequentially advancing both parts multiple times
during each integration step.

Since the force model is formulated in Cartesian coordinates, integration of
the accelerations resulting from the perturbing forces requires the state to be ex-
pressed in Cartesian coordinates as well. Propagation of the two-body part using
Kepler’s equation, on the other hand, necessitates a formulation of the state in or-
bital elements. Because both parts are advanced successively, conversions between
Cartesian coordinates and orbital elements are required in between all sub-steps of
each integration step.

Although this way of performing the integration allows for the two-body part
to be solved exactly, it also adds some overhead to the computations by means
of the large number of coordinate transformations. As it turns out, the coordi-
nate transformations also have a negative effect on the accuracy of the simulations,
which becomes apparent when integrations are performed over long periods of
time. As a result, the simulation results produced using symplectic integrators with
the Wisdom-Holman splitting method appear to decrease in accuracy when smaller
integration steps are used, after reaching a certain accuracy level.
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The reason for this is closely related to the concept of round-off errors, dis-
cussed in Section 9.3.1. Each individual coordinate transformation is composed
of a number of steps, all of which introduce small round-off errors in the state.
Although small individually, these errors accumulate over time, and the contribu-
tion of this source to the global integration error starts to become relevant once a
sufficient number of coordinate transformations have been applied. Consequently,
using smaller integration steps, which increases the total number of coordinate
transformations and round-off errors, can eventually increase the global integra-
tion error.

Accordingly, choosing an appropriate step size for methods using the Wisdom-
Holman splitting technique becomes a balancing act between minimizing the trun-
cation error resulting from integration of the perturbed part and keeping the contri-
bution of round-off errors, which mainly result from the required coordinate trans-
formations, within bounds.

Note on Adaptive Step Size Methods in Tudat

As was mentioned in Section 8.1, the routines for adaptive step size methods from
Tudat have been implemented in the simulation code. Specifically, this concerns
the implementation of the RKF56 and DOPRI8 methods. Unfortunately, the Tudat
routines for these methods were not completely correct, which has has lead to some
considerable delays in the later stages of the thesis project.

The first error concerned the Tudat implementation of the DOPRI8 method. As
defined by Prince and Dormand (1981), this is an eighth-order embedded Runge-
Kutta method. The notation Dormand-Prince 8(7) implies that the eighth-order
method is used for propagating the solution, while the seventh-order method is only
used for step size control. Careful inspection of the original Tudat implementation,
however, revealed that the method was implemented the other way around, i.e. the
eighth-order method was used for controlling the step size, whilst the seventh-order
method was used for advancing the solution. Although this difference would not
have a huge impact on the accuracy of the solution, from a theoretical perspective
and for the performance comparison of this chapter it is important that the method
is implemented correctly. The error in Tudat was fixed shortly after it was found.

Another error in Tudat, which would have more far-reaching consequences for
the thesis project, involved the working of the Tudat Core routine integrateTo. As
explained in Section 9.2, the performance comparisons are carried out by compar-
ing the orbital elements computed by a method at a large number of fixed output
points with those of a highly accurate reference simulation. This approach makes
it necessary to integrate exactly to fixed points in time and to save the data at these
points. Since adaptive step size methods use steps that are optimized based on lo-
cal error estimates, the steps taken using these methods will generally not coincide
with predefined time instants. In order to force the integrator to integrate exactly
to intermediate output points, the integrateTo routine was used. With this routine,
the end of a time interval can be specified. The integration method then takes steps
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and makes sure the end of the last step exactly coincides with the specified time.
During simple tests of the simulation code, the adaptive step size methods ap-

peared to be working correctly. However, when assessing the performance of all
integration methods for the simulations of the perturbed two-body problem of this
chapter, the RKF56 and DOPRI8 methods showed rather unexpected results. The
accuracy attained with both methods was quite mediocre, also when using the most
stringent accuracy requirements. In fact, both methods were outperformed by the
RK4 method when the formulation in modified equinoctial elements was used.
Subsequent checks of the Tudat implementations of RKF56, DOPRI8 and adap-
tive step size methods in general revealed no errors. The fact that both RKF56
and DOPRI8 appeared to be working correctly in the simulations of the two-body
problem further seemed to confirm that the Tudat code was correct.

The source of the erratic behavior finally became apparent when the develop-
ment of errors over time was considered (see Figure 9.6). The peaks in the plot
hinted at large local errors that were somehow not propagated with the rest of the
solution. When the step size of DOPRI8 was artificially limited to a maximum of
300 s, the plot of Figure 9.7 was obtained. As can be observed, there are much
less peaks present than in the previous results, but there are still some. Because the
performance plots are based on maximum errors, the results shown in Figures 9.6
and 9.7 would result in maximum errors on the order of 10−2 km instead of 10−6

km.

Figure 9.6: The error in semi-major axis over time for a 100-year simulation of a
perturbed geostationary orbit, using DOPRI8 with modified equinoctial elements
in combination with the old Tudat implementation of integrateTo.
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Figure 9.7: The error in error semi-major axis over time for the same simulation
settings as used for the results in Figure 9.6, but with a specified maximum step
size of 300 s.

The cause for the unusually large local errors turned out to be the following.
Whenever integrateTo was used, the last integration step before the output time
would be truncated, such that the end of the step would exactly land on the specified
instant. Whenever the last step size would be accepted by the routine for step
size control of the adaptive step size method, everything would work exactly as
intended and the last integration step would be made to the specified output time.
If, however, the truncated step size would not be accepted by the routine for step
size control, a new, smaller step size would be computed and the last integration
step would be taken using this new step size. In this case, the integrateTo routine
would not continue the integration, leaving a gap in time between the time of the
last integrated state and the desired output time. As a result, the state at a point in
time before the desired output time would actually be saved as if it were the state
at the output time. For example, the state at t = 9,500 s could be recorded as if it
were the state at t = 10,000 s.

This particular oversight in the code of integrateTo was what caused the peaks
in the plots, and consequently, the large maximum errors computed for the perfor-
mance plots. Because the integrators in Tudat are actually C++ objects which store
the state and time internally, the correct time corresponding to the state would be
used when integrating the trajectory further. As a result, the errors related to the
incorrect functioning of the integrateTo routine would not be propagated, hence the
isolated peaks in the plots.

Once the error in integrateTo was located, it could be fixed quite easily. The
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result of a simulation performed after the fix is shown in Figure 9.8. Clearly, the
peaks are no longer present in the results and the maximum error is in the range
of 10−6 km instead of 10−2 km. After implementing the fix, RKF56 and DOPRI8
finally showed the performance that was expected of the methods. The solution has
since been adopted in Tudat Core. It should be noted that because integrateTo is a
generic function in Tudat, the fix solves the working of integrateTo for all adaptive
step size methods in Tudat, not only RKF56 and DOPRI8.

Unfortunately, because the error in integrateTo was found relatively late in the
project, it had quite some implications. Many simulation runs had to be run again
in the end, but before that, conclusions were made based on incorrect simulations.
Because some of the conclusions were ultimately found hard to believe, much ef-
fort was put into finding any potential errors. Fortunately, the bug in integrateTo
was eventually found, and consequently, all simulations could be conducted using
correctly functioning implementations of the adaptive step size methods.

Figure 9.8: The error in error semi-major axis over time for the same simulation
settings as used for the results in Figure 9.6, after correcting the implementation of
the integrateTo routine.

9.4.2 Choice of Reference

In contrast to the two-body problem, no exact solution is available for simulations
for which the full force model has been activated. This makes it significantly more
difficult to quantify the performance of computational methods for carrying out
simulations of the perturbed two-body problem. In order to provide a good estimate
of the accuracy of simulations performed with different methods, a highly accurate
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reference is needed. Choosing such a reference is a delicate task, as one can never
be fully certain that a specific reference presents a solution that closely resembles
the actual solution of the system.

As was discussed in Section 9.3.1, due to round-off errors it is generally not
possible to get extremely close to the actual solution of a complex system by just
using exceedingly small integration steps. Especially when integrating over long
periods of time, round-off errors can become quite relevant. Originally, Kinoshita’s
method combined with Wisdom-Holman splitting was chosen as a possible method
for generating the references for the simulations of the perturbed problem. How-
ever, due to the accumulation of round-off errors discussed in the note on Wisdom-
Holman splitting in Section 9.4.1, the method is not suitable for producing ex-
tremely accurate solutions3. Additionally, it would not be clear beforehand which
step size would result in the best solution, as a smaller truncation error comes at
the cost of a larger total round-off error.

When choosing between the other methods, the choice was made to focus on
the traditional methods in combination with Gauss’ form of Lagrange’s planetary
equations with modified equinoctial elements. Both the symplectic methods with
T+V splitting and the traditional methods with Cartesian coordinates would result
in formulations in which the central gravitational force would contribute signifi-
cantly to the local truncation errors. Using Gauss’ equations would allow integra-
tion of the effects of the perturbing forces only, which intuitively would result in
a better approximation of the perturbed trajectory. A number of numerical tests
confirmed this intuition.

The RK4, RKF56 and DOPRI8 methods in combination with Gauss’ equations
were all tested in their abilities to produce accurate references. This was done by
computing the maximum errors of other simulation runs with the runs that were
tested as references. References that resulted in small maximum errors for all
other methods were considered to be more accurate than references which had
larger maximum errors for the other runs.

In the end, DOPRI8 with the most stringent accuracy requirements and RK4
with a very small step size showed the best results when used as reference. Based
on its track record for a wide range of applications (Montenbruck and Gill, 2005),
DOPRI8 was eventually chosen as the method to produce the references with. Es-
sentially, DOPRI8 should be able to handle most systems well, without having to
know the exact dynamical behavior of the system beforehand. Since RK4 is a fixed
step size method without any form of error control, it does not necessarily handle
irregularities well, making it less suitable for producing reliable references than
DOPRI8.

3In fact, this characteristic of Wisdom-Holman splitting in the implementation of the simulation
code was discovered when testing different references.
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9.4.3 Case I: Near-Circular GEO Graveyard Orbit – Low A/m

This first test case considers the integration of a near-circular GEO graveyard orbit
for a satellite with an effective area-to-mass ratio of 0.02 m2/kg. Due to the low
area-to-mass ratio, solar radiation pressure can be expected to only have a minor
effect in this simulation. Because the orbit is also near-circular, this simulation
case is considered to be the easiest one to integrate of the cases that are tested. The
initial conditions for this case are listed in Table 9.4.

Table 9.4: The initial conditions for simulation case I.

Starting epoch
Jan. 1, 2014 00:00:00

Orbital element Initial value
a 42,464 km
e 0.001
i 0.1◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

Physical property Value
CR ·A/m 0.02 m2/kg

The long-term evolution of the orbital elements for this simulation case, based on
the reference simulation, is shown in Figure 9.9. The performance plots for the
different computational methods corresponding to the simulation case are shown
in Figures 9.10 to 9.12.

Note that each of the figures contains two plots. For each figure, the upper
plot indicates the performance of the traditional methods and Kinoshita’s method,
while the lower plot shows the performance of the symplectic methods. Two sepa-
rate plots have been used, since combining all data into a single plot would result
in a plot that was very hard to interpret due to the abundance of data. The inclusion
of Kinoshita’s method in both plots should allow for a relatively easy comparison
between the traditional and symplectic methods. Also note that Figure 9.10 shows
the maximum errors in semi-major axis, while Figures 9.11 and 9.12 display the
maximum errors in eccentricity and inclination, respectively. This approach for
displaying the performance data is maintained for all simulation cases in the re-
mainder of this chapter. The results of the different simulation cases are discussed
at the end of the chapter.
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Figure 9.9: The long-term evolution of the orbital elements for simulation case I.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.10: The performance regarding the semi-major axis for different com-
putational methods, for a 100-year propagation of a near-circular GEO graveyard
orbit of an object with a low area-to-mass ratio.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.11: The performance regarding the eccentricity for different computa-
tional methods, for a 100-year propagation of a near-circular GEO graveyard orbit
of an object with a low area-to-mass ratio.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.12: The performance regarding the inclination for different computational
methods, for a 100-year propagation of a near-circular GEO graveyard orbit of an
object with a low area-to-mass ratio.
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9.4.4 Case II: Near-Circular GEO Graveyard Orbit – High A/m

Similar to the first simulation case, case II concerns the performance for simulating
the long-term orbital development of a near-circular GEO graveyard orbit. How-
ever, in this case, the object for which the trajectory is simulated has a very high
effective area-to-mass ratio of 40 m2/kg. As a result, the force due to solar radiation
pressure will have a major impact on the trajectory, which will make the system
harder to integrate accurately over long periods of time. An overview of the initial
conditions used for this simulation case is given in Table 9.5.

Table 9.5: The initial conditions for simulation case II.

Starting epoch
Jan. 1, 2014 00:00:00

Orbital element Initial value
a 42,464 km
e 0.001
i 0.1◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

Physical property Value
CR ·A/m 40 m2/kg

The results of the reference simulation for this case are shown in Figure 9.13. The
corresponding performance plots are displayed in Figures 9.14 to 9.16.
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Figure 9.13: The long-term evolution of the orbital elements for simulation case II.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.14: The performance regarding the semi-major axis for different com-
putational methods, for a 100-year propagation of a near-circular GEO graveyard
orbit of an object with a high area-to-mass ratio.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.15: The performance regarding the eccentricity for different computa-
tional methods, for a 100-year propagation of a near-circular GEO graveyard orbit
of an object with a high area-to-mass ratio.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.16: The performance regarding the inclination for different computational
methods, for a 100-year propagation of a near-circular GEO graveyard orbit of an
object with a high area-to-mass ratio.
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9.4.5 Case III: Highly Eccentric GPS Graveyard Orbit – Low A/m

In this test case, a highly eccentric GPS graveyard orbit is simulated for a satellite
with a low area-to-mass ratio. The initial orbit has been based on the end-of-life
guidelines listed in Table 2.2, and has perigee and apogee altitudes of respectively
2,500 km and 19,900 km. This presents the most eccentric GPS graveyard orbit that
is possible under the guidelines formulated by NASA. The corresponding initial
conditions are listed in Table 9.6.

A highly eccentric orbit has deliberately been chosen, because the dynamics
related to it are quite distinct from the dynamics of the near-circular orbits consid-
ered in the previous two test cases. Additionally, the lower overall altitude implies
that the perturbations related to the gravity field of the Earth will become more im-
portant, whereas the accelerations resulting from the gravitational attraction of the
Sun and Moon will slightly decrease in magnitude. Moreover, the force model will
change in nature depending on the distance from the Earth, governed by the posi-
tion in the (eccentric) orbit. Because of the low area-to-mass ratio, solar radiation
pressure will only play a minor role in this simulation case.

Table 9.6: The initial conditions for simulation case III.

Starting epoch
Jan. 1, 2014 00:00:00

Orbital element Initial value
a 17,578 km
e 0.4949
i 55 ◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

Physical property Value
CR ·A/m 0.02 m2/kg

The long-term evolution of the orbital elements for this simulation case is given
in Figure 9.17. The corresponding performance plots for the different methods are
shown in Figures 9.18 to 9.20.
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Figure 9.17: The long-term evolution of the orbital elements for simulation case
III.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.18: The performance regarding the semi-major axis for different compu-
tational methods, for a 100-year propagation of a highly eccentric GPS graveyard
orbit of an object with a low area-to-mass ratio.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.19: The performance regarding the eccentricity for different computa-
tional methods, for a 100-year propagation of a highly eccentric GPS graveyard
orbit of an object with a low area-to-mass ratio.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.20: The performance regarding the inclination for different computational
methods, for a 100-year propagation of a highly eccentric GPS graveyard orbit of
an object with a low area-to-mass ratio.
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9.4.6 Case IV: Near-Circular GPS Graveyard Orbit – High A/m

In this final test case, a near-circular GPS graveyard orbit is considered for an object
with a high area-to-mass ratio. Simulations have shown that the initial conditions of
the previous case will lead to decay within a year if the trajectory of an object with
a high area-to-mass ratio is modeled (see Figure 10.8(c) on page 173). Therefore,
these initial conditions combined with a high-area to mass ratio do not represent a
good test case for long-term integration performance. Instead, the initial conditions
listed in Table 9.7 will be used for the final test case.

Of the other test cases that were considered, this test case is most similar to
case II. However, in this case, the initial orbit lies in the GNSS region of space and
has a relatively high initial inclination. As a result, the system that is integrated will
still have significantly different characteristics than case II. It will be interesting to
see how the performances of the computational methods compare between the two
cases.

Table 9.7: The initial conditions for simulation case IV.

Starting epoch
Jan. 1, 2014 00:00:00

Orbital element Initial value
a 27,260 km
e 0.001
i 55 ◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

Physical property Value
CR ·A/m 40 m2/kg

The results of the reference simulation for case IV are shown in Figure 9.21. In ad-
dition, the performance plots for the different computational methods are presented
in Figures 9.22 to 9.24.
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Figure 9.21: The long-term evolution of the orbital elements for simulation case
IV.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.22: The performance regarding the semi-major axis for different compu-
tational methods, for a 100-year propagation of a near-circular GPS graveyard orbit
of an object with a high area-to-mass ratio.
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(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.23: The performance regarding the eccentricity for different computa-
tional methods, for a 100-year propagation of a near-circular GPS graveyard orbit
of an object with a high area-to-mass ratio.



9.4. Perturbed Problem 159

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

10
2

Computation time [s]

M
ax

im
um

 e
rr

or
 in

 in
cl

in
at

io
n 

[°]

 

 

RK4
RK4 MEE
RKF56
RKF56 MEE
DOPRI8
DOPRI8 MEE
Kinoshita
Kinoshita WH

(a) Traditional methods and Kinoshita’s method.
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(b) Symplectic methods.

Figure 9.24: The performance regarding the inclination for different computational
methods, for a 100-year propagation of a near-circular GPS graveyard orbit of an
object with a high area-to-mass ratio.
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9.5 Discussion

When assessing the performance of different computational methods for a particu-
lar application, the specific requirements of that application should be kept in mind.
In this case, the application is predicting how the orbits of space debris objects de-
velop over long periods of time and whether or not collision hazards with functional
satellites will arise in the future. This specific application has implications for the
accuracy that is required for the simulations. Since most graveyard orbits initially
have an altitude difference in the order of a few hundred kilometers with respect
to active satellite orbits, a simulation accuracy of e.g. 100 km is not acceptable,
as that level of accuracy might lead to incorrect conclusions. On the other hand,
millimeter-level accuracy is also not required for this particular application.

During the course of the thesis project, it has been established that a maximum
in-plane error on the order of a few kilometers is deemed acceptable for predict-
ing potential collision hazards with active satellite constellations. Practically, this
means that in the performance plots of the previous sections, errors in semi-major
axis of 100 km or smaller combined with errors in eccentricity of roughly 10−4 or
smaller will result in an acceptable in-plane accuracy. The opposite is also true:
data points which lie above these error boundaries correspond to simulation runs
which are not considered to be accurate enough for this specific application.

Regarding the accuracy of the simulations, it should be noted that a maximum
error in semi-major axis of 100 km in the performance plots means that during
the full 100-year simulation, the prediction of the semi-major axis made using that
specific method did not deviate more than 1 km from the reference at any point
in the 100-year period. For a geostationary orbit, such an error corresponds to
a maximum error of roughly 0.0024 % in semi-major axis, which is of course
very small. However, as mentioned above, for the intended application, errors
in this range are still acceptable, but larger errors are not. Therefore, integration
methods are required which maintain a high level of accuracy over long periods of
time. In addition, relatively short computation times are desirable, making efficient
methods which also satisfy the accuracy requirements the methods of choice. In
practice, this implies that methods which have data points in the lower left of the
performance plots in Section 9.4 are the best methods for integrating the specific
simulation cases.

Case I

Looking at the results for simulation case I, it can be concluded that for the tra-
ditional methods, the formulation using Gauss’ equations leads to much better
performance than the relatively simple Cowell formulation. Accross the board,
DOPRI8 MEE and RK4 MEE perform best, reaching a high accuracy relatively
fast. RKF56 MEE performs somewhat worse in this case, though it still produces
moderately accurate results in a very short computation time. Kinoshita’s method
with T+V splitting performs better than RK4 and RKF56 using the Cowell formu-
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lation, but is surpassed by DOPRI8.
With Wisdom-Holman splitting, the performance of Kinoshita’s method is com-

parable with RK4 MEE and DOPRI8 MEE, although its results do not get more
accurate if smaller steps are used. This particular behavior of symplectic methods
using Wisdom-Holman splitting was discussed in Section 9.4.1 and is present for
all methods that use Wisdom-Holman splitting, not just for Kinoshita’s method.

Considering the symplectic integrators in specific, Kinoshita WH performs
best. Just like in the simulations of the two-body problem of Section 9.3, the
performance curves are roughly the same for all SABA2n methods tested (2n = 6,
8, 10). Using a higher value for n will generally result in a more accurate pre-
diction, but at the cost of additional computation time. This is not only true for
simulation case I, but also for the other simulation cases. Therefore, in this discus-
sion the SABA2n methods will be treated as a single set of methods, rather than as
individual methods. For simulation case I, the SABA2n methods perform notably
worse than Kinoshita’s method, especially when using T+V splitting. If Wisdom-
Holman splitting is used, there is less of a difference, though Kinoshita’s method
still performs better in that case.

Taking into account the above, for integrating a GEO graveyard orbit for an
object with a low area-to-mass ratio, RK4 MEE, DOPRI8 MEE or Kinoshita with
Wisdom-Holman splitting are considered the best methods, reaching a high accu-
racy while requiring only a short computation time. Using Cowell’s formulation
is not recommended, except when using DOPRI8. Using Gauss’ equations with
modified equinoctial elements, however, is clearly the better option.

Case II

When simulating a GEO graveyard orbit for an object with a high area-to-mass ra-
tio, as was done for test case II, the situation clearly changes. The maximum error
over the simulation period increases across the board, with the best methods having
a maximum error in semi-major in the order of tens of meters, whereas previously
millimeter-level accuracy was reached. This is likely because the system has be-
come much more volatile due to the vastly increased influence of solar radiation
pressure, and as a result, has become harder to integrate accurately.

Noteworthy is that while RK4 MEE was considered one of the best methods
for the low area-to-mass ratio case, it performs much worse in the situation with
a high area-to-mass ratio, only reaching relatively good accuracy when using very
small integration steps, and as a result requiring a substantial amount of CPU time.
RK4 integration using the Cowell formulation is essentially not usable for the high
area-to-mass ratio simulation, as errors on the order of hundreds of km in semi-
major axis are reached, even when taking a considerable amount of computation
time. DOPRI8 performs very well for this particular case, both when using Gauss’
equations and when using the Cowell formulation, although accurate results can
still be produced faster using Gauss’ equations.

Kinoshita’s method also performs quite well when using Wisdom-Holman split-
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ting. A similar performance is obtained using the SABA2n methods with Wisdom-
Holman splitting. A difference is that when using T+V splitting, Kinoshita’s meth-
od eventually reaches acceptable accuracy, while the SABA2n methods never reach
a sufficient level of accuracy.

Recommended methods for simulation case II are DOPRI8 combined with ei-
ther the Cowell formulation or Gauss’ equations, or any of the symplectic methods
with Wisdom-Holman splitting.

Case III

For the integration of a highly eccentric GPS graveyard orbit for an object with a
low area-to-mass ratio, which was tested in simulation case III, DOPRI8, DOPRI8
MEE, Kinoshita WH and RKF56 MEE all perform well, with DOPRI8 MEE hav-
ing a slight edge. The other traditional methods all perform significantly worse,
though RK4 MEE can still attain a reasonable level of accuracy, given enough
computation time.

Regarding the use of the symplectic methods for simulation case III, it is
notable that the SABA2n methods with Wisdom-Holman splitting perform better
than Kinoshita’s method with the same splitting method, whereas in the previous
cases, Kinoshita’s method showed superior performance. Hence, for this case, the
SABA2n methods are actually preferable over Kinoshita’s method.

Methods that can be recommended for simulation case III are DOPRI8, DOPRI8
MEE, RKF56 MEE and the SABA2n methods with Wisdom-Holman splitting. Of
these methods, DOPRI8 MEE shows the best performance.

Case IV

Simulation case IV considered the integration of a near-circular GPS graveyard
orbit for an object with a high area-to-mass ratio. This simulation case is relatively
similar to case II. Both involve the propagation of near-circular orbits for objects
with high area-to-mass ratios. The performance plots for both test cases are also
relatively similar, although there is somewhat more spread in the performance of
the traditional methods for test case IV.

Specifically, RK4 performs worst for case IV, while DOPRI8, DOPRI8 MEE
and RKF56 MEE all show good performance. Also, all symplectic integration
methods with Wisdom-Holman splitting demonstrate a performance comparable to
that of the best traditional methods. Regarding the symplectic methods with T+V
splitting, Kinoshita’s method can reach good accuracy if sufficient computation
time is allowed, while the SABA2n methods will converge to an accurate solution
much more slowly when decreasing the step size.

For test case IV, the best overall performance is achieved by DOPRI8 MEE and
all of the symplectic integrators with Wisdom-Holman splitting.
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Wrapping Up

All things considered, the combination of Gauss’ form of Lagrange’s planetary
equations with DOPRI8 as integrator performs as one of the best, if not the best
method in all test cases. The advantage of error control should not be overlooked.
Thanks to it, DOPRI8 can be applied relatively safely to any problem without
knowing the specific dynamics of the system beforehand. If the accuracy speci-
fications are set properly, DOPRI8 MEE will typically give an accurate prediction
of the trajectory that is simulated within a relatively short amount of time.

For the non-adaptive step size methods, the user needs to choose a proper step
size him/herself. If too large a step size is chosen, significant errors will be made in
the propagation. If, on the other hand, too small a step size is chosen, the computa-
tion will be relatively inefficient. DOPRI8, due to its step size control, will essen-
tially ensure an efficient integration. RKF56 is also an adaptive step size method,
but its performance for this application is generally worse than DOPRI8’s. That
being said, RKF56 shows clearly superior performance over RK4 for most test
cases.

In general, it can be concluded that the more clever methods, which make use
of the knowledge that the two-body part stays constant due to the central gravita-
tional force and that only the perturbations have an effect on the orbital elements,
perform significantly better than the more straightforward methods. Specifically,
this concerns the formulation using Gauss’ equations with modified equinoctial el-
ements for the traditional methods and the Wisdom-Holman splitting method for
the symplectic methods, both of which clearly outperform the methods which use
the Cowell formulation and the symplectic methods which use T+V splitting.

Methods like DOPRI8 combined with Gauss’ equations and symplectic inte-
grators with Wisdom-Holman splitting are more elaborate to implement than sim-
pler methods like RK4 combined with a simple Cowell formulation, but the dif-
ferences in efficiency are vast. Even when DOPRI8 is used with a Cowell formu-
lation, the integration can be performed around 15 times as fast as with an RK4
integrator, for a similar level of accuracy. Moreover, for systems that are harder
to integrate, for example due to a high area-to-mass ratio or a high eccentricity,
a simple RK4 implementation using a Cowell formulation will essentially never
reach a good accuracy for any feasible computation time. In these cases, more so-
phisticated methods are certainly required. All in all, the conclusion can be drawn
that for performing long-term integrations of trajectories of space debris objects, it
is definitely worthwhile to implement more intricate methods over simpler meth-
ods, despite the extra programming effort required. The gains in accuracy and
efficiency are so significant that simple methods like RK4 combined with a Cowell
formulation should essentially never even be considered for use.

When comparing the symplectic methods with the traditional methods, it can
be stated that the symplectic methods with Wisdom-Holman splitting show com-
petitive performance with the best traditional methods that were tested. However,
the choice of step size is important, and what is a proper step size is dependent
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on the characteristics of the system. This makes the symplectic integrators harder
to apply to an unknown system than adaptive step size methods such as DOPRI8,
which will automatically ensure an accurate and efficient integration process. Ad-
justing the symplectic integrators in such a way that they can use variable step
sizes is unfortunately not an option, as this will result in a clear degradation of
accuracy, and more importantly, will make them lose their symplectic properties
(Skeel and Biesiadecki, 1994). Although there are ways around this, they require
entirely new methods to be constructed with variable step size in mind from the
beginning. In addition, because in the Wisdom-Holman splitting method only the
perturbations, which are partially non-Hamiltonian, are integrated numerically, it
is quite questionable whether newly implemented variable step size symplectic in-
tegrators would perform better for this problem than a normal adaptive step size
integrator of high order like DOPRI8 combined with Gauss’ equations in modified
equinoctial elements.

For integrating purely Hamiltonian systems, in this case variants of the two-
body problem, the performance of symplectic integrators was found to be excellent.
On the other hand, the symplectic integrators did not show a clear advantage over
the traditional methods in the simulations of the perturbed two-body problem. It
should also be taken into account that because symplectic methods are relatively
new, they will generally not be available in existing simulation tools for satellite
orbits. Furthermore, they are harder to understand and implement than traditional
methods, if one is not familiar with the underlying mathematics beforehand.

Generally speaking, for integrating the solar system or simulating the three-
body problem, symplectic integrators may be noticeably more efficient than most
traditional methods. However, for propagating perturbed satellite and debris orbits,
such as the ones considered in this thesis report, the advantage of using symplectic
integrators is limited. Therefore, for these applications it is hard to recommend
symplectic integration methods over established methods such as DOPRI8.



Chapter 10
Long-Term Debris Orbit
Predictions

At the end of their operational lifetimes, satellites in the higher orbital regions
are generally put in graveyard orbits, in order to prevent possible collisions with
active satellites. The guidelines for graveyard orbits for GEO and GPS satellites,
as specified by various space agencies, were listed in Tables 2.1 and 2.2.

Assuming that satellites are re-orbited to graveyard orbits, it is interesting to
consider how these orbits develop over time. Therefore, long-term simulations are
carried out in this chapter to predict how the orbits of debris objects originating
from graveyard orbits evolve, and whether collision possibilities with active satel-
lites will arise in the future.

10.1 Introduction

Ideally every re-orbited satellite would stay well removed from the region in which
the operational satellites are located. Even so, events such as in-orbit explosions
do occur, leading to debris objects with a wide range of characteristics. Hence,
even if intact satellites in specific graveyard orbits would stay safely away from
the active satellite constellations, these new debris objects could still be dangerous.
As was mentioned in Section 2.5, the only physical property of debris objects that
has an effect on the way the perturbing forces influence their trajectories is the
effective area-to-mass ratio, CR ·A/m. For an intact satellite, this factor has a value
of roughly 0.02 m2/kg. However, objects such as explosion fragments and flakes
of paint can have much higher area-to-mass ratios, which dramatically increases
the effect solar radiation pressure has on their trajectories. To take these objects
into account as well, simulations will also be carried out for objects with effective
area-to-mass ratios of 1 m2/kg and 40 m2/kg.

This chapter should not be viewed as an in-depth assessment of all different
options for graveyard orbits of geostationary satellites and satellites in the GNSS
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constellations. Rather, it should provide insight into the long-term developments of
a selection of graveyard orbits possible under the guidelines formulated by various
space agencies (cf. Tables 2.1 and 2.2). As part of that, it will become clear how
the various perturbing forces influence the orbits of objects with a range of area-to-
mass ratios, as well as how the effects of these forces differ for the orbital regimes
that are considered.

In the performance comparison of the previous chapter, the DOPRI8 method
in combination with Gauss’ form of Lagrange’s planetary equations in modified
equinoctial elements was determined to be the most efficient and robust method
for performing long-term propagations of space debris orbits. Accordingly, this
method is used for carrying out the simulations for this chapter. Also, to account
for any effects that might occur on longer timescales, the integration time for the
simulations is set to 400 years.

In the next sections, the results of the simulations will be presented. In addition
to figures showing the evolution of the orbital elements for the simulations corre-
sponding to different area-to-mass ratios, plots of the perigee and apogee altitudes
over time will also be provided. These plots can be used to determine whether the
regions of space in which the active satellites reside are crossed by the trajecto-
ries of the debris objects that are simulated, and hence, whether collisions would
be possible. For convenience, these plots also include the altitudes of the relevant
satellite constellations. At the end of the chapter, a number of important conclu-
sions will be drawn based on the simulation results presented here.

10.2 GEO Graveyard Orbits

In the end-of-life guidelines for satellites in the geostationary region listed in Table
2.1, three of the four space agencies included the area-to-mass ratio in the compu-
tation for the minimum change in altitude required for the graveyard orbit. As a
result, satellites that are affected more by solar radiation pressure will be given a
higher graveyard orbit, in order to compensate for the accompanying orbital fluc-
tuations. It should be kept in mind, however, that the guidelines are only for intact
satellites, which have the ability to be re-orbited at end-of-life. Generally speak-
ing, these satellites have relatively low area-to-mass ratios, leading to suggested
re-orbit altitudes of roughly 200 to 300 km above GEO.

Accordingly, a semi-major axis that is 300 km larger than the nominal radius
of the geostationary orbit will be used for the simulations of the GEO graveyard
orbits of this section. The full list of initial conditions can be found in Table 10.1.
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Table 10.1: The initial conditions for the simulation results in this section.

Starting epoch
Jan. 1, 2014 00:00:00

Altitude Initial value
Apogee 36,128 km
Perigee 36,044 km

Orbital element Initial value
a 42,464 km
e 0.001
i 0.1◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

The simulation results for the long-term evolution of the GEO graveyard orbits of
objects with effective area-to-mass ratios of 0.02, 1 and 40 m2/kg are shown in
Figures 10.1 to 10.3, respectively. The corresponding perigee and apogee altitudes
over time are displayed in Figure 10.4. The results of these simulations, as well as
those of the simulations presented in the next sections, will be discussed at the end
of the chapter.
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Figure 10.1: The long-term development of a GEO graveyard orbit for an object
with a CR ·A/m value of 0.02 m2/kg.
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Figure 10.2: The long-term development of a GEO graveyard orbit for an object
with a CR ·A/m value of 1 m2/kg.
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Figure 10.3: The long-term development of a GEO graveyard orbit for an object
with a CR ·A/m value of 40 m2/kg.
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(a) CR ·A/m = 0.02 m2/kg.
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(b) CR ·A/m = 1 m2/kg.
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(c) CR ·A/m = 40 m2/kg.

Figure 10.4: The apogee and perigee altitudes for debris objects with various area-
to-mass ratios starting in GEO graveyard orbits. The blue line indicates the nominal
altitude of geostationary satellites.
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10.3 GNSS Graveyard Orbits

The end-of-life guidelines for satellites in 12-hour circular orbits, such as GPS
satellites, allow for more different options for graveyard orbits than the guidelines
for GEO satellites (see Table 2.2). To take into account the most distinct options,
two boundary cases for eccentric orbits will be considered, as well as a more basic,
near-circular option.

10.3.1 Low Altitude Eccentric Orbits

The initial conditions for the simulation results in this section correspond to the
most eccentric GPS graveyard orbit that is possible under the NASA end-of-life
guidelines. The entire orbit lies below the nominal GPS altitude and has initial
perigee and apogee altitudes of 2,500 and 19,900 km, respectively. The full initial
conditions are listed in Table 10.2.

Table 10.2: The initial conditions for the simulation results in this section.

Starting epoch
Jan. 1, 2014 00:00:00

Altitude Initial value
Apogee 19,900 km
Perigee 2,500 km

Orbital element Initial value
a 17,578 km
e 0.4949
i 55 ◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

The long-term evolution of orbits with these initial conditions for objects with a
range of area-to-mass ratios are shown in Figures 10.5 to 10.7. The related perigee
and apogee altitudes are provided in Figure 10.8.

It should be noted that as a result of the low initial perigee, the rapid growth
in eccentricity for a debris object with an effective area-to-mass ratio of 40 m2/kg
leads to decay within a short amount of time. Therefore, the timescales for the
corresponding plots (Figures 10.7 and 10.8(c)) are much shorter than those for the
other plots.



10.3. GNSS Graveyard Orbits 171

0 50 100 150 200 250 300 350 400
17520

17540

17560

17580

Semi−major axis

t [yrs]

a
 [

k
m

]

0 50 100 150 200 250 300 350 400
0.45

0.5

0.55

0.6

Eccentricity

t [yrs]

e
 [

−
]

0 50 100 150 200 250 300 350 400
54.5

55

55.5

Inclination

t [yrs]

i 
[°

]

Figure 10.5: The long-term development of a low altitude eccentric GPS graveyard
orbit for an object with a CR ·A/m value of 0.02 m2/kg.
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Figure 10.6: The long-term development of a low altitude eccentric GPS graveyard
orbit for an object with a CR ·A/m value of 1 m2/kg.
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Figure 10.7: The development of a low altitude eccentric GPS graveyard orbit for
an object with a CR ·A/m value of 40 m2/kg. Due to the influence of solar radiation
pressure the object will enter the atmosphere within a month.
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(a) CR ·A/m = 0.02 m2/kg.
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(b) CR ·A/m = 1 m2/kg.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5000

10000

15000

20000

25000

Apogee and perigee altitudes

t [yrs]

H
 [

k
m

]

(c) CR ·A/m = 40 m2/kg.

Figure 10.8: The apogee and perigee altitudes for debris objects with various area-
to-mass ratios starting in low altitude eccentric GPS graveyard orbits. Going from
lower altitude to higher altitude, the blue lines indicate the nominal altitudes of
satellites of the GPS, Beidou and Galileo constellations, respectively.
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10.3.2 High Altitude Eccentric Orbits

While in the previous section eccentric graveyard orbits below the nominal GPS
altitude were considered, in this section the long-term developments of eccentric
graveyard orbits that lie completely above the GPS regime are considered. The
initial conditions used for the simulations are listed in Table 10.3. Specifically,
they result in the most eccentric graveyard orbits above the nominal GPS altitude
possible under the NASA end-of-life guidelines.

Table 10.3: The initial conditions for the simulation results in this section.

Starting epoch
Jan. 1, 2014 00:00:00

Altitude Initial value
Apogee 35,288 km
Perigee 20,500 km

Orbital element Initial value
a 34,272 km
e 0.2157
i 55 ◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

The results of the long-term simulations with these initial conditions for objects
with different area-to-mass ratios are shown in Figures 10.9 to 10.11. The corre-
sponding perigee and apogee altitudes are included in Figure 10.12.



10.3. GNSS Graveyard Orbits 175

0 50 100 150 200 250 300 350 400
34265

34270

34275

Semi−major axis

t [yrs]

a
 [

k
m

]

0 50 100 150 200 250 300 350 400
0

0.2

0.4

Eccentricity

t [yrs]

e
 [

−
]

0 50 100 150 200 250 300 350 400
45

50

55

60

Inclination

t [yrs]

i 
[°

]

Figure 10.9: The long-term development of a high altitude eccentric GPS grave-
yard orbit for an object with a CR ·A/m value of 0.02 m2/kg.
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Figure 10.10: The long-term development of a high altitude eccentric GPS grave-
yard orbit for an object with a CR ·A/m value of 1 m2/kg.
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Figure 10.11: The long-term development of a high altitude eccentric GPS grave-
yard orbit for an object with a CR ·A/m value of 40 m2/kg.
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(a) CR ·A/m = 0.02 m2/kg.
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(b) CR ·A/m = 1 m2/kg.
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(c) CR ·A/m = 40 m2/kg.

Figure 10.12: The apogee and perigee altitudes for debris objects with various
area-to-mass ratios starting in high altitude eccentric GPS graveyard orbits. Going
from lower altitude to higher altitude, the blue lines indicate the nominal altitudes
of satellites of the GPS, Beidou and Galileo constellations, respectively.



10.3. GNSS Graveyard Orbits 178

10.3.3 Near-Circular Orbits

In this final set of simulations, near-circular GPS graveyard orbits are considered
with a semi-major axis that is 700 km larger than the semi-major axis of a nominal
GPS orbit. Because of this, the altitudes used by the graveyard orbits lie almost
exactly in between the GPS and Beidou constellations. The initial conditions for
this situation are listed in Table 10.4.

Table 10.4: The initial conditions for the simulation results in this section.

Starting epoch
Jan. 1, 2014 00:00:00

Altitude Initial value
Apogee 20,909 km
Perigee 20,855 km

Orbital element Initial value
a 27,260 km
e 0.001
i 55 ◦

ω 0 ◦

Ω 0 ◦

θ 0 ◦

The long-term evolution of the orbital elements for debris objects with different
area-to-mass ratios are shown in Figures 10.13 to 10.15. The accompanying plots
of the perigee and apogee altitudes are provided in Figure 10.16.
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Figure 10.13: The long-term development of a near-circular GPS graveyard orbit
for an object with a CR ·A/m value of 0.02 m2/kg.
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Figure 10.14: The long-term development of a near-circular GPS graveyard orbit
for an object with a CR ·A/m value of 1 m2/kg.
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Figure 10.15: The long-term development of a near-circular GPS graveyard orbit
for an object with a CR ·A/m value of 40 m2/kg.
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(a) CR ·A/m = 0.02 m2/kg.
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(b) CR ·A/m = 1 m2/kg.
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(c) CR ·A/m = 40 m2/kg.

Figure 10.16: The apogee and perigee altitudes for debris objects with various
area-to-mass ratios starting in near-circular GPS graveyard orbits. Going from
lower altitude to higher altitude, the blue lines indicate the nominal altitudes of
satellites of the GPS, Beidou and Galileo constellations, respectively.
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10.4 Discussion

GEO Graveyard Orbits

As can be seen in Figure 10.1, the orbit of a satellite starting in a typical GEO
graveyard orbit experiences only relatively small variations in semi-major axis and
eccentricity. As was already seen in Section 8.5, the inclination shows a periodic
behavior with a maximum inclination of roughly 15 degrees and a period of about
53 years. This behavior in the inclination is also present for a debris object with
an effective area-to-mass ratio of 1 m2/kg. However, for an object with a CR ·A/m
value of 40 m2/kg, the pattern is clearly different. Specifically, the oscillation both
has a shorter period and a higher maximum inclination. This same behavior was
also found by Anselmo and Pardini (2008), who determined that the 53-year peri-
odic behavior with maxima of about 15 degrees caused by the luni-solar perturba-
tions was present for CR ·A/m values up to roughly 1 m2/kg and noted that higher
area-to-mass ratios would lead to shorter periods and higher peaks, as a result of
an increasingly large perturbing acceleration due to solar radiation pressure.

For higher area-to-mass ratios, the variations in semi-major axis also become
larger, but it is the behavior of the eccentricity under the influence of solar radiation
pressure that is noteworthy. The eccentricity experiences yearly oscillations, with
much smaller long-period modulations. Though the initial graveyard orbit only
has a small eccentricity of 0.001, eccentricities of over 0.02 are reached for objects
with CR ·A/m = 1 m2/kg, while eccentricity values of up to 0.75 are attained for ob-
jects with CR ·A/m = 40 m2/kg. These results are consistent with those of Anselmo
and Pardini (2008). The oscillations in eccentricity lead to large fluctuations in the
perigee and apogee altitudes, as can be observed in Figure 10.4. Consequently,
collision hazards with active geostationary satellites start to arise for objects with
higher area-to-mass ratios. The simulation results show that for the graveyard orbit
considered in Section 10.2, debris objects with effective area-to-mass ratios lower
than 1 m2/kg already start to cross the geostationary ring, which could potentially
result in collisions with active satellites. Debris objects with substantially higher
area-to-mass ratios will also cross the altitude regimes of MEO satellites and po-
tentially even LEO satellites.

All in all, the simulations for the GEO region indicate that for intact satellites,
a typical graveyard orbit which follows the guidelines formulated by the space
agencies will impose no collision hazards with active satellites in the geostationary
ring, not even after long periods of time. This conclusion is confirmed by the
research of Van Kints (2005). Moreover, other initial conditions that might have
an influence on the orbital development of the graveyard orbit were found to be of
minor influence in a sensitivity study by Lewis et al. (2004). Hence, the former
conclusion regarding the absence of collision hazards related to graveyard orbits
formulated under the previously mentioned end-of-life guidelines can be expected
to be true in general.

On the other hand, debris objects with moderate to high area-to-mass ratios will
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in fact impose a danger to active geostationary satellites. The effect of solar radia-
tion pressure on susceptible pieces of debris is so large that even if a much higher
graveyard orbit would be chosen, objects with sufficiently high area-to-mass ratios
would still be able to reach the geostationary ring, and potentially other regions of
space as well.

GNSS Graveyard Orbits

The conclusions regarding the graveyard orbits for satellites in the GNSS region are
partially the same as those for satellites in the GEO region. In both cases, objects
with higher area-to-mass ratios will experience large oscillations in eccentricity
under the influence of solar radiation pressure, leading to collision possibilities
with active satellites. However, the simulations of the GNSS graveyard orbits also
revealed other dynamics, which can have significant implications for the suitability
of certain graveyard orbits.

The simulations of the low-altitude eccentric orbits of Section 10.3.1 show
periodic variations in the eccentricity with a maximum variation of about 0.05,
present even for objects with low area-to-mass ratios. Although these variations
in eccentricity are significant, the maximum apogee altitudes resulting from them
remains near the boundaries of what can be considered dangerous for active GPS
satellites. In the case of a very high area-to-mass ratio, the low initial perigee of
the graveyard orbit results in rapid decay of the debris object.

In the simulations of the high-altitude eccentric orbits (Section 10.3.2), the
eccentricity displays peculiar behavior in the form of long-period variations with
minimum and maximum values of approximately 0.1 and 0.3. Furthermore, signif-
icant periodic variations in the inclination are found. The plots of the perigee and
apogee altitudes show that even for low area-to-mass ratios, the altitude regimes
of the GPS, Beidou and Galileo constellations will all be crossed by the simulated
debris objects, even though the inclinations of these objects vary as well.

For the near-circular orbits considered in Section 10.3.3, the trajectories of the
simulated debris objects show more desirable behavior. Although the inclination
varies with roughly three degrees, the eccentricity remains relatively stable, only
showing the familiar dependence on the area-to-mass ratio. Because the initial
orbit was situated almost exactly in between the GPS and Beidou constellations,
a growth in eccentricity results in perigee and apogee altitudes that are removed
almost equal distances from both constellations. The simulations point out that the
altitude regimes of the active satellites will be crossed only by debris objects with
effective area-to-mass ratios of roughly 1 m2/kg and higher. Hence, for intact GPS
satellites the graveyard orbit with the initial conditions of the simulations will be
safe, even on long timescales.

After investigation, the remarkable variations in eccentricity for the eccentric
simulation cases were found to be caused by the combined effects of the luni-
solar perturbations and the irregularities in the Earth’s gravity field. Apparently,
resonances induced by these perturbing forces arise in specific situations.
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These phenomena in the GNSS region have been the topic of quite some recent
research, for example by Ineichen et al. (2003), Rossi (2008) and Deleflie et al.
(2011). It turns out that the orbits in the region of space where the GNSS con-
stellations are located can suffer from inclination-dependent luni-solar resonances.
These resonances are mainly responsible for the secular developments in eccentric-
ity and strongly influence the stability of orbits near the GNSS constellations. In
the paper by Rossi, it is emphasized that the initial conditions have a large effect on
the long-term development of disposal orbits. Therefore, a careful selection of the
orbital parameters is advised, particularly of the initial eccentricity and resonant
angle 2ω +Ω.

Which resonances play a role and when is a topic of study on its own. Many
papers have been published on this topic, and it would be beyond the scope of
this thesis project to extensively investigate the resonant dynamics of the system.
In addition, resonances are often investigated using analytical relations, as it can
be easier to determine when they arise using such methods than by performing
a large number of relatively time-intensive numerical simulations. Nevertheless,
any resonances will in fact be taken into account in the predictions made using the
simulation code developed for this project, granted that the resonances are caused
by perturbing forces included in the force model. Consequently, the simulation
code can accurately predict the long-term developments of orbits starting from
specified initial conditions, but may not necessarily be the best tool to study the
existence and causes of resonances with.

Conclusions

To conclude, it can be stated that the suggested GEO graveyard orbits lead to desir-
able behavior over long periods of time, in which the defunct satellites will never
pose a collision hazard for the active geostationary satellites. For the graveyard
orbits in the GNSS region, resonances can play an important role. Because these
resonances are heavily dependent on the initial conditions of the orbit, it would be
recommended to carefully consider the different options for graveyard orbits for
satellites in this region on a case-by-case basis.

Regarding GEO and GNSS graveyard orbits alike, it can be concluded that de-
bris objects with high area-to-mass ratios can be hazardous for active satellites, no
matter where these objects originate. Even if graveyard orbits are chosen that are
farther removed from the active satellite constellations, debris objects with suffi-
ciently high area-to-mass ratios will still find their way to the orbital regimes used
by the operational satellites, as a result of large increases in eccentricity caused by
solar radiation pressure. Accordingly, it is recommended to focus on preventing
high area-to-mass ratio debris from being created at all.



Chapter 11
Conclusions and Recommendations

11.1 Conclusions

Simulation Code

A simulation code was developed for performing long-term propagations of the
orbits of debris objects in the GEO and GNSS regions of space, and, most impor-
tantly, for assessing the performance of different computational methods for said
application.

To this end, the various perturbing forces acting on satellites were considered
and their relative magnitudes in the GEO and GNSS regions of space were com-
pared. It turned out that for the aforementioned regions, by far the most important
perturbing accelerations are caused by irregularities in the gravity field of the Earth,
the third-body perturbations due to the Sun and the Moon, and the force due to solar
radiation pressure. These perturbing forces are also the ones used in the majority
of research papers on debris prediction above LEO. Accordingly, these particular
forces were included in the force model of the simulation code.

A range of different computational methods were implemented in the simula-
tion code. The traditional methods that were implemented include the classic RK4
method and the adaptive step size methods RKF56 and DOPRI8. These meth-
ods all have the option to be used in combination with either Cowell’s method or
Gauss’ form of Lagrange’s planetary equations. In the last formulation, modified
equinoctial elements were used in order to prevent singularities.

The simulation code also includes a number of symplectic methods, in the form
of Kinoshita’s method and the set of SABA2n methods. These integration methods
can be combined with either of two splitting methods for the Hamiltonian: split-
ting into kinetic and potential energy components, or Wisdom-Holman splitting, in
which the Hamiltonian is split into a two-body part and a perturbations part.

The complete simulation code was tested extensively. In the testing phase, it
was verified that the simulation code produces long-term simulation results consis-
tent with those presented in recent research papers on space debris.
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Performance of Computational Methods

An extensive comparison between the different computational methods has been
made regarding their performance for carrying out long-term simulations of space
debris trajectories. Overall, the best method was found to be the DOPRI8 method
combined with Gauss’ form of Lagrange’s planetary equations in modified equinoc-
tial elements. In each of the test cases, this particular combination performed as
one of the best, if not the best method. The fact that the step size is adapted based
on the dynamics of the system ensures that the integration is performed efficiently.
Moreover, as a result of the error control, the method can be applied reliably to
almost any system without knowing the exact dynamics of that system beforehand.
With fixed step size methods, on the other hand, the user will have to specify a
step size, and if this step size is chosen too small, the integration will be inefficient,
while too large a step size will lead to inaccurate results. The aforementioned ad-
vantages of adaptive step size methods also hold for the RKF56 method, which
performed as one of the better methods. However, DOPRI8 clearly had an edge
over RKF56 in terms of efficiency for the cases that were considered.

Another conclusion is that, in general, using the more clever approaches, in
which only the perturbations are integrated numerically, will lead to large gains in
efficiency compared to using the more straightforward formulations. Specifically,
Gauss’ equations and the Wisdom-Holman splitting method allow for a vastly more
efficient integration process than the Cowell formulation and the T+V splitting
method. A notable exception to this is the DOPRI8 method, which also performs
reasonably well combined with the Cowell formulation.

Generally speaking, for the accurate, long-term integration of space debris or-
bits, it is definitely worthwhile, if not essential, to implement fairly complex propa-
gation techniques instead of simpler methods. To illustrate this: a direct integration
of the force model in Cartesian components (i.e. the Cowell formulation) with the
RK4 method can give results of sufficient accuracy for a simulation of a GEO orbit
of an object with a low area-to-mass ratio. However, it will take much longer to
complete the integration than when more intricate methods are used. For the other
test cases, in which the initial orbit was either eccentric or the debris object had
a high area-to-mass ratio, acceptable results were not attained at all with the RK4
method combined with the Cowell formulation, not even when very small integra-
tion steps were used. So, although more complicated methods may take additional
time to implement, for long-term simulations the associated gain in efficiency is
so vast that the more simple methods should essentially not even be considered for
use.

Regarding the symplectic methods, it can be stated that they are very efficient
for long-term integrations of Hamiltonian systems. This was shown using integra-
tions of the two-body problem, where the symplectic methods were quite domi-
nant. Their results for the integration of perturbed systems were somewhat less
impressive. That is not to say that their performance was bad. In fact, Kinoshita’s
method with Wisdom-Holman splitting was among the best methods for most test
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cases. However, the vast majority of symplectic methods are fixed step size meth-
ods, with no form of error control. As a result, their performance is dependent on
the user’s choice of step size, which will rarely be optimal. Moreover, symplectic
methods are relatively hard to implement if one is not familiar with their mathe-
matical background and the nomenclature used in literature beforehand. Hence,
while symplectic methods may be clearly the best choice for the integration of per-
fectly Hamiltonian systems, for the perturbed systems considered in this report,
they are merely quite a good option. As such, their advantages are not considered
substantial enough to recommend them over established methods such as DOPRI8.

Long-Term Evolution of Space Debris Orbits

To investigate the long-term behavior of space debris orbits, a number of 400-
year simulations were carried out for debris objects with various area-to-mass ra-
tios. The simulations were focused on debris originating from graveyard orbits,
which were chosen conforming to the end-of-life guidelines defined by various
space agencies.

Based on the simulations, it can be concluded that for satellites in the GEO
region, the suggested end-of-life approach that involves re-orbiting satellites to
graveyard orbits a few hundred kilometers above the geostationary ring is a safe
strategy. Intact satellites in these graveyard orbits will not pose collision hazards
to active geostationary satellites, not even after long periods of time.

Graveyard orbits in the GNSS region are another matter, though. Orbits in
that region of space were found to be vulnerable to resonances, induced by the
luni-solar perturbations. Whether or not an orbit will suffer from these effects
is highly dependent on the initial conditions of the orbit. Of the GPS graveyard
orbits that were tested, a near-circular graveyard orbit located almost exactly in
between the GPS and Beidou constellations was determined to be a safe choice
over long periods of time. However, due to the dependence on initial conditions,
it is recommended to treat graveyard orbits in the GNSS region on a case-by-case
basis, as the resonant dynamics may be difficult to predict beforehand.

For both the GEO and GNSS regions of space, it was found that debris objects
with high area-to-mass ratios would be dangerous and would start crossing the or-
bital regimes used by active satellites within the time frame of a year. Essentially,
the choice of graveyard orbit does not matter much for debris objects with suffi-
ciently high area-to-mass ratios. Due to their extreme susceptibility to the effects of
solar radiation pressure, they will find their way to the active satellite constellations
regardless and will pose potential collision hazards. Therefore, it is recommended
to focus efforts on preventing high area-to-mass ratio debris from being created at
all, rather than trying to mitigate any collision probabilities related to it by means
of unfeasibly propellant-intensive end-of-life maneuvers.
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11.2 Recommendations

There are several options for expanding upon the findings of this thesis project.
The most important ones are listed below.

• In this thesis project, a number of different computational methods were
compared. For practical reasons, only a selection of the full spectrum of
methods in existence could be included in the comparison. That being said,
there are also other methods which would be interesting to consider in a fu-
ture comparison. Some of these methods are multistep methods and extrap-
olation methods. In addition, variable step size symplectic methods would
be an interesting choice. Although examples of these methods found in lit-
erature were all of relatively low order, the advantages in efficiency and reli-
ability related to the use of adaptive step sizes are hard to overlook.

• The attitude of a debris object will likely have an impact on how its trajec-
tory is affected by solar radiation pressure. In the simulation code, however,
an average value for CR ·A/m has been used and it has been assumed that
the surface normal always points to the Sun. More realistic behavior could
potentially be attained if rotation would also be included in the simulations.
Additionally, eclipses could be modeled slightly more accurately by means
of a conical shadow model. In the current implementation, both of these
approaches were not deemed necessary, but considering that solar radiation
pressure can have such large effects on the trajectories of debris objects with
high area-to-mass ratios, it would be interesting to see how much of an in-
fluence these adjustments will have on the predicted trajectories.

• The initial conditions of an orbit of a debris object are of importance for the
future trajectory of that object. In this project, the assumption was made that
debris objects originating from graveyard orbits would have the same initial
orbits as the original re-orbited satellites. In reality, however, debris objects
resulting from explosions or collisions can have significantly different ve-
locity vectors. For more complete assessments of the safety provided by
graveyard orbits, these differences in initial conditions could be taken into
account in the simulations.

• The dangers related to space debris are all connected to collision possibili-
ties. Predicting the actual probabilities of collisions is a topic on its own, and
it was decided at the start of the project not to include this particular topic.
Nevertheless, it would be useful for the assessment of graveyard orbits to
be able to quantify how large the risks posed to active satellites would be.
Consequently, adding a routine capable of providing estimates of the proba-
bilities of collisions occurring over specified periods of time would definitely
be helpful for evaluating different end-of-life options.



Appendix A
JGM-3 Gravitational Coefficients

The coefficients of the Joint Gravity Model 3 (JGM-3), up to degree and order 8,
are listed in Table A.1. The coefficients in the table are the conventional (non-
normalized) coefficients.

Table A.1: JGM-3 gravitational coefficients (Tapley et al., 1996).

n m Cnm Snm

2 0 -0.10826360229840e-02 0
3 0 0.25324353457544e-05 0
4 0 0.16193312050719e-05 0
5 0 0.22771610163688e-06 0
6 0 -0.53964849049834e-06 0
7 0 0.35136844210318e-06 0
8 0 0.20251871520885e-06 0

2 1 -0.24140000522221e-09 0.15430999737844e-08
3 1 0.21927988018965e-05 0.26801189379726e-06
4 1 -0.50872530365024e-06 -0.44945993508117e-06
5 1 -0.53716510187662e-07 -0.80663463828530e-07
6 1 -0.59877976856303e-07 0.21164664354382e-07
7 1 0.20514872797672e-06 0.69369893525908e-07
8 1 0.16034587141379e-07 0.40199781599510e-07

2 2 0.15745360427672e-05 -0.90386807301869e-06
3 2 0.30901604455583e-06 -0.21140239785975e-06
4 2 0.78412230752366e-07 0.14815545694714e-06
5 2 0.10559053538674e-06 -0.52326723987632e-07
6 2 0.60120988437373e-08 -0.46503948132217e-07
7 2 0.32844904836492e-07 0.92823143885084e-08
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Table A.1: JGM-3 gravitational coefficients – continued.

n m Cnm Snm

8 2 0.65765423316743e-08 0.53813164055056e-08

3 3 0.10055885741455e-06 0.19720132389889e-06
4 3 0.59215743214072e-07 -0.12011291831397e-07
5 3 -0.14926153867389e-07 -0.71008771406986e-08
6 3 0.11822664115915e-08 0.18431336880625e-09
7 3 0.35285405191512e-08 -0.30611502382788e-08
8 3 -0.19463581555399e-09 -0.87235195047605e-09

4 4 -0.39823957404129e-08 0.65256058113396e-08
5 4 -0.22979123502681e-08 0.38730050770804e-09
6 4 -0.32641389117891e-09 -0.17844913348882e-08
7 4 -0.58511949148624e-09 -0.26361822157867e-09
8 4 -0.31893580211856e-09 0.91177355887255e-10

5 5 0.43047675045029e-09 -0.16482039468636e-08
6 5 -0.21557711513900e-09 -0.43291816989540e-09
7 5 0.58184856030873e-12 0.63972526639235e-11
8 5 -0.46151734306628e-11 0.16125208346784e-10

6 6 0.22136925556741e-11 -0.55277122205966e-10
7 6 -0.24907176820596e-10 0.10534878629266e-10
8 6 -0.18393642697634e-11 0.86277431674150e-11

7 7 0.25590780149873e-13 0.44759834144751e-12
8 7 0.34297618184624e-12 0.38147656686685e-12

8 8 -0.15803322891725e-12 0.15353381397148e-12



Appendix B
Routines for the Positions of the
Sun and the Moon

As was mentioned in Section 4.4, approximate methods are used in the simulation
code for computing the position coordinates of the Sun and the Moon at any point
in time. The methods used for this are described below.

Position of the Sun

An approximate way of describing the coordinates of the Sun at any given time is
outlined in (Montenbruck and Gill, 2005). This approach uses the J2000 epoch as
a starting point. First, time is expressed as

T = (JD−2451545.0)/36525.0 (B.1)

where T represents the number of Julian centuries since 1.5 January 2000 (J2000)
and JD is the Julian Date at the time considered.

Then, the following values are used for the mean orbital elements that approx-
imate the Sun’s orbit with respect to the Earth and the ecliptic:

a = 149,600,000 km (B.2)

e = 0.016709 (B.3)

i = 0.0000 ◦ (B.4)

Ω+ω = 282.9400 ◦ (B.5)

M = 357.5256 ◦+35999.049T ◦ (B.6)

The position coordinates of the Sun can be determined using the relations for Kep-
lerian orbits. However, because the inclination and eccentricity are both small, se-
ries expansions can be used without any significant loss of accuracy (Montenbruck
and Gill, 2005), speeding up the computation process. This leads to the following
expressions for the Sun’s distance rSun and ecliptic longitude λSun:

rSun = (149.619−2.499cosM−0.021cos2M) ·106 km (B.7)
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λSun = Ω+ω +M+6892′′ sinM+72′′ sin2M (B.8)

The third coordinate of the spherical coordinate system, the ecliptic latitude βSun,
vanishes within an accuracy of 1’ (Montenbruck, 1989). It is therefore not listed
above.

The spherical coordinates can be converted into Cartesian coordinates by ap-
plying the transformation

rSun =Rx(−ε)

rSun cosλSun cosβSun

rSun sinλSun cosβSun

rSun sinβSun

 (B.9)

in whichRx(φ) represents the rotation matrix for rotation about the x-axis

Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 (B.10)

and
ε = 23.43929111 ◦ (B.11)

is the obliquity of the ecliptic1, being the inclination of the ecliptic relative to the
equatorial plane of the Earth. In the case of Equation B.9, Rx(−ε) is used to
rotate from the ecliptic plane to the equatorial plane. The vector involving the
angles λSun and βSun, on the other hand, is applied to transform from spherical to
Cartesian coordinates.

Since βSun = 0 (cf. Equation B.4), Equation B.9 may be simplified to give the
following vector for the position of the Sun:

rSun =

 rSun cosλSun

rSun sinλSun cosε

rSun sinλSun sinε

 (B.12)

In the simulation code, this is the relation that is used to transform from spherical
coordinates with respect to the ecliptic plane to Cartesian coordinates with the
equatorial plane as reference plane.

Position of the Moon

Just like with the position of the Sun, a series expansion can be used to approximate
the position of the Moon at any given time. Since the motion of the Moon is
strongly influenced by both the Earth and the Sun, a larger number of terms is
needed in this case. In the approach described by Montenbruck and Gill (2005),
the following five arguments are required:

L0 = 218.31617 ◦+481267.88088T ◦−1.3972T ◦ (B.13)

1The obliquity of the ecliptic is assumed to be constant.
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l = 134.96292 ◦+477198.86753T ◦ (B.14)

l′ = 357.52543 ◦+35999.04944T ◦ (B.15)

F = 93.27283 ◦+483202.01873T ◦ (B.16)

D = 297.85027 ◦+445267.11135T ◦ (B.17)

In these relations, L0 is the mean longitude of the Moon, l is the Moon’s mean
anomaly, l′ is the Sun’s mean anomaly, F is the mean angular distance of the Moon
from the ascending node and D is the difference between the mean longitudes of
the Sun and the Moon. The longitude of the Moon with respect to the equinox and
the year 2000 ecliptic can now be expressed as:

λM = L0 +22640′′ sin(l)+769′′ sin(2l)

−4586′′ sin(l−2D)+2370′′ sin(2D)

−668′′ sin(l′)−412′′ sin(2F)

−212′′ sin(2l−2D)−206′′ sin(l + l′−2D)

+192′′ sin(l +2D)−165′′ sin(l′−2D)

+148′′ sin(l− l′)−125′′ sin(D)

−110′′ sin(l + l′)−55′′ sin(2F−2D)

(B.18)

Furthermore, the latitude of the Moon can be calculated using

βM =18520′′ sin(F +λM−L0 +412′′ sin(2F)+541′′ sin(l′))

−526′′ sin(F−2D)+44′′ sin(l +F−2D)

−31′′ sin(−l +F−2D)−25′′ sin(−2l +F)

−23′′ sin(l′+F−2D)+21′′ sin(−l +F)

+11′′ sin(−l′+F−2D)

(B.19)

Finally, the distance of the Moon from the center of the Earth can be expressed as:

rM =(385000−20905cos(l)−3699cos(2D− l)

−2956cos(2D)−570cos(2l)+246cos(2l−2D)

−205cos(l′−2D)−171cos(l +2D)

−152cos(l + l′−2D) km

(B.20)

The expressions stated above yield the position of the Moon in spherical ecliptic
coordinates. These coordinates can be converted to equatorial Cartesian coordi-
nates with the following transformation:

rM =Rx(−ε)

rM cosλM cosβM

rM sinλM cosβM

rM sinβM

 (B.21)

Similar to Equation B.9,Rx(−ε) is used in Equation B.21 to rotate from the eclip-
tic plane to the equatorial plane, while the vector involving λM and βM is utilized
to transform from spherical to Cartesian coordinates.





Appendix C
Important Equations in
Astrodynamics

In this appendix, a number of basic equations in astrodynamics related to the two-
body problem are summarized (Wakker, 2010).

Newton’s law of gravitation (two-body problem):

r̈ =−GM
r3 r (C.1)

Vis-viva equation:

v2 = GM
(

2
r
− 1

a

)
(C.2)

Kinetic energy:

T =
1
2

v2 (C.3)

Potential energy:

V =−GM
r

(C.4)

Total energy:

E = T +V

=
1
2

v2− GM
r

=−1
2

GM
a

(C.5)

Gravitational parameter:
µ = GM (C.6)
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Conic section equation:
r =

p
1+ ecosθ

(C.7)

Semi latus-rectum:
p = a(1− e2) (C.8)

Ellipse (0≤ e < 1):
rp = a(1− e) (C.9)

ra = a(1+ e) (C.10)

Orbital period:

T = 2π

√
a3

µ
(C.11)

Mean motion:

n =

√
µ

a3 (C.12)

Kepler’s equation:
E(t)− esinE(t) = n(t− τ) (C.13)

Mean anomaly:
M = n(t− τ) (C.14)
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