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1 Introduction 
 

1.1 Background of the Research 
Radar is a system that transmits a wave of known shape and receives echoes returned by 

observed objects. The transmitted wave can be a pure frequency (tone) or its amplitude, phase, or 

frequency can be modulated. On reception the wave must be amplified and analyzed in one way or 

another [1]. For conventional (single-channel) radar any observed object (or any resolution cell) is 

described with a time-variable complex coefficient, namely the reflection coefficient. However it 

does not take into account the vector structure of electromagnetic waves and so information about 

observed radar objects can be lost. 

Polarimetric radar allows the utilization of complete electromagnetic vector information 

about observed objects [2]. It is based on the fact that in general any radar object (or any resolution 

cell) can be described by an 2х2 scattering matrix (SM) with four time-variable complex elements 

describing amplitude, phase and polarization transformation of a wave scattering radar object. Two 

signals with orthogonal (e.g. horizontal and vertical) polarizations are used for SM-elements 

estimations. Each sounding signal is applied for two co- and cross-polarization reflection 

coefficients in two SM columns. Cross-polarization reflection coefficients define the polarization 

change of the incident wave. So in addition to polarization orthogonality extra (dual) orthogonality 

of sounding signals is needed for estimating the scattering matrix elements in polarimetric radar. 

Orthogonality of the signals in terms of their inner product is the choice of the radar designer. 

It may be realized in time or frequency domain, or as orthogonality of waveforms using 

sophisticated signals. In case of sophisticated signals the elements of the object scattering matrix 

are retrieved by correlating the received signal on each orthogonally polarized channel with both 

transmitted waveforms [3]. The concept of dual-orthogonal polarimetric radar signals and some 

signal types are considered in Chapter 2. 

We note here that scattering matrix elements in polarimetric radar can be measured 

simultaneously or consecutively. Consecutive measurements (orthogonality in time domain) mean 

that a signal with first polarization is transmitted and the corresponding co- and cross-reflection 

coefficients are estimated; after that a signal with second polarization is transmitted and a second 

set of co- and cross-polarization reflection coefficients are estimated. As a result four elements are 

estimated in two stages during two radar duty cycles. As for simultaneous measurements they 
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allow for estimating all four SM-elements at the same time during one radar duty cycle. 

Simultaneous measurement of SM-elements is preferable because [1]: 

1. The evolution over time of the observed object aspect angle changes the relative phase shift 

between scatterers in a given resolution cell and thus changes the phase difference between the 

two polarized components of the wave, and hence its polarization. 

2. This change in aspect angle also modifies the basic backscattering matrices of the various 

reflectors (since these matrices depend on aspect angle), and hence also the global 

backscattering matrix of the object. 

By these reasons the simultaneous measurements are of interest for modern polarimetric 

agile radar. Simultaneous measurements can be executed when orthogonality of waveforms 

(appropriate for sophisticated signals) is used. In this case the sounding signal consists of two 

sophisticated signals and is called vector sounding signal. Such type of sounding signal provides 

the unique possibility to split all elements of the scattering matrix and to measure all of them 

simultaneously during one pulse or single sweep time. Typical sophisticated signals are signals 

with linear frequency modulation (LFM) and phase code modulation (PCM). The use of 

sophisticated signals for simultaneous measurement of SM-elements in polarimetric radar is also 

desirable since they may have the following advantages: 

• high resolution: sophisticated signals provide the resolution of a short pulse while the signal 

length can be long; 

• high energy: signals’ energy increases with their length, without changing the transmitter peak 

power. 

Both high resolution and high energy are available when signal compression is used in a 

radar receiver. Signal compression can be utilized from correlation processing applicable to all 

sophisticated signals or from stretch (de-ramping) processing applicable to linear frequency 

modulated signals. Chapter 3 of the thesis presents an overview of possible techniques for the 

compression of dual-orthogonal sophisticated signals and gives the comparison of correlation 

processing and de-ramping processing. 

Sophisticated signals allow also an additional way to increase the energy of the received 

signals when transmission and reception of the signals in polarimetric radar is utilized continuously. 

Continuous wave transmissions in comparison with the pulsed transmissions have low continuous 

power for the same detection performance because an 100% duty cycle radar is employed [4]. For 

this reason polarimetric radar with continuous waveforms is of interest. However, we should 

distinguish narrow-band continuous wave (CW) radars and wide-band radars with continuous 

waveforms (wideband CW radar [5], modulating CW radar [6]). Sophisticated signals can be 

successfully used in radars with continuous waveforms. 

Since the length of the sounding sophisticated signals (duty cycle of radar with continuous 

waveforms) can be comparatively large, different bandwidth-specific effects appear in the received 
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signals; e.g. object motion is considered to result in a Doppler frequency shift for a conventional 

narrow-band model of the signals. However, the narrowband model is an approximation of the 

wideband model where object motion results in a scaling of the received signal. Chapter 4 presents 

the investigation of both compression techniques, namely correlation processing and de-ramping 

processing when signal bandwidth effects take place and differences between the models appear. In 

case of correlation processing the bandwidth effects for the wide-band signal and the narrow-band 

model can be analyzed via the matrix ambiguity functions. The de-ramping processing is also 

considered for both existing signal models. With chapter 4 the first part of the thesis is closed. 

The second part of the thesis is devoted to advanced processing in polarimetric radar with 

continuous waveforms, namely to de-ramping processing in polarimetric radar with simultaneous 

measurement of scattering matrix elements. De-ramping processing, also called “active correlation” 

[4] or “deramp FFT” [7], is a kind of “stretch processing” [8]. Radar using LFM sounding signals 

and utilizing the de-ramping procedure is named FM-CW radar [9] where FM-CW means 

“frequency-modulated continuous waves”. Polarimetric FM-CW radar with dual-orthogonal 

sophisticated (namely dual LFM) signals is considered to be a new generation of radar. 

De-ramping processing has been chosen for detailed investigation in the second part of this 

thesis because it has much less computational complexity in comparison with correlation 

processing. It is more accessible and for this reason more attractive for utilization in modern 

polarimetric radars. However FM-CW polarimetric radar can have some problems. Chapter 5 to 

Chapter 7 proposed their solutions. 

Chapter 5 presents a novel solution for high-level isolation between branches in FM-CW 

radar channels. The radar hardware is splitting the received signals with orthogonal polarizations 

and provides the isolation between polarimetric radar channels. The isolation between the branches 

in channels is determined within the time interval in which useful scattered signals occupy the 

same bandwidth. A pair of LFM-signals having the same form and a time shift relatively from each 

other is proposed for use in FM-CW polarimetric radar. The proposed solution utilizes the quasi-

simultaneous measurements of SM-elements, but the advantages of sophisticated signals and 

continuous waveforms remain. 

Chapter 6 presents a novel flexible de-ramping processing applicable for FM-CW radars. 

The proposed technique allows for solving three tasks which can affect FM-CW-radar performance, 

namely a change in signal bandwidth, shift of beat frequency bands and selection of the range 

interval among the observed ranges for high-range resolution. The first task provides the varying of 

radar range resolution without considerable receiver upgrade and offers therefore flexibility of the 

here-proposed technique. Shifting the beat signals’ bandwidth (the second task) provides flexibility 

in filters because the filtering of beat signals can then take place at preferred frequencies. The third 

task allows for an observation of a part of the full radar range, namely the selection of a range 
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interval by using flexibility in localization of the beat signals’ bandwidth, while in addition there is 

no need to change the amplitude-frequency responses of the used filters. 

Chapter 7 proposes a technique for the suppression of cross-correlation interfering signals 

appearing in the beat-signal channels of FM-CW polarimetric radar. This technique uses 

information about the time interval, when the interfering signal influences the polarimetric receiver 

channels. The blanking/suppression of the beat signals in that time interval gives the possibility to 

improve the SM-elements estimation quality and completely remove cross-correlation interferences 

for the price of a small degradation in radar resolution and useful signal levels (around 1.6 dB). 

Chapter 8 summarizes the main results of the thesis and lists the recommendations for 

further research. 

1.2 Polarimetric Radar Sounding Basics 
Fig. 1.1 shows the sounding of polarimetric radar with continuous waveforms when two 

different antennas are used for transmission and reception. ( )tS�  is a scattering matrix of the 

observed radar object, with four time-variable complex elements, which are co-polarized and cross-

polarized reflection coefficients of the vector sounding signal components having orthogonal (e.g. 

“1” – horizontal, “2” – vertical) polarizations. 

Radar object scattering of the sounding signal is part of the radar channel connected to the 

polarization transform. The polarization of the signal can be changed not only during the scattering 

processes, but also due to radiation, propagation and reception of electromagnetic waves. All parts 

of the radar channel, which include a transmitting antenna, propagation medium, and receiving 

antenna are of interest. Generally the scattering matrix estimated in the radar receiver can be 

presented as a sequential multiplication of scattering matrices of all radar channel components [10]: 

11 12

21 22

( ) ( )
( )

( ) ( )
S t S t

t
S t S t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S
� �

�
� �

Radar object

Propagation 

medium

Transmitter 
antenna

Receiver 
antenna

 
 

Fig. 1.1 – Polarimetric radar sounding. 
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 / ( , ) ( , ) ( ) ( , )t t t tτ τ τ− += ⋅ ⋅ ⋅ ⋅S R P S P T� �� � � � , (1.1) 

where T�  is the polarization diagram of the transmitter antenna, R�  is the polarization diagram of 

the receiver antenna, ( )tS�  is the true polarization scattering matrix of the observed object, ( , )t τ−P�  

and ( , )t τ+P�  are the forward and backward propagation matrices, which describe the amplitudes, 

phases and polarization changes of the electromagnetic waves during propagation. 

Compensation of different radar channel parts for true scattering matrix estimation lies 

outside the scope of this thesis. So in this thesis the scattering matrix of the observed object means 

a general scattering matrix described with Eq. 1.1. 

This thesis is devoted to the processing of dual orthogonal polarimetric radar signals with 

continuous waveforms used for the simultaneous estimation of all SM elements in the high-

resolution Doppler polarimetric radar system PARSAX (TU Delft, the Netherlands). 
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2 Polarimetric Radar Signals with Dual Orthogonality  
 

This chapter describes the concept of orthogonal sophisticated signals (Section 2.1), which are 

applicable in polarimetric radar with simultaneous measurement of scattering matrix elements, 

namely dual-orthogonal sophisticated signals. Also this chapter provides a short overview of such 

signals and their properties (Section 2.2).  

 

 

2.1 Concept of the Dual-Orthogonal Polarimetric Radar Signals 
Polarization is the property of a single-frequency electromagnetic wave describing the shape 

and orientation of the locus of the electric and magnetic field vectors as function of time [1]. In 

common practice, when only plane waves or locally plane waves are considered, it is sufficient to 

specify the polarization of the electrical field vector E� . The electric field of the vector sounding 

signal can be written as 

 1

2

( )
( )

( )
T

T
T

E t
t

E t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E
�

�
� , (2.1) 

where 1 ( )TE t�  and 2 ( )TE t�  mean two components of the transmitted (subscript “T”) electrical field 

with orthogonal (e.g. horizontal and vertical) polarizations. The dot above the variable means that it 

has complex values. 

In general any radar object (or any resolution cell) can be described by a 2х2 scattering 

matrix (SM) ( )tS�  with four time-variable complex elements, which are co-polarized and cross-

polarized reflection coefficients of the signals with orthogonal polarizations  

 11 12

21 22

( ) ( )
( )

( ) ( )
S t S t

t
S t S t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S
� �

�
� � , (2.2) 

where 

11( )S t�   is the complex reflection coefficient of an incident horizontally polarized wave which 

determines the scattered wave in the same plane; 

22 ( )S t�   is the complex reflection coefficient of an incident vertically polarized wave which 

determines the scattered wave in the same plane; 
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12 21( ),  ( )S t S t� �  are complex reflection coefficients defining the 90 degree change of wave 

polarization in the scattered waves. 

In case of monostatic radar, when both transmit and receive antennas are located at the same 

location, the polarization transformation is described by the 2х2 backscattering matrix (BSM). 

BSM is a special case of the scattering matrix as defined in Eq. 2.2 [2]. 

Each element of the scattering matrix (Eq. 2.2) has a complex value depending on the 

properties of the scattering object and on its orientation relative to the radar antennas. For the 

measurement of the scattering matrix elements a vector sounding signal consisting of two signals 

with orthogonal (e.g. horizontal and vertical) polarization is required. The values of the scattering 

matrix elements may be dependent on the sounding signal frequency, because the scattering 

properties can be different per radar frequency. 

It is necessary to note that the matrix S�  describes the amplitude, phase and polarization 

transformation of a monochromatic wave radiating from the radar towards the object. If the 

transmitted signal can not be considered as monochromatic and contains a set of frequencies, the 

radar object should be described by a set of scattering matrices, one matrix per spectral component 

of the sounding signal [2]. In this case amplitudes, phases and polarization of the scattered signal 

are defined by the superposition of the scattering matrices. 

During the process of polarimetric radar observation the transmitted field is transformed into 

 1 111 12

2 221 22

( , ) ( )( , ) ( , )
( , ) ( )( , ) ( , )

R T

R T

E t E tS t S t
E t E tS t S t

τ τ τ
τ τ τ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

� �� �
� �� � , (2.3) 

where subscript “R” means reception and τ  means the roundtrip time delay. The scattering matrix 

in Eq. 2.3 includes all parts of the radar channel (see Section 1.2): the transmitting antenna, the 

propagation medium, the observed radar object and the receiving antenna. 

In radar polarimetry the term “orthogonality” plays an important role. Therefore 

orthogonality should be defined carefully. Orthogonality of signals means that their scalar product 

in the appropriate basis is equal to zero. E.g. in the time domain the scalar product is determined 

like a correlation integral. So time orthogonality means that the correlation integral is equal to zero. 

The orthogonality of the signals can be utilized in five different bases: polarization, time, 

frequency, space and waveform. 

Polarization The signals are transmitted with orthogonal polarizations.  

Time The signals are separated in time domain. 

Frequency The signals are separated in frequency domain. 

Space The signals are transmitted in different directions. 

Waveforms The signals have orthogonal waveforms. 
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Next we consider existing types of orthogonality with respect to their application in 

polarimetric radar with simultaneous measurement of scattering matrix elements. 

In polarimetric radar two signals with orthogonal polarizations are transmitted. The 

observed radar object may change the polarization of the incident wave. If the same signals are 

transmitted with orthogonal polarizations ( )1 2( ) ( ) ( )T T TE t E t E t= =� � � , equation (2.3) becomes: 

 
( )
( )

11 121

2 21 22

( , ) ( , ) ( )( , )
( , ) ( , ) ( , ) ( )

TR

R T

S t S t E tE t
E t S t S t E t

τ ττ
τ τ τ

⎡ ⎤+ ⋅⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥+ ⋅⎣ ⎦ ⎣ ⎦

� � ��
� � � �

. (2.4) 

In this case we are unable to separate co- and cross-polarized SM elements. 

Therefore in polarimetric radar with simultaneous measurement of scattering matrix elements 

the sounding signals need to have an extra orthogonality in addition to polarization orthogonality. 

Signals having two such orthogonalities are called dual orthogonal signals. 

So the other four orthogonality types are of interest for application in polarimetric radar, 

especially, as will be demonstrated also, in the high-resolution Doppler polarimetric radar system 

PARSAX developed at TU Delft, the Netherlands [3]. 

Time orthogonality means that the sounding signals are transmitted in different time 

intervals. This approach uses the consequent transmission of sounding signals with orthogonal 

polarizations combined with pulse-to-pulse polarization switching. The transmitted signals are 

alternatively switched to two orthogonally-polarized channels. The electric field of the vector 

sounding signal can be presented as 

 1 1

2 2

( )
( )

( )
T

T
T

E t
t

E t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E
�

�
� . (2.5) 

In polarimetric radar with extra time orthogonality the sounding can be realized in the 

following way [3]. During the first switch setting, only the horizontal-polarized component is 

transmitted and, as result, the received signal equals to 

 1 1 11 1
1 1

2 1 12 1

( , ) ( , )
( )

( , ) ( , )
R

T
R

E t S t
E t

E t S t
τ τ
τ τ

⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

��
�

�� . (2.6) 

During the second switch setting, the transmitted signal has only the vertical-polarized 

component and the received signal becomes 

 1 2 21 2
2 2

2 2 22 2

( , ) ( , )
( )

( , ) ( , )
R

T
R

E t S t
E t

E t S t
τ τ
τ τ

⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

��
�

�� . (2.7) 

The polarization of the signals scattered by the observed objects can vary over time because 

scatterers (scattering elements of the observed object) can change their relative phase shifts as a 

result of motion (rotation) of the object or the radar. If the observed object (or/and the radar) is not 
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stable, the extra time orthogonality in sounding signals can result in a disparity of estimations 

between the scattering matrix columns. 

So time orthogonality is suitable as extra orthogonality when a polarimetric radar observes 

objects that can be considered as stable during the SM measurement time. 

Frequency orthogonality of the sounding signals means that they occupy non-overlapping 

frequency bands. Separation of the scattered signals via frequency filtration allows for extracting 

simultaneous polarimetric information. The electric field vector of the transmitted signal in this 

case can be presented as 

 1 1

2 2

( , )
( )

( , )
T

T
T

E t f
t

E t f
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E
�

�
�  (2.8) 

and equation (2.3) becomes: 

 1 1 2 11 1 1 1 12 1 2 2

2 1 2 21 1 1 1 22 1 2 2

( , , , ) ( , , ) ( , ) ( , , ) ( , )
( , , , ) ( , , ) ( , ) ( , , ) ( , )

R T T

R T T

E t f f S t f E t f S t f E t f
E t f f S t f E t f S t f E t f

τ τ τ
τ τ τ

⎡ ⎤⎡ ⎤ ⋅ + ⋅
= ⎢ ⎥⎢ ⎥ ⋅ + ⋅⎣ ⎦ ⎣ ⎦

� �� � �
� �� � � . (2.9) 

However, the scattering properties (reflection coefficients) of the same radar object may be 

often a function of the sounding frequencies. At the same time the sounding signal bandwidths 

determine the radar resolution. In low-resolution polarimetric radar the frequency orthogonal 

signals may have a narrow frequency bandwidth. In high-resolution polarimetric radar (e.g. the 

PARSAX radar), the frequency orthogonality demands a pair of orthogonal signals with a relatively 

large frequency band between each other. Such frequency interval may result in a non-negligible 

disparity between the measured matrix columns. 

So extra frequency orthogonality of the vector sounding signal components may result into 

disparity of estimations between scattering matrix columns if the scattering properties of the 

observed radar object are dependent on sounding frequencies. 

Space orthogonality of the vector sounding signal components makes no sense for 

monostatic radar object observations. All radar signals should be transmitted towards the direction 

of the object under observation. However space orthogonality can be usefully employed as extra 

orthogonality for sophisticated signals for observation of objects located in different coverage 

sectors. 

Orthogonality of the waveforms (connected with the components of vector sounding signal) 

means that their cross-correlation integral (as particular case of the scalar product) equals to zero 

even if they occupy the same time interval and the same frequency bandwidth. Again, the auto-

correlation integrals compress signals with orthogonal waveforms. We get shorter signals with 

increased amplitudes. Orthogonality of waveforms can be provided when sophisticated signals are 

used.  

So vector sounding signal in polarimetric radar with simultaneous measurement of scattering 

matrix elements can be performed with two signals having orthogonal waveforms. Simultaneous 
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independent transmission of such signals over two orthogonally polarized channels can then be 

realized. The scattering matrix elements are retrieved by correlating the received signal on each 

orthogonally polarized channel with both transmitted waveforms [4]. Simultaneous measurement 

of all four elements of the scattering matrix allows to obtain maximum volume of information 

about the observed radar objects. 

The additional benefit of using signals with orthogonal waveforms is the possibility to 

increase the energy of the sounding signals, which comes from the increase of their duration, 

without changing the transmit peak power. 

Hence sophisticated dual-orthogonal polarimetric radar signals are of interest. 

 

2.2 Sophisticated Signals with Orthogonal Waveforms 
Orthogonal sophisticated signals can be used most optimally in radars with continuous 

waveforms. In this case the considered signal duration corresponds to the signal repetition period 

(the radar duty cycle). 

Sophisticated signals are characterized by their high energy of long signals, combined with 

the resolution of short pulses due to signal compression. Sophisticated signals, which are also 

called “high pulse compression waveforms”, have large time-bandwidth product 1T F⋅Δ >> , 

where T  is the signal duration (or the repetition period if signals are periodical) and FΔ  is the 

signal bandwidth. The time-bandwidth product is also called “BT-product” or “compression ratio” 

[5]. 

The costs of signal compression include:  

– extra transmitter and receiver complexity;  

– interfering effects of side-lobes after compression. 

The advantages generally outweigh the disadvantages; this explains why pulse compression 

is used widely [4, 6, 7]. 

Real sounding signals are functions of time. So the vector sounding signal consisting of two 

sophisticated signals with orthogonal waveforms can be written as two time-dependent functions: 

 1

2

( )
( )

( )
u t

t
u t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

u
�

�
�

, (2.10) 

where subscripts “1, 2” mean first and second sophisticated signal, respectively. 

When digital signal processing is used in radar systems, a signal representation as a time-

ordered sequence of samples is more preferable. In this case the vector sounding signal ( )tu�  may 

be written as 

 1

2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

u
u

u
�

�
�

, (2.11) 
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where 1 1 1 1[ (1) (2)  ...  ( )]u u u K=u� � � �  and 2 2 2 2[ (1) (2)  ...  ( )]u u u K=u� � � �  are two sequences of K 

samples of sophisticated signals with orthogonal waveforms. The sampling interval is chosen 

according to the Nyquist theorem. 

Signal compression in radar can be utilized using two well-known processing techniques: 

1. correlation processing; 

2. de-ramping processing. 

Correlation processing is applicable to all types of sophisticated signals. De-ramping 

processing, called also stretch processing [3, 7, 8], is applicable to frequency-modulated signals. A 

further consideration of both processing techniques is given in Chapter 3. 

The main characteristic of a sophisticated signal is its correlation function. The correlation 

function depends only on the signal and does not depend on the observed radar object or the type of 

signal processing. The correlation function consists of an informative part (main lobe around the 

maximum correlation) and an interfering part (side-lobes). The width of the main-lobe determines 

the range resolution of the sounding signal. The side-lobes (side-lobe maxima) restrict the dynamic 

range of received signals amplitudes. There are different techniques for side-lobe compression, 

which are suitable for various types of sophisticated signals [9, 10]. 

By definition the correlation function of a signal 1( )u t�  (its auto-correlation function) can be 

written as the correlation integral: 

 *
11 1 1( ) ( ) ( )R u t u t dtτ τ

∞

−∞

= ⋅ −∫� � � , (2.12) 

where superscript (*) means complex conjugation. 

If the signal 1( )u t�  has a continuous waveforms (periodic signal) it has a continuous energy. 

Its auto-correlation function is determined by averaging over the signal repetition period T , i.e. 

 
2

*
11 1 1

2

1( ) ( ) ( )
T

T

R u t u t dt
T

τ τ
−

= ⋅ −∫� � � . (2.13) 

The correlation function of the vector signals ( )tu� , consisting of two components 1( )u t�  and 

2 ( )u t� , can be written as 

 

* *
1 1 1 2

11 12

21 22 * *
2 1 2 2

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

u t u t dt u t u t dt
R R
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u t u t dt u t u t dt

τ τ
τ τ
τ τ

τ τ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

⎡ ⎤
⋅ − ⋅ −⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⋅ − ⋅ −
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

� � � �
� �
� �

� � � �
, (2.14) 

where 11( )R τ�  and 22 ( )R τ�  are the auto-correlation functions of 1( )u t�  and 2 ( )u t� ; 12 ( )R τ�  and 

21( )R τ�  are their cross-correlation functions. The cross-correlation functions are their complex 



Chapter 2 

15 

conjugates with mirror symmetry, meaning that *
12 21( ) ( )R Rτ τ= −� � . Also it is necessary to note that 

in polarimetric radar the cross-correlation level (maximum level of cross-correlation functions) can 

be higher than the level of the side-lobes of the auto-correlation functions (see the following 

Paragraphs) and their effect will be taken into account, when pairs of sophisticated signals are 

chosen for polarimetric radar. 

If the vector sounding signal ( )tu�  is periodical, its correlation function has the following 

form:  

 

2 2
* *

1 1 1 2
2 211 12

2 2
21 22 * *

2 1 2 2
2 2

( ) ( ) ( ) ( )
( ) ( ) 1
( ) ( )

( ) ( ) ( ) ( )

T T

T T

T T

T T

u t u t dt u t u t dt
R R

TR R
u t u t dt u t u t dt

τ τ
τ τ
τ τ

τ τ

− −

− −

⎡ ⎤
⋅ − ⋅ −⎢ ⎥

⎡ ⎤ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⋅ − ⋅ −

⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

� � � �
� �
� �

� � � �
, (2.15) 

where T  is the repetition period of the vector sounding signal and is equal to the duty cycle of the 

polarimetric radar with continuous waveforms. 

In case of digital processing when signal 1u�  is represented as a sequence of K  samples, the 

samples of its correlation function can be calculated via multiplication of two vectors: 

 11 1 1( ) H
kR k = u u� � � ,  1 1K k K− + ≤ ≤ − , (2.16) 

where k  is the sample time along the time (range) axis, 1ku�  contains the elements of 1u�  shifted by 

k samples and the remainder is filled with zeros, and superscript “H” shows the Hermitian 

transpose; for example 

21 1 1[0 0 (1) ...  ( 2)]u u K= −u� � �  for k = 2 and 
21 1 1[ (3) ... ( ) 0 0]u u K
−
=u� � �  for k = −2. 

Properties of two digital sophisticated signals, 1u�  and 2u� , are described by 

 1 1 1 211 12

2 1 2 221 22

( ) ( )
( ) ( )

H H
k k

H H
k k

R k R k
R k R k

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

u u u u
u u u u

� � � � � �
� � � � � �

,  1 1K k K− + ≤ ≤ − , (2.17) 

where 11( )R k�  and 22 ( )R k�  are samples of the auto-correlation functions, 12 ( )R k�  and 21( )R k�  are 

samples of the cross-correlation functions, respectively. The sizes of auto- and cross-correlation 

functions of digital signals are equal to ( 2 1K − ) samples. 

When periodic digital signals are used the remainder is not filled with zeros, for example 

21 1 1 1 1[ ( 1) ( ) (1) ...  ( 2)]u K u K u u K= − −u� � � � �  for k = 2 

and 

21 1 1 1 1[ (3) ... ( ) (1) (2)]u u K u u
−
=u� � � � �  for k = −2, 

meaning that the shifts are circular. 

The correlation function of the periodic vector digital signal equals to 
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 1 1 1 211 12

2 1 2 221 22
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,  
2 2
K Kround k round⎛ ⎞ ⎛ ⎞− ≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (2.18) 

where “round” means the rounding-off operation to the nearest integer. 

The sizes of auto- and cross-correlation functions of periodic digital signals are equal to ( K ) 

samples. 

The choice of sophisticated signals and their parameters allows to achieve the desired range 

resolution after signal compression utilized in the radar receiver. 

Range resolution of a pair of sophisticated signals used in polarimetric radar is determined 

by the main-lobe widths of their correlation functions.  

Range resolution is the ability of a radar system to distinguish between two or more objects 

on the same bearing but at different ranges. Range resolution estimation is based on an equivalent 

rectangle of the main lobe pattern [11]. The forms of the correlation function main-lobes vary for a 

selected signal type, while the main-lobe width can be determined at varying levels for selected 

signals. For example, the width is defined at the −3 dB level for the normalized auto-correlation 

functions when LFM-signals are used [12], but some sources propose an −4 dB level for LFM-

signals [5, 13, 14]. The main-lobe width of the normalized auto-correlation functions for PCM-

signals is determined at its 0.5 (50%) level.  

For active radars the maximum range resolution of a sophisticated signal is determined by 

the following expression: 

 
2

cR τΔ ⋅
Δ = , (2.19) 

where τΔ  is the main-lobe width at the appropriate level, c  is velocity of light. 

The range resolution for different types of sophisticated signal is considered hereafter. 

The most widely known examples of sophisticated signals with orthogonal waveforms are [2, 

3, 6, 7] 

• a pair of LFM-signals with up-going and down-going frequency slope; 

• a pair of PCM signals. 

Let us consider in next paragraphs these types of signals and some additional ones. 

 

2.2.1 LFM Signals 
LFM-signals, also called “chirp signals”, are widely used in radar [8]. Such signals have 

constant amplitude for the sweep duration and their frequency varies linearly with time. 

A pair of orthogonal sophisticated signals for simultaneous measurement of scattering matrix 

elements can be presented by a pair of LFM-signals with opposite (up-going and down-going) 

slopes. The vector transmitted signal (Eq. 2.10) can be written as 
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�

, (2.20) 

where env ( )t  is a rectangular window with length T , where T  is the signal duration or duty cycle 

for the radar with continuous waveforms, and 0k  is a positive constant (called sweep rate, with 

dimension [1/sec2]) which determines the frequency deviation of 1( )u t�  and 2 ( )u t� ; 1ϕ  and 2ϕ  are 

initial phases. Frequencies 01 minf F≡  and 02 maxf F≡  are the initial frequencies of LFM-signals 

with up-going and down-going slopes, respectively. The frequency variations as functions of time 

( )f t , are shown in Fig. 2.1; max minF F FΔ = −  determines the frequency sweep of the vector 

transmitted signal, T in this case is the sweep (saw-tooth) duration. Such linear frequency 

modulation with opposite slope provides both equal spectrum widths and equal durations of the 

signals. 

The BT-product of LFM-signals is equal to 2
0F T k TΔ ⋅ = ⋅ . It is known that the range 

resolution of a sophisticated signal is determined by its correlation function, namely the main lobe 

width. Fig. 2.2 shows the real part of the LFM-signal with time-bandwidth product 15 and the 

absolute value of its correlation function. Amplitude-time characteristics of the LFM-signal and its 

correlation function are presented in Fig. 2.2 and 2.3, respectively. 

The correlation function of an LFM-signal has one narrow peak (main lobe) and several side-

lobes. The main lobe width equals to 1/ FΔ . The peak side-lobe level is determined by the first 

minF

( )f t

maxF

F
Δ

t

tminF

maxF

F
Δ

 
Fig. 2.1. - Frequency variations of LFM-signals with opposite slopes. 
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side-lobe, which has an −13 dB level with respect to the main-lobe independently on the BT-

product. The peak side-lobe level can be controlled by introducing a weighting function (window), 

however it has side effects. Side-lobe reduction leads to widening of the main lobe and to reduction 

of the signal-to-noise ratio. The advantages of side-lobe reduction often outweigh the 

disadvantages, so weighting functions are used widely. 

When a pair of LFM-signals with opposite slope is used, they are described by two auto-

correlation functions and two cross-correlation functions correspondently. Fig. 2.3 shows the 

absolute values of the auto-correlation functions ( 11( )R τ� , 22 ( )R τ� ) and the cross-correlation 

functions ( 12 ( )R τ� , 21( )R τ� ) of LFM-signals with BT-products equals to 15. Such small value of the 

BT-product was chosen for a better visibility. 

In polarimetric radar with simultaneous measurement of scattering matrix elements the 

received signals in both channels contain replicas of both orthogonal sounding signals. Such cross-

correlation makes the same negative impact as been made by side-lobes of the auto-correlation 

function. But cross-correlation functions may have a relatively high level over the wide time 

interval (Fig. 2.3) meaning that the unfavorable effect can be larger. 

The range resolution of LFM-signals is determined by the main-lobe width and equals to 

1/ FΔ  [9, 11, 12]. So Eq. 2.19 can be written as 

 2
cR

F
Δ =

⋅Δ . (2.21) 

It should be marked that Eq. 2.21 shows the maximum range resolution. Window weighting, 

commonly used for side-lobe suppression, results in a widening of the main lobe of the compressed 

LFM signal (not the main lobe of the correlation function). In addition the main lobe of the 

compressed signal can be sharpen using different complicated algorithms; however, their use can 

result in additional problems. 

0
T

2/ΔF

t

τ

a)

b)

1/ΔF

Side-lobes

Main-lobe

1Re( ( ))u t�

 
Fig. 2.2. - a) Real part of a LFM-signal with its envelope, b) absolute value of its correlation 

function. 
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2.2.2 PCM Signals 
Signals with phase code modulation (PCM) have a constant amplitude for the transmit 

duration T  and the phase of the carrier changes in the subpulses according a defined code 

sequence. The phase changes discretely subpulse-to-subpulse with a time interval spt T NΔ = , 

where T  is the PCM-signal duration (or signal repetition period), and N is the number of 

subpulses. 

The bandwidth of a PCM-signal is determined by one subpulse bandwidth, which can be 

expressed as 1/ sptΔ  or /N T . As result, the BT-product of a PCM-signal is equal to the number 

of subpulses N . 

The number of phase variations determines the binary and multi-level phase code 

modulation. Binary codes are most popular in radar applications. The binary code consequences 

consist of 1 and 0 or +1 and –1. So the phase changes either 0 or π depending on the code sequence 

elements. An example of such PCM-signal (m-sequence length 15: {1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 

1, -1, 1, -1}) and its envelope is shown in Fig. 2.4.a. 

PCM-signal processing is realized at low frequencies (base band)without regarding the 

carrier frequency. So the correlation function of a PCM-signal corresponds to its compressed 

envelope. For an m-sequence length 15, the compression ratio (BT-product) is equal to 15. The 

amplitude versus time function of the PCM-signal leads to correlation function as given in Fig. 

2.4.b. The relatively small value for the BT-product was chosen for better visibility of the function 

τ

τ

τ

τ

11( )R τ�
12 ( )R τ�

21( )R τ�
22( )R τ�

 
Fig. 2.3 − Auto- and cross- correlation functions of a pair of LFM-signals with opposite slope. 
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features. For comparison, this low value is equal to the BT-product of the LFM-signals presented in 

the previous paragraph (Fig. 2.2 - 2.3). 

The main-lobe width of the compressed PCM-signal is derived from the normalized 

correlation function at an 0.5 level [9, 10, 15]. The main-lobe width for PCM-signals equals to one 

subpulse duration sptΔ . The range resolution is determined by Eq. 2.19, where sptτΔ ≡ Δ . It 

should be noted that additional processing techniques (e.g. weighting) can not change the main-

lobe width and so the range resolution, correspondently. 

By employing sequences with orthogonal waveforms as orthogonally-polarized components 

of the vector sounding signal, simultaneous measurement of scattering matrix elements in 

polarimetric radar can be utilized. This means that this pair of sophisticated PCM signals with 

orthogonal waveforms can therefore be representative for a pair of orthogonal signals.  

When a pair of PCM-signals is used, they can be described by two auto-correlation functions 

and two cross-correlation functions. Fig. 2.5 shows the absolute values of  the auto-correlation 

functions ( 11( )R τ� , 22 ( )R τ� ) and the cross-correlation functions ( 12 ( )R τ� , 21( )R τ� ) of two m-

sequences with BT-product equal to 15 (first code: {1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1}; 

second code: {1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1}). 

The cross-correlation level for PCM-signals (Fig. 2.5) is higher than for LFM-signal (Fig. 2.3) 

even though the BT-products are equal. The side-lobe level for PCM-signals is nearly uniform 

while the side-lobes of LFM-signals are high (−13 dB for any BT-product) close to the main lobe 

and decreasing quickly away from the main-lobe (Fig. 2.3). 

PCM-signals are applicable to correlation techniques (using matched filters of correlation 

receivers) and can not be applied to the de-ramping technique, which is the frequency method in 

T

t

a)

τ

b)

Side-lobes

Main lobe

( )1Re ( )u t�

sptΔ

2 spt⋅Δ

sptΔ

 
Fig. 2.4 – (a) Real part of PCM-signal and its envelope,  

(b) absolute value of its correlation function. 
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LFM range measurements, because the PCM-signal frequency does not depend on the observed 

object range. 

 

2.2.3 Three Other Types of Sophisticated Signals 
Here we consider three other types of frequency and code modulated signals with orthogonal 

waveforms applicable in the PARSAX radar. All considered signals have equal energy (equal 

amplitudes and equal durations). 

a) Linear superposition of LFM-signals 
Waveforms composed of a number of subpulses with constant frequency were proposed in 

[16] like randomized signals with stepped frequency continuous waveforms. So the randomized 

LFM-signal (namely the superposition of its parts) is of interest here.  

The frequency-time functions, which are considered here as signals, are given in Fig 2.6. The 

first sophisticated signal is a usual LFM-signal with an up-going chirp. The second sophisticated 

signal is a linear superposition of parts of an LFM-signal with down-going chirp. 

Fig. 2.7 shows the high level of cross-correlation and the comparatively high level of side-

lobes for the second sophisticated signal which is the superposition of the down-going LFM-signal 

(the BT-product of the signals equals to 15 in order to make the comparison with the signals 

described in previous sections). So, correlation processing of these signals is not very interesting. 

τ

τ

τ

τ

11( )R τ�
12 ( )R τ�

21( )R τ�
22( )R τ�

Fig. 2.5 − Auto- and cross- correlation functions of a pair of orthogonal PCM-signals. 
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In case of de-ramping processing (considered in Chapter 3) there is a specific advantage and 

disadvantage of the here-considered signals compared with the LFM-signals having an opposite 

slope. 

Advantage. The signals at every instant of time are localized at different frequency ranges. 

That can result in an increased isolation between branches in both channels of the polarimetric 

radar receiver. 

Disadvantage. In case of the de-ramping processing (see Section 3.3.2) a loss of energy will 

occur, and it will depend on the number of frequency hops. 

b) LFM-pulses in different frequency domains 
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Fig. 2.6 – Frequency variations of two different types of LFM-signals. 
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Fig. 2.7 − Auto- and cross- correlation functions of the linear superposition of LFM-signals. 
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The frequency range of sounding signals in the PARSAX radar is limited to the allowable 

transmitted signal bandwidth FΔ . One variant of LFM-signals with frequency orthogonality is 

presented in Fig. 2.8. The advantage and disadvantages of the considered signals compared to the 

pairs of LFM-signals and PCM-signals are the following. 

Advantage. Frequency orthogonality of the vector sounding signal components results in a 

low cross-correlation level. 

Disadvantages. According to Fig. 2.8 the signals have half-bandwidths 2FΔ , of the 

maximum allowable frequency band FΔ . It means a reduction to half of the radar range resolution. 

Moreover the sounding signals do not occupy overlapping frequency bands; in polarimetric radar it 

can result in a disparity between the estimations of scattering matrix columns (see Section 2.1).  

c) Two LFM-signals with a time shift relative to each other 
Two LFM-signals having the same form but a time shift relatively to each other can be 

utilized in polarimetric radar with continuous waveforms. The frequency-time variations of both 

signals with time are shown in Fig. 2.9. 

Correlation processing of such signals can be utilized in spite of the fact they have the same 

form and are both localized in the same time and frequency domains. However, the unambiguous 

range provided by time-shifted LFM-signals will be twice as little than by a pair of LFM-signals 

with opposite slopes. 

De-ramping processing of two LFM-signals with such time shift can still be utilized. The 

time shift between the LFM-signals is equivalent to a frequency shift. So at every time moment the 

signals occupy different frequencies what can be interpreted for the de-ramping procedure like 

extra frequency orthogonality (de-ramping processing is described in Chapter 3). The advantage 

and disadvantage of the considered signals with regard to LFM-signals with opposite slopes are the 

following. 
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Fig. 2.8 – Shifted frequency-time functions of LFM-signals (one period). 
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Advantage. Low cross-correlation level can be provided (see Chapter 5). 

Disadvantage. Estimation of the scattering matrix columns is realized with a time shift, 

which can be equal, for example, to half of the sweep-time period / 2T . So the radar utilizes not 

simultaneous but quasi-simultaneous measurement of the scattering matrix elements. 

The time shift doesn’t change the range resolution of the LFM-signals, which corresponds to 

the signals bandwidth max minF F FΔ = − . So, the range resolution remains according to Eq. 2.21. 

A detailed analysis of LFM-signals with such a time shift and their application to PARSAX 

is presented in Chapter 5 of this thesis. 

d) FCM-signals 
Signals with frequency code modulation (FCM) have a constant amplitude and a carrier 

frequency, which changes in subpulses according to the code sequence. The use of a sequence of 

multi-level frequency code modulation determines the number of frequency variations in the carrier 

for the FCM-signals. In the binary case the code sequences consist of 1 and 0 or +1 and –1 and 

determine two carrier frequencies. Fig. 2.10 shows the FCM-signal with a Barker code of length 7 

({1, 1, 1, -1, -1, 1, -1}), T  is the transmitted signal length, τ  is the subpulse length, N=7 is the  

number of subpulses. 

t

1 1 1 -1 -1 1 -1
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-1
T N τ= ⋅

τ
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Fig. 2.10 – FCM-signal. 
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Fig. 2.9 − Frequency-time variations of two continuous LFM-signals with a time shift. 
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FCM-signal processing is realized at low frequencies (base band) without regarding the high carrier 

frequencies. The BT-product for FCM-signals (as well as for PCM-signals) equals to the number of 

subpulses ( N ). The correlation functions of FCM-signals are identical to the correlation functions 

of PCM-signals. So FCM-signals have the same advantages as PCM signals. 

The disadvantage of FCM-signals in comparison to PCM-signals is that the scattering 

properties of the radar object may be different for different sounding frequencies. High-frequency 

radar demands a wide bandwidth for sounding signals. However, the frequency difference in the 

carrier oscillations can, therefore, not be small. So, the values of the scattering matrix elements for 

different sounding frequencies (which correspond to the different parts of the signal, see Fig. 2.10) 

can result in additional errors in the estimation of the scattering matrix elements. 

This disadvantage essentially limits the FCM-signals application in high-resolution 

polarimetric radar. 

 

2.3 Conclusion 
The chapter has described the concept of sophisticated dual-orthogonal polarimetric radar 

signals. All types of signal orthogonality have been analyzed concerning to their applicability in 

polarimetric radar with simultaneous measurement of scattering matrix elements. Sophisticated 

signals with orthogonal waveforms and their applications have been considered. 
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3 Processing of the Dual-Orthogonal Sophisticated Radar 
Signals 
 

This chapter presents an overview of possible techniques for the compression of dual-orthogonal 

sophisticated signals. A comparison of the described correlation processing and de-ramping 

processing is made.  

 

 

3.1 Introduction to Optimum Filtering in Polarimetric Radar 
There are a few different criteria in optimum filtering techniques: 

• signal-to-noise criterion, 

• likelihood ratio criterion (in statistical decision theory or parameter estimation theory), 

• Bayesian probability criterion, 

which are created in order to extract the desired information from the received radar signal most 

efficiently [1]. The last two criteria are related to the decision-making theory, which is not 

considered in this thesis. So here optimum filtering means maximization of the signal-to-noise ratio 

(SNR).  

If noise is considered to be additive, stationary and uncorrelated with the signal scattered by 

the observed object then the optimum filter for SNR maximization is the matched filter and 

correlator. 

In case of radar signal processing the matched filter and correlator are optimal for additive 

white Gaussian noise only when the radar object can be represented as a point scatterer. If the radar 

object includes a set of scatterers then the filters are not optimal. However there are re-iterative 

algorithms using the filter output signal for estimation of the complex radar object and for 

reprocessing the input signal [2-4]. The matched filter and correlator are also not optimum for 

object detection in strong clutter [5]. In these circumstances different algorithms for clutter 

suppression can be applied [6, 7]. However, for a prior uncertainty concerning a radar object 

affected by additive white Gaussian noise, the matched filter and correlator are used as optimum 

filters. 
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An optimum filter uses the known form of the transmitted signal. In polarimetric radar with 

simultaneous measurement of scattering matrix elements the transmitted signal is formed with two 

sophisticated signals having orthogonal waveforms (see Section 2.2). Let 1( )u t�  and 2 ( )u t�  be 

complex signals simultaneously transmitted via two orthogonal polarizations (1 – horizontal, 2 – 

vertical). When neglecting noise, the received vector signal [ ]1 2( ) ( ) ( ) Tt x t x t=x� � �  can be written 

as multiplication of the radar object scattering matrix and vector sounding signal: 

 ( ) ( / 2) ( )t t tτ τ= − ⋅ −x S u�� � , (3.1) 

where τ  is the time delay of the received signal. Eq. 3.1 can be written as 

 1 11 1 12 2

2 21 1 22 2

( ) ( / 2) ( ) ( / 2) ( )
( ) ( / 2) ( ) ( / 2) ( )

x t S t u t S t u t
x t S t u t S t u t

τ τ τ τ
τ τ τ τ

⎡ ⎤− ⋅ − + − ⋅ −⎡ ⎤
= ⎢ ⎥⎢ ⎥ − ⋅ − + − ⋅ −⎣ ⎦ ⎣ ⎦

� �� � �
� �� � �

, (3.2) 

where 1( )x t�  and 2 ( )x t�  are the received signal components having orthogonal polarizations. 

When optimal processing is performed the a-priori knowledge about the forms of the 

transmitted waveforms is used for maximizing the signal-to-noise ratio. The impulse response is 

equal to the time-reversed conjugate of the signal waveform. It means that for processing of the 

vector sounding signal the impulse response function of the optimal filter ( )th�  has to be equal to 

 *( ) ( ),t t= −h u� �  (3.3) 

or 

 
*
11
*
22

( )( )
( )( )

u th t
u th t

⎡ ⎤ ⎡ ⎤−
=⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

� �
� �

, (3.4) 

where the superscript (*) represents the complex conjugate. The frequency response function 

( )fH�  of the filter is therefore the complex conjugate of the signal spectrum ( )fU� : 

 *( ) ( )f f=H U� � , (3.5) 

or 

 
*

1 1
*

2 2

( ) ( )
( ) ( )

H f U f
H f U f
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

� �
� � . (3.6) 

When sophisticated sounding signals are used, the compression of the received signals has to be 

done in the radar receiver. This compression and consequent SM estimation can be implemented in 

time domain or in frequency domain. For example, the scattering matrix estimation can be defined 

using the correlation integral (signal compression in time domain): 

 *ˆ ( ) ( ) ( )t t dtτ τ
∞

−∞

= ⋅ −∫S x h� ��  (3.7) 
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The limits of the integral (3.7) are equal to infinity assuming non-periodic signals for the 

following reasons. The received signal should be considered as non-periodic, although the 

transmitted signal is periodic. This behavior can be explained since the received signal varies over 

time (see Chapter 1) because the relative phase shifts between object scatterers change in time. For 

this reason simultaneous measurement of scattering matrix elements are needed. Also the 

polarimetric radar with continuous waveforms utilizes estimations over each period. So, in general, 

the received signal can not be considered as fully periodic. For de-ramping processing (see 

Paragraph 3.3.2) periodicity is not required because the signal, which is processed each period, 

corresponds to one definite period of the sounding signal. 

For correlation processing (Paragraphs 3.2.1, 3.2.2 and 3.3.1) the non-periodicity of the 

received signal does matter. The analyzed time interval of the received signal may contain a part of 

a scattered signal, which corresponds to previous period(s) of the sounding signal. But this part is 

less than the repetition period. So, side-lobes located far from the main-lobe of the compressed 

signal can be slightly different for a non-periodic signal and the identical periodic signal. This error 

takes place but the use of the non-periodic signal model is more valid than the use of the periodic 

signal model for the received radar signals. 

In terms of an input echo signal ( )tx�  and impulse response of the optimal filter ( )th�  the 

convolution integral in Eq. (3.7) can also be written as 

 * *( ) ( ) ( ) ( )FT t t dt f fτ
∞

−∞

⎡ ⎤
⋅ − = ⋅⎢ ⎥

⎣ ⎦
∫ x h X H� � �� , (3.8) 

where FT means Fourier transform. 

Optimum filtering can be realized in time domain like a convolution or in frequency domain 

like spectra multiplication because convolution in time domain corresponds to multiplication in 

frequency domain and vice versa. 

When the radar observes moving objects, the set of filters should take into account the 

objects’ motion and overlap in possible velocities via the Doppler effect in case of the narrow-band 

model or via the scaling effect in case of the wide-band model. The influence of object motion on 

the signal processing when sophisticated sounding signals are used, is considered in Chapter 4. 

In this chapter four methods and the corresponding filters’ schemes are described. All 

methods utilize compression of sophisticated signals. The first three methods (Paragraphs 3.2.1, 

3.2.2, 3.3.1) are considered to be optimal; they can be named “correlation processing”. The fourth 

method (de-ramping processing, Paragraph 3.3.2) using the stretch technique [8] is not optimal, 

because it does not maximize SNR. However the de-ramping processing has an undisputed 

advantage of simplicity, so it is used widely [9, 10]. 
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3.2 Algorithms and Performance of Polarimetric Signal 
Processing in Time-Domain 

3.2.1 Multi-Channel Correlator 
In order to obtain the estimations of all scattering matrix elements the orthogonally-polarized 

components of the received signal are simultaneously correlated in separate branches with the 

delayed replicas of 1( )u t�  and 2 ( )u t�  or, equivalently saying, the components are processed by 

filters matched to 1( )u t�  and 2 ( )u t�  (see Fig. 3.1) [11, 12]. The processing of the received signals 

with orthogonal polarizations ( 1( )x t�  and 2 ( )x t� ) takes place in Channel 1 and Channel 2, 

respectively. 

The use of the correlator assumes a-priori knowledge of the time delay and initial phase of 

the received signal. The unknown initial phase requires handling of in-phase and quadratures-phase 

components of the received signal. 

The receiver calculates the correlation integral between the vector input signal, 

[ ]1 2( ) ( ) ( )t x t x t=x� � � , and the copy of the sounding signal, [ ]0 1 0 2 0( ) ( ) ( ) Tt u t u tτ τ τ− = − −u� � � , 

with the expected time shift, 0τ . We derive: 

∫

∫

∫

∫

  

1 0( )u t τ−�

2 0( )u t τ−�

1( )x t�

2 ( )x t�

12 0
ˆ ( )S τ�

22 0
ˆ ( )S τ�

21 0
ˆ ( )S τ�

11 0
ˆ ( )S τ�

1 0( )u t τ−�
 

 

Fig. 3.1 – Simplified scheme of the correlator. 
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* *
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* *21 0 22 0
2 1 0 2 2 0

( ) ( ) ( ) ( )ˆ ˆ( ) ( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

T T

T T

x t u t dt x t u t dt
S S

S S x t u t dt x t u t dt

τ τ

τ τ

τ τ

τ τ

τ τ
τ τ

τ τ τ τ

+ +

+ +

⎡ ⎤
⋅ − ⋅ −⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⋅ − ⋅ −⎢ ⎥

⎣ ⎦

∫ ∫

∫ ∫

� � � �
� �

� �
� � � �

, (3.9) 

where 0τ  is constant, 0
ˆ ( )ijS τ� , i, j = 1,2, are four values, namely the estimations of the scattering 

matrix elements for a predetermined (expected) time delay 0τ , which is a constant for one 

measurement, T  is the sounding signal duration (FM-CW radar duty cycle). The expected time 

delay 0τ  can not be more than T  for FM-CW radar. When 0τ  is more than T , the ambiguity in 

range estimation appears. The integrals are calculated within the time interval [ ]0 0... Tτ τ + . The 

boundaries for integration are fixed because the signals are assumed to be synchronized with each 

other and all having T-duration. 

Fig. 3.2 shows the signal processing when the replica, 1( )x t� , is a delayed LFM sounding 

signal, 1 0( )u t τ−� , having the same initial phase. The correlator output gives half of the correlation 

function of the signal. 

The scheme presented in Fig. 3.2 can be used if both time delay and initial phase of the 

received signal are known. The initial phase of a signal received by a radar system is unknown, so 

each branch of the correlation receiver has to be splitted so that two quadratures exist. 

Eq. 3.9 gives the estimations of SM elements for one time delay ( 0τ ) only and is therefore a 

result for one range. For observation of all ranges simultaneously many correlators (branches, 

channels) adopted for all possible time delays (all observed ranges) have to be used. For this reason 

the correlator is usually named multi-channel correlator. For high-resolution radar a large number 

of range-dependent channels is demanded. It complicates the scheme significantly. In addition, if 

the observed object motion has to be taken into account as well, extra sets of channels are needed 

T t

T
t

t
1( )x t�

1 0( )u t τ−�

0 Tτ +0τ

Fig. 3.2 – Compression of the known signal in the correlator. 
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to overlap the possible velocities of moving objects. Furthermore in case of polarimetric radar with 

simultaneous measurement of scattering matrix elements the number of branches is multiplied by 

four. So the final scheme is complicated significantly. The correlator will not be considered in the 

following chapters. 

3.2.2 Matched Filter 
By definition the matched filter is a filter which, for a specified signal waveform, will result 

in the maximum attainable signal-to-noise ratio at the filter output when both signal and additive 

white Gaussian noise have passed the filter [13, 14]. 

The idea behind the matched filter is correlation using convolution. The estimations of the 

scattering matrix elements in case of matched filtering for polarimetric radar with continuous 

waveforms are calculated from: 

 

2 2
* *

1 1 1 2
0 011 12

2 2
* *21 22

2 1 2 2
0 0

( ) ( ) ( ) ( )ˆ ˆ( ) ( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

T T

T T

x t u t dt x t u t dt
S S

S S x t u t dt x t u t dt

τ τ
τ τ

τ τ τ τ

⎡ ⎤
⋅ − ⋅ −⎢ ⎥⎡ ⎤

⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎢ ⎥⋅ − ⋅ −

⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

� � � �� �

� � � � � �
. (3.10) 

where ˆ ( )ijS τ� , i, j = 1,2, are the estimation of the scattering matrix elements as function of time 

delay (range). For radars with continuous waveforms and duty cycle T  the integrals are calculated 

within the time interval [ ]0...2T . The roundtrip time delay, τ , can not exceed the FM-CW radar 

duty cycle, T , because of possible ambiguity in range estimation. 

The principle of matched filtering is shown in Fig. 3.3. The matched filter (MF) for a discrete 

case is presented by a multi-tapped delay line which impulse response corresponds to 
*

1 1( ) ( )h u tτ τ= −� �  and an adder (integrator equivalent). The marks “1” and “2” correspond to the 

beginnings and ends of the input signal and delay line, respectively. 

For polarimetric radar with simultaneous measurement of scattering matrix elements the 

*
1 1( ) ( )h u tτ τ= −� �1( )x t�

11( )R τ

 

Fig. 3.3 – Signal compression in the matched filter. 
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receiver includes four matched filters (Fig. 3.4), whose impulse responses ( 1( )h τ�  and 2 ( )h τ� ) are 

the time-reverse conjugate of the vector sounding signal components ( 1 ( )u t�  and 2 ( )u t� ). 

3.3 Algorithms and Performance of the Polarimetric Signal 
Processing in Frequency-Domain 

3.3.1 Matched Filtering in Frequency Domain (via direct FFT 
Multiplication) 

Matched filtering in frequency domain is based on the fact that convolution in time domain is 

equivalent to multiplication in frequency domain. So the convolution can employ a Fourier 

transform (FT) process equivalent for convolution. In the dissertation we assume that in practice 

the frequency spectrum is calculated via the Fast Fourier Transform (FFT); we therefore use FFT 

hereinafter. The process is sometimes called fast convolution [15]. 

The algorithm of matched filtering in frequency domain requires the following steps [15, 16]:  

– convert the received signal to frequency domain (by using the Fast Fourier Transform − FFT); 

– multiply the output with the frequency domain version of the reference function; 

– convert the product back to time domain (by using the Inverse Fast Fourier Transform − IFFT). 

In case of polarimetric radar with simultaneous measurement of scattering matrix elements 

both components of the received signal, 1( )x t�  and 2 ( )x t� , are converted to the frequency domain 

and multiplied with the spectra of complex conjugated replicas of the transmitted waveforms 

( 1( )u t� , 2 ( )u t� ). The conversion of the products back to time domain using FFT results into 

compressed range data, namely into estimations of the scattering matrix elements. The complex 

 
1( )x t�

2 ( )x t�

Estimation of 
scattering 

matrix 
elements

 

12
ˆ ( )S τ�

21
ˆ ( )S τ�

22
ˆ ( )S τ�

11
ˆ ( )S τ�*

1 1( ) ( )h u tτ τ= −� �

*
2 2( ) ( )h u tτ τ= −� �

Orthogonally 
polarized

components 
of the

received 
signal *

1 1( ) ( )h u tτ τ= −� �

*
2 2( ) ( )h u tτ τ= −� �

Channel 1

Channel 2

 
 

Fig. 3.4 − Matrix matched filter (processing in time domain). 
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conjugation of the spectra is realized by the blocks with the ( )*-superscript (Fig. 3.5). It should be 

noted that although the processing is realized in frequency domain the estimations of scattering 

matrix elements are functions of time (namely of the roundtrip time delay, τ ): 

 
* *

11 12 1 1 1 2
* *

1 1 2 221 22

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ( ) ( ) ( ) ( )( ) ( )

S S X f U f X f U f
IFFT

X f U f X f U fS S

τ τ

τ τ

⎡ ⎤ ⎡ ⎤⋅ ⋅⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⋅ ⋅⎣ ⎦⎣ ⎦

� � � � � �
� � � �� �

. (3.11) 

where ˆ ( )ijS τ� , i, j = 1,2, are estimations of the scattering matrix elements and the superscript (*) 

means complex conjugation. 1( )X f�  and 2 ( )X f�  are the signals spectra received with orthogonal 

(horizontal  and vertical) polarizations, 1 ( )U f�  and 2 ( )U f�  are the spectra of the vector sounding 

signal components with orthogonal polarizations. 

We remark here that a polarimetric radar with continuous waveforms gives estimations of 

SM elements every duty cycle, knowing that the received signal can not be considered as periodic. 

So the spectra (Eq. 3.11) do not have a discrete form as spectra of periodic signals. 

The matched filtering in frequency domain corresponds to matched filtering in time domain, 

because convolution in time domain corresponds to multiplication in frequency domain. The choice 

for matched processing (performed in time domain or in frequency domain) depends on 

technological possibilities. Digital signal processing with filter kernels shorter than about 60 points 

  

1( )u t�

1( )u t�

2 ( )u t�

1( )x t�

2 ( )x t�

*( )

*( )

*( )

12
ˆ ( )S τ�

22
ˆ ( )S τ�

21
ˆ ( )S τ�

11
ˆ ( )S τ�

 
 

Fig. 3.5 − Matched filter (processing in the frequency domain). 
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matched filtering can be implemented faster with standard convolution (in time domain, Paragraph 

3.2.2), where the execution time is proportional to the kernel length; longer filter kernels can be 

implemented faster with FFT-convolution (in frequency domain, as presented in the current 

paragraph) [17]. 

3.3.2 De-ramping Processing of LFM-signals 
An alternative for correlation processing is the signal compression approach using the de-

ramping processing which is applicable to frequency modulated signals, and LFM-signals in 

particular. Radars using sounding signals with continuous waveforms and utilizing the de-ramping 

procedure are named FM-CW radars [18] where FM-CW means “frequency-modulated continuous 

waves”. Sounding LFM-signals are used taking into consideration that the receiver starts receiving 

the backscattered signals while the transmitter is still transmitting. 

The de-ramping technique is a frequency method of range measurement which is used in 

radar with continuous waveforms [9, 10], specifically in radar with large BT-product signals 

having linear frequency modulation, also called frequency modulated (FM) ramps [15]. The 

estimations of the observed range profiles are calculated in frequency domain. 

De-ramping processing is also called “active correlation” [13] or “de-ramp FFT” [20] and is 

a kind of “stretch processing” [21]. 

Fig. 3.6 shows a simplified scheme of a de-ramping filter for polarimetric radar with 

simultaneous measurement of scattering matrix elements. In order to obtain the estimations of all 
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matrix 
elements
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1( )u t�

2 ( )u t�
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FFT

FFT
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12
ˆ ( )bS f�
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ˆ ( )bS f�
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ˆ ( )bS f�

1( )u t�
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Fig. 3.6 – Simplified scheme for the de-ramping filter approach. 
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scattering matrix elements each of the received signals ( 1( )x t� , 2 ( )x t� ) is mixed with replicas of the 

transmitted waveforms ( 1( )u t� , 2 ( )u t� ) and is reduced in slope, i.e. the signals are de-ramped. The 

signals after demodulation and low-pass filtering are called the beat signals. By applying a Fourier 

transform (that is the Fast Fourier Transform - FFT) onto the beat signals, the resulting spectrum as 

a function of beat frequencies ( bf ) for each ramp corresponds to range profiles for all four 

elements of the scattering matrix. The processing is summarized by 

   
* *

11 12 1 1 1 2
* *

2 1 2 221 22

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ( ) ( ) ( ) ( )( ) ( )

b b

b b

S f S f x t u t x t u t
FFT LPF

x t u t x t u tS f S f

⎡ ⎤ ⎡ ⎤⎡ ⎤⋅ ⋅⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⋅ ⋅⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

� � � � � �
� � � �� �

,  for [ ]max ...t Tτ∈  (3.12) 

where FFT means Fast Fourier transform, LPF means low-pass filtration, maxτ  is maximum time 

delay of the received signal and T is the LFM-signals’ sweep time which equals the duty cycle of 

the radar with continuous waveforms. Beat frequencies are analyzed in the frequency band 

( ]max0... bf . The maximum beat frequency ( maxbf ) is defined in the low-pass filters (LPFs) and 

determines the maximum time delay ( maxτ ) and therefore the maximum observed range ( maxR ). 

Fig. 3.7 explains the principle of the de-ramping procedure. The beat frequency ( bf ) is a 

measure for the object range [22, 23]. The received signal has a time shift relative to the 

transmitted one. The time shift of an LFM-signal corresponds to its beat frequency shift, which is 

proportional to the roundtrip time delay τ  (Fig. 3.7.a): 

 ,b
Ff

T
τΔ

=  (3.13) 

where FΔ  is the frequency sweep, T  is the sweep repetition interval. The roundtrip time delay τ  

is connected with the observed object range R  via 

 

2
b

F Rf
T c
Δ

= ⋅
, (3.14) 

where c  is the light velocity. The de-ramping filter (Fig. 3.6) includes LPFs whose boundary 

frequencies determine maxτ  and so maxR  of the radar objects under observation. 

When more than one point object is observed by the radar the mixers’ outputs will contain 

more than one beat frequency. Since the system is assumed to be linear, there will be a frequency 

component corresponding to each point object (or each resolution cell). In principle, the range to 

each object may be determined by measuring the individual frequency components. 



Chapter 3 

37 

De-ramping processing is a kind of signal compression. A Fourier transform applied to the 

sinusoidal beat signals with ( )maxT τ− -duration transforms (compresses) into one corresponding 

beat frequency spectrum. The signal-to-noise ratio is increased depending on the BT-product of the 

sounding LFM-signal [13]. 
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Fig. 3.7 – Overview of the FM-CW principle. 

a) Frequency plot of the chirp signal. 

b) Beat frequency of the signal proportional to object range. 

c) Amplitude of the beat signal 

d) Spectrum of the beat signal (compressed signal). 
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The range resolution in the de-ramping procedure should be considered separately. It is not 

determined from the correlation function main-lobe width like for the correlation methods (see 

previous paragraphs). The range resolution for the de-ramping processing is determined from the 

spectra width of the compressed de-ramped signals which are pulsed sine-signals. So the range is 

determined in frequency domain from the sine-signal of limited duration. If the sine-waves were 

continuous, their spectra would have been delta-functions. For a pulsed sinusoid (beat signal) the 

spectrum bandwidth is inversely proportional to its duration, max1/( )bf T τΔ = − , (Fig. 3.7.c). 

The maximum object range is determined from the maximum time delay of the echo signal 

( maxτ ) and is given by (Fig. 3.7.a): 

 max maxb
T f
F

τ =
Δ

, (3.15) 

where maxbf  is the maximum beat frequency. From Eq. 3.13 we derive for the maximum range 

 max
max 2

bT f cR
F

⋅
= ⋅

Δ
. (3.16) 

Eq. 3.16 means that the maximum beat frequency ( maxbf ) is proportional to the maximum 

object range ( maxR ). The beat signal bandwidth ( bfΔ ) is proportional to the range resolution ( RΔ ). 

This can be written as 

 max max ;
.

b

b

f R
f R

⎧
⎨ Δ Δ⎩

∼
∼

 (3.17) 

The range resolution can be expressed as 

 max max

max max max( )
b

b b

f R RR
f f T τ

Δ ⋅
Δ = =

⋅ −
. (3.18) 

From equations (3.16) and (3.18) we compute the range resolution after de-ramping processing 

 
( )max 2

T cR
T Fτ

Δ = ⋅
− ⋅Δ

. (3.19) 

So the range resolution after de-ramping processing is worse in comparison with correlation 

methods by the factor 
( )max

T
T τ−

. This factor shows the degradation in range resolution due to 

processing over the limited time interval ( )maxT τ− . Fig. 3.8 shows the degradation in range 

resolution depending on the maximum measured time delay, proportional to the maximum object 

range. For instance for a ratio of maximum time delay to sweep time equal to 1:10, we find a range 

resolution degradation, which is equal to 11.1% relative to the maximum potential range resolution 

of the sounding LFM-signal. So some loss in range resolution is the cost for using de-ramping 

processing. 
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An undisputed advantage of the de-ramping processing is the considerable simplification of 

signal processing in comparison with correlation methods. The frequencies of the analyzed signal 

are reduced from the sounding signal frequencies to a bandwidth limited by the maximum beat 

frequency. It allows considerable reduction in analyzed signal samples applied for digital signal 

processing. 

The non-zero side-lobe levels of the compressed-signal (Fig. 3.7.d) are side-lobes in 

frequency domain after de-ramping processing and have the same negative influence as side-lobes 

in the time domain have when applying correlation methods. They limit the dynamic range of 

amplitudes for analyzing useful received beat frequency signals. 

The side-lobe level can be reduced by applying a windowing function to the beat signal prior 

to the Fourier transform [22]. However, windowing has side effects. Side-lobes reduction leads to 

widening of the main lobe and therefore to reduction in range resolution. This should be taken into 

consideration when a windowing function is chosen. 

 

 
 

Fig. 3.8 – Range resolution for de-ramping procedure depending on the maximum measured 

time delay of the received signal. 
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3.4 Performance Comparison of the Various Processing 
Techniques (Channels Isolation, Cross-Correlation) 

In this chapter four methods have been described. They can be grouped into types of 

processing or the domain (time or frequency) in which the processing takes place (see Fig. 3.9). 

The three methods referring to correlation processing calculate the correlation between the received 

signal and the replica of the sounding signal. These methods have different realizations but their 

mathematical expressions do not conflict with each other. So their performances can be described 

jointly. The performance of the de-ramping method, which refers to stretch processing, is 

applicable on frequency-modulated signals only and is considered separately. 

Comparison is done according the following criteria: 

1. Range resolution. 

2. Peak side-lobe level (PSL) as a measure for protection from a maximum residual  

3. Isolation. In case of dual-orthogonal signals the isolation is a measure for protection from a 

maximum residual “cross-channel” return, coming from the same object or from an interfering 

object. 

4. Signal’s energy. 

Range resolution has been considered throughout the thesis. For the correlation processing 

(Sections 3.2.1, 3.2.2 and 3.3.1) the range resolution is determined by the auto-correlation functions 

of the orthogonal sophisticated signals, namely their main lobe widths (see Section 2.2). It’s 

necessary to note here that if weighting is used it can change the compressed signal main-lobe and 

therefore range resolution. So weighting-range resolution effects should be taken into account 

when frequency-modulated signals are used, because it widens the compressed signal peak. 

Weighting does not change the peaks (main lobes) for compressed code-modulated signals. The 

range resolution for the de-ramping processing (see Section 3.3.2) is less than for the correlation 

methods. It decays when the relation of the useful signals duration to the radar duty cycle is 

decreased (Fig. 3.8). 

Next we compare the PSL, isolation, and signals’ energy for the correlation processing and 

de-ramping processing. 

Correlation processing Stretch processing

Compression in the time domain Compression in the frequency domain

Correlator Matched 
filter

Matched filter 
with FFT

De-ramping 
filter

 
 

Fig. 3.9 – Processing techniques to be used for sophisticated signal compression. 
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3.4.1 Correlation Processing 
The PSL and isolation are defined by the autocorrelation ( ( )iiR τ ) and cross-correlation 

( ( )ijR τ ) functions of the sophisticated signals [9, 11]: 

 
(0)

min 20 log
( )i

ii
i

ii

R
PSL

Rτ τ∉Ω

⎡ ⎤
= ⋅⎢ ⎥

⎣ ⎦
, (3.20) 

 
(0)

min 20 log
( )

ii
i

ij

R
I

Rτ τ∀

⎡ ⎤
= ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
, , 1, 2i j = , (3.21) 

where index i  denotes the waveform simultaneously transmitted, and iΩ  is the interval of τ  

values corresponding to the main-lobe of ( )iiR τ . 

The PSL is different for various types of sophisticated signals. The peak side-lobe level for 

PCM-signals with m-sequences is shown in Fig. 3.10 for the case of non-periodic signals. The PSL 

is inversely proportional to the square root of the BT-product of this sounding PCM-signal. In case 

of periodic signals the PSL is inversely proportional to the BT-product of the sounding signal what 

means a high PSL-level. However, the received signal can not be considered as periodic in general 

and periodic signals’ processing is not considered in this thesis.  

The isolation for m-sequences is shown in Fig. 3.11 depending on the BT-product. The 

isolation is less than PSL; so in polarimetric radar using dual-orthogonal sophisticated signals the 

cross-correlation signals are more harmful for estimating the SM elements, than the side-lobes of 

the compressed signal. 

The PSL for an LFM-signal is shown in Fig. 3.12 for different BT-products and for two cases: 

when the signals are compressed without weighting and with weighting, namely with the use of the 

Hamming window. Fig. 3.12 shows that the side-lobes existing due to the auto-correlation of the 

vector sounding signal components can be suppressed significantly if a weighting window function 

is used. 

 
 

Fig. 3.10 – PSL for m-sequences depending on the BT-product. 
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Fig. 3.11 – Isolation (I) for m-sequences depending on the BT-product. 

 

 

 
 

Fig. 3.12 – PSL for LFM-signals depending on the BT-product; without weighting and with 

weighting (Hamming window). 
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Fig. 3.13 – Isolation (I) for LFM-signals depending on the BT-product; without weighting and 

with weighting (Hamming window). 
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The isolation of LFM-signals (Fig. 3.13) as for PCM-signals increases with the BT-product. 

It should be marked that weighting degrades the isolation because the amplitude of the LFM-signal 

is decreased at the edges (see also Section 5.1). 

A last criterion is energy. Energy of the useful signals having the same amplitudes is defined 

by the ratio of the useful signal duration and the radar duty cycle. Fig. 3.14 shows the time-

frequency representation of two dual-orthogonal signals of the radar with continuous waveforms 

when correlation processing is used. The useful signals occupy the whole duty cycle (T ) and the 

whole bandwidth ( FΔ ). Correlation processing results therefore into the maximum energy of the 

processed signal. Fig. 3.14 is presented here for comparison with the time-frequency representation 

of the signals for de-ramping processing, when the duty cycle and/or bandwidth are used partially 

(see Fig. 3.18). 

3.4.2 De-ramping Processing 
The term peak side-lobe level (PSL) can be connected to output signals resulting from the de-

ramping procedure, as expressed in the frequency domain. By analogy the PSL for the de-ramping 

procedure (waveforms are LFM-signals) is determined by, 

 
(0)

min 20 log
( )if F

Func
PSL

Func f∉

⎡ ⎤
⋅⎢ ⎥

⎣ ⎦
� , (3.22) 

where iF  is the interval of f  values corresponding to the main-lobe of ( )Func f , the index i  

denotes the waveforms, simultaneously transmitted. If weighting is not used the function 

( )Func f  corresponds to the sinc( )f  function and the PSL is constant (about  −13 dB, see Fig. 

3.12). When weighting is applied, the PSL can be decreased. 

The isolation should get specific attention for different de-ramping types; some types are 

investigated here. 

We consider the following three types of de-ramping processing: 

T T

FΔ FΔ

 
 

Fig. 3.14 – Time-frequency representation of two dual-orthogonal signals of the radar with 

continuous waveforms. 
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a) LFM-signals with opposite slope  
The first de-ramping type uses dual-orthogonal sounding signals, namely LFM-signals with 

opposite slope. Fig. 3.15.a shows the frequency plot of the signals (black and gray lines 

correspondently) and their beat frequencies. The scattered signals are marked as dashed lines. T  is 

the duty cycle of the radar, FΔ  means the sweep frequency (the vector sounding signal 

bandwidth), bf  are the beat frequencies in polarimetric radar channels, τ  is the time delay of the 

received signal.  

A strong correlation region is marked for the case when the signals in the polarimetric radar 

channels occupy the same frequencies over the same time interval. The maximum beat frequency 

of the mixed signals and the slope in the frequency curve of the low-pass filters (the de-ramping 

filter scheme is shown in Fig. 3.6) determine the area of strong correlation. The frequency curve 

slope is a choice of the radar designer. 

The thick solid lines in Fig. 3.15.a correspond to the sounding signals, the thick dashed lines 

represent the scattered signals having maximum roundtrip time delay ( maxτ ). The thin solid lines 

show a few arbitrary scattered signals as an example of the arbitrary radar scene. Fig. 3.15 shows 

that received scattered signals can have roundtrip travel time (τ ) more than maxτ . We know that in 

the de-ramping signal processing this roundtrip travel time τ  has a unique relationship with beat 

frequency bf  (see Paragraph 3.3.2). LPF in every receiver channel limits the beat frequency band 

and, as result, determines maximum roundtrip time delay maxτ . It is true for tone (useful) signals. 

As for cross (LFM) signals, the LPFs limit their frequency band and, therefore, limit the duration of 

their presence in the radar receiver branches, but do not determine their roundtrip time delays. 

The cross beat signals decrease the isolation between receiver’s branches of the FM-CW 

polarimetric radar with simultaneous measurement of SM elements. As far as roundtrip travel time 

τ  is not limited for the cross (LFM) signals, such signals from the whole analyzed time interval 

can influence the receiver and decrease the SM-estimation accuracy. So, the estimation and 

improvement of the isolation between branches of the polarimetric radar receiver is one of the main 

problems, which are under consideration in this thesis. The novel techniques, which are based on 

the de-ramping signal processing method and provide high-level isolation between branches in FM-

CW radar receiver, are presented in Chapter 5 and Chapter 7. 

Fig. 3.15(b) represents resulting beat signals on the idealized time-frequency plane, with 

negative frequencies. Such frequencies are a mathematical abstraction and do not exist in reality. 

The real representation of the signals has to be done on the plane “absolute value of frequency”-

time, which are presented in Fig. 3.16. Numerical simulation of such representation of beat signals 

on the time-frequency plane, which has been done using a Short-Time FFT and which shows V-

shaped cross beat signals and horizontal tone signals, is presented in Chapter 7 of this thesis. 
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When ideal low-pass filters are used in the de-ramping scheme the isolation I is a measure for 

protection of the maximum residual “cross-channel” return coming from the same object or from 

an interfering object and can be calculated via the cross-beat frequency (Fig. 3.15.b). The analyzed 

interval is equal to ( )maxT τ− . The cross-beat frequencies are linear modulated signals (Fig. 3.15.b) 

which, as known, have a spectrum close to a uniform one inside the analyzed bandwidth 

( max0... bf ). Cross-beat frequencies correspond to LFM signals with max 2τ -durations and maxbf - 

bandwidths. 

We note also that τ  for cross-correlation components is not limited to maxτ . The received 

signals (Fig. 3.15.a) are not limited to this maxτ  value. The limitation of the maximum roundtrip 

time delay for beat signals is realized by the LPFs (see Fig. 3.6) whose boundary frequency ( maxbf ) 

uniquely determines maxτ  only for sinusoidal (useful) signals but not for cross (interfering) LFM-

signals. Low-pass filtering limits only the duration of those LFM-signals by the max 2τ  value (see 

Fig. 3.15.b). The localization of cross LFM-signals in the first branch utilizing estimations 11
ˆ ( )bS f�  

maxτ
max 2τ

maxT τ−

maxbf

maxbf

T( )max 2T τ+2T

21Ŝ�

11Ŝ�
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minF
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Fig. 3.15 – Frequency plot of continuous LFM-signals with opposite slopes in the first radar 

channel (a) and time-frequency representation of their beat signals (b). 
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and their complex amplitudes depends on 21
ˆ ( )S τ� . As for the second branch utilizing estimations 

21
ˆ ( )bS f� , the complex amplitudes and localization of cross-LFM-signals are determined from 

11
ˆ ( )S τ� . The zero range ( 0τ = ) for cross-signals corresponds to the time point 2T  on the time 

axis (Fig. 3.15.b). We here again have to remember that a roundtrip time delay τ  is not limited to 

maxτ  for cross LFM-signals. Cross LFM-signals define the isolation between branches in both 

channels of polarimetric radar. 

We note that time-frequency representation of the beat signals shown in Fig. 3.15.b is a 

mathematical idealization, because frequencies can not be divided into negative and positive ones 

in reality. Beat signals will have a time-frequency distribution as shown in Fig. 3.16. 

The isolation is a function not only of the sounding signals but also of the de-ramping 

parameter maxτ . The sounding signals’ parameters for determining the isolation are the signals’ 

repetition period (the radar duty cycle, T ) and BT-product which identifies the beat frequency for 

the defined time delay. Also when real LPFs are used, a strong correlation region is identified in 

the overlap region (Fig. 3.15-b), and LPFs’ frequency responses should be taken into account when 

the isolation is estimated. A detailed study of isolation for FM-CW polarimetric radar may be a 

topic for future research. 

The technique for the cross-correlation components’ suppression is presented in Chapter 7. 

 

Two additional de-ramping types with continuous LFM-signals and using a time shift are 

described here. 
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Fig. 3.16 – Time-frequency representation of beat signals for absolute values of beat frequencies. 
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b) Simultaneous measurements of coinciding signals over a limited time 
interval (Variant 1); 

c) Quasi-simultaneous measurements of non-fully coinciding signals 
(Variant 2). 

These two de-ramping types use signals, which can not be named as signals with dual 

orthogonality; the signals may still have the same form but with a shift in time and frequency 

domain. 

A time shift for the de-ramping procedure is equivalent to a frequency shift. So a time shift 

more than the corresponding maximum beat frequency means frequency orthogonality in every 
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Fig. 3.17 – Frequency plot of continuous LFM-signals with a time shift relatively to each other 

and their beat frequencies for Variants 1 and 2. 
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time point (cross-beat frequency is equal to zero). Such frequency difference allows suppressing 

cross-correlation very effectively and provides a high isolation level limited only by amplitude-

frequency responses of LPFs used in the de-ramping filter. 

Fig. 3.17.a shows the frequency plot of the chirp signals (black and gray lines 

correspondently) and their beat frequencies (Fig. 3.17.b-c). There are no thin lines for arbitrary 

scattered signals like in Fig. 3.15 because of a prior uncertainty concerning the observed radar 

object and there is no information about it. The sounding signals corresponding to the signals with 

zero roundtrip travel time ( 0τ = ) are marked as solid lines (Fig. 3.17.a). The possible scattered 

signals having maximum roundtrip time delay ( maxτ τ= ) are marked as dashed lines. T  is the duty 

cycle of the radar, FΔ  means the sweep frequency, maxbf  is the maximum beat frequency in FM-

CW polarimetric radar, difff  is the minimum frequency difference in the radar channels in every 

time point, shiftt  is the time shift between sounding signals having different (vertical/horizontal) 

polarizations, maxτ  is the maximum possible time delay of the received signal. 

When the proposed signals (Variant 1 and Variant 2) are used in polarimetric radar with 

simultaneous measurement of scattering matrix elements they can be named as quasi-dual-

shiftt T+shiftt

T T

T T

T

maxτ maxτ

maxτ
 

 

Fig. 3.18 – Time-frequency distribution of two sounding LFM-signals for FM-CW polarimetric 

radar having three different de-ramping types. 
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orthogonal signals. The sounding signals are radiated on orthogonal polarizations (orthogonality) 

and in every time point their frequencies are different (quasi-orthogonality), despite the sounding 

signals have the same waveforms and occupy the same frequency and time domain. The here 

proposed Variant 2 is analyzed in Chapter 5 of this thesis. 

The maximum time shift between sounding LFM-signals is equal to half of the signal 

repetition period. It corresponds to a frequency difference in the radar channels, 

max2
2

b
diff

F ff Δ −
= , where maxbf  is the maximum beat frequency for both radar channels, and to a 

relative frequency difference, max1
2

diff bf f
F F

= −
Δ Δ

. 

The time-frequency distribution of the useful signals for polarimetric radars with continuous 

waveforms is shown in Fig. 3.18 with different scales for frequency and time. T  is the duty cycle 

of the FM-CW polarimetric radar, shiftt  is the time shift of the sounding LFM-signals. 

3.4.3 Main Characteristics of the Processing Techniques 
The main characteristics of correlation and de-ramping processors of sophisticated radar 

sounding signals are shown in Table 3.1.  

Simultaneity of the measurements is provided for all here described methods except for the 

proposed de-ramping method (when continuous non-coinciding LFM-signals with relative time 

shift are used, Var.2). It should be noted that the duty cycles for radars with continuous waveforms 

have the same length for all methods. 

Bandwidth. The sounding signals occupy the whole bandwidth, allowed for polarimetric 

radar. The exception is the second proposed de-ramping method (when continuous coinciding 

LFM-signals with a relative time shift are used, Var.1). 

Energy. The energy of the signals is the highest for correlation methods because the whole 

received signal period is taken for processing (see Fig. 3.14). The energy is less for de-ramping 

processing because only a part of every duty cycle is used (see Fig. 3.18). 

Isolation. The isolation in polarimetric radars with continuous waveforms and simultaneous 

measurement of scattering matrix elements is defined by the cross-correlation components. For 

correlation processing the isolation is determined from the cross-correlation function of the 

sounding signals. For de-ramping processing the isolation is dependent on the strong-correlation 

region, where the received signals can occupy the same time interval and frequency band. 

Range resolution is the highest for correlation methods; it is defined by the width of the 

correlation function main lobe. The de-ramping procedure used for frequency-modulated signals 

gives less range resolution in comparison with the correlation processing by a factor given in Eq. 

3.19. When weighting is used it can decrease the range resolution significantly in de-ramping 

processing. 
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Computational complexity. Correlation in time domain apply convolution which results in 

very high computational complexity when sophisticated signals with large BT-product are used. 

Computational complexity of correlation processing in frequency domain (when FFT is used) is 

briefly explained in section 3.3.1. When de-ramping is used a significant reduction in sounding 

signals’ bandwidth occurs. So a low computational complexity is achieved. 

Table 3.1 – The main characteristics of the processing techniques. 

Correlation 
techniques De-ramping techniques 

 

Sophisticated 
signals 

(including LFM 
with opposite 

slope and PCM)

LFM-signals 
with opposite 

slope 

Continuous 
coinciding LFM-
signals with time 

shift (Var. 1) 

Continuous non-
coinciding LFM-
signals with time 

shift (Var. 2) 

Sounding signals 
have the same time 
representation 
(simultaneity of the 
measurements) 

Yes Yes Yes Quasi 

Sounding signals 
have the same 
bandwidth 

Yes Yes 
The bandwidths 

are partially 
overlapped 

Yes 

Energy of the useful 
signals Very high High 

The energy 
decreases with 
increasing shift 

time  

High 

Isolation  The isolation is 
defined by the 

cross-
correlation 
between the 

signals 

The isolation is 
defined by the 

strong 
correlation 

regions  
(see Fig. 3.15) 

Very high 
(can be 

provided) 

Very high 
(can be provided) 

Range resolution 

Very high High 

The range 
resolution 

decreases with 
increasing shift 

time  

High 

Computational 
complexity 

Very high 
(when 

convolution is 
used) 

High (when 
FFT is used) 

Low Low Low 
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3.5 Conclusion 
This chapter has presented an overview of correlation and de-ramping methods for dual-

orthogonal sophisticated signals’ processing. Moreover two de-ramping types using continuous 

LFM-signal with a relative time shift and utilizing simultaneous or quasi-simultaneous 

measurements have been proposed in addition to the standard de-ramping. A comparison of the 

correlation and de-ramping techniques and their performances has been made. The novel time-

frequency representation of beat signals in FM-CW polarimetric radar with simultaneous 

measurement of SM elements has been proposed.  
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4. Bandwidths Effects on Range Processing 
 

This chapter presents the investigation of two techniques for sophisticated signal processing, 

namely correlation processing and de-ramping processing. The investigation starts from the 

differences between the wide-band signal model and its approximation, namely the narrow-band 

signal model. The conditions when sounding signals’ bandwidth effects take place and differences 

between the models are described. Bandwidth effects are different for correlation and de-ramping 

processing. In case of correlation processing the bandwidths effects for the wide-band signal model 

and the narrow-band are analyzed via matrix ambiguity functions. A novel wide-band correlaton 

processing approach applicable to dual-orthogonal polarimetric radar signals is proposed here. 

The de-ramping processing gets also attention for both types of signal models, namely for wide-

band and narrow-band ones. A novel representation of wide-band de-ramping processing in FM-

CW radar signals is proposed and the quantitative comparison of the signals’ models is presented. 

 

 

4.1 Wide-band and Narrow-band Signal Models 
Two principal models exist for radar signal processing [1]: wide-band and narrow-band (see 

Table 4.1). In the narrow-band model it is assumed that the transmitted radar signal ( )u t�  reflects 

from a single object (a point scatterer) moving with constant radial velocity V, and that the received 

signal ( )g t�  experiences a Doppler frequency shift 

 2
d c

Vf f
c

−
= , (4.1) 

where cf  is the carrier frequency of the sounding signal, c is the light velocity. When the radar 

object moves to the radar (and/or the radar moves to the observed object) velocity V is negative and 

the Doppler shift is positive and vice versa. 

In the wide-band model the transmitted signal reflects from an object that is moving with 

constant radial velocity V, and in the received signal a time-scaling occurs according 

 21 Vs
c

≅ − , (4.2) 
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where s  is the scale factor. When the radar object moves to the radar (and/or the radar moves to 

the observed object) the scale factor is more than unity. The scale factor (Eq. 4.2) is described by a 

series [1]; however, the first terms of the series are sufficient for real radar object observations. 

The Doppler shift, df , is an approximation for the scale parameter, s . However, such 

approximation restricts the bandwidth-time (BT) product of the sounding signals. In case the 

restriction is violated it may be efficient to use wide-band correlation processing with wavelets [2, 

3], which are affected by a scale parameter and a time shift parameter. 

The principal differences between the narrow-band and wide-band model can be seen in 

Table 4.1 [4]. In both models the time-delay τ  of the received signal defines the distance to the 

radar object. The received signal ( )g t�  is presented as signal formed under ideal (noise free) 

conditions. 

 

Table 4.1 – Two principal models for radar signal processing: wide-band and narrow-band. 

 Wide-band signal model Narrow-band signal model 

Parameter of 

object 

movement 

2(1 ) Vs
c

− ≅  
2

d c
Vf f

c
−

=  

Received 

signal, g(t) 
( ) ( ( ))g t s u s t τ≈ ⋅ ⋅ −� �  2( ) ( ) dj f tg t u t e πτ≈ − ⋅� �  

Ambiguity 

function ( )( )*( , ) ( )X s s u t s t dtτ ψ τ
∞

−∞

= ⋅ ⋅ −∫� ��  ( ) 2*( , ) ( ) dj f t
dX f u t u t e dtπτ τ

∞
− ⋅

−∞

= ⋅ −∫� � �  

 

The function ( )tψ�  is called the mother wavelet of the transform and is assumed to be 

physically realizable. It is essential to specify the condition under which wide-band signals can still 

be processed correctly according the narrow-band model, i.e. the received signal should satisfy the 

condition  

 
2 1V

c F T
⋅

Δ ⋅
� , (4.3) 

where F TΔ ⋅  is the BT-product of the sounding signal. It means that in case of sophisticated radar 

signals the use of the narrow-band model still realizes correct results if the BT product and/or radar 

object velocities are limited. However, the use of the wide-band model allows to avoid those 

limitations. 

The difference between the wide-band signal model and the narrow-band one may be large. 

So both techniques for sophisticated signals processing, namely correlation processing and de-

ramping processing, are of interest for bandwidth effect considerations. 
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4.2 Correlation Processing 
The influence of the observed object motion for correlation processing can be estimated 

using the ambiguity functions of the sounding signals.  

Generally the ambiguity function is a 3-D function of two variables: time delay (range) and 

parameter of object motion (Doppler frequency or scale factor). This function describes the local 

ambiguity in range and velocity of the observed objects. The cut of the ambiguity function at zero 

velocity is the correlation function of the signal. 

In radar practice different forms of ambiguity function appear. Each has its own advantage 

for the particular situation in which it is used. In the thesis the wide-band/narrow-band ambiguity 

function for Doppler polarimetric radar is of prime interest. 

 

4.2.1 Wide-band and Narrow-band Ambiguity Functions 
The narrow-band ambiguity function is characterized by a time–frequency correlation. 

Physically, the ambiguity function represents the energy in the received signal as function of time 

delay (range) and Doppler frequency (velocity) [5]. The narrow-band ambiguity function is an 

approximation of the wide-band ambiguity function because the Doppler frequency is an 

approximation for the scale factor. 

The wide-band ambiguity function [1, 6] represents the energy in a received signal as 

function of time delay (range) and scale factor (velocity). Its application makes sense when 

sophisticated signals with long duration are used and/or fast-moving objects are observed. 

In case of polarimetric radar with simultaneous measurement of scattering matrix elements 

the matrix ambiguity function for both wide-band and narrow-band processing should be 

considered here. 

Polarimetric radar has a vector transmitted signal ( )tu�  consisting of a pair of signals with 

orthogonal waveforms (see Section 2.2): 

 [ ]1 2( ) ( ) ( ) Tt u t u t=u� � � , (4.4) 

where superscript T means the operation of transposition. For the narrow-band model the matrix 

ambiguity function of the vector sounding signal ( )tu�  becomes 

 ( ) 2* 11 12

21 22

( , ) ( , )
( , ) ( )

( , ) ( , )
dj f t d d

d
d d

X f X f
f t t e dt

X f X f
π τ τ

τ τ
τ τ

∞
− ⋅

−∞

⎡ ⎤
= ⋅ − ⋅ = ⎢ ⎥

⎣ ⎦
∫X u u

� �
� � � � � , (4.5) 

where ( ) 2*( , ) ( ) dj f t
ij d i jX f u t u t e dtπτ τ

∞
− ⋅

−∞

= ⋅ − ⋅∫� � � , i, j = 1, 2. 

For the wide-band model the matrix ambiguity function of the vector sounding signal ( )tu�  

can be written as 
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 ( )( )* 11 12

21 22

( , ) ( , )
( , ) ( )

( , ) ( , )
X s X s

s s t s t dt
X s X s

τ τ
τ τ

τ τ

∞

−∞

⎡ ⎤
= ⋅ ⋅ − = ⎢ ⎥

⎣ ⎦
∫X u ψ

� �
� �� � � , (4.6) 

where ( )( )*( , ) ( )ij i jX s s u t s t dtτ ψ τ
∞

−∞

= ⋅ ⋅ −∫� �� , i,j = 1,2. The vector function 

[ ]1 2( ) ( ) ( ) Tt t tψ ψ=ψ� � �  consists of two orthogonal mother wavelets, which are assumed to be 

physically realizable. 

A major problem in polarimetric radar occurs when the radar designer is confronted with BT-

product restrictions for sophisticated sounding signals. Wide-band correlation processing allows to 

remove the restrictions concerning large BT-products.  

 

4.2.1.1 LFM 

The wide-band ambiguity function can be calculated if the mother wavelet has been chosen. 

The choice of the mother wavelet can be a theme for various investigations. In case of sounding 

LFM-signals the choice can be determined by the following considerations. If the mother wavelet, 

( )i tψ� , coincides with the transmitted signal ( )iu t� , the wide-band correlation processing is 

optimum [1] and the output signal-to-noise ratio is maximized for a received signal corrupted by 

additive white Gaussian noise. Consequently, the pair of mother wavelets [ ]1 2( ) ( ) Tt tψ ψ� �  

determined by a pair of signals with orthogonal waveforms [ ]1 2( ) ( ) ( ) Tt u t u t=u� � �  will provide 

optimum filtering in polarimetric radar with simultaneous measurement of scattering matrix 

elements.  

The LFM vector sounding signal can be written as a pair of signals with identical rectangular 

pulse and opposite (up-going and down-going) slope of linear frequency modulation inside the 

pulse. We can write  

 

2
min 1

2
max 2

2
2

1

22 2

( ) ( )
( )

( )
( )

kj t F t

kj t F t

u t env t e
t

u t
env t e

π ϕ

π ϕ

⎛ ⎞⋅ ⋅ + ⋅ +⎜ ⎟
⎝ ⎠

⎛ ⎞− ⋅ + ⋅ +⎜ ⎟
⎝ ⎠

⎡ ⎤
⋅⎡ ⎤ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⋅⎣ ⎦

u
�

�
�

, (4.7) 

where env(t) is a rectangular window with pulse length T and k is a positive constant (sweep rate) 

with dimension 1/sec2, which determines the frequency deviation of 1( )u t�  and 2 ( )u t�  within 

[ ]min max...F F FΔ =  (see Paragraph 2.2.1). 

Rectangular windowed LFM-signals are not physically realizable as mother wavelets. 

However, such realisability exists for Gaussian-weighted LFM-signals [1, 7]. It means that the 

vector function [ ]1 2( ) ( ) ( ) Tt t tψ ψ=ψ� � �  consisting of two orthogonal mother wavelets 
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ψ
�
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 (4.8) 

is physically realizable when ( )env t′  is a Gaussian weighting window. So the Gaussian-weighted 

LFM-signals are used as mother wavelets. In addition a window weighting is often utilized for 

side-lobes suppression. 

Numerical simulation of the wide-band ambiguity matrix and narrow-band ambiguity matrix 

will be presented here. We use for the simulation a bandwidth time product ( F TΔ ⋅ ) of the LFM-

signals equal to 15 and T = 1 ms and fc = 3.315 GHz. We note here that fc  is not a parameter for the 

wide-band signal model (see Table 4.1). The signal duration, T, and the carrier frequency fc 

correspond to the parameters of the polarimetric radar system PARSAX (see Appendix A, Table 

A.1); however, a small BT-product (15) was chosen for better visibility of the modeled ambiguity 

functions only. 

Figure 4.1 shows the absolute value of the normalized wide-band ambiguity matrix ( , )s τX�  

of the vector signal consisting of two LFM-signals with opposite slopes. The magnitude of the 

wide-band ambiguity matrix peaks at (s, τ) = (1, 0). 

The use of wide-band correlation processing is reasonable for a moving object observation 

 

Fig. 4.1 - Absolute value of the normalized wide-band ambiguity matrix ( , )s τX�  of LFM-

signals with up-going and down-going frequency modulation and a “wide” velocity 

range (BT=15, T=1 ms). 



Chapter 4 

58 

when its velocity and/or BT-product of sounding sophisticated signals are large and relativistic 

effects appear. 

The Doppler shift df  does not unambiguously correspond to the scale parameter s , because 

it depends on both the radial velocity of the radar object and the carrier frequency (light velocity is 

constant), whereas the scale parameter s depends only on the radial velocity of the radar object. For 

better visibility of the modeling results the scale parameter s has been chosen in the range (0.95, 

1.05); this range corresponds to radial velocities of observed objects from -7.5·106  to 7.5·106 m/s. 

As can be seen in Fig. 4.1, non-zero levels in the cross-ambiguity functions 12 ( , )X s τ� , 

21( , )X s τ�  and non-zero side-lobes in the ambiguity functions 11( , )X s τ� , 22 ( , )X s τ�  occur in the 

wide-band model due to the finite BT-product. However, we note that the wide-band model used in 

Fig. 4.1 clearly demonstrates no restriction on the BT-product of the sounding signal. 

Figure 4.2 shows the absolute value of the normalized narrow-band ambiguity matrix 

( , )df τX�  of the vector signal consisting of two LFM-signals with opposite slopes. The magnitude 

of the narrow-band ambiguity matrix peaks at (fd, τ) = (0, 0). 

Also here non-zero level of cross-correlation functions 12 ( , )dX f τ� , 21( , )dX f τ�  and non-zero 

 

 

Fig. 4.2 – Absolute value of the normalized narrow-band ambiguity matrix ( , )df τX�  of LFM-

signals with up-going and down-going frequency modulation and a “narrow” 

velocity range (BT=15, T=1 ms, fc=3.315 GHz). 
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side-lobes of the ambiguity functions 11( , )dX f τ� , 22 ( , )dX f τ�  occur due to the finite BT-product. 

We observe, however, that in Fig. 4.2 the ambiguity functions of two LFM-signals ( 11( , )dX f τ�  

and 22 ( , )dX f τ� ) have opposite knife-shaped ridges. This means that one fast-moving object can be 

interpreted like two non-existing objects having different ranges. It limits the capabilities in the 

accuracy of measuring the polarimetric matrix elements. A second observation is even more 

significant, i.e. if the narrow-band model is used and the BT-product increases, the radar object 

velocities affect the accuracies even more (Eq. 4.3). The use of the wide-band model allows to 

avoid those limitations. 

The advantage of the wide-band correlation processing is that it does not have restrictions for 

both the BT-product of the sounding compound signals and the radial velocity of the observed 

radar objects. Further analysis of differences in the wide-band ambiguity matrix and the narrow-

band is recommended as theme for future research. 

 

4.2.1.2 PCM 

A wavelet function should be chosen for calculating the wide-band ambiguity matrix. When 

selecting a vector signal consisting of two orthogonal PCM-signals the choice can be determined 

by the following considerations.  

 
 

Fig. 4.3 − Absolute value of the normalized wide-band ambiguity matrix ( , )s τX�  of orthogonal 

PCM-signals for a “wide” velocity range (BT=15, T=1 ms). 
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Rectangular windowed signals have limited use as mother wavelets, because the spectrum of 

the signal has a sinc-form ( 2 2sin x x ), which does not decay quickly. The spectrum of PCM-

signals also has a 2 2sin x x  form caused by the rectangular sub-pulse. The spectrum vanishes for 

certain frequencies, meaning that the scaling is not admissible for these frequencies [1]. 

The vector transmitted signal can be written as a pair of PCM-signals with identical BT-

products (see Paragraph 2.2.2). The vector function [ ]1 2( ) ( ) ( ) Tt t tψ ψ=ψ� � �  should consist of two 

orthogonal mother wavelets. By analogy with the previous paragraph the sounding signals are 

proposed to be used as mother wavelets. But the spectrum of a PCM-signal as well as the spectrum 

of each subpulse has the sinc-form. So in general PCM-signals can not be mother wavelets. 

However, so-called scaled PCM-signals can be used for correlation processing. Therefore the wide-

band ambiguity matrix in this paragraph is calculated using corresponding scaled PCM-signals. 

Scaling of PCM-signals is utilized in the time domain when the duration of signals is changed. 

Numerical simulation results of the wide-band and narrow-band ambiguity matrix will be 

presented here. We use for better visualization PCM-signals with a bandwidth-time product 

( F TΔ ⋅ ) value equal to 15. We choose, as in the previous paragraph, T = 1 ms and fc = 3.315 GHz, 

the basic parameters in PARSAX. 

Figure 4.3 shows the absolute value of the normalized wide-band ambiguity matrix ( , )s τX�  

of a vector signal base using the proposed PCM-signals. The magnitude of the wide-band 

 
 

Fig. 4.4 − Absolute value of the normalized narrow-band ambiguity matrix ( , )df τX�  of 

orthogonal PCM-signals for a “narrow” velocity range (BT=15, T=1 ms, fc =3.315 GHz). 
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ambiguity matrix peaks at (s, τ) = (1, 0). The main-lobe of the auto-ambiguity functions ( 11( , )X s τ� , 

22 ( , )X s τ� ) which remains over a large range of velocities shows that fast-moving objects can be 

detected. However, the long duration of the main-lobe along the Doppler frequency (velocity) axis 

results in a bad velocity resolution for the wide-band correlation processing 

. 

Fig. 4.4 shows the absolute value of the normalized narrow-band ambiguity matrix ( , )df τX�  

of a vector signal base for PCM-signals. The magnitude of the narrow-band ambiguity matrix 

peaks at (fd, τ) = (0; 0). 

The form of the auto-ambiguity functions, 11( , )dX f τ� , 22 ( , )dX f τ�  (Fig. 4.4) shows for 

PCM-signals a good resolution along both delay (range) and Doppler frequency (velocity) axes. 

Nevertheless, it should be noted again that the possibility of fast-moving object detection should be 

considered together with the wide-band signal model because the narrow-band approximation 

works satisfactorily only when BT-product and/or the radial velocity of the observed objects are 

limited. 

The side-lobe levels in the wide-band ( 11( , )X s τ� , 22 ( , )X s τ� ) and narrow-band ( 11( , )dX f τ� , 

22 ( , )dX f τ� ) auto-ambiguity functions and the cross-correlation levels in the wide-band ( 12 ( , )X s τ� , 

21( , )X s τ� ) and narrow-band ( 12 ( , )dX f τ� , 21( , )dX f τ� ) cross-ambiguity functions for PCM-signals 

(Fig. 4.3, 4.4) are bigger than the levels for LFM-signals (Fig. 4.1, 4.2) while all other factors being 

equal. It means a less dynamic distinguishing in the received signals when PCM sounding signals 

are used compared to LFM-signals. 

 

4.2.2 Range Estimation Error in Correlation Processing 
The radar target range is determined by the time delay between the received signal and the 

radiated signal. If the radar and the observed object are non-moving, the signal roundtrip travel 

time is constant and equal to 2 R cτ = ⋅ , where R is the distance between radar and object, c is the 

light velocity. When the target and/or the radar are moving, the roundtrip time delay is varying and 

depends on the radial velocity of the observed object. 

In the narrow-band case the object velocity determines the Doppler frequency (see Table 

4.1). If the carrier frequency of the vector sounding signal is a tone (as for PCM-signals) Eq. 4.1 

can be used directly. But narrow-band processing will lead to additional restrictions in polarimetric 

radar, which uses a vector sounding signal consisting of the pair of LFM-signals with equal 

durations and opposite slopes. There is then an ambiguity in determining the range of the object 

and its velocity (respectively, time delay and Doppler frequency). 
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The carrier frequency of the vector sounding LFM signal (Eq. 4.7) varies within the 

frequency sweep. The target motion shifts the frequency interval of the received signal relative to 

the transmitted signal with a value df . For LFM-signals, this shifting of the ambiguity function 

along frequency axis may be interpreted as a shift along the time (range) axis and vice versa. So the 

motion of a radar target causes errors in range. Furthermore the narrow-band ambiguity functions 

of two LFM-signals with opposite slopes have opposite knife-shaped ridges and their shifts for the 

same moving target can be interpreted like the presence of another non-existent target. So in 

polarimetric radars with simultaneous measurement of scattering matrix elements using orthogonal 

LFM-signals and narrow-band correlation processing we should keep in mind that the radial 

velocity of the observed targets is then strictly limited [4, 8]. For overcoming this limitation, wide-

band correlation processing is needed. We know that in case of wide-band processing the target 

velocity is defined by the scale factor (see Table 4.1) of the received signal. The scale factor does 

not depend on the kind of modulation and other parameters of the sounding signal. 

We therefore consider the ambiguity in range and velocity (time delay, τ , and scale factor, 

s ) for wide-band correlation processing. When the object and/or transmitter/receiver are moving 

the roundtrip travel time can be expressed as [1]: 

 ( )0 0
2( , ) Vt V t
c V

τ τ τ⋅
= + −

+
, (4.9) 

where 0τ  equals to 
2 R

c
⋅

 and R is the true distance to the object. With 

 (1 )
2
s cV − ⋅

≅ . (4.10) 

we obtain the roundtrip travel time: 

 ( )0 0
2 (1 )( , )

3
st s t

s
τ τ τ⋅ −

= + −
−

, (4.11) 

where 0τ  corresponds to the true radar object distance. The error in range detection (time delay) to 

the object depends on velocity (scale factor) and equals to 

 ( )2(1 )( , )
3e

st s t
s

τ τ−
= −

−
. (4.12) 

In accordance with Eq. 4.2 we again can conclude that in radar with wide-band correlation 

processing the radar-object range error caused by its motion does not depend on type and 

polarization of the sounding signals. Therefore the error in range measurement is the same for both 

channels of polarimetric radar with simultaneous measurement of scattering matrix elements. It 

means that in case of a compound radar object its motion can not be interpreted by the presence of 

other non-existent objects and that the radial velocity of radar objects in the wide-band model is not 

strictly limited anymore. 
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4.3 De-ramping Processing 
De-ramping processing has not been designed for observing moving objects when the motion 

can not be neglected (fast moving radar objects) over the time interval of a single measurement. 

However, radar scenes include moving objects most often. 

As for correlation processing we introduced in last Section two models for the received 

signal, namely the narrow-band model and the wide-band model. It is recalled here that the 

differences of the wide-band and narrow-band models manifest themselves when fast moving radar 

objects are under observation. 

De-ramping processing of signals coming from moving objects is similar for both 

polarimetric radar channels and for both sophisticated sounding signals. So for clarity sake the 

observed object motion is explained for one sophisticated signal only. This explains why the 

spectra of cross-correlation signals are not shown in the figures, which will be presented in the two 

next paragraphs. 

 

4.3.1 Narrow-band De-ramping Processing 
In the narrow-band model the scale factor s  is approximated by a Doppler shift df  (see 

Section 4.1). This approximation assumes that all frequencies in the signals are shifted equally. 

We now consider the narrow-band de-ramping processing in the following example where an 

FM-CW radar observes four point objects (1, 2, 3, 4). Fig. 4.5-a shows the time frequency 

representation of the received signals. All objects are located at the same radial range 

corresponding to the roundtrip time delay τ . One object is stable (its radial velocity equals to zero, 

1 0V = ), one object moves towards the radar ( 2 0V < ) and two objects move away from the radar 

with different radial velocities ( 4 3 0V V> > ). 

The time frequency representation of the de-ramped signals in the time-frequency plane for 

the narrow-band model is shown in Fig. 4.5-b. The solid gray lines show the limits of the analyzed 

time-frequency region (from maxτ  to T  in time and from 0  to maxbf  in frequency). If the 

sinusoidal beat signal corresponding to a fast-moving radar object falls outside these limits (e.g. 

Signal 4 in Fig. 4.5-a) it will not be detected, meaning signal 4 is absent in Fig. 4.5-b. 

The main parameters in narrow-band de-ramping processing are given below.  

Potential range resolution. According to Fig. 4.5-b the de-ramped signals defined by the 

moving objects are sine beat signals occupying the whole analyzed time interval max( )T τ− . As is 

known the range resolution in the de-ramping procedure is determined by the sine-signal duration 

(Eq. 3.19). So according to the narrow-band model the range resolution for the de-ramping 

processing does not depend on the observed object motion. 
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Frequency shift of the received signals. According to the narrow-band signal model 

described in Section 4.1 the signal scattered by the moving object obtains a frequency shift 

(Doppler shift). This shift depends on both the radar object velocity V  and the carrier frequency 

cf  of the vector sounding signal (Eq. 4.1). The frequency bandwidths of the four considered 

signals (Fig. 4.5) are shifted, but their values do not change: 

 1 2 3 4 .F F F F FΔ = Δ = Δ = Δ = Δ  

Additional time shift of the received signals. The roundtrip time delay for the narrow-band 

model doesn’t depend on the object velocity. So there is no additional time shift for the narrow-

band model. However, we should be aware that the Doppler shift of the scattered signal results in a 

range error. 

Range error. The Doppler shift changes the actual frequency of the useful sine signals. So 

according to Eq. 3.14 the range definition error ( eR ) can be written as 

 
2

d
e

T f cR
F
⋅

= ⋅
Δ

, (4.13) 
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Fig. 4.5 – Narrow-band model: time-frequency representation of a) the received signals; b) the 

de-ramped signals. 
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where df  is the Doppler frequency  (the difference between the true beat frequency and the 

estimated one), T  is the radar duty cycle, FΔ  is the sounding signals bandwidth, c  is the light 

velocity. When the radar object moves towards the radar (and/or the radar moves to the observed 

object) the Doppler shift is positive and the estimated range will be more than the true range. 

Fig. 4.6 shows the de-ramped signals corresponding to Fig. 4.5-b. All objects are located at 

the same range. The first object is stable, its Doppler shift is equal to zero ( 1 0df = ) and its beat 

frequency, 1bf  (which is negative for an up-going slope), corresponds to the true range. The second 

object moves towards the radar, its Doppler shift is positive ( 2 0df > ) and the resulting calculated 

beat frequency becomes less than the true beat frequency ( 2 1 2 1b b d bf f f f= + < ). So the 

estimated range of the second object will be less than the true one. By contrast the signal 

determined by the third object has a negative Doppler shift ( 3 0df < ) and its resulting beat 

frequency is less than the true beat frequency ( 3 1 3 1b b d bf f f f= + > ). The fourth signal (see Fig. 

4.5) can not be detected. Although all three detected signals have the same energy (amplitude and 

duration) the amplitudes of their spectra may be different because of the mutual influence of the 

signals’ spectra via the side-lobes. 

 

4.3.2 Wide-band De-ramping Processing 
Fig. 4.7-a shows the time-frequency representation of the received signals for FM-CW radar 

when four point objects in the same range are observed. One object is stable (its scale factor equals 

to unity, 1 1s = ), one object moves towards the radar ( 2 1s > ) and two objects move away from the 

radar with different radial velocities which determine the different scale factors 3s  and 4s  

( 4 3 1s s< < ). 

0
1bf 3bf2bf maxbf Beat frequency 

(range)

Signal 1Signal 2 Signal 3

3df2df
 

Fig. 4.6 – Spectra of the de-ramped signals (Fig. 4.5.b) the narrow-band model. 
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The time frequency representation of the de-ramped signals on the time-frequency plane for 

the wide-band model is shown in Fig. 4.7-b. The gray lines show the limits of the analyzed time-

frequency region (from maxτ  to T  in time and from 0  to maxbf  in frequency). 

The de-ramped signals in the wide-band model (Fig. 4.7-b) learn the following. The de-

ramped signal defined by the fastest moving objects may still be present in the analyzed time-

frequency region. The signal may be beyond the analyzed region partially or completely. Detection 

of target 4 depends on this time-frequency interval. 

The main parameters of the wide-band de-ramping processing are given next.  

Potential range resolution for the wide-band model. According to Fig. 4.7-b the de-

ramped signals defined by the moving objects are LFM-signals which can occupy the analyzed 

time interval totally or partially. In case of a moving radar object the range resolution is derived 

from the corresponding LFM-signal contributing to the de-ramped signal spectrum. The object 

motion broadens the spectra of the de-ramped signal from a sine-spectrum to a LFM-signal 

spectrum. So for the wide-band model the range resolution does depend on the observed object 

motion.  

The comparison of the limited sine signal spectrum width and the corresponding de-ramped 
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Fig. 4.7 – Wide-band model: time-frequency representation of a) the received signals; b) the de-

ramped signals. 
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LFM-signal spectrum width can give us criteria for de-ramping processing efficiency when moving 

objects are observed. We note here that the results proposed in this Section show only qualitative 

but not quantitative bandwidth effects in case of moving objects observations. 

Frequency shift of the received signals. A fast-moving radar object changes the spectrum 

of the LFM-signal according to the scale factor s . All frequencies of the signal scattered by the 

fast-moving object are multiplied by s . So the bandwidths of the four considered signals (Fig. 4.7) 

and their extremes in frequencies can be written as 
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Furthermore, it should be noted that if a part of the received de-ramped signal or the whole 

signal is outside the analyzed time-frequency region (the gray lines in Fig. 4.7-b), the signal will 

not be processed. 

Additional time shift of the received signals. The additional time shift of the received 

signals depends on both the radial velocity of the object (V ) and the roundtrip time delay (τ ) 

corresponding to the true range [1]. We find 

 2
shift

V
c V

τ τ⋅
= ⋅

+
, (4.14) 

where c  is the light velocity. A positive radial velocity of the object (the object moves away from 

the radar) results in a positive additional time shift. So the estimated range will be more far than the 

true range. 

Range definition error. De-ramping processing utilizes a range estimation in frequency 

domain. So the frequency shift in the de-ramped signals relative to the sine-signal frequency 

(corresponding to the true range) can be determined from its difference with the center frequency 

of the LFM-signal within the limited analyzed time-frequency region (Fig. 4.7-b) . 

Fig. 4.8 shows the de-ramped signals corresponding to Fig. 4.7-b. All objects are located at 

the same range. The first object is stable, its scale factor equals to unity ( 1 1s = ) and its beat 

frequency, 1bf , corresponds to the true range. The second object moves to the radar and its beat 

frequency is less than the true beat frequency ( 2 1b bf f> ). So the estimated range of the second 

object will be less than the true one. By contrast the signal determined by the third object has a beat 

frequency higher than the true beat frequency ( 3 1b bf f< ). The fourth signal can not be fully used 

(part of signal is outside the analyzed time-frequency region); the highest velocity results in the 

widest spectrum with the smallest amplitude. We note that in case of fast-moving object 

observations beat-signal spectrum widening takes place. 
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The range definition error defined by the object motion can be written: 

 
2

b
e

T f cR
F
⋅Δ

= ⋅
Δ

, (4.15) 

where bfΔ  is the difference between the true beat frequency and the estimated beat frequency. The 

error resulting from Eq. 4.15 depends, therefore, on the signal spectra widths. Eq. 4.13 is the 

particular case of Eq. 4.15, when the beat frequency difference is determined from the Doppler 

shift. 

Finally we remark that the de-ramping processing can be tuned for observing objects with 

specific radial velocities using the method proposed in Chapter 6 and adaptive signal processing 

can be applied for suppression of interfering LFM-signals in the de-ramped signal spectra. 

  

4.4 Conclusion 
Specific bandwidth effects appearing when fast-moving objects are observed have been 

analyzed for two types of signal models (narrow-band and wide-band models) and for two 

techniques of sophisticated signal processing (correlation processing and de-ramping processing). 

The wide-band correlation processing which is the generalization of the narrow-band allows us to 

overcome the limitations of the sounding signal BT-product and of the velocity of the observed 

radar objects. A novel wide-band correlation processing applicable to dual orthogonal polarimetric 

radar signals has been designed. A new representation of the wide-band de-ramping processing has 

been developed and the quantitative comparison between the narrow-band and wide-band de-

ramping processing has been done. The influence of fast-moving objects has been analyzed for the 

de-ramped signals in LFM radar and differences between the wide-band signal model and the 

narrow-band one has been shown. 
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Fig. 4.8 – Spectra of the de-ramped signals (Fig. 4.7.b) for the wide-band model. 
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5. Quasi-Simultaneous Measurement of Scattering Matrix 
Elements in Polarimetric Radar with Continuous 
Waveforms Providing High-Level Isolation between Radar 
Channels 

 

The chapter presents a novel de-ramping technique which provides high-level isolation between 

branches in FM-CW radar channels. The radar hardware is splitting the received signals with 

orthogonal polarizations and provides the wanted isolation between polarimetric radar channels. 

The isolation between the branches in channels is strongly dependent on the time interval when the 

useful scattered signals, determined from the sounding signals with orthogonal polarizations, 

occupy the same bandwidth. A pair of LFM-signals having the same form and time shifted relative 

to each other is proposed in the technique. Because of this time shift useful scattered signals 

defined with the different sounding signals occupy different bandwidths at every time instant. So 

de-ramping processing can give the high level of isolation provided with the LPFs used in the de-

ramping scheme. 

 

 

5.1 Problem Statement 
Signals with dual orthogonality are needed in polarimetric radar with simultaneous 

measurement of all scattering matrix elements [1-5]. In FM-CW polarimetric radar the 

conventional sounding signals are LFM-signals with opposite (up-going and down-going) slopes. 

Such type of sounding signals allows to split all elements of the scattering matrix and to measure 

all of them simultaneously during the signals’ sweep time (radar duty cycle). However, there are 

two problems which limit the accuracy in the estimations when de-ramping processing is used. 

Problem 1: Side-lobes in the frequency domain. The useful beat signals (tones) are 

compressed after using the Fourier transform. Their spectra have the information parts (main-lobes) 

and side-lobes which appear because of the limited time duration of the beat signals, that is the 

analyzed time interval (see Paragraph 3.3.2). Side-lobes in frequency domain have the same 

negative influence as side-lobes in time domain have for correlation processing (e.g. matched 

filtering). They limit the dynamic range of amplitudes of useful received signals. 
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Problem 1 can be solved efficiently using weighting (e.g. the weighting function shown in 

Fig. 5.1-a) to the beat signal prior to the Fourier transform [6]. However, weighting of beat signals 

can add to Problem 2 because it decreases the amplitudes of useful beat-signals at the edges and 

does not change the amplitudes of the interfering (cross-) beat signals (Fig. 5.1-b). We note here 

that beat frequencies in Fig. 5.1.b correspond to the arbitrary objects and are shown here as an 

example. 

Problem 2: Isolation between the branches within polarimetric radar channels. When the 

received signals both occupy the same frequency bandwidth and time interval they can have 

relatively high level of cross-correlation. This time interval is called cross-correlation region (see 

Paragraph 3.4.2). Although cross-beat frequencies (Fig. 5.1-b) are non-stationary along the 

analyzed time interval (actually cross-beat frequencies interfere only during a part of the analyzed 

time interval) their frequencies occupy the whole beat frequency bandwidth ( max0... bf ). It can limit 

the accuracy of SM estimations considerably. So the increase of isolation between the branches in 

FM-CW polarimetric radar is of interest. 

Suppression of beat-signals in the middle of the analyzed time interval (Fig. 5.1-b) is 

unacceptable, because it will limit the beat signals’ duration and therefore the radar range 

resolution (see Paragraph 3.3.2). So a new type of sounding signals which do not result in cross-

beat frequencies in FM-CW radar receiver is of interest. 

It should be noted that isolation between the two polarimetric radar channels 1 and 2 will not 

be considered here because this isolation is realized in the radar hardware by careful splitting of the 

received signals having orthogonal polarizations. 

maxτ
maxτ

maxT τ−
maxτ T

maxbf

maxbf

maxτ T

T/ 2T

/ 2T

 
 

Fig. 5.1 – a) Weighting function (e.g. Hamming function with parameter 0.54) for the beat 

signals; b) beat-frequency representation of objects per radar channel. 
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The structure of the chapter is the following. Section 5.2 proposes a new type of vector 

sounding signal and the corresponding technique providing a high-isolation level between the 

branches per polarimetric radar channel. The unambiguous range and limitations of the proposed 

technique are also considered in Section 5.2. Section 5.3 gives the estimation of isolation between 

branches in PARSAX radar channels when the proposed technique is implemented. 

 

5.2 De-ramping Technique with Quasi-Simultaneous 
Measurement of Scattering Matrix Elements 

5.2.1 Continuous LFM-signals with a Time Shift Relative to Each Other 
Continuous LFM-signals having the same form but with a relative time shift are proposed for 

the de-ramping technique applicable to FM-CW polarimetric radar. A time shift for LFM-signals 

corresponds to a frequency shift. A time shift between the same LFM-signals of more than the 

maximum roundtrip time delay, maxτ , can result in high-level isolation between branches in 

polarimetric radar channels which is then only limited by the amplitude-frequency responses of the 

LPFs used in the de-ramping filter. 

The new type of vector sounding signal (Eq. 2.10) can be written as: 

 11

12

( )( )
( )

( )( ) shift

u tu t
t

u t tu t
⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
u

��
�

��
, (5.1) 

where 1( )u t�  is an LFM-signal (e.g. with up-going slope) transmitted with the first (horizontal) 

polarization, 2 1( ) ( )shiftu t u t t= −� �  is the shifted LFM-signal with the second (vertical) polarization 

and shiftt  is the time shift between the continuous LFM-signals. The sounding signals are shown in 

Fig. 5.2-a with the solid lines (black and gray respectively). In the context of a prior uncertainty 

concerning the radar object we consider that the maximum roundtrip time delay of received signals 

is equal to maxτ  (radar parameter). 

Fig. 5.2.a also shows the frequency plot of received signals at maximum range (determined 

by the radar system) in both branches of one radar channel (dashed black and gray lines) where 

maxτ  is the maximum allowed time delay. The frequency plots of the de-ramped received signals 

(beat signals) are represented in Fig. 5.2.b-e. In the Figure T  is the duty cycle of the radar, FΔ  

means the frequency excursion, maxbf  is the maximum beat frequency of the de-ramped signals and 

difff  is the frequency difference between useful signals in the radar channel branches at every time 

instant. Amplitudes of cross-beat signals (Fig. 5.2.d-e) are equal to zero in case of ideal LPF’s used 

in the de-ramping scheme (Fig. 5.3). 
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For real LPFs used in the de-ramping chain, the isolation between branches per polarimetric 

radar channel is dependent on: 

1. the amplitude-frequency responses per branch; 

2. the frequency difference, difff , between the useful signals in the radar channel branches. 

The isolation between branches in PARSAX radar channels is estimated in Section 5.3. 

Fig. 5.3 shows the simplified scheme for the de-ramping filter when two continuous LFM-

signals with relative time shift are used. The scheme is almost identical to the general de-ramping 

scheme (Fig. 3.6). However the blocks utilizing Fast Fourier Transform (FFT) are different for both 

branches (FFT 1 and FFT 2) because they utilize Fourier transforms in different time intervals 

shifted relative to each other, similar to the way the sounding LFM-signals are shifted. 

For estimating all scattering matrix elements each received signal ( 1( )x t� , 2 ( )x t� ) is mixed 

with replicas of the transmitted waveforms ( 1( )u t� , 1( )shiftu t t−� ). The de-ramping technique 
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Fig. 5.2 – Frequency plot of continuous LFM-signals with a relative time shift and their beat 

frequencies in case of ideal LPFs  in the branches of one polarimetric radar channel. 
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proposed in this section is based on the transformation of de-ramped (beat) signals (after low-pass 

filtering) into the frequency domain (using FFT). This technique provides the resulting spectra as 

function of beat frequencies ( bf ), which correspond to range profiles for all four complex elements 

of the scattering matrix; we obtain 

( ){ } ( ){ }
( ){ } ( ){ }

* *
1 1 1 111 12

* *
2 1 2 121 22

ˆ ˆ 1 ( ) ( ) 2 ( ) ( )( ) ( )
ˆ ˆ 1 ( ) ( ) 2 ( ) ( )( ) ( )

shiftb b

shiftb b

FFT LPF x t u t FFT LPF x t u t tS f S f

FFT LPF x t u t FFT LPF x t u t tS f S f
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⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥ ⋅ ⋅ −⎣ ⎦ ⎣ ⎦

� � � �� �
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,  (5.2) 

where [ ]max ...t Tτ∈ . 

 

5.2.2 Unambiguous Range Estimation 
The ambiguity in range estimation appears when a signal defined by one duty cycle of the 

radar and scattered from a far-located object can coincide in time with a signal defined by the next 

duty cycle and scattered from a near-located object. Since FM-CW radar with continuous 

waveforms receives scattered signals continuously, the unambiguous range ( 1R ) is ultimately 

determined by the maximum unambiguous time delay equal to the radar duty cycle (T ). In this 

ultimate case the unambiguous range, which is marked with index “1” in Fig. 5.4, equals to 
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Fig. 5.3 – Simplified scheme for de-ramping filter when two continuous LFM-signals with a 

relative time shift are used. 
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1 2
c TR ⋅

= . When the same LFM-signal with a time shift is used as second vector sounding signal 

component, the maximum unambiguous time delay changes. The corresponding ultimate 

unambiguous range, which is marked with indices “2” and “3” in Fig. 5.4, becomes the minimum 

of 2 2
shiftc t

R
⋅

=  for max 2shift
Ttτ < ≤  or 3

( )
2

shiftc T t
R

⋅ −
=  for ( )max2 shift

T t T τ< < − . 

It can be seen from Fig. 5.4 that the maximum ultimate unambiguous range for the here-

proposed technique will be obtained for a time shift between sounding LFM-signals which is equal 

to half of the signals’ repetition period (Fig. 5.5). The maximum range ( maxR ) is marked in Fig. 

5.4-5.5 for FM-CW radar with max 0.1Tτ = . 

For the here-proposed technique we face the following contradiction in any situation. On the 

one hand, a small time shift shiftt , is desirable, because the estimations of SM elements should be 
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Fig. 5.4 – Unambiguous ranges for de-ramping processing, general case. 
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Fig. 5.5 – Ultimate unambiguous ranges for de-ramping processing in case 2shiftt T= . 
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close to simultaneous measurement estimations. On the other hand, a small time shift can limit the 

ultimate unambiguous range. So a compromise should be found when the here-proposed technique 

is utilized. 

5.2.3 Limitations of the Here-Proposed Technique 
The technique proposed in this chapter has a number of limitations to the type of used 

sounding signals. A first limitation is: 

1. Quasi-simultaneity of measurements. 

We know that the vector sounding signal components (two sounding signals with orthogonal 

polarizations) are utilized for estimation of the scattering matrix columns. Since sounding LFM-

signals with the same form but with a time shift are used as vector sounding signal components, the 

estimations of SM columns are calculated at different but overlapping time intervals (see Fig. 

5.2.b-c). So the proposed technique utilizes quasi-simultaneous measurements of SM elements. In 

case of fast moving or fast-fluctuating radar targets the impact of this quasi-simultaneous approach 

should be estimated. 

A second limitation also concerns the time shift between the continuous LFM sounding 

signals in connection to the unambiguous range (see Paragraph 5.2.2). 

2. Unambiguous range. 

The time shift limits the ultimate unambiguous range for FM-CW polarimetric radar. For the 

proposed technique this range is determined not by the signals’ repetition period but by the 

minimal time shift between the sounding signals. So the maximum ultimate range for the proposed 

technique equals to half of the sweep time. It should be noted that the ultimate range is in general 

much more than the maximum observed range defined by the maximum time delay (maximum beat 

frequency). 

The third limitation is general for FM-CW radar using sounding LFM-signals and is given 

here for the completeness. 

3. Non-linearities in the beat signals. 

Sometimes the sounding signal modulation can not be provided as ideal linear, and a 

frequency non-linearity is present in the transmitted signal. In this case the received de-ramped 

signals (beat signals) also have non-linearities which cause range resolution degradation in FM-CW 

radar. From earlier research we know that the range resolution degradation is greater for larger 

observed range [7]. So non-linearities in the beat signals are not desirable in modern high-

resolution radar as in the PARSAX system. 

The described problem was solved in IRCTR TU Delft. A novel algorithm was developed, 

which completely removes the effects of non-linearities in the beat signals, independently of range 

and Doppler [7-9]. As for the here-proposed de-ramping technique the attention should be paid to 
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the bandwidths of the LPFs by taking possible deviations in the transmitted signal into 

consideration. 

Despite the de-ramping technique with quasi-simultaneous measurement of SM elements has 

the here-considered limitations, it may provide high-level isolation between branches per FM-CW 

polarimetric radar channel. A concrete verification for the PARSAX radar is presented in next 

Section. 

5.3 PARSAX Isolation Estimation 
We here consider the possibility of using the de-ramping technique proposed in the previous 

section for the IRCTR-PARSAX radar system.  

The proposed de-ramping technique provides an isolation independent on the observed radar 

target; just the amplitude-frequency responses of the LPFs (see Fig. 5.3) determine the isolation 

between branches in each FM-CW polarimetric radar channel. 

For simulation purposes linear-phase equi-ripple filters were chosen. Such kind of filter is 

desirable because it has a maximum deviation from the ideal filter which is lowest when we 

compare this type of filter with other linear-phase FIR filters of the same order. Equi-ripple filters 

are ideally suited for applications in which a specific tolerance must be met, such as when we 

should design a filter with a tolerance with respect to a given minimum stop-band attenuation or a 

given maximum pass-band ripple. 

Fig. 5.6 shows the amplitude-frequency response of the equi-ripple filter. pf  and sf  mean 

pass-band frequency and stop-band frequency respectively. 

The following considerations were taken into account for the modelling: 

a. The pass-band frequency ( pf ) of the equi-ripple filter is known and equal to the maximum 

frequency of the beat signal ( maxbf ). 

b. The stop-band frequency ( sf ) and in particular the ratio of the stop-band frequency to the pass-

 

sf difff FΔpf

maxp bf f≡

0
 

 

Fig. 5.6 − Amplitude-frequency response function of an equi-ripple filter. 
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band frequency ( s pf f ) was chosen as parameter. 

For simulation the pass-band ripple (which is a design parameter) of the equi-ripple filter is 

equal to 1 dB for all low-pass filters included in the de-ramping scheme. 

The maximum roundtrip time delay maxτ  for the PARSAX radar is equal to 0.1 ms, while the 

sweep time of LFM-signals is 1 ms (see Table A.1). So the ratio max

T
τ

, as parameter in the 
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Fig. 5.7 − De-ramping isolation when LFM-signals with a relative time shift are used in 

combination with an equi-ripple filter with different parameters; a) max 0.05 Tτ = ⋅  

and b) max 0.1 Tτ = ⋅ . 
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modeling, equals to 0.1. For comparison of modeling results, we also calculated the isolation for 

max 0.05
T
τ

= . 

Fig. 5.7 can be used for choosing the time shift ( shiftt ) between the sounding signals having 

different polarization, assuming a required isolation level. The figures are presented for two ratios 

s pf f  of stop-band to pass-band frequency, that is 1.5 and 3. Fig. 5.7.a and 5.7.b show the 

isolation for two maximum time delays of the received signal, for 0.05 T⋅  and 0.1 T⋅  respectively. 

Points A-C in Fig. 5.8 correspond to: 

max maxbF f TC
F T

τΔ − −
→ ≡

Δ
0.5

2 2
F TB
F T

Δ
→ ≡ ≡

⋅Δ ⋅
max maxbfA
F T

τ
→ ≡

Δ , 

max 0.1 Tτ = ⋅ . 

Fig. 5.7 can also be used for our choice of time shift ( shiftt ) between sounding signals with 

different polarization. For example when a maximum time delay of 0.1 T⋅  and an equi-ripple filter 

of order 50 with 1.5s pf f =  are selected an isolation of 78 dB is feasible for 

( )0.4...0.6shiftt T= ⋅ . The isolation determined from the LPFs in the radar system can thus be very 

high. 

 

5.4 Conclusion  
This chapter has described a novel technique for continuous “quasi-simultaneous” 

measurement of SM elements in FM-CW polarimetric radar. The simulation results have shown 

that very high isolation levels are achievable. Moreover the proposed technique retains the 

advantages of application of sounding signals with continuous waveforms. Limitations of the 

proposed technique have also been considered in this chapter. 
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6. Flexible De-Ramping Processing 
 

This chapter presents a novel flexible de-ramping processing applicable for linear FM-CW radars. 

By utilizing special supporting signals the here-proposed technique allows for solving three tasks 

which can affect the FM-CW radar performance, namely a change in signal bandwidth, shift of 

beat frequency bands, and selection of range interval among the observed ranges for high-range 

resolution. The first task provides a varying of radar range resolution without considerable 

receiver upgrade and offers therefore flexibility of this technique. Shifting the beat signals’ 

bandwidth (the second task) provides flexibility in filters because the filtering of beat signals can 

then take place at preferred frequencies. The third task allows for an observation of a part of the 

full radar range, namely the selection of range interval by using flexibility in localization of the 

beat signals’ bandwidth, while in addition there is no need to change the amplitude-frequency 

responses of the used filters. 

 

 

6.1 Flexible De-ramping Principle 
Flexible de-ramping for linear FM-CW radar may execute the following tasks:  

1. change of the received signal bandwidth without range resolution decrease; 

2. shift in the beat frequency band. 

3. selection of range interval with high range resolution. 

The reasons for use of flexible de-ramping processing are the following: 

The first task arises from our wish to improve existing FM-CW radar systems in the sense 

that when the sweep frequency of the sounding LFM-signal is increased for better range resolution, 

a change of the whole radar receiver is not desirable. In such a case the decrease of the received 

signal sweep frequency is eligible. 

The second task is associated with the potential integrating of a low-pass filter (LPF) or 

band-pass filter (BPF) applied to the mixed signal in the FM-CW radar receiver. 

The third task takes place when only a part of the estimated ranges is of interest, e.g. when 

the approximate range of wanted objects under observation is known. 
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For explanation of flexible de-ramping processing we start from the de-ramping basics 

explained before (see Paragraph 3.3.2). The typical de-ramping processing can be described in 

three steps  

1. Multiplication of the received signal and transmitted signal replica; 

2. Low-pass filtering; 

3. Fourier Transform (FT). 

Since a Fourier Transform is utilized in practice as Fast Fourier Transform, we use FFT 

hereinafter. 

In this section the flexible de-ramping principle is first explained for a single-channel LFM-

CW radar (Fig. 6.1). Flexible de-ramping for polarimetric radar with simultaneous measurement of 

scattering matrix elements is considered in the next section of this chapter. 

The sounding LFM-signal having an up-going slope (see Paragraph 2.2.1) for example, can 

be written as 

 21
1 1 1( ) exp 2

2
ku t j t f tπ ϕ⎡ ⎤⎛ ⎞= ⋅ ⋅ ⋅ + ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

� ,  [ ]0...t T∈ , (6.1) 

where 1k  (called sweep rate; dimension 1/sec2) is a positive constant which determines the 

frequency deviation ( 1FΔ ) of the sounding signal, 1f  and 1ϕ  are the initial frequency and phase of 

the sounding signal. Flexible de-ramping for a sounding LFM-signal having down-going slope is 

utilized in a similar way and is considered in the next section when describing the vector sounding 

signal. 

For estimation of the reflection coefficients as function of range (beat frequency) the 

received signal, ( )x t� , is mixed with the replica of the transmitted waveform, 1( )u t� , as illustrated in 

Fig. 6.1. An FFT is applied to the so-obtained beat signals after demodulation and low-pass 

filtering. The resulting spectrum as function of beat frequency ( bf ) for each ramp corresponds to 

the estimation of reflection coefficients as function of beat frequency: 

1( )u t�

( )x t�
ˆ ( )bR f�

 
 

Fig. 6.1 – Simplified scheme for a typical de-ramping filter in a “standard” single-channel LFM-CW 

radar. 
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 [ ]1
ˆ ( ) ( ) ( )bR f FFT LPF x t u t⎡ ⎤= ⋅⎣ ⎦
� � � , (6.2) 

where the FFT is calculated for signals within the time interval [ ]max ...Tτ ; maxτ  is the maximum 

time delay for the received signals and T  is the duty cycle of the FM-CW radar.  

The delayed copy of the signal can be written as 

 21
1 1 1( ) exp 2 ( ) ( )

2
ku t j t f tτ π τ τ ϕ⎡ ⎤⎛ ⎞− = ⋅ ⋅ ⋅ − + ⋅ − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

� , (6.3) 

where the roundtrip time delay, τ , can vary over the interval [ ]max0...τ . The multiplication of the 

transmitted signal and its delayed copy gives the sum signal (with sum frequencies) and difference 

signal (with difference frequencies). The sum signal is filtered out by the LPF and the difference 

signal containing beat frequencies is of interest. 

The multiplication of the transmitted signal and its delayed replica after low-pass filtering 

can be written as 

 21
1 1 1 1( ) ( ) exp 2

2
ku t u t j k t fτ π τ τ τ⎡ ⎤⎛ ⎞− ⋅ = ⋅ ⋅ − ⋅ ⋅ + ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

� � . (6.4) 

The beat frequency is proportional to the echo signal roundtrip time delay, τ , determining 

the radar object range (the beat frequency corresponds to the first item in the exponential term of 

Eq. 6.4). The two other terms are constants. 

The FM-CW radar receiver has a fixed beat frequency bandwidth bfΔ  for a definite 

maximum time delay maxτ . The increase of sounding signal bandwidth leads to the proportional 

increase of the beat frequency bandwidth and, therefore, to the range resolution increase (see Eq. 

3.13). However a sounding signal bandwidth increase can demand the corresponding decrease of 

the received signal bandwidth if the existing radar hardware re-use is desirable. The received signal 

bandwidth can be utilized if we apply flexible de-ramping processing. Problems concerning the 

observed range limitations due to increasing the sounding LFM-signal bandwidth and the impact 

are described in [2].  

A possible block-diagram for FM-CW radar using flexible de-ramping processing is shown 

in Fig. 6.2. We note that two blocks for sounding signal bandwidth increase and received signal 

bandwidth decrease were added to the existing FM-CW radar hardware. 1FΔ  is the bandwidth of 

the signal produced by the existing radar transmitter. It determines the beat frequency bandwidth 

1bfΔ  according to Eq. 3.13. 2FΔ  corresponding to the modified (increased) sounding signal 

bandwidth, which results into the increased range resolution. The corresponding beat frequency 

bandwidth is 2bfΔ . We choose 2 3F FΔ > Δ , where 3FΔ  corresponds to the bandwidth of the 
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existing radar hardware of both transmitter and receiver. The condition 1 3F FΔ ≤ Δ  gives us some 

freedom in the LFM-sounding signal within the existing transmitter hardware bandwidth. 

The bandwidth increase and bandwidth decrease of LFM-signals, can be organized by using 

stretched processing [1]. The stretching is provided via a supporting signal, ( )v t� , which is an 

LFM-signal with strict constraints on selected waveform parameters: 

 20
0 0( ) exp 2

2
kv t j t f tπ ϕ⎡ ⎤⎛ ⎞= ⋅ ⋅ ⋅ + ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

� ,   [ ]0...t T∈ ; (6.5) 

where 0k , 0f  and 0ϕ  are the sweep rate, initial frequency and initial phase, respectively. It is noted 

that a slow-down for an up-going LFM-signal occurs when the sweep rate 0k  is positive [1]. 

Flexible de-ramping processing can be described in four steps (Fig. 6.3): 

1. Stretching of the received signal using a supporting LFM-signal; 

2. Multiplication of the stretched received signal with a modified transmitted signal; 

3. Low-pass or band pass filtering; 

4. Fast Fourier Transform. 

The first and second step can be joined in practice. However, for better describing the various 

processing aspects proposed in this chapter they are considered separately.  

Existing 
FM-CW radar 

transmitter

Sounding 
signal 

bandwidth 
increase

Received 
signal 

bandwidth 
decrease

Existing 
FM-CW radar 

receiver

Radar object with 
reflection coefficients

Sounding 
signal

2FΔ 3FΔ

Modified 
sounding
signal

Received 
signal 

Modified 
received signal 

1( )u t�
2 ( )u t� ( )x t�

Radar transmitter Radar receiver

R�

1 3F FΔ ≤
Estimation 
of reflection 
coefficients 

as function of beat 
frequencies

2
ˆ( )bR f�

2bf(      is proportional
to range)

 
Fig. 6.2 – Possible diagram for FM-CW radar using flexible de-ramping processing. 
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6.1.1 Change of the Received Signal Bandwidth (First Variant) 
The first variant of the flexible de-ramping scheme is shown in Fig. 6.3. 

The multiplication of the received signal and supporting signal results into the stretching of 

the received signal. It changes the received signal bandwidth. It can be used as follows. It is known 

that the sounding LFM-signal bandwidth determines the FM-CW radar range resolution (see 

Paragraph 3.3.2). So for better range resolution a larger sounding signal bandwidth is wanted. In 

this case flexible de-ramping can be implemented when such a resolution change is desirable; 

however a hardware upgrade of the radar receiver is not eligible. So if a larger range resolution is 

needed (e.g. for the PARSAX radar), a sounding signal with a larger bandwidth is used together 

with a slow-down supporting signal and the radar receiver needs only an additional stretching block. 

So flexible de-ramping processing gives the flexibility to radar for obtaining different (e.g. larger) 

range resolutions without significant radar receiver upgrades. 

In analogy with Eq. 6.2 the resulting spectrum ( 2( )bR f ) as function of beat frequencies ( 2bf ) 

for the ramps of interest, corresponds to the estimated range profile and is calculated from: 

 ( )*
2 1

ˆ ( ) ( ) ( ) ( )bR f FFT LPF x t v t u t⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦
� � � � , (6.6) 

where LPF means low-pass filter and the FFT is utilized for the multiplied signals after filtering 

over the [ ]max ...Tτ -interval. The transmitted signal 1( )u t�  with parameters 1k , 1f , 1ϕ  and the 

existing radar receiver bandwidth [ ]3 3min 3max...F F FΔ =  are considered to be known. The 

parameters 0k , 0f , 0ϕ  of the supporting signal ( )v t�  occupying the bandwidth 

[ ]0 0min 0max...F F FΔ =  (the initial frequency 0f  is equal to the minimum signal frequency 0minF ) 

will be discussed now. The localization of the signals’ bandwidths is shown in Fig. 6.4. 

2
ˆ ( )bR f�( )x t�

*( )v t� 1( )u t�

 
 

Fig. 6.3 – Simplified scheme for a flexible de-ramping filter. Variant 1. 
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Fig. 6.4 shows the stretching of the received signal, namely its bandwidth decrease, which is 

based on the following considerations. The frequency band of an arbitrary LFM-signal with 

definite duration is determined from its sweep rate. So the sweep rate change provided by the 

supporting signal affects the frequency band in the receiver. Therefore, for the sweep rate of the 

supporting signal 0k  is of interest. 

The signal received by the modified FM-CW radar occupies the bandwidth 

[ ]2 2min 2max...F F FΔ =  (the initial frequency 2f  is equal to the minimum signal frequency 2minF ). 

The frequency band of the received signal in the time interval of interest (see the geometry of Fig. 

6.4) can be written as 

 ( )2 2 2 max 2 maxF k T k T kτ τΔ = ⋅ = ⋅ − + ⋅ , (6.7) 

where maxτ  is the maximum roundtrip time delay determined from the maximum object range. 

Considering the fact that 2 2bf k τ= ⋅ , Eq. (6.7) can be rewritten as 

 ( )2 2 max 2bF k T fτΔ = ⋅ − + Δ , (6.8) 

where 2bfΔ  is the width of the beat frequency band. 

Stretching does not change the width of the beat frequency band 2bfΔ . So, in analogy with 

Eq. 6.7 the frequency band of the stretched signal in the time interval of interest ( maxT τ− ) 

becomes 

 ( ) ( )3 3 max 2 2 0 max 2( )b bF k T f k k T fτ τΔ = ⋅ − + Δ = − ⋅ − + Δ . (6.9) 

Parameter 0k  for conversion of 2FΔ  into 3FΔ  can be calculated from 

 3 2
0 2

max

bF fk k
T τ

⎛ ⎞Δ −Δ
= −⎜ ⎟−⎝ ⎠

. (6.10) 
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The sweep rate of the supporting signal ( 0k ) defines its slope, which next determines the 

stretched signal bandwidth ( 2FΔ ). The initial frequency ( 0f ) of the supporting signal affects the 

shift for the stretched signal along the frequency axis. On the basis of the geometry given in Fig. 6 

the boundaries of the stretched signals, 3minF  and 3maxF , at the corresponding time points ( maxτ  

and T ) can be calculated as follows 

 
Fig. 6.4 – Time-frequency representation of the signals in the FM-CW radar receiver. 
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 3min 2 max 2 0 max 0 2

3max 2 2 0 0

( ) ( ) ,
( ) ( ).

bF k f k f f
F k T f k T f

τ τ= ⋅ + − ⋅ + − Δ
= ⋅ + − ⋅ +

 (6.11) 

From Eq. 6.11 the initial frequency of the supporting signal can then be derived 

 ( )0 max 2 0 2 2 3minF ,bf k k f fτ= ⋅ − + − Δ −  (6.12) 

or 

 ( )0 2 0 2 3maxFf T k k f= ⋅ − + − . (6.13) 

The third parameter of the supporting signal, the initial phase, 0ϕ , is not of great importance 

and must be taken into account during radar calibration. 

We note here that in the modified FM-CW radar receiver the received signals can occupy a 

bandwidth more than 3FΔ  over the time interval [ ]0...T ; however, the goal of flexible de-ramping 

processing is to obtain stretched signals within the bandwidth 3FΔ  over the time interval 

[ ]max ...Tτ . 

Knowing the solution for the first task (change of the received signal bandwidth) we can give 

the approach for solving the second task. 

 

6.1.2 Shift in Beat Frequency Band (Second Variant) 
A second variant of flexible de-ramping scheme is shown in Fig. 6.5. It is noted that the two 

multipliers in the scheme can also here be replaced by one multiplier. In this case the supporting 

signal and modified transmitted signal are replaced by one signal. However, for the explanation of 

the flexible de-ramping principle the scheme is described as presented in the figure below. 

In analogy with Eq. 6.6 the resulting spectrum as function of beat frequency ( 2bf ) for the 

ramps of interest, can be calculated from: 

 ( )*
2 3

ˆ ( ) ( ) ( ) ( )bR f FFT BPF x t v t u t⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦
� � � �  (6.14) 

2
ˆ ( )bR f�

3( )u t�

( )x t�

*( )v t�

 
Fig. 6.5 – Simplified scheme for flexible de-ramping filter. Variant 2. 
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where BPF means band-pass filter. The analyzed time interval is [ ]max ...Tτ  as before. Eq. 6.14 

corresponds to the estimated range profile. 

The transmitted signal, 1( )u t� , is modified in the radar receiver for actual de-ramping as 

follows 

 3 1( ) ( ) exp( 2 )shiftu t u t j f tπ= ⋅ ⋅ ⋅ ⋅� � , (6.15) 

where shiftf  is a positive shift in beat signal bandwidth along the frequency axis.  

Fig. 6.6 shows the frequency variation characteristics for the signals 1( )u t�  and 3( )u t� . The 

use of signal 3( )u t�  shifts the beat frequency band along the frequency axis depending on the shiftf  

value. The limiting values of the beat frequencies can be written as 

 
min

max 2

,

.
b shift

b shift b

f f

f f f

=

= + Δ
 (6.16) 

These values determine the bandwidth of the BPF. We mention here also that shiftf  is a positive 

value when the sounding signal is an up-going LFM-signal. When shiftf  has a negative value, an 

overlapping of beat frequencies in the resulting spectrum can take place. 

When the BPF-bandwidth can not be adjusted to a value equal to the beat frequency band 

( bfΔ ) or when the estimation in a selected radar range (within the allowable maximum range) is 

needed the third task appears. 

 

chirp time0 T
1f

3f

shiftf

3 ( )u t�

1( )u t�

Sounding signal replica

Modified sounding signal replica

maxτ
 

 

Fig. 6.6 – Frequency variations for signals 1( )u t�  and 3( )u t� . 



Chapter 6 

 94

6.1.3 Selection of a Range Interval with High Range Resolution (Single-
Channel) 

The maximum range in FM-CW radar is defined from the maximum time delay, τ , which is 

determined from the BPF filter bandwidth, BPFfΔ , corresponding to the maximum beat frequency 

band, bfΔ . If the bandwidth of this BPF filter is less than the beat frequency band 2bfΔ  

( 2BPF bf fΔ < Δ ), the de-ramping processing allows for observing a set of predefined co-determined 

range profiles. But by using a variable beat signal bandwidth shift, shiftf , we can observe the 

desirable (by the operator selected) range profiles. 

The de-ramping processing scheme for the third task is presented in Fig. 6.7. The 

mathematical equations for the third task correspond to Eqs. 6.14 to 6.15 obtained for solving the 

second task except that a variable beat signal bandwidth shift, min max...shift shift shiftf f f⎡ ⎤∈ ⎣ ⎦ , will be 

used. 

The wanted performance of the third task (Fig. 6.7.a-b) can be derived from the selected 

edges of the BPF amplitude-frequency response ( minBPFf  and maxBPFf ) and lead to the beat 

frequency shift variations: 

 
min max 2

max min

,

.
shift BPF b

shift BPF

f f f

f f

= −Δ

=
 (6.17) 

0
minBPFf

0
minshiftf

BPFfΔ

maxBPFf

maxshiftf
2bfΔ

( )min 2shift bf f+ Δ ( )max 2shift bf f+ Δ

 
 

Fig. 6.7 – a) Ideal amplitude-frequency response of the band-pass filter (BPF); b) beat frequencies. 
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It should be noted again that the third task is a generalization of the second task. In case of 

equality of the BPF-bandwidth and beat frequency band, 2BPF bf fΔ = Δ , the frequency shift interval 

is one value and is equal to 0. 

The main expressions for flexible de-ramping processing are given in Table 6.1. 

 

 

Table 6.1 – Flexible de-ramping mathematics. 

Parameter Expression Comment 

Sweep rate of the 

supporting signal. 
3 2

0 2
max

bF fk k
T τ

⎛ ⎞Δ − Δ
= − ⎜ ⎟−⎝ ⎠

 

3FΔ  is the desirable bandwidth of the 

stretched received signal ( 2k , bfΔ , 

T  and maxτ  are known parameters). 

Initial frequency of 

the supporting 

signal. 

( )0 max 2 0

2 2 3minb

f k k
f f F
τ= ⋅ − +

+ −Δ −
 

or 

( )0 2 0 2 3maxFf T k k f= ⋅ − + −  

3minF  is the lowest frequency of the 

received stretched signal in the 

analyzed time interval; 

3maxF  is the highest frequency of the 

received stretched signal in the 

analyzed time interval. 

The initial phase of 

the supporting 

signal. 

[ ]0 0...2ϕ π= ⋅  

0ϕ  is not of specific interest, but should 

be taken into account during radar 

calibration. 

Additional shift 

of the beat 

signals along the 

frequency axis. 
min maxshift BPF bf f f= −Δ  

minmaxshift BPFf f=  

where minBPFf  is the lowest frequency 

of the BPF amplitude-frequency 

response; 

maxBPFf  is the highest frequency of 

the BPF amplitude-frequency 

response. 

(When a beat signal shift is desired the 

LPF in the de-ramping scheme should 

be replaced by an BPF). 

 



Chapter 6 

 96

6.2 Application of Flexible De-ramping Processing in FM-CW 
Polarimetric Radar with Simultaneous Measurement of Scattering 
Matrix Elements 

Flexible de-ramping processing can be applied in FM-CW polarimetric radar with 

simultaneous measurement of scattering matrix elements. Flexibility of the de-ramping technique 

for polarimetric radar is provided with the use of two supporting signals ( 1( )v t�  and 2 ( )v t� ) which 

are also LFM-signals. Both signals are supposed to be processed with the received signals of 

horizontal and vertical polarizations correspondently. The supporting signals with corresponding 

parameters 0k , 01f , 02f , 01ϕ  and 02ϕ  are the following: 

 

20
1 01 01

20
2 02 02

( ) exp 2 ,
2

( ) exp 2 ,
2

kv t j t f t

kv t j t f t

π ϕ

π ϕ

⎡ ⎤⎛ ⎞= ⋅ ⋅ ⋅ + ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= ⋅ ⋅ − ⋅ + ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

�

�
 (6.18) 

where the first subscript “0” means the supporting signal, the second subscript (“1”, “2”) means its 

sequential number. 0k  is the sweep rate, 01f  and 02f , 01ϕ  and 02ϕ  are the initial frequencies and 

initial phases of the supporting signals occupying the bandwidth [ ]0 0min 0max...F F FΔ = . 

The vector sounding signal components (two LFM-signals) can be written as 

 

21
11 11 11

21
12 12 12

( ) exp 2 ,
2

( ) exp 2 ,
2

ku t j t f t

ku t j t f t

π ϕ

π ϕ

⎡ ⎤⎛ ⎞= ⋅ ⋅ ⋅ + ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= ⋅ ⋅ − ⋅ + ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

�

�
 (6.19) 

where the first subscript “1” means the sounding signal, the second subscript means polarization of 

the vector sounding signal component (“1” − horizontal, “2” − vertical). 1k  is the sweep rate, 11f  

and 12f , 11ϕ  and 12ϕ  are the initial frequencies and initial phases of the transmitted signals 

correspondently. The vector sounding signals are described as two LFM-signals with opposite 

slopes  

 11 3max 1

12 3min 1

,
,

f F F
f F F

= −Δ
= + Δ

 (6.20) 

where 1FΔ  is the frequency band of both signals. We remember that the existing radar hardware 

bandwidth is marked as [ ]3 3min 3max...F F FΔ = . So the first sounding signal component occupies 

[ ]1 11 3max...F f FΔ = , the second sounding signal component occupies [ ]1 3min 12...F F fΔ = , 

1 3F FΔ ≤ Δ .  
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In FM-CW polarimetric radar the same tasks (change of the received signal bandwidth, shift 

of the beat frequency band or selection of the range interval) as for the single-channel radar can 

take place. The approaches for solving these tasks in dual-channel (polarimetric) radar are 

considered in this section. 

 

6.2.1 Reduction of the Received Signal Bandwidth 
The first task should be applied when for example the sampling of the received signals with a 

bandwidth 2FΔ  is impossible, but it can be realized with the reduced bandwidth 3FΔ . In this case 

the use of two multipliers in every branch of the radar receiver (Fig. 6.8) is the solution. The beat 

frequency bandwidth 2bfΔ  stays the same for the received signals and for the signals with reduced 

bandwidth. 

The resulting spectrum as function of beat frequency ( 2bf ) for the ramps of interest 

corresponds to the estimated range profile. We find 

 

( )
( )
( )
( )

*
11 2 1 1 11

*
21 2 1 2 12

*
22 2 2 2 12

*
12 2 2 1 11

ˆ ( ) ( ) ( ) ( ) ,

ˆ ( ) ( ) ( ) ( ) ,

ˆ ( ) ( ) ( ) ( ) ,

ˆ ( ) ( ) ( ) ( ) ,

b

b

b

b

S f FFT LPF x t v t u t

S f FFT LPF x t v t u t

S f FFT LPF x t v t u t

S f FFT LPF x t v t u t

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

� � � �

� � � �

� � � �

� � � �

 (6.21) 

where LPF means low-pass filter over the [ ]20... bfΔ  pass-band. The FFT is utilized for the 

multiplied signals after filtering over the [ ]max ...Tτ  time interval for every duty cycle of the 

polarimetric FM-CW radar. 

Fig. 6.9 shows the stretching of the received signal 1( )x t�  for horizontal polarization, which is 

processed in Channel 1, in case of a bandwidth decrease. Stretching of the received signal 2 ( )x t�  

for vertical polarization, which is processed in Channel 2, is done in the same way and will not be 

considered separately. 

First, the received signal 1( )x t�  containing LFM-signals with up-going and down-going 

slopes is fed into two branches of the radar channel (Fig. 6.8). Branch 1 is meant for information 

extraction from received LFM-signals with up-going slope, Branch 2 does the same for received 

LFM-signals with down-going slope (Fig. 6.9.a). 

The first supporting signal in Channel 1 is used for slow-down the up-going LFM-signals in 

the first branch, the second supporting signal does the same according to down-going LFM-signals 

(Fig. 6.9.b) 
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Stretching of the signals results in decreased bandwidths of the useful signals (Fig. 6.9.c), 

which belong to the bandwidth of the existing radar receiver. So a considerable receiver upgrade 

may not be needed. 

When the sounding signals are LFM-signals with opposite slopes (Eq. 6.18) the sweep rates 

of the supporting signals can be calculated as follows. The frequency band of the received signal in 

the time interval of interest [ ]max ...Tτ  can be written as 

 ( )2 2 2 max 2bF k T k T fτΔ = ⋅ = ⋅ − + Δ . (6.22) 

Stretching does not change the width of the beat frequency band 2bfΔ . So, in analogy with Eq. 

6.22, the frequency band of the stretched signal in the time interval of interest ( maxT τ− ) becomes 

 ( ) ( )3 1 max 2 2 0 max 2( )b bF k T f k k T fτ τΔ = ⋅ − + Δ = − ⋅ − + Δ . (6.23) 

From both equations the parameter 0k  for conversion from 2FΔ  into 3FΔ  can be calculated 
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Fig. 6.8 – Simplified scheme of the flexible de-ramping filter for the FM-CW polarimetric radar 

receiver. Variant 1. 
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 3 2
0 2

max

bF fk k
T τ

⎛ ⎞Δ −Δ
= −⎜ ⎟−⎝ ⎠

. (6.24) 

On the basis of the geometry of Fig. 6.9 the boundaries of the stretched signals, 3minF  and 

3maxF , can be found. We derive 

 3min 2 max 21 0 max 01 2( ) ( ) ,bF k f k f fτ τ= ⋅ + − ⋅ + − Δ  (6.25) 

and 

 3max 2 max 22 0 max 02 2( ) ( ) .bF k f k f fτ τ= − ⋅ + − − ⋅ + + Δ  (6.26) 

When the lower boundary 3minF  for the existing radar receiver is known the initial 

frequencies of the supporting signals is calculated with use of Eq. 6.25 and become 

 ( )01 21 3min 2 2 0 max .bf f F f k k τ= − + Δ − − ⋅⎡ ⎤⎣ ⎦  (6.27) 
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With the upper boundary, 3maxF , known, the initial frequency of the second supporting signal is 

calculated with use of Eq. 6.26 and becomes 

 ( )02 22 3max 2 2 0 max .bf f F f k k τ= − −Δ + − ⋅⎡ ⎤⎣ ⎦  (6.28) 

Next we go to the solution of the second task for FM-CW polarimetric radar. 
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Fig. 6.9 – a) Frequency plot of continuous LFM-signals with opposite slopes; b) supporting signals; 

c) stretched signals in the time interval of interest. 
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6.2.2 Shift in the Dual-Channel Beat Frequency Band 
The second variant of flexible de-ramping filter for FM-CW polarimetric radar is shown in 

Fig. 6.10. As before, BPF means band-pass filter. 

The second task for polarimetric radar is like the already-given approach for a single-channel 

radar (see Section 6.1.2). The task can be fulfilled by introducing a sinusoidal signal to the 

sounding signal. 

The sounding vector signal components, 11( )u t�  and 12 ( )u t� , are modified in the radar 

receiver for de-ramping by 

 ( )
31 11

32 12

( ) ( ) exp( 2 ),

( ) ( ) exp( 2 ),
shift

shift

u t u t j f t

u t u t j f t

π

π

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ − ⋅

� �

� �
 (6.29) 

where 31( )u t�  and 32 ( )u t�  are the modified transmitted signals, the first subscript “3” means the 

modified sounding signals for the second task. shiftf  is the beat signal bandwidth shift for signals 

related to the up-going and down-going LFM-signals. The beat frequency shift is a positive value 
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Fig. 6.10 – Simplified scheme of the flexible de-ramping filter for FM-CW polarimetric radar.  

Variant 2. 
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for processing of up-going LFM-signals and negative for down-going LFM-signals. 

The resulting spectrum as function of beat frequency ( 2bf ) for the ramps of interest 

corresponds to the estimated range profile and can be found from 

 

( )
( )
( )
( )

*
11 2 1 1 31

*
21 2 1 2 32

*
22 2 2 2 32

*
12 2 2 1 31

ˆ ( ) ( ) ( ) ( ) ,

ˆ ( ) ( ) ( ) ( ) ,

ˆ ( ) ( ) ( ) ( ) ,

ˆ ( ) ( ) ( ) ( ) ,

b

b

b

b

S f FFT BPF x t v t u t

S f FFT BPF x t v t u t

S f FFT BPF x t v t u t

S f FFT BPF x t v t u t

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤= ⋅ ⋅⎣ ⎦⎣ ⎦

� � � �

� � � �

� � � �

� � � �

 (6.30) 

where BPF means band-pass filter. The FFT is utilized for the multiplied signals after filtering over 

the [ ]max ...Tτ -interval for every duty cycle of FM-CW radar, as discussed before. 

The limiting values of the beat frequencies can be written as 

 
min

max 2

,

,
b shift

b shift b

f f

f f f

=

= + Δ
 (6.31) 

where 2bfΔ  is the beat frequency band. These limiting values in Eq. 6.31 determine the BPF pass-

band. 

When a vector sounding signal including two LFM signals with opposite slopes is used we 

should take into account the influence of the cross (LFM) signals, which appear in the de-ramped 

signals. So the time-frequency representation of signals is of interest when a shift in the beat 

frequency band is utilized.  

Fig. 6.11 shows the flexible de-ramping processing of the received signal ( 1( )x t� ) with 

horizontal polarization, which is processed in Channel 1, in case of a shift in the beat frequency 

band. The modified transmitted signals ( 31( )u t�  and 32 ( )u t� )  have negative ( shiftf− ) and positive 

( shiftf ) frequency shifts (Fig. 6.11.a). The useful de-ramped signals (namely tone signals) are 

processed in the intermediate frequency band ( )2...shift shift bf f f⎡ ⎤+ Δ⎣ ⎦  (Fig. 6.11.b).  The cross 

(LFM) beat signals occupy a large part of the time interval along the analyzed time axis 

corresponding to the tone signals’ bandwidth. 
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The geometry of Fig. 6.11.b, namely the time-frequency representation of the cross beat 

signals, hints the way how to decrease cross beat signals existing in the tone signals bandwidth to a 

50% impact. For realizing such decrease the frequency shift ( shiftf ) of the supporting signals 

should satisfy the following condition: 

 2 2 max 2 2 22 2 or 2 ,shift b shift bf F k f f F fτ≥ Δ − ⋅ ⋅ + ≥ Δ −Δ . (6.32) 

Eq. 6.32 is defined from the geometry of the cross beat signals having a sweep rate equal to 22 k⋅ . 
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Fig. 6.11 – a) Frequency plot of continuous LFM-signals with opposite slopes and the modified 

transmitted signals; b) time-frequency representation of the de-ramped signals. 
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Fig. 6.12 shows the time-frequency representation of the de-ramped signals in case 

2 2shiftf F= Δ . 

Once again we note that if the execution of the mentioned first task is not needed two series 

multipliers in the chains of the flexible de-ramping filter can be replaced by one multiplier. 

Therefore every branch of the de-ramping filter for the FM-CW polarimetric radar (Variant 3) has 

then only one multiplier (Fig. 6.13). 

For the scheme shown in Fig. 6.13 the modified sounding signals marked with the first 

subscript “4” are calculated from 

 
( )

*
41 11 1

*
42 12 2

( ) ( ) ( ) exp( 2 ),

( ) ( ) ( ) exp( 2 ),
shift

shift

u t u t v t j f t

u t u t v t j f t

π

π

= ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ − ⋅

� � �

� � �
, (6.33) 

where 11( )u t�  and 12 ( )u t�  are the components of the vector sounding signals, shiftf  is the (beat 

signal) bandwidth shift. 

The resulting spectrum as function of beat frequency ( 2bf ) for the ramps of interest 

corresponds to the estimated range profile and are derived from 
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 (6.34) 

0 maxT τ+maxτ T 0t maxT τ+maxτ T t

f

 

2 2FΔ

2bfΔ 2bfΔ

f

2 2FΔ

 
 

Fig. 6.12 – Time-frequency representation of the de-ramped signals in case of 2 2shiftf F= Δ . 
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When the BPF-bandwidth is less than the corresponding frequency bands or when the 

estimation of a part of radar ranges (within the maximum radar range) is needed the third task is 

needed. 

 

6.2.3 Selection of a Range Interval with High Range Resolution (in 
Dual-Channel Polarimetric Radar) 

Executing the third task solution is done according the geometry of Fig. 6.7.a-b. The dual-

channel beat frequency shift is supposed to be variable. 

Assuming that in the BPFs signals can pass in the frequency band ( )1min 1max...BPF BPFf f  the 

required boundaries for the frequency shifts can be calculated as: 

 
min max 2

max min

,

.
shift BPF b

shift BPF

f f f

f f

= −Δ

=
 (6.35) 

So the equations for the third task solution for FM-CW polarimetric radar are the same as for the 

FM-CW single-channel radar. 

We note an additional advantage of selecting a range interval with high range resolution in 

case of FM-CW polarimetric radar with simultaneous measurement of SM elements. When the 
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Fig. 6.13 – Simplified scheme of the flexible de-ramping filter for FM-CW polarimetric radar.  

Variant 3. 
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BPF-bandwidth is less then the beat frequency bandwidth ( BPF bf fΔ < Δ ) the lengths of cross-beat 

frequencies after filtering in the analyzed time interval will also be less. So the energy of cross-beat 

signals will be lowered and therefore their negative influence on estimations of SM-elements will 

be diminished. 

The main expressions of the flexible de-ramping processing for polarimetric radar are given 

in Table 6.2. 

 

6.2.4 PARSAX Implementation 
This paragraph presents the numerical simulation of de-ramping processing in the FM-CW 

polarimetric radar PARSAX. Numerical simulation of de-ramping processing for a single-channel 

radar will not be considered because the results for polarimetric radar elucidates optimally the 

efficiency of the proposed technique. 

Table 6.2 – Flexible de-ramping mathematics for polarimetric radar. 

Parameter Expression Comment 

Sweep rate of 
the supporting 
signals. 3 2

0 2
max

.bF fk k
T τ

⎛ ⎞Δ −Δ
= −⎜ ⎟−⎝ ⎠

 

3FΔ  is the desirable 
bandwidth of the stretched 
received signal ( 2k , 2bfΔ , 
T  and maxτ  are known 
radar parameters). 

Initial 
frequencies of 
supporting 
signals. 

( )01 21 3min 2 2 0 max .bf f F f k k τ= − + Δ − − ⋅⎡ ⎤⎣ ⎦  

and 

( )02 22 3max 2 2 0 max .bf f F f k k τ= − −Δ + − ⋅⎡ ⎤⎣ ⎦  

3minF  is the lowest 
frequency of the received 
stretched signal in the 
analyzed time interval; 

3maxF  is the highest 
frequency of the received 
stretched signal in the 
analyzed time interval. 

Initial phases 
of the 
supporting 
signals. 

[ ]01 0...2ϕ π= ⋅ , 

[ ]02 0...2ϕ π= ⋅ . 

01ϕ  and 02ϕ  are not of 
interest for flexible de-
ramping, but should be 
taken into account during 
radar calibration. 

Additional 
shift of beat 
signals along 
the frequency 
axis. 

min max 2

max min

,

.
shift BPF b

shift BPF

f f f

f f

= −Δ

=
 

minBPFf  and maxBPFf  are 
the lowest and highest 
frequencies in the BPF 
amplitude-frequency 
response correspondently; 
(When a beat signal shift 
is desired the LPF in the 
de-ramping scheme should 
be replaced by the BPF). 
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As is known the PARSAX radar has a central frequency (fc) 3.315 GHz, maximum frequency 

deviation ( FΔ ) 50 MHz, sweep time ( T ) 1 ms, maximum time delay ( maxτ ) 0.1 ms, beat 

frequency bandwidth ( bfΔ ) 5 MHz (see Table A.1). The sounding signal can be considered as 

quasi-monochromatic and having one spectral component because it is located in a narrow 

frequency band.  

When a larger range resolution is desirable, the sounding signal bandwidth ( 2FΔ ) is 

increased. Assume an 2FΔ  equal to 300 MHz and a minimum frequency of the sounding signal 

( 21f ) equal to 9.70  GHz, its maximal frequency ( 22f ) becomes 10.00  GHz. In so doing the 

PARSAX radar receiver is operating over a vector sounding signal bandwidth ( 3FΔ ) equal to 50 

MHz and its initial frequency is equal to 3.29 GHz. It means 3min 3.29F =  GHz and  3max 3.34F =  

GHz for stretched signals in the analyzed time interval [ ]max ...Tτ . 

Sweep rates for a vector sounding signal ( 2k ) is calculated (see Paragraph 2.2.1) from 

 
6

92
2 3

300 10 300 10
1 10

Fk
T −

Δ ⋅
= = = ⋅

⋅
. 

The new beat frequency band corresponding to 2FΔ  is calculated from Eq. 3.13 

 9 3 6
2 2 max 300 10 0.1 10 30 10  Hzbf k τ −Δ = ⋅ = ⋅ ⋅ ⋅ = ⋅ . 

The supporting signals ( 1( )v t�  and 2 ( )v t� ) are used for stretching of the received signals. The 

parameters ( 0k , 01f  and 02f ) of the supporting signals are of interest. By knowing the frequency 

boundaries ( 2minF , 2maxF ) for stretched signals, the sweep rate ( 0k ) can be calculated from Eq. 

6.24: 

 
6 6

9 93 2
0 2 3 3

max

50 10 30 10300 10 277.78 10
1 10 0.1 10

bF fk k
T τ − −

⎛ ⎞ ⎛ ⎞Δ − Δ ⋅ − ⋅
= − = ⋅ − = ⋅⎜ ⎟ ⎜ ⎟− ⋅ − ⋅⎝ ⎠⎝ ⎠

. 

Likewise the initial frequencies of supporting signals are calculated according to Eq. 6.27-28: 

 
( )
( )

01 21 3min 2 2 0 max

02 22 3max 2 2 0 max

,

.
b

b

f f F f k k

f f F f k k

τ

τ

= − + Δ − − ⋅⎡ ⎤⎣ ⎦
= − − Δ + − ⋅⎡ ⎤⎣ ⎦

 

( )
( )

9 9 6 9 9 3
01

9 9 6 9 9 3
02

9.70 10 3.29 10 30 10 300 10 277.78 10 0.1 10 6.382 GHz,

10.00 10 3.34 10 30 10 300 10 277.78 10 0.1 10 6.688 GHz.

f

f

−

−

⎡ ⎤= ⋅ − ⋅ + ⋅ − ⋅ − ⋅ ⋅ ⋅ ≈⎣ ⎦
⎡ ⎤= ⋅ − ⋅ − ⋅ + ⋅ − ⋅ ⋅ ⋅ ≈⎣ ⎦

 

Phases of supporting signals are not of interest here because in any case they are taken into 

account in the radar calibration process. 
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The transmitted signals ( 11( )u t�  and 12 ( )u t� ) are used for de-ramping processing (Fig. 6.8, 

6.14). Their sweep rate 1k  and initial frequencies 11f  and 12f  are calculated as follows.  When the 

parameters of the supporting signals are known the sweep rate ( 1k ) and initial frequencies ( 11f  and 

12f ) of the transmitted signals can be calculated as follows: 

9 9 9
1 2 0 300 10 277.78 10 22.22 10 .k k k= − = ⋅ − ⋅ = ⋅  

The initial frequencies are calculated according to Eq. 6.20: 

 
9 9 3 9

11 3max 1
9 9 3 9

12 3min 1

3.34 10 22.22 10 1 10 3.318 10  Hz;

3.29 10 22.22 10 1 10 3.312 10  Hz

f F k T

f F k T

−

−

= − ⋅ = ⋅ − ⋅ ⋅ ⋅ ≈ ⋅

= + ⋅ = ⋅ + ⋅ ⋅ ⋅ ≈ ⋅
 

So the up-going and down-going transmitted signals ( 11( )u t�  and 12 ( )u t� ) occupy the bandwidths 
9 93.318 10  to 3.340 10⎡ ⎤⋅ ⋅⎣ ⎦  Hz and 9 93.290 10  to 3.312 10⎡ ⎤⋅ ⋅⎣ ⎦  Hz consequently. 

An example of this Paragraph is shown in a simplified scheme of a flexible de-ramping filter 

(Fig. 6.14) allowing a reduction of the received signal bandwidth. We note that the filter scheme 

for the PARSAX radar receiver is simplified for the better visibility of the numerical simulation 

and do not contain here such blocks like low noise amplifiers, band-pass filters and analog-to-

digital convertors. 
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Fig. 6.14 – Simplified scheme of a flexible de-ramping filter for the PARSAX radar receiver. 
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6.3 Conclusion 
This chapter has proposed a novel flexible de-ramping processing applicable to received 

signals for both single channel and dual-channel (polarimetric) radar. The proposed technique does 

not limit FM-CW radar receiver hardware with the sounding signal parameters. Flexible de-

ramping uses the special supporting signal which helps to change the received signals’ bandwidth, 

shift beat frequency band and select the range interval (beat frequencies) from the total range. 

Particularly, the example for flexible de-ramping processing developed within the work of this 

thesis for PARSAX implementation has been presented. 
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7. Cross-Correlation Decrease in FM-CW Polarimetric 
Radar with Simultaneous Measurement of Scattering 
Matrix Elements 

 

This chapter presents a novel technique for decrease of cross-correlation components existing in 

the beat-signals when a vector sounding signal is used. The knowledge about the location of the 

cross-correlation components is used and the amplitudes of the beat signals are suppressed along 

the part of the analyzed time interval. The here-proposed technique can be utilized in real time and 

thanks to its high efficiency it allows to achieve a qualitatively new level of polarimetric radar 

performance for estimations of SM elements. 

 

 

7.1 Processing Background for FM-CW Polarimetric Radar 
The purpose of the technique proposed in this chapter is suppression of cross-correlation 

components of de-ramped signals. For a better explanation of the proposed processing background 

the basic scheme of the de-ramping filter (Fig. 7.1) is reminded. As before, LPF means low-pass 

filter, FFT means fast Fourier transform. De-ramped signals at the key-points A-D are under 

consideration in this chapter.  

FM-CW radar signal handling requires understanding of the stages of sounding, propagation, 

scattering, receiving, and de-ramping processing. The up-going ( 1( )u t� ) and down-going ( 2 ( )u t� ) 

LFM-signals are transmitted with orthogonal polarizations 1 and 2 (linear horizontal and vertical 

polarizations). During the processes of propagation and scattering the received signal is created, 

[ ]1 2( ) ( ) ( ) Tt x t x t=x� � � . The polarimetric radar purpose is the measurement of the scattering matrix 

elements ( 11S� , 12S� , 21S� , 22S� ) for all observed ranges. The first component of the received signal 

with horizontal polarization, 1( )x t� , is used for the estimations 11Ŝ�  and 21Ŝ� , which are utilized in 

Channel 1. The second component of the received signal with vertical polarization, 2 ( )x t� , is used 

for the estimations 12Ŝ�  and 22Ŝ� , which are utilized in Channel 2 (upper dot in the notation means 

complex value, and a hat �  means the estimation of variable). 
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The time-frequency distribution of the received signals in the two channels of polarimetric 

radar with simultaneous measurement of SM elements is shown in Fig. 7.2.a-b. The cross-

correlation components for the de-ramping procedure are determined within the regions, in which 

replicas of the first signal (signals 1) and replicas of the second signal (signals 2) occupy the same 

time and frequency region. The signals are analyzed along the time interval [ ]max ...Tτ , where maxτ  

is maximal time delay corresponding to maximum observed range, T  is the radar duty cycle. 

 De-ramping processing by definition means the transformation of sets of LFM-signals into 

sine-signals (tones). The frequency of each tone corresponds to the definite roundtrip time delays 

determined by the corresponding range. Fig. 7.3 shows the time-frequency distribution of the de-

ramped signals in the key-points (A-D) of the scheme in case of ideal LPFs. There is the unique 

correspondence between the frequency of tones, bf , and the observed range, R  (see Paragraph 

3.4.2). So the maximum beat frequency, maxbf , determines the maximum range maxR  observed by 

the radar under design. However beat frequencies of the de-ramped signals do not contain tones and 

noise only.  

They contain also cross-correlation components (cross LFM signals) at the time when the 

useful (for the definite branch) scattered signals (with up-going or down-going slopes) occupy the 

same bandwidth. 
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Fig. 7.1 – Basic scheme of the de-ramping filter. 
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The problem is that the FFT is suitable for stationary signals on the analyzed time interval, e.g. 

for tones. However, cross-correlation components (resulting into existing cross LFM-signals) are 

not stationary (Fig. 7.3). The locally existing sets of cross LFM-signals (cross-correlation 

components) may influence the whole analyzed beat-frequency bandwidth, [ ]max0... bf . Their 

spectra can have a footprint form (Fig. 7.4). The level of the “footprints” (named also cross-

correlation level) can come above the noise level and can be different per observed radar object. The 

next de-ramped signals’ spectra were calculated without any window weighting. 

Modeling results presented in this Chapter are presented as time-frequency distributions of the 

de-ramped signals in the key-points (A-D) and their spectra. The modeling parameters conforms 

with the PARSAX radar system parameters (see Appendix A.1): 1T = ms, max 0.1τ = ms, 

max 5bf = MHz. Short Time Fourier Transform (STFT) has been used for the modeling. Signals 

scattered from five scatterers having roundtrip time delays less than maxτ , and a sixth scatterer with  
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Fig. 7.2 – Time-frequency distribution of the received signals in  

a) Channel 1 ( 1( )x t� ) and b) Channel 2 ( 2 ( )x t� ). 
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Fig. 7.3 – Time-frequency distribution of the de-ramped signals (key-points A-D) used for range 

profile estimations. 
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a roundtrip time delay a little more than maxτ  are assumed. However, as the LPFs (used in the 

modeling) are not ideal all six tone signals are visible on the time-frequency plane. Scattering 

matrices for all scatterers were chosen equal to 

1 0.1
0.1 0.5
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S� . 

A Hamming window is applied to the whole analyzed time interval for suppression of the 

spectra side-lobes defined by the finite duration of the de-ramped signals. The noise of the signals 

was chosen to be not-present for the purity of the modeling with regard to cross-correlation 

suppression. 
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Fig. 7.4 – Time-frequency distribution of the de-ramped signals in the key-points of the branches. 

6 scatterers. 
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Fig. 7.4 shows the time-frequency distribution of the de-ramped signals in the key-points of 

the branches. The analyzed time interval is ( ) ( )max ... 100...1000 μsTτ = , the beat frequency band is 

( ) ( )max0... 0...5 MHzf = . As LPFs are not ideal the frequency axes show the frequencies up to 6 

MHz. The amplitudes of the signals are normalized and their values from 0 to –100 dB correspond 

to the grayscale from black to white. 

We remark that STFT used for the signals’ representation on the time-frequency plane is 

limited according the uncertainty principle which predicates that the corresponding time and 

frequency coefficients cannot both be known with arbitrary precision. So the lines in Fig. 7.4 can 

not be thin both for tones and cross LFM signals. 
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Fig. 7.5 – De-ramped signals spectra used for SM elements estimations. 6 scatterers. 
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We can see the peaks corresponding to the useful (tone) signals and the footprints 

corresponding to cross LFM signals. Significant components shown in Fig. 7.4 at points B and C 

result into high levels of the footprints of the spectra for estimation 21
ˆ ( )bS f�  and 12

ˆ ( )bS f� ; these 

high levels limit the dynamic range of the useful signals considerably. The weak cross LFM signals 

shown in Fig. 7.4 to points A and D results in a very low footprint and influence the estimations 

11
ˆ ( )bS f�  and 22

ˆ ( )bS f�  weakly. 

It should be noted that cross-correlation components as well as tones contain information 

about range profiles. However,  information about ranges is not only present in the beat frequencies 

of tones but also in the time delays (τ ) of the cross LFM-signals. So cross-correlation components 

can be used for range profiles estimation ( ˆ ( )ijS τ� , where , 1, 2i j = ); this is an interesting aspect 

which can be investigated in future. 

The information contained in the cross-correlation components can be extracted using 

correlation methods. The combination of correlation methods and de-ramping processing can 

become  another  topic for future research. 

The novel technique for cross-correlation components’ suppression is described in the next 

Section. 

7.2 Suppression of Cross-Correlation Components from the Beat 
Signals 

The proposed technique is based on the fact that cross LFM signals occupy only a part of the 

analyzed time interval (Fig. 7.6.a). The V-shaped cross correlation components have maxτ -duration 

and [ ]max0... bf -bandwidth (Fig. 7.6.b). The amplitudes of the scattered signals decay with the 

fourth power of range R  (roundtrip time delay τ ) due to propagation. So we may assume that the 

amplitudes of the cross correlation components also decay strongly with range (Fig. 7.6.c). The 

mutual positions of plots along the X-axes in Fig. 7.6.a-c correspond to each other. 

Maximum roundtrip time delay for a cross correlation component (determined by the objects 

located at ( ]max0...R -range) equals to max 2τ  (not to maxτ  as for useful (tone) signals). It is defined 

by the fact that the sweep rate of these signals is increased twice after de-ramping processing. So, 

the cross correlation component duration equals to maxτ  and the maximum roundtrip time delay for 

cross de-ramped signals equals to max 2τ . The time interval corresponding to the cross LFM 

signals presence (i.e. maximum time interval which is dependent on the cut off from the beat signals) 

becomes: 
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 max3
2cutt τ⋅

= . (7.1) 

The time interval for localization of possible cross correlation components is assumed to be 

connected with the cut off (Fig. 7.7). 

The time frequency representation of the beat signals with the cut off time interval is shown in 

Fig. 7.8. The spectra of the corresponding de-ramped signals is shown in Fig. 7.9. As before, 

scattering matrices for all scatterers were chosen  

1 0.1
0.1 0.5
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

S� . 

The noise level is equal to zero. 

The suppression of the de-ramped signals’ amplitudes (near the middle part of the analyzed 

time interval, Fig. 7.8) results in the considerable suppression of cross LFM signals’ spectra (Fig. 

7.9). We note here the increase of the side-lobe level of the tone signals due to the rectangular 

weighting. 
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ˆ ( )S τ�

2T

0 t0R = maxR R=maxτ
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Fig. 7.6 – a) Time-frequency distribution of the de-ramped signals in one of the branches; 

b) Time-frequency distribution of one cross-correlation component corresponding 

to zero roundtrip time delay; 

c) Amplitude distribution for cross-correlation components as function of time. 
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As known, the proposed technique suppresses not only the cross components but also the 

useful (tone) signals what results in some range resolution decrease and signal energy loss. So 

narrowing of the time interval for suppression can be of interest. 

A time-frequency representation of the beat signals with a narrowed cut off time interval 

max2 2τ , is shown in Fig. 7.10. The spectra of the corresponding de-ramped signals are visualized 

in Fig. 7.11. 

tmaxτ T
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maxT τ−

max3 2τ⋅

maxτ

 

1

0

 
 

Fig. 7.7 – Rectangular cut-off window applied to the beat signals. 
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Fig. 7.8 – Time-frequency distribution of the de-ramped signals in the key-points of the branches. The 

window is rectangular, the cut-off time interval is equal to max3 2τ⋅ . 
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Fig. 7.9 – De-ramped signals spectra used for SM elements estimations. The window is 

rectangular, the cut-off time interval is equal to max3 2τ⋅ . 
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Fig. 7.10 – Time-frequency distribution of the de-ramped signals in the key-points of the 

branches. The window is rectangular, the cut-off time interval is equal to max2 2τ⋅ . 
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Fig. 7.11 – De-ramped signals spectra used for SM elements estimations. The window is 

rectangular, the cut-off time interval is equal to max2 2τ⋅ . 
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The footprints are decreased; however, we see the comparatively high level of cross components’ 

spectra for the estimations 11
ˆ ( )bS f�  and 22

ˆ ( )bS f�  depending on frequency. It is explained by the 

presence of a remainder, yielding a contribution onto the cross correlation components at high 

frequencies (Fig. 7.19, points B, C). 

Figures 7.9 and 7.11 show that the useful spectral components have a sinc-form and a 

relatively high level of side-lobes. This increase of side-lobes is determined from the rectangular 

cut-off of the signals. It is known that for suppression of the side-lobes in the signals’ spectra 

window weighting is usually applied to the beat signals. In this case such smoothed weighting 

functions as Hamming, cosine, Gauss windows etc. are used. We can try to implement a smoothed-

out time window (Fig. 7.12) for improvement of the spectra shown in Fig. 7.9 and 7.11. 

Fig. 7.13 and 7.14 show the time-frequency representation of the beat signals with the 

smoothed-out cut-off time interval shown in Fig. 7.12. The spectra of the corresponding de-ramped 

signals are shown in Fig. 7.11. The result of the cut-off and the smoothed windowing is a 

considerable decrease in both the footprints and the side-lobe levels. 

The time-frequency representation of the beat signals with a narrowed cut-off time interval is 

shown in Fig. 7.15 in case of the smoothed-out weighting. The spectra of the corresponding de-

ramped signals are shown in Fig. 7.16. Comparatively to the previous example the cross correlation 

suppression still keeps to be very effective. 
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Fig. 7.12 – Smoothed-out window applied to the beat signals. 
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Fig. 7.13 – Time-frequency distribution of the de-ramped signals in the key-points of the 

branches. The window is smoothed-out, the cut-off time interval is equal to max3 2τ⋅ . 
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Fig. 7.14 – De-ramped signals spectra used for SM elements estimations. The window is 

smoothed-out, the cut-off time interval is equal to max3 2τ⋅ . 
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Fig. 7.15 – Time-frequency distribution of the de-ramped signals in the key-points of the 

branches. The window is smoothed-out, the cut-off time interval is equal to max2 2τ⋅ . 
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Fig. 7.16 – De-ramped signals spectra used for SM elements estimations. The window is 

smoothed-out, the cut-off time interval is equal to max2 2τ⋅ . 

 



Chapter 7 

129 

The proposed technique has shown fine results in terms of cross correlation components’ 

suppression. However we should remember two consequences of the technique used: 

• Resolution decrease. 

The range resolution in FM-CW radar depends on the analyzed time interval, namely on 

the tone signals’ duration (see Eq. 3.19). As part of this interval is during cut-off, the 

resulting resolution is decreased. 

• Energy of useful signals degradation. 

The energy decrease results into smaller amplitudes of the peaks in the spectra used for SM 

elements’ estimations.  

The energy degradation can be calculated for the PARSAX radar parameters (see Appendix A, 

Table A.1) based on the tone signals duration. The analyzed time interval for the standard de-

ramping processing is ( )max 1.0 0.1 0.9 msT τ− = − = . The time interval which is selected for 

maximum cut-off equals to 3 0.1 2 0.15 mscutt = ⋅ =  according to Eq. 7.1. After suppression the 

total duration of tone signals equals to 0.9 0.15 0.75 ms− = . So the energy loss is determined by 

the ratio 0.75 0.9  what means 1.58 dB. It is of marginal impact for PARSAX. So the advantage of 

cross correlation suppression outweighs the disadvantage of energy loss. 

Based on the modeling results shown in this Section, we can safely say that the cut-off 

procedure is very effective. However it can be improved if the V-shape of the cross LFM signals is 

taken into account. Also the information about the cross LFM signals’ amplitudes can be obtained 

from the cross branch in the corresponding radar channel (see Fig. 7.3). So an adaptive suppression 

of cross LFM signals in the de-ramped signals is a topic for future research. 

7.3 Conclusion 
This chapter has described a technique to decrease the negative influence of cross-correlation 

components in an FM-CW polarimetric radar receiver which appears when a vector sounding signal 

is used. A novel solution has been proposed for improvement of estimations of SM-elements 

comparing to the standard re-ramping procedure. It allows subtraction of cross-correlation 

components from the beat signals and re-estimation of SM-elements properly. The modeling results 

have shown high efficiency of the proposed technique and outstanding improvements achievable in 

FM-CW polarimetric radar with simultaneous measurements of SM elements have been 

demonstrated. 
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8. Conclusions 
 

 
The results obtained in the thesis have been mainly developed within the PARSAX project. 

The output of the work can produce a breakthrough in radar polarimetry technology, allowing to 

achieve a qualitatively new level of polarimetric radar performance and made this technology ready 

for different applications. 

The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal 

polarimetric radar signals with continuous waveforms. If the first orthogonality, namely the 

polarimetric orthogonality, is specified, the choice of the second (extra) orthogonality is not evident. 

Many types of signal orthogonality are considered in the thesis. The concept of sophisticated dual-

orthogonal polarimetric radar signals for application in polarimetric radar with simultaneous 

measurement of scattering matrix elements has been presented in Chapter 2. 

As known, the processing of sophisticated signals includes compression utilizing correlation 

methods or de-ramping processing (only for frequency modulated signals). The overview and 

comparison of correlation and de-ramping methods for the dual-orthogonal sophisticated signals’ 

processing have been made in Chapter3. The in this Chapter given novel time-frequency 

representation of beat signals in FM-CW polarimetric radar with simultaneous measurement of SM 

elements was not available to the scientific community before. 

High-resolution polarimetric radar can observe fast moving objects but specific bandwidth 

effects may appear. It is known that the Doppler approximation corresponding to the narrow-band 

signal model will not be appropriate because it restricts the sounding signal BT-product and/or the 

velocity of the observed radar objects. A novel wide-band correlation processing for overcoming 

these limitations has been proposed for dual-orthogonal polarimetric radar signals. An additional 

aspect worthwhile to be mentioned is, that the author has calculated the errors in range estimation 

when sophisticated sounding signals are used in polarimetric radar with simultaneous measurement 

of scattering matrix elements. As for de-ramping processing a wideband model of the de-ramped 

signals was missing in the literature. Above mentioned results have been presented in Chapter 4. 

The second part of the thesis is devoted to advanced processing in polarimetric radar with 

continuous waveforms (and with focus on polarimetric FM-CW radar). 

Polarimetric radar provides dual orthogonality only for sounding signals. During the 

processes of sounding and scattering the polarization of the signals can be changed. The received 
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signals with orthogonal polarizations can be splitted into two channels in the antenna system of the 

radar receiver, while the signals in the channels are splitted into branches making use of the 

orthogonality of the waveforms. Since the radar duty cycle is finite, such kind of orthogonality can 

not provide continuous isolation between the branches in the radar receiver channels. A novel 

technique for continuous “quasi-simultaneous” measurement of SM elements in FM-CW 

polarimetric radar has been proposed in the thesis. The description of the technique and the 

achievable isolation level have been presented in Chapter 5. 

Our new approaches in high-resolution Doppler polarimetric radar can lay the fundaments 

for increasing the radar performance. A change in signal bandwidth can be desired for 

improvement of existing FM-CW radar systems in the sense that the sweep frequency of the 

sounding LFM-signal is increased for better range resolution. Also the shift in the beat frequency 

band and/or the selection of range interval with high range resolution can be demanded. For this 

reason, in Chapter 6 a novel de-ramping processing is proposed for satisfying these demands for 

both single-channel and polarimetric radar with simultaneous measurement of SM elements. 

The isolation problem in polarimetric FM-CW radar, which has been considered in Chapter 5, 

can be  significant. The author also proposes in Chapter 7 a novel method allowing a solution based 

on a de-ramped signal representation in the time-frequency plane as described in Chapter 3. The 

isolation between the polarimetric FM-CW radar branches has been defined by the cross-

correlation components (cross LFM signals) existing in the beat signals. The possible location of 

these components has been used and the amplitudes of the beat signals can be suppressed along a 

part of the analyzed time interval. The description of the proposed technique and the modeling 

results showing its efficiency have been presented in Chapter 7. 

 

Next we note a number of topics for future research: 

 

1. De-ramping processing with linear superposition of LFM-signals (see Paragraph 2.2.3) using 

non-linearity correction with the potentials of high isolation between branches in the 

polarimetric radar receiver. 

2. Comparative analysis of the here-presented three de-ramping techniques (see Paragraph 3.4.2) 

and the corresponding experimental data obtained from PARSAX . 

3. Analysis of differences in the wide- and the narrow-band ambiguity matrices (see Paragraph 

4.2.1) for different types of sophisticated signals. 

4.  Investigation of de-ramping processing in case of fast-moving radar objects (wide-band de-

ramping processing), see Paragraph 4.3.2. combined with narrowing (and/or reconstructing) 

the spectra of a fast-moving object by using the flexible de-ramping technique proposed in 

Chapter 6. 
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5. Implementation and testing of a performance technique for quasi-simultaneous 

measurements of SM elements in polarimetric radar with continuous waveforms (see Chapter 

5). Analysis of this performance technique should be directed especially to the isolation issue 

in the radar channels. 

6. Flexible de-ramping processing for solving three major radar tasks (Section 6.2) with 

application in the PARSAX radar system. This topic is important for the PARSAX 

valorization  phase. 

7. Use of the flexible de-ramping processing (see Paragraphs 6.2.1 and 6.2.4) upgrading the 

existing PARSAX radar receiver operating in S-band into an S- and X-band receiver.  

8. Implementation of a shift in the dual-channel frequency (see Paragraph 6.2.2) for rejection of 

the cross-correlation components in the PARSAX radar becomes possible. Performance 

analysis for different values of frequency shifts. 

9. The efficiency of the technique for decreasing the cross-correlation components (Chapter 7) 

as function of type and size of the weighting window. Recommendations for selected 

windows choice depending on the radar parameters (maximum roundtrip time delay, 

analyzed time interval etc) are still needed. 

10. Combination of flexible de-ramping processing with filtering the cross-correlation 

components. For example, selection of a range interval sensed with high range resolution in a 

dual-channel polarimetric radar (Paragraph 6.2.3) and combined with signal suppression 

(Section 7.2) along a small part of the analyzed time interval for decreasing cross-correlation 

components is of interest. A performance analysis using real measured data from the 

PARSAX radar is realistic in our the near future research. 

11. Development of adaptive techniques for the rejection of cross-correlated signal components 

in FM-CW polarimetric radar with simultaneous measurement of SM elements. These 

techniques should take into account the time-frequency representation of de-ramped signals 

(using the Wavelet Transform or Short Time Fourier Transform) and the estimations of the 

cross-correlation components obtained due to the tone signals from the cross-branches in the 

receiver channels. 
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Appendix A 

PARSAX Radar System 
PARSAX is a polarimetric agile radar in S-band, which will be refined also into a design for 

X-band. The goal of the PARSAX project is to design, develop and investigate the feasibility of an 

FM-CW type and PCM type of full-polarimetric radar, which uses sounding signals with dual-

orthogonality (in polarimetric and in time-frequency space) for simultaneous measurement of all 

elements of radar target’s polarization scattering matrix. The antenna system of PARSAX, is 

shown in Fig. A.1. 

 
 

Fig. A.1 – PARSAX radar system. 
 

Main characteristics of the sophisticated signals in PARSAX are summarized in Table A.1. 
 

Table A.1 
 Main characteristics of the PARSAX radar signals 

Central frequency (S-band) 3.315 GHz 
Modulation bandwidth 2 – 50 MHz 
Sweep time (for frequency modulated signals) 1 ms 
Sampling of the digital vector waveform generator up to 500 MHz, 14 bits 
Intermediate frequency 125 MHz 
Sampling in the receiver at intermediate frequency 400 MHz, 14 bits 
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List of Acronyms 
 

BPF Band-Pass Filter 

BT Bandwidth-Time 

CW Continuous Wave 

FCM Frequency Code Modulation 

FFT Fast Fourier Transform 

FIR Finite Impulse Response 

FM-CW Frequency Modulated Continuous Wave 

FT Fourier Transform 

IRCTR International Research Centre for Telecommunications and Radar 

LFM Linear Frequency Modulation 

LFM-CW Linear Frequency Modulated Continuous Wave 

LPF Low-Pass Filter 

MF Matched Filter 

PARSAX Polarimetric Agile Radar S- And X-band 

PCM Phase Code Modulation 

PSL Peak Side-lobe Level 

SM Scattering Matrix 

SNR Signal to Noise Ratio 
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Summary 
 

Polarimetric radar enables the utilization of complete electromagnetic vector information 

about observed objects. It measures the four complex elements of the scattering matrix, which 

describe amplitude, phase and polarization transformation of an electromagnetic wave incident on 

the objects. All these four elements can be retrieved simultaneously using sounding signals that are 

orthogonal from two points of view (dual-orthogonality). The first point of view regarding 

orthogonality is by transmitting two signals in an orthogonal polarimetric basis. The second point 

of view concerns to the two waveforms (i.e. the sophisticated signals that are mutually orthogonal). 

They also allow such advantages as high resolution and high energy due to signal compression in 

the radar receiver. Continuous wave (CW) transmission and reception of the radar signals provides 

an additional way to decrease their peak power, whilst maintaining the detection capability: In 

comparison with the pulsed transmissions CW signals have low peak power for the same detection 

performance because a 100% duty cycle radar is used. However, dual-orthogonal CW polarimetric 

radar signals are not still widely used and call for investigation. So this PhD thesis is focused on 

processing of such signals. 

The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal 

polarimetric radar signals with continuous waveforms. The first orthogonality, namely the 

polarimetric orthogonality, is a well-known property of polarimetric radar. It is observed that the 

choice of the second (extra) orthogonality is not evident for many radar designers. All types of 

signal orthogonality are considered. The concept of dual-orthogonal polarimetric radar signals and 

some signal types is presented. 

Sophisticated signal processing means signal compression in one way or another. When dual-

orthogonal sounding signals are used then the received signal compression is utilized in two 

polarimetric radar receiver channels (corresponding to the two orthogonal polarizations). Both 

radar receiver channels are split into two branches (corresponding to the two orthogonal 

waveforms). The thesis presents a comparison of the compression techniques, namely correlation 

and de-ramping methods, for the dual-orthogonal sophisticated signals. The novel time-frequency 

representation of beat signals in frequency modulated continuous wave (FM-CW) polarimetric 

radar with simultaneous measurement of scattering matrix elements is shown. 

Polarimetric radar can observe fast-moving objects. Since the sounding sophisticated signals 

usually have large time-bandwidth product, the observed object motion can result in specific 

bandwidth effects in the scattered signals. A conventional Doppler approximation corresponding to 

the narrow-band signal model can impose constraints to the time-bandwidth product of sounding 

sophisticated signals and/or the velocity of the observed radar objects. A novel wide-band 
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correlation processing for overcoming the limitations is proposed for polarimetric radar signals. 

Also a novel wideband model of the de-ramped signals is described. 

The second part of the thesis is devoted to advanced processing in polarimetric radar with 

continuous waveforms (and focus on polarimetric FM-CW radar). 

Although sophisticated sounding signals are orthogonal in terms of their inner products, in 

practice their cross-correlation is not equal to zero because of their finite lengths (repetition 

periods). It limits the isolation between the branches in the radar receiver channels. So a novel 

technique for continuous “quasi-simultaneous” measurement of the elements of the scattering 

matrix, which can provide high isolation level, has been proposed in this PhD thesis. 

The ambition to increase the radar performance, namely to improve the radar range 

resolution, has led to the development of a novel flexible de-ramping processing applicable in 

single-channel and in polarimetric FM-CW radar.  

The problem of isolation in the polarimetric FM-CW radar receiver is especially acute. A 

novel method allowing to mitigate the problem is developed. It is based on a de-ramped signal 

representation in the time-frequency plane described in the first part of the thesis. The modeling 

results of the proposed method show its high efficiency. 

A number of topics for future research have been proposed. 

This PhD thesis was prepared at the International Research Centre for Telecommunications 

and Radar (IRCTR), Delft University of Technology. Demonstration of the proposed and described 

techniques takes place in the Delft Radar PARSAX: Polarimetric Agile Radar in S and X band. 
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Samenvatting 
 

Polarimetrische radar maakt het mogelijk om de volledige elektromagnetische vectoriële 

beschrijving van waargenomen objecten te gebruiken. Hij meet de vier complexe elementen van de 

verstrooiïngsmatrix, die de transformatie van een elektromagnetisch veld dat reflecteert op een 

object beschrijft in amplitude en fase. Alle vier elementen kunnen gelijktijdig teruggevonden 

worden door het uitgezonden signaal samen te stellen uit twee signalen die vanuit twee 

gezichtspunten orthogonaal (dubbel-orthogonaal) zijn: Het eerste gezichtspunt is dat de twee 

samenstellende signalen in de twee orthogonale richtingen van een polarisatie basis liggen. Het 

tweede gezichtspunt is dat de beide samenstellende signalen onderling orthogonaal zijn. De 

golfvormen zijn ingewikkeld en bieden voordelen zoals een hoge resolutie en een hoog vermogen 

door compressie van het ontvangen signaal in de ontvanger. Continue golfvormen (CW –

Continuous Wave) voorzien in een additionele manier om het piek vermogen te reduceren met 

behoud van de detectie prestatie: In vergelijking met pulsvormige uitzendingen hebben CW-

signalen een laag piek vermogen, omdat zij met een 100% duty cycle werken. Echter dubbel-

orthogonale polarimetrische CW-radar signalen zijn nog niet in algemeen gebruik en vergen nader 

onderzoek. Daarom is dit proefschrift gericht op de bewerking van dit soort signalen. 

Het proefschrift bestaat uit twee delen. Het eerste deel is gewijd aan de theorie van dubbel-

orthogonale polarimetrische CW-radarsignalen. De eerste orthogonaliteit, de polarimetrische, is een 

bekende eigenschap van polarimetrische radar. De keuze van de tweede orthogonaliteit, die van de 

samenstellende signalen,  is niet vanzelfsprekend duidelijk voor veel radar ontwerpers. Alle soorten 

van orthogonaliteit tussen radarsignalen zijn beschreven. Het concept van dubbel-orthogonale 

polarimetrische radarsignalen en enkele soorten signalen zijn gepresenteerd. 

De bewerking van de ingewikkelde signalen houdt in dat ze op de een of andere wijze 

gecomprimeerd worden. Indien dubbel-orthogonale signalen worden uitgezonden, dan vindt de 

compressie plaats in twee polarimetrische radar ontvanger kanalen (in overeenstemming met de 

orthogonale polarizaties). Beide ontvangerkanalen zijn bovendien gesplitst in twee takken 

(overeenkomend met de twee orthogonale signalen). Het proefschrift presenteert een vergelijking 

van de compressietechnieken voor de dubbel-orthogonale ingewikkelde signalen, namelijk 

correlatie en “de-ramping”. De nieuwe tijd-frequentie representatie van het zwevingssignaal (“beat 

signal”) in frequentiegemoduleerde CW (FMCW) polarimetrische radar met gelijktijdige meting 

van alle elementen van de verstrooiïngsmatrix is beschreven. 

Met polarimetrische radar kunnen snel bewegende objecten waargenomen worden. Omdat de 

ingewikkelde signalen gebruikelijk een groot tijd-bandbreedte product kennen, kan de ondervonden 

beweging van het object tot specifieke effecten betreffende de bandbreedte van het verstrooide 

signaal leiden. De gebruikelijke benadering van het Doppler effect in smalbandige signaalmodellen 
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legt beperkingen op aan het tijd-bandbreedte product van het ingewikkelde signaal en/of de 

snelheid van de waargenomen objecten. Een nieuw breedband correlatie proces dat deze 

beperkingen overwint is voorgesteld voor polarimetrische radar signalen. Ook een nieuw 

breedband model van de “de-ramped” signalen is beschreven. 

Het tweede deel van het proefschrift is gewijd aan geavanceerde signaalbewerking in 

polarimetrische radar met continue golfvorm (en een focussering op polarimetrische FMCW radar).  

Hoewel de ingewikkelde uitgezonden signalen orthogonaal zijn in termen van hun inwendig 

product, is hun kruiscorrelatie in de praktijk niet nul, vanwege de effecten van hun eindige lengte in 

tijd (herhalingsinterval). Dit beperkt de isolatie tussen de signaalvertakkingen in de radar ontvanger. 

Daarom stelt het proefschrift een nieuwe techniek voor ten behoeve van “quasi-gelijktijdige” 

meting van de elementen van de verstrooiïngsmatrix, die een hoog niveau van isolatie kan bereiken. 

De ambitie om de radarprestatie te verbeteren, namelijk de verbetering van het oplossend 

vermogen in afstand, heeft geleid tot de ontwikkeling van een nieuwe flexibele “de-ramping” 

bewerking, die toepasbaar is in zowel één-kanaals als in polarimetrische FMCW-radar. 

Het isolatieprobleem in de polarimetrische FMCW radar in het bijzonder is accuut. Een 

nieuwe methode die het probleem verlicht is ontworpen. Hij is gebaseerd op een representatie van 

het “de-ramped” signaal in het tijd-frequentievlak dat in het eerste deel van het proefschrift werd 

beschreven. Modellering van de voorgestelde methode demonstreerde de hoge effectiviteit ervan. 

Enkele onderwerpen voor toekomstig onderzoek zijn voorgesteld. 

Dit proefschrift is geschreven bij het International Research Centre for Telecommunications 

and Radar (IRCTR) van de Technische Universiteit Delft. De demonstratie van de voorgestelde en 

beschreven technieken vindt plaats in de Delftse radar PARSAX: Polarimetric Agile Radar in S- 

and X-band. 
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