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1
Introduction

The advent of more sophisticated data collection methods and technologies in different disciplines has marked
the start of an era in which large datasets are the norm. A clear example of this can be found in the biologi-
cal sciences, where different approaches to gather cellular-level data have been devised. For instance, mass
cytometry [38] enables obtaining information of single cells with great detail; which has been used to un-
derstand how complex systems, such as the immune system, work in humans [18]. Due to the sheer level
of detail that tools like this capture, resulting datasets can have millions of rows, each corresponding to a
cell, and hundreds of columns with the characteristics that were measured. Accordingly, different tools and
pipelines have been devised to analyze these large amounts of high-dimensional data.

Many of the available systems offer the possibility to visually explore the data to develop an intuition
about its structure. Despite its apparent simplicity, this is no easy task, mainly because, as humans, we can-
not picture more than three dimensions. Among the different ways that have been proposed to circumvent
this limitation, one of the most widely used consists in using a dimensionality reduction (DR) technique to
obtain a low-dimensional representation of the data that can be then visualized in a scatter plot. Figure 1.1
exemplifies this process. Interestingly, even though DR as a subfield of machine learning has been an ac-
tive research topic for the past decades, it was not until the advent of graph-based nonlinear methods (NLE)
such as t-Distributed Stochastic Neighbor Embedding (tSNE) that its popularity as a data visualization tool
exploded. To understand the reason behind this, it is useful to define more precisely the DR problem and take
a look at the landscape of available techniques.

The problem of DR can be cast as an optimization one: having two input datasets X ∈RN×D and Y ∈RN×d

of mismatched dimensionalities (where d << D), the goal is to either maximize their similarity or minimize
their difference, depending on a predefined cost function. Existing DR techniques can be either linear or
nonlinear and convex or nonconvex [56]. The first of these categories concerns the processing of the input
datasets X and Y . For instance, in Principal Components Analysis (PCA), a linear technique, the covari-
ance matrix is used to construct a linear mapping from the high to the low-dimensional space. In contrast,
Isomap, a nonlinear method, uses the matrix of pairwise geodesic distances between points. The second cat-

sepal
length (cm)

sepal
width (cm)

petal
length (cm)

petal
width (cm)

Label

5 3.4 1.5 0.2 setosa
5 3.6 1.4 0.2 setosa

6.3 2.5 4.9 1.5 versicolor
6 3 4.8 1.8 virginica

7.2 3.6 6.1 2.5 virginica

Figure 1.1: An example of using dimensionality reduction techniques for the visualization of high-dimensional data. In the table on the
left, we present a sample of the Iris dataset, which contains 150 rows and 4 features, or dimensions. The last column of the table

corresponds to the label of each instance, which is one of three possible types of flowers: Setosa, Versicolor, and Virginica. The image on
the right corresponds to a scatter plot visualization of the two-dimensional embedding produced with tSNE. Note how, in the

embedding, flowers with similar characteristics formed clusters of points.
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2 1. Introduction

egory, convexity, corresponds to a structural attribute of the cost function. Convex functions, like those used
by PCA and Isomap, have a single optimum, which can be directly obtained by solving a generalized eigen-
problem with standard linear algebra routines. On the other hand, nonconvex functions, like tSNE’s, might
have multiple local optima, forcing the usage of iterative optimization techniques.

Although convex techniques can perform well in synthetic datasets, they can fail to produce accurate
embeddings in real-life ones, which often have a more complicated structure. The extra complexity of non-
convex methods, together with their nonlinear modeling of the problem, seems to make them more flexible
and capable of embedding datasets that lie in nonlinear manifolds [56]. Of interest to us is tSNE, which has
proven to be particularly good at preserving the local structure of the data. In Figure 1.2, we show the com-
putational pipeline that tSNE follows to generate the embeddings. Besides differences in the modeling of the
optimization problem, this pipeline is the same as in other NLE techniques such as LargeVis [51] and UMAP
[31].

The NLE computational pipeline has two stages. In the initialization phase, the distances between the
points in the high-dimensional space are transformed into affinities using a nonlinear kernel function. Hav-
ing this, an optimal embedding Y ∗ is found with an iterative optimization algorithm. Naively implemented,
this pipeline cannot scale to datasets of more than a few thousand points. On one hand, computing the high-
dimensional matrix of affinities requires comparing all pairs of D-dimensional points, which takes O(DN 2).
On the other, the complexity of the second step not only depends on the time that it takes to complete each
iteration but also on the overall number of iterations that are needed to converge. Assuming that we use
gradient descent, as it is often the case, the former takes O(N 2) time, because computing the gradient also
requires all pairwise interactions, and the later is O(1/k), where k is the iteration count.

Figure 1.2: The computational pipeline of graph-based nonlinear embedding (NLE) techniques. The pictures inside the right
component of the pipeline, iterative embedding optimization, present an example of how this iterative procedure progresses for tSNE

with the MNIST dataset.

In the past decade, several advances on different parts of the pipeline have significantly reduced its com-
plexity, enabling the analysis of larger datasets. Regarding the optimization phase, which is the focus of this
work, the existing research is fragmented into two branches. While the first is concerned with reducing the
complexity of the iteration, the second focuses on reducing the number of iterations that are needed to obtain
a suitable embedding. This separation is problematic because the methods that can converge faster, usually
do not take advantage of more efficient iterations, which hinders their practical utility. Taking this into ac-
count, this work aims to bridge this gap by proposing a set of methods that can both converge in fewer and
faster iterations. To do this, we built on top of several recently proposed techniques that we introduce below.

Iterative optimization algorithms can achieve quadratic convergence (O(1/k2)) by using the Hessian of
the cost function to obtain a more effective sequence of iterates. However, in the NLE context, the full Hessian
is complex to compute and can be hard to use given that, if indefinite, it would produce iterates that do
not reduce the cost function value. Fortunately, it has been shown how, by using carefully crafted Hessian
approximations, like the Spectral Direction (SD) presented in [58], it is still possible to obtain an improved
convergence rate. Thus, the foundation of this work is SD, which is attractive for two reasons. First, it is
sparse and constant, and therefore can be constructed efficiently. Second, it is positive definite, which makes
it compatible with several linear solvers such as the Cholesky factorization and conjugate gradients (CG). To
ensure that the iterative procedure converges, Hessian approximations need to be used with optimization
frameworks such as Line Search (LS) and Trust Region (TR) [36]. Even though TR can have some advantages
over LS, such as the production of better-scaled iterates, its performance with SD for the optimization of tSNE
has not been studied. With this in mind, a common thread that runs throughout this work is the comparison
of two quasi-Newton methods that we refer to as SD-LS and SD-TR.
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The main goal of this work is to enable these quasi-Newton methods to scale to large datasets. For this
purpose, we focused on the within iteration operations that are critical for their performance, identifying po-
tential bottlenecks, and addressing several of them. First, we demonstrated experimentally that it is possible
to use approximate gradients and cost function evaluations, which we computed with the Barnes-Hut (BH)
algorithm [3], without affecting the robustness of the LS and TR frameworks. Then, we analyzed several lin-
ear solvers that are commonly used to obtain the next iterate and concluded that truncated CG is a better
alternative. Finally, we explored the effect that different parameters such as the initial step size in LS and
the initial trust-region radius in TR can have in the convergence rate of the algorithms. The resulting quasi-
Newton methods, SD-LS-CG and SD-TR-CG, can embed large datasets faster than BH-SNE, one of the fastest
and most popular Hessian-free tSNE implementation [55].

Besides the two fast quasi-Newton methods here proposed, this work makes several other contributions
worth highlighting:

1. Exploration of the Trust Region optimization framework. Besides the work in [33], the effectiveness of
TR has not been studied in the context of NLE. We evaluated its potential as an alternative of SD-LS for
tSNE and show how the way it computes the next iterate can affect its convergence and the appearance
of the resulting embedding.

2. In-depth study of the usage of the SD approximation with tSNE. In [58], the authors focused on a
constant version of SD that is consistently good across different NLEs. Firstly, we showed how in the
case of tSNE, SD’s performance can be improved by using additional iteration-dependent information.
Secondly, we replicated the results of the original work, which led us to the conclusion that SD, when
paired with LS and TR, is better than other optimization methods such as nonlinear conjugate gradients
and L-BFGS.

3. Sensitivity analysis of different parameters of the proposed quasi-Newton methods. Besides the ap-
proximation of the cost function and the gradient, we identified other parameters that can significantly
affect the performance of these methods and found which values of these parameters consistently yield
better results.

This work is going to be structured as follows. In Chapter 2 we will start by contextualizing NLEs, dis-
cussing the different ways in which they have been improved, and presenting different practical cases in
which these tools have been used successfully for the visualization of high-dimensional data. In Chapter 3,
we introduce the theoretical framework used for our method, which includes a primer in unconstrained op-
timization and a detailed description of the t-Distributed Neighbor Embedding building blocks. Then, in
Chapter 4, we will describe the computational framework that supported our experiments and the datasets
that were used to compare the different methods. After this, in the following two chapters, we present the
results of our experiments. In Chapter 5, we present the outcomes of the replication and extension of [58];
and in Chapter 6 we explain the construction and evaluation of our fast quasi-Newton methods. Finally, in
Chapter 7, we will discuss the results and the limitations, and present potential future work.





2
Related Work

In this chapter, we present a survey of the state of the art of the visualization of high-dimensional datasets
through the usage of dimensionality reduction techniques. Concretely, we focus on tSNE and other related
graph-based nonlinear embedding techniques (NLE). We start this chapter by motivating the usage of NLE
techniques for the visualization of high-dimensional data in Section 2.1. Even though NLEs often have dif-
fering modeling choices, they share the same computational pipeline that was introduced in the previous
chapter. In Section 2.2 we first explore the space of NLE methods and then go deeper into the different im-
provements of the pipeline that have enabled the processing of larger volumes of data. To motivate the reader
and show the usefulness of NLEs at this task, we finalize this chapter in Section 2.3 presenting different suc-
cessful use cases of these techniques.

2.1. Dimensionality Reduction for Visualizing High-Dimensional Data
Starting from a high-dimensional dataset X ∈ RN×D , the goal of dimensionality reduction (DR) techniques is
to find a low-dimensional representation Y ∈ RN×D , where d << D , that better preserves the structure in the
data. The latter can be divided into the global and local structure. While the former has to do with preserving
the distances between all points, the latter focuses on preserving the relationships between those points that
were close by in the original space. In the visualization of high-dimensional data, methods that preserve the
local structure of the data have been favored. This includes techniques like t-Distributed Stochastic Neigh-
bor Embedding (tSNE) [54], Uniform Manifold Approximation and Projection (UMAP) [31] and LargeVis [51],
which popularity have risen in the past years. We can attribute their success to two "ingredients": their non-
linear transformation of the input data and their usage of nonconvex cost functions.

Figure 2.1: The landscape of dimensionality reduction techniques. We separate the different methods taking into account whether their
cost function is convex or nonconvex. This work focuses on tSNE, which uses is a nonconvex cost function: the Kullback-Leibler

divergence.

In general, DR techniques are cast as optimization problems, which means that a cost function C is used
to measure the similarity, or dissimilarity, of X and Y . If C has a single optimum, we say the method is con-

5



6 2. Related Work

vex; in contrast, if it might have several local optima, we say that it is nonconvex [56]. In Figure 2.1 we show
the general landscape of DR techniques, taking this classification into account. Besides convex/nonconvex,
we can also differentiate DR techniques depending on their processing of the input datasets. Most of these
methods do not work directly with the raw datasets X and Y and instead transform them into square matri-
ces of pairwise distances or similarities between points. A classical example of a linear technique is Principal
Components Analysis (PCA) [19], which relates pairs of points using the squared Euclidean distance. In con-
trast, Isomap, a nonlinear method, uses geodesic distances (shortest paths between pairs of points on the
u-Nearest Neighbor graph computed from X ) when constructing the matrix of similarities. Experimentally,
it has been shown how DR methods that use convex cost functions are not as effective at embedding real-
life, highly nonlinear, data, regardless of how the input datasets are processed [56]. For this task, nonconvex
and nonlinear techniques like autoencoders [17] and tSNE have performed better. This can be evidenced in
Figure 2.2, where we compare the resulting embeddings of a convex linear technique (PCA), several convex
nonlinear ones (Isomap [52], Laplacian Eigenmaps (LE) [4] and Locally Linear Embedding (LLE) [45]), and
two NLEs (tSNE [54] and UMAP [31]).

There are two main reasons behind the success of NLEs at embedding more complex datasets. First, like
Isomap, they model the relationships between points in a nonlinear way by using a u-NN graph. Importantly,
instead of using distances, or similarities, between points, which grow as points get farther away from each
other; NLEs transform the similarities into affinities, which have the opposite behavior. The second reason
for the effectiveness of NLEs is that they use nonconvex cost functions which seem to grant them more flex-
ibility, although they might be harder to optimize. As can be observed in Figure 2.2, the usage of affinities
and nonconvex cost functions enables NLEs to produce embeddings that better represent the local structure
in the data: clusters form when their corresponding points in the high-dimensional space are nearby. The
visual outputs of NLEs depend to a large extent on the choice of cost function or, as we call it, the modeling
of the problem. Besides this element, these methods are similar implementation-wise, sharing the computa-
tional pipeline presented in Figure 1.2, which has enabled a significant level of cross-pollination between the
different techniques. In the next section, we delve deeper into these aspects of NLEs, presenting the different
modeling alternatives and improvements of the computational pipeline that have been proposed.

Figure 2.2: The outcome of embedding a sample of the MNIST dataset (N = 20,000 and D = 784) with different DR techniques: one
convex linear (Principal Components Analysis (PCA)), tree convex nonlinear (Isomap, Laplacian Eigenmaps (LE) and Locally Linear
Embedding (LLE)), and two nonconvex graph-based nonlinear embeddings (tSNE and UMAP). Note how the nonconvex nonlinear

techniques, tSNE and UMAP, produced the best-looking embeddings with clearly defined clusters that correspond to similar points in
the high-dimensional space.

2.2. Graph-based Nonlinear Embedding Techniques
In this work we are focused on improving the convergence speed of tSNE. Given that it is a graph-based non-
linear embedding technique (NLE), in this section we discuss what has been done to improve different parts
of the NLE computational pipeline, which can also be used to speedup tSNE. In Subsection 2.2.1, we start by
contrasting the modeling choices of different NLEs, which directly affects the quality of resulting embeddings.
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Having this, in the rest of the section we discuss work in specific parts of the pipeline. In Subsection 2.2.2,
we show how the matrix of high-dimensional affinities can be constructed in less time by using a sparse
u-Nearest Neighbor graph instead. In Subsections 2.2.3 and 2.2.4, we investigate what has been done to ac-
celerate the optimization step, which includes more efficient iterations and iterative algorithms that converge
faster. Finally, in Subsection 2.2.5 we present improvements that cannot be put in any group because they
affect the whole pipeline. Throughout this section we will emphasize tSNE-related concepts to prepare the
reader for the next chapter, where we delve deeper into its inner workings.

2.2.1. Modeling of the Problem
In NLEs, the way the final embedding of a specific datasets looks depends on how the distances between
points in the high and low-dimensional points are transformed into affinities. One of the first NLEs, that we
cover here, is the Stochastic Neighbor Embedding (SNE) [16]. In SNE, distances are converted into proba-
bilities, using the Gaussian kernel presented in Equation 2.1. This is done for both X and Y , which, after
normalizing each row with its sum, yields the matrices of conditional probabilities PSNE and QSNE, respec-
tively. In the high-dimensional space, the bandwidth parameter σi is found for each point using a bisection
search procedure. In the low-dimensional space, this parameter is assumed to be one. To obtain the optimal
embedding Y , the Kullback-Leibler divergence, which is presented in Equation 2.2, is minimized gradient
descent.

gaussian(di j ) = exp(−||di j ||22/2σi ) (2.1)

Although the embeddings produced by SNE were already significantly better than those of its predeces-
sors, it had two main issues. First, optimizing the cost function could be tedious as a result of PSNE being
asymmetric due to the adaptive bandwidth. Second, it tended to produce embeddings that were crowded,
meaning that they were too tight and the separations between clusters were not clear. The optimization can
be simplified by symmetrizing PSNE, which yields a matrix of joint probabilities that is easier to handle. For
the crowding problem, Van der Maaten and Hinton proposed using a Student’s t-distributed kernel with one
degree of freedom (ν= 1 in Equation 2.3) to more faithfully model the distances between the low-dimensional
data points in [54]. This change of low-dimensional kernel, together with the symmetrizing and normaliza-
tion of the affinity matrices resulted in the t-Distributed Stochastic Neighbor Embedding (tSNE). Although
other ways to alleviate the crowding problem such as UNI-SNE [10] were proposed, they were trickier to op-
timize and did not yield embeddings of the same quality of those produced by tSNE.

K L(P ||Q) =∑
i

∑
j

pi j log
pi j

qi j
(2.2)

Since the introduction of tSNE, there have been several works that aim at better understanding its the-
oretical underpinnings. For instance, in [24] it was shown how by using less than one degrees of freedom
in the Student’s t-distribution (0 < ν < 1 in Equation 2.3), better embeddings can be obtained. In their ex-
periments, it is possible to observe how heavier tailed distributions, that arise with the reduction of degrees
of freedom, facilitate the formation of better-separated clusters in the embedding. Another aspect that has
been explored is the computation of the adaptive bandwidths of the high-dimensional distribution. In [59],
the authors characterize these high-dimensional affinities, which they call entropic affinities, and use root-
finding methods together with a tree-based initialization scheme to compute them. Not only their approach
produces good quality affinities but is also faster than the commonly used bisection method [16, 54].

student(di j ) = 1

(1−||di j ||22/ν)ν
(2.3)

Two alternative ways to tSNE that have received a lot of attention recently are LargeVis and UMAP. These
also encode the distances as affinities using Gaussian and generalized Student’s t-distributed kernels, but
they relate the resulting matrices using different cost functions. In LargeVis, the problem is cast as finding
the low-dimensional affinities that maximize the likelihood of corresponding to the high-dimensional ones
[51]. In UMAP, which is based on Riemannian geometry and fuzzy simplicial sets, the goal is to minimize
the cross-entropy between the topological representations of the high and low-dimensional datasets [31].
Similarly to [24], UMAP optimizes several parameters of its low-dimensional kernel, obtaining a fatter tailed
distribution, which in turn results in better-separated clusters. In contrast with tSNE, with a correct setting of
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hyperparameters, embeddings produced by LargeVis and UMAP can often better capture the local structure
in the data, resulting in embeddings with clearly separated clusters.

The last NLE that we will discuss is the Elastic Embedding (EE) [8]. Similar to SNE, it uses Gaussian affini-
ties to encode both the high and low-dimensional points. But instead of comparing them using the Kullback-
Leibler divergence, it defines a simpler cost function that has two terms: an attractive one, to keep similar
points together, and a repulsive one to spread out all points. Even though visually the embeddings produced
by EE are not better than those of tSNE, LargeVis, and UMAP; its simpler cost function has enabled a more
in-depth study of NLEs. Relevant to this work is the unified framework of NLEs cost functions, their gradients,
and Hessians presented in a subsequent paper [58]. The different quantities are expressed in terms of Lapla-
cian matrices, which are useful when devising alternative optimization algorithms with better convergence
properties as we will see below.

2.2.2. Approximate uNN Graph Construction
Regardless of their modeling choices, all NLEs construct a high-dimensional matrix of affinities that remains
constant throughout the optimization. Given that interactions between all pairs of points are considered, a
naive computation of this matrix takes O(DN 2) time, where D is the dimensionality of the input data. Inter-
estingly, when using the kernels introduced in the previous subsection to transform the distances between
points, after a certain distance, affinities will be very close to zero. In consequence, it is possible to consider
only the u-Nearest Neighbors of each point without a significant drop in performance [55]. Because of its
applicability in other fields such as information retrieval, the problem of efficient approximate u-Nearest
Neighbor (uNN) graph computation has been an active area of research for the past decades. The different
existing approaches can be divided into two main groups that we describe below.

The first of these consists of the usage of hierarchical data structures such as kd-trees [6], vantage-point
(VP) trees [63] and random projection trees [11]. These methods index the points in a hierarchical structure
and then use it to be able to query approximate nearest neighbors more efficiently. The effectiveness and
performance of these techniques depend on the algorithm that is used to partition the space. Although in
[55] VP trees were used successfully, this approach can become inefficient with large dimensionalities, which
are common. Alternatives include using a forest of randomized kd-trees [41] or the recently favored random
projections. By randomly partitioning the space, the latter can reduce the time that it takes to retrieve the
nearest neighbors. In LargeVis, the output of a random projection trees stage is further enhanced by using
nearest neighbor exploration techniques [13, 51], which use the idea that "the neighbor of my neighbor might
also be my neighbor" to iteratively refine the NN approximation.

The second approach for efficiently computing the uNN graph is based on Locally Sensitive Hashing
(LSH). LSH techniques use a hash function to map similar points to the same "bucket". Then, when the
u-Nearest Neighbors of a point are requested, the bucket where this point belongs, and also other buckets
that are nearby, are retrieved and their points returned. LHS methods were initially designed for similarity
search, where only the closest point is retrieved. For this reason, they might perform suboptimally for the
task of retrieving the first u neighbors. Additionally, special hash functions must be designed for different
distance metrics [1, 21, 37], which can be a complex endeavor. Despite these issues, LSH has been success-
fully applied in the context of NLE, greatly reducing the time that it takes to compute the high-dimensional
matrix of affinities [9].

Among the two approaches, hierarchical structures are more widespread than LSH. This is likely because
the former is simpler to implement and therefore there are more libraries available that can be easily inte-
grated with any NLE. In the future, we expect that LSH methods will face greater adoption, especially as they
become more versatile, easy to use, and more different distance functions are incorporated. With this, we now
turn to the second stage of the pipeline with is the optimization of the embedding. We grouped the relevant
work according to their main focus: iterative optimization algorithms with better convergence properties, or
efficient computation of the gradient.

2.2.3. Iterative Optimization
There are two main components in the NLE computational pipeline. The first is the construction of the high-
dimensional matrix of affinities, which we covered in the previous subsection. The second, which we detail in
this subsection, corresponds to the optimization process that is used to find an embedding that optimizes the
given cost function. As a consequence of NLEs’ cost functions being nonconvex, iterative algorithms must be
used. In the literature, we identified two main trends. On one hand, most of the current NLE implementa-
tions still use the highly tunned version of gradient descent that was first proposed in the original tSNE paper
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[54]. With this as the starting point, recent work has focused on further tunning it and understanding its con-
vergence properties. On the other hand, there has been some interest in exploring alternative optimization
approaches that can exploit the structure of the cost function and use higher-order information such as the
Hessian. In the following paragraphs, we further discuss these two independent developments.

Gradient descent, or the method of steepest descent as it is also known, has been the preferred way of
optimizing NLE cost functions, mainly because of how easy it is to implement and its low per-iteration cost,
which only requires the computation of the gradient. At each iteration, the next iterate Yk+1 is found using
Equation 2.4. In its vanilla implementation, the learning rate or step size α is fixed at the beginning by the
user. If it is set too high, the algorithm can end up oscillating around the optimum and if it is too low, it
can take a lot of iterations to converge. This was greatly improved in the original tSNE [54] paper, where
a momentum term and an adaptive learning rate scheme [20] were used. An important parameter of this
enhanced gradient descent is the initial step size α0. In [5], it was shown how the size of the embedding
should be taken into consideration when setting this value. Additionally, the authors also show the positive
effect of letting the optimization algorithm run for more than the usual 1000 iterations.

Yk+1 = Yk +α∇C (Yk ) (2.4)

Besides the general optimization scheme, different tSNE-specific tricks have been devised to help the
algorithm avoid local optima and produce embeddings with more space between clusters. The first of these,
known as "early exaggeration" (ee) consists of scaling the input matrix of affinities by a constant term for
some iterations at the beginning of the optimization [54]. This helps tSNE avoiding local optima in which, for
example, a cluster of related points would be split by another cluster. Although in [55] and a lot of subsequent
work 12 was blindly used as the ee factor, recently, different work has systematically analyzed the effect of
this parameter, confirming the validity of this value and suggesting a relationship with the learning rate and
the size of the embedding [5, 27]. A related similar technique known as "late exaggeration" (le) was briefly
proposed in [28]. The authors found that by exaggerating the high-dimensional affinities towards the end
of the optimization, resulting clusters can have more space in-between. Despite its apparent benefits, more
studies should be conducted to verify that it is a reasonable thing to do. It must be noted that these add ons
are, for the most part, a result of empirical observations by the authors and therefore are highly tunned for
tSNE and, in most cases, lack theoretical support. Later on in this document, we show that we can obtain
similar effects in the embedding without the usage of these extra parameters.

Moving away from gradient descent, a smaller subset of the research efforts have been devoted to devising
alternative optimization approaches for NLEs. One way in which the convergence of iterative optimization
algorithms can be accelerated is by using higher-order information such as the Hessian, which provides cur-
vature information of the cost function [36]. A first attempt to use the Hessian was recorded in [33] where a
trust region based Newton method was proposed for SNE. Although the results showed that using Hessian
information could significantly reduce the number of iterations needed, this method was not further devel-
oped. Probably, because of how expensive each iteration was as a result of having to compute the complete
Hessian. This pitfall was remedied in recent work, where approximations of the Hessian were used instead.
The simplest way to do so is by using a diagonal scaling matrix, which can be obtained from the Laplacian
of the graph of high-dimensional affinities (see Chapter 3 for an explanation of how the Laplacian is built).
In [29] and [8], the authors tried this approach for the cost functions of sSNE, tSNE, and EE and found that it
boosted the convergence of the algorithm without a significant computational overhead.

This idea of using approximations of the Hessian was further refined and validated in [58], which presents
a systematic approach for using line search based quasi-Newton methods for optimizing different NLE cost
functions. In the paper, Laplacian-based expressions of the gradient and Hessian of the different cost func-
tions were derived. Then, these were used to construct positive-definite, fast to compute, and as close as
possible approximations of the Hessian. In the results, the authors found that the Spectral Direction, which
corresponds to the Laplacian matrix of the high-dimensional affinity graph, yielded the best results, outper-
forming the traditional gradient descent and other unconstrained optimization methods such as nonlinear
conjugate gradients [44] and L-BFGS [64] in terms of the number of iterations needed for convergence. Given
how promising were the results using the Spectral Direction, it occupies a central role in this work. Concretely,
we are interested in better analyzing its behavior with tSNE and extending it to handle large scale datasets.

To finalize this subsection, we return to gradient descent, but in the stochastic setting. Two recent NLEs,
LargeVis [51] and UMAP [31], have successfully used stochastic gradient descent to optimize their cost func-
tions. This is possible because, in contrast to tSNE, these methods do not normalize the low-dimensional
affinities. As a consequence, they can decouple the updating of the iterate in mini-batches of the affinities. To
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perform the sampling, these techniques follow the negative sampling approach presented in [32]. In practice,
this means that for each high-dimensional, or attractive edge, they randomly sample m low-dimensional, or
repulsive, edges. Although using stochastic gradient descent does not necessarily results in a speedup of
the optimization (number of iterations stays the same and can even increase) by running multiple iterations
asynchronously, significant performance gains can be obtained.

2.2.4. Approximation of the Gradient
As was mentioned in the previous subsection, gradient descent is the preferred way to optimize of NLEs’ cost
functions. Given that the gradient of these functions depends on the low-dimensional matrix of affinities,
which in turn requires the evaluation of a kernel for every pair of points in the embedding, each iteration
of this algorithm has a time complexity of O(N 2). In recent years, there has been a lot of effort put into
accelerating this step by approximating the gradient. Different approximations have become available for
the NLEs that we have discussed. We start with gradient approximations for tSNE, which rely on the fact that
the gradient can be separated into a set of attractive and repulsive forces as can be observed in Figure 2.3. Of
these, the former depends on the matrix of high-dimensional affinities and therefore they can be efficiently
computed exploiting its sparsity. In contrast, the latter requires O(N 2) comparisons. Fortunately, there are
several ways in which this complexity can be reduced.

Figure 2.3: Visualization of the gradient of the Kullback-Leibler divergence for a two-dimensional embedding of the Iris dataset
produced with tSNE, which is presented in the left-most scatter plot of the figure. The three charts on the right depict the gradient, and
its decomposition into attractive and repulsive forces as a vector field plotted over one of the clusters of the embedding. It is possible to

observe how attractive forces are drawing points towards the center of the cluster, while the repulsive ones are pulling away from this
cluster from the other two. Note that the length of the vectors was automatically computed on a per plot basis to ease visualization and,

because of this, vector lengths of different plots are not directly comparable. In the example that we considered for this figure, the
attractive forces were small, and therefore their effect on the gradient is hard to appreciate. For this reason, the gradient looks similar to

the repulsive forces.

In [55], two approximation algorithms that rely on tree-based data structures were presented. The first
approach, based on the Barnes-Hut algorithm [3], reduces the number of pairwise comparisons that need to
be carried out to O(N log N ) by using a tree to index the points and then using it to query clusters of points as
opposed to single particles. For example, if a point i is too far from two other points j and k that are close by;
instead of performing 2 comparisons (i − j and i −k), the center of mass of the cell to which j and k belong
is used instead. The tSNE method equipped with this algorithm is known in the literature as BH-SNE and
was the first to enable the visualization of several hundreds of thousands of points, using an NLE. Given that
in this work we use the BH approximation to accelerate quasi-Newton methods, we provide a more detailed
description of this algorithm in Chapter 3

The Barnes-Hut algorithm compares a particle against cells of particles using the hierarchical structure. In
theory, further speedups can be obtained if cells are directly compared against cells. In this case, two trees are
built and, when two groups of points are sufficiently far from each other, their cells are compared as opposed
to all their particles. This approach, known as the dual-tree (DT) approximation [15] was also tested in [55],
but the authors found that the performance gains were not as significant as expected and therefore it has not
been used with NLEs after that. It is important to note that there are no bounds on the approximation errors
of BH and DT. Even though this has not been a problem when used in gradient descent, a central question
in this work is whether the BH approximation can be "safely" used in quasi-Newton, which relies on line
searches and trust regions to set their step size.

Another approximation approach that relies on the Fast Fourier Transform (FFT) was introduced in [28].
The resulting method denoted Flt-SNE, was able to reduce the computational complexity of the gradient
computation to O(pN ), which is linear in the number of points. Flt-SNE starts with an interpolation step in
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which the N points are interpolated "down" to p interpolation nodes that are equally spaced on a squared
grid. Then, having this grid, FFT is used to approximate the pairwise interaction in O(p log p). Finally, the
information at every p is interpolated back "up" to the N points of the embedding. Note that in this proce-
dure, the most expensive part of corresponds to two interpolation steps which depend on N and p. In the
paper, the authors found p = 3 to be optimal, making Flt-SNE computational complexity close to linear in the
number of points. In practice, when compared to BH-SNE, Flt-SNE is slower for smaller datasets, but quickly
outpaces BH-SNE as the number of points grows.

There are two ways to approximate the gradient that have been devised for tSNE and that assume that
the space of the embedding is two dimensional. The first of these, pixelSNE [22], attempts accelerates BH-
SNE by reusing the indexing structure across iterations and by computing a coarser approximation, using
the pixel as the maximum level of granularity to be allowed. Although this approach can be fast for small
screen resolutions, to obtain faithful representations of the data usually higher-resolution grids are needed
which makes it harder for it to scale to larger datasets. The second method, known as GPGPU tSNE [43], uses
a completely different approach that is based on the reinterpretation of the gradient so it can be computed
using a scalar and a vector field. This is done so the parallel capabilities of GPUs can be used in the following
way. First, the fields are computed in parallel using GPU shaders and using a hardware feature known as
texture splatting to aggregate the contributions from different points. Then, these fields can be consulted in
O(1) to compute the gradient. In the paper, it is shown how this method is much faster than BH-SNE and
comparable in performance to CUDA tSNE, another hardware-accelerated tSNE variant that we will discuss
below. Before moving to other NLEs, we note that in our approach we will use the BH algorithm. Nevertheless,
in future work, it would be interesting to explore the effect of the other approximations.

Tree-based methods have been used in other NLEs besides tSNE. In [60], a Fast Multipole Method (FMM)
for approximating the gradient of EE in O(N ) was proposed. Similar to BH, FMMs consider scenarios in which
individual interactions can be grouped into cell interactions. But it differs from BH in several important
ways. First, it takes into consideration the kernel that is used to develop an expansion of the sum that can be
computed in O(N ). Given that EE uses the Gaussian kernel for the low-dimensional affinities, in the paper
the authors adopt an existing FMM known as the Fast Gauss Transform [49]. The problem with FMMs is that,
although they have an edge in performance, their dependence on a specific kernel makes them hard to adapt
to NLEs that use the Student’s t-Distributed kernel, which is normally used. An important thing to consider
about FMMs is that, in contrast with BH, they provide error bounds, which, in our case, could be useful for
adding safeguards to the line search and trust region of our quasi-Newton methods.

We finalize this section with the alternative approach proposed by UMAP [31] and LargeVis [51]. As was
mentioned before these methods abandon the normalization of the low-dimensional interactions, which in
turn enables the usage of stochastic gradient descent (SGD) for the optimization. In this case, in contrast with
previous methods that attempted to obtain an approximation as close as possible to the true gradient, noisy
updates are used by sampling a limited number of repulsive edges using the negative sampling procedure
proposed in [32]. For this, they iterate over the attractive forces, and, for each one of them, they sample m
negative edges, with m << N . UMAP and LargeVis have shown that it is possible to optimize NLEs’ cost
functions using noisy iterates. It would be interesting to see whether this stochastic approximation of the
gradient can be somehow be adapted to work with tSNE’s cost function in the context of gradient-based and
quasi-Newton optimization.

2.2.5. Hardware Accelerations
In the previous subsections, we focused on the different algorithmic improvements that have made it pos-
sible to scale NLEs to hundreds of thousands of points. Recently, different steps of the NLE pipeline have
been extended to leverage specialized hardware, making the interactive exploration of datasets with millions
of points possible. We can divide these extensions according to the hardware that they use. For instance,
Multicore-TSNE accelerated the construction of the high-dimensional matrix of affinities and the gradient by
distributing the uNN search for each point and the computation of each component of the gradient across
processors [53]. With these improvements, it was able to obtain speedups of up to 5×, when using eight
threads, with respect to BH-SNE. Similarly, the implementations of recent NLEs such as FltSNE, UMAP, and
LargeVis have been done in a way that every step in the pipeline takes advantage of as many threads as pos-
sible.

For datasets in the order of millions of points, multicore implementations might not be enough. To deal
with this case of use, several GPU-accelerated variants have been proposed. In this regard, the best perform-
ing method so far is tSNE-CUDA which relies on NVIDIA graphics cards to accelerate the computations [9].
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Concretely, it uses FAISS [21], which is a parallel library for similarity search based on LSH, for the computa-
tion of the high-dimensional matrix of affinities and a parallel implementation of the Barnes-Hut algorithm
for the computation of the gradient [7]. It achieved a 70× speedup with respect to Multicore-SNE, being able
to produce a two-dimensional embedding of the GLOVE dataset, which has over two million points, in under
ten minutes. Despite its success, the main drawback of tSNE-CUDA is that it requires an NVIDIA graphic card
to work. The GPGPU approach proposed in [43] avoids this problem by using compute shaders, which are
available regardless of the GPU, to parallelize the computations. This was made possible by their field-based
interpretation of the gradient which can be easily implemented using texture splatting.

2.3. Tools and Systems
The improvements described in the previous section have made it possible for NLEs to handle larger amounts
of high-dimensional data. In parallel to the upgrades that target specific parts of the NLE pipeline, modifica-
tions that add more functionality to it or that rethink the interaction between the end-user and the embed-
ding algorithms have been proposed. In this section, we consider those that follow or could be integrated
into the "progressive visual analytics" workflow [48], which argues that visual analytic tools should provide
meaningful intermediate results. One of such approaches is Hierarchical-SNE (H-SNE) [40], which initially
presents the user with an embedding of a set of global, coarse, landmarks; and then lets the user zoom into
specific areas as desired. Embeddings for the landmarks at the different levels of granularity are precom-
puted, endowing this approach with two benefits: it reduces potential cluttering caused by millions of points
visualized all at once, and gives the impression of a smoother, even though the time complexity of the algo-
rithms is the same, experience.

Another recent progressive visual analytics approach A-SNE [41] focuses on the high-dimensional matrix
of affinities. It starts with a rough approximation of this matrix and then lets the user refine specific areas
as the optimization process advances. The advantage of doing this is that A-SNE avoids the bottleneck of
computing a high-quality version of this matrix up front, letting the user immediately start interacting with
the data once it has been loaded. An important element that H-SNE, A-SNE, and related tools do not address
is the optimal selection of parameters. For this, different protocols and systems, which focus on issues such as
the initialization of the data, setting the early exaggeration factor, the perplexity, and the number of iterations
that are necessary to obtain reasonable embeddings, have emerged [5, 23]. Although these are based on tSNE,
the most popular NLE thus far, we believe their findings should translate to some extent to other embedding
techniques.

To conclude this chapter, we highlight the different use cases that these tools and systems, together with
an improved NLEs pipeline, have enabled. Starting with biology, they have been used to visualize mass cy-
tometry data to better understand complex parts of the human body such as the immune system [18, 57].
Another emerging area in which NLEs are being used is to enable the understanding of deep neural net-
works. Usually, this is done, by visualizing their hidden layers, which can contain important information
about the features that the model has learned. This has also been done during the training process of the
networks to help the user fine-tune them in real-time [42]. Finally, NLEs have also been in the art word to
embed data thousands of pictures of paintings 1, which has resulted in new and unexpected experiences for
the spectators.

1The experience can be accessed at https://experiments.withgoogle.com/t-sne-map
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Background

In this chapter, we present the theoretical foundations of our work, which aims at accelerating the conver-
gence of the t-Distributed Stochastic Neighbor Embedding (tSNE) by using quasi-Newton methods. To find
an embedding Y ∈ RN×d that correctly captures the local structure of X ∈ RN×D , where d << D , tSNE at-
tempts to minimize the Kullback-Leibler divergence between the two datasets. Taking into account that this
function is nonconvex, this is done using iterative optimization algorithms that, after a series of steps, con-
verge to an optimum of the function. When only the gradient is used to generate these steps, the process can
take several thousands of iterations to converge. Quasi-Newton methods improve this situation by using the
second derivative of the function, the Hessian. To ensure their robustness, these are commonly used with
the line search and trust region frameworks, both of which we explore in this work. Having said this, in Sec-
tion 3.1 we present a general introduction to the problem of optimizing nonconvex functions and the usage
of quasi-Newton optimization frameworks. Then, we make this more concrete for the case of tSNE by delving
deeper into its cost function and its derivatives.

• X ∈RN×D is the matrix of high-dimensional points.

• Y ∈RN d , C (Y ) ∈R, ∇C (Y ) ∈RN d , ∇2C (Y ) ∈RN d×N d , and p ∈RN d correspond to the embedding, tSNE’s
cost function, its gradient, its Hessian and the search direction that is used in iterative optimization
methods to move between consecutive iterations, respectively.

• Note how we treat Y , ∇C (Y ) and p as vectors. This is to be consistent with the notation that we use
in the equations in the Line Search and Trust Region frameworks. Given a vector V , vi means that we
get the vector of d coordinates of the i th point and v (c)

i that we get the value for coordinate c of the i th

point.

• We use B ≈ ∇2C (Y ) to denote that an approximation of the Hessian, as opposed to the full Hessian, is
used.

• We use the subscript k to refer to the value of any quantity at iteration k. For example ∇C (Yk ) is the
value of the gradient at iteration k. To avoid cluttering the explanations, we sometimes omit the Y (i.e.
Ck or ∇Ck ).

• The Kronecker product ⊗ is an operator used to build block matrices. For instance, having a matrix
A ∈ RN×N , the result of A⊗ = A ⊗ Id , where Id is a d ×d identity matrix, will be a N d ×N d matrix. An
entry ai j of A, will be transformed into the d ×d block ai j × Id in A⊗.

3.1. Quasi-Newton Optimization Frameworks
Nonconvex cost functions such as tSNE’s are characterized by the presence of multiple local optima. Because
of this, a closed form solution cannot be obtained and an iterative algorithm must be used instead. Starting
from an arbitrary embedding Y0 ∈ RN×d , iterative methods produce a series of iterates Y0,Y1, ...,Yk , ...,Y ∗ that
eventually reach an optimizer Y ∗ of the cost function C . For this to work, at every iterate Yk the neighborhood
surrounding it must be smooth. Having this, second-order Taylor expansion,

13
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C (Y +p) ≈C (Y )+∇C (Y )T p + 1

2
pT ∇2C (Y + t p)p with t ∈ {0,1} (3.1)

can be used to find a suitable step p to the next iterate Yk+1.
In this section, we cover two frameworks that leverage this approximation of C at the current iterate. In

the first, denominated Line Search, we find a direction in which to move, and then decide how much to ad-
vance in that direction. In the second approach, known as Trust Region, both of these steps are done at once
by finding a direction that minimizes a surrogate of C within a predefined boundary. Figure 3.1 presents an
overview of the functioning of these methods on an example two-dimensional function. In the next para-
graphs, we give a more detailed description of these frameworks.

Figure 3.1: Minimization of a two-dimensional quadratic function using the Line Search (LS) and Trust Region (TR) frameworks. The
left-most panel presents a surface plot of the function. The center panel illustrates the process of optimizing it using the LS framework.

As can be observed, at each iteration, first we find the direction and then the step size. In the panel on the right, we present the
optimization process using the TR framework. In this case, we find a direction within the radius, which, in this case, forms a spherical

area due to the usage of the 2-norm. At each iteration, the size of the radius depends on the quality of the direction at the previous
iteration.

3.1.1. Line Search
In the Line Search (LS) framework, the next iterate is found by moving from the current iterate in a given
direction. This can be written as,

Yk+1 = Yk +αk pk (3.2)

where pk is the direction and αk is the step size. For the rest of this subsection, we avoid the iteration sub-
scripts to avoid cluttering the explanation.

The first step in LS consists of finding a suitable direction, which can be done by zeroing the derivative of
the Taylor expansion with respect to p and solving the resulting linear system,

B p =−∇C (Y ) (3.3)

for p . A thing to note in this expression is that, often, the Hessian ∇2C (Y ) is too expensive to compute, and
therefore an approximation B is used instead. Importantly, the latter must be positive definite to ensure that
the direction is a decent one.

In practice, we can solve Equation 3.3 directly or iteratively. In the case of the former, we consider Cholesky
factorization. The idea is to decompose the Hessian matrix in a way that B = LLT . Then, the factor L can be
used to find p by first solving Lx = −∇C (Y ) and then LT p = x. This process is known as forward-backward
substitution and is more efficient than alternatives such as Gaussian elimination. Iterative methods are an
alternative to direct solvers and are preferred when the Hessian matrix changes regularly or it is too big to
fit in memory. In this work, we consider the conjugate gradients (CG) method, which iteratively builds an
approximation of the solution, stopping when the desired precision is reached. It is important to stress the
fact that, although methods for indefinite or semidefinite matrices exist, in this work we assume that the ma-
trix is positive definite, which is a requirement of both Cholesky factorization and CG. This is an important
motivator for the Hessian approximations that we present towards the end of this chapter.

Having a suitable descent direction, the next step in LS consists of finding an optimal step size. This is
done by solving the one-dimensional optimization problem,

argmin
α

φ(α) = argmin
α

C (Y +αp) with α> 0 (3.4)
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where α corresponds to the desired step size. The reason this value cannot be set manually is that the algo-
rithm could end up oscillating around the optimum, if α is too big, or taking more iterations to converge if it
is too small. Taking into account the nonconvex and, in the case of tSNE’s Kullback-Leibler divergence, highly
nonlinear nature of C , the minimizer ofφ cannot be found exactly and therefore an iterative procedure which
is known as line search is required, hence the framework’s name. Although there are many sophisticated al-
gorithms available for this purpose, these are often too expensive since they require multiple evaluations of
the gradient and the cost function. Therefore, we focus on a simpler and more efficient alternative that has
been shown to perform well in practice [58], which is the backtracking line search.

The backtracking line search procedure starts with an initial estimate of the step size α and tests whether
the Armijo condition,

C (Y +αp) <C (Y )+ cαpT ∇C (Y ) (3.5)

is satisfied. This condition ensures that a sufficient decrease in the cost function value is achieved. If the
inequality does not hold, the backtracking line search will update the estimate of α, shrinking it by a factor of
τ, and try again. The values of c, in the Armijo condition, and τ must satisfy c < τ and c ∈ (0,1).

A note on the optimization algorithm for tSNE. Currently, the most popular method for optimizing tSNE
is Gradient Descent (GD), which is an instance of the LS framework with some adjustments. First, it does
not use Hessian information at all, which means that B = I in Equation 3.3 and implies that it follows the
direction opposite to the gradient (p = −I∇C ). Second, it avoids using a line search to find the optimal α,
and instead a user-defined step size is dynamically updated throughout the optimization using momentum
and an adaptive scheme [20]. Each iteration of this algorithm is significantly faster than a quasi-Newton
iteration, mainly because there is no need to solve a linear system. Nevertheless, because it does not use
Hessian information, it can take GD up to an order of magnitude more iterations to converge.

3.1.2. Trust Region
Instead of computing the direction and the step size separately, the Trust Region (TR) framework attempts
to directly find a direction p that is properly scaled. To do this, a surrogate function m, which is simpler
than the original cost function, is minimized within an area which is referred to as the trust region, hence the
framework’s name. Concretely, in TR the goal at each iteration is to solve the trust region subproblem, which
is a constrained optimization problem of the form,

argmin
p

m(p) s.t. ||p||2 ≤∆= argmin
p

C (Y )+∇C (Y )T p + 1

2
pT B p s.t. ||p||2 ≤∆ (3.6)

where m is the surrogate function, which is based on the Taylor expansion that was presented before; ∆
corresponds to the trust region radius; and, as was the case with LS, B is an approximation of the true Hessian
∇2C (Y ), which is often too expensive to compute. An interesting aspect of the TR framework is that we can
use different norms such as the 1-norm and ∞-norm in the constraint. In this work, we focus on the widely
used 2-norm, which defines a ball around the iterate as can be observed in Figure 3.1.

There are different ways to solve the optimization problem in Equation 3.6. Most of them are based on
the Cauchy point, which we can obtain by following the direction opposite to the gradient until we reach the
border of the TR. This point is important because it is a lower bound on the amount of cost function reduction
that the algorithm can obtain at a given iteration. In general, available methods use the Cauchy point as a
fallback if they cannot find a better alternative within the TR. The conjugate gradients method that is used
to solve LS’s linear system can be adapted to find a suitable p . In addition to the checks that ensure that the
Hessian matrix is positive definite and that the tolerance has not been reached, we define a set of conditions
that guarantee that the resulting direction’s length ||p||2 is less than the radius ∆. This is precisely what was
done in [47] and what we use for our experiments. We refer the reader to this work for an in-depth explanation
of how this modified CG algorithm works and its theoretical guarantees.

Having a direction p , we can measure its quality ρ with the ratio,

ρ = C (Y )−C (Y +p)

m(0)−m(p)
(3.7)

where m(0) = C (Y ). Given that m is an approximation of the true function, ρ indicates how close the pre-
dicted decrease in the cost function is to the observed one. This ratio is used to decide whether the direction
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should be accepted or rejected and whether the radius should be updated. For the former, we accept p if
ρ < η1. For the latter, we use the conditions presented in Equation 3.8 to determine the radius of the next
iteration ∆k+1. Note that 0 ≤ η1 ≤ η2 and 0 ≤ η3 ≤ 1 and that a maximum radius ∆max must be set.

∆k+1


η2∆k if ρ < η2

min(2∆k ,∆max) if ρ > η3 and ||p||2 =∆
∆k if in any other case

(3.8)

To conclude, although both LS and TR depart from the same theoretical base, the Taylor expansion of
C , their algorithmic structure is quite different. TR has been regarded as a more robust alternative given
that it produces properly scaled directions, nevertheless, the subproblem that arises can be hard to solve. In
contrast, LS is simpler to implement as exact of the shelf solvers can be used and good enough step sizes
can be found with simple iterative procedures. This shows that, in general, there is no better method for
optimizing nonconvex functions. For this reason, in this work we focus on both approaches, measuring their
performance at optimizing tSNE.

3.2. The Kullback-Leibler Divergence and its Derivatives
To find a suitable embedding Y ∗ for the high-dimensional data, tSNE encodes the pairwise distances between
high and low-dimensional points as affinity matrices P and Q and then compares them using the Kullback-
Leibler (KL) divergence. The latter, also known as relative cross-entropy, measures the difference between
two probability distributions using Equation 3.9. In the previous section, we showed how, besides the cost
function C , quasi-Newton methods need to have access to its gradient ∇C (Y ) and Hessian ∇2C (Y ). We now
go over these in more detail, describing their properties. We also present important building blocks such as
the computation of the matrices of affinities P and Q and the graph Laplacian L.

K L(P ||Q) =C (Y ) =∑
i

∑
j

pi j log(
pi j

qi j
) (3.9)

3.2.1. The Affinity Matrices
As can be observed in Equation 3.9, KL compares the discrete probability distributions P and Q, which are
computed from the high and low-dimensional points X and Y , respectively. The starting point in both cases
is the matrix of Euclidean pairwise distances, which for two points zi and z j can be computed using,

d(zi , z j ) = ||zi − z j || = (
∑
n

(zn
i − zn

j )2)1/2 (3.10)

where n corresponds to a specific coordinate. To compute the high-dimensional affinity matrix P , the first
step consists of transforming the distances d(xi , x j ) into conditional affinities, using the Gaussian kernel,

gaussian(d(xi , x j )) = gi j = exp(−d(xi , x j )2/2σ2
i ) (3.11)

where xi and x j are points in the high-dimensional space. The extent of the kernel is determined by the band-
width σi , which is set individually for each point, taking into account the user-defined perplexity value. The
latter can be regarded as the effective number of neighbors that are taken into consideration. The bandwidth
can be found using a bisection search procedure [54] or root-finding algorithms [59] and we direct the reader
to these references for more details. The next step consists in normalizing each row of G with,

p j |i =
gi j∑

k 6=i gi k
(3.12)

which results in a conditional matrix of affinities. Note that because of the adaptive σi , this matrix is asym-
metric, which can make the optimization process difficult. Therefore, the last step in tSNE is to symmetrize
and further normalize these conditional affinities using,

pi j =
pi | j +p j |i

2N
(3.13)

which yields the matrix of joint probabilities, or of affinities, P .
In a similar fashion, in the low-dimensional space the input is the matrix of pairwise euclidean distances

d(yi , y j ) for {yi , y j } ∈ Y . The main difference in this case is the choice of kernel used to compute the affinities.
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To deal with the crowding problem [54], we use the Student’s t-Distributed Kernel with one degree of freedom
which is defined as,

t-Student(d(yi , y j )) = ti j = (1+d(yi , y j )2)−1 (3.14)

In contrast with P , in this case the resulting matrix is already symmetric and therefore to obtain Q we only
need to symmetrize it using,

qi j =
ti j

Z
(3.15)

where Z is the normalization term corresponding to the sum all of the affinities,

Z = ∑
k 6=l

tkl =
∑
k 6=l

(1+d(yk − yl )2)−1 (3.16)

Affinity matrices as graphs. We have shown how P and Q correspond to matrices of affinities between
each pair of high and low-dimensional points, respectively. It is useful to look at these matrices as adjacency
matrices of a graph in which each point is a vertex, and the affinity value between two of these is an edge.
Although in theory, these are fully connected graphs, because for every edge we assign an affinity, as we will
see in the next chapter, in P most of the entries are close to zero and therefore it can be seen as the u-Nearest
Neighbor graph, where u is set taking into account the perplexity.

3.2.2. The Graph Laplacian
The Graph Laplacian L is a diagonally dominant square matrix that results from subtracting a weights matrix
W from a matrix of degrees D . D is diagonal and can be computed by adding the elements of the rows of W ,
which for an element di i , corresponds to,

di i =
∑

j
wi j (3.17)

With this, the Laplacian matrix follows,

L = D −W (3.18)

An important property of L is that, when the elements of D are positive, the matrix is guaranteed to be
positive semidefinite. As we will see later, the Hessian of tSNE’s Kullback-Leibler divergence can be written
as a sum of Laplacians. This will facilitate the construction of Hessian approximations that work well with
Cholesky and CG solvers used in the LS and TR frameworks.

3.2.3. The Gradient
The Kullback-Leibler divergence, presented in Equation 3.9 only depends on the embedding Y , considering
that the high-dimensional matrix of affinities P is computed at the beginning and never changes. Therefore,
the i th entry of the gradient ∇C (Y ) ∈ RN×d of KL can be computed by taking the partial derivative of KL with
respect to yi which results in,

∂C (Y )

∂y (c)
i

= 4
∑
j 6=i

(pi j −qi j )qi j Z (y (c)
i − y (c)

j ) (3.19)

where Z is the normalization term presented in Equation 3.16. For the curious reader, an in-depth derivation
of the gradient is presented in Appendix A.

Given that for each entry of the gradient N operations need to be carried out, its computation does not
scale well with the size of the data. In this work, we use the Barnes–Hut algorithm to approximate it, reducing
its complexity. To understand how BH operates, it is useful to look at the gradient as a set of attractive and
repulsive forces. By slightly rearranging the terms of Equation 3.19, we obtain,

∂C (Y )

∂y (c)
i

= Fat tr +Fr ep = 4
∑
j 6=i

pi j qi j Z (y (c)
i − y (c)

j )−4
∑
j 6=i

q2
i j Z (y (c)

i − y (c)
j ) (3.20)
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where the gradient has been split into two terms. The first corresponds to the set of attractive forces that
ensures that similar points in the high-dimensional space are close by in the embedding. And the second
corresponds to the set of repulsive forces that involve all points and ensure that clusters in the embedding
have white space between them. A visual representation of this decomposition was presented in the previous
chapter in Figure 2.3.

Figure 3.2: Using a quadtree to reduce the number of pairwise comparisons that are needed to compute the gradient of the
Kullback-Leibler divergence. The left panel shows how the quadtree recursively partitions the embedding space until there is only one
point per cell. The result of this procedure is the tree that the panel in the right of the figure presents. This tree can be used to speed up

the computation of the gradient by avoiding a subset of the O(N 2) comparisons. In the figure, we use a cell, as opposed to the
individual points that it contains, if the ratio between its width and the distance of its center of mass to the target point (y1 in this case),

is below a threshold θ.

As was mentioned before, P can be approximated by a uNN graph, and therefore the attractive term can
be efficiently computed, taking advantage of the sparsity of this graph. In contrast, the repulsive term requires
the comparison of all pairs of points in Y , which scales quadratically with N . BH reduces the number of
comparisons that are needed by indexing the low-dimensional points in a quadtree (or octree if in 3D) as
presented in Figure 3.2. In this hierarchical structure, the points are located at the leaves and intermediate
nodes contain aggregate information of their children such as the center of mass. In the example in the
figure, suppose that we are interested in finding the first entry of the gradient. In this case, we would need
to compute the distances between y1 and y2, and y1 and y3. Notice that y2 and y3 are close to each other
and far away from y1. While traversing the tree, BH will compare the width rcell of the node that contains y2

and y3, with the distance of their center of mass ycell to y1, using Equation 3.21. If the value of the ratio is
smaller than a user-defined approximation threshold θ, the cell will be used as a proxy for the points that it
contains, saving, in this case, the need for an extra computation. A larger value of θ implies a coarser and
faster approximation, while θ = 0 corresponds to the exact gradient computation. In practice, it has been
shown how BH is robust to changes in the value of this parameter, which is often set to θ = 0.5.

rcel l

||yi − ycel l ||2
< θ (3.21)

Approximating the Kullback-Leibler divergence with BH. In the LS and TR frameworks, we need to
evaluate the cost function value at least once per iteration. Given that its complexity is O(N 2), this makes
these methods impractical for larger datasets. Fortunately, we can also use BH to approximate it. Concretely,
the bottleneck in the computation of the Kullback-Leibler divergence is the normalization term Z that is
obtained by rearranging its terms following,

K L(P ||Q) =C (Y ) =∑
i

∑
j

pi j log(
pi j

qi j
) =∑

i

∑
j

pi j (log(pi j )− log(ti j )+ log(Z )) (3.22)

where ti t corresponds to the Student’s t-distributed kernel. Besides this, all operations depend on the number
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of non-zeros of P and therefore are efficient. To fix this, we just need to use the approximated normalization
term Zappr ox that is obtained during the computation of the gradient using BH.

3.2.4. The Hessian
The LS and TR frameworks presented at the beginning of this chapter use Hessian information to obtain bet-
ter descent directions. In this subsection, we present the Hessian of tSNE and several of the approximations
that have performed well in practice. Previously, we showed how the gradient of KL is a vector of N d entries
that collects the partial derivatives of the cost function with respect to each coordinate of every point. To
compute the Hessian, we compute the derivative of each entry of the gradient with respect to every other
entry, resulting in a square symmetric matrix of shape N d ×N d . Because of the number of computations in-
volved, we do not present the full derivation of the Hessian here and instead direct the reader to Appendix B,
where this is done. Furthermore, in this work, instead of using the algebraic derivation for each entry of the
matrix, we will use the equivalent Laplacian-based expression of the whole matrix [58],

∇2C = 4L⊗ Id +8Ly y −16((Lq ⊗ Id )Y )T ((Lq ⊗ Id )Y ) (3.23)

with weights,

wi j = (pi j −qi j )ti j

w q
i j =−qi j t 2

i j

w y y
ni ,m j =−(pi j −2qi j )(y (n)

i − y (n)
j )(y (m)

i − y (m)
j )t 2

i j

(3.24)

As was already mentioned, this way of representing the Hessian is particularly useful for finding ways of
including second-order information in the optimization procedures. The "approximate" Hessian that we are
interested in must be simple and efficient to compute, as close as possible to the true Hessian ∇2C (Y ), and
compatible with linear solvers such as Cholesky decomposition and conjugate gradients (CG), which require
positive definite matrices. In this work, we focus on the approximations proposed in [58], which are: the
fixed-point iteration (FP), the Spectral Direction (SD), and the spectral direction with extra low-dimensional
information (SDLD). Starting with the closely related FP and SD, the latter corresponds to the positive Lapla-
cian SD= L+, which has weights,

w+
i j = pi j ti j (3.25)

where pi j is a constant term and ti j varies at each iteration. For computational efficiency, the latter is often
assumed to be equal to one [58]. Nevertheless, in this work, we show that not only this term can be added
without significant overhead, but also that it can improve the performance of SD. Note that this matrix can
be positive semidefinite. To be able to use it with the Cholesky factorization and CG, which require positive
definiteness, we can add a multiple of the identity matrix βI , where β = 1−10 min(D+). As for FP, it can be
derived from a fixed point iteration as shown in [8], and ends up being equivalent to using the diagonal of SD,
D+.

The final approximation, SDLD, adds more positive semidefinite terms of the Hessian. Concretely, it cor-
responds to the Laplacian,

SDLD = 4L+⊗ Id +8Ly y
n=m (3.26)

where only the terms of Ly y that share coordinate (n = m) are used. Because the weight matrix of Ly y has a
term that does not depend on P , it is not sparse, and therefore the resulting Laplacian is dense. Additionally,
its positive semidefiniteness is not as easy to fix as SD’s, and therefore to ensure that it is stable, we use it only
with iterative linear solvers such as CG, which include safeguards for these cases.

In this chapter, we presented the LS and TR frameworks and gave a detailed description of the different
components of tSNE such as its cost function and its derivatives. In the next chapter, we make this theory
concrete by introducing an experimental framework that implements tSNE and different optimization meth-
ods. There, we will discuss in-depth technical aspects such as the representation of the sparse matrices and
the computational complexity of the different algorithms.





4
Methodology and Implementation

In the following two chapters we present the results of the different experiments that were conducted. In
these, we compared versions of tSNE that used different solvers. To make the results directly comparable
we build a complete experimental pipeline in Python with several useful components such as data load-
ers, efficient implementations of tSNE-related routines such as the computation of the cost function and its
derivatives, and a generic optimization loop that enabled different schemes and had logging capabilities of
all the relevant metrics. In this chapter, we present the most relevant details of this system. We start in Sec-
tion 4.1, describing the different components of the experimental pipeline and then in Section 4.2 introduce
the datasets that were considered in the experiments.

4.1. Experimental Pipeline
For our experiments, we implemented a version of the NLE pipeline tailored specifically for tSNE and for
being able to handle multiple optimization schemes. Figure 4.1 presents a schematic of its computational
flow. The pipeline has two main components which are the initialization and the iterative optimization of
the embedding. In the former, we initialize the embedding and compute the matrix of high-dimensional
affinities P . In the latter, the optimization loop takes place, which can be divided into two general steps.
First, we compute the within iteration quantities, which depending on the optimization algorithm include
the Hessian approximation, the gradient, and the next iterate. Then, we verify whether the algorithm has
converged to decide if the loop must be stopped. In the following subsections, we will delve deeper into the
individual components to clarify important algorithmic and implementation details.

Figure 4.1: The overall structure of the computational pipeline that we employed in our experiments (left) and an in-depth view of the
"computation of within iteration quantities" box (right). Note the algorithm will iterate until a termination condition is satisfied,

producing a sequence of iterates like the one that can be observed in the top right section of the left plot.

4.1.1. Initialization of the Embedding
In iterative optimization, the starting point Y0 must be chosen with care. In tSNE, there are two popular
alternatives that we support. The first one is random initialization, in which we sample the value of every

21
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parameter of the embedding using a Gaussian N (µ,σ2), where µ = 0 and σ = 1× 10−4. To enable the re-
producibility of our work, we allow the user to set a random seed which guarantees that the same sequence
of random numbers will be drawn. The second option that we support is PCA initialization, for which we
compute the PCA decomposition of the input data X , and pick first d columns to form the initial embedding.
Given that this PCA embedding can be arbitrarily scaled, which can cause problems during the optimization,
we rescale the points to fit in a centered ball of radius 1×10−4. Taking into account that this initialization is
deterministic, no seed is needed.

4.1.2. Computation of the High-Dimensional Matrix of Affinities
There are multiple ways to compute P which can be either exact or sparse, using the u-Nearest Neighbor
(uNN) graph. In this work, we used scikit-learn’s kd-tree-based nearest neighbor search to compute the ap-
proximate matrix of Euclidean distances in O(DN log N ). Given that this algorithm scales poorly with the
dimensionality of the input data D , if the latter is higher than 100, we used PCA to reduce its number of di-
mensions to this value. We determined the number of neighbors u to be considered taking into account the
user defined perplexity per p with u = 3per p+1. And used the bisection based approach described in [54] to
compute the bandwidths for each point. Finally, we symmetrize and normalize our matrix to obtain P . These
operations can be performed efficiently due to the sparsity structure of P, which we visualize in Figure 4.2 for
the Iris dataset.

4.1.3. Computation of the Gradient and Cost Function Value
In this work we consider both exact (θ = 0) and approximate (θ > 0) cost function and gradient evaluations.
For the exact versions, keeping in mind that their complexity is O(N 2), we tried distributing the computations
across multiple threads using Numba [25] to reduce computation time. For the approximate versions, we
used the Barnes-Hut algorithm which reduces the complexity to O(N log N ). Concretely, we wrapped the
function that the scikit-learn’s [39] implementation of BH-SNE uses to compute the approximate gradient,
which also has an option to return an estimate of the cost function value. The latter works by using the
resulting Zapprox from the gradient computation in Equation 3.22.

4.1.4. Computation and Updating of the Hessian Approximation
Among the Hessian approximations B that we consider, FP and SD are the most efficient to compute given
that the latter shares the sparsity pattern of P , and the former is just SD’s diagonal. An important result of this
work is that we show that for tSNE, periodically adding low-dimensional information to SD can be beneficial
(ti j 6= 1 in Equation 3.25). Naively implemented, this updating can become an important bottleneck be-
cause it suggests computing the matrix of pairwise distances for the low-dimensional points, which is O(N 2).
To avoid this, we implemented a sparse pairwise distance calculation routine that is shown in Algorithm 1.
It uses the sparsity pattern of P to avoid computing entries of the distance matrix that will not contribute.
Given that we store our sparse matrices in Compressed Storage Row (CSR) format, we further accelerated this
procedure by distributing the computation of each row, which is assigned a chunk of contiguous memory,
across processors. After computing the sparse matrix of low-dimensional affinities T , we can efficiently mul-
tiply it against P to obtain the weight matrix of the positive Laplacian, which corresponds to SD. The latter
can be obtained efficiently using sparse linear algebra operations.

Algorithm 1 Sparse Pairwise Distance Matrix Computation

1: procedure SPARSEPDISTS(Y ,P ) . Embedding and sparse matrix of high-dimensional affinities
2: T ∈RN×N . Output sparse matrix
3: for r ← 1, N do . Rows of P
4: for c ∈ nonzero(Pr ) do . Indices of nonzero entries in row r of P
5: tr c = ||yr − yc || . Points r and c of the embedding
6: end for
7: end for
8: return T
9: end procedure

The computation of SDLD is less efficient given that the complete matrix of low-dimensional pairwise
distance, which has N 2 entries, needs to be evaluated. We accelerate this by using different threads for differ-
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ent rows of the matrix. Nevertheless, similarly to the exact computations of the gradient and the cost function
value, it does not scale well to datasets with more than a couple thousand points. For this reason, we only
consider it in the smaller scale experiments of Chapter 5. As has been suggested throughout this subsection,
the efficiency of the optimization process will depend to a great extent on the sparsity of B , given that the
fewer the number of non zero values, the faster the different operations will be. In Figure 4.2, we present the
sparsity pattern of the different Hessian approximation, with FP being the sparsest of all and SDLD a dense
matrix. It is important to note how even if FP and SD are initially matrices of shape N ×N . In practice, we
transform all the Hessian approximations to matrices of shape d N ×d N by applying the Kronecker product
SD = SD ⊗Id , where Id is the d-dimensional identity matrix. Then, when we need to multiply them by a
vector, for example, to solve B p = −∇C , we flatten ∇C before carrying out such operation. When using CSR
matrices, as is the case in this work, this sparse matrix-vector multiplication has a cost of O(N N ZB ), where
N N ZB is the number of nonzero entries of the approximation B .

Figure 4.2: The sparsity patterns of the different matrices for the Iris dataset (N = 150 and D = 4) with target dimensionality d = 2. The
darker shade of blue corresponds to entries of the matrices that are not zero. The left-most figure corresponds to the matrix of

high-dimensional affinities P and the remaining three correspond to the different Hessian approximations FP, SD, and SDLD. Note how
the latter three, are larger than P to be able to accommodate the coordinate-dependent terms of the Hessian matrix. Also note how,

besides the diagonal, SD has the same sparsity structure of P , and how SDLD is the densest of all.

4.1.5. Finding the Next Iterate
Our experimentation pipeline implements three different approaches for finding the next iterate: gradient
descent with momentum and adaptive step length (VDM), and line search (LS) and trust region (TR) quasi-
Newton methods. In the following paragraphs we describe their implementations, and the relevant parame-
ters that they accept.

VDM. This is the most popular optimization algorithm for tSNE. For its implementation and the values
of the different parameters we followed [54]. In addition to the embedding and the gradient, the method re-
quires two additional vectors that are used to implement momentum and the adaptive learning rate scheme.
The first one, incs, is initialized to~1 and the second one, gains, to~0. In addition to these vectors, two scalar
parameters are required: min-gain and momentum. For our experiments, we set the former to 0.01 and the
latter to 0.5 for the first 250 iterations after which we switched it to 0.8. Finally, α corresponds to the step size
or learning rate which we set to 200.

Algorithm 2 Computing Next Iterate With Momentum and Adaptive Learning Rate

1: procedure COMPUTENEXTITERATEVDM(Yk ,∇C (Yk ),α, incs,gains,min-gain,momentum)
2: se ← sign(∇C (Yk )) = sign(incs) . Boolean vector (0s and 1s)
3: gains ← (~1− se)(gains+0.2)+ se(gains×0.8)
4: gainsi ← min-gain ∀i ∈ {0, ...,d N } if gainsi < min-gain
5: incs ← momentum× incs−α(gains×∇C (Yk ))
6: Yk+1 ← Yk + incs
7: return Yk+1

8: end procedure

LS. As was explained in the previous chapter, the next iterate is found by determining a suitable direction
p that is scaled with a step size α. The former is found by solving the linear system in line 2 of Algorithm 3.
This can be done either directly or iteratively. For the former, we use a Python wrapper of CHOLMOD library
to compute the Cholesky factors of Bk which can be then cached and used at each subsequent iteration (if



24 4. Methodology and Implementation

the matrix does not change) to solve the system using forward and backward substitution. For the latter, we
implemented the CG algorithm presented in [36]. Important parameters of CG are the preconditioner, which
unless stated otherwise is the identity matrix I ; the maximum number of iterations KCG , which we set to 100
by default; and the residual tolerance which is set dynamically, taking into consideration the current gradient
to εCG = min(0.5, ||∇C (Yk )||0.5)||∇C (Yk )||. Having the direction, we find the step size αk using backtracking
line search. At each iteration, the Armijo condition in Equation 3.5 is tested to decide whether to stop back-
tracking should or to try a new step size αk = ταk . In our experiments we set τ= 0.8 and c = 0.1. Finally, the
backtracking line search receives an initial step size α from which the search is started, we followed the same
conservative strategy of [58], where αk−1 was used as a starting point to find αk .

Algorithm 3 Computing Next Iterate Quasi-Newton with Line Search

1: procedure COMPUTENEXTITERATELS(Yk ,C (Yk ),∇C (Yk ),Bk ,αk )
2: Solve Bk pk =−∇Ck . Can be solved with Cholesky or CG
3: αk ,C (Yk+1) ← backtrackingLinesearch(Yk , pk ,C (Yk ),∇C (Yk ),αk ) . With Armijo condition (Eq. 3.5)
4: Yk+1 ← Yk +αk pk

5: return (αk ,Yk+1,C (Yk+1))
6: end procedure

TR. In this case, the goal is to solve the subproblem presented in line 2 of Algorithm 4. We do this using
a preconditioned CG procedure that includes safeguards for the trust region constraint [47]. Similarly to
LS, we use the identity as preconditioner, KCG = 100, and εCG = min(0.5, ||∇C (Yk )||0.5)||∇C (Yk )||. Having the
tentative next iterate within the trust region, Y

′
k+1, the next step consists of validating its quality, which is

done using Equation 3.7 presented in the previous chapter. Finally, having ρ, the radius is updated and the
new iterate is either accepted or rejected depending on its quality. For the former, Equation 3.8 is used with
the parameter values recommended in [36]: η1 = 0.8, η2 = 0.25 and η3 = 0.75.

Algorithm 4 Computing Next Iterate Quasi-Newton with Trust Region

1: procedure COMPUTENEXTITERATETRUSTREGION(Yk ,C (Yk ),∇C (Yk ),Bk ,∆k ,∆max)
2: Solve minm(pk ) =C (Yk )+∇C (Yk )T pk +0.5pT

k Bk , pk s.t. ||pk ||2 ≤∆k

3: Y
′

k+1 = Yk +pk . Tentative new iterate

4: ρ← checkSolutionQuality(C (Yk ),C (Y
′

k+1),m(pk )) . Eq. 3.7
5: ∆k+1 ← updateRadius(ρ,∆k ,∆max) . Eq. 3.8
6: if ρ > η then . Do not accept Y

′
k+1 otherwise

7: Yk+1 ← Y
′

k+1
8: end if
9: return (∆k+1,Yk+1,C (Yk+1))

10: end procedure

4.1.6. Optimization Loop Stopping Criteria and Logging
To finalize this section we cover the aspects of stopping criteria and logging. In the case of the former, we
included different ways to terminate the optimization loop that ensure that separate runs are directly com-
parable. Concretely, the optimization is stopped when a number of iterations K have taken place, a given time
limit has been reached or two consecutive iterates are below a given threshold according to the expression
εY < (||Yk −Yk+1||∞)/(1+||Yk+1||∞). It is important to note how we do not include stopping criteria based on
the cost function given that not all the compared methods compute it and doing so would add a significant
overhead. On the other hand, regarding the logging. In general, for all the runs we record the cost function
value, the partial embedding, and the elapsed time. In the case of the former, if it was not needed during the
optimization we compute the cost function values offline to avoid affecting the performance of the methods.
Finally, for the quasi-Newton methods, we also record relevant information such as the step sizes, the trust
region radii, the number of CG iterations, the CG reached tolerance, and keep track of potential errors such
as using Cholesky decomposition with an indefinite matrix. The usefulness of these data will become evident
once we show the experimental results in the following chapters.
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4.2. Datasets
An important part of our experimental pipeline is the datasets that we use to compare the optimization al-
gorithms in different scenarios. We surveyed the literature and selected six datasets that have been used to
measure both the quality of the resulting embeddings and the efficiency of different algorithms. In the exper-
iments, depending on the setting, we will not be using all the datasets. To be able to refer to them consistently
across the document we divided them into three groups according to their size. Given that we focus on how
our methods to scale as a function of the number of points N and not the number of dimensions D , in all
cases, but Digits, we used PCA to reduce the dimensionality of the dataset to D = 100. We briefly present the
datasets below.

• Coil-20 (Small): the Coil-20 database [35] contains 1440 128×128 gray-scale images of 20 different ob-
jects. To generate the different images, each object was placed on top of a turntable and then rotated in
five-degree intervals. Therefore, there are 72 different images associated with each object. To generate
the input dataset X , the 2-dimensional array of pixel values associated with each image was flattened
and stacked, yielding a dataset with N = 1440 and D = 16384.

• Digits (Small): the Digits database [62] is a collection of 8×8 gray-scale images of handwritten digits.
In this work, we only use the test set which has consists of N = 1797 images and we flatten each one
of these to obtain a vector of D = 64 features. In this case, because D < 100, we did not use PCA in the
preprocessing.

• Coil-100 (Small): the Coil-100 database [34] contains 7200 128×128 colored images (3 channels) of 100
different objects. This is a superset of the Coil-20 dataset and therefore shares the collection process.
First, we convert each image to grayscale using the ITU-R 601-2 luma transform and then we flatten
them, which yields 16384-dimensional vectors. The resulting dataset has shape N = 7200 and D =
16384.

• PenDigits (Small): the PenDigits dataset [2] contains the x, y coordinate information of 10992 hand-
written digits. The coordinate information was obtained by sampling 8 points along the trajectory of
each digit, yielding 8× 2 features. Therefore, the PenDigits dataset has shape N = 10992 and D = 16,
and, given that D < 100, we did not use PCA in the preprocessing.

• MNIST (Medium): similarly to Digits, the MNIST database [26] is a collection of gray-scale images of
handwritten digits. In this case, the images have a size of 28×28 pixels. It has a training and test sets
with 60000 and 10000, respectively, which are used in supervised learning scenarios. Here, we merge
both and consider them as a unique dataset with N = 70000 and D = 784.

• F-MNIST (Medium): the Fashion-MNIST dataset [61] follows the same structure of MNIST, but instead
of using digits, it contains images of ten different classes of fashion items. As with MNIST, we joined the
training and test sets into a unique dataset with N = 70000 and D = 784.

• ImageNet (Large): ImageNet is a database consisting of millions of images that are often used to bench-
mark deep learning applications [12]. In this work, we used the activations of different layers of a Deep
Neural Network (DNN) trained on ImageNet’s validation set, which has 100000 images. The DNN that
was used in this case is the Google Inception [50]. We considered the two layers used in [43], which are:
Mixed3a and Head0. Each of these constitutes a separate dataset. While the former has D = 256, the
latter has D = 128.





5
Comparative Study of Techniques for

Optimizing tSNE Cost Function

The goal of the experiments that we present in this chapter is to replicate the results obtained in [58], where
the Spectral Direction (SD), combined with the line search (LS) framework, was shown to outperform several
alternative methods for optimizing tSNE. We extend their analysis in two ways. First, we try different varia-
tions of the SD that we tailored for tSNE by adding iteration-dependent information. Second, we consider the
trust region (TR) optimization framework, which so far had been neglected in the context of quasi-Newton
optimization methods for tSNE. Having said this, we start in Section 5.1 by exploring the effect of two of the
most important parameters of LS and TR, which are the initial step sizeα0 and trust region radius∆0, respec-
tively. Then, in Section 5.2 we proceed to determine which is the best performing Hessian approximation for
tSNE. After that, in Section 5.3, we compare the performance of resulting methods, SD-LS and SD-TR, with
other popular optimization techniques. Table 5.1 presents a summary of the experiments that we performed,
all of which we ran on a MacBook Pro with 16GB of RAM and a Quad-Core Intel Core i5 clocked at 2.3 GHz.
Finally, it is important to consider that, given that in this chapter we have not yet addressed the bottlenecks
of our methods, we were still restricted to the smaller datasets, Coil-20, Coil-100, Digits and PenDigits, for the
experiments.

Experiment Page Description

5.1 27 Exploring the effect of α0 and ∆0 on LS and TR, respectively.
5.2 30 Adding low-dimensional information to the Hessian approximations.
5.3 31 Comparison of different Hessian Approximations for LS and TR.
5.4 33 Comparative study of different optimization techniques for tSNE.

Table 5.1: Experiments covered in this chapter.

5.1. Parameter Choice in Quasi-Newton Methods
In LS and TR, the step size and trust region radius have the important role of determining the scaling of the
directions that will lead to the following iterate. A bad selection of these values will lead to optimization pro-
cedures that take longer to converge or fall trap to local optima. In preliminary experiments, we noticed that
the performance of LS and TR depended significantly on the initial values α0 and ∆0, respectively. There-
fore, in this section, we explore their effect and find values that perform well across datasets. Concretely, we
investigate the following questions.

Experiment 5.1. What is the effect that the initial step size α0 and the initial trust region ∆0 have on the
convergence of LS and TR, respectively? Which are the best performing values for these parameters?

Experimental setup. For the experiments in this section we focused on the constant Spectral Direction
(SD) proposed in [58] (ti j = 1 in Equation 3.25), used within the LS and TR frameworks. To keep the meth-
ods comparable, in both cases we used the conjugate gradient (CG) solver to find the new iterate. To keep

27
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Dataset ||pl s ||
Coil-20 300
Digits 300
Coil-100 10200
PenDigits 6200

Table 5.2: Baseline values to set the initial trust region radius ∆0 for each dataset.

computation times low, we truncated the latter to KCG = 500 iterations. For LS we tried different values of the
initial step size α0 ∈ {1,10,100,1000}. For TR, taking inspiration from [14, 46], we used an adaptive approach
for ∆0. For this, we selected a baseline value pl s for each dataset by running 10 iterations of LS with α0 = 1,
logging the norms of steps that were taken, and picking the largest one. This yielded Table 5.2. Having this, we
tried different radii by scaling ||pl s || with a multiplier m∆0 ∈ {0.01,0.1,1,10} so the resulting initial radius cor-
responds to ∆0 = m∆0 ||pl s ||. Finally, we considered three stopping criteria to guarantee that enough progress
had been made: more than K = 500 iterations had taken place, the elapsed time was greater than 5000 sec-
onds, or the variation between iterates, as defined in Chapter 4, was less than 1×10−6. It is important to note
that the α or ∆ can become 0 at some point in the optimization. As this means that no further progress can
be made, we also stopped the iterations in this case.

Results. Starting with LS, in the upper left chart of Figure 5.1, it can be seen how increasing α0 improved
the convergence of the method. Nevertheless, the chart below shows how the largest values of α0 caused the
algorithm to take more time. Although we saw this effect in all the small datasets, it got more pronounced
as their size grew. We found that the reason for this is that larger initial step sizes force more cost function
evaluations in the backtracking procedure, which are expensive. As can be observed in Figure 5.2, LS only
uses α> 1 for a few iterations at the beginning, when the initial large drop in the cost function value is taking
place. After that, it converges to a smaller value for the rest of the optimization. Keeping this in mind, if α0 is
set too large, the line search is going to spend too much time, in the beginning, trying to lower the step size to
a suitable value.

Regarding TR, we found a similar effect. As can be observed in the right column of Figure 5.1, an initial
larger radius was beneficial for the convergence of the algorithm. We found that smaller radii, caused the
optimization to be more susceptible to local optima, which is reflected by the less step decrease in the cost
function. When the radius is large enough, TR will follow a similar downward trajectory to LS. Nevertheless,
in contrast with LS, larger initial values of ∆0 did not result in slower runs since the latter does not rely on a
backtracking procedure and therefore no extra cost function evaluations are going to be performed. Finally,
as can be observed in Figure 5.2, the radius follows the same path as the step size. After a few iterations with
a large value, it converges to lower ones for the rest of the optimization.

Conclusions. The performance of LS and TR depends to a large extent to the correct setting of α0 and ∆0,
respectively. For the former, we found that setting it to a value slightly larger than 1 enabled the method to
take the crucial initial large steps without significantly increasing the number of backtracking iterations that
are required. Similarly, for TR, we found that a larger initial radius resulted in better convergence. Concretely,
setting ∆0 = m∆0 ||pl s || with m∆0 = 1, we obtained consistently good results across datasets. A problematic
aspect of this approach to finding ∆0 is that it must be set ad hoc for each dataset, which might not be ideal
for the end-user. Finally, an interesting aspect that we observed is the important role that SD plays in forming
well-separated clusters in the final embedding, akin to the role of the early exaggeration phase in tSNE. This
effect takes place in the first few iterations where large steps are taken. In the case of TR, we noticed that
when we used a smaller radius, even if the method reached the same final cost function value, there was a
high chance that it had converged to a local minimum, where some clusters were split.

The values of α0 and ∆0 can have a significant impact on the performance of LS and TR, respectively.
We obtained the best performance using α0 = 10 and ∆0 = ||pl s ||.
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Figure 5.1: The behavior of the Kullback-Leibler divergence (KL) when embedding the Coil-100 dataset using SD-LS-CG (left) and
SD-TR-CG (right) for different values of the initial step size α0 and trust region radius ∆0, respectively. The first row presents KL as a
function of the iteration, and the second row, KL as a function of the elapsed time in seconds. A logarithmic scale was used for the

x-axes to improve the chart’s readability.

5.2. The Best Hessian Approximation
The effectiveness of quasi-Newton methods depends on how much information of the true Hessian ∇2C
can be used without affecting the performance of the algorithm. In this work we consider the fixed-point
iteration (FP), the Spectral Direction (SD), and the Spectral Direction with extra low-dimensional information
SDLD, all of which we introduced in Chapter 3. In [58], the authors show how the constant SD (ti j = 1 in
Equation 3.25) was the best performing one across several NLEs such as the Elastic Embedding, symmetric
SNE, and tSNE. We argue that in the case of the latter, SD can be made more effective, without sacrificing
performance, by periodically updating it with low-dimensional information (ti j 6= 1). We start this section by
testing this hypothesis after which we compare their performance against FP and SD using both LS and TR.
We used the same setup for the experiments of this section, which we detail below.

Experimental setup. We tried varying the rate at which SD was updated with low-dimensional informa-
tion. Concretely, we denote the updating schedule Rx, where x is the number of iterations between updates.
On one extreme we have R0, which corresponds to the constant SD, and on the other R1, which means that
the SD is updated at every iteration. Given that Hessian-based methods converge in fewer iterations, we did
not try values of x larger than 50 given that at this point the methods usually had converged and the effect
of the update would be minimal. Specifically, we considered x ∈ 0,1,10,50. As for the other approximations,
given that they are not our focus, we used their "original" versions, which means that we computed FP based
on SD with R0 and updated the SDLD at every iteration (R1). In this section, we do not report results using
the Cholesky solver given that it is not compatible with SDLD, which is often indefinite. Therefore, to make
the comparison fair, we considered only the conjugate gradients (CG) based LS and TR. We truncated the CG
solvers at KCG = 500 iterations to avoid long execution times per iteration. Regarding relevant parameters

of LS and TR, we set α0 = 10 for the former and ∆Coil-20
0 = ∆

Digits
0 = 300 for the latter. In the next chapter,

we present an in-depth explanation of how we arrived at these values. Finally, we considered three stopping
criteria to guarantee that enough progress had been made: more than K = 500 iterations had taken place, the
elapsed time was greater than 5000 seconds, or the variation between iterates, as defined in Chapter 4, was
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Figure 5.2: The behavior of α and ∆ for the Coil-100 dataset with initial values α0 = 10 and ∆Coil-100
0 = 10200. Note how in LS, α spends

few iterations at relatively high values and eventually stabilizes to a lower one for the rest of the optimization. This behavior can also be
observed in TR, where ∆ significantly shrinks after a few iterations.

less than 1×10−6. It is important to note that the α or ∆ can become 0 at some point in the optimization. As
this means that no further progress can be made, we also stopped the iterations in this case.

5.2.1. Adding Low-Dimensional Information to the Spectral Direction
In this subsection, we focus on determining the best update schedule Rx for SD-LS and SD-TR. Concretely,
we seek to answer the following questions.

Experiment 5.2. Does adding low-dimensional information improve the convergence of the SD-based quasi-
Newton methods? Which is the best performing Rx for LS and TR?

Results. Starting with LS, we observed an improvement in the convergence rate when periodically added
low-dimensional information. In the top left part of Figure 5.3, it is possible to appreciate how R10 and R50
accelerate the convergence of the algorithm when the first update is performed. Interestingly, in the different
datasets, we did not observe a significant advantage by using R1. On one hand, even if it reduces the number
of iterations that are needed, it involves more updates, which slows down the algorithm. On the other hand,
we noted how the low-dimensional information tended to be more useful to the algorithm once it had gotten
closer to an optimizer as is the case with R10 and R50. In contrast, R1 includes information that, in the
beginning, does not have much meaning given that the embedding was randomly initialized.

Moving to TR, we observed that with the smallest datasets, such as Coil-20 and Digits, adding low-dimensional
information worked similarly to the LS case. Nevertheless, with the largest ones the effect was the opposite:
adding low-dimensional information degraded the convergence. This can be observed in the right column of
Figure 5.3 for the PenDigits dataset. For R10, it is possible to observe how after the 10th iteration, the reduc-
tion in the cost function value flattens. To understand why this happened, we analyzed the residuals of the
CG solvers for both LS and TR. We found that after updating SD with low-dimensional information, it took
them more iterations to converge which is a sign of ill-conditioning. In preliminary experiments, we tried
using the diagonal (Jacobi) and Cholesky preconditioners but did not obtain significant improvement.

Conclusions. The results suggest that adding low-dimensional information can improve the convergence
of SD. Nevertheless, it also seems to produce an ill-conditioned matrix, which affects the performance of the
CG solvers. We found that the LS and TR methods reacted differently to this issue. In the case of the former,
truncating CG is important because, after the update of SD with low-dimensional information, LS will need
significantly more iterations of CG to achieve the desired tolerance, making each iteration of the global opti-
mization procedure more expensive. In the case of the latter, the combination of ill-conditioning and a small
radius forces the CG procedure to end earlier, yielding iterates of poor quality. With this in mind, we observed
that while LS can benefit from the iteration-dependent information, TR cannot, at least with the current pa-
rameters. We believe this can be fixed with a preconditioner that reduces the number of CG iterations that are
needed and/or by lowering the acceptance threshold for new iterates. As for the former of these suggestions,
we tried the diagonal and Cholesky preconditioners and did not find a significant improvement.
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Figure 5.3: The behavior of the Kullback-Leibler divergence (KL) when embedding the PenDigits dataset using SD-LS-CG (left) and
SD-TR-CG (right) for different update schedules Rx of the low-dimensional information in SD. The first row presents KL as a function of
the iteration, and the second row, KL as a function of the elapsed time in seconds. A logarithm scale was used for the x-axes to improve

the chart’s readability.

Adding low-dimensional information to SD improves the convergence of LS, but not of TR. Therefore,
we consider for the rest of the experiments LS with R10 and TR with R0.

5.2.2. Comparison of Hessian Approximations for tSNE
Having the best performing SD for LS and TR, we proceed to compare it with the other Hessian approxima-
tions. Particularly, we investigate the following questions.

Experiment 5.3. Among FP (R0), SD (R10 for LS and R0 for TR), and SDLD (R1) which is the best performing
Hessian approximation? Does this hold for the LS and TR frameworks?

Results. In Figure 5.4, we present the comparison of the different approximations for the Coil-100 dataset.
The first thing to notice is that in both, LS and TR, FP is the least effective approximation, taking significantly
more iterations, and time, to reach the same cost function value. This shows how having fast iterations is
not enough if the Hessian approximation does not generate substantially better search directions that reduce
the number of iterations that are needed. As for SD and SDLD, it is possible to observe how the latter is
slower due to the O(N 2) cost of updating the matrix at each iteration. Additionally, the extra information that
Ly y provides does not seem to significantly help the convergence of the method. This effect is more clearly
observed in TR, where the SDLD line lags behind SD’s for the whole optimization procedure both in terms
of iterations that are needed and elapsed time. We also tried updating the low-dimensional information of
SDLD periodically but found that it did not improve over SD and was still limited to smaller datasets due
to its higher per-iteration complexity. We noted that these effects held across datasets and became more
accentuated as their size grew.

Conclusions. The results obtained in this section indicate that SD is indeed the best performing Hessian
approximation of those that were considered in [58]. For both LS and TR, SD can reduce the cost function
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Figure 5.4: The behavior of the Kullback-Leibler divergence (KL) when embedding the PenDigits dataset using LS-CG (left) and TR-CG
(right) with different Hessian approximations: FP (R0), SD (R10 for LS and R0 for TR), and SDLD (R1). The first row presents KL as a

function of the iteration, and the second row, KL as a function of the elapsed time in seconds. A logarithm scale was used for the x-axes
to improve the chart’s readability.

value in fewer iterations than SDLD and FP, while being computationally efficient due to its sparsity. Further-
more, we observed that, in the LS case, it can be further improved by adding low-dimensional information
periodically, and found that doing so every ten iterations is the best tradeoff of speed and decrease of the cost
function value. Although approximations that include even more information such as SDLD are similarly ef-
fective to SD in terms of convergence rate, they are limited by their computational complexity which scales
quadratically with the number of data points.

SD and SDLD have a similar effect on the reduction of the cost function value and perform better than
FP. Nevertheless, each iteration of SD is significantly faster because of its sparsity. Therefore, SD is the
best performing Hessian approximation for both LS (R10) and TR (R0).

5.3. Comparative Study of Optimization Techniques
In this section, we compare the performance of SD-LS and SD-TR with other optimization algorithms that
have been tried with different NLEs. We start by introducing the contenders in Section 5.3.1, and then proceed
to present the setup and results of our comparison in Section 5.3.2. We aim at replicating the results of the
comparative study that was performed in [58], extending it with the trust region framework and a wider range
of datasets.

5.3.1. The Contenders
In this subsection, we present the different optimization techniques that we considered for the comparative
review. We briefly explain each method and mention relevant parameters values and implementation details.
For VDM, and the quasi-Newton methods, the rest of the parameters can be found in Chapter 4.

• Vanilla gradient descent (VGD). VGD is theoretically similar to LS methods with two important con-
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siderations. First, we use the identity as the Hessian approximation (∇2C = I ). Second, the step size is
defined by the user at the beginning and remains fixed throughout the optimization procedure. For the
latter, we chose a value of α= 200, which is often used in the context of tSNE.

• Gradient descent with momentum and adaptive step size (VDM). This is the implementation that
is often used to optimize tSNE and which we presented in Chapter 4. Instead of fixing the step size
throughout the iterative procedure, to accelerate convergence, momentum, and an adaptive scheme
are used. The algorithm includes the "early exaggeration" trick which is useful to help clusters to form
correctly, we used a value of 12 for this parameter as recommended in [55] and stopped exaggerating at
the 250th iteration.

• Nonlinear conjugate gradients (nlCG). NlCG attempts to find the minimum of a given function by gen-
erating successive conjugate directions. Here we used SciPy’s implementation of nonlinear conjugate
gradients which uses the Polak-Ribiere updating formula to generate these directions [44]. To find the
suitable step size it uses a more sophisticated interpolation-based line search with strong Wolfe condi-
tions. We used this method with its default parameters.

• L-BFGS. This is a quasi-Newton method that generates an approximation of the Hessian of the ma-
trix using the information of the gradient from successive iterations. To keep memory requirements
low, we reset the approximation every m = 100 iterations as recommended in [58]. As with nlCG, we
used Scipy’s implementation of L-BFGS which is a wrapper to the original Fortran implementation [64],
which uses a line search based on strong Wolfe conditions.

• Quasi-Newton methods. We consider the LS and TR frameworks with SD. For LS, we use R10 to include
low-dimensional information and try two different solvers: Cholesky factorization (direct) and CG (it-
erative). We denominate the resulting methods SD-LS-CHOL and SD-LS-CG, respectively. As for TR,
we do not update SD (R0) and use the CG solver, which yields SD-LS-CG. We truncate the CG solvers at
KCG = 500 iterations to bound the computation times in case of ill-conditioning. Finally, considering
the results of the first section of this chapter, we setα0 = 10 for LS and∆0 = m∆0 ||pl s ||, with m∆0 = 1 and
||pl s || set ad hoc for each dataset taking into account Table 5.2.

5.3.2. The Comparative
Having described the contenders, we now specify the questions that we seek to answer in this comparative
study.

Experiment 5.4. Which is the best optimization method for tSNE using exact cost function values and gradi-
ents? Are SD-LS and SD-TR competitive with the current state of the art, VDM?

Experimental setup. In addition to the method-specific configuration that we listed in the previous sub-
section, there are important aspects of the experimental setup that we now detail. First, because we are using
exact cost function values and gradients, we only considered the small datasets: Coil-20, Digits, Coil-100, and
PenDigits. Second, to guarantee that the results were held across different initializations, for each method,
we performed five runs. Four with a random initial embedding, and the fifth one with the PCA initialization
described in Chapter 4. Finally, we stop the methods when one of three conditions is satisfied: the variation
between consecutive iterates is less than 1× 10−6, a predefined number of iterations have been performed
(500 for quasi-Newton methods and 2000 for the rest), or 5000 seconds have elapsed. We also considered the
change in the cost function value to validate convergence but did so offline to avoid affecting the runtime of
the algorithms. It is also important to keep in mind that methods that use LS or TR can also stop earlier if the
step size or the radius becomes 0, which means that no more progress can be achieved.

Results. In Figure 5.5, we present the Kullback-Leibler divergence with respect to the number of iterations
and elapsed time for a single run of the considered methods for the different datasets. Starting with the quasi-
Newton methods based on SD, it can be observed how they outperformed all other methods both in terms
of iterations needed and elapsed time. Focusing on the differences in performance among these methods,
we noticed that even if in most cases LS and TR approach converged to similar values, in general, LS-based
methods achieved a steeper initial reduction of the cost function value, which gave them a slight edge. This is
because these methods can take longer directions that seem to be crucial for the aggressive initial reduction
that characterizes SD. Finally, it is worth noting how for the small datasets, the convergence rate of SD-LS-
CHOL and SD-LS-CG is almost the same. This is to be expected, given that with fewer data points and a
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Dataset VGD VDM nlCG L-BFGS SD-LS-CHOL SD-LS-CG SD-TR-CG

Coil-20 0.58 ± 0.02 0.45 ± 0.00 0.47 ± 0.01 0.46 ± 0.00 0.49 ± 0.02 0.47 ± 0.00 0.47 ± 0.01
Digits 0.92 ± 0.02 0.76 ± 0.00 0.79 ± 0.02 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.79 ± 0.01
Coil-100 1.95 ± 0.03 0.78 ± 0.00 1.36 ± 0.19 1.15 ± 0.18 0.88 ± 0.07 0.83 ± 0.02 0.88 ± 0.02
PenDigits 3.10 ± 0.09 1.51 ± 0.23 2.26 ± 0.48 2.05 ± 0.51 1.01 ± 0.01 1.02 ± 0.02 1.04 ± 0.01

Table 5.3: Average Kullback-Leibler divergence value for the different methods and datasets at the end of the allotted time for the
optimization procedure (5000 seconds). The results indicate that, when VDM converges, it can achieve slightly lower values of KL than
quasi-Newton methods. Nevertheless, it takes more time for VDM to reduce cost function value due to the "early exaggeration" phase.

Dataset VGD VDM nlCG L-BFGS SD-LS-CHOL SD-LS-CG SD-TR-CG

Coil-20 0.58 ± 0.02 0.45 ± 0.00 0.54 ± 0.03 0.46 ± 0.00 0.49 ± 0.02 0.47 ± 0.00 0.47 ± 0.01
Digits 0.92 ± 0.02 0.76 ± 0.00 0.90 ± 0.06 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.79 ± 0.01
Coil-100 3.02 ± 0.05 1.56 ± 0.15 1.89 ± 0.34 2.24 ± 0.66 0.90 ± 0.07 0.87 ± 0.03 0.99 ± 0.05
PenDigits 5.08 ± 0.13 3.93 ± 0.40 2.95 ± 0.77 2.79 ± 0.74 1.05 ± 0.03 1.05 ± 0.01 1.17 ± 0.02

Table 5.4: Average Kullback-Leibler divergence value for the different methods and small datasets at the end of the first 1000 seconds of
the optimization procedure. Note how at this point, when the methods have not yet converged, as is the case with Coil-100 and

PenDigits, quasi-Newton methods outperform the alternatives.

relatively high limit on the number of CG iterations of KCG = 500, the residuals of CG are generally close to
the desired tolerance.

Moving to the general picture of the experiment, we observed that among the other techniques, the highly
tunned VDM was the most effective one, converging to the same minimum as the quasi-Newton methods.
At the start, the convergence of VDM is slower because of the plateau produced by the early exaggeration
phase to avoid local optima. Nevertheless, once the plateau is resolved, it sharply reduces the cost function
value, outperforming the alternatives. Regarding L-BFGS and nlCG, as can be observed in Table 5.3, these can
achieve the same, or even lower, optimums that the other methods. Nevertheless, it is important to note how
their behavior is less consistent: with some initializations, they converged to a minimum, and, with others,
the optimization procedure was stopped early because of convergence failures of the line searches, which use
stronger conditions.

Even though most methods converge to similar optimums, it is important to note that their process can
significantly differ. As can be observed in Figure 5.5, and corroborated in Table 5.4, methods such as SD-LS-
CHOL, SD-LS-CG, SD-TR-CG, L-BFGS, and nlCG produce a larger initial decrease of the cost function value
than VDM. Nevertheless, VDM catches up towards the end of the optimization, being able in some cases to
reach lower KL values. It is also worth noting the visual differences in the resulting embeddings. In Figure 5.6,
we present the embeddings of the PenDigits dataset, using the PCA initialization. It can be seen how VDM is
better at untangling local optima (note the lower left region of the embedding with the clusters of purple and
red points), and LS methods, which use SD with R10, produce more white space between clusters.

Conclusions. In the experiments, we observed that the quasi-Newton methods that result by using SD
within the LS and TR optimization frameworks are consistently more effective at reducing the cost function
value than other common optimization techniques such as VDM, L-BFGS, and nlCG. This confirms the re-
sults of [58], where it was shown that a carefully constructed Hessian approximation could outperform state-
of-the-art Hessian-free methods. Furthermore, we extended the results of this work by assessing the effective-
ness of adding low-dimensional information to the SD. The experiments indicate that this extra information
is more effective when the LS framework is used. We also evaluated the TR framework which, besides [33],
had not been used to optimize the cost functions of graph-based nonlinear embedding techniques. Despite
its inferior performance with respect to LS and the fact that as-is it cannot take advantage of the addition of
low-dimensional information to SD, we found that, by correctly setting parameters such as the initial radius,
it could be a competitive alternative, taking in some cases less time to converge.
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Figure 5.5: Comparison of different methods for optimizing tSNE’s Kullback-Leibler divergence (KL) with different datasets. In most
cases, the execution of the algorithms stopped because they reached the time limit of 5000 seconds. The left column presents KL as a

function of the iteration, and the right column, KL as a function of the elapsed time. A logarithmic scale was used for the x-axes to
improve the chart’s readability. Note how quasi-Newton methods perform consistently better than the alternatives, both in terms of

elapsed time and iterations.
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Figure 5.6: Resulting embeddings of the PenDigits dataset after 5000 seconds with tSNE, using different optimization techniques. Note
how quasi-Newton methods have lower cost function values and also look better than nlCG and VGD. In contrast to VDM, the

embeddings of quasi-Newton methods have more white space between clusters, especially in SD-LS, where we used R10.



6
Fast Quasi-Newton Methods for tSNE

In the previous chapter, we showed how Quasi-Newton methods based on the Spectral Direction can con-
verge faster than other optimization techniques for the case of tSNE. We found that for LS, updating the SD
with low-dimensional information every 10 iterations could further accelerate its convergence and that for
TR, not doing it worked best. Despite the potential of SD-LS and SD-TR, in the experiments, we had to restrict
ourselves to smaller datasets of the order of thousands of points. The reason for this is that there are several
steps in the computational pipeline that do not scale well with the size of the data. We identified the following
bottlenecks:

1. In LS, if we use Cholesky decomposition to solve the linear system, then we also need to recompute the
factors every time SD changes. Given that we found R10 to be the best performing updating schedule,
this operation, which depends on the size of the input data, can add a significant overhead.

2. The cost function and gradient calculation have a complexity of O(N 2) because all pairwise interactions
between points in the embedding need to be computed. And both of these computations need to be
carried out at least once per iteration in LS and TR.

3. If the method of conjugate gradients is used to solve the system approximately, the speed of each LS and
TR iteration depends on how many CG iterations are needed to find a suitable solution. This number
depends on the conditioning of the matrix, which in the last chapter we show can get worse with the
addition of low-dimensional information.

Experiment Page Description

6.1 38 Measuring the scaling behavior of the Cholesky decomposition.
6.2 39 Approximating the gradient and cost function value using Barnes-Hut.
6.3 40 Effect of different thresholds for truncating the CG solvers.
6.4 43 SD-LS-CG vs SD-TR-CG vs BH-SNE: performance comparison.
6.5 45 SD-LS-CG vs SD-TR-CG vs BH-SNE: different initializations and local optima.

Table 6.1: Experiments covered in this chapter.

We start this chapter in Section 6.1 by addressing these bottlenecks. This process yields a pair of fast quasi-
Newton methods, SD-LS-CG and SD-TR-CG, that can scale to datasets with hundreds of thousands of points.
In Section 6.2, we compare these methods with their Hessian-free alternative BH-SNE, which is currently one
of the most popular tSNE implementations for embedding large datasets. A summary of the experiments that
we present in this chapter is listed in Table 6.1.

6.1. Fast Quasi-Newton Methods for tSNE
In this section, we construct a pair of fast quasi-Newton optimization methods through a series of exper-
iments that aim to address the aforementioned bottlenecks. We are concerned with three quasi-Newton
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variants that use the Spectral Direction (SD), these are line search with Cholesky factorization (SD-LS-CHOL
with R10), line search with conjugate gradients (SD-LS-CG with R10) and trust region with conjugate gradi-
ents (SD-TR-CG with R0). All the experiments in this section were run on a MacBook Pro with 16GB of RAM
and a Quad-Core Intel Core i5 clocked at 2.3 GHz.

6.1.1. Scaling of the Cholesky Factorization
The first bottleneck that we address is the usage of Cholesky factorization for solving the linear system that
arises in the Line Search framework. Even though using the Cholesky factors to solve the system is efficient,
considering the sparsity of SD matrices, their initial construction takes a considerable amount of time. We
argue that for LS to be usable with large datasets, this setup step should be avoided. Concretely, we are
interested in the following questions.

Experiment 6.1. How does the Cholesky solver scale with the size of the data N ? How does it fare against the
alternative, CG?

Experimental setup. To measure how the difference in the performance of the Cholesky decomposition
(CHOL) and conjugate gradients (CG) solvers, we used ten samples of the MNIST dataset with sizes N

′
evenly

spaced along the line between 10 and 30000. For each sample, we computed its Cholesky factors using a
fill reducing permutation (found with the nested dissection algorithm) and used them to solve the linear
system B p = −∇C using forward-backward substitution, where B is SD with or without low-dimensional

information, and ∇C ∈ RN
′×d is the gradient of a random point Y ∈ RN

′×d . For each sample size, did this
five times. We followed the same process for the CG solver, using the same initializations and truncating the
solver after KCG = 1000 iterations. In each case, we measured the CPU time and the residual of the linear
system.

Results. As can be observed in the central panel of Figure 6.1, solving the linear system using CHOL is
significantly faster than with CG especially as the size of the sample increases. This is because larger datasets
generally need more CG iterations which are bounded by the cost of sparse matrix-vector multiplication.
Despite this advantage, in contrast with CHOL, CG does not require an initialization step. As can be observed
in the left panel of the figure, this cost significantly increases with the size of the data. For example, while it
took on average 0.86 minutes to compute the Cholesky factors for N

′ = 10000, it took more than 9 minutes to
do the same for the largest sample with N

′ = 30000. Finally, regarding the accuracy of the solvers, the right
panel of the figure shows how CHOL has the advantage with lower residuals on average. In contrast, CG has
residuals that are several orders of magnitude larger than those of CHOL (10−6 vs 10−23). This is especially the
case when the matrix is ill-conditioned and CG needs to be truncated before reaching the desired tolerance.
Despite this issue, we will show at the end of this section how larger errors do not seem to significantly affect
the quality of the results obtained by tSNE and can even help in some cases to avoid local optima.

Figure 6.1: Comparison of direct (CHOL) and iterative (CG) solvers for LS for samples of different size of the MNIST dataset. The left
panel shows the average time that it takes to setup the Cholesky factors using the nested dissection algorithm. In the center and right

panels we measure the average times and residuals for these methods, respectively.

Conclusions. The Cholesky factorization is usually recommended for matrices with up to 108 that do not
change frequently during the optimization procedure. This is because, once the Cholesky factors are com-
puted, these can be cached and used to solve the linear system efficiently. In the previous chapter, we found
that updating SD every 10 iterations could improve the convergence of SD-LS. Using CHOL, the constant re-
computation of the factors would severely affect the performance of our methods. Additionally, even if we
were to use SD without updating (R0), as is the case with TR, the initial setup of the matrix can offset the
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convergence gains of quasi-Newton methods for the larger datasets. For instance, more than 80% of the total
reduction of tSNE cost function value for MNIST can be achieved in around 17 minutes using BH-SNE (more
on this in Section 6.2); while it takes up to 23 minutes to compute the Cholesky factors of SD for this dataset.
This illustrates how, by the time SD-LS with CHOL starts iterating, BH-SNE would already be far ahead in the
optimization. For this reason, we opt to use CG instead of CHOL.

Instead of solving the LS linear system directly using the Cholesky factors (LS-CHOL), we use the
iterative CG solver (LS-CG) instead, which does not need an expensive initialization phase.

6.1.2. Approximating the Gradient and the Cost Function Value
Different ways to accelerate tSNE based on approximations of the gradient and the cost function have been
proposed. One of the most popular ones is the Barnes-Hut algorithm which was presented back in Chapter 3.
In this subsection, we evaluate the effect of this approximation on LS and TR. In addition to ∇C , which is used
to compute the descent direction, these frameworks also make use of C to determine an optimal scaling of
the step size. Although our final aim is to approximate both of these quantities (both take O(N 2) time), in
this subsection we also evaluate the effect that they have separately on the robustness of our quasi-Newton
methods. Therefore, we investigate the following questions.

Experiment 6.2. Can the Barnes-Hut approximation be used to accelerate SD-LS-CG and SD-TR-CG, without
compromising their robustness? Which are the individual effects of approximating C and ∇C on the perfor-
mance of these optimization procedures?

Experimental setup. In this experiment we considered three types of run in which we varied the approx-
imation degree of the gradient θgrad ∈ {0,0.5,1,2}, the cost function θKL ∈ {0,0.5,1,2} , and both θgrad = θKL =
θ ∈ {0,0.5,1,2}. Given that we still use exact quantities for comparison (θ = 0), we were restricted to the small
datasets. We evaluated the effects of the different approximations for SD-LS-CG and SD-TR-CG. For the for-
mer, we set α0 = 10 and for the latter, we set the initial radius ∆0 = ||pl s || according to the values in Table 5.2.
We let the methods run for 500 iterations or until 5000 seconds had passed, which is generally enough for
them to converge. Note that the runs can also stop before these limits if α or ∆ become 0, which means that
no further progress can be made.

Results. Starting from the effect of using approximate gradients, we found that for the largest θgrad = 2,
the methods did not converge, stopping in the middle of the optimization because the step size α or the
radius ∆ became 0. For θgrad ≤ 1 not only the methods converge, but did so faster than the exact version,
which suggests that the errors are not large enough to impact the Armijo condition in LS or the radius update
in TR. Moving to the usage of approximate cost function values, we found that they did not seem to affect
the convergence of the algorithms. Nevertheless, they did harm their runtime, especially of SD-TR. With
larger θKL, ∆ oscillated between large and small values, which caused the generation of iterates that did not
significantly reduce the cost function value. It is important to note that the effects that we just mentioned
appeared when these quantities were more coarse, with common parameters such as θgrad = θKL = 0.5 we
observed that the methods had similar convergence behavior to their exact counterpart, but with a shorter
runtime.

When we approximated both quantities, θ = θgrad = θKL, we observed that the aforementioned effects
were compounded. Namely, as can be observed in Figure 6.2 for θ ≤ 1, we observed a significant reduction
in runtime without degrading the convergence. In contrast, when we used θ = 2, the methods failed to con-
verge. As we mentioned in the previous paragraph, this is because the errors in the gradient approximation,
when amplified by the Hessian approximation, SD, seem to yield poor directions that do not reduce the cost
function value. This is why the gap between this and the other approximations is not because of the speed of
the computations, but because of the slow convergence.

Conclusions. When using BH approximation with LS and TR, it is important to take into account that the
effects of using approximate gradients and cost function values differ. Between these two, we observed that
approximating the gradient had a more significant role in the convergence of the algorithms. We believe the
reason for this is that the gradient is used to obtain the direction to the next iterate and, if it is noisy, then
the latter might be close to not being a descent direction, which will hurt the convergence of the method.
Interestingly, the backtracking procedure with the Armijo condition in LS and the ratio ρ for determining
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Figure 6.2: The effect of using approximate gradients and cost function values for the PenDigits dataset. The left column presents the
results for LS and the right one for TR. The first row displays the Kullback-Leibler divergence (KL) as a function of the iteration, and the
second row, as a function of the elapsed time in seconds. For the approximation degree, we considered θ ∈ {0,0.5,1,2}. Note how, with

θ > 1, the algorithms have convergence problems, while, with θ <= 1, both LS and TR exhibit a steady decrease of KL.

the quality of the next iterate in TR seem to be robust to these approximations. We acknowledge that this
might be due to the specific error that BH induces and that this might change if other approximations such
as Flt-SNE or GPGPU tSNE are used. Finally, we found that SD-LS-CG and SD-TR-CG with θ = 0.5, which
is the recommended value for BH-SNE, performed consistently good across different datasets, reducing the
runtime of each iteration without affecting the convergence of the quasi-Newton methods.

In the rest of the experiments in this chapter, we use approximate gradients and cost function val-
ues to be able to handle larger datasets. We set θ = θgrad = θKL = 0.5, which we found to perform
consistently good across the different quasi-Newton methods.

6.1.3. The Effect of the Number of CG Iterations
The final bottleneck that we address in this section is the number of iterations that take the CG solvers of
LS and TR to converge. Back in the first subsection, we showed how, for LS, CG can be a good alternative
to the Cholesky factorization because of the steep initialization costs of the latter, which become especially
problematic with the updating interval R10. Despite its advantages, solving a linear system with CG can be
significantly more costly than using the Cholesky factors because of the potentially high number of iterations
that are needed to reach convergence. To mitigate this issue, we propose truncating the number of maximum
CG iterations KCG that are allowed. Concretely, we seek to answer the following questions.

Experiment 6.3. Can we truncate the number of iterations in the CG solvers that are used in quasi-Newton
without affecting their performance? What should be the threshold value KCG ? Are there differences in the
behavior of LS and TR in this regard?

Experimental setup. We tried different values of the threshold KCG ∈ {10,50,100,500} for both the SD-
LS-CG and SD-TR-CG algorithms. We set the maximum value to 500, taking into consideration that, in the
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KCG
SD-LS-CG SD-TR-CG

Time (s) KL Time (s) KL

10 866.76 2.64 874.57 2.73
50 1922.47 2.22 1498.44 2.43
100 2806.76 2.17 2063.80 2.38
500 8834.51 2.11 1789.44 2.38

Table 6.2: The time that it took to perform 200 iterations and final Kullback-Leibler divergence value (KL) for different truncating
thresholds KCG for SD-LS-CG and SD-TR-CG for the F-MNIST dataset.

case of LS, which is the one that on average needs more CG iterations, larger values resulted in significantly
higher run times, which would be unrealistic in a practical scenario. For the rest of the parameters, we set
the approximation degree θ = 0.5; α0 = 10 and R10 for LS; and for TR ∆0 = m∆0 ||pl s || with m∆0 = 1, ||pl s ||
according to Tables 5.2 and 6.3, and R0. Note for this experiment we also consider the medium datasets given
that we use the BH approximation. Finally, we stopped the runs when 200 iterations had passed or when
either α or ∆ became 0.

Results. First, for the largest threshold value KCG = 500, we analyzed the number of CG iterations at every
iteration and compared it with the behavior of the cost function value for both LS and TR. This is presented in
Figure 6.3 for the F-MNIST dataset. As can be observed, both algorithms follow similar patterns. In LS, at the
start, a relatively low number of iterations are needed, exiting out of the CG procedure because the tolerance
has been reached (meaning that the solution is accurate enough). Then, once the cost function value has
finished its significant initial drop, around the 10th iteration, and the SD is updated with low-dimensional
information, the number of CG iterations that are required increased to the limit, significantly slowing down
the algorithm. In the case of TR, the sudden drop of the cost function value is also accompanied by a low
number of CG iterations. Then, once KL stabilizes, it uses more CG iterations, but, in contrast to LS, it does
not reach the limit. We must note that this is likely due to the fact that we are using R10 for LS and R0 for
TR. Therefore, in LS, when SD is updated, the matrix becomes ill-conditioned, which affects the number
of iterations that it needs. When KCG is large, this difference can cause a significant performance gap. For
instance, with KCG = 500, the LS procedure took 150 minutes to complete 200 iterations versus the 30 minutes
that took TR.

Figure 6.3: The behavior of the Kullback-Leibler divergence (KL) and the number of CG iterations as a function of the iteration for LS
and TR, with the F-MNIST dataset. It is possible to observe how the CG solvers of both methods behave similarly throughout the

optimization procedure, converging to a large number of CG iterations after a few initial iterations with a low number of CG iterations.
The starting phase of the iterative algorithm that requires fewer CG iterations matches the initial sharp drop in KL. Finally, it is worth

noting how, in general, LS uses more CG iterations than TR, being closer to the defined threshold KCG .

Next, we analyzed the effect of using different thresholds. The results are shown in Figure 6.4. There, it is
possible to observe how for both LS and TR, using KCG ≥ 50 results in similar convergence behavior. Because
TR does not need as many CG iterations as LS in general, there was also not much difference in runtimes
between TR runs. In contrast, in LS, it is possible to observe how KCG = 500 takes significantly longer than
the other runs (take into account the logarithmic scale). To see the more clearly, in Table 6.2, we present, for
each threshold value KCG , the time that it took for the 200 iterations to complete and the final cost function
value for both LS and TR.
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Figure 6.4: The effect of different thresholds KCG for the number of CG iterations in the Kullback-Leibler divergence (KL) of the LS and
TR based algorithms. The first row presents KL as a function of the iteration, and the second, as a function of the elapsed time. Note

how, when using KCG = 50, LS takes less time to reach a similar KL than when using KCG = 500.

Conclusions. The results indicate that using a threshold to truncate the number of CG iterations can be
especially beneficial for LS. In general, we found that for both LS and TR, using a lower limit of KCG = 50 keeps
their computational costs down, while preserving their convergence properties. Despite the similarity in the
behavior of the number of CG iterations for LS and TR, we found that the former usually reached the threshold
limit, making the performance of the algorithm reliant on a correct setting of KCG . We believe this might have
to do with the regular updating of the SD matrix. Concretely, once we add low-dimensional information at the
10th iteration, the resulting matrix can have a higher condition number, which is directly linked to the number
of iteration that takes the CG solver to converge. The reason this does not happen in TR is that, first, we do
not update SD with low-dimensional information; and, second, the trust region radius acts as an additional
threshold that halts the CG process. Taking into account the two phases that we identified: a sudden decrease
of KL followed by its stabilization, we believe that adaptive schemes that use a higher threshold value in the
first phase and a much lower one in the second phase could further improve the performance of LS. Finally,
by examining at the embeddings individually, we noted that truncating the number of CG iterations could
potentially help to avoid local optima, but we acknowledge that this claim requires further exploration. An
example of this for TR is shown in Figure 6.5, where the purple cluster that was split with KCG = 100, does not
present this behavior with KCG = 50.

Truncating the number of CG iterations reduces the runtime of the algorithms without significantly
affecting their convergence properties. We found that with KCG = 50 both LS and TR performed con-
sistently well.

6.2. Quasi-Newton tSNE vs BH-SNE
In the previous section, we addressed the most important performance bottlenecks of the line search (LS)
and trust region (TR) quasi-Newton methods that we consider, which resulted in algorithms that can scale
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Figure 6.5: Truncating the number of CG iterations could help to avoid local optima. In the figure, we present the final embeddings of
the F-MNIST dataset with SD-TR-CG with different KCG = 50 and KCG = 100. It is possible to observe how, when using fewer CG

iterations, the algorithm was able to avoid splitting the purple cluster.

Method Parameters

BH-SNE θg r ad = 0.5

SD-LS-CG
θ = 0.5; KCG = 50;
α0 = 10; R10

SD-TR-CG
θ = 0.5; KCG = 50;
∆0 = ||pl s ||; R0

Dataset ||pl s ||
MNIST 1000
F-MNIST 1750
ImageNet (Head0) 400
ImageNet (Mixed3a) 1000

Table 6.3: Parameter values for the experiments. The table on the left presents relevant parameters for the optimization methods, the
rest of the implementation details can be found in Chapter 4.

to medium and large datasets: SD-LS-CG and SD-TR-CG. In this section, we compare them against their
Hessian-free alternative, BH-SNE. We divided the comparison into two parts. First, we analyze the perfor-
mance of the optimization algorithms in terms of their effectiveness at reducing tSNE’s cost function. Then,
taking into account the context in which tSNE is used, which is the visualization of high-dimensional data, we
evaluate aspects such as the robustness of the algorithms to different initializations and the way they handle
local optima.

Experimental setup. For the experiments in this section, we used a common setup. Starting with the prin-
cipal parameters of the different methods, we used those presented in Table 6.3. As for the datasets, we con-
sidered both the medium and large ones, which are: MNIST, F-MNIST, and ImageNet (Mixed3a and Head0).
To guarantee that the results were significant, we ran each combination of method and dataset five times
using different initializations. Four of which were random (using randomly picked seeds) and aa fifth one
that corresponded to the PCA decomposition of the input data (see Chapter 4). To guarantee convergence,
we stopped the runs when one of the following conditions were met: 6000 iterations passed, the elapsed time
reached 10000 seconds or the relative variation between consecutive iterates (Yk −Yk+1)/(1+Yk+1) was less
than ε = 1× 10−6. We did not use stopping criteria based on the cost function value since this would slow
down BH-SNE, which does not need it for its computations. Nevertheless, we did inspect the variation of
cost function value between consecutive iterations offline to have an idea of the value of this metric for the
different runs. Finally, we ran all the experiments in this section on a MacBook Pro with 16GB of RAM and a
Quad-Core Intel Core i5 clocked at 2.3 GHz.

6.2.1. Performance Evaluation
In this subsection we are concerned with the effectiveness of each method at minimizing tSNE’s cost function.
For this, we investigate the following questions.

Experiment 6.4. Which method is the most effective at minimizing the Kullback-Leibler divergence both in
terms of iterations and elapsed time? In a time constrained setting, which method produces the best embed-
dings?

Results. We start by analyzing the effectiveness of the different methods at minimizing the Kullback-
Leibler divergence. In general, we observed that the SD-based quasi-Newton methods were able to produce
a significant decrease in the cost function value sooner than BH-SNE. As can be observed in Figure 6.6, for
all the considered datasets, SD-LS-CG and SD-TR-CG are ahead of BH-SNE both in terms of iterations and
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elapsed time for most of the optimization process. Regarding this phenomenon, note that an important
factor for the delay of BH-SNE is its initial plateau, which is caused by the exaggeration of the matrix P . Even
if a BH-SNE run that did not use the early exaggeration phase converges to the same cost function value of a
run that did use it, it is likely that the clusters of similar points in embedding produced by the former will be
fragmented, reflecting that it converged to a poor local optimum.

Despite the fact that quasi-Newton methods were ahead for most of the optimization procedure, we ob-
served that towards the end of the time limit, after BH-SNE had performed thousands of iterations, the three
algorithms tended to converge to a similar cost function value, with SD-LS-CG and BH-SNE contending for
the first place and SD-TR-CG consistently in the third one. To have a complete picture of the performance of
these methods, we measured their average cost function value at two points in time. In Table 6.5, we present
the status of the algorithms 1000 seconds after the optimization had started. In this case, quasi-Newton meth-
ods have significantly lower cost function values than BH-SNE. In contrast, in Table 6.4, where we present the
results at the end of the allowed time (10000 seconds), it is possible to observe that SD-LS-CG and BH-SNE
reach similar optimums that have a lower value than SD-TR-CG.

Dataset BH-SNE SD-LS-CG SD-TR-CG

MNIST 2.41 ± 0.01 2.39 ± 0.01 2.59 ± 0.02
F-MNIST 2.16 ± 0.01 2.10 ± 0.01 2.20 ± 0.01
ImageNet (Head0) 3.69 ± 0.02 3.76 ± 0.02 3.95 ± 0.02
ImageNet (Mixed3a) 3.95 ± 0.01 4.02 ± 0.02 4.22 ± 0.02

Table 6.4: Average Kullback-Leibler divergence value for the different methods and datasets at the end of the allotted time for the
optimization procedure (10000 seconds). Note how for MNIST and F-MNIST, SD-LS-CG achieves the lowest cost function value, while

for ImageNet, BH-SNE manages to reduce it the most.

Dataset BH-SNE SD-LS-CG SD-TR-CG

MNIST 2.48 ± 0.02 2.42 ± 0.01 2.68 ± 0.02
F-MNIST 2.21 ± 0.02 2.13 ± 0.01 2.27 ± 0.01
ImageNet (Head0) 3.83 ± 0.03 3.80 ± 0.02 4.03 ± 0.02
ImageNet (Mixed3a) 4.08 ± 0.02 4.05 ± 0.02 4.31 ± 0.02

Table 6.5: Average Kullback-Leibler divergence value for the different methods and datasets at the end of the first 5000 seconds of the
optimization procedure. Note how SD-LS-CG has the lowest cost function value for all datasets.

Besides the convergence of the algorithms, we also considered the intermediate results that they pro-
duced given that these are often used for interactive data visualizations. To do this, we visualized the em-
beddings at different points in time. In Figure 6.8, we present an example of this process for the F-MNIST
dataset. As can be observed in the grid of embeddings in the lower portion of the chart, when 300 seconds
have passed, 3rd column from left to right, quasi-Newton methods, two lower rows, have already settled on
an embedding. Meanwhile, BH-SNE, in the first row, is still rearranging the clusters. In general, we observed
that as a consequence of the early exaggeration phase in BH-SNE, it took longer for this method to produce
embeddings that resembled the final shape.

Conclusions. The results in this section indicate that the SD-based quasi-Newton methods are a com-
petitive alternative to fast Hessian-free alternatives, particularly, BH-SNE. Of the two frameworks that we
considered, LS and TR, the former performed consistently better, converging in most cases to cost function
values that were below those of BH-SNE. An important thing to note is that the performance of TR seemed to
degrade as the size of the dataset increased, which could be a consequence of a poor selection of the initial
trust region radius ∆0 and the fact that, with TR, we did not add low-dimensional information to SD. Finally,
we observed that quasi-Newton methods were able to produce reasonable embeddings of the data sooner
in the optimization procedure than BH-SNE, which uses an early exaggeration phase to avoid local optima.
This feature can play an important role in the progressive visual analytics workflow [48], which argues that it
is important to be able to produce reasonable embeddings as soon as possible in the optimization procedure
to enhance the user experience. An example of this more rapid decrease of the cost function value by quasi-
Newton methods can be observed for the MNIST dataset. In this case, quasi-Newton methods achieved 80%
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of the reduction of the Kullback-Leibler divergence in 10 iterations, while it took around 500 iterations for
BH-SNE to do the same.

6.2.2. Different Initialization and Local Optima
Given that tSNE is mainly used for visualizing high-dimensional data, and that the Kullback-Leibler diver-
gence can have multiple local optima, the cost function value is not the only criterion that should be consid-
ered for evaluating different optimization algorithms. In this section, we cover two additional performance
aspects of graph-based nonlinear embedding techniques: their robustness to different initializations and the
way they handle local optima. Concretely, we seek to answer the following questions.

Experiment 6.5. Are quasi-Newton methods robust to different initializations? How much final embeddings
change when the initial configuration is altered? How susceptible are quasi-Newton methods to local optima?

Results. Table 6.4 shows how there is little variation in the final cost function values of quasi-Newton
methods. We can analyze the variation in the optimization from two other perspectives: the trajectory and
the final embedding. For the former, in the top chart of Figure 6.8, we present the optimization trajectory of
the different runs of each method for the MNIST dataset. As can be observed, even if the algorithms reach
similar optimums, they exhibit some variation in the middle of the optimization procedure. This is a direct
consequence of the way the points were arranged in the initial embedding Y0. This effect is more noticeable
for BH-SNE where the runs can exit the plateau at different points in time.

Regarding the final embeddings, in the bottom grid of Figure 6.8 we present the outcome of the runs with
different initializations for every method for the MNIST dataset. As can be observed, even though they have
similar cost function values, their appearance can vary. The issue that concerns us is the presence of local
optima, which, in the embedding, corresponds to points of the same class that were separated. BH-SNE
seems to handle this well by using the early exaggeration phase. The clusters in the embeddings generated
by this algorithm tend not to split, regardless of the initialization. In contrast, we observed more variation
in the outcomes of SD-LS-CG and SD-TR-CG. Of these, LS tended to "fall" less often in local optima, likely
because it can take longer steps at the start of the optimization procedure, which seems to be crucial for the
correct separation of the clusters. Finally, across the different datasets, we observed that by initializing the
embedding with the PCA decomposition of X , most of the problems related to local optima in quasi-Newton
methods were mitigated. This can be observed in Figure 6.9, where we present the final embeddings of the
PCA run for the different methods and datasets.

Conclusions. An important feature of tSNE is the early exaggeration phase, which is fundamental to avoid
local optima. In the experiments, we noticed that the SD Hessian approximation has a similar effect, guiding
the data that belong to clusters in the high-dimensional space towards the same areas of the embedding. Nev-
ertheless, we noted that for SD to be effective at separating the clusters, two things need to happen. First, long
steps should be allowed in the first several iterations, for this reason, LS performed better than TR. Second,
we found that the algorithms were able to produce better-looking embeddings if a more careful initialization
such as PCA was employed. Taking into consideration that even with PCA the embeddings of quasi-Newton
methods can suffer from minor cluster-splitting issues, it would be interesting to see whether this could be
further improved by using early exaggeration. In preliminary experiments, we found that when the P matrix
was exaggerated in quasi-Newton methods, the optimization process could become unstable.
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Figure 6.6: Comparison of different methods for optimizing tSNE’s Kullback-Leibler divergence (KL) with different medium and large
datasets. In most cases, the execution of the algorithms stopped because they reached the time limit of 10000 seconds. The left column

presents KL as a function of the iteration, and the right column, KL as a function of the elapsed time. Note how, even though the
quasi-Newton methods (SD-LS-CG and SD-TR-CG) and BH-SNE eventually converge to similar values of KL, the former do so in

significantly fewer iterations and shorter time.
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Figure 6.7: Snapshots of the optimization process of BH-SNE, SD-LS-CG, and SD-TR-CG for the F-MNIST dataset. The line chart on the
top presents the Kullback-Leibler divergence (KL) as a function of the elapsed time for the different methods. The gray vertical dashed

lines correspond to specific points in time that we inspect, these are 10, 100, 300, and 9000 seconds. In the grid of charts below, we
present the corresponding partial embeddings for these points in time for the different techniques. Note how within 100 seconds of

having started (second column of the grid from left to right), the SD-based methods have already separated the clusters, which
corresponds to a lower KL value. In contrast, at this time, BH-SNE is still in the plateau phase, which is needed to avoid "falling" into

local optima.
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Figure 6.8: The effect of using different initializations with BH-SNE, SD-LS-CG, and SD-TR-CG for the MNIST dataset. The top chart
presents the Kullback-Leibler divergence (KL) as a function of the elapsed time. Solid lines correspond to a random initialization and

dashed ones to runs with PCA initialization. The grid of charts below presents the resulting embeddings with the different
initializations. Note how, even though they all have similar cost function value, the appearance might differ due to the convergence to a

local optimum. This is especially noticeable for TR (last row).
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Figure 6.9: Embeddings obtained for the different datasets using BH-SNE, SD-LS-CG, and SD-TR-CG.





7
Discussion and Conclusions

In this work, we departed from the Spectral Direction (SD), a Hessian approximation proposed in [58], and
explored its usage within the Line Search (LS) and Trust Region (TR) optimization frameworks. By address-
ing several of their performance bottlenecks, we found that the resulting quasi-Newton methods, SD-LS-CG
and SD-TR-CG, are faster than BH-SNE (the most popular Hessian-free alternative) at visualizing large high-
dimensional datasets. In this chapter, we discuss the results of our experiments, analyze the limitations of
our methods, and present possible future avenues for investigation.

7.1. Discussion
In the following paragraphs, we will discuss the main results of this work, which are categorized into three
sections: the addition of low-dimensional information to SD, the scaling of quasi-Newton methods to handle
large datasets, and the comparison of their performance against BH-SNE.

Adding iteration-dependent information to SD can improve its performance. In [58], it was argued that
to keep computational costs down, it was preferred a constant version of SD, which only depends on the
high-dimensional matrix of affinities P . The experimental results indicate that, for tSNE, the convergence
of SD can be further accelerated by using iteration-dependent information coming from the embedding Y .
Particularly, we found that adding this low-dimensional information to the SD periodically offered the best
trade-off between the decrease of the cost function value and computation time.

We observed that this periodical updating was beneficial for two reasons. First, it avoided the recomputa-
tion of SD at each iteration, which reduced the overall computational cost. Second, the algorithm was able to
converge faster if it could carry out several iterations at the beginning without low-dimensional information.
Once an initial steep reduction in the cost function value was achieved, usually around the 10th iteration,
adding low-dimensional information helped to further improve the convergence. In the experiments, we
noted that this was because in the first iterations with the constant SD, clusters of similar data points tend
to form. Then, the low-dimensional information helps to reduce the cost function value by generating more
white space between these clusters. This indicates that the low-dimensional information is more effective
when the algorithm is in the neighborhood of a minimizer of the Kullback-Leibler divergence.

Interestingly, in the experiments, we observed that using low-dimensional information had a positive ef-
fect on LS, but not on TR. We attribute this to the degradation of the conditioning of the SD matrix that hap-
pened when we added low-dimensional information. When a matrix has a high condition number, it can take
significantly more iterations for the CG solver to find a solution with the desired tolerance. In TR, the quality
of this new iterate is used to decide whether the trust region should be enlarged, shrunk, or left unchanged.
We found that after we updated the SD matrix, the quality of the new iterates was not of enough good quality,
causing the radius to shrink. The progress of the algorithm would plateau once the radius reached a small
enough value from which it was complicated to recover.

Scaling to datasets with hundreds of thousands of points. Despite their fast convergence, the quasi-
Newton methods that we considered were not able to scale to large datasets due to several performance
bottlenecks. We identified and addressed three of them, which yielded two fast variants: SD-LS-CG and SD-
TR-CG. The most important source of slowdowns was the exact computation of the gradient and the cost
function value, which takes O(N 2) time. We used the Barnes-Hut algorithm to approximate these quantities
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in O(N log N ) and found that, with reasonable values of θ, these approximations did not hurt the convergence
of the algorithms. The result indicates that quasi-Newton methods are more susceptible to gradient than to
cost function approximations. We believe this is because, when using the SD Hessian approximation to find
the new iterates, the errors in the gradient can get amplified, which in some cases generated bad iterates that
increased the cost function value. In some cases, the algorithms could not recover from this, which resulted
in the flatlining and eventual halting of the reduction of the cost function value.

The other two bottlenecks that we addressed have to do with the linear solvers that are used in the LS
and TR frameworks. For the former, we found that using the Cholesky factorization is not viable due to its
large setup times, which, when paired with the regular updating of the SD with low-dimensional information,
offset the convergence gains. In general, the results indicate that the CG procedures in LS and TR can be
truncated without affecting their convergence. With this bound on the computational complexity of the CG
procedure, and using approximate gradients and cost function evaluations, we obtained two quasi-Newton
methods: SD-LS-CG and SD-TR-CG, which have a complexity of O(N log N+KCG NNZSD) per iteration, where
KCG corresponds to the CG iteration threshold and NNZSD to the number of nonzero values of SD.

Quasi-Newton methods are a good alternative to BH-SNE for the visualization of high-dimensional
data. Although the experimental results indicate that SD-LS-CG and SD-TR-CG are more effective at opti-
mizing tSNE’s cost function, it is important to highlight the nuisance in this conclusion. The reason why
BH-SNE takes more time to converge is because of the initial plateau that arises as a result of using early ex-
aggeration [54], which is needed to avoid local optima. Without this exaggeration phase, we observed that
BH-SNE was able to reduce the cost function value in a similar or, in some cases, a smaller number of iter-
ations than the quasi-Newton methods, at the expense of embeddings where clusters of similar data points
where fragmented.

Interestingly, we observed that even without this exaggeration phase, the embeddings produced by the
SD-powered quasi-Newton methods did not suffer significantly from the problem of cluster fragmentation.
Furthermore, we found that, if we employed a more careful initialization like PCA, instead of a random one,
we could obtain better-looking embeddings that had similar cost function values. A second phenomenon
we observed in the resulting embeddings is related to the late exaggeration phase described in [28]. In the
paper, the authors show how this helps to generate more space between the clusters of similar data points.
As was mentioned before, we found that we could obtain a similar result in SD-LS-CG when we added low-
dimensional information every 10 iterations.

To conclude, we believe that the quasi-Newton methods that we constructed are a good alternative to
BH-SNE. Even if they all eventually converge to similar cost function values, the SD-based methods do not
need the early exaggeration phase to generate well-separated clusters, avoiding the plateau that delays the
optimization. Because of this, they can generate reasonable embeddings of the data in less time than BH-SNE
which is a desirable trait in the progressive visual analytics workflow [48].

7.2. Limitations and Future Work
We believe that for our method to be widely applicable, certain limitations need to be addressed. In the
experiments, we observed the potential of pairing SD with the TR framework. In contrast to LS, TR does not
use a within-iteration iterative procedure to set the step size and instead updates the radius once per iteration
based on the quality of the iterate, which tends to make it faster. Nevertheless, we found that it was not able
to make use of low-dimensional information effectively as a result of the degradation of the conditioning
of the SD matrix, which has the effect of increasing the number of CG iterations that are required to find a
reasonable solution. We the TR framework could be used with the SD with low-dimensional information if we
could find an effective preconditioner and by revising the threshold values that the algorithm uses to adjust
the size of the TR radius, making it less sensitive to low-quality iterates.

A second aspect that needs further experimentation is whether other approximations of the gradient and
the cost function values have a different effect on the robustness of the algorithms. This is important because,
recently, faster approximations such as Flt-SNE and GPGPU tSNE have arisen. Given that they are conceptu-
ally different from BH, it is not clear whether the errors that they produce can affect quasi-Newton methods
more severely, or in a different manner. A way to deal with this potential issue may be to add safeguards to LS
and TR such as those presented in [30].

Finally, we observed that the iterative process of quasi-Newton methods that use SD can be divided into
two phases. In the first one, a sudden drop in the cost function value takes place. This corresponds to the
algorithms quickly approaching an optimizer. Then, in the second phase, once they are in the neighborhood



7.2. Limitations and Future Work 53

of the minimizer, the progress slows down. We believe different aspects of our method, such as the updating
of SD with low-dimensional information and the thresholding of the number of CG iterations can be adapted
to take advantage of this, potentiating the progress of the algorithms in the last stage.





A
The tSNE Gradient

In this chapter, we present a detailed derivation of the gradient of the Kullback-Leibler (KL) divergence, tSNE’s
cost function. As can be observed in Equation A.1, KL depends only on the embedding Y ∈ RN d (this is a
flattened version of the N ×d embedding matrix with N points and d coordinates), which is used to compute
the low-dimensional matrix of affinities Q. The other input of KL, the matrix of high-dimensional affinities P ,
is constant given that it is computed using the high-dimensional points X ∈RN×D .

C (Y ) = K L(P ||Q) = ∑
i 6= j

pi j log
pi j

qi j
= ∑

i 6= j
pi j log pi j −pi j log qi j (A.1)

Before deriving the gradient, we state some useful variables. First, Equation A.2 presents the expression
for computing Q. The numerator corresponds to a Student’s t-distributed kernel and the denominator to a
normalization term that adds the value of this kernel over all pairs of points. Having this, the first supplemen-
tary variable that we define, presented in Equation A.3, di j , corresponds to the Euclidean distance between
low-dimensional points. In this case yi ∈Rd gathers the two coordinates of the point. The second one, shown
in Equation A.2, is the normalization term Z that is used when computing Q.

qi j =
(1+||yi − y j ||2)−1∑

k 6=l (1+||yk − yl ||2)−1 (A.2)

di j = ||yi − y j || (A.3)

Z = ∑
k 6=l

(1+||yk − yl ||2)−1 = ∑
k 6=l

(1+d 2
kl )−1 (A.4)

To compute the gradient ∇C ∈N, it suffices to compute the partial derivative of C with respect to a param-
eter yc

i where c ∈ {0,1} corresponds to the coordinate c of point yi . As can be observed in Equation A.5, we
decompose this derivative in two terms, corresponding to the numerator and denominator of qi j . Then, we
use the chain rule on each of these to obtain an expression that is simpler to compute. Note that in the third
line of the equation, we add a 2 to each term and change the indices from e and f to i and j . This reflects the
fact that only the terms that involve the point yi are considered in the derivative (the rest evaluate to zero).
this reduces the number of comparisons to take into account from N 2 to 2N . Since di j = d j i , we write both
groups of N terms into a single, common, one with a 2 upfront.
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∂C

∂yc
i

= ∂(
∑

e 6= f pe f log pe f −pe f log qe f )

∂yc
i

=
∂(

∑
e 6= f pe f log Z −pe f log(1+d 2

e f )−1)

∂yc
i

= 2∂ log Z

∂Z

∂Z

∂di j

∂di j

∂yc
i

−
2∂

∑
j pi j log(1+d 2

i j )−1

∂di j

∂di j

∂yc
i

= 2(
∂ log Z

∂Z

∂Z

∂di j
−

∑
j pi j∂ log(1+d 2

i j )−1

∂di j
)
∂di j

∂yc
i

(A.5)

Having this expression for the gradient, we need to compute the individual partial derivatives. Starting
with the common derivative of the two terms, ∂di j /∂yc

i , it corresponds to,

∂di j

∂yc
i

= ∂||yi − y j ||
∂yc

i

=
∂(

∑
d (y (d)

i − y (d)
j )2)1/2

∂yc
i

= 1

2di j
(2(y (c)

i − y (c)
j )) =

(y (c)
i − y (c)

j )

di j

(A.6)

The next step is to compute the two terms of Equation A.5 which are surrounded by brackets. Starting
with the one on the left, ∂Z /∂yi , the two relevant partial derivatives are presented below.

∂ log Z

∂Z
= 1

Z
(A.7)

∂Z

∂di j
= ∂

∑
k 6=l (1+d 2

kl )−1

∂di j
=
∂
∑

j (1+d 2
i j )−1

∂di j
=−2

∑
j

di j (1+d 2
i j )−2 (A.8)

Moving to the term on the right of the difference in Equation A.5, we only need to take the derivative of
log(1+d 2

i j )−1 with respect to di j . This is done as follows.∑
j pi j∂ log(1+d 2

i j )−1

∂di j
=∑

j
pi j

−2di j (1+d 2
i j )−2

(1+d 2
i j )−1

=−2
∑

j
pi j (1+d 2

i j )−1 (A.9)

Finally, having these partial derivatives, we can obtain the gradient of tSNE by plugging Equations A.7,
A.8, A.9, and A.6 in Equation A.5. Which yields the following expression for the gradient of KL.

∂C

∂yc
i

= 2(
∂ log Z

∂Z

∂Z

∂di j
−
∂
∑

i 6= j pi j log(1+d 2
i j )−1

∂di j
)
∂di j

∂yc
i

= 2(
−2

∑
j di j (1+d 2

i j )−2

Z
+2

∑
j

pi j (1+d 2
i j )−1)

(y (c)
i − y (c)

j )

di j

= 4
∑

j
(pi j −qi j )(1+d 2

i j )−1(y (c)
i − y (c)

j )

(A.10)



B
The tSNE Hessian

In this chapter, we present a detailed derivation of the Hessian ∇2C (Y ) ∈RN d×N d of the Kullback-Leibler (KL)
divergence, tSNE’s cost function. Note how, in contrast to the gradient ∇C (Y ) ∈ RN d , which is a vector, the
Hessian is a square matrix. An entry (i , j ) of the Hessian, corresponds to the partial derivative of the i th entry
of the gradient with respect to the j th variable. Particularly, recall the equation of the gradient that we derived
in Appendix A,

∂C

∂y (c)
i

= 4
∑

j
(pi j −qi j )(1+d 2

i j )−1(y (c)
i − y (c)

j )

= 4
∑

j
(pi j (1+d 2

i j )−1(y (c)
i − y (c)

j )− (1+d 2
i j )−2Z−1(y (c)

i − y (c)
j ))

(B.1)

where we assume d = 2 for simplicity (i.e. c ∈ {0,1}) and y (c)i corresponds to the d th coordinate of point yi .
We can avoid computing every entry of the Hessian by focusing on four cases:

1. ∂2C /∂y (0)2

i : the same point and the same coordinate.

2. ∂2C /∂y (0)
i y (1)

i : the same point, but different coordinate.

3. ∂2C /∂y (0)
i y (0)

j : different points, but the same coordinate.

4. ∂2C /∂y (0)
i y (1)

j : different points and different coordinate.

In the following sections, we present a detailed derivation of each of these cases. Then, we relate them
with Laplacian-based Hessian expression introduced in [58]. Before continuing, we present some general
derivatives that will be useful throughout the chapter to avoid cluttering the explanation.

B.1. Useful Variables and Derivatives
In this section we present some useful variables and their derivatives that we take from the terms in Equa-
tion B.1.

• Euclidean distance and its derivative with respect to the coordinate of a point:

di j = ||yi − y j || (B.2)

∂di j

∂y (c)
i

=
(y (c)

i − y (c)
j )

di j

∂di j

∂y (c)
j

=−
(y (c)

i − y (c)
j )

di j
(B.3)

• Derivative of Student’s t-Distributed kernel:

∂(1+d 2
i j )−1

∂di j
=−2di j (1+d 2

i j )−2 (B.4)
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• Derivative of squared Student’s t-Distributed kernel:

∂(1+d 2
i j )−2

∂di j
=−4di j (1+d 2

i j )−3 (B.5)

• Derivative of normalization term Z :

∂Z

∂di j
=
∂
∑

k 6=l (1+d 2
i j )−1

∂di j

=−4
∑

j
di j (1+d 2

i j )−2
(B.6)

• Derivative of the inverse of Z :
∂Z−1

∂Z
=−Z−2 (B.7)

B.2. Case 1: Same Point, Same Coordinate
The first case is presented in Equation B.8. We divide its computation in each of the individual partial deriva-
tives inside the sum.

∂2C

∂y (0)2

i

= 4
∑

j
(pi j

∂(1+d 2
i j )−1(y (0)

i − y (0)
j )

∂y (0)
i

−
∂(1+d 2

i j )−2Z−1(y (0)
i − y (0)

j )

∂y (0)
i

) (B.8)

For the left term, we apply the product and chain rules, obtaining the following derivative,

∂(1+d 2
i j )−1(y (0)

i − y (0)
j )

∂y (0)
i

=
∂(1+d 2

i j )−1

∂y (0)
i

(y (0)
i − y (0)

j )+ (1+d 2
i j )−1

∂(y (0)
i − y (0)

j )

∂y (0)
i

=
∂(1+d 2

i j )−1

∂di j

∂di j

∂y (0)
i

(y (0)
i − y (0)

j )+ (1+d 2
i j )−1

∂(y (0)
i − y (0)

j )

∂y (0)
i

(B.9)

Plugging in the expressions that we derived in the previous section, we obtain,

∂(1+d 2
i j )−1(y (0)

i − y (0)
j )

∂y (0)
i

=−2di j (1+d 2
i j )−2

(y (0)
i − y (0)

j )2

di j
+ (1+d 2

i j )−1

=−2(1+d 2
i j )−2(y (0)

i − y (0)
j )2 + (1+d 2

i j )−1

(B.10)

Moving to the right term inside the sum of Equation B.8, we can also use the product and chain rules to
compute the derivative,

∂(1+d 2
i j )−2Z−1(y (0)

i − y (0)
j )

∂y (0)
i

=
∂(1+d 2

i j )−2

∂y (0)
i

Z−1(y (0)
i − y (0)

j )

+ (1+d 2
i j )−2 ∂Z−1

∂y (0)
i

(y (0)
i − y (0)

j )

+ (1+d 2
i j )−2Z−1

∂(y (0)
i − y (0)

j )

∂y (0)
i

=
∂(1+d 2

i j )−2

∂di j

∂di j

∂y (0)
i

Z−1(y (0)
i − y (0)

j )

+ (1+d 2
i j )−2 ∂Z−1

∂Z

∂Z

∂di j

∂di j

∂y (0)
i

(y (0)
i − y (0)

j )

+ (1+d 2
i j )−2Z−1

∂(y (0)
i − y (0)

j )

∂y (0)
i

(B.11)
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Plugging in the expressions that we derived in the previous section, we obtain,

∂(1+d 2
i j )−2Z−1(y (0)

i − y (0)
j )

∂y (0)
i

=−4di j (1+d 2
i j )−3

(y (0)
i − y (0)

j )2

di j
Z−1

+4(1+d 2
i j )−2Z−2(

∑
b

di b(1+d 2
i b)−2

(y (0)
i − y (0)

b )

di b
)(y (0)

i − y (0)
j )

+ (1+d 2
i j )−2Z−1

=−4qi j (1+d 2
i j )−2(y (0)

i − y (0)
j )2

+4q2
i j (

∑
b

(1+d 2
i b)−2(y (0)

i − y (0)
b ))(y (0)

i − y (0)
j )

+qi j (1+di j )−1

(B.12)

To obtain the expression for the first case, we can plug Equations B.10 and B.12 in B.8, which yields,

∂2C

∂y (0)2

i

= 4
∑

j
(−2pi j (1+d 2

i j )−2(y (0)
i − y (0)

j )2 +pi j (1+d 2
i j )−1

+4qi j (1+d 2
i j )−2(y (0)

i − y (0)
j )2

−4q2
i j (

∑
b

(1+d 2
i b)−2(y (0)

i − y (0)
b ))(y (0)

i − y (0)
j )−qi j (1+di j )−1)

= 4
∑

j
((pi j −qi j )(1+di j )−1

−2(pi j −2qi j )(1+d 2
i j )−2(y (0)

i − y (0)
j )2

−4q2
i j (

∑
b

(1+d 2
i b)−2(y (0)

i − y (0)
b ))(y (0)

i − y (0)
j ))

(B.13)

Notice how the result of the first case is a sum. This is because all the terms of the sum in the gradient
include the point yi and therefore they do not evaluate to zero. When we compute the derivative of the
gradient with respect to a coordinate of another point y j , only one term of the sum will remain. Another

thing to highlight is that in this case, because we were dealing with the same coordinate, the term (y (0)
i −y (0)

j )2

arose frequently. When we differentiate with respect to other coordinates, this will also change. We explore
these issues in the following sections.

B.3. Case 2: Same Point, Different Coordinates
As can be observed in Equation B.14, this case is similar to the previous one. We are still taking the derivative
with respect to the same point, yi , but with a different coordinate.

∂2C

∂y (0)
i y (1)

i

= 4
∑

j
(pi j

∂(1+d 2
i j )−1(y (0)

i − y (0)
j )

∂y (1)
i

−
∂(1+d 2

i j )−2Z−1(y (0)
i − y (0)

j )

∂y (1)
i

) (B.14)

The change of coordinate does not significantly impact the final outcome, which we present in Equa-
tion B.15. There are two main things to note. First, the term (y (0)

i − y (0)
j )2 was replaced with (y (0)

i − y (0)
j )(y (1)

i −
y (1)

j ). Second, in Equations B.9 and B.11, the derivative of (y (0)
i − y (0)

j ) with respect to y (0)
i was equal to one.

In this case, since we derivate with respect to y (1)
i , the term (pi j −qi j ) in the final expression ends cancelling

out.

∂2C

∂y (0)
i y (1)

i

= 4
∑

j
(2(pi j −2qi j )(1+d 2

i j )−2(y (0)
i − y (0)

j )(y (1)
i − y (1)
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−4q2
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∑
b

(1+d 2
i b)−2(y (1)
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b ))(y (0)

i − y (0)
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(B.15)
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B.4. Case 3: Different Points, Same Coordinate
In contrast with the previous two cases, where we derivate the gradient with respect to the same point yi

(but different coordinate), we now focus on the cases where the point changes. In this section we derive the
expression in Equation B.16.

∂2C

∂y (0)
i y (0)

j

= 4
∑

j
(pi j

∂(1+d 2
i j )−1(y (0)

i − y (0)
j )

∂y (0)
j

−
∂(1+d 2

i j )−2Z−1(y (0)
i − y (0)

j )

∂y (0)
j

) (B.16)

The outcome of this case is similar to the first one with two important changes. First, since we are differ-
entiating the gradient with respect to another point y j , all the terms of the sum, except for one, will evaluate

to zero. Second, the signs of all terms flip as a consequence of differentiating (y (0)
i − y (0)

j ) and di j with respect

to y (0)
j . With this in mind, Equation B.17, presents the final expression for this case.

∂2C

∂y (0)
i y (0)

j

= 4(−(pi j −qi j )(1+di j )−1

+2(pi j −2qi j )(1+d 2
i j )−2(y (0)

i − y (0)
j )2

+4q2
i j (

∑
b

(1+d 2
b j )−2(y (0)

b − y (0)
j ))(y (0)

i − y (0)
j ))

(B.17)

B.5. Case 4: Different Points, Different Coordinate
The last case, presented in Equation B.18, corresponds to different points with different coordinates. As was
the case in the previous section, the signs will be flipped, given that we are differentiating with respect to y (1)

j .

Also, like case 3, certain terms will get cancelled when we find the derivative of (y (0)
i − y (0)

j ) with respect to a

different coordinate of a point.

∂2C

∂y (0)
i y (1)

j

= 4
∑

j
(pi j

∂(1+d 2
i j )−1(y (0)

i − y (0)
j )

∂y (1)
j

−
∂(1+d 2

i j )−2Z−1(y (0)
i − y (0)

j )

∂y (1)
j

) (B.18)

The expression in Equation B.19 presents the outcome of this case.

∂2C

∂y (0)
i y (1)

j
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i j )−2(y (0)
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∑
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(1+d 2
b j )−2(y (1)

b − y (1)
j ))(y (0)

i − y (0)
j ))

(B.19)

B.6. A Laplacian-Based Expression for the Hessian
In the previous sections, we computed the derivatives of the different cases of the Hessian matrix. It is pos-
sible to observe how cumbersome it can be to determine these expressions, given that we need to perform
several, error-prone, algebraic operations. These expressions are also not helpful for finding Hessian approx-
imations that work within the Line Search and Trust Region frameworks because they do not give the larger
picture. In [58], the authors introduced a Laplacian-bases expression of the Hessian, which we present in
Equation B.20. It is equivalent to the expressions that we derived, but its easier to analyze. For instance, using
properties of Laplacian matrices and the weights in Equation B.21, we can see how the positive semidefinite
Laplacian with weights w+ = pi j (1+d 2

i j )−1 could be safely used in an iterative optimization procedure. This

is indeed the Spectral Direction approximation, which was the main focus of this work.

∇2C (Y ) = 4L⊗ Id +8Ly y −16vec(Lq Y )vec(Lq Y )T (B.20)

wi j = (pi j −qi j )ti j

w q
i j =−qi j t 2

i j

w y y
ni ,m j =−(pi j −2qi j )(y (n)

i − y (n)
j )(y (m)

i − y (m)
j )t 2

i j

(B.21)
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