
 
 

Delft University of Technology

Improving the Calibration on Building Stock Level method by Comparing Objective
Functions and Optimization Algorithms

van den Brom, P.I.; Smets, S.J.; Itard, L.C.M.

DOI
10.34641/clima.2022.420
Publication date
2022
Document Version
Final published version
Published in
CLIMA 2022 - 14th REHVA HVAC World Congress

Citation (APA)
van den Brom, P. I., Smets, S. J., & Itard, L. C. M. (2022). Improving the Calibration on Building Stock Level
method by Comparing Objective Functions and Optimization Algorithms. In CLIMA 2022 - 14th REHVA
HVAC World Congress: Eye on 2030, Towards digitalized, healthy, circular and energy efficient HVAC
Article 1482 TU Delft OPEN Publishing. https://doi.org/10.34641/clima.2022.420
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.34641/clima.2022.420
https://doi.org/10.34641/clima.2022.420


Improving the Calibration on Building Stock Level 
method by Comparing objective functions and 
optimization algorithms 

Paula van den Brom a, Samuel Smets b, Laure Itard c 

a Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands, 
P.I.vandenBrom@tudelft.nl

b Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands, 
L.C.M.Itard@tudelft.nl

c Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, the Netherlands, 
S.J.Smets@tudelft.nl 

Abstract. Many researchers have indicated the energy performance gap (difference between 

actual and predicted energy used in buildings), not only on an individual building level, but also 

on a building stock level. For policy makers it is important that predictions are correct on an 

building stock level to make them a useful tool to predict the effect of their proposed energy 

saving policies. Often not all input parameters for building energy simulations are known (e.g. 

insulation rates are often only possible to determine with destructive inspection or extensive 

measurements), therefore assumptions are made (e.g. assumptions for insulation rates are often 

made based on construction year). It is expected that a large part of the energy performance gap 

on building stock level are caused by incorrect assumptions of the unknown parameters in the 

building simulations. Previous research has shown that automated calibration of the assumptions 

on building stock level seems a promising method to reduce the energy performance gap and 

therewith make building energy simulations on building stock level a more reliable tool for policy 

makers. The previous research about calibration on building stock level was a proof of concept 

and still needs some improvements before it can be applied in practice. One of the aspects to 

improve the method is to determine the most suitable objective function and the most suitable 

optimization algorithm. In this paper we compare different objective functions (e.g. Root Mean 

Square Error, Mean Absolute Error, Sum of Absolute Errors). Next to that we compare different 

optimization algorithms (e.g. Genetic Algorithm, Particle Swarm and simulated Annealing 

Algorithm). For the comparison of the objective functions and the algorithms the former Dutch 

calculation method to determine the energy label in dwellings is used, in combination with the 

SHAERE database and data from the Dutch Statistics. The SHAERE database contains all input 

information on individual dwelling level to calculate the energy label of a dwelling of almost 2 

million dwellings. The Dutch Statistics database contains the individual annual energy use of all 

dwelling of the Netherlands and can be linked to the SHAERE database.  

Keywords. Energy Performance Gap, Calibration on building stock level, Optimization 
algorithms, measured data, Energy performance 
DOI: https://doi.org/10.34641/clima.2022.420

1. Introduction

Many researchers have indicated the energy 
performance gap (difference between actual and 
predicted energy used in buildings), not only on an 
individual building level, but also on a building stock 
level. For policy makers it is important that 
predictions are accurate on an building stock level to 
make them a useful tool to predict the effect of their 
proposed energy saving policies. Often not all input 
parameters for building energy simulations are 
known (e.g. insulation rates are often only possible 

to determine with destructive inspection or 
extensive measurements), therefore assumptions 
are made (e.g. assumptions for insulation rates are 
often made based on construction year). It is 
expected that a large portion of the energy 
performance gap on building stock level are caused 
by incorrect assumptions of the unknown 
parameters in the building simulations. Previous 
research has shown that automated calibration of the 
assumptions on building stock level seems a 
promising method to reduce the energy performance 
gap and therewith make building energy simulations 
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on building stock level a more reliable tool for policy 
makers.  

The previous research about calibration on building 
stock level was a proof of concept and still requires 
some improvements before it can be applied in 
practice. One of the aspects to improve the method is 
to determine the most suitable objective function 
and the most suitable optimization algorithm. In this 
paper we compare different objective functions (e.g. 
Root Mean Square Error, Mean Absolute Error, Sum 
of Absolute Errors). Next to that we compare 
different optimization algorithms (e.g. Genetic 
Algorithm, Particle Swarm and simulated Annealing 
Algorithm). For the comparison of the objective 
functions and the algorithms the former Dutch 
calculation method to determine the energy label in 
dwellings is used, in combination with the SHAERE 
database and data from the Dutch Statistics. The 
SHAERE database contains all input information on 
individual dwelling level to calculate the energy label 
of a dwelling of almost 2 million dwellings. The Dutch 
Statistics database contains the individual annual 
energy use of all dwelling of the Netherlands and can 
be linked to the SHAERE database.  

This paper will first introduce the Energy 
performance gap (section 2). After that the 
calibration on building stock level will be explained 
further (section 3). In section 4 the research methods 
are explained, followed by the results in section 5. 
Finally the results are discussed in section 6 and 
conclusion are drawn in section 7.  

2. The Energy Peformance Gap

2.1 The Energy performance gap 

Building energy simulation models are widely used to 

estimate the energy demand of a building. In Europe 

the EPBD (Energy Performance of Buildings 

Directive) demands all European countries to have a 

system that informs potential buyers and tenants of 

buildings about the energy performance of buildings. 

This is often done by an Energy Performance 

Certificate (or in for example the Netherlands also 

called Energy Label). The method used to calculate 

an Energy Performance Certificate is different per 

country but has to fulfil at least some minimal 

requirements as set by the European Union. Also 

important to mention is that the EPBD calculations 

use a standardized building use to make the results 

comparable. This makes that these calculation results 

are often not a realistic reflection of actual energy use 

in buildings, because all buildings are used 

differently. This means that there is a gap between 

actual and calculated energy use. However the gap is 

not only there on individual building level, but also 

on building stock level. This implies that there is a 

more structural problem. The gap between actual and 

calculated energy use in a building is called the 

Energy Performance Gap (EPG) and occurs on 

individual but also on building stock level.  

Fig. 0 – The energy performance gap source:[1] 

2.2 National and international context 

One of the first studies presented on the EPG on 

building stock level was presented based on Dutch 

data. Due to the strong increase on data availability 

also many other countries have found an EPG on 

building stock level e.g. Portugal [2], Switzerland [3, 

4], Denmark [5], Ireland [6], United Kingdom [7], 

France [8], Germany [7]. This indicates that the EPG 

on building stock level is not just caused by the 

method used in the Netherlands, but there is a more 

structural cause of this gap. This is an issue because 

the Energy Performance Certificates (or Energy 

Labels) are increasingly used to develop Energy 

saving policies and to determine subsidies for 

Building Energy Renovation measures.  

2.3 Causes of the Energy Performance Gap 

The past years many researchers have studied the 

EPG and potential explanation of the EPG. Some of 

the explanations are: 

1. Balance detail level simulation model and

reliability of input parameters: If a simulation model

is very detailed also many input parameters are

required. The more input parameters are required the

higher the probability that mistakes are made or

assumptions have to be made because the input

parameters are not known.

2. Occupant behaviour: on an individual level the

occupant behaviour plays an important role. Every

occupant uses her/his house differently. However we

see also a gap on building stock level which might

indicate that the assumptions we make for occupant

behaviour (e.g. indoor temperature, ventilation rates)

are not a realistic reflection of reality.

3. Mistakes in construction and/or installation

process. In building energy simulation models we

often assume that no construction or installation

failures are present. However if something is not

constructed properly or installed properly this could

cause a difference between simulation and reality.

4. Difference in construction drawings and execution.

Often construction drawings are used to make

building energy simulation. If there is a difference
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between the drawing and the real building this could 

cause a gap 

5. Measurements are often considered as the solution

for the energy performance gap. However if

equipment is not calibrated or wrongly placed this

could also provide wrong input.

3. Calibration on building stock level

Based on the previously presented findings an 

automatic calibration procedure on building stock 

level was developed aiming to reduce the EPG on 

building stock level. In this section the principle of 

the method is explained briefly. For a more detailed 

description of the method we refer to[9].  

In section 2 we mentioned that many assumptions are 

made in Energy performance calculations which 

could be a cause of the EPG on a building stock level. 

The automated calibration method on building stock 

level aims to optimize the assumptions in such a way 

that the EPG will be reduced. The method makes use 

of existing data to optimize the assumptions. It is 

therefore only possible to execute this method if a 

representative dataset of buildings with actual energy 

use data is available including the input data for the 

energy calculation. Of which a significant part of the 

input should be measured and not be based on 

assumptions (we assume 30%, but more research 

should be done to determine the minimum required).  

The method is based on a traditional calibration 

method. In a traditional calibration method the energy 

demand would be calculated and the unknown 

(assumed parameters) would be changed every 

optimization try until the optimal result is found 

(smallest gap between theoretical and actual energy 

use), see figure 1. Unfortunately this method won’t be 

sufficient because the results will only be applicable 

for that individual building on which the occupant 

plays a very significant role. However, we have seen 

in the previous section that occupant behaviour 

should be averaged out if we look at the energy 

demand on a building stock level. Therefore the 

method suggest to optimize multiple buildings at the 

same time to find the smallest EPG on a building 

stock level. Since part of the buildings don’t have 

assumed values but ‘real’ values the optimization 

could reduce the risk of assumed values 

‘compensating’ for each other and therefore increase 

the probability of finding the ‘real’ assumed value. 

The results in the ‘proof of concept study’ have 

shown that this method has the potential to reduce the 

EPG significantly [9]. 

The parameters that are optimized are (see also 

appendix):  

1. Rc-values (per construction period)

2. Air change rate ventilation

3. Indoor temperature settings

4. Domestic hot water consumption

5. Efficiency of heating system

Fig. 1 – Calibration procedure 

4. Method

This paper is based on the proof of concept method 

explained in section 3 and [9]. As written before the 

method is based on optimization. One of the 

remaining questions of the proof of concept paper 

was to determine which optimization method is the 

most suitable and which objective function is most 

suitable for this purpose. The three optimization 

algorithms that are applied are: Genetic Algorithm, 

Particle swarm optimization and Simulated 

Annealing. In this paper we compare also compare 

different objective functions (e.g. Root Mean Square 

Error, Mean Absolute Error, Sum of Absolute 

Errors). In this section we describe the different 

optimization algorithms, different objective functions 

and the data we use for the case study.  

4.1 Optimization algorithms 
There are many optimization algorithms, and 

therefore it is important to explore the optimization 

algorithms out there and make a selection of suitable 

algorithms for the problem at hand. The most reliable 

optimization algorithm would be to simulate all 

possible values for all parameters (brute-force 

method) [10]. However this method is practical often 

not feasible due to the high computational power that 

is required. Because the optimization problem is a 

non-linear and non-convex problem a global 

optimization algorithm is required (fig 2) and special 

attention should be paid to the barrier settings op the 

optimization. Figure 3 shows an overview of several 

optimization algorithms.  

3 of 8



 
Fig. 2 - Examples of a convex and a non-convex 

problem. A non-convex problem has multiple sub-

optima, of which the one with the lowest objective 

function loss (which is the objective function 

evaluation) is called the global optimum and the 

others local optima. (source: Thesis Samuel Smets) 

The three algorithms indicated in orange (Simulated 

Annealing , Genetic Algorithm and Particle Swarm 

Optimization) are used for this paper. Only three 

algorithms are chosen due to time restrictions.  

Fig. 3 - Overview of the most well-known global 

optimization algorithms. The ones indicated in orange 

are used in this project and further explained in the 

literature review. (source: Thesis Samuel Smets) 

Figure 3 shows that the three chosen optimization 

algorithms are all stochastic optimization algorithms. 

Stochastic optimization algorithms have the 

advantage of being easy implementable and have 

better potential for complex problems compared to 

deterministic algorithms, they are also relatively fast 

in terms of function evaluation [11].  

The first algorithm which will be applied is Simulated 

annealing. This is an individual-based algorithm. The 

advantage of individual-based algorithms is the lower 

number of computations per iteration, and therefore it 

usually has lower computation time until 

convergence. The disadvantage is that it is more 

prone to end up in local minima compared to 

population-based algorithms. Next to that, 

population-based algorithms usually explore the 

search space better, because multiple solution vectors 

are searching through the parameter space 

simultaneously [12]. 

Simulated Annealing (SA) is a global optimization 

algorithm that is inspired by the principles of the 

annealing process of metals. The annealing procedure 

of metals is defined as cooling down the matter 

slowly after being heated up to high temperatures, to 

get the optimal molecular arrangements of the metal 

particles, in which the energy of the system is 

minimized [13]. 

The second and the third optimization algorithms that 

will be applied are population-based algorithms. The 

principle of population-based optimization 

algorithms is that an initial set of parameter vectors 

are optimized every iteration until the global optimum 

is found. Population-based algorithms can be divided 

into evolutionary-based algorithms (also 

Evolutionary Algorithms) and swarm-based 

algorithms. The evolutionary-based algorithms use 

Darwinian evolution concepts and the swarm-based 

algorithms make use of specific movement patterns 

by the parameter solution vectors [12]. The genetic 

algorithm (evolutionary based) is the second 

algorithm that will be applied in this research The 

principles of the GA are based on the natural selection 

processes of life in which new solution vectors 

generations are created from the previous solution 

vector generations [14]. Like in natural selection, the 

‘genetic material’ of solution vectors that are the 

fittest will survive. ‘Genetic material’ refers in this 

case to the solution values of the vectors. The last 

algorithm that will be applied is the Particle swarm 

optimization, which is a swarm-based algorithm. 

Swarm-based optimization algorithms are based on 

swarm intelligence, which is the collective behaviour 

of an organized group of animals or insects [15]. 

Swarm-based algorithms are increasing in popularity, 

while the algorithms are flexible, versatile, adaptable 

to external variations and they have self-learning 

capabilities [15]. 

4.2 Objective functions 
In optimization the optimal solution can be found by 

minimizing op maximizing the objective function. It 

can be seen as a score that evaluates the goodness of 

fit. There are different objective function. There is no 

‘best’ objective functions, since it is dependent on the 

optimization problem [16].  

The main choice one has to make choosing an 

objective function is whether to use squared errors, 

absolute errors, absolute errors or normal errors. 
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Square errors penalize strongly for outliers. If one 

wants a model that does not predict values too far 

from reality, this is a good objective function to use. 

If one wants to treat all samples the same in terms of 

distance of the output to real data, and one is not 

concerned about outliers, then the absolute error will 

be a better choice. If one does not care about the errors 

of single data samples, but one is only interested in 

the summed error of the complete dataset (in which 

positive and negative errors can cancel each other 

out), then the normal error will be the better choice. 

The objective functions that will be analysed in this 

paper are: 
Root mean squared error (RMSE)  

𝑅𝑀𝑆𝐸 = √
∑(𝑆−𝑂)2

𝑛

Mean absolute error (MAE) 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑆 −  𝑂| 

Percent bias (PBIAS) 

𝑃𝐵𝐼𝐴𝑆 =
∑(𝑂 − 𝑆)

∑ 𝑂
100(%) 

In these equations 𝑂 stands for observations and 𝑂 

stands for the mean of all observations. 

The 𝑆 stands for simulations and 𝑆 stands for the 

mean of all simulations. The 𝑛 stands for number of 

samples. 

4.3. Data 
For this research we make use of the SHAERE 

database. This is a database from the Umbrella 

organisation of Dutch social housing companies 

(AEDES). They use this database to track the energy 

performance of their housing stock. In the database 

all input parameters to make the Energy performance 

calculation (based on ISO 82.3) are saved for all 

individual dwellings. This database is linked to the 

Dutch statistics database which has measured energy 

use data of almost every individual dwelling in the 

Netherlands. These data will be used to test the 

algorithms and the objective functions. The most 

important assumptions made in ISSO 82.3 are 

presented in the appendix.  

5. Results

In this section the results are presented. The 

experiments were run on a system with the following 

processor specifications: Intel(R) Xeon(R) Gold 6146 

CPU, @ 3.20GHz, 4 Cores.  

5.1 Objective function 

The three different objective functions that are 

compared are: RMSE, MAE and PBIAS. All three 

calibrations were run over 100 generations, with a 

population size of 100. The loss shown in the minimal 

objective function loss found by the population so far. 

The minima of all objective functions were found 

within the 100 generations. The calibration with the 

PBIAS objective function seemed to have reached the 

minima earlier than the RMSE and the MAE (~20 

generations with respect to ~40 generations). The 

minimal objective function losses are not comparable 

between the different objective functions, so nothing 

can be said about that. The computation time is 

comparable for all of them, which is expected because 

the calibrations were run on the same dataset and the 

same algorithm with the same hyperparameters. 

Although PBIAS had its final drop in objective 

function loss at generation 98, the plot reveals that it 

was already close to this minimal objective function 

loss at around generation 20. Therefore the 

computation time at minimal objective function loss 

is also not very informative to look at. For the other 

model aspects these numbers will be important for 

determining which is the preferred option, but for 

selecting the objective function it is not of major 

importance for making a decision. 

Fig. 4 - RMSE. (source: Thesis Samuel Smets) 

Fig. 5 - MAE. (source: Thesis Samuel Smets) 
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Fig. 6 - PBIAS. (source: Thesis Samuel Smets) 

Table 1 shows the optimized standard values for the 

three different objective functions. However if we 

look at the results we see that in all three cases the 

EPG is reduced significantly (see fig 7) 

Fig. 7 - The average gas energy use (with standard 

deviation bars) for dwellings per energy label for both 

the training and the test dataset. In yellow one finds 

the actual energy use, in blue one finds the predicted 

energy use with the uncalibrated model, in red, green 

and purple one finds the predicted energy use with the 

calibrated model (with objective functions RMSE, 

MAE and PBIAS respectively).  

If we look at the optimized variables (Table 1) we 

see that the ones calculated with the PBIAS are the 

least realistic (e.g. the lowest Rc value is 0, which is 

not possible) . Therefore it seems that this objective 

function is probably not suitable for this purpose. 

The differences between RMSE and MAE are only 

minimal and therefore we cannot conclude whether 

the RMSE or MAE is better. 

Tab. 1 - Calibration results of the objective function 

analysis. Minimal objective function loss reached 

during optimization over 100 generations with a 

population size of 100; Generation count at which the 

minimal objective function loss was reached; 

Computation time at which minimal objective 

function loss was reached.. 

Minimal 
subjective 
function loss 

Computation 
time needed 
(hours) 

Generations 
needed 

RMSE 14934.32 9.44 58 

MAE 11162.15 9.82 60 

PBIAS 0.41 16.06 98 

5.2 Optimization Algorithms 

The figures below show the different optimization 

plots per optimization algorithm (using the RMSE 

objective function). The figures clearly show that the 

SA is an individual based algorithm and the other are 

population based algorithm. The individual based 

algorithm evaluates the function loss every single 

function evaluation.  

Fig. 8 - Genetic Algorithm with hyperparameter 

settings: mutation rate = 0.5, population size = 100, 

generations = 100 

Fig. 9 - Simulated Annealing with hyperparameter 

settings: start temperature = 20000, end temperature 

= 0.1, temperature adjustments = 15, range 

adjustments = 15, number of cycles over all standard 

value solution dimensions per range = 7 

Fig. 10 - Simulated Annealing with hyperparameter 

settings: start temperature = 5000, end temperature = 

0.1, temperature adjustments = 10, range adjustments 

= 20, number of cycles over all standard value 

solution dimensions per range = 10. 

Table 2 shows the calibration results in numbers. The 

minimal objective function losses are similar to all 
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algorithms, as are the optimized values. One can also 

see that the Simulated Annealing algorithm has a 

longer computation time than the other two 

algorithms.  

Tab. 2 - Calibration results of the optimization 

algorithm analysis. Minimal objective function loss 

reached during optimization; Generation count (PSO 

and GA) and iterations (SA) at which the minimal 

objective function loss was reached; Computation 

time at which minimal objective function loss was 

reached. 

Minimal 
subjective 
function loss 

Computation 
time needed 
(hours) 

Generations 
needed 

PSO 14713.10 13.47 84 

GA 14714.49 13.47 82 

SA 0.14713.39 19.38 12067 

If we look at the validation function we see that there 

is no significant difference between the training and 

the test datasets and therefore there was no overfitting 

for any of the algorithms.  

It becomes clear that all of the algorithms perform 

equally. The only difference is de computation time, 

which is longer for SA. The reason for this might be 

that finding the optimal hyperparameters of SA is 

known to be difficult. Therefore PSO and GA are the 

most preferred ones.  

6. Conclusion and discussion

This paper is a follow up on the calibration on 

building stock level method from which the proof of 

concept is published in: [9]. It aimed to answer some 

of the remaining questions which are important to 

transform the proof of concept into a practical 

applicable method.  

Therefore we investigated in this paper which 

objective function and optimization algorithms are 

the most suited for calibration on building stock level. 

Based on the analysis we can conclude that from the 

three objective functions (RMSE, MAE and PBIAS) 

which we analysed the RMSE is the most preferred 

one in terms of performance.  

If we look at the three optimization algorithms (PSO, 

GA and SA) no clear conclusion could be made. 

However we saw that the SA method required 

significant longer computation time.  

The examples again showed that it is possible to 

reduce the energy performance gap using automated 

calibration on building stock level and the two 

findings from this paper bring the applicability of the 

method again a step closer. However there are still 

several aspects that have to be investigated before the 

method will be applicable in practice. This paper also 

shows the importance of solving the EPG and it 

showed that the EPG is an international problem. 
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10. Appendix

Category Assumptions 

Façade 
insulation (Rc 
[m2K/W]) 

If the insulation is unknown and cannot be measured the 
assumed insulation level is based on construction year. 
ISSO 82.3 assumes the following values.  
Built before 1965 = 0.19 
Built between 1965-1975 = 0.43 
Built between 1975-1988 = 1.3 
Built between 1998-1992 = 2 
Built after 1992=2.3 

Floor 
insulation (Rc 
[m2K/W]) 

If the insulation is unknown and cannot be measured the 
assumed insulation level is based on construction year. 
ISSO 82.3 assumes the following values. 

Roof 
insulation (Rc 
[m2K/W]) 

If the insulation is unknown and cannot be measured the 
assumed insulation level is based on construction year. 
ISSO 82.3 assumes the following values. 

Ventilation 
rate 

Assumed ventilation rate is based on type of ventilation 
system (natural ventilation, mechanical exhaust 
ventilation, demand based mechanical exhaust 
ventilation, balanced ventilation with heat recovery) and 
minimum ventilation rate per m2 floor are. Natural 
ventilation q=0.47; mechanical exhaust ventilation 
q=0.47; demand based ventilation q=0.29; balanced 
ventilation=0.47. If a heat recovery system is present q is 
multiplied by 1-efficiency of heat recovery system.  

Infiltration 
rate 

Assumed infiltration rate is based on floor area and type 
of building (detached, semidetached, terraced house, 
common staircase and galleries, common staircase no 
galleries and maisonettes). f2= air permeable factor based 
on ventilation system (0.12 for demand based else 0.13); 
The exact values of qinf,10 can be found in table 10 of ISSO 
82.3 (2011) 

Indoor 
temperature 

Assumed average constant indoor temperature of 18 oC 

Domestic hot 
water 
consumption 

Assumed amount for domestic hot water is based on 
number of occupants, which is based on floor area. 
Further it takes into account if a shower, bath and/or 
dishwasher is/are present and if water saving shower 
heads are installed. 

Efficiency of 
heating 
system 

The assumed efficiency of the heating system is based on 
the type of system, but also if the system is placed outside 
or within the thermal envelope of the building. Exact 
values can be found in table 19 ISSO 82.3 (2011) 

Efficiency of 
domestic hot 
water system 

The assumed efficiency of the domestic hot water system 
is based on the type of system, but also if the system is 
placed outside or within the thermal envelope of the 
build. The exact values can be found in table 24 of ISSO 
82.3 (2011) 
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