

Delft University of Technology

Policy derivation methods for critic-only reinforcement learning in continuous spaces

Alibekov, Eduard; Kubalik, Jiri; Babuska, Robert

DOI
10.1016/j.engappai.2017.12.004
Publication date
2018
Document Version
Accepted author manuscript
Published in
Engineering Applications of Artificial Intelligence

Citation (APA)
Alibekov, E., Kubalik, J., & Babuska, R. (2018). Policy derivation methods for critic-only reinforcement
learning in continuous spaces. Engineering Applications of Artificial Intelligence, 69, 178-187.
https://doi.org/10.1016/j.engappai.2017.12.004

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.engappai.2017.12.004
https://doi.org/10.1016/j.engappai.2017.12.004

Policy Derivation Methods for Critic-Only
Reinforcement Learning in Continuous Spaces

Eduard Alibekova, Jǐŕı Kubaĺıka, Robert Babuškab,a

aCzech Institute of Informatics, Robotics, and Cybernetics,
Czech Technical University in Prague, Prague, Czech Republic,

{eduard.alibekov, jiri.kubalik}@cvut.cz
bCognitive Robotics, Faculty 3mE,

Delft University of Technology, Delft, The Netherlands,
r.babuska@tudelft.nl

Abstract

This paper addresses the problem of deriving a policy from the value function

in the context of critic-only reinforcement learning (RL) in continuous state and

action spaces. With continuous-valued states, RL algorithms have to rely on

a numerical approximator to represent the value function. Numerical approxi-

mation due to its nature virtually always exhibits artifacts which damage the

overall performance of the controlled system. In addition, when continuous-

valued action is used, the most common approach is to discretize the action

space and exhaustively search for the action that maximizes the right-hand side

of the Bellman equation. Such a policy derivation procedure is computation-

ally involved and results in steady-state error due to the lack of continuity.

In this work, we propose policy derivation methods which alleviate the above

problems, by means of action space refinement, continuous approximation, and

post-processing of the V-function by using symbolic regression. The proposed

methods are tested on non-linear control problems: 1-DOF and 2-DOF pen-

dulum swing-up problems, and on magnetic manipulation. The results show

significantly improved performance in terms of cumulative return and compu-

tational complexity.

Keywords: reinforcement learning, continuous actions, multi-variable systems,

optimal control, policy derivation, optimization

Preprint submitted to Elsevier October 16, 2017

© 2018 Manuscript version made available under CC-BY-NC-
ND 4.0 license https://creativecommons.org/licenses/by-nc-
nd/4.0/
https://doi.org/10.1016/j.engappai.2017.12.004

1. Introduction

Reinforcement Learning (RL) algorithms provide a way to solve dynamic

decision-making and control problems [1, 2, 3]. An RL agent interacts with the

system to be controlled by measuring its states and applying actions according

to a certain policy. After applying an action, the agent receives a scalar reward5

related to the immediate performance. The goal is to find an optimal policy,

which maximizes the cumulative reward.

The available RL algorithms can be broadly classified into critic-only, actor-

only, and actor-critic methods [4]. Critic-only methods first find the value func-

tion (V-function) and then derive an optimal policy from this value function.10

In contrast, actor-only methods search directly in the policy space. The two

approaches can be combined into actor-critic architectures, where the actor and

critic are both represented explicitly and trained simultaneously. Each class can

be further divided into model-based and model-free algorithms. In the model-

based scenario, a system model is used during learning or policy derivation. The15

system model may be stochastic or deterministic. In this paper, we consider the

critic-only, model-based and deterministic variant of RL in continuous state and

action spaces. For the methods developed, it is irrelevant whether the system

model is available a priori or learnt on-line.

We address the policy derivation step, assuming that an approximation of20

the true unknown V-function has already been computed. Policy derivation can

be understood as a hill climbing process: at each time step, the agent searches

for the control input that leads to a state with a highest value given by the right-

hand side (RHS) of the Bellman equation. An advantage of this control law is

its inherent stability – the value function is analogous to the control Lyapunov25

function [5, 6]. However, direct policy derivation from the V-function suffers

from several problems:

• Computational inefficiency. The most common approach to dealing

with a continuous action space is to discretize it into a small number of

actions, compute the value of the Bellman equation RHS for all of them,30

2

and select the one that corresponds to the largest value [1, 7]. The number

of possible discrete actions grows exponentially with the dimension of the

action space and so does the computational complexity of this method.

• Insufficient smoothness of the V-function. The above hill-climbing

process is adversely affected by the approximate nature of the V-function,35

which has been observed e.g. in [8]. A typical approximation by means

of basis functions exhibits artifacts which can lead to oscillations, as il-

lustrated in the left column of Figure 1. We refer to this problem by the

term “insufficient smoothness”, without relying on the exact mathematical

definition of smoothness.40

• Discrete-valued control input. The use of discrete actions leads in

combination with insufficient smoothness to steady-state errors, as shown

in the right column of Figure 1. In the long run, the steady-state error

can induce big losses in terms of the overall performance.

The aim of this paper is to alleviate the above problems. We extend our45

earlier work on policy derivation methods [9]. In addition to the methods orig-

inally proposed in this paper we introduce symbolic regression to address the

V-function smoothness problem. Additionally, to enable the use of continuous

actions, we propose a method based on a computationally efficient optimization

technique.50

The paper is organized as follows. Related work is discussed in Section 2

and Section 3 reviews the necessary background of reinforcement learning. The

proposed policy derivation methods are introduced in Section 4. The results ob-

tained on several benchmark problems are presented in Section 5 and discussed

in detail in Section 6. Finally, Section 7 concludes the paper.55

2. Related work

The problem of deriving policies for continuous state and action spaces in

critic-only methods has not been sufficiently addressed in the literature. The

3

-3 -2 -1 0 1 2 3

Angle

-30

-20

-10

0

10

20

30

A
n
g
u
la

r
v
e
lo

c
it
y

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Angle

-2

0

2

4

6

8

10

12

14

A
n
g
u
la

r
v
e
lo

c
it
y

0 1 2 3 4

Simulation time

-4

-3

-2

-1

0

1

2

3

4

A
n
g
le

3.6 3.7 3.8 3.9 4

Simulation time

-0.3

-0.2

-0.1

0

0.1

0.2

A
n
g
le

Figure 1: A sample state trajectory obtained by simulating the pendulum swing-up task (see

Section 5 for details). The bottom plots show an enlarged view of the areas indicated in

the upper plots. The wiggly state trajectory (superimposed on the contours of the Bellman

equation RHS) and the extremely slow convergence to the desired position result from the in-

sufficient smoothness of the V-function approximation in combination with the use of discrete

actions.

4

most common approach is to discretize the action space, compute the RHS of

the Bellman equation for all the discrete actions, and select the action that60

corresponds to the largest value. One of the earliest references to this approach

is [10]. The drawbacks of this method were discussed in the previous section.

Another similar approach is based on sampling [11, 12]. Using Monte-Carlo

estimation, this approach can find a near-optimal action without resorting to

exhaustive search over the discretized action space. However, for a good per-65

formance, this method requires a large number of samples and therefore it is

computationally inefficient.

An alternative method would be policy interpolation [13], which is based on

computing the control actions off-line for a pre-selected set of states and then

interpolating these actions on-line. While computationally less involved, this70

method does not give any closed-loop stability guarantees and can suffer from

severe interpolation errors, especially in constrained problems. Therefore, we

do not consider policy interpolation in this paper.

A different approach relies on translating the continuous action selection step

into a sequence of binary decisions [14, 15]. Each decision whether to decrease75

or increase the control action eliminates a part of the action space. This process

stops once a predefined precision is reached. There are two main drawbacks of

this approach: it requires a binary code representation of each action, which is

difficult to design properly and it does not resolve the insufficient smoothness

problem of the V-function.80

There are several approaches to smoothing data in general, e.g., elastic map-

ping [16], smoothing splines [17], or approximation by neural networks [18].

However, none of them is directly applicable to RL. To the best of our knowl-

edge, the only approach that has been developed to address the insufficient

smoothness problem in the RL context is [8]. It is based on the concept of85

a smooth proxy function which encodes the preference for the optimal action,

while it does not have to satisfy the Bellman equation. The proxy function is

derived through symbolic regression and can be used for policy derivation. This

method has two limitations: it does not allow for penalizing the control action

5

in the reward function and it is restricted to discrete-valued actions.90

In this work, we use symbolic regression [19], which is based on genetic

programming, and its goal here is to find an analytic approximation of the

sampled V-function. The main benefit is the inherent smoothness of such a

V-function approximation, and the possibility to effectively compute its partial

derivatives, which makes the search for the optimal control action more effective.95

3. Preliminaries

3.1. Reinforcement learning

Define an n-dimensional state space X ⊂ Rn, and m-dimensional action

space U ⊂ Rm. The deterministic model of the process to be controlled is

described by the state transition function100

xk+1 = f(xk, uk) (1)

with xk, xk+1 ∈ X and uk ∈ U . A user-defined reward function assigns a scalar

reward rk+1 ∈ R to each state transition from xk to xk+1, as a consequence of

action uk:

rk+1 = ρ
(
xk, uk, xk+1

)
(2)

The value function can be computed by solving the Bellman equation:

V (x) = max
u∈U

[
ρ
(
x, u, f(x, u)

)
+ γV

(
f(x, u)

)]
(3)

where γ is a user-defined discount factor. There are several methods to calculate

an approximation of the V-function for continuous state spaces. We denote the105

V-function approximation by V̂ . In this paper, we use the fuzzy V-iteration

algorithm [13] as it is guaranteed to converge and the parameters of the fuzzy

approximator are the V-function values at the fuzzy set cores. We briefly review

the algorithm in Appendix A.

The most straightforward way [20] to derive the policy ĥ : X → U corre-

sponding to the approximate value function V̂ (·) is:

ĥ(x) ∈ arg max
u∈U

[
ρ
(
x, u, f(x, u)

)
+ γV̂

(
f(x, u)

)]
(4)

6

where U =
{
u1, u2, . . . , uM

}
is a finite set of actions drawn from U . However,110

this policy will be discrete-valued and generally will not perform well on control

problems with continuous actions. Therefore, in Section 4 we propose alternative

methods, whose aim is to provide a better policy than (4). Note that the

transition model f must be available for all the methods considered.

3.2. Symbolic regression115

To obtain a smooth approximation of the V-function, we build its analytic

approximation using symbolic regression. This general technique is based on

genetic programming and its goal is to find an equation describing given training

data. Our specific objective is to find an analytic formula that fits well data

sampled from the approximated V-function V̂ . Symbolic regression is a suitable120

technique for this task, as we cannot assume any kind of a priori knowledge on

the shape of the V-function sought. We use a variant of Single Node Genetic

Programming, which is described in detail in Appendix B.

4. Policy derivation methods

The first part of this section briefly reviews the available solutions for policy125

derivation. Then, we introduce a novel method, based on symbolic regression,

to address the V-function smoothness problem, described in the Introduction.

Furthermore, we propose a computationally efficient method to enable the use

of continuous actions.

4.1. Baseline solution130

The common solution from the literature is to evaluate (4) at every sampling

instant, where the maximization is computed over the same discrete action set

U on which V̂ has been learned (see Appendix A). We will use this method as

the baseline approach.

7

4.2. Evaluation over a fine grid of actions135

It can be beneficial to refine the action space with respect to the space used

for computing the V-function. Define A ⊂ U as

A = A1 ×A2 × · · ·Am, (5)

where each set Ai contains points distributed in a suitable way (e.g., equidis-

tantly) along the ith dimension of the action space. Set A therefore contains all

combinations of the control inputs for which the right-hand side of the Bellman

equation (4) is evaluated for the current state x:

Gx(u) = ρ
(
x, u, f(x, u)

)
+ γV̂

(
f(x, u)

)
(6)

We refer to Gx as the control surface. An example of such as surface for a

two-dimensional action space is shown in Fig. 2.

Figure 2: An illustrative example of grid evaluation over the action space for a given x. Each

dimension of the action space is discretized in 10 points, i.e., at each time step, a total of 100

points are evaluated according to (6).

This fine discretization allows to control the system by applying actions

more precisely, while it does not increase the computational complexity during

learning.140

8

4.3. Chebyshev polynomial approximation

The main idea of this method is to find a smooth approximation of the

control surface, such as the one shown in Fig. 2. This smooth approximation

facilitates more accurate control and helps avoid chattering in the vicinity of

unstable system equilibria. We use Chebyshev polynomials of the first kind,145

which are defined by the following recurrent relation:

T0(ū) = 0

T1(ū) = ū

Tn+1(ū) = 2ūTn(ū)− Tn−1(ū)

They are orthogonal to each other on the interval [−1, 1] with respect to the

weighting function 1/
√

1− ū2. In order to take advantage of this property, the

domain of each control variable must be mapped onto the interval [−1, 1]. This

is accomplished using the affine transformation:

ū = −1 + 2
u− uL
uH − uL

where uL and uH are respectively the lower and upper bound of u in each

input dimension. The approximation by means of Chebyshev polynomials can

be extended to higher dimensions by using the Cartesian product of univariate

polynomials. The details of this procedure are beyond the scope of this paper150

and can be found in [21, 22, 23]. In this paper we use Chebfun open-source

package [24] to construct a polynomial function P (u), which receives an action

u ∈ U and returns the value of the approximated right-hand side of the Bellman

equation. Note that this function includes the above affine transformation.

The polynomial structure of the policy approximator allows us to efficiently155

find the maxima in (4) by numerically solving the set of algebraic equations

obtained by equating the first partial derivatives to zero, see [25]. In some

cases, the polynomial attains its maximum inside the domain U , but in other

cases, the maximum lies outside of this domain. Therefore, the boundaries must

also be tested. In our experimental study we use Chebfun open-source package160

9

[24], which effectively searches for the extrema inside the domain and on its

boundaries. The argument of the global maximum of P (·) on the U domain

is then the control action sought. This policy derivation step is formalized in

Algorithm 1.

Algorithm 1: Maximization using Chebyshev polynomials (in the sequel

denoted as Cheby)

Input: f, ρ, γ, A, V̂ , x0

k ← 0

while control experiment not terminated do

foreach u′ ∈ A do

G[u′] = ρ
(
xk, u

′, f(xk, u
′)
)

+ γV̂
(
f(xk, u

′)
)
;

end

build Chebyshev polynomial approximation P (·) using data (A,G)

uk ← arg max
u′∈U

P (u′)

xk+1 ← f(xk, uk)

k ← k + 1

end

Output: trajectory [x0, x1, ...], [u0, u1, ...]

4.4. Symbolic regression smoothing165

To mitigate the insufficient smoothness problem, we smooth the numerical

approximation of the V-function by applying symbolic regression. This results

in an analytical expression which accurately describes the V-function, while

eliminating artifacts caused by the numerical approximator. In this work, we use

the following basic operators and functions to build the analytical expressions:170

F = {∗,+,−, square, cube, tanh}. The complete symbolic regression procedure

is described in Appendix B.

The Baseline, Grid and Cheby algorithms can all be enhanced by using

a symbolic approximation V̂ s of the V-function instead of the numerical ap-

proximation V̂ . In the sequel the superscript s denotes symbolic functions or175

10

operations. The modified algorithms are denoted as SR-Baseline, SR-Grid and

SR-Cheby, respectively.

4.5. Quasi-symbolic policy derivation

To reduce the computational complexity of policy derivation, the Quasi-

Symbolic Policy Derivation algorithm (in the sequel denoted as QSPD) exploits

the symbolic nature of V̂ s. Rather than exhaustively enumerating all possible

actions in a discrete action set, we apply a standard numerical optimization

algorithm to the following problem:

uk = arg max
u′∈U

Rs(xk, u
′) (7)

where Rs stands for the right-hand side of the Bellman equation:

Rs(x, u) =
[
ρs
(
x, u, fs(x, u)

)
+ γV̂ s(fs(x, u))

]
(8)

with ρs and fs the symbolic representations of the reward and state-transition

function, respectively. In model-based RL, the reward function is always de-180

signed by the experimenter and therefore can easily be defined as an analytic

function. However, this is often not the case with the state transition function

f . The system dynamics are typically described in continuous time and the

state transitions are generated by means of numerical integration, using e.g.

Runge-Kutta methods. In such as case, the symbolic approximation fs can be185

obtained by means of the forward Euler method.

In this paper, we use the trust region reflective (TRR) algorithm [26] and en-

hance its convergence speed by providing it with the symbolic partial derivatives

∇Rs(x, u):

∇Rs(x, u) =

[
∂Rs(x, u1)

∂u1
,
∂Rs(x, u2)

∂u2
, ...

∂Rs(x, um)

∂um

]
(9)

The QSPD algorithm is presented in Algorithm 2.

5. Simulation experiments

The proposed methods are evaluated on three non-linear control problems:

1-DOF and 2-DOF swing-up, and magnetic manipulation in two variants. The190

11

Algorithm 2: Quasi-symbolic policy derivation (QSPD)

Input: f, fs, ρs, γ, V̂ s, x0

k ← 0

while control experiment not terminated do

uk = arg max
u′∈U

[
ρs
(
x, u, fs(x, u)

)
+ γV̂ s

(
fs(x, u)

)]
; TRR optimization

xk+1 ← f(xk, uk);

k ← k + 1

end

Output: trajectory [x0, x1, ...], [u0, u1, ...]

characteristics and the parameter values for each problem are listed in Table 1.

Table 1: Experiment parameters

1-DOF 2-DOF Magman2 Magman5

Number of state dimensions 2 4 2 2

Number of action dimensions 1 2 2 5

State space, X [−π, π]× [−π, π]× [−2π, 2π]× [0, 0.05]× [0, 0.1]×

[−30, 30] [−π, π]× [−2π, 2π] [−0.39, 0.39] [−0.39, 0.39]

Input space, U [−2, 2] [−3, 3]× [−1, 1] [0, 0.6]× [0, 0.6]×

[0, 0.6] . . .× [0, 0.6]

Samples per input dimension, B [21, 21]T [11, 11, 11, 11]T [27, 27]T [27, 27]T

Discount factor, γ 0.9999 0.99 0.999 0.999

Convergence threshold, ε 10−5 10−5 10−8 10−8

Refined action space size 27 [11, 11]T [11, 11]T [11, · · · , 11]T

Simulation time, Tsim [s] 10 20 10 10

Sampling period, Ts [s] 0.01 0.01 0.005 0.005

The performance of the algorithms is measured by the following criteria:

• Performance percentage ratio

Palg =
1

N

N∑
j=1

[
pjbaseline/p

j
alg

]
· 100%

with palg =
∑

Tsim/Ts

ρ
(
xk, uk, f(xk, uk)

)
, where the subscript alg refers to

12

the algorithm tested, N is the number of runs, Tsim and Ts are the sim-195

ulation time and the sampling period, respectively. The reward functions

are defined such that they are negative except in the goal state, where

they equal to zero. The performance measure Palg is therefore 100% for

the baseline and larger than 100% for the algorithms that outperform the

baseline.200

• Runtime percentage ratio

Talg =
1

N

N∑
j=1

[
tjalg/t

j
baseline

]
· 100%

where talg stands for the runtime of the algorithm. Analogously to the

performance, Talg is 100% for the baseline and smaller than 100% for the

algorithms that run faster than the baseline.

• Mean distance of the final state (at the end of simulation) to the goal state

Dalg =
1

N
‖xdes − xend‖

with xdes the desired (goal) state, xend the final state of the simulation

run, and ‖ · ‖ the Mahalanobis norm.205

• Mean return

Ralg =
1

N

N∑
j=1

palg

Each algorithm was tested N = 50 times on each benchmark with randomly

chosen initial states.

To construct Chebyshev polynomials, we used the Chebfun open-source

package [24]. The Matlab 2015a fmincon implementation of the trust region

reflective algorithm is used in QSPD.210

The genetic programming method evolving the symbolic approximations of

the V-function was run with the following control parameters setting:

• The total population size was 300. The ratio of the head partition size to

the size of the tail partition was 1:2.

13

• The maximum number of features the evolved LASSO model can be com-215

posed of was set to 16. The maximum depth of individual features was 7.

• The number of parallel threads run in a single epoch was 3. The number

of epochs was set to 50.

Multiple independent runs were carried out with symbolic regression to find

the symbolic value functions V s. The symbolic regression parameters did not220

change between the runs (except for the random seed). The value function

which performed best with respect to Palg is presented in the results.

5.1. 1-DOF swing-up

The inverted pendulum consists of a mass m attached to an actuated link

that rotates in the vertical plane (see Fig. 3). The available torque is insufficient225

to push the pendulum up in a single rotation from the majority of initial states.

Instead, from a certain state (e.g., pointing down), the pendulum needs to be

swung back and forth to gather energy, before it can be pushed up and stabilized.

The continuous-time model of the pendulum dynamics is:

α̈ =
1

J
·
[
mgl sin(α)− bα̇− K2

R
α̇+

K

R
u

]
(10)

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 ms−2, l = 0.042 m, b = 3 ·230

10−6 Nms/rad, K = 0.0536 Nm/A, R = 9.5 Ω. The angle α varies in the interval

[−π, π], with α = 0 pointing up, and ‘wraps around’ so that e.g. α = 3π/2

corresponds to α = −π/2. The state vector is x = [α, α̇]T . The sampling period

Figure 3: Inverted pendulum schematic.

14

is Ts = 0.01 s, and the discrete-time transitions are obtained by numerically

integrating the continuous-time dynamics using the fourth-order Runge-Kutta235

method. The control action u is limited to [−2, 2] V, which is insufficient to

push up the pendulum in one go. The set of discrete control inputs is U =

{−2,−1, 0, 1, 2}.

The control goal is to stabilize the pendulum in the unstable equilibrium

α = α̇ = 0 = xdes using desired control input udes = 0. This goal is expressed

by the following reward function:

ρ
(
x, u, f(x, u)

)
= −abs(xdes − x)TQ− abs(udes − u) (11)

with Q = [5, 1]T a weighting vector to adjust the relative penalty between the

angle, angular velocity and control input. Function abs(·) works element-wise.240

The simulation results are presented in Table 4, with the best performance

printed in bold.

The most important conclusion is that the use of symbolic regression im-

proves the overall performance, with SR-Cheby yielding the best results. All

the proposed approaches result in longer runtime, except for SR-Baseline. Grid245

and Cheby algorithms perform worse than the baseline solution with respect to

Palg. This is caused by the combination of insufficient smoothness of the value

function and discrete actions, as illustrated in Figure 4. The approximation

by means of basis functions produces a “ridge” in the vicinity of the goal state.

The state trajectory then moves back and forth from one side of the ridge to the250

other, slowly converging toward the goal state. The Baseline algorithm employs

fewer actions and is therefore forced to use actions with a larger magnitude.

The Grid algorithm, on the contrary, employs more actions with a smaller mag-

nitude. Therefore, it can follow the ridge more precisely, which results in a

larger value of the Bellman equation RHS, but a slower overall convergence to255

the goal. The Cheby algorithm uses data provided by the Grid algorithm and

therefore suffers from the same problem.

The QSPD algorithm alleviates this problem thanks to the use of smooth

symbolic approximation of the V-function in combination with continuous ac-

15

tions. The state trajectory is virtually ideal, as depicted at the right-hand side260

of Figure 4.

5.2. 2-DOF swing-up

The double pendulum is described by the continuous-time fourth-order non-

linear model:

u = M(α)α̈+ C(α, α̇)α+G(α)

M(α) =

P1 + P2 + 2P3 cos(α2) P2 + P3 cos(α2)

P2 + P3 cos(α2) P2


C(α, α̇) =

b1 − P3α̇2 sin(α2) −P3(α̇1 + α̇2) sin(α2)

P3α̇1 sin(α2) b2


G(α) =

−F1 sin(α1)− F2 sin(α1 + α2)

−F2 sin(α1 + α2)



(12)

where α = [α1, α2]T contains the angular positions of the two links, u = [u1, u2]T

is the control input which contains the torques of the two motors, M(α) is the

mass matrix, C(α, α̇) is the Coriolis and centrifugal forces matrix and G(α) is265

the gravitational forces vector. The state x contains the angles and angular

velocities and is defined as x = [α1, α̇1, α2, α̇2]T . The angles [α1, α2] vary in the

interval [−π, π) rad and wrap around. The auxiliary variables are defined as

P1 = m1c
2
1 + m2l

2
1 + I1, P2 = m2c

2
2 + I2, P3 = m2l1c2, F1 = (m1c1 + m2l2)g

and F2 = m2c2g. The control action u is limited to [−3, 3] for the first link270

and [−1, 1] for the second link. The meaning and the values of the system

parameters are given in Table 2.

The discrete set of control inputs U is defined as the Cartesian product of

the sets {−3, 0, 3} and {−1, 0, 1} for each link. The transition function f(x, u)

is obtained by numerically integrating (12) between discrete time samples using275

the fourth-order Runge-Kutta method with the sampling period Ts.

The control goal is expressed by the following quadratic reward function:

ρ
(
x, u, f(x, u)

)
= −abs(xdes − x)TQ, where Q = [1, 0.05, 1.2, 0.05]T (13)

16

Figure 4: Trajectories from the initial point [−π, 0] to the goal state, obtained using Baseline

(left column), Grid (middle column) and QSPD (right column) on the 1-DOF pendulum

swing-up task. The first row shows the whole state trajectory superimposed on the contours

of the Bellman equation RHS, the second row the zoomed area around the goal state, the

third row the angle, and the forth row the applied control inputs during simulation.

17

Table 2: Double pendulum parameters

Model parameter Symbol Value

Unit

Link lengths l1, l2 0.4, 0.4 m

Link masses m1,m2 1.25, 0.8 kg

Link inertias I1, I2 0.0667, 0.0427 kg m2

Center of mass coordinates c1, c2 0.2, 0.2 m

Damping in the joints b1, b2 0.08, 0.02 kg/s

Gravitational acceleration g -9.8 m/s2

Sampling period Ts 0.01 s

Desired state xdes [0, 0, 0, 0]T

The simulation results presented in Table 4 show the same pattern as with

the 1-DOF pendulum swing-up. Also here the symbolically approximated value

function leads to a significant improvement in performance.

5.3. Magnetic manipulation280

Magnetic manipulation (abbreviated as Magman) is an challenging nonlinear

control problem. In our setup (see Fig. 5), the current through the electromag-

nets is controlled to dynamically shape the magnetic field above the magnets

and so to accurately and quickly position a steel ball to the desired set point.

We consider two variants, one with two electromagnets and one with five.

Figure 5: Magman schematic.

285

18

The horizontal acceleration of the ball is given by:

ÿ = − b

m
ẏ +

1

m

1∑
i=0

g(y, i)ui (14)

with

g(y, i) =
−c1 (y − 0.025i)(

(y − 0.025i)
2

+ c2

)3 . (15)

Here, y denotes the position of the ball, ẏ its velocity and ÿ the acceleration.

With ui the current through coil i, g(y, i) is the nonlinear magnetic force equa-

tion, m (kg) the ball mass, and b (Ns
m) the viscous friction of the ball on the

rail. Magnetic manipulation task with two coils uses i = 0, 1, and in the sequel

is named Magman2. The five-coil variant uses i = 0, 1, 2, 3, 4 and is named290

Magman5. The model parameters are listed in Table 3.

Table 3: Magnetic manipulation system parameters

Model parameter Symbol Value Unit

Ball mass m 3.200 · 10−2 kg

Viscous damping b 1.613 · 10−2 Nms

Empirical parameter c1 5.520 · 10−10 Nm5A−1

Empirical parameter c2 1.750 · 10−4 m2

Sampling period Ts 0.005 s

State x is given by the position and velocity of the ball. The set of control

inputs U is defined as the Cartesian product of the vectors [0, 0.3, 0.6], containing

the discrete values of the control input to the ith coil. The reward function is

defined as:

ρ
(
x, u, f(x, u)

)
= −abs(xdes − x)TQ, where Q = [5, 1]T (16)

where the desired position xdes is set to 0.01 (m).

The simulation results for both variants of the system are presented in Ta-

ble 4.

The QSPD algorithm shows the best result in terms of the overall return.295

Also here, SR-Baseline tends to be the fastest algorithm. However, when the

19

dimensionality of the action space grows, QSPD starts dominating in both mea-

sures. The runtime of Baseline, Grid and Cheby algorithms (and their symbolic

regression variants) grows exponentially with the input dimension. This pre-

vents us from applying Grid and Cheby algorithms (and their symbolic vari-300

ants) to the Magman5 benchmark, so their results are not reported in the ta-

ble. The runtime of the QSPD algorithm, according to our experiments, grows

approximately linearly. This results in the outstanding runtime performance

Talg = 2.85% for the Magman 5 benchmark.

6. Discussion305

Table 4 summarizes the simulation results. As can be seen, Grid and Cheby

algorithms perform worse than the Baseline solution with respect to Palg. This

is caused by the insufficient smoothness problem, illustrated in Figure 4. How-

ever, when combined with the smooth approximation of the V-function surface

by means of symbolic regression, these algorithms lead to a significant per-310

formance improvement. Moreover, the use of the symbolically approximated

surface alone is beneficial as well, as illustrated by the SR-Baseline results. It

can be seen, that the difference between SR-Grid and SR-Cheby is quite unpre-

dictable and depends on the quality of approximation of the local features of

the V-function surface.315

The QSPD algorithm performs better when the dimensionality of the action

space grows. The reason why QSPD performs worse compared to the SR al-

gorithms is that it uses a rather poor Euler approximation fs(·) of the system

dynamics. Instead of the Euler method, another more sophisticated approxima-

tion could be used, e.g., the Adams-Bashforth method.320

As can be seen in Table 4, the exponential growth of computational com-

plexity prevents the use of Grid and Cheby algorithms (and their symbolic

variants) on the Magman5 benchmark. Interestingly, SR-Baseline runs faster

than the Baseline solution. This is thanks to the simpler form of the V-function

approximation, which leads to faster computations.325

20

Table 4: Summary of the simulation results

1DOF swing-up 2DOF swing-up Magman2 Magman5

Baseline

Palg 100% 100% 100% 100%

Talg 100% 100% 100% 100%

Dalg 0.0493 0.0825 0.0007 0.0019

Ralg -1288.28 -869.81 -14.42 -35.85

Grid

Palg 47.45% 91.25% 75.09% -

Talg 634.19% 1159.30% 965.26% -

Dalg 0.1175 0.1132 0.0010 -

Ralg -2582.65 -969.374 -19.34 -

Cheby

Palg 48.03% 95.69% 130.77% -

Talg 2281.80% 1937.80% 3641.10% -

Dalg 0.1147 0.0946 0.0003 -

Ralg -2551.43 -925.85 -11.76 -

SR-Baseline

Palg 129.33% 247.80% 163.09% 242.31%

Talg 86.01% 77.59% 84.81% 87.26%

Dalg 0.0901 0.1050 0.0002 0.0004

Ralg -1040.77 -573.49 -9.46 -16.02

SR-Grid

Palg 166.54% 287.11% 178.80% -

Talg 589.74% 909.47% 885.85% -

Dalg 0.0065 0.0408 0.0001 -

Ralg -887.48 -547.08 -8.89 -

SR-Cheby

Palg 188.89% 293.25% 176.96% -

Talg 2200.80% 1626.90% 4092.20% -

Dalg 0.0000 0.0233 0.0003 -

Ralg -837.32 -545.38 -9.26 -

QSPD

Palg 149.67% 193.61% 254.08% 332.98%

Talg 586.94% 611.23% 208.24% 2.85%

Dalg 0.0076 0.1401 0.0001 0.0001

Ralg -955.11 -667.50 -7.39 -12.55

21

7. Conclusion

Several alternative policy derivation methods for continuous action spaces

were proposed in this paper. The simulation results showed that the proposed

symbolic approximation significantly outperforms the standard policy derivation

approach. Moreover, in combination with the QSPD algorithm, it allows to curb330

the exponentially growing computational complexity.

In terms of control performance, SR-Cheby outperformed the other algo-

rithms in most of the problems tested (with the exception of the Magman 2

example). However, when the dimensionality of action space is larger than

three, the computational complexity of this algorithm becomes prohibitive. In335

applications where computational resources are limited (e.g., in robotics) we

recommend to use the SR-Baseline algorithm. The QSPD algorithm is suitable

for problems with input dimension larger than three.

The Grid and Cheby algorithms have not performed equally well across the

all problems tested; they perform worse when the V-function approximation is340

not smooth. Providing the right criteria for measuring this aspect is difficult

and it may be a part of future research. In conclusion, it is not recommended

to use these algorithms out of the box.

The proposed methods can be used with any kind of value function approx-

imators. Incorporating symbolic regression into the learning process is a part345

of our future work.

8. Acknowledgements

This research was supported by the Grant Agency of the Czech Republic

(GAČR) with the grant no. 15-22731S titled “Symbolic Regression for Rein-

forcement Learning in Continuous Spaces” and by the Grant Agency of the350

Czech Technical University in Prague, grant no. SGS16/228/OHK3/3T/13 ti-

tled “Knowledge extraction from reinforcement learners in continuous spaces”.

22

Appendix A. Fuzzy value iteration

Define a set of samples S = {s1, s2, . . . , sN} placed on an equidistant rectan-

gular grid in X . The number of grid points per dimension is described by vector

B = [b1, b2, . . . , bn]T with the total number of samples N =
∏n

i=1 bi. Further de-

fine a vector of fixed triangular membership functions φ = [φ1(x), φ2(x), . . . , φN (x)]T

where each φi(x) is centered in si, i.e., φi(si) = 1 and φj(si) = 0, ∀j 6= i. The

basis functions are normalized so that
∑N

j=1 φj(x) = 1, ∀x ∈ X . The V-function

approximation is defined as:

V̂ (x) = θTφ(x) (A.1)

where θ = [θ1, . . . , θN]
T ∈ RN is a parameter vector found through the following

value iteration:

θi ← max
u∈U

[
ρ
(
si, u, f(si, u)

)
+γθTφ

(
f(si, u)

)]
(A.2)

for i = 1, 2, . . . , N , with U =
{
u1, u2, . . . , uM

}
a finite set of actions drawn from

U . This value iteration is guaranteed to converge [13] and terminates when the

following condition is satisfied:

||θ − θ−||∞ ≤ ε (A.3)

with θ− the parameter vector calculated in the previous iteration and ε a user-

defined convergence threshold. Fuzzy value iteration is very effective for second-355

order systems – computing the value function is a matter of seconds. How-

ever, the computational and memory requirements grow exponentially and the

method is not practical for systems above order four. Other methods [27] can

be used for higher-order systems.

Appendix B. Single node genetic programming360

In this work, we used a Single Node Genetic Programming (SNGP) [28, 29]

to implement the symbolic regression. SNGP is a graph-based GP method that

evolves a population of individuals, each consisting of a single program node.

23

The node can be either terminal, i.e., a constant or a variable in case of the

symbolic regression problem, or a function chosen from a set of functions defined365

for the problem at hand. The individuals are not entirely distinct, instead they

are interlinked in a graph structure so some individuals act as input operands

of other individuals.

Formally, a SNGP population is a set of L individualsM = {m0,m1, . . . ,mL−1},

with each individual mi being a single node represented by the tuple mi =370

〈ei, fi, Succi, P redi, Oi〉, where

• ei ∈ T ∪F is either an element chosen from a function set F or a terminal

set T defined for the problem;

• fi is the fitness of the individual;

• Succi is a set of successors of this node, i.e. the nodes whose output serves375

as the input to the node;

• Predi is a set of predecessors of this node, i.e. the nodes that use this

node as an operand;

• Oi is a vector of outputs produced by this node.

In this work, the following basic operators and functions were used to build380

the symbolic expressions F = {∗,+,−, square, cube, tanh}. The terminal set T

consisted of the state variables xi and basic constants 0, 1, 2, and 3.

Typically, the population is partitioned so that the first Lterm nodes are

terminals, basic constants and variables, followed by function nodes. Links

between nodes in the population must satisfy a condition that any function385

node can use as its successor (i.e. the operand) only nodes that are positioned

lower down in the population. This means that for each mj ∈ Succi it holds

0 ≤ j < i. Similarly, predecessors of individual i must occupy higher positions

in the population, i.e. for each mj ∈ Predi we have i < j < L. Note that each

function node is in fact a root of a program tree that can be constructed by390

recursively traversing its successors towards the leaf terminal nodes.

24

An operator called successor mutation (smut), proposed in [28], is used to

modify the population. It takes an individual and replaces one of its successors

by a reference to another randomly chosen individual of the population making

sure that the constraint imposed on successors is satisfied. Output values of395

the mutated node and all nodes higher up in the population affected by the

mutation operation are recalculated. Also the predecessor lists of all affected

nodes are updated accordingly.

Finally, the population is evolved using a local search-like procedure. In

each iteration, a new population is produced by the smut operator which is then400

accepted for the next iteration if it is no worse than the original population.

The SNGP implementation used in this work to solve the symbolic regression

problem differs from the one described in [28, 29] in the following aspects

• Organization of nodes in the population. We use a population that divides

the function nodes into head and tail partitions as introduced in [8]. Any405

node in the head partition can use other head function nodes and constant

terminal nodes as its input. Tail nodes can use all preceding head and tail

nodes and both constants and variables as their input. The head nodes

therefore represent only constant output expressions, while the tail nodes

can represent functions with complex coefficients produced by the head410

nodes.

• Form of the final model. A hybrid SNGP proposed in [30] and denoted

there as the Single-Run SNGP with LASSO (s-SNGPL) is used in this

work. It produces a generalized linear regression model composed of pos-

sibly nonlinear features, represented by expressions rooted in the tail par-415

tition nodes. The generalized linear regression models are built using

the Least Absolute Shrinkage and Selection (LASSO) regression technique

[31]. In this way, a precise, linear-in-parameters nonlinear regression mod-

els can be produced. The complexity of the LASSO model is controlled

by (i) the maximal depth of features evolved in the population and (ii)420

the maximum number of features the LASSO model can be composed of.

25

• Fitness function. The generalized regression models are optimized with

respect to the mean squared error calculated over the set of training sam-

ples.

• Selection strategy used to choose the nodes to be mutated. The original425

SNGP selects the nodes to be mutated purely at random. Here we use the

so-called depth-wise selection introduced in [30]. This selection method

is biased toward deeper nodes of well-performing expressions. The idea

behind such a strategy is that changes made to the nodes at deeper levels

are more likely to bring an improvement than changes applied to the nodes430

close to the root of the expression. The quality of the individual nodes is

assessed as the mean squared error produced by the expression rooted in

the node.

• Processing mode to evolve the population. The process of evolving the

population is carried out in epochs. In each epoch, multiple independent435

parallel threads are run for a predefined number of generations, all of them

starting from the same population – the best final population out of the

previous epoch threads. This reduces the chance of getting stuck in a local

optimum.

References440

[1] R. Sutton, A. Barto, Reinforcement learning: An introduction, Vol. 116,

Cambridge Univ Press, 1998.

[2] A. S. Polydoros, L. Nalpantidis, Survey of model-based reinforcement learn-

ing: Applications on robotics., Journal of Intelligent and Robotic Systems

86 (2) (2017) 153–173.445

[3] L. Kuvayev, R. S. Sutton, Model-based reinforcement learning with an

approximate, learned model, in: Proc. Yale Workshop Adapt. Learn. Syst,

1996, pp. 101–105.

26

[4] V. Konda, J. Tsitsiklis, Actor-critic algorithms, in: SIAM Journal on Con-

trol and Optimization, MIT Press, 2000, pp. 1008–1014.450

[5] F. Lewis, D. Vrabie, K. Vamvoudakis, Reinforcement Learning and Feed-

back Control, IEEE Control Systems Magazine 32 (6) (2012) 76–105.

[6] J. A. Primbs, V. Nevistić, J. C. Doyle, Nonlinear optimal control: A con-

trol lyapunov function and receding horizon perspective, Asian Journal of

Control 1 (1) (1999) 14–24.455

[7] D. P. Bertsekas, Dynamic programming and optimal control 3rd edition,

volume ii, Belmont, MA: Athena Scientific.

[8] E. Alibekov, J. Kubaĺık, R. Babuška, Symbolic method for deriving policy

in reinforcement learning, in: Decision and Control (CDC), 2016 IEEE

55th Conference on, IEEE, 2016, pp. 2789–2795.460

[9] E. Alibekov, J. Kubaĺık, R. Babuška, Policy derivation methods for

critic-only reinforcement learning in continuous action spaces, IFAC-

PapersOnLine 49 (5) (2016) 285–290.

[10] J. C. Santamaria, R. S. Sutton, A. Ram, Experiments with reinforcement

learning in problems with continuous state and action spaces (1996).465

[11] B. Sallans, G. E. Hinton, Reinforcement learning with factored states and

actions, J. Mach. Learn. Res. 5 (2004) 1063–1088.

[12] H. Kimura, Reinforcement learning in multi-dimensional state-action space

using random rectangular coarse coding and gibbs sampling, in: Intelligent

Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Confer-470

ence on, 2007, pp. 88–95.

[13] L. Busoniu, R. Babuska, B. D. Schutter, D. Ernst, Reinforcement Learning

and Dynamic Programming Using Function Approximators, 1st Edition,

CRC Press, Inc., Boca Raton, FL, USA, 2010.

27

[14] J. Pazis, M. G. Lagoudakis, Binary action search for learning continuous-475

action control policies, in: Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, ACM, New York, NY, USA,

2009, pp. 793–800.

[15] J. Pazis, M. Lagoudakis, Reinforcement learning in multidimensional con-

tinuous action spaces, in: Adaptive Dynamic Programming And Reinforce-480

ment Learning (ADPRL), 2011 IEEE Symposium on, 2011, pp. 97–104.

[16] J. Yang, S. Huang, K. Lin, J. Czernin, P. Wolfenden, M. Dahlbom, C. Hoh,

M. Phelps, A new axial smoothing method based on elastic mapping, IEEE

Transactions on Nuclear Science 43 (6) (1996) 3355–3360.

[17] N. Graham, Smoothing with periodic cubic splines, Bell System Technical485

Journal 62 (1) (1983) 101–110.

[18] S. Ferrari, R. F. Stengel, Smooth function approximation using neural net-

works, IEEE Transactions on Neural Networks 16 (1) (2005) 24–38.

[19] J. Kubalik, E. Alibekov, J. Zegklitz, R. Babuska, Hybrid single node genetic

programming for symbolic regressionAccepted as a regular paper in LNCS490

Transactions on Computational Collective Intelligence.

[20] D. P. Bertsekas, J. N. Tsitsiklis, Neuro-Dynamic Programming, 1st Edition,

Athena Scientific, 1996.

[21] R. O. Hays, Multi-dimensional extension of the Chebyshev polynomials,

Mathematics of computation 27 (123) (1973) 621–624.495

[22] L. N. Townsend, Alex; Trefethen, An extension of Chebfun to two dimen-

sions, SIAM Journal on Scientific Computing 35.

[23] B. Hashemi, L. N. Trefethen, Chebfun in three dimensions, Under review

by the SIAM Journal on Scientific Computing.

[24] T. A. Driscoll, N. Hale, L. N. Trefethen, Chebfun Guide, Pafnuty Publica-500

tions, 2014.

28

[25] J. P. Boyd, Computing zeros on a real interval through Chebyshev ex-

pansion and polynomial rootfinding, SIAM Journal on Numerical Analysis

40 (5) (2002) 1666–1682.

[26] M. A. Branch, T. F. Coleman, Y. Li, A subspace, interior, and conjugate505

gradient method for large-scale bound-constrained minimization problems,

SIAM Journal on Scientific Computing 21 (1) (1999) 1–23.

[27] D. Ernst, P. Geurts, L. Wehenkel, Tree-based batch mode reinforcement

learning, Journal of Machine Learning Research 6 (2005) 503–556.

[28] D. Jackson, A New, Node-Focused Model for Genetic Programming,510

Springer, Berlin, Heidelberg, 2012, pp. 49–60.

[29] D. Jackson, Single Node Genetic Programming on Problems with Side Ef-

fects, Springer, Berlin, Heidelberg, 2012, pp. 327–336.

[30] J. Kubaĺık, E. Alibekov, J. Žegklitz, R. Babuška, Hybrid Single Node Ge-

netic Programming for Symbolic Regression, Springer, Berlin, Heidelberg,515

2016, pp. 61–82.

[31] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of

the Royal Statistical Society, Series B 58 (1994) 267–288.

29

	Introduction
	Related work
	Preliminaries
	Reinforcement learning
	Symbolic regression

	Policy derivation methods
	Baseline solution
	Evaluation over a fine grid of actions
	Chebyshev polynomial approximation
	Symbolic regression smoothing
	Quasi-symbolic policy derivation

	Simulation experiments
	1-DOF swing-up
	2-DOF swing-up
	Magnetic manipulation

	Discussion
	Conclusion
	Acknowledgements
	Fuzzy value iteration
	Single node genetic programming

