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SUMMARY 
 
Ships must perform their missions with a high degree of reliability to maximize availability 
through their service life.  The ultimate safety of the hull structure is time-dependent with 
degradation caused by the operational environment.  Achieving the fore mentioned 
reliability and mission availability requirements are complicated because ships operate in 
random seaways producing random loading on the hull structure.  The subsequent strength 
degradation also involves random processes including the material properties themselves.  
Furthermore, the models used to estimate the loading and responses are not perfect and 
result in additional randomness and related uncertainty.  The potential Risks involved are 
very high, given the combination of uncertainties and high value of the assets, crews, and 
related resources.  The primary research questions posed by this dissertation include; 1) 
what approaches are needed to make Risk informed decisions in Ship Structure Life Cycle 
Management (SSLCM) and, 2) how can Hull Structural Monitoring (HSM) be used 
effectively to support these decisions?  This dissertation addresses these research questions 
by building on the fundamentals of hull structural loading and failure mechanisms on both 
component and systems-levels that are unique to ship structure.  This fundamental 
research includes a correlation analysis of the system loading to support new definitions of 
ship structural system response.  This new definition of structural system response 
provides insights into definitions of serviceability failure, reserve strength, and 
redundancy.  Following the structural systems definition development, this dissertation 
proposes a Risk and Total Ownership Cost (TOC) trade-space perspective for making 
informed decisions and managing both Risk and costs associated with SSLCM and 
fundamental characterization of Risk and uncertainty.  The development of Risk-TOC 
approach provides tangible and relatable benefits for understanding uncertainty in Risk 
terms required to make informed decisions.  The Risk-TOC approach provides a more 
informed perspective than prior proposals for Decision Theory-based Optimal Inspection 
approaches with assumptions and parameters that do not fully quantify the uncertainties 
involved in the SSLCM processes.  The Risk-TOC approach also provides a quantitative 
means for assessing the consequences of different failure modes (i.e., fatigue cracking and 
corrosion).  The Risk-TOC approach provides a quantified basis for comparing Risk and 
costs given the magnitude of resources at Risk by monetizing uncertainty.  In this manner, 
the Risk - TOC approach provides a framework for fundamental definitions, including 
monetized uncertainty, analysis of alternatives (AoAs), Return on Investment (RoI), and 
Value of Information (VoI).  The benefits of prognostic HSM are presented in the context of 
reduction of uncertainty in the SSLCM processes; thereby, reducing Risk and TOC with 
favorable RoI and VoI.  The Risk-TOC approach is verified as demonstrated in example 
applications involving a US Coast Guard Cutter.  A discussion is provided on the 
implications of the Risk-TOC approach on SSLCM and sustainability.  Conclusions and 
recommendations are presented for further development of the Risk-TOC approach for 
SSLCM. 
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SAMENVATTING 

Schepen moeten hun missies uitvoeren met een hoge mate van betrouwbaarheid om de 
beschikbaarheid gedurende hun levensduur te maximaliseren. De ultieme veiligheid van de 
rompstructuur is tijdsafhankelijk met degradatie veroorzaakt door de operationele 
omgeving. Het bereiken van de bovengenoemde betrouwbaarheid en 
missiebeschikbaarheidseisen is gecompliceerd omdat schepen in willekeurige zeewegen 
opereren en willekeurige lading op de rompstructuur produceren. De daaropvolgende 
sterktedegradatie omvat ook willekeurige processen met inbegrip van de 
materiaaleigenschappen zelf. Bovendien zijn de modellen die worden gebruikt om de 
belasting en reacties te schatten niet perfect en resulteren ze in extra willekeurigheid en 
gerelateerde onzekerheid. De potentiële risico's zijn zeer hoog, gezien de combinatie van 
onzekerheid, hoge waarde van de activa, bemanningen en gerelateerde middelen. De 
primaire onderzoeksvragen van dit proefschrift zijn; 1) welke benaderingen zijn nodig om 
risico-geïnformeerde beslissingen te nemen in Ship Structure Life Cycle Management 
(SSLCM) en, 2) hoe kan Hull Structural Monitoring (HSM) effectief worden gebruikt om de 
geïnformeerde beslissingen te ondersteunen?  

Dit proefschrift behandelt deze onderzoeksvragen door voort te bouwen op de basisprincipes 
van structurele laad- en faalmechanismen van de romp op zowel component- als 
systeemniveau's die uniek zijn voor de scheepsstructuur. Dit fundamentele onderzoek 
omvat een correlatieanalyse van de systeembelasting ter ondersteuning van nieuwe 
definities van structurele systeemreacties van schepen. Deze nieuwe definitie van 
structurele systeemrespons biedt inzicht in definities van falen van bruikbaarheid, 
reservesterkte en redundantie. In navolging van de ontwikkeling van de structurele 
systeemdefinitie, stelt dit proefschrift een perspectief voor de risico- en totale 
eigendomskosten (TOC) voor het nemen van geïnformeerde beslissingen en het beheren van 
zowel risico als kosten in verband met SSLCM en fundamentele karakterisering van risico 
en onzekerheid. De ontwikkeling van de Risk-TOC-aanpak biedt tastbare en herkenbare 
voordelen voor het begrijpen van onzekerheid in risicotermen die nodig zijn om een 
weloverwogen beslissing te nemen. De Risk-TOC-benadering biedt een beter geïnformeerd 
perspectief dan eerdere voorstellen voor op besluittheorie gebaseerde Optimal Inspection-
benaderingen met aannames en parameters die de onzekerheden bij de SSLCM-processen 
niet volledig kwantificeren. De Risk-TOC-benadering biedt ook een kwantitatief middel 
voor het beoordelen van de gevolgen van verschillende faalwijzen (d.w.z. 
vermoeidheidsscheuren en corrosie). De Risk-TOC-benadering biedt een gekwantificeerde 
vergelijkingsbasis gezien de omvang van de risicomiddelen door onzekerheid te gelde te 
maken. Op deze manier biedt de Risk - TOC-benadering een kader voor fundamentele 
definities, waaronder monetaire onzekerheid, analyse van alternatieven (AoA's), Return on 
Investment (RoI) en Value of Information (VoI). De voordelen van prognostische HSM 
worden gepresenteerd in de context van vermindering van onzekerheid in de SSLCM-
processen; waardoor het risico en de TOC worden verlaagd met gunstige RoI en VoI. De 
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Risk-TOC-aanpak wordt geverifieerd zoals aangetoond in voorbeeldtoepassingen met een 
US Coast Guard-cutter. Er wordt een discussie gegeven over de implicaties van de Risk- 
TOC-benadering voor SSLCM en duurzaamheid. Conclusies en aanbevelingen worden 
gepresenteerd voor de verdere ontwikkeling van de Risk-TOC-aanpak voor SSLCM.  
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PROLOG 

I began working for the US Coast Guard when they were starting a major surface fleet recapitalization.  
This ambitious undertaking produced many challenges in acquiring new cutters and extending the service 
life of the legacy fleet.  The challenges in structural design and service life evaluations involved decisions 
relating to hull structural degradation from both fatigue and corrosion.  The analysis tools used in the 
early design and analysis processes were assumed to be conservative but were limited in their ability to 
fully quantify the uncertainties and related Risks associated with the decisions being made.  I was familiar 
with the significant amount of work conducted on structural reliability by the US Navy in the area of 
structural response, including the works by Hess, Ayyub, and many more referenced in the Bibliography.  
The Hull Structural Monitoring (HSM) work by Principal Advisor Professor Kaminski and I provided 
insights into the uncertainties on the load side of the reliability analysis.  I found the structural reliability 
provided a valuable approach to address the totality of combined uncertainties in the structural analysis 
processes.  In the course of this work, it became clear that the systems analysis definitions required 
further consideration along with the approaches for evaluating the decisions to be made affecting the 
safety, availability, and cost that are of significant impact to the US Coast Guard.  As part of the decision 
processes, HSM was (and still is) used to collect hull structural response data to verify the analysis 
approaches and provide invaluable information on the operational environment.  The HSM efforts 
provided valuable insights into reducing the uncertainties in the analysis processes and provide 
information for updating the structural reliability based forecasts.  However, there appeared to be a need 
for a quantitative framework for making decisions on uncertainties, substantial expenditures, and Risks 
involved. 

The research for this investigation began with ideas and intentions to investigate Risk-Based Inspection 
(RBI) guided by prognostic HSM and reliability-based maintenance.  However, in reviewing prior 
research in the context of Ship Structure Life Cycle Maintenance (SSLCM), it became clear the 
fundamentals definitions of ship structural systems and the uncertainty components of Risk required 
further quantification.  This fundamental work was also needed in order to clarify the differences between 
the concepts and prior approaches being proposed for ship structure life cycle management.  The results 
of the investigative research conducted on Risk Analysis and Management in many industries provided 
insights that were useful in developing a new fundamental approach for SSLCM.   During this review, it 
also became clear that the decision processes in ship structure lifecycle management involves trade-offs 
between Risk and Total Ownership Cost (TOC).  This understanding became the underlying foundation 
for the development and verification of the Risk-TOC approach.  Risk and TOC analysis involves 
considerable effort to quantify related uncertainties required for decision-making; however, the Risk-TOC 
provides a framework for adding additional complexity where it is useful and data available to support 
further development.  The results of the investigation into the intricacies of the Risk-TOC as a decisional 
approach are presented in this dissertation. 

The further motivations for the development of the Risk-TOC process include the initiation of further 
discussions, development of the related processes, and the eventual implementation of the approach for 
continued SSLCM decisions faced in the US Coast Guard (in general and my coworkers in specific), US 
Navy, Valid JIP members, and beyond to commercial applications. 

Karl Stambaugh Naval Architect, May 2020 
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1.0 INTRODUCTION 
 
Ships must perform their missions with a high degree of reliability to maximize availability 
and safety through their service life.  The long-term hull structure reliability and ultimate 
safety is time-dependent with degradation caused by the operational environment.  Current 
practices by ship structural designers, maintenance planners, and operators are based on 
fixed design parameters that are prescriptive and more reactive than proactive in providing 
the required system availability and safety.  However, the prescriptive and deterministic 
answers do not convey the true nature of the quantified uncertainties associated with Risk 
or provide a basis for formulating Risk avoidance or mitigation strategies.  To this end, 
uncertainty matters in decisions involving large complex structural systems and major 
financial expenditures associated with ships.  Uncertainty quantification is essential in 
understanding and managing Risk in ship structure. 
 
Achieving the system safety requirements and availability are complicated because ships 
operate in stochastically, non-stationary random seaways resulting in long-term processes 
producing highly random loading on the hull structure.  The subsequent strength 
degradation and material properties are both stochastically random.  Furthermore, the 
models used to simulate and estimate the loading and responses are not perfect and subject 
to a type of randomness associated with their accuracy.  Given the random processes and 
related uncertainties associated with the Ship Structure Lifecycle Management (SSLCM), 
the related Risks; and therefore, costs involved are significant.  However, ship structural 
design has evolved to be prescriptive rule-based on structural engineering principles, for 
the most part, derived from empirical factors based on experience.  This approach has 
produced a damage tolerant structure with empirical safety factors that are not fully 
characterized in quantified Risk terms.  More recently, analytical approaches have been 
developed and applied based on physics-based hydrodynamic predictions of the hull loads, 
and high-fidelity Finite Element Analysis; however, failures have resulted because of 
unquantified uncertainties in the processes.  There is a significant need to correlate the 
new analytically based approaches with the uncertainties and Risks that have been 
included empirically in the prescriptive rules.   
 
Although structural reliability approaches have been developed to characterize the 
uncertainty in structural systems and applied in other industries, the technology transfer 
has not been fully realized for ship structures or framed in an applicable decision-making 
process.  Research on ship maintenance management includes Optimal Inspection 
strategies to detect fatigue cracks and update the structural reliability when the cracks are 
found and repaired.  This approach relies on finding fatigue cracks and determining an 
updated level of reliability after the repairs are made.  This approach also includes the 
effects of the repair quality on reliability updating.  However, Optimal Inspection 
approaches based on finding fatigue cracks in the structure are not cost-effective for 
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complex ship structures in the context of Total Ownership Costs and quantified Risk as 
described in more detail herein.  Furthermore, Optimal Inspection approaches are based on 
many assumptions that are not applicable to SSLCM as will be explained in later Chapters 
of this dissertation.  
 
The SSLCM involves significant resources due to the enormity and complexity of the 
structure.  Decisions made regarding SSLCM have a high impact value on these financial 
numbers and system performance in terms of availability.  It follows that a more systematic 
approach to decision making will provide valuable insights into SSLCM with a high return 
on investment and reduced Risk exposure.  The approach for Risk and Total Ownership 
Costs (TOC) presented in this dissertation applies to most any quantifiable mitigation 
scenario because it is a fundamental framework for making high impact decisions with 
significant economic implications. 
 
1.1 Problem Statement and Proposed Solution 
   
In this dissertation, the Risk-TOC approach was developed by examining the decision 
process and data required to make informed decisions.  A new approach is proposed that 
applies specifically to SSLCM decisions evaluated in a Risk-TOC trade-off space.  The 
underlying data and decision experience provided a unique opportunity to investigate the 
Risk-TOC trade-space decisional approach.  In particular, the proposed Risk-TOC approach 
is verified using real data from full scale measurements (Stambaugh et. al., 2014b and 
2019) and related decisions as evidence in verification.   

Example decisions influencing safety and major expenditures in SSLCM include: 
 
1) Designing ship structure to prescriptive rules based on experience and empirically 

derived algorithms without explicitly considering the biases and uncertainties involved,  
2) Appling Spectral Fatigue Analysis (SFA) in the design stage or not, 
3) Increasing strength by making modifications as a result of observed progressive failures 

(generally buckling, corrosion and fatigue cracking), 
4) Remaining Useful Life (RUL), End of Service Life (EOSL), and Service Life Extension 

Program (SLEP), and,  
5) Prognostic Hull Structure Monitoring (HSM) to provide design process feedback and 

reduce uncertainty and risk exposure in SSLCM decisions. 
 
These influential decisions involve the management of uncertainties, as an integral 
component of Risk, in the life cycle of the structural system with significant costs involved. 
For example, to repair fatigue cracks, the costs of Emergency Drydocking (EDD) and 
associated loss of availability of the asset-related costs can easily be in millions of dollars. 
The high cost of repair in EDD may result in early EOSL without adequate time to plan for 
replacement leading to higher long-term maintenance costs.  EOSL (typically an economic 
decision) with adequate plans in place for timely asset replacement.  The concepts of 
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structural degradation and degrading structural reliability seem intuitively similar, and 
they are; however, dealing with the results is less intuitively obvious to a Decision Maker 
without a quantified frame of reference.   
 
Because the SSLCM decision processes are not fully quantified in deterministic terms, the 
research question addressed in this dissertation is, given uncertainties in process and 
modeling of current state and future outcomes:  
 

How should ship structural designers and maintainers make objective decisions 
affecting SSLCM on system and subsystems levels required to achieve positive 
outcomes in safety at an affordable cost? 

 
This question and related decisions have implications influencing TOC and Risk in SSLCM.  
Therefore, the proposed fundamental assumption of this dissertation is that SSLCM 
decisions are made in quantifiable terms in the Risk-TOC trade-off space.   

The proposed solution is to:  

Develop a systems reliability approach and a Risk-TOC trade-space, with supporting 
technologies identified that will inform Decision Makers on positive outcomes in 
terms of economics and safety of ship structures. 

The Risk-TOC approach provides a framework to evaluate and manage the trade-offs 
required to meet short term and long-term cost and safety objectives of the Decision 
Makers. This proposed solution begins by revisiting the systems level failure definitions 
and related structural system reliability, defining fundamentals of uncertainty contributing 
to Risk, further definition of the Risk-TOC trade-space, and supporting options the Decision 
Makers might consider in effecting SSLCM to achieve positive outcomes. 
 
This dissertation combines theory, literature review, analysis of test data, and applications 
to clarify the subtleties, implications, and distinctions between uncertainty, Risk, and 
related ambiguities.  New approaches are proposed to test the predictions of theory in the 
context of real applications.  A literature review is included throughout the dissertation to 
support the development of the Risk-TOC approach and its verification.  This dissertation 
includes both statistically-based Risk estimates and economics applied to SSLCM. 
 
Supporting research includes an investigation into component level correlations of ship 
structural loading and the response and how that influences the system reliability 
estimate.  This correlation has significant implications on the system's reliability analysis 
and failure predictions.  Additionally, Bayesian Hyper Parameters (BHPs) are proposed for 
structural reliability and uncertainty propagation in a Bayesian Model Averaging (BMA) 
setting and demonstration of the benefits of prognostic HSM in uncertainty reduction. 
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This dissertation provides fundamental discussions on uncertainty, Risk, and Risk Analysis 
as a background and to contrast with the basics of prior proposed approaches.  The 
inclusion of the fundamentals of quantifying uncertainty as it relates to Risk is intended to 
be useful to ship structural designers in general and the Naval Architects of the US Coast 
Guard in specific who may wish to understand, consider, and apply the approach.  The 
fundamental approach descriptions are also intended to be useful in any further 
development of the approach by others who wish to build on this research. 
 
1.2 Research Contributions 
 
In the process of investigating the overall problems and critical decisions associated with 
SSLCM, it became clear that there are numerous fundamentally different definitions and 
approaches being proposed by others to solve this challenging problem.  The concepts of 
structural reliability and Risk are not new in general as applied in other industries; 
however, their basic assumptions and fundamentals do not align with the realities of 
SSLCM.  These prior approaches have been developed and proposed for many industries 
and applied in others.  For example, Optimal Inspection approaches have been proposed for 
transfer to ship structures.  However, these proposals have not considered the fundamental 
differences between fixed structures and ships.  Many of the underlying assumptions are 
not applicable to ship structure from a philosophical and fundamental viewpoint, as will be 
discussed in greater detail in this dissertation.   
 
Most (arguably all) of the prior approaches based on Decision Theory and Optimal 
Inspection were developed by researches working in the civil and offshore structures and 
then proposed similar approaches for ship structures.  Of these approaches, basic 
definitions and assumptions related to the number of welded structural details, amount of 
structural redundancy, definition of failure, and related consequences do not apply to the 
ship structure.  In the initial stage of this investigation, it became clear there was a need to 
review the fundamental definitions, assumptions, and details of the approaches associated 
with Risk assessments, including the definition of Risk to establish a sound foundation for a 
new approach for SSLCM.  
 
This dissertation began with an investigation into the basic structural principles that 
define the fundamentals of the development of a new set of approaches for ship structural 
Risk management and sustainable lifecycle.  The systems reliability and Risk-TOC 
framework proposed herein provides a basis for evaluating the assumptions required for 
application to ship structure Risk Analysis and decisions.  The verification by examples 
demonstrates the efficacy of the Risk-TOC approach. 
 
The resulting research and original work, which makes significant contributions to the field 
of knowledge presented in this dissertation include: 
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 Fundamental understanding is proposed and demonstrated that there is strong 
evidence the hull loading is highly correlated, and the ship's structural system 
response is statistically independent initially.  The definition of the ship's structural 
system is examined, a new system’s reliability perspective is proposed, and 
demonstrated.  This new understanding includes: 

 
o Ship structure forms an integral network of load-carrying members and is a 

structural system with thousands of welded structural details, panels, 
grillages, where failures progress with increasing time dependent 
correlations.  The implications of the structural configuration and failure 
processes are more involved than simple series or parallel system failure 
definitions. 
 

o Ship structural loading is highly correlated in primary structure, providing a 
basis for the estimation of the structural system behavior.  The 
characteristics of the welded structural geometry and material response 
produce independence of welded structural details as demonstrated by the 
random characteristics of material properties, buckling, yielding, and fatigue 
life test data.  This combination of correlated loading and time dependent 
response has a significant influence on system characterization. 

 
o The system-level structural fatigue and buckling failures are both cumulative 

and progressive events with potentially catastrophic results.  The cumulative 
probabilities of the complex ship structural system are unique compared to 
other types of structures and have a fundamental influence on the 
management of failure probability and consequences. 

 
o Analysis of component load and failure correlation hypothesis and 

experimental verification is a foundation for an in-depth understanding of the 
systems failure process.  This first phase of the research formed a basis for 
the development of the systems reliability definitions, implications of system 
failures, and formulation of the new Risk-TOC decision model proposed. 

 
 Identification of fundamental differences between prior proposed Decision Theory-

based approaches and the Risk-TOC are relevant to Risk Management of a large 
number of probabilistic based uncertainties.  The prior definitions and details of 
implementation do not apply to ship structures; therefore, new definitions are 
presented herein along with their verification using a realistic case-studies. 

 
 New definitions are proposed for ship structure systems failure, serviceability 

failure, and redundancy based on the time dependent failure processes and 
correlations that are modeled as a Markov process, all applicable to ship structures.  
 

 A new approach is proposed for systems reliability based on system failure, and 
related correlations proposed and demonstrated.  The new reliability updating 
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approach is applicable to the systems level with a large number of structural 
components.  

 
 New fundamental definitions are proposed for the Risk-TOC trade-space, and 

demonstrated, including expected TOC required to mitigate expected loss, Value at 
Risk measures, information entropy-based Risk measures, Value of Information 
(VoI), and Return on Investment (RoI) for evaluating investment alternatives in 
SSLCM.   

 
 A new application of Bayesian Hyper Parameters (BHP) in a Bayesian Model 

Averaging (BMA) setting is proposed and demonstrated in uncertainty propagation 
associated with prognostic HSM in Risk Management approaches for ship 
structures.  The approach verification is shown by using case study data. 

 
 A new approach is proposed for inspection scheduling related to encountered wave 

heights and measured responses using Risk informed prognostic HSM.  
 

 A new approach is proposed and demonstrated for estimating the fatigue crack 
growth from initiation through life to fracture failure given uncertainties associated 
with the application of both S-N and F-M based approaches, especially related to 
initial flaw size, weld geometries, and residual stresses in ship structural details 
included in S-N and F-M fatigue test data.  The SN+FM Total Life approach is the 
combination of two ideas resulting in something new and useful in Risk Analysis 
and similar applications 
 

 A discussion Chapter is provided to introduce new insights gained from the 
application of the Risk-TOC approach. 

 
Risk concepts have been developed for many types of structures; however, they are based on 
assumptions applicable specifically to the type of structure and often differ significantly 
from ship structure.  These prior approaches and related assumptions (proposed for bridges, 
offshore structures, pressure vessels, and aircraft) are examined for how they do and don’t 
apply to ship structures, including SSLCM decisions and associated Risk.   
 
The Sections of this dissertation on structural reliability provided background references to 
prior work used as a foundation to build the Risk-TOC approach.  The prior work on 
structural reliability is presented for completeness rather than a specific recommendation 
of an approach.  It is entirely possible to use other structural reliability approaches 
(preferably with appropriate verification) in the Risk-TOC assessments.   
 
The Risk and TOC trade-space presented in this dissertation is a paradigm shift in SSLCM 
approach evaluations.  The new perspectives presented relate to Risk Analysis, and Risk 
Management approaches and represents a fundamental shift in approach as compared to 
previous research on the topic of SSLCM, including RUL and EOSL decisions.  The Risk-
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TOC approach forms a framework for assessing new Risk Mitigation approaches in SSLCM, 
including the efficacy of prior proposed approaches.   

 
1.3 Dissertation Overview 
 
The overview of this dissertation begins with this Introduction, followed by Chapter 2.0, 
providing a background on the definition problem, systems-level failure definitions, and 
structural reliability updating.  Chapter 3.0 provides a review of prior proposed approaches 
for SSLCM.  Chapter 4.0 provides fundamental definitions needed to understand the Risk-
TOC approach.  Chapter 5.0 presents the definitions and development of the Risk-TOC 
approach.  Chapter 6.0 provides example applications of the Risk-TOC approach for 
verification.  Chapter 7.0 presents a discussion on results and implications for future 
applications and development.  Chapters 8.0 and 9.0 are Conclusions and 
Recommendations, respectively.  Appendices are included with more in-depth discussions 
on A) the fundamental work on loading correlation, B) the origins of Bayesian perspective 
and implications in Risk Management approaches, and C) a new SN+FM Total Life 
approach is proposed for total life fatigue crack growth prediction.  
 
Figure 1.1 shows the overview and organization diagram of this dissertation. 
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2.0 SHIP STRUCTURE FAILURE  
 

Problem Formulation 
 
A Risk-based approach is proposed for Ship Structure Life Cycle Management (SSLCM) 
reflecting the significant costs and Risks associated with ship hull structure degradation, 
primarily from cyclic fatigue loading and structural wastage in a corrosive environment.  
The background research and problem formulation are presented in this Section of the 
dissertation.  A summary of ship structure failure modes is presented in Sections 2.1.  The 
foundational work on ship structural systems used to estimate probabilities of failure as the 
approach for aggregating probabilities associated with uncertainties in ship structure 
degradation are presented in Section 2.2.  Section 2.3 presents prior approaches for 
estimating component-level structural reliability and a new approach for estimating 
system-level structural reliability, and Section 2.4 presents a discussion on the implications 
of system-level failure management. 
           
2.1 Ship Structure Failure Modes  
 
In order to define Risk in ship structure, it is necessary to consider the structural failure 
modes.  There are several possible failure modes in ship structures, including yielding, 
buckling, fatigue, fracture, and corrosion.  Both fatigue and corrosion degrade structural 
strength over time and pose a significant threat and cost to mitigate their destructive 
effects.   

2.1.1 Fatigue and Fracture 
 
Fatigue is the progressive and permanent structural change that occurs in a material 
subjected to repeated or fluctuating strains at nominal stresses that have maximum values 
less than the static yield strength of the global material.  Fatigue may lead to the 
emergence of cracks and cause fracture after a sufficient number of fluctuations. In the 
process of fatigue failure in an originally intact metal, microcracks arise, coalesce or grow to 
macro-cracks that propagate until the fracture toughness of the material is exceeded and 
final fracture will occur.   

Ship structural fatigue occurs as a result of cyclic loading, primarily in welded structural 
details.  The fatigue damage progresses from an initial flaw in the structure and continues 
to grow as it experiences various levels of cyclic loading.  Fatigue cracking initiation, 
through-thickness cracking, and crack growth all characterize the progression.  However, if 
not considered in the design or adequately detected and repaired, fatigue cracking can lead 
to significant economic failure if fatigue cracking is widespread, and repair efforts are 
needed to prevent it from reaching the ultimate limit state with its associated high Risk 
and consequences.  
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Given a ship hull form and structural design, the following are the major elements of a 
fatigue life assessment of that design and the concerns associated with each element. They 
include: 
 
1. Environment and operational profile – is highly dependent upon the relevance of the operational 

profile and associated environmental data used to develop the environmental loads. 
 
2. Ship data and hydrostatic loading – requires careful attention as proper modeling and scaling of 

mass, buoyancy, and stiffness distributions are needed to draw proper conclusions from 
comparing results of numerical calculations, model testing, and full-scale measurements. 

  
3. Hull Girder Hydrodynamic Loading – is the area of uncertainty due to complex physics, 

dynamics and random nature of wave action, and linear relations used in modeling.   
 
4. Structural Response– FEA modeling assumes an ideal structure without geometric and 

fabrication imperfections.  The focus of the approach is on the nominal stresses where specific 
types of geometric stress concentrations are included in the S-N data.   
 

5. Fatigue Life Calculation - The application of S-N data and the cumulative damage approach 
process is relatively well established for bridges and other large civil structures; however, there 
are uncertainties associated with the process and systems approach discussed later in this 
dissertation. Also, the use of design or characteristic curves, as illustrated in Figure 2.2, are used 
with fatigue response presented on a logarithmic scale obscures the magnitude of this 
uncertainty.  

 
The construction quality, tolerances, and imperfections, such as misalignments are very 
important aspects of structural fatigue life but not included as part of this validation study. 
Their uncertainties in the context of structural reliability analysis are documented by Hess 
et. al., (2002a, 2002b, 2003, and 2015), Collette (2018), and Ayyub et. al., (2014).  
 
In current practice, fatigue failure in component testing is defined as a through-thickness 
crack, as observed in the welded structural details.  A fatigue crack can spend years 
growing prior to becoming a visible or through-thickness crack.  As a practical matter, 
fatigue cracks located in the shell structure often leak as they extend beyond this through-
thickness definition and are detected.  In general, the initial through-thickness cracks are 
not a cause for concern in ultimate strength (see Dexter et. al., 2000); however, at this 
stage, they can begin to grow very quickly and then become a greater Risk of more 
significant failure.  Stable fatigue crack growth progresses relatively quickly if not found 
and repaired.  The probability of more severe failure by fast fracture increases rapidly as 
the crack length increases.  The critical nature associated with large cracks should never be 
underestimated because of the potential consequences of rapidly growing fractures. 
 
There are several computational approaches for estimating the cumulative fatigue damage 
analysis, including cumulative damage summation and fracture mechanics-based, crack 
propagation approaches. 
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In a Spectral Fatigue Analysis (SFA), fatigue damage is calculated by comparing the 
predicted cyclic stress loading history to the experimentally based cyclic loading history, 
known as Stress-Number of Cycles (S-N), required to produce fatigue cracking in welded 
details.  This approach is known as the Palmgren-Miner (Miner 1945) cumulative damage 
summation approach.  In the Palmgren-Miner approach, the ratio of stress load cycles used 
to calculate the total number for the service life of the structure to stress to failure (defined 
as a through-thickness fatigue crack) is summed over the range of cycles and fatigue life is 
consumed when this ratio equals one.  Damage ratio values greater than one indicate a 
shorter fatigue life as represented by the number of cycles calculated for the service life of 
the structural detail in question.   
 
The SFA and S-N approaches are based on the fundamental definitions that the 
encountered wave loading is statistically stationary and independent for periods on the 
order of one-half hour for unique combinations of wave environment, ship speed, and 
heading.  The results of the independent definition provide a basis for estimating the 
structural response to the loading for the specified conditions, then summing the 
probabilities over a convolution integral over the probabilities of the wave, speed, and 
heading occurrences.  
 
Sikora et al. (1983) and Sieve et al. (2000) provide examples of fatigue loading estimates 
and data sets used by naval ship designers.  These fatigue design approaches and data sets 
have been used in the fatigue evaluations of numerous design and sustainment decisions 
for US Coast Guard surface assets. 
 
The SFA and S-N curve approaches (Sieve et. al., 2000) are useful in design applications 
where the Miner’s cumulative damage summation equals one, and the probability of failure 
is 2.3% of a through-thickness fatigue crack as the characteristic design curve.  While 
appropriate for design as the current state of practice, the time-varying probability of 
failure is of interest to calculate the time-varying Risk.   
 
Fatigue in ship structures is the result of cyclic loading on a structure resulting in cracking 
on a micro-scale progressing to large cracks.  Modern materials are generally selected, so 
cracks grow in a stable manner; however, it is the responsibility of the ship structural 
designer and maintainer to make decisions that minimize the possibility that fatigue cracks 
will grow to a size where they result in a fast-growing fracture.   
 
Fracture in ships has been documented by Stambaugh et. al., (1987) and, more recently, by 
the Ship Structures Committee (www.shipstructurecomittee.org).  A significant amount of 
research has been conducted on fracture toughness of ship steels by the Ship Structures 
Committee and other research institutions.  However, the majority of this work has been to 
determine a lower bound on material properties, and little is provided on the statistical 
quantification of the material properties for use in reliability and Risk Analysis.  The 
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approaches used for fracture analysis determine a lower bound on material toughness for 
design and few have addressed Risk as defined by the probability of failure time 
consequences in Life Cycle Management (LCM) applications 
 
Rolfe et. al., (1993) is one of the early works that has looked at the fracture mechanics of the 
critical crack length KIc and estimated the stress loading history to calculate the critical 
crack length as 380mm (15") using a deterministic KIc and an empirically based maximum 
load.  The critical stress intensity factor was chosen as a lower bound and not quantified 
statistically. The calculations indicated it will take a through-thickness crack five years to 
grow to reach the 380mm length.  They also concluded that a 380mm crack will be detected 
before reaching this length; however, they did indicate that the probability of detection data 
was non-existent and needed further development.  While interesting as an early 
benchmark for critical crack length, no consideration is given for the specifics of the 
structural geometry or probability of failure or consequences of Risk.  The work by Rolfe et. 
al., (1993) provides interesting information on the crack transition from an elliptical shape 
to through-thickness for use in stress intensity calculations. 
 
Dexter et. al., (2004) investigated large stable cracks growing through plating and framing 
typical of ship structure; however, he did not consider the probability of detection or full 
statistical characterization of the load and strength parameters for ships.  Similarly, Ayala-
Uraga et. al., (2007) investigated the impact of long cracks in FPSOs, including the effects 
of high mean stress and estimated Probability of Brittle Fracture (PfBF) higher than 10-2.  
They did not address the probability of detection or the Risks associated with this high 
PfBF.  

Sumpter et. al., (2004) investigated the probability of fracture in ships based on historical 
data and a statistically based calculation of load vs. resistance but did not describe the 
details of the Pf calculation.  They estimated a probability of failure (Pf) of 10-4 for a 250mm 
crack.  No Probability of Detection (PoD) was considered in the analysis. 

Fast fracture can be brittle or exhibit ductility.  However, results are often catastrophic at 
worst and expensive to repair at best, as investigated by Stambaugh et. al., (1987).  
Fracture in ships has been investigated more recently by Sumpter et. al., (2004) and Ayala-
Uraga, et. al., (2007) for FPSO’s.  
 
The prescriptive design approaches used for ship structures are based on years of success 
and failures with a probability of fracture in the 10-4 range, as discussed by Sumpter et. al., 
(2004).  The prescriptive design approach includes material specifications with adequate 
toughness for most common applications.   The difficulty arises when a proposed ship will 
operate in conditions (both loading and temperature) that are outside of the empirically 
based prescriptive approach.  Current first principles approaches do not include Risk 
Analysis of fracture specifically; rather, they rely on empirically derived material toughness 
properties that have been acceptable historically (Sumpter et. al., 2004).   
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Fracture remains the proverbial elephant in the room for other Decision Theory and 
Optimal Inspection Risk-based approaches as the ultimate failure Risk with significant 
consequences.  In commercial applications, ships are insured (Risk transfer).  Naval vessels 
are typically self-insured by the country owning the vessels (Risk acceptance).  The 
potential consequences extend beyond the cost of the asset replacement and include loss of 
life and political fallout with major financial implications.   Therefore, the Risk approach 
discussed in this dissertation is of significant value in minimizing TOC and Risk for 
SSLCM, as will be presented in the following Chapters.   
 
Appendix C contains a discussion on the S-N and F-M approaches for estimation of total life 
from crack initiation to fracture.  This total life approach is used in estimating Risk in the 
examples presented in Chapter 6.0 of this dissertation. 
 
2.1.2 Corrosion  

Corrosion is the degradation of a material by chemical or electrochemical reaction with its 
environment.  Corrosion reduces the component thickness, either uniformly or locally.  The 
corrosion phenomenon is a response of metallic material exposed to a corrosive environment 
that includes a large number of parameters typically present in a corrosive environment. 
The variety of chemical and physical variables of environments and materials leads to a 
large number of types and appearance of corrosion (Melchers 2007, Geddes et. al., 1999, and 
Cronvall 2011). 
 
Corrosion can manifest itself in several forms, and there are generally accepted categories 
of corrosion based on the appearance and electrochemical processes.  The types of corrosion 
include (but are not limited to): 
 

 uniform, 
  pitting, 
  galvanic (two-metal) corrosion, 
  crevice corrosion, 
  intergranular corrosion, 

 
The most common types of corrosion in ship structure include uniform corrosion and local 
groove and pitting corrosions.  
 
Uniform corrosion refers to a uniform attack over surfaces of the material and results in 
thinning of the material.  Uniform corrosion rates vary with fluid oxygen content, 
temperature, and many other environmental parameters (Melchers 2007, Geddes et. al., 
1999) for more on the various physical parameters that play a major role in the physical 
process). 
 



14 
 

Local corrosion occurs in areas of non-homogeneities at the metal surface, and in local 
differences in the electrochemical reactivity of the environment, the creation of local 
electrolytic cells results in local corrosion degradation.  Localized corrosion includes pitting, 
groove, and crevice corrosion.  Local corrosions are commonly caused by the breakdown of a 
passive film coating (i.e., paint) on metal in local areas.  Crevice corrosion results from local 
environmental conditions in the restricted region of a crevice being different and more 
aggressive than the global environment. 
 
Intergranular corrosion is produced by a difference in electronic potential across various 
grain boundaries often formed by aging or heat affected material properties.  This type of 
corrosion often occurred in aluminum structure exposed to long term exposures to sunlight 
and resulting heat input to the exposed aluminum structure. 
 
Corrosion rate estimates are typically physics-based or probabilistic based.  The former 
requires knowledge of the material and environmental factors (including but not limited to 
chemical, biological) both past and future (Melchers 2007).  The latter requires historical 
knowledge of the corrosion rate (Lampe 2018).  Both approaches involve data-intensive 
requirements; however, the probabilistic approach is generally used to evaluate corrosion 
rates due to the complexities of the physics-based approach requiring complete knowledge 
of a large number of variables over time.    

Although corrosion is not explicitly a failure mode in itself, the wastage of structure (i.e., 
thickness reductions) can lead to a reduction in structural capacity in both yielding and 
buckling modes of failure.  The interactions of corrosion and buckling modes of structural 
failure are very complex, and while progressive failure to discrete instantaneous loading 
has been investigated, progressive failure spatially in the structure and temporally in a 
random environment have not been fully addressed in the current research. 
 
Corrosion inspections are predominantly visual supplemented with Ultrasonic Thickness 
(UT) measurements, typically of the hull shell plating.  While this has proven successful 
empirically generally, PoD statistics for corrosion inspections in ships have not been 
quantified for Risk-based assessments.  Published UT measurements and related statistics 
are typically used to determine average values and not fully characterize the extremes (see 
Luque et. al., 2014). 
 
Although the effects of corrosion have a significant influence on the hull girder structural 
failure, it does not constitute a hull structural failure independently without accelerating 
one of the other failure modes.  However, serviceability can be affected significantly as local 
corrosion causes loss of watertight integrity or sinking as a worst-case. 

Corrosion degrades the strength of a structure and depends on many factors, as discussed 
by Ayyub et al. (2014).  Corrosion reduces the section modulus of the hull of a vessel by 
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thinning the thickness of primary structural members.  It reduces the ability of the 
structure to resist externally induced bending moment.  

Unlike fatigue cracks, uniform corrosion wastage is easier to observe visually as coatings 
breakdown.  Generally, widespread corrosion is detected before it degrades structural 
integrity from progressive, serviceability failure to ultimate failure.  Although corrosion is 
pervasive in ship structure in relatively small areas, on average, it is managed successfully 
for the majority of structure with coatings and periodic inspections.  There are, however, 
isolated problematic areas in the structure where corrosion can become severe and, in 
cases, go undetected as noted by Melcher et. al., (2007).  In the extreme, the severe 
undetected corrosion may penetrate the entire structure and compromise watertight 
integrity, if not outright degradation of global hull strength.  This isolated undetected 
corrosion is especially problematic in naval ships with interior thermal insulation on the 
primary structural envelop, and also in machinery and dense piping spaces with 
constraints for adequate inspections.  A literature search on PoD for corrosion in ship 
structures produced no references with verified approaches, most being proposed without 
relevant data for verification.  The Risk to hull structural integrity increases significantly 
as corrosion wastage goes undetected, and progressive failure occurs under modest loading. 
 
According to Ayyub et al., (2014), several models of uniform corrosion growth have been 
suggested by Orisamolu et al., (1999) and Paik et al. (1998), Akpan et al., (2002), and more 
recently Luque et. al., (2014).  In the presence of corrosion, the ultimate strength (Su) of a 
structural member is given by 
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where uS  = ultimate strength of a structural component; tr is the life of coating (years) as a 

threshold time; t is the age of the vessel (years), 0uS  is the initial ultimate strength of a 

structural component at t is equal to zero; )(tc  is a strength reduction factor accounting for 

corrosion of dimensionless nature in the range [0, 1], a model that may take the following 
form: 

𝑐(𝑡) = 1 − 𝑎 𝑎 (𝑡 − 𝑡 )   (2) 

where a1 is the annual thickness reduction factor for general corrosion, a2 is a strength 

reduction factor per unit value of a1, and b is a model coefficient to account for trend 
nonlinearity, commonly taken as one.  
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2.1.3 Buckling and Yielding  

For the most part, the strength of ship structural components (for example, hull girder, 
stiffened panel, unstiffened panel, and details) are calculated using algorithms developed 
with empirical relations, which do not necessarily reflect the global interactions of the ship 
structural system being analyzed, especially for the ultimate strength.   If the global 
interactions of the ship system and progressive damage are ignored, potentially high-Risk 
failure modes corresponding to lower energy (serviceability failure), pre-collapse structural 
response effects may be missing from the design evaluation, resulting in a non-conservative 
design.  The ability to assess the hull girder bending load at the onset of damage, or first 
failure, as well as ultimate collapse, is accomplished on a ship hull structure section using 
computer codes such as ALPS (Hughes et. al., 2010) and ULSTR (Adamchak 1982).  The 
point of initial failure can be predicted with these codes and compared to the ultimate 
bending resistance.  The degree of separation between initial failure and ultimate collapse 
is an indicator of the reserve strength and provides a measure of safety.  In this example, 
the target reliability associated with the onset of failure must be less than that for collapse 
as shown in Figure 2.1 

Application of Non-Linear Finite Element Analysis (NL-FEA) is used to evaluate the ULS 
and contributions of progressive failure and the hull loading required to produce this 
loading, as presented by Sheinberg et al. (2011).  The results of the NL-FEA capture local 
and global response with similar results illustrated in Figure 2.1.  Key assumptions on 
initial imperfections are important, and considerable computational time is required for 
this analysis.  However, this is often justified in making large scale sustainment and 
service life decisions of investments in capital assets such as ships.   

2.1.3.1 Structural Buckling 
 
Although structural buckling is well developed and applied in design, the impact of 
corrosion reduces the strength of structure buckling capacity, both locally in individual 
structural members, but globally if the corrosion wastage or progressive failure has 
progressed due to successive overloads.  Paik et. al., (2002), Guedes-Scores et.al, (1999) have 
written extensively on this topic. 
 

2.1.3.2 Structural Yielding 
  
Similar to buckling, yielding analysis as an ultimate failure mode is well developed for 
design, but less understood is experiencing severe corrosion wastage.  Paik et. al., (2002), 
Guedes-Scores (1988), and Hess (2003) have written extensively on this topic. 
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2.1.4 Structural Limit States 
 
To assess ship structural failure, designers analyze the limit state functions of that ship. 
The most commonly used limit states include the Ultimate Limit State (ULS), and to a 
lesser extent Service Limit State (SLS).  The SLS deals with the assessment of conditions 
under which the vessel can still perform its main duties even though some functionality 
may be impaired.  The failure process can occur progressively from mechanisms such as 
yielding, plate buckling, and fatigue in the material.  These failures often occur locally and 
in isolated areas with little notice.  However, the seemingly minor failures will accumulate 
over time and reduce the overall strength of the hull structure and increase the potential 
for serious, if not catastrophic failure. 

2.1.4.1 Serviceability Limit State 

A frequently used definition of serviceability failure has been the onset of yielding or local 
buckling in the structural material.  The structural response under consideration is the 
stress, which is then compared to the nominal yield strength, buckling, or cracking as 
derived from component material testing.  The idea of the loaded structure experiencing the 
onset of plastic deformations or rapid crack growth, or fraction thereof is useful as 
precursor failures, and related probabilities are used to support the remaining strength 
assessments.  This approach provides a valuable perspective as prior events relative to 
structural performance associated with higher energy collapse mechanisms such as 
buckling or fracture discuss later for ultimate limit states.  Progressive damage resulting 
from consecutive near overloads (stresses producing permanent deformations and strength 
reductions) weaken the structure such that the collapse strength is markedly less than 
originally assumed in local panel strength evaluations.  Defining serviceability failure as 
the onset of inelastic behavior is intended to provide a margin between safe and more 
uncertain, higher energy failures, with much higher consequences.  Further definition of 
serviceability failure is presented next. 

Many of the component level hull structural failures are local to individual panel stiffener 
failure modes, panel failure modes, grillage failure modes, and global hull girder failure 
modes.  These failures often occur individually, often with minor consequences in hull 
structure ultimate strength; however, as the failures progress, they become significant from 
a cumulative effect of overloads or in rare circumstances, from one single ultimate overload.  
In practice, the failure of the components occurs from smaller, more probable loadings than 
compared to the lower probability of a single load required to collapse the hull girder.  The 
implication on serviceability and ultimate strength must be assessed on their probability of 
occurrence and the associated consequences of failure.  This sequence of failure occurs along 
a continuum of the failure curve of bending moment vs. curvature, as illustrated in Figure 
2.1  In the case of buckling failure, the hull structure acts in the elastic range for low hull 
loading effects.  Figure 2.1 shows an example load and hull curvature (global deformation) 
that is representative of typical hull girder response to various levels of loading and 
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progressive failure of individual structural components in the system produce the 
appearance of ductile failure in the progressive failure range.  As loading increases, a few 
individual components may fail with minimal effect, and the hull girder may still behave 
for the most part, in the elastic range.  However, as the component level failure increases 
when the ship encounters more severe conditions, the cumulative effects increase 
component level failures in a progressive manner.  This progressive failure reduces the hull 
girder capacity.   
 
In the Figure 2.1 illustration, the proposed serviceability limit is at the end of the elastic 
range, and ultimate capacity at the maximum loading the hull can withstand.   In practice, 
the end of the elastic range is difficult to isolate; however, the probability of failure and the 
consequences of damage incurred in the early inelastic range can be evaluated.  The 
question becomes, how much progressive failure is too much, and what is the Risk of 
failure?  If the structure has sufficient reserve capacity between the elastic range and 
ultimate capacity, the range of serviceability can be extended, but not without 
understanding the Risk and costs of doing so. 

 
Figure 2.1 – Illustration of load and hull curvature showing transitions 
from serviceability limit state to ultimate failure limit state 

Serviceability limit states are in the linear range for buckling prior to ULS.  As a practical 
matter, if a component failure reduces the hull strength in any region above the elastic 
range, it should be repaired to reduce the effects of progressive failure on ultimate strength. 
If not repaired, further damage will become more extensive and more expensive to repair.  
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Of these failure modes, fatigue and corrosion are progressive as a function of time, 
generally a period of years, depending on the quality of design in the former and 
maintenance in the latter.  Buckling and yielding are generally related to overloads from 
environmental induced loading; however, they can be progressive over time.  Brittle or fast 
fracture is an event, given the presence of a critical size fatigue crack.  This event happens 
very fast, potentially at the speed of sound in the case of brittle fracture.  Brittle fracture in 
ship structure often makes a loud sound or bang when it occurs. 
 
The time-varying effects of fatigue and corrosion are addressed here because of the 
associated lifecycle maintenance costs.  Brittle fracture is important because of the high 
value of consequence when it occurs. 
 
2.1.4.2 Ultimate Limit State 
 
Ultimate strength, as described by Hess (2003), Hughes et. al., (2010), and Piak et. al., 
(2002) is summarized here and adapted within a format needed to consider the failure 
progression of SLS and its relationship to ULS. 

The ultimate failure is the point at which a structural member is unable to continue to 
carry an additional load.  Analytical approaches used to evaluate a structure either predict 
a response due to loading (for example, stress or displacement) or predict the ultimate 
strength (for example, collapse strength).  To predict an ultimate failure, the designer may 
either choose a simple model that gives only the collapse or buckling strength or a more 
complex model, which shows the progression to the ultimate collapse and beyond (post-
buckling regime).  On a local component level, the simpler model provides a threshold 
between serviceability and failure.  The complex global hull girder structure, the 
progression from no damage to the ultimate collapse over time because lower loading 
magnitudes will occur more frequently than the ultimate collapse ultimate load.  More 
detail on the modeling of these global approaches is discussed in Hughes et al., (2010) and 
Benson (2011).  

As ships age, they experience progressive degradation by corrosion, fatigue, buckling, and 
current repair criteria are not based on a direct analysis approach.  In the case of uniform 
corrosion, 25% wastage is often used as a practical limiting criteria, and there is even less 
guidance on acceptable fatigue cracking limits for plate or supporting structure.   

In the past, ship structure design has focused almost entirely on the ULS with Hess (2003) 
and Paik et.al, (2003) being exceptions.  However, current economic realities have placed 
more emphasis on SLS, and this is an area where further research on reserve strength and 
its degradation will be beneficial in assessing Risk in SSLCM.  Failure mode definitions 
based on time-dependent reliability levels will be beneficial in the SSLCM decision process. 
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Table 2.1 Hull Structure Failure Modes 

Failure 
Mode 

Serviceability Ultimate  
Variable State Failure Limit State Failure  Limit State 

Yielding Local 
members 
deformations 

Yield strength Hull girder 
collapse 

Gross 
material 
failure 

Maximum local 
stress 

Buckling Local member 
deformations 

Onset of 
nonlinearity in 
bending 
moment to 
curvature plot 

Hull girder 
collapse 

Maximum 
bending 
resistance 

Maximum local 
and global stress  

Cracking Local fatigue 
crack in the 
structure  

Through 
thickness 

Hull girder 
separation 

Fracture in 
the hull 
girder 

Stress load 
history 

 

In summary, Table 2-1 from Stambaugh et. al., (2014a) provides an overview of the 
definitions of structural failure and considerations involved. 

2.2 Structural Component and Systems Performance  
 
Why is this important? 
 
Reliability analysis of a complex system with a large number of components must include 
consideration for the correlation of structural components in the system loading, 
independence of their response capacity, and dependencies of the system elements as they 
degrade in strength during the ship’s service life. 

A new fundamental understanding is proposed for ship structural systems considering 
correlations of components in spatial and temporal terms.  This new systems-level 
understanding is based on an analysis of full-scale measured strain data in a ship structure 
and inspection of system response test data. 
 
2.2.1 Structural Component Level Performance  
 
What is it? How is it Calculated?  How is it Used? 
 
In the context of complex structural system reliability, the interactions of structural 
components must be considered in how they 1) correlate within the total system response 
based on their relative performance, and 2) as they relate to one another as time 
progresses, and weakening occurs by failure mode (e.g., fatigue and corrosion).  In ship 
structural systems analysis, both loading and response must be evaluated based on their 
correlations, independencies, and interdependencies, both spatially and temporally.  
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In systems analysis, in general, the concept of independence and dependence are used to 
define the relationship between two events as used in probability theory.  For example, 
events A and B are called perfectly dependent if the occurrence of A results in the 
occurrence of B and vice versa, (i.e., the conditional probabilities P(A|B)=1 and the 
P(B|A)=1; where | means "given").   On the other extreme, A and B are independent means 
P(A|B)=P(A) and P(B|A)=P(B).  In the context of the relationship of component failure, the 
performance of two details represents perfectly independent failure (or survival) events to 
indicate that if one occurs, the other will not occur.  

2.2.2 Prior Definitions of Structural Systems Performance 
  
The reliability of civil structural systems is assessed based on the assumption that it is 
composed of components that are functioning either in series, parallel, or a combination. 
These definitions are implied in system failure definitions for the civil structures are briefly 
stated as:  

Series – components linked together in a manner that if one fails, the system fails 
or is no longer functional. 

 
Parallel – components are working together in a manner that if one fails, the other 
components will continue to function; therefore, the system continues to function 
completely or partially. 

 
A system of individual components may be a combination of series and parallel.  There are 
combinations of the series and parallel system depending on the structural configuration.   

The concepts of series and parallel system are used frequently in civil structures made up of 
identifiable independent (i.e., in truss configurations) components as in a simple bridge 
span with multiple girders, bridge structure with truss elements, steel beam buildings or 
offshore structures of individual, interconnected, tubular members.  Many civil and offshore 
structures are constructed with individual structural members that are physically 
independent structural elements conforming to series or parallel definitions of systems 
reliability.   
 
These concepts of series and parallel have been proposed for ship structure as described by 
Hecht et. al., (2004), Frangapol et. al., (2012) and Garbatov et. al., (2002) and numerous 
others.  However, from a viewpoint of failure in ship structures, the structural system is 
neither in series, parallel, nor a simple hybrid of both.  Ship structure is a complex system 
of components and welded geometric details undergoing a correlated loading exposure with 
different magnitudes depending on location.  In this case, the structural components have 
correlated loading and are independent in structural response capacity, at least initially.  
These concepts are very useful in providing insights as to the overall system’s useful life 
from initial local component failures to the failure of the entire system.  
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Welded ship structure consists of structural shapes and plates welded to form a structural 
monocoque system.  Failure of the system results in a catastrophic event if the structural 
failure is not prevented by sound structural design, material properties for safe life or 
rigorous inspection, and redundancy in the case of fail-safe design.  In the case of one 
continuously welded shell structure, progressive failure at multiple sites will likely progress 
until the failure locations aggregate to weaken the structure and collapses by local buckling 
or in the case of subsequent fractures initiating from fatigue cracks depending on the 
failure mode1.  
 
In summary, at the system level, ship structural elements do not follow series or parallel 
models.  From a failure perspective, be it fatigue, fracture, buckling, or yielding in a ship 
structural system, the failure is progressive either progressive over time from multiple 
events or instantaneously and possibly catastrophic.  From a catastrophic failure 
perspective, there is no structural redundancy from independent load paths in modern 
welded ships.  However, there is reserve strength in the hull girder structure, and its 
importance cannot be understated in assessing local damage, progressive failure, and 
ultimate collapse failures.  Reserve strength will be discussed again in Chapter 7.0 

2.2.3 Ship Structural System Performance  
 
In the context of a structural system, correlation means the system components are 
experiencing similar stress experiences, and there is a high amount of autocorrelation 
between them.  
 
The measured amount of correlation in the structural component details is determined by 
conducting a correlation analysis of the measured loading response from a full-scale 
instrumentation program.  A correlation analysis of full-scale measured strain in ship 
structures is presented in Appendix A. 
 
The correlation analysis presented in Appendix A indicates the loading experienced by ship 
structural components are highly correlated.  In terms of hull girder bending, the structural 
components are sharing the same general hull girder load spectrum in different magnitudes 
depending on location in the hull girder and component local stress concentrations form 
geometry and weld configuration. 
 
 

 
1 Prior to WWII, ships were riveted together in longitudinal strakes along with the longitudinal and 
transverse supporting structure forming multiple independent load paths of a redundant parallel 
system, from a fracture failure perspective.  During WWII, ship hull structure began being built by 
welding all of structure together as a faster way to build ships; however, the resulting completely 
welded ships were far less tolerant of fatigue cracks, often initiating in the joining welds.  More on 
the impact of the transition from riveted to all welded structure is documented in SSC research. 
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There are other types of local loading, including bow and side wave impacts that have their 
correlation effects that are addressed next in the systems analysis discussion. 
 
2.2.3.1 System Loading of Ship Structural Components 

System reliability and capacity are evaluated for any group of components that are 
correlated on the hull structure loading side of the reliability analysis. 

The significant amount of loading correlation between hull structural components means 
they are sharing the same general hull girder load spectrum.  Differences in the resulting 
stress loading spectrum are scaled based on location and hull girder structure and 
correlated with relative stress magnitude.  The differences in the loading spectrum are 
primarily scaled based on location and hull girder structure, not the spectrum itself.  This 
scaling approach is used where the hull girder loading is scaled depending on location and 
structure determined typically by FEA.  The stress spectrum is not perfectly correlated do 
to the phasing of horizontal and torsional bending induced stresses; however, the 
correlation analysis presented in Appendix A indicates a very high amount of correlation in 
the primary hull girder structure of an instrumented ship (Stambaugh et. al., 2014b). 

The finding associated with loading correlation implies that each component can be grouped 
according to the component geometry, stress spectrum and stress magnitude experienced.  
Each fully correlated component group is represented according to the loading for that 
group.  Therefore, the aggregated statistical uncertainties of response will represent the 
total uncertainty for that group of structural components.  In an ideal situation, where all 
structural component details are designed with the same strength (e.g., fatigue life), there 
is one massive group.  This idealized example is not the general practice due to the 
preference for uniformity of structural components and details for construction cost 
considerations, producing a variety of correlated structural detail groupings.  

Sources of component independency on the system response side can be attributed to 
variations in weld detail configurations and structural geometry and type of welded 
structural detail fatigue category on the response side that are correlated into groupings 
and used in fatigue design (ABS 2017, Sieve et al., 2000).  The following definitions are 
proposed based on the inspection of fatigue response in welded structural details. 

Structural material response to loading is random due to variations in properties, and the 
resulting failures are independent based on fatigue test data examples illustrated in Figure 
2.2.  There are correlations to be found in fatigue test data from variables in weld geometry, 
quality (flaws), residual stress.  Implications of the independence of material response 
within correlated groupings form one of the underlying assumptions associated with the S-
N fatigue design approach and the use of typical geometric and welded detail 
configurations.  
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2.2.3.2 System Response of Ship Structural Components 

The structural response characteristics have significant implications in system analysis, as 
described in the dissertation.   
 
In the context of ship structural system analysis, the definition(s) of system failure depends 
on the mode of failure and degradation over time.  While most modes of failure are initially 
independent and are isolated, they become more dependent and correlated as both the 
damage and loading increase depending on the failure mode.  The spatial and temporal 
probabilities of failure also change as failure progresses and or load increases.   

 

 

Figure 2.2 - Illustration of characteristic design curve and test data (redrawn 
from Hughes et. al., 2010) 

Ship structural details respond independently on a systems-level, as noted by the data 
associated with S-N curves for specific category characteristics.  The scatter illustrated in 
Figure 2.2 is characteristic of the statistical variance of life (number of cycles to failure) in 
the fatigue response of structural details given a detail configuration and level of stress in 
the structural detail.  The structural response from the material properties and fabrication 
procedures are generally correlated; however, they are highly independent in response 
within each correlated grouping (i.e., fatigue class or category), as can be seen in fatigue 
test data sets (e.g., ABS 2017 and Sieve et. al., 2000).  From a fatigue material response 
perspective, failures for a given applied load, are statistically independent for a given 
fatigue category.   This material response is a fundamental stochastic characteristic of the 
S-N test data and transfers to the as-built structure.  This combination of correlated stress 
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loading and independent failure of welded details is discussed later in the context of their 
influence on the system reliability. 

In ship structure, system complexity, failure processes, and failure interactions are spatial 
and temporal that may be modeled as Markov processes.  Quantifying the failure processes 
and related structural reliability in a stochastic loading involves more complex approaches, 
including the Markov process approach, as suggested by Ebeling (2010) and Lassen et. al., 
(2015) as examples.  An application of the Markov process modeling of system failure is 
presented in Chapters 5.0 and 6.0 of this dissertation.   

2.2.4 Systems Failure Definitions and Implications 
 
Given the evaluation and related discussion on component and systems structural 
reliability as correlated on the loading side and independent on the response side, there are 
cases when the system is undergoing large amounts of component failures and then 
combine to reduce the overall hull girder strength collectively.  The interactions of 
progressive damage modes become interrelated, result in complex interactions as strength 
degrades, and require analysis on a systems level.   In continuous complex ship structure, 
failures are independent until they aggregate and begin to correlate, weaken the structure 
collectively, and produce progressive damage to the system.  For example, in ship 
structures, component failures by fatigue and corrosion wastage degradation experience 
correlated loading and subsequently fail in combined patterns as in progressive failure as 
they correlate and aggregate and weaken the hull structure on the strength response side.  

Fatigue and corrosion structural degradation effects are similarly independent up to a time 
when the aggregated weakening effects become significant, and progressive failure begins. 
In this case of advanced progressive failure, it is prudent not to push the limits beyond 
serviceability because the aggregated progressive failure increases the probability of failure 
in collapse modes, and consequences of major damage may occur, resulting in very high 
Risk, as shown in later Chapters.   
 
A long transition of structural weakening is typically the case for fatigue failures, at least 
initially as fatigue cracks grow in the subcritical sizes.  The fatigue cracks do not typically 
correlate in failure dependency or load shedding in subcritical sizes.   However, as fatigue 
cracks transition to larger sizes, any single fatigue crack that is loaded sufficiently, could 
conceivably, transition into brittle fracture.  This type of sudden failure is more likely to 
occur before large numbers of fatigue cracks occurring and reducing strength collectively 
and globally.  Although this collective weakening is not aggregated spatially due to loading 
interactions, there is temporal aggregation reducing the reliability of the system as 
independent components degrade in strength toward their respective potentials to become 
fracture initiation sites as described in a later example.  
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In a worst-case scenario, fatigue cracks can reach a critical size in a short time between 
serviceability and catastrophic failure; therefore, their criticality should be considered in a 
structural Risk Analysis. 
 
Corrosion wastage in ship structures is more likely to experience temporally aggregated 
effects of weakened structure, and progressive failure becomes rapid among spatially 
correlated weakened areas over time. 
 
The implications of the proposed approach presented herein for estimating the total 
systems approach to fatigue failure is relatively simple; however, they are profound in 
estimating the Risk associated with options for dealing with estimated fatigue failures in a 
structure with a large number of structural components and welded connection details.  
The proposed systems evaluation approach is based on the findings from the hull structural 
loading correlation analysis (Appendix A), and the ship structural system is continuously 
welded structure has no redundancy from fatigue and fracture failure, as discussed in the 
next Section.  From a systems perspective, when a fracture occurs, a very large area of the 
structure fails almost instantaneously with potentially catastrophic consequences. 
 
Based on the discussion and the implications for systems failure, a proposed technical 
definition of serviceability failure is the local component failures are “purely” independent 
of each other, at least initially.  Progressive failure begins as component failures become 
correlated.  As degradation progresses, aggregated effects increase and failure modes 
interact spatially and temporally, at which time structural response transitions from severe 
progressive failure to ultimate collapse failure.  By this definition of serviceability failure, 
the aggregation of failures spatially and temporally is also a quantitative estimate of 
progressive failure as failures transition from isolated and independent to correlated 
failures with combined effects of weakening the structure.  In other words, failures are 
independent initially, and as they become correlated (if not detected and repaired) in 
aggregated failure modes as they transition from isolated serviceability failures to more 
severe progressive failures with potentially catastrophic consequences, see Figure 2.1.  
Thus, serviceability and progressive failure definitions match our intuitive decision to 
repair prior to the progressive aggregation of failures as the component failures correlate 
and result in significant degradation of the structural system. 
 
The transition for independent to correlated failures is also key in the definition of reserve 
strength, both instantaneous and time-dependent transition.  This serviceability failure 
definition matches our intuitive decision to repair prior to the progressive failure of 
aggregated failures as interactive correlations develop, and the combined effects 
significantly weaken the structure.  In this context, Markov processes are useful, as 
discussed later in this dissertation. 
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These findings based on observations in measurements of structural system response have 
a significant influence on Risk Analysis and Risk Management approaches (i.e., fail-safe 
and safe life).  

Fail-Safe approaches involve managing failures in a redundant structure where the 
failure of one component is independent of any other structural element in failure 
consequences — commonly used in civil, offshore, and aircraft structures. 

Safe life is an approach where precursor, serviceability, or early progressive 
failures can be detected and repaired in a timely manner.  This approach is common 
in pressure vessels and piping structures. 

 
Related to this proposed definition of serviceability failure is the concept of reserve strength 
is the amount of strength between component level (serviceability) failure and ultimate 
strength of the system, in terms of buckling collapse, massive yielding or fracture is a 
proposed definition of reserve strength.  This definition of reserve strength is in contrast to 
redundancy associated with civil structures with multiple independent load paths and 
structural members.  The latter definition of redundancy is not part of the all-welded ship 
structural system. 
 

2.3 Ship Structural Reliability  
 
Reliability theory was adapted to larger complex systems (see Ebeling 2010) using 
component testing and, on occasion, full-scale destructive testing in large quantity 
production applications.  Reliability theory is used extensively in the mass production 
industries where products are produced repetitively on a scale large enough to characterize 
failure statistics with some level of acceptable confidence.  Product reliability relies on 
objective probabilities, and failure statistics in contrast to component structural reliability 
analysis is based on relative or even subjective probabilities.  This approach is rarely used 
in large complex structural systems where failure consequences are less tolerable and less 
frequent.  Many industries rely on component testing for fatigue and buckling failure, for 
example, and apply the derived statistical probabilistic response to similar components in 
(assumed) similar applications.  Safety margins are often used in this context.   
 
In reliability estimating, a basic instantaneous event reliability estimate is possible if the 
distributions for both the load (stress) and the strength both follow a known probability 
distribution (Normal in this case), then the reliability (R) of a component (Ebeling 2010) can 
be determined by the following equation: 

 𝑅 = 1 − 𝑃(𝑍) (3) 

Where: 
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𝑍 =

µ − µ

𝑆′ + 𝑆′

 
(4) 

Where µ and s’ are mean and standard deviations of the Load (x) and Response (y) 

functions.  The probability of failure P(Z) can be determined from a Z table or a 
statistical text (i.e., Walpole et. al., 2014).  While this interference approach is 
useful when the normal distribution is applicable, there are more complex 
application that require a more detailed approach to determine structural 
reliability. 

The adaptation of the component test and analysis approach to reliability analysis has 
developed for applications based on a large number of statistical samples, component 
testing, and direct analysis tools with known biases and uncertainties that must be 
accounted for as described later in this dissertation.  Similarly, the systems analysis 
approach must consider the correlations and dependencies of components, as discussed 
previously. 
 
Numerous approaches that have been developed to calculate structural reliability analysis 
(SRA) for bridges (Frangapol et. al., 2004), offshore structures (Melchers 1999), and ships 
(Mansour et. al., 1997, and Ayyub et. al., 2000, 2002 and 2014) as examples.  Each proposed 
reliability approach has its strengths and weaknesses for the intended application and 
generally range in accuracy and complexity.    

Ship SRA is a more complex problem than in fixed structures because they involve 
environmental and structural variables that are more complex.  One approach proposed by 
Ayyub et. al., (2014) included developments from the prior work in this area of ship 
structural reliability and used by this investigator to develop the probability of fatigue 
failure estimates and determine related Risk in Chapter 6.0.  The fatigue reliability 
approach was built upon prior work on structural reliability and provides a foundation for 
further development, verification, and refinement of the complexities associated with 
fatigue in ship structure discussed in this dissertation.  The response side component 
structural component level reliability approach used herein builds on a significant amount 
of work by, Hess et. al., (2002a), Hess et. al., (2002b), and Hess (2003).  The fatigue 
reliability approach provides an excellent foundation for verification of analytical tools and 
quantifying the uncertainties using hull structure monitoring programs (Stambaugh et. al., 
2014b, 2019 and Hageman et. al., 2014 and 2019). 

2.3.1 Ship Structural Reliability – Component Level 
 
A described by Ayyub et. al., (2014), the reliability of ship structural components is defined 
as the probability of it maintaining its ability to fulfill its design purpose for a given time 
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period under specified environmental and operational conditions.  In this approach, 
calculating time-dependent reliabilities are calculated for stiffened panels in a particular 
region of interest of the ship.   

The instantaneous reliability may be obtained based on the limit state defined in Equation 
 5.  The instantaneous failure probability at time t is defined by:    

  

𝑃 (𝑡) = ∫ 𝑓 𝑥(𝑡) 𝑑𝑥        (5)  

Where ))(( txf  is the joint probability density function of the basic random variables 

defining strength and loading random variables at time t.  

In the presence of degradation mechanisms such as fatigue, the strength Su(t) is a 
decreasing function of time, according to Equation. 4; therefore, the probability of failure is 
also a function of time.  By varying the time period t from zero to an expected service life, 
the decreasing values of ultimate strength Su(t) can be estimated.  

Several methods for analytical time-dependent reliability assessment are available. In 
these methods, significant loads as a sequence of events can be described by a Poisson 
process with a mean occurrence rate, random intensity, and duration.  According to Ayyub 
et. al., (2014), the performance function (Z) of a component or system at any instant of time 
(t) can be defined as: 

 Z(t) = S(t) – L(t)         (6)  

where R(t) is the strength at time t, and L(t) is the load at time t, as shown in Figure 2.3. 

The instantaneous probability of failure at time t can then are defined as the probability of 
S(t) less than L(t); however, this instantaneous probability treatment does not recognize 
what has previously happened to the component or system from start of its life to the 
present represented by time t.  Ship designers are usually interested in the first occurrence 
of L exceeding S, not the instantaneous occurrence, requiring the imposition of a condition 
on the probability of L exceeding S of being the first time in its life.  This conditional 
probability concept is the basis for computing what is termed time-dependent reliability 
and estimated using the reliability function Z(t).  
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Figure 2.3 – Illustration of fatigue reliability calculation (Redrawn from Ayyub et. 
al., 2014) 

A limit state performance function related to ship loading can be expressed in consistent 
units as follows: 

 )()()()( tLtLtStg wswu         (7)  

Where uS  is the strength of a stiffened panel random variable accounting for relevant 

uncertainties; swL  is still-water loading random variable accounting for modeling 

uncertainty in still water; wL  is wave loading random variable accounting for modeling 

uncertainty, nonlinearities, and dynamic effects.  
 
With the knowledge of the loading bias and coefficient of variation obtained from measured 
data described by Hageman et. al., (2014), and the uncertainties of the S-N diagram from 
Ayyub et. al.,  (2014) illustrated in Figure 2.2, it is possible to make a time-dependent 
reliability prediction for various details in the ship structure.  The reliability calculation 
approach uses a Monti Carlo approach to solve the time-varying limit state.  The fatigue 
calculation results shown in Figure 2.4 include Stress Concentration Factors (SCFs) related 
to the local structural geometry for the various fatigue sensitive locations, were obtained 
from FEA described by Drummen et. al., (2014).  Sieve et. al., (2000) describe the AASHTO 
fatigue categories and their application to fatigue design of naval ship structures.  The 
fatigue reliability calculation discussed here is also based on Miner’s (1945) damage 

summation and the Pf is time-varying reflecting the variance of the fatigue test data and 
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other uncertainties included in the analysis instead of a fixed Pf (i.e., 2.3% characteristic 
design curve illustrated in Figure 2.2).  In the test data sets used for these fatigue 
calculations, failure is defined as a visible or through-thickness crack (ttc) is present.  More 

on the significance of ttc and associated Risk is discussed in Chapter 6.0 and Appendix C of 
this dissertation. 
 
The time span for fatigue failure is considerable for the lower probability of failure group of 
correlated structural details shown in Figure 2.4.  In this example, the fatigue life is 
dominated by the magnitude of Stress Concentration Factor (SCF) with fatigue damage 
being proportional to stress range to the third power.  The uncertainty in the fatigue 
response is dominated by the variance in material test data, as illustrated in Figure 2.2  
The fatigue reliability calculation is based on the component level failure and needs to be 
extended to the failure of the system, as discussed next. 
 

 
Figure 2.4 – Example fatigue failure (ttc) estimate for critical details in a ship hull 
structure with correlated groupings according to stress concentration factors 
and fatigue categories 
 
The resulting component reliability as a function of probability of failure is: 
 
 Rc = 1- (Pfc) 

 

(8) 
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2.3.2 Structural Reliability – System Level 
 
Based on the results of the correlation analysis discussed previously, the ship structure as a 
system is correlated among loading groups, including weld configurations associated with 
welded fatigue life data, the fatigue response is highly independent as characterized by the 
scatter of fatigue test data over number of cycles and time to failure as the cycles are 
applied over time.  The independent nature of the fatigue response data requires that 
reliability of the system consider both the correlations that can be utilized to reduce the 
number of reliability calculations needing to be performed (although it is possible to 
accomplish for every detail) and more importantly, consider the time-varying influence of 
the fatigue response.  In this manner, probability of failure and reliability can be estimated, 
and then correlated groups are summed at time intervals to produce the expected number 
of details that will fail in a given time period.  This process is repeated over the service life 
and beyond. The total number of details represents an important consideration the 
proposed systems approach.   

The probability of system failures (continuing here with the ttc failure definition) for the 
correlated groups is then multiplied by the number of details in that group and summed the 
number of probable failed details is summed for a specific time period.  The expected 
number failed details at time T is estimated from: 
 
 

𝑁 (𝑇) = ((𝑃𝑓 ( )(𝑇)  ·  (𝑁 ( )(𝑇)) 
 

(9) 

 
Where: 
 

Ndf = Expected number of component details that have failed (visible through 
thickness crack) 

 
Pfc = Probability of failure for the correlated group of details and, 

 
Nd = Number of details in the correlated group  

 
 i is equal to 1 to n and n is equal to the total number of details in the system being 
considered.   T is a specific time interval in the structural life. 
 
The system probability of fatigue ttc failures then calculated as: 
 

𝑃𝑓 (𝑇) = ((𝑁 (𝑇)/𝑁 (𝑇))   
 

(10) 

Where: 
 

Pfs = the system probability of ttc failures and, 
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Ndt = the total number of structural details considered in the system.  

 
These system level definitions are used in the example shown in Figure 2.4, the probability 
of ttc failures is calculated for classes of details and loading combinations.  The results of 
the component level probability of fatigue failures are shown in Figure 2.4.  The cumulative 
probability of system failures over time is shown in Figure 2.4 for the highest correlated 
groupings of fatigue stress levels and types of details.  The classes and loading 
combinations are obtained from an FEA model and relative stress concentration factors 
from wave loading on the FEA model.  The probability of ttc failures was calculated for 12 
correlated groups and the four groups with the highest probability of failure are shown in 
Figure 2.4.  Given this information on the probability of failure and the number of details in 
each group as a function of time, it is possible to estimate the number of details expected to 
fail at any given time. 

From the correlation and systems definitions, it follows that cumulative probabilities for 
the structural system can be grouped by stress and weld detail configuration in the context 
of the SFA and S-N approach.  Construction practices (i.e., weld and construction quality) 
are not correlated because they are highly random and statistically independent (i.e., as in 
producing randomness of response in fatigue testing).  The correlation of structural details 
based on the characteristic load facilitates the addition of failure probabilities for the 
correlated groupings and is then added for time intervals to produce histograms of details 
with ttc failures as shown in Figure 2.5  The results shown in Figure 2.5 are for a systems 
reliability calculation based on the cumulative number of details that are expected to fail at 
a given time period T according to the systems reliability example shown in Figure 2.4, 
where failure defined as a through-thickness crack. 

This discussion and related equations are proposed as an alternate hypothesis to the series 
and parallel definitions of systems reliability as it relates to the expected number of failures 
shown in Figure 2.5 that were derived from the probability of failure estimates presented in 
Figure 2.4.  The expected number of ttc failures shown in Figure 2.5 represents the 
cumulative expected failures up to the time interval T indicated in Figure 2.5.  In the 
example shown in Figure 2.5, fatigue failures are calculated for intervals of five years.  The 
number intervals are calculated for five-year increments of the planning horizon. 
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Figure 2.5 - Expected number of ship hull structural details with ttc fatigue 
cracks 
 
The addition of cumulative probabilities of failure, whether fatigue or corrosion, is a 
relatively new approach with others (Temple et. al., 2013, Kong et. al., 2013) proposing this 
approach for fatigue failure predictions for ship structures.  However, the implications of 
these ttc fatigue failures are not fully realized and addressed in terms of probability of 
detection, ultimate failures if they grow undetected, and related Risks.  The number of ttc 
failures shown in Figure 2.5 are used for further Risk-TOC Analysis in Chapter 6.0 where 
the implications of the number of fatigue cracks, and the probability that they will grow 
undetected to critical fracture size, are addressed in context of  Risk Analysis applicable to 
ship structural systems. 
 
The discussion on systems failure and updating that follows here provides a new 
perspective for reliability updating for a number of ttc fatigue failures.  The results of this 
reliability updating are used highlight the need for Risk Analysis in SSLCM. 
 
In the correlated-independent systems analysis for a large number of component structural 
details in the system, reliability updating is estimated by changing the expected number of 
failed component details by subtracting the number of repaired component details.  In this 
systems reliability example, one repaired component detail with a ttc fatigue failure does 
not change the probability of failure of the other components in the system group.  The 
updating must reflect the reliability of the total number of component details considered in 
the system. 
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In this system reliability example, the number of component details failed at time T equals 
the sum of the product of the probability of failure for each correlated group and the net 
difference between the total number of component details in a specific group c (not number 
failed) minus the number of component details repaired illustrated as: 
 

𝑁 (𝑇) = (𝑃𝑓 ( )(𝑇) ·  (𝑁 ( )(𝑇) − 𝑁 ( )(𝑇))) 

 
(11) 

The probability of systems failure is then the number of failed component details divided by 
the total number of component details at time T calculated as in equation 10. 

The probability of systems failure with updating is then the number of failed component 
details divided by the total number of details at time T. 

 
𝑃𝑓 (𝑇) =  

𝑁 (𝑇)

𝑁 (𝑇)
               

 
(12) 

 
The probability of systems failure is then either probability of failure with or (V) without 
repair as follows:  

 𝑃𝑓 (𝑇) = ((𝑃𝑓  (𝑇) V (𝑃𝑓 (𝑇))  
 

(13) 

The total system reliability without repair at time interval T is then written as: 

 𝑅 (𝑇) = (1 − 𝑃𝑓 (𝑇)) 
 

(14) 

The total system updated reliability with repair at time interval T can be written as: 

 𝑅 (𝑇) = (1 − 𝑃𝑓 (𝑇))  
 

(15) 

After a component detail in the system has been repaired, the component reliability 
updates to a reliability of one (assuming the repair is 100% effective) at time T, and 
degradation begins again moving forward in time.  The remaining system reliability is 
updated based on the remaining number of component details not repaired for the 
correlated groups.   

2.3.3 Proposed Systems Reliability Example 
 
An example of the proposed systems reliability approach is presented next.  Figure 2.6 
shows the results of the time-varying reliability estimates for more than 1200 structural 
details in the primary hull girder.  In this format, the system's reliability or Pf calculation 
is straight forward.  The number of component details repaired by rewelding can be 
subtracted from the total and transposed to a new start date, essentially shifted to the 
right, and added to the other component details at the respective timeframes.  Similarly, if 
the component details are redesigned and structure modified, the new estimates are shifted 
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in time based on the given repair date and summed as before.  The number of component 
details with ttc fatigue failures at any given time can be multiplied by one minus the 
Probability of Detection (1-PoD) to determine the number of fatigue cracks that could 
potentially go undetected and continue to grow undetected.  Additional discussion on the 
implications of the undetected cracks is provided in later examples in Chapter 6.0 as they 
grow beyond ttc to larger faster growing fatigue cracks with potentially catastrophic failure 
resulting.    

This systems approach is applicable to the addition of correlated groups of cumulative 
density functions and the number of components therein for other locations such as bow 
impact loading or local side shell loading that is not load correlated but is time-correlated 
with an associated probability of failure as a function of time.  Table 2.2 provides a simple 
example of how systems updating is estimated for a specific time period T.   
 
Table 2.2 – Example fatigue reliability updating with correlation and a large 
number of structural details 

 

Figure 2.6 shows the results of an example systems reliability calculation based on the 
number of component details that are expected to have failures, given the systems 
reliability example shown in Figure 2.5, where failure defined as a through-thickness crack 
(ttc).  Where Pfs is the System’s Probability of Failure, Pfu is the updated system’s 
probability of failure, Rs is the System’s Reliability, and Rsu is the updates system 
reliability as shown in equations 11 through 15.  In this example, the Sum is a summation 
of the probability-weighted or expected number of components with ttc failures in the 
system. 

In Figure 2.6, the lowest red solid line is the estimated reliability given no intervention, 
also known as the “Do-Nothing” option.   This option represents reliability given survived 

N Critical 
Details

Probability of 
Failure

Expected 
N 

Failures

N Critical 
Details Less 

Repair

Probability of 
Failure

Expected 
N 

Failures

1 0.99 1.0 0.0 0.99 0.0
5 0.5 2.5 2.5 0.5 1.3

20 0.1 2.0 18.0 0.1 1.8
200 0.01 2.0 198.0 0.01 2.0

Sum 7.5 Weighted Sum 5.0

N total details 1200 N total details 1200

Pfs 0.006242 Pfsu 0.0042

Rs = 0.993758 Rsu = 0.9958

Without Repairs With Repairs
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component details in the system, including component details that fail for the second time 
after having been repaired years earlier.  The solid blue line represents the updating of 
reliability given the component details with ttc fatigue failures have been found and 
repaired.  The estimated number of failed details (~30) in 20 years has little effect on 
overall systems reliability because this number of failures is small relative to the total 
(~1200).  In a ship structure, there are thousands of structural details, and even 1200 is a 
select subset. 

This example uses a systems reliability approach based on Pf being a combination of 
correlated details on the load side and independent failure on the response side of the 
evaluation.  This systems approach is in contract to many Optimal Inspection approaches 
proposed for ship structures where reliability calculations are erroneously based on series 
or parallel models, and one or few details in the system and results show near 100% 
reliability after one or few repairs.  The systems failure is more complex than simple series 
or parallel models for systems reliability described previously.   

The assumptions in this illustrative example also include:  

 1200 critical details in the primary hull structure that have an increasing Pf of 
through-thickness cracking throughout the 35year time period,  

 100% effective PoD, and  
 100% effective repair.   

These assumptions are optimistic but useful to show the total system reliability in contrast 
to proposed Optimal Inspection approaches based on assumed components in series for 
systems reliability estimates.  In reality, PoD will not be 100% and given the large number 
of cracks expected to be growing, and there will likely be fatigue cracks that are not 
detected, leading to a high probability that one will reach a critical length producing a high-
Risk situation that will be shown in a later example in Chapter 6.0. 

In looking at Figure 2.6, an interesting observation includes the limited effects of repair of 
structural details on reliability initially (i.e., at 20 years) relative to the total number of 
structural details in the system (approx. 1%).  In later years (i.e., 30-40), the increased 
effect of repairs is much greater because there are a significant number of component 
details with ttc fatigue failures that are being repaired (see Figure 2.6), on the order of 25% 
or more. 
 
In this systems reliability analysis example, significant updating doesn’t occur until major 
numbers of structural fatigue cracks are repaired.  Conversely, the updating of a few cracks 
has minimal effects on system reliability.  Both conclusions are intuitive given the number 
of structural details in ships.  The intuitive hypothesis is confirmed with this quantified 
example based on a large number of structural details in ships.  
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The results shown in Figures 2.5 and 2.6 imply the number of fatigue cracks estimated to 
occur over time will impact on LCC and Risk-based decisions.  It becomes clear that the 
number of failures associated with fatigue cracking, for example, are expected to become 
expensive to repair, increasing LCC (and TOC described later) and increases the Risk of a 
severe if not catastrophic failure. 

 

Figure 2.6 – Example ship structure fatigue system reliability with 
updating  

2.4 Ship Structural Reliability and Lifecycle Related Issues  

Given the challenges associated with fatigue crack failures in component structural details 
when there are thousands of component structural details in the primary hull girder 
structural system, the lifecycle Risk related considerations include: 

• Implications if the fatigue cracks are not found until they become large or more 
typically leak water from the outside or fuel from the inside of the ship, 

• Repair costs are difficult to predict with any certainty given random failures at high 
rates (i.e., EDDs are cost drivers, but how many should be anticipated) and 
associated non-budgeted costs,  

• Randomly occurring failures have a significant impact on Operational Availability 
(Ao), and 
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• There is no system-level redundancy (e.g., independent load carrying paths) in ship 
structures.  A brittle fracture will travel through the structure until either the load 
is reduced or it reaches material tough enough to arrest the fracture (or combination 
of both).  In either case, the consequences are potentially catastrophic.  The 
probability of brittle fracture is a significant part of a Risk Analysis when combined 
with the value of the asset.   

These issues and the related Risks associated with ship structures provide the motivation 
to look for alternate Risk mitigation strategies including the application of SFA and HSM 
as proactive measures.  Further evaluation of the impact of these observations and 
hypothesis provides the insights and guidance for conducting a Risk Analysis and 
evaluating Risk mitigation approaches for SSLCM. 

While this dissertation builds on the basic structural reliability approach to quantify basic 
stochastic uncertainties in the processes involved, the new work takes a fundamental look 
at the overall system based on analysis of the correlated loading and a fundamentally new 
approach for Risk assessment that differs from all Optimal Inspection approaches based on 
Decision Theory as proposed for other types of structures as described next. 
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3.0 PRIOR STRUCTURAL MANAGEMENT 
APPROACHES 

One approach often proposed (arguably the only approach proposed) to manage structural 
LCM decisions is through Optimal Inspection, including its relative Risk Based Inspection.  
The Optimal Inspection and Risk Based Inspection approaches are based on Decision 
Theory.  These Decision Theory based Optimal Inspection, approaches are proposed for civil 
and offshore structures for LCM.   

The literature on Optimal Inspection of civil structures and similar proposals for ship 
structures is far to large to summarize here 2.  Briefly, the Decision Theory based Optimal 
Inspection approaches assume that fatigue cracks are found according to a fixed pre-
calculated optimal schedule, repaired to extend the service life, and form a basis to 
determine the future reliability of the structure. 

The Decision Theory based Optimal Inspection approaches are based on specific 
assumptions and implementation details that are in contrast to Risk Analysis in a broader 
sense.  Therefore, a more detailed discussion on Decision Theory is presented to provide the 
reference for contrasting Decision Theory and Risk Analysis based approaches proposed in 
this dissertation for Ship Structural Life Cycle Management (SSLCM). 

3.1 Decision Theory Basics 

Making a decision involves alternatives, preferences, and knowledge of the nature of the 
processes involved in the outcomes.  If there are no alternatives, there are no choices and a 
decision is not necessary.  Similarly, if there are no preferences, a decision doesn’t matter.   

In Decision Theory, the Decision Maker faces a choice among several likely alternatives.  
Each alternative may result in one of several possible outcomes, but which outcome will 
occur is uncertain at the time of decision making.  Decision Theory represents the possible 
outcomes in the decision alternatives by discrete probabilities.  

In Decision Theory, discrete probabilities are used to characterize the likelihood of 
outcomes when such data is available.  In the context of decisions, the likelihood of 
outcomes may vary from the seat of the pants gut feelings to probabilities. 

   

2 [Examples of the many references on Optimal Inspection based approaches include; Madsen et. al., 
(1991), Hecht (2003), Straub et. al., (2005), Sorensen et. al., (2008), Frangopol et. al., (2012)].  A 
summary of the literature on the application of Decision Theory-based Optimal Inspection 
approaches for Structure Life Cycle Management (SLCM) and Structural Health Monitoring (SHM) 
is provided by Xing et. al., (2017).  This literature will be referred to as Decision Theory-based 
Optimal Inspection approaches herein]. 
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In terms of the probable outcomes in Decision Theory and Decision Trees, the summation of 
probabilities must equal one.  As a consequence, in Decision Theory, the Decision Maker 
computes expected values across outcomes using the probabilities as weights, and these 
expected values are comparable to the single estimate of expected outcomes of a decision.  
The product of the probabilities and economic outcomes forms an Expected Value E(V).  
Decision Theory also involves calculating the expected consequences of uncertain decisions 
formulated as discrete probabilities of possible events or outcomes in the future and 
inferred Expected Utility E(U) based on weighted preferences of the Decision Maker.  This 
approach to quantifying Decision Maker’s Risk preferences was first attributed to Pascal in 
the 17th century.  

Typically, the probabilities used in Decision Theory are developed based on assumptions 
and limited data sets that are often subjective estimates.  Increasing knowledge about the 
nature of the outcome is intended to reduce the uncertainty associated with the expected 
value E(V) of the outcome.  The ability of the test or the results of data collection to reduce 
uncertainty is known as the Value of Information (VoI).  In this case, the value of the 
information is positive if the E(V) is reduced.  These topics are discussed next for the 
context of prior approaches proposed for SSLCM. 

 
3.2 Decision Theory Based Approaches for Optimal Inspection  

Origins of modern Decision Theory proposed for civil (i.e., offshore and bridge applications 
of Optimal Inspection) can be traced to the theories proposed by Von Neumann et. al., 
(1947), and includes utility theory.  Later, the decision analysis presented by Raiffa et. al., 
(1961), provided a more formal mechanism for taking into account the preferences, 
judgments, and limited amounts of objective information of the Decision Maker(s). 
 
The definitions used in Decision Theory proposals for LCCM are interpreted differently 
than in Risk Analysis proposed here. 

For example, in fatigue reliability applications, failure is often deterministic crack length 
plus additional simplifying assumptions (i.e., one or few details, all cracks are found and 
repaired) for structural reliability applications.   

In Decision Theory based LCM approaches, discrete probabilities and Risk are typically 
defined as one of the following: 

 E($Cfailure) defined as Expected Value of costs to repair failed structure, 
 

 E($Cs) defined as Expected Value serviceability costs to be mitigated by a 
theoretical optimal inspection approach. 
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In prior proposed structural Risk approaches based on Decision Theory (see footnote 2 for 
references) E(V) and E(U) are equated to Risk.  In the Decision Theory based approaches, 
expected repair costs (termed Risk as the product of the probability of failure and the cost 
to repair the failure, typically welding fatigue cracks) are minimized based on an Optimal 
Inspection periodicity.    

In the Utility based extension of Decision Theory analysis, the Risk for each activity is 
stated to be: 
 

𝑅𝑖𝑠𝑘 = 𝐸[𝑈] = 𝑃( )𝐶( ) 

 

 
(16) 

Where RiskDT is equal to E(U), Pi is the ith branching probability, and Ci the cost of the 
event of branch i. in a Decision Tree based analysis.  The ith branch refers to decision 
options or choices and i relates to the independent number of decision options.  The E(U) is 
a modified version of E(V) reflecting the preferences of the Decision Maker(s) as described 
previously.  In Decision Theory, Utility Theory and Prospect Theory, the utility is a relative 
measure based on the Decision Maker’s preference and is knowledge biased with no 
quantitative value.  In Utility theory, the utility is a subjective, relative measure used to 
establish the Risk tolerance relative to individual preferences. 

In using Decision Trees as part of a Decision Analysis, the Decision Maker(s) must estimate 
the probabilities of the outcomes at chance nodes, and are best suited for decisions that can 
be assessed by either using discrete probabilities based on past data or collecting new data 
if Expected Values of the Decision Theory based results imply that it will be beneficial to do 
so based on a Value of Information analysis.  See Raiffa et. al., (1961), and North (1968) for 
more on the application of Decision Trees used as part of the Decision Theory approach.  
 
In summary, Decision Theory is used for discrete probabilities of decision outcomes.  In 
Decision Theory, a Decision Tree provides an assessment tool to determine the expected 
outcome and courses of action, provided discrete probabilities are known that fully 
characterize the uncertainties of the decision, which they typically do not for complex 
structures. 
 
3.3 Limitations of Decision Theory and Optimal Inspection 
based Approaches for Complex Systems 
 
In the next two Sections, Decision Theory and Optimal Inspection based approaches for 
Structural LCM are discussed along with their limitations for complex structural systems 
found in ship structure and SSLCM applications are presented next. 
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3.3.1 Contrasting Decision Theory and Risk Analysis  
 
The Decision Theory proposed by Raiffa et. al., (1961) is applied as the basis of Optimal 
Inspection approaches to Structural LCM.  This approach is very insightful for relatively 
simple decision problems; however, it varies from Risk Analysis in very fundamental 
definitions.  Decision Theory proponents equate the expected utility from the Decision 
Theory approach as the product of a probability and a consequence to Risk, which is not a 
full evaluation of either the probabilities or consequences of the more complex processes of 
structural management of large complex structural systems.   
 
The definition of “Risk” used in Decision Theory based Optimal Inspection approaches is a 
very narrowly founded where, for example, Pi is typically limited to the probability of 

occurrence of “a” (single) fatigue crack, and similarly Ci consequence is limited to the repair 
costs without any subsequent consequences if the crack is not detected and repaired.  
 
While most Decision Theory based approaches are useful in their settings, for financial and 
economic investments, they do not fully represent the context of uncertainties and 
consequences in Risk Analysis in general and the SSLCM setting in specific. 
 
Fundamental differences between Decision Theory and Risk Analysis based approaches 
include: 

 In Decision Theory, Risk is when discrete probabilities are assumed to be known 
with some certainty.  However, in most examples, subjective probabilities are used, 
that is, unsubstantiated (guesses, educated or otherwise) probabilities.   

 Decision Theory based definitions of Risk and Uncertainty assume discrete 
probabilities (lotteries) vs. more stochastic based ranges of uncertainty.   

 In Decision Theory, uncertainty is defined as an outcome with “known” probabilities 
and Risk is defined as an outcome with known probabilities.  This is in contrast to 
Risk Analysis where uncertainties are characterized by a range of probabilities. 

 In Decision Theory, correlations in parameters are not explicitly considered in 
Decision Theory based approaches. 

In the Utility theory based extensions of Decision Theory, E(U), is classically defined on the 
basis of a user’s preference associated with an expected outcome.  There is a specific 
distinction between E(V) and E(U).  The former is a function of the calculated probabilities 
and the latter includes the Decision Maker's preferences on uncertainty from a personal 
relative scale.  Expected Utility is often mistakenly used to indicate a true value as 
compared to a relative personal value and is often used as a decision criterion in offshore 
and civil applications of the Optimal Inspection approach.  This definition is in contrast to 
the more general definition of Risk as the product of a probability of occurrence of a 
catastrophic event with an undesirable cost of consequences without unbiased user-defined 
utilities.  Furthermore, for the Decision Theory and Utility Theory based, Optimal 
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Inspection approaches, the expected value occurrence of serviceability failure, not the Risk 
of a catastrophic failure.  In Risk Analysis of large complex ship structures, the results are 
typically more complex probabilities, not representable by simple discrete probabilities and 
related E(V) and E(U).  The implications of the range of uncertainty is completely ignored 
and is the first type of “Flaw of Averages” discussed by Savage (2012) and Hubbard (2009) 
as compared to a thorough Risk Analysis of a complex structural system and considering 
the full range of uncertainties involved to the extent possible. 
 
Decision Theory and Utility Theory are useful for initial thought and conceptual 
development of the problem along with a decision tree of decision options and scenarios; 
however, the uncertainties known to the Decision Maker must be fully captured in the Risk 
Analysis to make a valid quantified decision.  Decision Theory is useful for conceptualizing 
the decision framework; however, not in solving the problems involving more varied and 
complex uncertainties to be quantified in SSLCM.  
 
3.3.2 Limitations of Optimal Inspection Approaches for Complex 
Structural Systems 
 
There are numerous assumptions associated with Decision Theory based Optimal 
Inspection approaches.  The Optimal Inspection techniques proposed for Life Cycle 
Management (LCM) of civil and offshore structures originated in aerospace industries and 
transferred to offshore structures by Madsen et. al., (1991), Straub et. al., (2006), and Xing 
et. al., (2017).  These approaches are based on Decision Theory with assumptions related to 
offshore structures.   
 
An illustration of a proposed Optimal Inspection approach is shown in Figure 3.1 to 
illustrate the assumptions in this process. 

 

Figure 3.1 – Illustration of Optimal Inspection and reliability updating 
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In this example of the Optimal Inspection approach, reliability is updated for the details 
that have been detected, assuming the details are rewelded and removed from the number 
of failures moving forward.  A minimum reliability threshold is illustrated in this example, 
and the inspection interval is determined so that, given a PoD, the fatigue cracks will be 
found and either repaired or not depending on their criticality relative to the limiting 
reliability target.  The reliability targets are determined based on comparable structures 
and prior reliability validation efforts for a particular type of structure.  In applications of 
the Optimal Inspection approach, a deterministic crack size is often chosen as a limiting 
failure criterion.  Examples of Optimal Inspection approaches proposed for LCM of ship 
structures are summarized in Table 3.1. 

3.3.2.1 Finding Fatigue Cracks in Ship Structure  
 
The effectiveness of structural inspection is an important input parameter in Optimal 
Inspection approaches.  A quantitative measure of inspection effectiveness is needed in 
order to calculate the reduction in Risk associated with inspection.  The reliability of Non-
Destructive Testing (NDT) techniques is usually quantified in terms of the PoD of various 
deterministic flaw sizes.   

Table 3.1- Summary of Example Optimal Inspection Approaches Proposed for 
Ship Structure 

 
Source 

Limiting 
Criteria 

Critical 
Crack 

Definition 

Systems 
Definition 

System 
Availability 

System 
Failure 

Ayyub  
(2002) 

Pf =10e-3 20mm Component Discussed Component 
repair cost 

Li  
(2007) 

β = 3.95 Not given Not given Not given $0.3M 

Hecht 
(2004) 

β = discrete Not given Nfailed/Ntotal 
(Ntotal not 
given) 

Discussed $500M 
 

Garbatov 
(2011) 

β = variable Frame or 
plate 
component 

Component 
Series 

Not given Component 
repair cost 

Soliman 
(2015) 

Lifecycle 
cost 

50mm Component Not given $0.1M 

 

The probability of fatigue crack detection is typically presented in the form of PoD functions 
(Melchers 1999, Shinozuka, 1989), which describe the detection probability as a function of 
the flaw size, e.g., flaw depth or length.  However, the construction of a PoD function 
requires a considerable amount of data before statistical confidence is achieved.  In the case 
of NDT methods, it is often expensive and time-consuming to produce such a large amount 
of data.  In the Optimal Inspection approaches, NDT is typically assumed to be over 90% 
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effective in finding cracks and that all details can be inspected and are found and repaired.  
Furthermore, the highly effective PoD data does not exist for ship structures; therefore, 
PoDs have been proposed for ship structures based on applications in other industries and 
structures and completely different structural systems with a limited amount of 
consideration for the practicalities of their application to ship structures. 
 
The practicalities (i.e., high costs) of achieving highly effective PoD is very limited for 
military ships (due to the coverage of insulation on the interior of the weather decks and 
side shell down to the turn of the bilge) and many types of commercial ships due to the vast 
number of details present in the hull structural primary strength girder.  The ship 
structure of commercial ships is difficult to inspect due to trade schedules.  In tankers, 
inspections are often conducted in ballast tanks while underway in rafts.  These are very 
poor conditions at best, given the PoD reported by Shinozuka (1989) under ideal conditions 
in Dry Dock. 
 
In one example of applying visual inspection to commercial ship structures, Shinozuka, 
(1989).  This data collection effort took several weeks of survey time to accumulated and 
results in limited quantity for objective statistics.  In the context of SSLCM, PoD statistics 
for various NDT approaches are not quantified for Optimal Inspection applications.  PoD 
statistics from other industries and applications should be used with caution on their 
ability to be applied in a quantified way needed for Optimal Inspection and on the scope of 
thousands of structural details in ship structure.  
 
Quantitative estimates of the inspection capability and costs are essential for a realistic 
Optimal Inspection; however, these practical costs have not been quantified for SSLCM and 
are likely to be unrealistically high for SSLCM applications. 
 
3.3.2.2 Issues with NOT Finding Fatigue Cracks in Complex Structures 
 
The number of expected fatigue cracks for five-year increments is shown in Figure 2-5 for 
an example ship design.  In this case example, the number of failures increases 
significantly in the 20 to 25 year time periods to 50 and 125 fatigue failures, respectively. 
The time-varying accumulation of numerous failed details becomes significant and 
unmanageable in repair cost and related time out of service.  This increasing number of 
failures over time raises many very important questions about the consequences of the 
number of fatigue cracks including: 
 

 What is the cost to repair the fatigue cracks, apriori? 
o How many of the cracks are easy to repair dockside? 
o Can any of the cracks wait to be repaired in a scheduled drydocking (DD), 

and what are the Risks of this deferred maintenance? 
o How many of the cracks will require emergency drydocking (EDD)? 
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o What is the impact on operational availability (Ao)? 
 What is the impact of fatigue failures on current and future maintenance costs and 

budgets? 
 What happens if any of the cracks go undetected? 

The last question implies an unknown amount of Risk, which in turn generates more 
questions. 

 What are the (quantified) Risks associated with large cracks? 
o What are the practical aspects of executing the NDT as compared to the 

theoretical applicant of PoD approaches? 
o What is the probability of a severe failure from a large number of fatigue 

cracks, i.e., brittle fracture (PfBF)? 
o What are the consequences of brittle fracture (and $ at Risk)? 

 How do we mitigate the Risks, and at what cost? 

Given the uncertainties and potentially high Risk implied by these questions, the last 
question of Risk mitigation is often answered qualitatively, resulting in an End of Service 
Life (EOSL) decision because the repair costs are out of control (exceeding budgets) and loss 
of the assett if the ship is taken out of service.  This dissertation presents a Risk-TOC 
framework to facilitate quantified information for answering these questions and making 
informed decisions.  

In the Decision Theory based Optimal Inspection approaches, the reliability estimates and 
updating are conducted assuming one or a few details.  However, there are thousands of 
welded details in ship structure.  While there are correlations among details (see Appendix 
A and Kaminski et. al., 2010), these correlations are not considered in the proposed 
Decision Theory based approaches for Optimal inspection and LCM.  The Decision Theory 
and Optimal Inspection approaches do not consider the significant number of structural 
details in ship structure or the influence on the uncertainty in the fatigue process (i.e., 
scatter in S-N data) on system failure definitions.  Optimal Inspection may be useful in 
reliability updating for one or a small set of structural details; however, a systems approach 
is required for more complex systems with thousands of structural details. 

3.4 Summary of Prior DT, OI and RBI Based Approaches 
 
The Optimal Inspection approaches proposed for ship structure summarized in Table 3.1 
typically include the following: [with comments by the investigator based on the discussion 
herein]  

1) Inspection approaches assume well-defined PoD characterized in stochastic terms 
that apply to the ship application.  [None of the inspection approaches have been 
calibrated for the ship structural in-service application, nor has PoD and sampling 
processes been quantified for the NDT used in ship construction for that matter.  The 
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cost-effectiveness for the proposed high-quality NDT does not appear to be realistic for 
ship applications given the size of the structure, number of component details and 
meters of welds involved.  The complex system does not lend itself to isolated 
inspections as illustrated in the structural system reliability discussion].  
 

2) Inspection approaches and inspection intervals are determined so that limiting 
criteria are not exceeded.  In most cases, limiting criteria are based on component 
failure within a system in terms of either a target reliability (β) or a deterministic 
fatigue crack length (anywhere between through-thickness to through the structural 
member).  The limiting criteria are assumed to be conservative relative to the 
critical fatigue crack length.  [The limiting crack size is chosen deterministically.  
The reliability targets have been transferred from other types of structures.  The 
fracture hazard and possible system loss is not evaluated explicitly in stochastic 
terms for a comprehensive Risk Analysis]. 
 

3) The analysis is most often conducted on the component level.  System level analysis 
inherently assumes redundant structure with multiple independent load carrying 
paths and a parallel system with the associated component first failure definition.  
[These assumptions are not applicable to ship structural systems.  Reliability 
degradation, updating, and Risk are not fully addressed on a system level resulting 
in optimistic results]. 
 

4) Repairs are made to the fatigue cracks when found or left to grow if the limiting 
criteria are not met.  [The Risk of the growing cracks is not fully evaluated in light of 
ship loading magnitudes, related random nature, and resulting growth rates, i.e. 
encountering a severe storm with an actively growing crack].  
 

5) An optimization process is typically conducted to identify the most cost-effective 
trade-off between inspection types and inspection intervals to minimize the 
inspection and repair related costs at a deterministic limit of reliability or critical 
crack size.   [The Risk of total system loss is not explicitly considered because 
inspection approaches and intervals are established so that the limiting deterministic 
criteria are not exceeded.  By definition, the optimization of inspection processes does 
not consider LCM alternatives, including other proactive actions]. 
 

6) The optimization process is typically based on a Decision Theory and Utility Theory 
(tree) approaches with calculated expected values E(V) or expected utilities E(U) for 
the decision options/tree branches).  [Neither E(V) nor E(U) reflect the true Risk (i.e., 
uncertainty) in a ship structural system and encountered loading.  The probabilities 
used in Decision Theory do not reflect the temporal processes involved in ship 
structural loading and resulting fatigue crack growth rates that are the highest Risk 
to the system].   
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Moan and Fricke (2018) discuss the limitations of Optimal Inspection approaches in real 
structural applications and the need for additional Risk mitigation factors.  According to 
Moan; 
 
 “Hence, to manage the Risk associated with failure modes involving cracks, it is necessary to 
adopt a broader Risk Management approach”.   
 
Moan goes on to state;  
 
“The choice of mitigation approach clearly depends on the character of the crack growth and 
fracture, and hence the environmental conditions, structural layout, etc.  Moreover, a 
balance between Risk reduction and expenditure is required.”   
 
This dissertation provides a proposal for achieving these objectives.  Faced with 
uncertainties and associated Risk, and to summarize the complex pertinent questions, how 
does the structural engineer and analyst make actionable decisions based on estimated 
economic impact, at what Risk and what are the related uncertainties. 
 
To address these highly relevant questions and issues presented above, the structural 
designer must make decisions that involve significant Risks (i.e., uncertainties of failures 
and significant cost implications) in complex systems in ship structure.  There are several 
alternatives they might consider in making the decisions to manage cost and Risk over the 
lifecycle of the ship structure.  The proposed Risk Analysis approach provides a means of 
quantifying probabilities to facilitate decisions systematically.  However, there are 
conflicting definitions in the literature on what constitutes Risk Analysis that requires a 
closer examination.  
 
Given the assumptions, limitations, and challenges of the Decision Theory based Optimal 
Inspection approaches, it is necessary to investigate alternative approaches applicable to 
SSLCM.  The new approach must consider the fundamental considerations in the decision 
process firmly based on the systems analysis, failure modes, and cost considerations 
associated with SSLCM.  This problem statement forms the basis for the research 
investigation into this dissertation.  The following Section provides a baseline of 
fundamental definitions that apply to SSLCM decisions. 
 
Although Optimal Inspection approaches have limitations, it is at least theoretically 
possible to develop the inspection technologies, including novel approaches (i.e., Acoustic 
Emission).  However, there is a proposed benefit in evaluating these approaches within a 
Risk and TOC trade-space, including their contributions to uncertainty reduction, along 
with other proactive alternatives as discussed herein. 
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There are also proposals for Risk Based Inspections using onboard measurements 
(Kaminski et. al, (2010), Tammer et. al., (2013), and Hageman, et al., (2016) that make 
intuitive sense given the limitations of Optimal Inspection discussed, especially related to 
actual encountered loading and measured system response.  However, there are systems 
considerations that need to be considered as described in Chapter 2.0 and examples in 
Chapter 6.0  
 
Many of the approached proposed for Optimal Inspection of fatigue cracking failure also 
include corrosion failure.  This is a natural extension of the process with generally higher 
PoD for visual inspection of corrosion vs. fatigue cracks, which is why it is a common 
approach in practice today; however, PoD for corrosion has not been quantified for ship 
structure applications.  There are many aspects of this approach related to corrosion failure 
that remain to be quantified including the PoD statistics and implications of progressive 
failure with corroded structure required to quantify the associated system failure and Risk. 
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4.0 RISK AND UNCERTAINTY 

In looking at the fundamental assumptions of prior Decision Theory based structural life 
cycle management approaches, it became clear that it was necessary to investigate the 
fundamental definitions of Risk and uncertainty that are relevant to Risk Analysis and 
understanding uncertainty quantification in broader stochastic terms.  Simply stated, the 
terms Risk and uncertainty refer to perceptions about the occurrence of alternative future 
events, in which current assumptions might not hold.  The quantified definitions of both 
uncertainty and Risk are central to understanding the actions required to reduce or 
minimize both in complex structural systems with a very wide variety of stochastic 
processes found in the life cycle decisions and management of ships in general and 
structure in specific.  Therefore, the review of the definitions of uncertainty and Risk is 
presented here to clarify these terms and how to understand them and their impact on 
SSLCM decisions with major cost implications.  The following Sections present the results 
of this fundamental investigation into uncertainty and how it relates to Risk for effective 
SSLCM decisions.  

4.1 Why Uncertainty Matters 

The definitions of Risk and uncertainty vary from very broad to specific quantitative terms 
that depend on a specific application even within the technical communities of Decision 
Theory and Risk Analysis.  The discussion on uncertainty is presented here to clarify the 
definition as it relates to fundamental foundations of Risk quantification, management, and 
communication.  

Risk perspectives depend on the amount of knowledge individuals, groups of individuals 
and society have to make a decision and their reactions when faced with uncertainty.  In 
each Risk setting, these individuals and groups of individuals may have no, little, or much 
information to make the decision and this makes a significant difference in the individual 
or groups view as does the consequences of the decision and are also related to the amount 
of information required to make an informed decision.  Therefore, in the two extremes, 
when faced with a decision, if there are no uncertainties (all is certain or deterministic), 
there is no Risk.  Similarly, if there are no consequences to an event or decision, there is no 
Risk.  In between complete certainty and complete ignorance, the characterization of the 
uncertainty has a direct influence on Risk as proposed in this dissertation. 

A useful general definition of Risk follows that it is a characteristic of a situation, action, or 
event in which: 
 

A number of outcomes are possible 
 
The specifics of a particular outcome that will occur are uncertain 
 
At least one of the possible outcomes is undesirable 
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In simple terms: 
 
 Risk=U*C  

 
(17) 

Where U = Uncertainty and C = Consequences of a decision on outcomes or event, typically 
an undesirable outcome, although some include possible good outcomes as an alternative 
opportunity, a term typically used in financial market assessments.  In this context of Risk 
definition, quantifying uncertainty is a fundamental aspect associated with understanding 
the definition of Risk and its applications. 
 
The lengthy discussion presented on the topic of uncertainty provides a foundation for the 
understanding and communication of its integral component of Risk.  A review of Risk 
definitions is provided to show the contrast between Decision Theory (used in Optimal 
Inspection based LCM approaches) and those used in Risk Analysis. 
 
The manner that individuals, collective groups of individuals, or societies make decisions 
given uncertainties about an event or possible outcome varies from intuitive feel too 
sophisticated analysis and testing efforts and everything in between.  In any given Risk 
scenario and alternatives, there are varying degrees of uncertainty.  Humans have evolved 
learning based on experiences that become engrained as normative of our personal and 
collective experiences.  The normative set of what is safe or unsafe is a reference set of data 
as prior experience.  Experiences that are outside of the normative experiences are 
conditioned to pique our interest as a minimum and set up a fight or flight awareness to 
reflexive response if the observations are deemed significantly outside of the normative 
status quo. 
 
Thus, fear of the unknown outside the normative experience heavily influences decisions 
and is a major consideration, instinctively or cognitively, by those who need to make a 
decision and take action.  Most humans dislike the absence of certainty and are conditioned 
fundamentally (in DNA) to react to the uncertainty in instinctive ways (flight or fight) in 
the absence of real actionable information to make an informed decision.  These inherent 
feelings of fear of the unknown are fundamental to understanding how we benefit from Risk 
Analysis for guidance and how we respond in making decisions. 
 
Brown (2010) presents a researched viewpoint on how we view uncertainty with innate 
(gut) intuition. 

“Intuition is not independent of any reasoning process.  In fact, psychologists believe that 
intuition is a rapid-fire, unconscious associating process-like a mental puzzle.  The brain 
makes an observation with existing memories, knowledge, and experiences.  Once it puts 
together a series of matches, we get a “gut” [feel] on what we’ve observed. 
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Sometimes our intuition or our gut tells us what we need to know; other times it actually 
steers us to fact-finding and reasoning.  As it turns out, intuition may be the quiet voice 
within, but that voice is not limited to one message.  Sometimes our intuition whispers, 
Follow your instincts. Other times it shouts, You need to check this out, we don’t have enough 
information.”  

This discussion on intuition by Dr. Brown, as it relates to uncertainty and decision making, 
reflects an individual’s experience and related personality, and resources (time and money) 
to obtain information to reduce uncertainty.  Obtaining information and knowledge is 
intended to reduce uncertainty in making decisions.  One of the key elements of this 
dissertation and research, in general, is to provide a verifiable framework for presenting 
information on uncertainty, Risk, and a systematic decision process that, in some ways, 
mimics our natural ability to make decisions, only in a more quantified way. While those 
making decisions on major investments such as ship structure, and ship design and 
management in general, have considerably more experience than most people making daily 
intuitive based decisions, the basic process is similar in that quantified information is 
useful as a basis for making high-value decisions rather than relying solely on intuition.  
The quantified Risk-TOC process becomes supporting information to intuitional guidance 
for acceptable Risk.  This dissertation provides fundamental definitions and a framework 
for making decisions based on quantification of Risk, its underlying uncertainty, and 
consequences.  Understanding the fundamental human response to Risk and related 
aspects facilitates the communication of Risk and uncertainty in a manner that is intuitive 
to Decision Makers.   

Weisberg (2014) also describes this inherent, instinctive response to uncertainty; 

 “…, imagine that you are sitting comfortably and reading this book, suddenly, you hear a 
very loud bang.  Instantaneously, your startle response kicks in, precipitating a number of 
programmed reflexive reactions.  Your senses are oriented to determine the source of that 
disturbance, and your body is ready for “Fight of Flight.  During the eons, when hominids 
were evolving, these extreme reactions were highly adaptive.  In a sense, the noise was 
interpreted to mean there was a high “probability” (or likelihood) of danger.” and action is 
required to minimize, mitigate or avoid unwanted consequences. 

These experiences outside of the normative learned knowledge and emotional, instinctive 
response base typically requires us to “pay closer attention” to the situation and 
instinctively collect more information through our heightened senses and then go back to 
what we were doing if the data collected warrants an all-clear decision.  We typically need 
additional observations because there is a perceived deviation from the normal experience 
creating uncertainty in the overall situation.  While not everyone has the same reaction to 
this uncertainty, it does provide awareness when we do pay attention to our inner 
questioning of an unfamiliar situation.  This uncertainty that peaks our awareness is the 
underpinnings of the uncertainties associated with a Risk Analysis and its interpretation 
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presented in this dissertation.  Given the importance of uncertainty as a major component 
of Risk, it is beneficial to understand uncertainty, its sources, and definitions.  This 
understanding of uncertainty will help in defining, understanding, and communicating 
Risk. 

4.2 Definition of Uncertainty in Risk Analysis 
 
Webster’s Dictionary defines uncertainty as doubt or the opposite of certain.  If events are 
certain, the likelihood that events or outcomes will occur is certain; therefore, there is no 
Risk.  Uncertainty may take many forms from near certainty to no knowledge or 
information, including ignorance that we do not know anything about a future event or 
decision. 
 
4.2.1 What We Know and Don’t Know 

…in this world nothing can be said to be certain, except death and taxes.  Benjamin 
Franklin 1789 
 
The decision in Risk Analysis fall between two extreme cases depending on the degree of 
knowledge we have about the outcome of an event and our actions.  We may have little or a 
lot of information or any amount in-between.  A range of knowledge may be described as: 
  

Complete Ignorance – (Unknown-Unknowns) - as in chaotic events, rare events, 
and black swans 

Ambiguity- (Confusing Known-Unknowns) unknown probabilities or conflicting 
probabilities, fuzzy data 

Partial Knowledge – (Known – Unknowns) - Quantifying aleatory and epistemic 
uncertainties with relative probabilities (variant being Unknown to us individually 
but Known by others)   

Full Knowledge – (Known-Knowns) – Deterministic System with no uncertainty, 
(arguably, there is no such a thing as full knowledge in complex systems) 

In fundamental terms in the context of decision making, the Decision Maker must face the 
fact that there is uncertainty and then proceed to characterize the uncertainty to decide to 
collect more information or perform other actions required to characterize the uncertainty. 
 
According to Males (2002), uncertainty exists because of: 
 

Natural Variability: Nature is random (at our level of view) and is also known as 
aleatory uncertainty. 
 
Knowledge Gaps: Lack of knowledge, time or resources. Our knowledge, models, 
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analysis techniques and data are not perfect.  Our estimates of parameters and 
limitations of theory for models are not exact and are also known as epistemic 
uncertainty. 

 
According to Weisberg (2014); 

“By reducing all problems to matters of prediction, we are willfully ignoring ambiguity, 
Consequently, we tend to devalue the expert’s role in resolving ambiguity because it cannot be 
measured objectively” 

“Suppose, however, that we are dealing with a situation that is fraught with ambiguity.  Is 
predictive skill a valid standard for assessing expertise?  In such a context, it may be 
difficult or impossible to represent our uncertainty as a mathematical probability.  Forcing 
the expert to frame his uncertainty so precisely may be artificial.  Before this uncertainty can 
be placed on a numerical scale, it would be necessary to substantially resolve the ambiguity.  
The ability to resolve ambiguity productively is a much a hallmark of expertise as the ability 
to analyze preexisting data. 

The conceptual definitions of uncertainty presented herein are used to support decisions 
based on modeling and quantification in scientific and engineering quantities.  In 
engineering and science, uncertainty is quantified by the application of statistical 
principals of an event or event processes.  Uncertainty theories are also used where the 
information is not available in sufficient quantities to quantify stochastically.  In these 
cases, fuzzy logic and similar approaches are used.  Ayyub (2006) presents an overview of 
managing uncertainties, including ignorance, ambiguity, and fuzzy logic-based approaches. 
Ignorance is not having any knowledge or ideas about an event or process.  Induction is 
often used to infer the unknown from the known as originally proposed by Bayes (see 
Appendix B). 
 
4.2.2 Stochastic Uncertainty in Science and Engineering 
 
In the context of uncertainties and Risk in engineering systems, the general classification is 
divided into two categories: Aleatory and Epistemic uncertainties.  There are various 
descriptions of Aleatory and Epistemic uncertainties presented in the literature, including 
(Messec 2015, Ayyub 2006, Limbourg 2004, and Collette 2018). 
 
The descriptions of Aleatory and Epistemic uncertainties are summarized here with 
examples applicable to the uncertainties associated with Risk Analysis. 
 
1) Aleatory uncertainty refers to the inherent variability or randomness that exists in a 

physical process or physical characteristics of the system.  The inherent randomness of 
events and modeling variables are perceived as inherently random and are treated to be 
non-deterministic in nature.  The uncertainty, in this case, is attributed to the physical 
world because it cannot be reduced or eliminated by enhancing the underlying 
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knowledge base.  Examples of this type of uncertainty include strength properties of 
steel and structural wave loading of offshore structures and ships.  Aleatory uncertainty 
of a quantity can often be distinguished from other types of uncertainty by its 
characterization as a random value with “known” (inferred or implied) statistical 
distribution.  The exact value will change but is expected to follow the distribution.  
This randomness is a characteristic of the physical world as in material properties and 
wave loading on a fixed or floating structure.  Aleatory uncertainty is typically not 
reducible and is characterized in random process terms. 

  
2) Epistemic uncertainty is present as the result of a lack of complete knowledge or 

modeling of knowledge about a random process in many physical systems.  In this case, 
the magnitude could be reduced as a result of enhancing the state of knowledge by 
expending resources.  Sometimes, this uncertainty cannot be reduced due to resource 
limitations, technological infeasibility.  Epistemic uncertainties are unknowns in the 
modeling of a system or process reducible with more information or data.  The modeling 
uncertainty may be caused by insufficient data needed to develop the model, over-
simplification of a complex process (i.e., seakeeping and structural loads are produced 
by a random seaway and modeling the loading and response to the required accuracy 
requires more time and resources than may available) typically because of lack of 
information or data or general lack of complete knowledge about the system or process.  
The former is known-unknowns, the latter is unknown-unknowns or a type of ignorance. 
Epistemic uncertainty is not an inherent property of the system.  A gain of information 
about the system or environmental factors can lead to a reduction of epistemic 
uncertainty (i.e., by improved modeling).  Before we do this, we don’t have enough 
information to assume any possible model without neglecting that reality may be 
misrepresented.  Hence, epistemic uncertainty is our inability to model reality, with 
exact precision.  Epistemic uncertainties are generally not reducible at any given time; 
however, they may be reduced with additional information or new models. Epistemic 
uncertainty is often ignored, and some arbitrary distribution over the uncertain value 
stated as ”the best/most realistic/most intuitive”.  In many cases, the modeling error 
may be known and compensated for, as is done in reliability-based approaches 
(Stambaugh et. al., 2014b and Hageman et. al., 2019). 

  
An example epistemic uncertainty includes fatigue analysis used in design standards and 
guidelines, and aleatory uncertainties include test data from specimens subjected to cyclic 
loading with considerable uncertainty in response.  Another example of epistemic 
uncertainty includes the cumulative damage summation to compare fatigue loading to the 
structural damage response.  The variability in the test data from material and physical 
geometric properties produces aleatory uncertainty, while the damage modeling of the 
fatigue damage process produces epistemic uncertainty associated with the data scatter.  
Both examples have considerable inherent uncertainties related to the complex physical 
and material properties of the system.  These characteristics of uncertainties are inherent 
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in the processes and models and are fundamental components of the underlying 
uncertainties associated with Risk. 
 
Deterministic decisions related to events and outcomes associated with complex structures 
are rare due to the inherent aleatory and epistemic nature of the various stochastic 
processes involved.  Deterministic quantities (i.e., 30 FL) require the user to interpret or 
ignore the reality of the random nature of the environment ships operate and the 
randomness of the structure’s capacity to withstand the demand of the numerous 
uncertainties in SSLCM. 

4.3 Quantifying Uncertainty with Probabilities 
 
The following discussions on fundamental definitions of uncertainty are intended to be 
useful if not necessary in understanding uncertainty quantification, propagation, and 
mitigation associated with Risk Management.  In the context of Risk Analysis, probabilities 
are used to characterize aleatory and epistemic uncertainties in mathematical terms.  
Probability is a measure of the likelihood of something happening, and statistics are 
numerical measures that summarize and describe larger amounts of information.  A 
discussion on quantifying uncertainty is presented next to clarify how the uncertainty 
component of Risk is quantified, when information exists to do so, and enable efficient 
communication on Risk among Decision Makers. 
 

4.3.1 A Brief History of Probabilities for Context 
 
According to the history of probability and statistics provided by Wiesberg (2014), it was in 
the mid-1600s when Pascal developed mathematical definitions for the games of chance 
(odds ratio of a fixed data set) and equated them to mathematical definitions of 
probabilities.  Prior to that time, the word probabilities had been used to characterize the 
collection of evidence of observations in qualitative and subjective terms without any formal 
justifications or counting.  In the new context of games of chance, probabilities were 
calculated frequencies of outcomes with a known reference class of total observations (i.e., a 
roll of two dice, there are a fixed number of outcomes for the total in each possible roll).  
Laplace and others developed the mathematical definitions of probabilities of chance and 
further developed them into relative frequencies independent of any reference class.  These 
relative frequencies were then applied to other empirically random observations without 
context or full resolution of ambiguities of a total reference population with limited 
amounts of data for complex systems also requirements for contextual reference class to 
fully resolve the ambiguity of this disconnect the data sets reference class.  Bayes and 
Laplace provided additional context to a reference class of random data and is 
unfortunately defined by many as subjective probabilities even though the conditional 
information may be fully quantified based on past observed experience or prior information. 
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The point being made here is that probabilities are very insightful in characterizing 
uncertainties associated with observations in random processes; however, the contextual 
information, prior experience, conclusions about the observations, and decisions regarding 
uncertainty should also be considered in a larger perspective to reach informed decisions 
about uncertainties associated with Risk.  
  
4.3.2 Interpreting Probabilities 
 
Probability is a measure of the likelihood of something happening, and statistics are 
numerical measures that summarize and describe larger amounts of information.  Although 
in most practical problems the probabilities will have some amount of aleatory and 
epistemic uncertainties or even some amount of subjectivity, these probabilities must still 
conform to the underlying axioms of probability theory, including the Kolmogorov axioms 
(Kolmogorov, 1956), restated here as follows: 
 
1) The probability of an event occurring must be non-negative, 
 
2) The probability of an event which is certain to occur is 1, 
 
3 The probabilities of two or more mutually exclusive independent events (p(A∩B)=0) can 
be added, i.e. p(A∪B) = p(A) + p(B), 
 
4) The probability that two or more independent events will occur together in succession is 
the product of all the individual probabilities, i.e., p(A∩B) = p(A)⋅p(B) (joint probability), 
 
5) The conditional probability of event A, given event B, is defined by p(A|B) = p(A∩B)/p(B) 
on condition p(B) ≠ 0; if A and B are independent, p(A|B) = p(A). 
 
The first two axioms imply that the probability of an event occurring must be at least zero 
and no greater than 1. 
 
The following approaches describe the interpretation of probabilities: 
 

• Repeatable experiments (tossing a die, flipping a coin) generate odds/chance 
probabilities. 

• The probabilities may involve relative probabilities to particular outcomes in terms 
of limited experiments or information available. 

• Where there is a lack of exact experiments or only limited understanding of the 
process from prior experience, subjective probabilities are assigned.  According to 
the subjective view, the probability of an outcome represents the Decision Maker’s 
degree of belief that the outcome will occur and bounds of possible outcomes as 
examples. 
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The following Sections describe the approaches to quantifying uncertainties with the 
information available in probabilistic terms. 

4.3.2.1 Classical Probabilities  

In classical statistics, the probability of an event occurring is defined as the number of 
outcomes that lead to the event divided by the total number of possible outcomes given a 
fixed, known reference set.  This is referred to as a point estimate of probability and can be 
used to describe, for example, the chance that a coin toss will result in heads or tails, or the 
probability of throwing a two with a pair of dice or selecting a particular card from a card 
deck. For classical probabilities from a known set, the probability of drawing a Jack out of a 
standard deck of 52 cards is 4/52 = 0.0769 according to the classical approach for 
characterizing probabilities with a fixed, known reference set (i.e., the total number of 
possible outcomes is known prior to the trials or experiments).   

4.3.2.2 Relative Frequency Probabilities 

The frequentist view of probability defines the probability of an event’s occurring in a 
particular trial as the frequency with which it occurs in a long sequence of similar trials. 
More precisely, the probability is the value to which the long-run frequency converges as 
the number of trials increases, at least that is how the frequentists have developed modern 
statistical approaches.  In scientific and engineering applications, long-run frequentists 
probability measures are rare, and this is the case for ship structural analysis. Therefore, 
in most, if not all, scientific and engineering, uncertainty is characterized in terms of 
relative probabilities or relative frequencies often without due consideration to a true 
reference class for their application.   

Other names for relative probabilities include relative frequencies, experimental 
probabilities, and objective probabilities.  Relative probabilities are essentially the number 
of times an outcome occurs during an experiment divided by the total number of times the 
experiment is conducted.  There are two types of relative probabilities including those with: 

1) Measurements from tests and trials and statistical characteristics are statistically 
“significant.”  

2) Measurements from tests and trials that are not statistically “significant” or lack of 
knowledge about the reference set.  

The first type of measurements are typically defined as experiments repeated often enough 
to develop confidence the results are “significant” as defined by Fisher (1992)  This type of 
probabilities are often called objective probabilities and are associated with medical trials 
and product reliability where long-run tests or trials are conducted to develop volumes of 
statistical data to be quantified as “significant”  

The second type of measurement is very common in the shipping industry.  For example, 
fatigue test data is developed from other industries for specific applications and applied to 
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ship structures (i.e., Sieve et. al., 2000 and ABS 2017).  This approach has not fully verified 
in ship structures, especially for the more complex geometries of ship structural details and 
their specific loading profile (i.e., the fatigue tests are constant amplitude and the ship 
loading is random and non-linear).  This finding relates to the phenomena being measured, 
the reference class that is not known, and there are conditional probabilities and 
ambiguities not considered. 

4.3.2.3 Subjective Probabilities 

Because different people may have different information related to an event (i.e., different 
reference set basis), and the same people may acquire new information as time progresses, 
there is strictly no such thing as ‘the’ probability of an event in using relative probabilities. 
Different people or one person at different times may legitimately assign different 
probabilities to the same event.   
 
Similarly, when there is limited or no relevant statistical population (i.e., failure statistics), 
it is not possible to obtain an objective or relative frequency probabilities.  For problems 
that are not similar enough data to derive classical or relative frequency approaches, 
subjective probabilities are used.  Subjective probabilities include relevant probabilities 
from experience and opinions of possible outcomes.   

Subjective probabilities include:   

1) Prior probabilities are data from another, but similar source, i.e., fatigue test data 
used in other industries and wave heights used in fatigue calculations 

2) Conditional and marginal probabilities, i.e., Joint pdf of Hs and Tp used in Spectral 
Fatigue Analysis (SFA) 

3) Guesstimates, i.e., Small sample data from a similar application, Best Estimates of 
ranges perceived possible (Guesstimates), or Expert Opinion 

According to Males (2002) and Gedig, et. al., (2006), a subjective probability of an event 
involves a degree of belief or likelihood that a person has that it will occur, given all the 
relevant information currently known to that person.  A subjective probability is an 
expression of an individual’s degree of belief that a particular event will occur and may also 
be based on conditional probabilities.  Subjective probabilities vary from individual to 
individual, even when they have access to the same information.  Therefore, a subjective 
probability is a function not only of the event but of the state of information, including the 
perspective of the observer and limits that may be associated with the perspective.  This 
statement is especially important in interpreting relative probabilities and assessing the 
legitimacy of the reference set. 

For practical applications, the probabilities used to characterize and quantify uncertainty 
may be relative frequencies from a set of experiments (e.g., fatigue life testing under some 
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specified loading that may or may not represent actual loading), which becomes prior 
knowledge in subjective probabilistic based definitions.  

Although purely objective probabilities are desirable, testing and experiments in large 
complex structural systems is expensive to conduct to achieve a representative sample for a 
specific application and are rarely repeatable.  In ship structural applications, it is not 
economically practical to make new components, test them 1,000 times, and measure the 
frequency with which it succeeds—as is typical in aircraft and nuclear industries.  In many 
industries, objective probabilities are of limited application in decision problems because 
there are infinite possibilities and uncertainties involved in the problems (i.e., the reference 
class is difficult if not impossible to determine).  
 
For scientific and engineering applications, the probabilities used to characterize and 
quantify uncertainty may be relative frequencies from a specific set of experiments or in 
engineering applications of material test data (e.g., fatigue life testing under some specified 
loading that may or may not represent actual loading) which becomes prior knowledge in 
subjective probabilistic based definitions.  Successful scientific research and engineering 
should also include both quantitative and qualitative judgment on the researcher to propose 
creative hypotheses and contextualize the data analysis and their place in a reference class 
setting.   

The subjective conditional and marginal probabilities are combined using a Bayes approach 
to use prior and conditional knowledge and probabilities as a starting or reference 
perspective and updating the priors based on new data as it is obtained.  These definitions 
are important in how Risk and its uncertainty are quantified and communicated. 

According to Taghavifard et. al., (2009) 

“Purely subjective probabilities are used extensively in decision analysis for several reasons. 
In many cases, they represent the best information available to the decision maker.  When 
using subjective probabilities, it is beneficial to perform sensitivity studies to understand 
how the outcomes of a decision model changes in response to the chosen probability value. 
Often, sensitivity analysis indicates that major changes can be made to probabilities in 
decision models before affecting the recommended course of action. Finally, a systematic 
method is available in Bayes’ Theorem to test and refine the hypothesis suggested by a 
subjective or [conditional] probability as more information becomes available.” 

4.3.2.4 Summary of Interpreting Probabilities 
 
In summary, it is preferable to work with objective relative frequency probabilities; 
however, this is not always possible.  In using relative frequency probabilities, there are 
always questions about the population being examined or the model being used.  These 
uncertainties are typically either aleatory in nature or epistemic in modeling, as discussed 
later.  Often in practice, subsystem and component testing is performed, or analytical 
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constructs are proposed.  The experimental sample size of a data set is 1) estimated to be, 2) 
thought to be, 3) assumed to be, 4) hoped to be representative of the population, or similar 
application. 
 
According to Wiesberg (2014), in understanding the uncertainty as a component of Risk, 

 “Uncertainty is characterized by the amount of information and quality of that information. 
Uncertainty with complete ignorance refers to those situations in which no assumptions can 
be made about the probabilities of alternative outcomes under different states of nature”.  

Uncertainty with stochastic information on a random process is categorized as objective, 
relative, or subjective probabilities to possible outcomes.  The objective, relative and 
subjective probabilities may be based on test data in the former two cases or personal 
knowledge, intuition, or experience in the latter subjective case.  The process of decision 
making under conditions of uncertainty is effectively the same as decision making under 
Risk because uncertainty is a component of Risk.  Uncertainty with complete ignorance 
requires alternative approaches to the decision-making process including gathering more 
information.   

Extensive testing and research are often applied in the nuclear and aerospace industries 
due to both magnitudes of Risk (consequences) and economies involves.  However, in the 
marine industry, Risk based approaches that consider the broader range of uncertainties 
involved are still developing, and incentives are reduced do to perceived Risk (by complying 
with class rules), Risk transfer (to insurance companies), and short-term perspectives on 
the economics of profit.  In structural engineering, most decision problems concern unique 
events or one-off decisions.  Often, there are limited amounts of data on the failures of the 
entire system in the public domain (see Stambaugh et. al., 1987 and SSC website).  When 
no data exists ranges of possibilities and opinions are the only information available.  In 
cases of limited information, fuzzy set theory of probabilities may apply as discussed 
previously; however, additional research is required to formulate them into a quantified 
approach for Risk Analysis and decision making 
 
Probabilities range in quality (or confidence) depending on the amount of data available 
and are often included as either objective or subjective depending on the context and 
amount of data.  As Savage (1971) suggested, “when we have little data, we are 
Bayesianists, and as we acquire large amounts of data, we become frequentists.  For the most 
part, we are in the middle ground of partial data and relative frequencies not enough to be 
objective frequentists”, but not fully subjective guessing implied by the extreme view of 
Bayesianists.  Bayes’ interpretation of probabilities provides a valuable perspective for 
relative frequencies and can be updated as proposed by Reverend Bayes and presented by 
Reverend Price (1763).   
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Given the valuable insights into probabilities attributed to Bayes and the more strictly 
defined modern interpretations, a more in-depth discussion about what Bayes “said” and 
didn't “say” related to prior knowledge, updating given new evidence, and how the 
perspective has evolved to the version(s) we know today is presented in Appendix B.  This 
discussion may be helpful to others in search of Bayes’ philosophy and its relevance in 
understanding the context of relative and subjective probabilities and their influence on 
uncertainty and Risk. 

The main point here is that in uncertainty quantification, the degree of certainty varies 
among Decision Makers depending upon how much knowledge each one has about the same 
problem.  This also reflects the differences in the perception of solutions by everyone 
involved in the decision process.  This awareness of uncertainty becomes even more acute in 
decisions with significant financial implications.  Probabilities are useful in quantifying 
uncertainties in an event or outcome and form a common reference frame for Decision 
Makers. 

Figure 4.1 presents A schematic relationship of the uncertainties discussed here in the 
context of Risk definitions. 

 
Figure 4.1 – Types of uncertainties contributing to Risk 

 

4.3.3 Interpreting a Range of Uncertainty Using Probabilities 

A range of outcomes for a future event includes two extremes. One extreme on this scale is 
deterministic certainty (P = 1 or 0).  The opposite extreme is pure uncertainty (i.e., 50/50 
chance and a uniform probability distribution).  Between these two extremes are problems 
with varying amounts of information to characterize uncertainty and make a fully informed 
decision.  
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Figure 4.2 shows examples of both discrete and continuous probabilities varying in degrees 
of uncertainty to certainty of the probability.   For example, 4.2(a) the discrete probabilities 
A, B, C with equal values indicating all are equally likely to occur with maximum 
uncertainty.  Example 4.2(b) shows a slightly higher level of probability, and example 4.2(c) 
would seem to indicate B is by far the most likely and more certainty in choosing that 
option if it related to a decision process.  Similarly, the examples of 4.2(d) is a uniform 
distribution of probabilities with equally likely probabilities and no clear choice, 
maximizing uncertainty, followers by example 4.2(e) appearing to have a useful mean value 
and 4.2(f) showing a high probability with narrow distribution of probabilities and more 
certainty in making a decision, over example 4.2(e) with wider range of probabilities.  
Assuming examples 4.2(e) and 4.2(f) follow a normal statistical distribution, example 4.2(f) 
will have a much smaller standard of deviation indicating a narrower range of probabilities 
and again, an indicator of the amount of certainty we might have in the mean value of the 
continuous distribution.  Although these concepts are fundamental in statistical analysis, 
they are crucial in understanding and characterize the uncertainty (estimated by 
probabilities) in Risk Analysis and decision making, as presented in this dissertation. 

 

 

Figure 4.2 - Illustration of quantifying of ranges of uncertainty in terms of 
discrete and continuous probabilities (Redrawn in part from Arsham, 2019) 

The implication of the characterization of uncertainty is important in understanding risk, 
information, and decision making.  The uncertainty characterized by a uniform distribution 
of probabilities reflects the maximum amount of uncertainty.  The flat uniform distribution 
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of probabilities has the largest uncertainty (i.e., all outcomes are equally likely); therefore, 
the largest Risk.  In such a case, the quality of information is at its lowest level.  In 
statistical terms, the quality of information and variation are inversely related.  
Specifically, the larger the variation in data implies lower quality data (i.e., information).  
The more centralized probabilities (and smaller variance) reflect a higher amount of 
certainty available to calculate Risk and make informed decisions.   It follows that the more 
information we have to characterize the uncertainty with probabilities and reduce its 
variance or dispersion, the more confidence the Decision Maker will have in the decision.  
Gathering the information in terms of data collection or experiments are intended to reduce 
the uncertainties in a process or observations of a process.  Concepts of initial uncertainty 
(Bayes and Jaynes prior distributions), information gain (Shannon Information Entropy), 
and information updating are discussed in more detail in later Chapters of this dissertation 
for further understanding of this topic on quantifying uncertainty as a fundamental part of 
Risk. 

When a range of possibilities exists for an outcome, then the estimates of probabilities are 
expressed as either a discrete probabilities, histograms, or continuous curve known as a 
probability distribution.  Certain shapes of distributions occur frequently and are useful in 
many circumstances because they describe many phenomena quite well. The Gaussian or 
Normal Distribution (the bell-shaped curve) is an example of a probability distribution. 
Statistical distributions are characterized by parametric measures.  Typical measures are 
the mean and the standard deviation. Such measures are called the parameters of the 
distribution.  Confidence intervals (or Confidence bounds, Confidence limits) describe a 
range of certainty about estimates (e.g., 95 percent certainty) that the E(V) of a distribution 
of data or outcomes lies between the values of X and Y.  Standard deviation and confidence 
interval are ways to describe the dispersion of the data set with variations discussed above.  
The larger the standard deviation and the range of confidence level (e.g., 95 percent), the 
less certainty there is about an estimate as described by Walpole et. al., (2012).   
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5.0 PROPOSED RISK ANALYSIS AND TOC 
APPROACH 

Risk and uncertainty definitions often vary depending on the discipline, including Decision 
Theory and Risk Analysis.  This chapter presents a summary of Risk definitions common in 
the Risk Analysis and Management disciplines and how these definitions are applicable to 
Risk communication in SSLCM.  

5.1 Risk Overview 

Risk Analysis is a technique for identifying, characterizing, quantifying, and evaluating 
hazards.  It is widely used to support resource allocation decisions.  The estimation of 
probability or frequency of hazard occurrence depends greatly on the reliability of the 
system components, the system as a whole, and human-system interactions.  There are two 
major parts of quantified Risk Analysis: 
 

 Determination of the probability of an undesirable event (typically failure). 
 Evaluation of the consequence of the hazardous event. 

 
According to Ayyub (2003),  

“Risks to a system may result from its interaction with natural hazards, its aging and 
degradation, or from human and organizational factors.  Consequently, Risk can be 
classified as either voluntary or involuntary, depending on whether or not the events leading 
to the Risk are under the control of the Risk.  Society generally accepts a higher level of 
voluntary Risk than involuntary.  The losses associated with events may be classified as 
either reversible or irreversible, depending on whether the loss is of property or human life, 
respectively.  Choosing the target Risk level should minimize total expected costs over the 
service life of the structure and for dealing with a design for which failure results in 
economic losses and consequences.”  

In general, there is a wide range of Risk Analysis methods and related theories.  However, 
in quantified engineering based Risk assessments, the likelihood of an event is expressed in 
terms of probability, Pi, of that event.  Consequence, Ci, is a measure of the impacts of an 
event.  This can be in the form of mission loss, cargo damage, number of injuries, number of 
fatalities, environmental, political, and societal damages (Ayyub 2003).  The results of Risk 
estimation are then used to interpret the various contributors to Risk, which are compared, 
ranked, and placed in perspective.  The Risk assessment for an individual Risk, Ri, and the 
total Risk, R, can be obtained by applying the following two equations (Ebeling 2010, Ayyub 
2003, Moderes 2006): 
 
 Risk(i) =P(i)* C(i)  (18) 
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for a possible event, i in a system with N Risk identities and the Total Risk is, 
 

𝑅𝑖𝑠𝑘 = 𝑃( ) ∗  𝐶( )  

 
(19) 

 
for all possible events n in a system at a specific time T. 
 
Although this is the fundamental equation for quantifying Risk, the Risk Managers and 
Decision Makers may consider a number of other Risk processes depending on the 
application.   
 
In the prior discussions on Decision Theory (Chapter 3), concepts of E(V), E(U), and Risk 
are interchanged as equal concepts.  In contrast to Decision Theory discussed previously, 
Risk Analysis involves the quality, quantity, and subjectivity of the information are factors 
in the Decision Maker’s choice of mitigation approaches, as discussed by Yoe (2000).  With 
probabilistic approaches to Risk assessment, the Risk estimates are not limited to an 
Expected Value E(V) or Expected Utility E(U) and must also provide a sense of the range of 
possible outcomes across events and alternatives.  Simulation-based Risk Analysis involves 
being able to assess a range of uncertainty parameters, probability distributions (where 
known), and time-based continuous stochastic processes.  In Risk Analysis, probabilistic 
information and distributions are often used to capture all known outcomes for a set of 
scenarios or options to make an informed decision based on their estimated benefit.  Risk 
Analysis provides complete assessments of Risk because it is based upon a range of 
probabilistic information for each scenario (rather than a single E(V) or discrete outcomes).  
The output from a Risk Analysis takes the form of quantified ranges of measures 
representing a range of uncertainty associated with the scenario outcomes.  Risk and 
related quantified effectiveness of Risk mitigation strategies are defined here in a much 
different way than in Decision and Utility Theories.   

Risk in engineering applications presented in the literature (see Yoe 2000 and Ayyub 2003) 
define quantified Risk as: 

 Risk = Pf*Cfailure  
 

(20) 

In contrast to Decision and Utility Theories, Risk is characterized by the product of 
stochastic uncertainty (i.e., probability of failure Pf) and the potential for unwanted 
consequences (Cfailure) associated with the failure outcome.  Quantifying Risk in terms of 
probabilities and uncertainty reduction becomes relatable to the definitions, as discussed 
previously.  Risk defined in this manner is easy to communicate, an essential part of any 
Risk Analysis. 
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According to Yoe (2000) and DHS guidance (2011), Risk management actions include 
acceptance, avoidance, control, and transfer.  In ship structures, Risk Management includes 
acceptance and, to a lesser extent Risk control.  Approaches for Risk avoidance by proactive 
measures have relied on prescriptive rules and experience.  The ability to quantify the time-
dependent degradation, serviceability, ultimate failure, and their associated costs provides 
an approach for determining EOSL and proactive measures that save on long term TOC as 
discussed in the following Chapters. 

Target Risk levels are useful to evaluate acceptable Risk; however, they should not used as 
the sole objective for decision making.  Risk involves evaluating both the probability of 
failure and consequences.  In this trade-off, the selected probability of failure level is 
determined on a structural component and global level. 

Occurrence probabilities (which can be annual) and consequences can be plotted as 
acceptable failure probability limits.  An example set of Risk limits is presented by Tammer 
et. al., (2013) and shown in Table 5.1.   

Table 5.1 - Example of annual Risk Assessment criteria 

 
Frequency 
Category 

 
Range 

 
Severity 
level 

 
Severity  
M Euro 

Consequence Range 

Environment
Range 

(1000 bbl) 

Personnel 
onsite 
Range 

[#people] 

Personnel 
external 
Range 

[#people] 

Personnel 
range 

additional 
criteria 

[#people] 
Likely 

 
>10-2 Moderate 0.2 <0.01 - - - 

Unlikely 
 

10-2-10-3 Serious 0.2 - 2 0.01 - 1 1 - 99 1-9 - 

Very 
unlikely 

 

10-3-10-4 Major 2 - 10 1 - 20 100 – 499 
[1] 

10-99 
[-] 

<500 

Extremely 
unlikely 

10-4-10-5 Catastrophic 10 - 100 20 - 200 500 – 999 
[2-5] 

 

100-999 
[1] 

<1000 

Remote 
 
 

<10-5 Disastrous >100 >200 >999 
[>5] 

>999 
[>2] 

>1000 

In Table 5.1, the number between closed brackets […] denotes the number of fatalities 
corresponding to the defined consequence level.  

5.2 Quantifying Risk as part of the Risk-TOC Approach 
 
When assessing and evaluating uncertainties associated with an event, Risk is broadly 
defined as the potential for loss as a result of a system failure.  This Risk can be measured 
as a pair of factors, one being the probability of occurrence of an event and the other being 
the possible outcome or consequence associated with the event’s occurrence.  The 
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probabilities provide a relative measure and safety factor between serviceability and 
catastrophic failure.  
 
In Risk Analysis proposed here for SSLCM, Risk of system loss (RiskLoss) is defined as the 

sum of the product of the probability of failure (Pf) and cost of consequences of failure 

($CFailure) written as: 

 

𝑅𝑖𝑠𝑘 = 𝑃𝑓( ) ∗ $𝐶  ( ) 
 
(21) 

 
The Risk of loss and consequences of failure are defined in terms of a system loss (ultimate 
limit state failure of the hull girder) and include monetary, human, environmental, and 
political costs of major significance.   Risk of loss includes the cost of a significant or 
catastrophic failure that includes significant financial loss from non-availability for service, 
or loss of the asset and crew at the extreme.  This is not intended to be the cost of a fatigue 
crack repair as in most (if not arguably all) Decision Theory based approaches, as discussed 
in Chapter 3.0. 

The Risk of failure and loss terms considerations include probability of failure, cost of Ao, 
cost of asset loss, and the invaluable loss of people (the extreme end of the Risk exposure 
spectrum) as shown in Figure 5.1  Specific applications have unique considerations in 
consequences such as the magnitude of asset availability loss, repair magnitude, and loss of 
life (e.g., one, most, or all crew) provide a range of consequences with preferences on Risk 
associated with each.  The failure consequences also depend on the failure mode.  For 
example, severe corrosion damage may involve lower consequence costs than a brittle 
fracture in considering a range of physical damage, human lives, environmental or political 
implications.  This range of consequences provides an approach for quantifying a 
consequence utility function associated with the system rather than predetermined or 
arbitrary utilities from the literature on Utility Theory as described previously.  Additional 
discussion on this aspect of Risk consequences is presented in Chapter 6.0 examples. 
 
Although not specifically addressing human error (and often related black swans 
Hajikazemi et. al., 2015) in this dissertation, extending Risk-TOC to include this is 
certainly possible.  Suffice to propose that working through a systematic Risk Analysis will 
identify key failure events and associated lead to Risk elements that will reduce human 
error occurrences with mitigations and contingencies in place to reduce the Risk exposure. 
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Figure 5.1 – Naval ship structure Risk considerations 

 

5.3 Quantifying TOC as part of the Risk-TOC Approach 
 
Total Ownership Cost (TOC) definitions are presented next along with the uncertainties 
associated with TOC. 
 
5.3.1 Total Ownership Cost  

Structural LCC and TOC models have been proposed by Temple et. al., (2013), Frangopol et 
al. (2012), Hecht (2004), Gratos (2005 and 2009), US Navy (2012), USCG (2002) and the US 
Government Accountability Office (GAO 2009). 

In TOC, the Total Ownership Costs are defined as: 

 TOC= ∑$CLCC (R&D, Design, Acquisition, Operation, Support, 
Disposal) 
 

(22) 

  +∑$Cpm (preventative maintenance) 
   +∑Pf*$Csr (serviceability failure repair) 
   +∑Pf*$Cna (non-availability) 
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Including the cost of serviceability failure in TOC, is a new approach relative to any other 
Optimal Inspection approach where this quantity is used as a Risk quantity.  Serviceability 
failure is not the ultimate Risk in terms of failure and consequences (e.g., brittle fracture) 
but does have a significant effect on TOC. Total Ownership Cost also includes the costs of 
Risk avoidance, mitigation, transfer, contingency, or sharing actions, typically part of Life 
Cycle Costs. 
 
The LCC, largest component of TOC, is defined by the US Government Auditing Office, 
GAO (2009) as;  
 
“life-cycle cost estimate that provides an exhaustive and structured accounting of all 
resources and associated cost elements required to develop, produce, deploy, and sustain a 
particular program.  The life cycle can be thought of as a “cradle to grave” approach to 
managing a program throughout its useful life.  This approach entails identifying all cost 
elements that pertain to the program from initial concept all the way through operations, 
support, and disposal.  An LCC encompasses all past (or sunk), present, and future costs for 
every aspect of the program, regardless of funding source.  LCC estimates enhance decision 
making, especially in early planning and concept formulation of acquisition.  Design trade-
off studies conducted in this period can be evaluated on a total cost basis, as well as on the 
performance and technical basis.  An LCC estimate can support budgetary decisions, key 
decision points, milestone reviews, and investment decisions.  The LCC usually becomes the 
program’s budget baseline.  Using the LCC to determine the budget helps to ensure that all 
costs are fully accounted for so that resources are adequate to support the program. DOD 
identifies four phases that an LCC must address: research and development, procurement 
and investment, operations and support, and disposal.  Civilian agencies may refer to the 
first two as development, modernization, and enhancement and may include in them 
acquisition planning and funding.  Similarly, civilian agencies may refer to operations and 
support as “steady state” and include them in operations and maintenance activities.  
Although these terms mean essentially the same thing, they can differ from agency to 
agency.” 

In the Risk-TOC approach proposed in this dissertation, expected maintenance costs are 
included in Total Ownership Costs, and the Risk failure of the structure is defined in more 
severe catastrophic terms in contrast to prior Decision Theory based approaches discussed 
in Chapter 3.0 

Temple and Collette (2013) present the total lifetime maintenance cost for a ship, CT, as the 
sum of four different values: 

CT = CF + CC + CS + CFR       (23) 

In the equation: 
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CF is the costs due to fatigue damage,  

CC is the total cost due to corrosion damage,  

CS is the costs associated with maintenance, and  

CFR is the total costs charged for the method used to perform any repairs (i.e., 
maintenance done at drydock versus that done while pier side).   

Each of these costs is the sum of the corresponding yearly costs over the service life of the 
vessel.   

Another cost to consider in TOC is the cost of lost Operational Availability (Ao) if the ship is 

not able to perform its intended service or Cna for Costs of non-availability.  All ships have 
expected levels of operational availability (Ao), and there are costs associated with 
maintaining the required levels of availability.  Downtime for dockside repairs extended 
dry-docking (if that is when damage is discovered), or emergency dry docking all have a 
significant impact on this availability and Operation and Maintenance (OM) cost.  Time out 
of service can be related to the cost of the availability of the asset.  These are lost 
opportunity costs and may be estimated by the true lost costs in profit for a commercial ship 
or societal benefit in the case of a military ship.  Alternately, this cost can be estimated 
based on willingness to pay bases on the ship's value and service life in days to arrive at a 
daily rate for Ao.  For example, a ship valued at $500M and a 30-year target service life 
results in approximately $50K/day loss in opportunity costs if the ship is not able to 
operate.  This cost is additional to repair costs.  Another model of asset availability includes 
constructed costs (i.e., crew and support costs) and lost opportunity costs (i.e., cost 
implications of missions not conducted of cargo not transported).  Other economic and 
societal costs may also be impacted.  Additional costs and associated consequences occur if 
other assets are not able to fill in if there is a significant gap in asset availability.   

For a Risk and TOC based evaluation of service life, the ability or inability of being able to 
execute a Service Life Extension Program (SLEP) is included in the TOC definition.  A 
SLEP has the potential to return significant cost savings when compared to a 
recapitalization of an asset if the condition of the existing hull structure is sound.  Inclusion 
of SLEP cost savings should be considered in TOC on equally extended timeframes; 
however, this has not been discussed in the TOC context by prior approaches.  Both Ao and 
SLEP additions to TOC are quantified as a function of time and are considered herein as 
TOC+ implying an extended definition of TOC. 
   
TOC elements proposed for a Risk-TOC analysis are summarized in Figure 5.2 
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Figure 5.2 - Naval ship Total Ownership Cost considerations 

5.3.2 Uncertainties in SSLCM Cost Estimates  

The uncertainties associated with cost estimates have been considered in ship construction 
by Brown (2009) and many others in terms of financial Risk approaches, including Savage 
(2012), Hubbard (2009), and the GAO (2009).  Full implementation of the Risk Analysis 
includes the statistical evaluation of the cost uncertainties. 

As described by Yoe (2000),  

“traditional single point cost estimates are made without considering the full range of 
uncertainties associated with the estimate.  When the estimating process is complete, the only 
certainty that can be assigned to a single point cost value is that it is going to be wrong.  The 
actual single point cost estimate will either be higher or lower than the estimated value.  The 
single-point estimate is a single value that does not include all that is known or uncertain 
about the costs of complex structural systems operating over a life span of decades.  
Engineers and Risk Analysts must interpret and analyze information in order to get to a 
single number with significant loss of information about the uncertainty of the estimate, 
leaving the estimate’s true value subject to interpretation by others without critical reference 
information. One of the critical differences of single-point cost estimates is that they do not 
address or provide all that is known about a cost estimate required to make an informed 
decision.”   

Probabilistic based cost estimates provide useful information than a single-point estimate.  
Probabilistic based estimates can reveal best and worst-case scenarios and characterize the 
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variation in possible cost outcomes and Risk exposure as determined by the appropriate 
Risk measures.  

In summary, traditional single point cost estimates are less reliable for decision making as 
those based on probabilistic (Risk based) methods that attempt to quantify uncertainty.  

The sources of uncertainty in the cost analysis depend on the complexities of the system 
being modeled.  Generally, variables in a complex cost model should be considered as 
uncertain in a stochastic context.  The typical sources of uncertainty in cost estimates often 
relate to the quality and quality of cost data because ships are not built in sufficient 
numbers of the same type.  The modeling of uncertainties is also often limited to simple 
regression models with basic characteristic parameters associated with weight, power, and 
volume of the ship.   

The analysis of uncertainties in cost modeling should also consider correlations in the 
uncertainties of the Risk calculation given the interrelationships of the cost estimation 
process by functional groupings and their physical characteristics.  Typically, cost 
estimating parameters are utilized to estimate the singular components of a ship's total 
cost estimate and repair.  If cost elements rely on the same parameter (for example, weld 
costs based on the length or weight of the structure), they are parametrically correlated.  In 
this example, a change in the weight value leads to a change in both cost estimates.  This is 
called implicit or functional correlation, as it is introduced through the cost model itself.  
For example, there are often situations where cost elements are related by other direct 
parameters.  This will be the case if the components are made from the same material or 
share common pricing factors and trends in the same manner and proportion.  Without 
accounting for correlation, combining distributions for multiple parameters will result in an 
unrealistically high variance of the final estimates of the range of uncertainty, typically 
characterized by the variance of the stochastic outcomes.  

Assuming suitable statistical distributions are found to model the uncertainty in cost 
estimate components, (derived, simulated, or assumed) for all uncertain input variables, 
the analyst’s next task is to use a Monte Carlo simulation-based approach in order to 
estimate the distribution of the total results.  

Further examples of the uncertainties associated with costs and modeling are presented by 
Brown (2008, 2009), Kirkwooda et. al., (2015), Bakhshi et. al., (2015), Duffey, et. al., (1999), 
and Neumann (2015). 

5.3.3 Expected TOC  

In the context of cost Risk Analysis, proposed definitions of TOC and related uncertainties 
in the estimate are defined as the Expected TOC, written as E(TOC), and related terms 
identifying the range of uncertainty in the estimate.  In Risk Analysis, TOC, and E(TOC) 
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are used to characterize and quantify the range of uncertainty in TOC estimates similar to 

E(Riskα) as described in Risk measures. 
 
5.3.4 Economics Based Definitions 
 
TOC estimates are subject to financial considerations of resource allocations with unique 
variations and even applicability depending on the application of short-term profit-taking 
or long-term sustainment.  An overview of the financial terms and approaches commonly 
proposed for forecasting and hindcasting costs are presented here. 
 
5.3.4.1 Net Present Value 
 
Major investments with future outcome projections are often evaluated by their Net 
Present Value (NPV).  This method can be used to compare results to alternative 
investments in Risk mitigation and cost avoidance strategies.  Although Risk Analysis in 
SSLCM is not a classical investment, the NPV may be defined as the sum of all present 
values of cash outflows and costs avoided discounted to a fixed point of time. 

Several structural life-cycle management-based approaches advocate NPV (Hecht, et. al., 
2003, Risia et. al., 2018, Kirkwooda et. al., 2015) in cost-benefit assessments.  A review of 
these NPV based approaches follows.  

Net Present Value (NPV) is defined as the value of all future cash flows (positive and 
negative) over the entire life of an investment discounted to the present minus the initial 
investment.  NPV analysis is used extensively across finance and accounting for 
determining the value of a business, investment security, capital project, new venture, cost 
reduction program, and anything that involves cash flow. 

 

𝑁𝑃𝑉 =
𝐶( )

(1 + ξ)
(𝑡)

− 𝐶( ) 

 

 
(24) 

Where Ct is the total of cash flows, Co is the initial investment, and ξ is the effective 

discount rate at time t. 

The effective Net Discount Rate is equal to: 
 
 

𝜉 =
1 + 𝑑

1 + 𝑖
− 1 

 

(25) 

ξ= {(1 + Discount Rate)/(1 + Inflation Rate)} – 1 



76 
 

d= Discount Rate 

i= Inflation Rate 

From extension of the basic definition of NPV definition to ship structural applications, 
discounting and aggregation of expected annual maintenance costs over total time T yields 
their estimated present as: 
 
 

𝐸(𝑇𝑂𝐶) =
𝐸(𝑇𝑂𝐶)( )

(1 + ξ)( )
− 𝐸(𝑇𝑂𝐶)( ) 

 
(26) 

 
Because the choice of effective discount rate ξ affects E(TOC) over time with some 
uncertainty, this parameter is typically part of a sensitivity analysis considering additional 
possibilities of discount values. 
 
Costs from planned and unplanned maintenance and availability costs are integrated into 
TOC.  In Risk Analysis context, E(TOC)NPVn is the stream of equal expected annual 
expenditures necessary to repair/replace the structure in question, and t is the time in 
years up to the reference life T of the structure.  Each component of E(TOC) must be 
evaluated as continuous (i.e., annual costs of crew, fuel, and maintenance) or discrete (i.e. 
midlife overhaul, service life extension, and disposal) expenditures or savings in these 
expenditures and associated NPV calculation approach. 
 
Furthermore, NPV is a frequently used method for evaluating investment opportunities; 
however, it does have some drawbacks that include sensitivity to discount rate changes 
over time and does not consider the Risks associated with these uncertainties. 
 
At the time of this writing (2020), the inflation rate is 2.44%, and the discount rate is 3.0% 
producing an effective discount rate of 0.55%, not very helpful or useful given future 
uncertainty in these numbers.   There will likely be other applications with a more useful 
discount rate to apply.  In the TOC examples presented, all costs are current-year 
estimates.  The sheer magnitude of investments involved and the natural RoI of the fatigue 
process produce more significant RoI implications without NPV analysis, and uncertainties 
in current year monies are sufficient to evaluate the Risk and benefits of Risk reduction 
scenarios.  See Kirkwooda et. al., (2015) for additional discussion on the NPV and RoI 
topics. 
 
Although a naval ship is not a classical equity-type investment made to earn financial 
profits (naval ships do not generate financial revenues), and in the absence of better 
methods, NPV can be applied in this context to cover inflation or alternate funding 
requirements.  The present value of money is often considered in large financial decisions 
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that involve expenditures over a length of time, typically of many years or even decades, as 
applicable for SSLCM.  Risk Analysis of alternatives investment strategies and magnitude 
of payback may be an important consideration to the Decision Makers.  Although the 
discount rate is most often used for NPV estimates, the Decision Maker(s) may have other 
investment opportunities that pay higher returns and costs adjusted accordingly. 

5.3.4.2 Return on Investment Formulations 

Although NPV is one approach for assessing the valuation of cash flows to present value 
typically applied in financial investment opportunities, the Return on Investment (RoI) is 
another approach for evaluating the alternative, independent scenarios. 

Risk Analysis is not trivial to implement because of the stochastic nature of the problem. 
The Risk-TOC approach proposed here-in was developed to include stochastic modeling for 
major elements of TOC and associated RoI analysis that can be used to assess Risk 
Management alternatives and technology insertion.  The important considerations for RoI 
in Risk Analysis include: 

• Decision Makers and technology providers need business cases that demonstrate 
the economic value of their technology,  

• These are “cost avoidance” business cases, which are not simple in NPV terms and 
require the calculation of RoIs,  

• Generally, prior proposed life-cycle cost models do not address the capability to 
calculate the stochastic RoIs needed to produce business cases as proposed in this 
dissertation.  

As described by Bakhshi et. al., (2015), cost savings, avoided cost, and opportunity cost are 
relative terms.  They have meaning only when comparing one outcome to another. 

The three terms, "cost savings," "avoided cost," and "opportunity cost" can play an 
essential role in business planning, budgeting, and decision support.  In the context of the 
Risk-TOC approach presented here for public governmental applications, the RoI of Risk 
mitigation strategies are based on cost avoidance, rather than money gained; however, in 
commercial applications, reductions in both Risk and TOC represent opportunities for long 
term profits in constrained freight rates or possibilities to increase profits through freight 
rate reductions and increased competitiveness. 

These relative costs only exist when comparing one cost outcome to another.  Typically, the 
magnitudes represent differences between relative outcome values.  In the context of cost 
analysis, three cost concepts include:   

 Cost scenarios are expenses not incurred or cost not already being paid, 
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 Avoided cost is also a cost-saving, but the reference is to a charge not yet incurred, 
 

 Opportunity cost is a foregone gain that follows from choosing one outcome over 
another 

According to Risia et. al., (2018),  

“like other cash flow metrics, RoI takes an investment view of the cash flow streams that 
follow from a decision and action.  Each of these metrics compares likely returns to the likely 
costs in a unique way and, as a result, each sends a message of its own about the cash flow 
stream.”  

Risk reduction is typically relative to the initial “Do-Nothing” baseline scenario for 
calculating the Risk for no mitigation options implemented.  The RoI may also be calculated 
for competing Risk reduction scenarios (i.e., different hull structure monitoring 
approaches).  The RoI calculation also provides a basis for the value of information and the 
expected value of the cost reduction or cost avoidance for the Risk mitigation actions (see 
Bakhshi et. al . 2015).   In SSLCM, the benefit is cost avoidance vs. profit as used in Risk 
Analysis in financial industries and applications. 
 
The output of the Risk-TOC analysis is the TOC of the system, and the Risk associated with 
each given scenario is evaluated based on RoI for implementation of technologies based on 
the merits of the methodologies, as discussed later.  In simple terms, Return on Investment 
(RoI) is calculated as the benefit-cost ratio of an investment: 
 

RoI = Benefit (of cost avoidance)/Cost 
 
where the benefit (Risk or costs avoided) of implementing a Risk mitigation strategy Si is 
the difference between the NPV of E(TOC) of the baseline (S0) and intervention (Si) 
scenarios, respectively. 
 
In the context of E(TOC), RoI is calculated as,  

 
𝑅𝑜𝐼 =

𝐸(𝑇𝑂𝐶) − 𝐸(𝑇𝑂𝐶)

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
 

(27) 

 
Where: 
 

E(TOC) So = Expected Total Ownership Cost for Risk mitigation scenario (o) 
at time T 

 
E(TOC) Si = Expected Total Ownership Cost for Risk mitigation scenario (i) at 
time T 
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As in TOC analysis, the costs of Si include not only initial implementation cost but also 
ongoing maintenance and availability costs: 
 
The payback period (when RoIT = 1) is the time necessary for intervention RoI to reach 
unity.  This is the point at which the NPV of the cumulative costs of the intervention.  The 
RoI is less than unity if the NPV of implementation costs of the intervention exceeds the 
reduction the intervention produces in the NPV of expected annual losses and Risks.  
 
Relative NPV in RoI analysis is calculated as: 
 
 

𝑅𝑜𝐼 , 𝑡 =
𝐸(𝑇𝑂𝐶) , (𝑡) − 𝐸(𝑇𝑂𝐶) , (𝑡)

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
 

(28) 

 
Where the NPV of E(TOC) is calculated as in Equation 26.   
 
In the Risk-TOC application, the cost of the investment is equal to the cost of implementing 
the new technology or management approach in the present time. 
 
In evaluating the range of uncertainty on TOC, the E(TOC) may also be accompanied by a 
conditional TOC as in E(TOC) and evaluated through to present value as described above.  
In this approach, both the expected and contingency costs are addressed for each Risk 
mitigation scenario being considered. 
 
5.4 Quantifying Uncertainties in Risk Analysis 
 
Beyond Expected Value and Expected Utility 
 
Decision making based Expected Value, defined as expected loss, falls under the category of 
the “Flaw of Averages” (see Savage 2012).  The approach recommended by Savage is to look 
at the user-defined worst case(s) based on the Decision Maker’s Risk limits and not the 
weighted average Expected Value when there is an expected range of uncertainty to 
consider.  The approach to consider a range of uncertain outcomes beyond Expected Value 
is another major difference between Decision Theory and its expected value and utilities 
(often referred to as Risk). 

The selection of a probability of failure for Risk Analysis depends on the application and 
Risks involved and the decisions to be made.  Risk Analysts and Decision Makers typically 
evaluate the costs of multiple alternative scenarios.  Questions related to the evaluation of 
scenarios include:  

 What quantities and variables in Risk and TOC are uncertain? 
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 What are the average costs, and what are their variances? 

  
 What are the contingency costs that can be estimated based on the range of 

unacceptable values and their probabilities? 

According to Males (2002):  

“If [full dimensions of] Risk is [are] explicitly taken into account, [the] added dimensions 
describing the [range of] uncertainty [in the quantified Risk] must be included. The 
uncertainty measures can be incorporated within each criterion, or separated out as separate 
criteria. Certain decision-making tools and techniques can make use of mathematical 
distributions associated with criteria, allowing the uncertainty measures to be handled 
directly, while others require that the uncertainty measures be considered separately, as 
distinct criteria.”  Further to Males, “The former approach is preferred. At minimum, the 
expected value… [and] the uncertainty in that value, is measured [estimated] as a criterion 
for all alternatives [of Risk mitigation options]”. [emphasis added by the investigator]. 

Therefore, Risk Analysis should include consideration of the range of uncertainty within 
expectations of the Decision Maker in choosing options to mitigate Risk.  In Risk 
Management, Risk Analyst and Decision Makers need to determine a measure of Risk.  
Three types of Risk measures commonly used in actuarial, financial, and engineering 
applications include Mean-Variance, Value at Risk, Conditional Value at Risk, and 
Information Entropy measures.   

5.4.1 Mean - Variance (in Uncertainty Characterizations) 

The magnitude and dispersion of uncertainty in Risk may be estimated based on the mean 
and variance of the dependent variables of interest if there is enough information to 
calculate the variance. Variance denotes the data dispersion through the whole distribution 
without differentiating the left or right tails. 

For example, two statistical distributions are illustrated in Figure 5.3 for Risk-TOC 
Scenarios A and B with different means and variances.  Risk-TOC Scenario A has a mean 
cost MA with a narrow distribution of potential costs because it is a well-known design with 
time-tested technology.  Risk-TOC Scenario B represents a newer untested Scenario, 
although it has a slightly lower mean cost MB, it has the potential to cost more or less than 
Risk-TOC Scenario A because the variance or uncertainty is greater due to further 
development and testing costs.  The range of uncertainty in Risk-TOC scenarios may be 
greater due to a number of sources of uncertainties (i.e., aleatory, epistemic or new design 
and technologies considered.   

Risk exposure can be reduced in more than one way.  The variance or dispersion of the 
distribution of Risk-TOC Scenario costs could be reduced by gathering additional 
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information.  Risk and TOC uncertainty (i.e., Risk exposure) may be reduced by a more 
accurate baseline Risk-TOC scenario estimate.  One estimate that is higher than the 
current mean or average of the probabilities or uncertainty may be better because the range 
of uncertainty in Risk-TOC Scenario might not be less.   

With the key sources of uncertainty in Risk-TOC scenario identified, the Risk Analysts are 
able to review a list of key inputs and trying to identify ways to affect those inputs 
favorably by reducing uncertainty and related Risk, generally by acquiring additional 
information.  

Developing the relationship of Mean-Variance among options or scenarios is the basis of 
Portfolio Theory as popularized by Markowitz (1952 and 1959).  The Mean-Variance of 
scenarios or options being considered for decision making is illustrated as dots in Figure 5.4  
In Portfolio Theory, the optimum value of Mean-Variance is related to ones that exceed the 
discount rate of return.  In Risk Analysis, the decision criterion is not as clear, but certainly 
insightful on a range of Risk options to consider.  

 

 

Figure 5.3 – Illustration of two ranges of uncertainty in continuous distributions 
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Figure 5.4 – Illustration of Mean-Variance comparison to find optimum in the 
non-dominated frontier  
 

5.4.2 Value at Risk Measures  

Measures of Risk, beyond expected value, are used to quantify the uncertainty associated 
with events that are relatively rare but still have significant consequences of producing 
high Risk.  This is known as tail Risk and tail moment-based decision criteria because the 
low probabilities occur in the tail of the probability distribution (if known) or relative 
frequencies of a data set.  The two most common variations of these tail measures include 
Value at Risk and Conditional Value at Risk.  There are a number of variations of these 
Risk measures found in the literature, (see Anderson et., al., 2014, Glasserman, et. al., 
2013, Krokhmala, et. al., 2011, and Sarykalin et al. 2008), and the two most common types, 
useful in the Risk-TOC application, are summarized next. 
 
Value at Risk, VaRα(X) is a lower frequency or percentile α of the random variable X.  The 
definition of α varies in the literature and involves a specific probability frequency, and 
Confidence Interval CI (α) is defined here as frequency percentile, typically CI, as a 
probability frequency.  The value of α of 5% is commonly chosen based on the standard 
significance bounds of CI when CI is 95%.  However, α may be chosen or optimized based on 
the specifics of the Risk, amount of information available, and the tail of the frequency 
distribution is known with confidence.  A similar measure for α could include a basis as 
multiples of standard deviations (i.e., 2σ) based on sensitivity to resulting Risk and also 
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subject to optimization if sufficient information is known about the uncertainties involved.  
The value of α may also be investigated to determine system sensitivity to outliers at values 
greater than three standard deviations as discussed by Walpole, et. al., (2012) and Soe 
(2006). 
 
One limitation of the VaR measure is that it does not reflect the Risk of scenario 
probabilities exceeding VaR.  This property can be both good and bad, depending upon the 
Decision Makers’ objectives.  For example, assessing relative Risk or maximum Risk if the 
tails are sufficiently well defined.  The indifference of VaR to extreme tails may be quite an 
undesirable property, allowing to take high unmanageable Risks.  

Another measure of Risk is conditional Value-at-Risk (CVaR). Conditional Value-at-Risk 
CVaRα(X) equals the conditional expectation of X subject to the integration of X(α) ≥ 
VaRα(X) with frequency of X at α, CVaR accounts for losses exceeding VaR.  In other words, 
Conditional Value at Risk (CVaR) is defined as the average value of the highest 1 – α 
proportion of the distribution of the sample set.  As in VaR, the parameter α here is usually 
referred to as the confidence level or confidence interval. 
 
Risk Management with CVaR functions can be done quite efficiently if the distribution tail 
information is known sufficiently.  CVaR can be optimized, while VaR is relatively difficult 
to optimize, but is a consistent relative measure.  CVaR provides an adequate picture of 
Risks reflected in extreme tails.  This is a very important property if the extreme tail losses 
are correctly estimated.  Conversely, CVaR may have a relatively poor performance 
compared with VaR if data or distribution tails are not modeled correctly. 
 
According to Tian (2008):  
 
“ VaR is a tail Risk measurement which is widely applied in quantitative Risk management 
for many types of Risk.  It is the “maximum” possible loss over a specified period at a given 
confidence level.  However, VaR does not give any information about the severity of the loss 
by which it is exceeded.  In contrast, another tail measure, CVaR, designates the magnitude 
of the tail “events” (Risk) by calculating the expected loss that exceeds the VaR.  Moreover, 
compared with VaR, CVaR and expected shortfall are coherent measures which satisfy the 
properties of monotonicity, sub-additivity, homogeneity, and transitional invariance”. 

It is possible to calculate the Confidence Interval (CI) in the probabilistic range of 
uncertainty and determine if the results will produce higher values at Risk and a look at 
the best and worst-case scenario of Risk.  With this information, the Decision Maker can 
then decide if the Value at Risk is too high and plan accordingly (i.e., avoid or mitigate with 
contingency). 
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5.4.3 Information Entropy and Risk 
 
Although the use of Mean-Variance and Value at Risk measures are useful approaches in 
characterization of uncertainty and cost trade-offs for a limited number of example values, 
more systematic approaches generalized over a large number of Risk and TOC scenarios 
will be beneficial.  The use of information entropy and cross-Entropy are proposed based on 
the formulations developed by research in the area of information theory as a Risk 
measure.  
 
A brief overview of Entropy and information Entropy according to Ormos et. al., (2014) 
includes,  
 
“Entropy is a mathematically-defined quantity that is generally used for characterizing the 
probability of outcomes in a system that is undergoing a process. It was originally 
introduced in thermodynamics by Rudolf Clausius to measure the ratio of transferred heat 
through a reversible process in an isolated system. In statistical mechanics the interpretation 
of entropy is the measure of uncertainty about the system that remains after observing its 
macroscopic properties (pressure, temperature or volume). The application of entropy in this 
perspective was introduced by Ludwig Boltzmann. He defined the configuration entropy as 
the diversity of specific ways in which the components of the system may be arranged. He 
found a strong relationship between the thermodynamic and the statistical aspects of 
entropy: the formulae for thermodynamic entropy and configuration entropy only differ in 
the so-called Boltzmann constant. There is an important application of entropy in 
information theory as well, and this is often called Shannon entropy… The information 
entropy quantifies the expected value of the information in a stochastic process… The more 
unpredictable (uncertain) a message provided by the system process is, the greater the 
expected value of the information is contained in the message.  Consequently, greater 
uncertainty in the messages of the system means higher entropy.”   
 
5.4.3.1 Information Entropy Formulations 
 
According to Shannon (1948), Information Entropy (SIE) is defined as: 
 
 

𝐻(𝑋) = − 𝑝( ) 𝑙𝑜𝑔 𝑝( ) 

 

 
(29) 

SIE will reach its maximum value of H(X) = log2 n for the uniform distribution, while the 

minimum of 0 is attained for a distribution where one of the probabilities pi is 1 and the 
rest are 0. In other words, high (low) levels of Entropy are obtained for probability 
distributions with high (low) levels of uncertainty.  
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Figure 5.5 – Illustration of Information Entropy for a simple binary system 
 
In Figure 5.5, information Entropy Η(X) of a fair coin flip is shown versus Pr (X= 1), where 
X = 1 represents a result of heads measured in Shannons or bits.  In this example, the 
information Entropy is at most 1 bit, and to communicate the outcome of a fair coin flip (2 
possible values) will require an average of at most 1 bit.  
 
Relative entropy, also known as the Kullback-Leibler (1951) divergence between two 
probability distributions on a random variable, is a measure of the distance between them. 
Formally, given two probabilities distributions p(x) and q(x) over a discrete random variable 
X, the relative entropy is defined as follows: 
 
 

𝐷(𝑋) = 𝑝( )(𝑥) 𝑙𝑜𝑔
𝑝( )(𝑥)

𝑞( )(𝑥)
 

 

 
(30) 

Joint entropy (Learned-Miller (2013), Cover et. al., (1991), and Abbas (2006)) is the entropy 
of a joint probability distribution or a multi-valued random variable.  If P(E,C) defines the 
joint probability distribution, then we write that their joint entropy is: 
 
 

𝐻(𝐸, 𝐶) = − 𝑝( , ) 𝑙𝑜𝑔 𝑝( , ) 

 

 
(31) 

Joint Entropy is essentially SIE in a computation over all possible pairs of the two random 
variables. 
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Joint information entropy is useful to infer uncertainty in the combinations of Risk-TOC 
uncertainties in each Risk scenario.  This joint Entropy assumes the independence of 
variable arguments.  
 
5.4.3.2 Information Entropy Risk Measures  
 
Entropy can be proposed in the area of Risk management, as described in Bowden (2007), 
Pele (2017), and Traian (2017). 
 
According to Bowden (2007), 
 
“Information Entropy [In Risk Analysis] is a more general measure of uncertainty than the 
mean-variance or distribution tail measures. [This is because] the entropy is related to 
higher-order moments of a distribution, unlike the variance or distribution tail measures, so 
it could be a better measure of uncertainty.  Both measures of entropy and the variance 
reflect concentration but use different metrics; while the variance measures the concentration 
around the mean, the entropy measures the dispersion of the density irrespective of the 
location of the concentration.  The entropy of a distribution function is strongly related to its 
tails and this feature is more important for distributions with heavy tails or with an infinite 
second-order moment [where] an estimator of variance is [not defined].” [Additions by the 
author] 
 
Information Entropy characterizes the uncertainty as a measure the dispersion of a random 
variable.  In this particular case, it characterizes the uncertainty in structural failure 
probability.  The main goal of this approach is to apply entropy as a Risk measure for Risk 
related uncertainty.  In Risk Analysis, SIE reduction relates to uncertainty reduction in a 
similar manner as standard deviation reduction.  SIE provides a measure for quantifying 
the reduction in uncertainty in;  
  

 (Expected) Total information Entropy, and 
 

 Conditional (Expected) information Entropy at Risk 

As with C(V@R), the conditional E(V) of SIE relates to the distribution above an exceedance 
value in the uncertainty in the distribution tail.  SIE is not sensitive to the distribution 
definition.  These definitions are analogous to the tail measures described previously with 
SIE being introduced to quantify the information gain or loss in the data. 

Kullback-Leibler (1951) divergence type of relative entropy may be used in characterizing 
the difference in information entropy in Risk reduction alternatives. 

Entropy is well suited to large complex systems analysis of Risk and TOC as the analysis 
progress toward automation of the calculations, and more Risk scenarios are considered 
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along with the ranges of uncertainty.  The SIE will likely become useful for aggregating the 
Risks from larger sets of variables with continuous distributions of uncertainties in multi-
variable space.  In this case, Joint Entropy will likely be useful in characterizing the 
uncertainty in a Risk scenario and relative differences. 

5.4.4 Summary of Risk Measures 
 
Estimating Risk scenarios and contingencies is another way to manage the range Risk 
exposure.  The Risk and TOC estimates can be established using the baseline cost plus a 
contingency that achieves the desired level of total cost required to mitigate Risk exposure.  
In this manner, the Risk and TOC Analysis are not based upon overly conservatively 
deterministic cost estimates, and the Decision Maker is then aware of the quantified range 
of Risk exposure beyond E(V) and E(U).  

In understanding the range of Risk exposure, improving the quality information is always 
desirable.  This includes improvements in the quality and quantity of the data upon which 
the Risk-TOC Scenario estimates are based.  There is no guarantee that more data will 
reduce the probability of any event; however, if the data collection is structured in a way to 
provide information related to uncertainty reduction, it will be useful and quantifiable in 
VoI terms.  The point being made is that for high Risk and uncertainty, the value of 
information gain is assessed based on the amount of uncertainty reduction even if it is a 
relative basis. 

In summary, the various approaches to evaluating the range of Risk exposure include: 
 

• Mean-Variance    
– Based on Portfolio Theory 
– Assumes Normal Distribution 
– No information about extremes/tails  

• Value at Risk and Conditional Value at Risk  
– VaR based on exceedance of a discrete value of importance 
– Provides no information above the limit 
– CVaR based on a discrete range of values above a discrete value 
– Characterized the distribution tail is best if that information is available 

• Information Entropy and Conditional Information Entropy 
– Expected Entropy is a characteristic a range of uncertainty in the total 

distribution 
– CiEVaR based on a discrete range of values above a discrete value 
– Not sensitive to distribution type  
– Best approach for characterizing extremes 
– Joint Entropy for multivariant distributions 

  
Figure 5.6 shows the progression of V@Rα at frequency of α, CV@Rα with α as a lower 
integration bounds, and similar information Entropy based integration quantities.   



88 
 

 
Figure 5.6 - Illustration of Risk Measures 

 
Figure 5.6 shows the outer limits of these bounds and illustrates their relationship to the 
outlier, rare, and black swan type events.  See Hajikazemi (2015) for more discussion on 
Black Swans. 
 
As the number of scenarios, alternatives, and CoAs increase in complexity and 
uncertainties accumulate, information entropy theory becomes a more attractive approach 
for characterizing uncertainty and changes in uncertainty associated with Risk.  The initial 
expected information entropy provides a reference for maximum ignorance in terms of 
Jaynes (1957) and Jeffery (1961).  The SIE theory provides a means of characterizing the 
amount of "surprise" associated with uncertainty putting more emphasis on the tails of 
distributions and their associated relationship with extremes and outliers falling into the 
category of surprise. 

One of the benefits of the VaR based methods is that the incomplete knowledge of 
distributions is very common, especially the information about the low probability of failure 
in the tail of the forecast probabilities.  Rare events may occur only one or two times in a 
lifetime, leaving little room to learn from experience.  However, in many cases, extreme 
events contribute to the Risks.  The extreme events, no matter how rare, could have a 
profound impact on Risk beyond E(V) and E(U), resulting in complete surprise and vastly 
underprepared for the events that aren’t really that rare.  This dichotomy is also known as 
the “Flaw of Averages” (Savage 2012) discussed throughout this dissertation. 
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5.5 Uncertainty Propagation and Markov Processes 
 

Understanding and quantifying uncertainty in stochastic terms is a process that also 
transitions through time.  This propagation of uncertainty over time is a forecast that must 
be evaluated with objective approaches and understanding of the extent of uncertainty as it 
propagates over time.  Ship structural reliability estimates are a means of propagating Risk 
and its uncertainties.  A knowledge-based sensitivity analysis with likelihood estimates as 
ensembles is one approach to propagating the uncertainties via an ensemble of structural 
reliability estimates.  The Markov process is also a useful approach in propagating Risk and 
uncertainty over time.  Both ensemble averaging and Markov processes are discussed next 
as they will later be applied in the context of Risk Analysis. 

 
5.5.1 Bayesian Model Averaging and Forecasting Uncertainty 
 
Structural reliability estimates are used to forecast uncertainty and are also used for 
probabilistic based analysis.  The full range of reliability forecasts, given various scenarios 
of input variables, provides an indication of the total uncertainty in the range of structural 
reliability forecasts and related parameters may be considered as equally weighted. 
Another approach is to weight each reliability forecast with a prior statistical weighting 
based on prior knowledge or as a sensitivity of prior information on the critical parameters 
as a function of a future time T.  The weighting of forecast parameters is also known as 
Bayesian Model Averaging (BMA) and is used in both environmental and financial 
applications.  See Lee et. al., (2017), Sloughter et. al., (2010), Kang et. al., (2016), Wright 
(2003), Hamill (2010) and Shackelford (2017) for more in the various applications of BMA. 
 
5.5.1.1 Bayesian Model Averaging 
 
According to an Oracle White Paper (2006)  

“The Bayesian [Model Averaging] approach combines the results of individual models. Each 
model is evaluated, and each model in turn tests a number of subsets of system and user-
supplied causal factors (price is almost invariably a causal factor).  All combinations of 
models and subsets of causal factors are assigned weights indicating their relevance.  Every 
combination contributes to the final forecast according to its weighting.  The reconciliation 
procedure ensures that the results meet the necessary constraint of the relationship. 

The Bayesian [Model Averaging] technique uses a methodology that can be described by 
the following equation: “ 

 F = w1 f1 + w2 f2 + wn fn  

 

(32) 

Where F is the final forecast where: 

 f1 refers to the forecast using model 1 
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f2  refers to the forecast using model 2 

fn refers to the forecast using model n, and wi is a weight given to model i 

and ∑wn = 1 

In a Bayesian setting, this becomes: 

 

 
𝐹(𝑖, 𝑛) =

𝑝(𝑓( )|𝑤( )) · 𝑝(𝑓( ))

∑ 𝑝(𝑓( )|𝑤( )) · 𝑝(𝑓( ))
 

 

(33) 

The value assigned for weight takes into account the residuals or the difference between 
the forecasted data in this example.  When determining the weight value, the model 
accuracy is typically used as a weighting factor.  This weighting factor may have Bayesian 
implications and the weighting approach used accordingly.  

5.5.1.2 Forecasting Uncertainty 

A practical approach for forecasting uncertainty is to use Bayesian Hyper Parameters 
(BHP) or Hyper-Priors with Latin-Hypercube sampling approach (see Modarres 2006, and 
Loucks et. al., 2005).  The proposed approach for forecasting uncertainties quantified in 
structural reliability consists of Bayesian estimates of expected weighted hyperparameters 
(BHPs) associated with the ensemble of reliability estimates.  This type of forecasting is 
BMA with BHPs.  In the context of Risk Analysis, the goal is to determine the Risk 
sensitivity and quantify its reduction according to the influence of changes in the BHPs and 
their reflection in the information gain and reduction of forecast uncertainty.   

The proposed approach given the range of primary factors driving uncertainty is to make a 
prediction for a range of the parameters in combinations in a Latin-Hypercube sampling 
format and use weighted probabilities for each possible combination of outcomes in the 
Latin-Hypercube.  This will in effect, provide a BHP based probability of failure at any 
specified time.  The probabilities are updated either a-priori for what-if propositions about 
the evidence or as the time progresses with measured data.  The prior probabilities are 
based on prior knowledge where available.   

An important consideration in the development of the hyper-parameters is their statistical 
independence.  The BHPs of environment, weld quality, and stress prediction are 
statistically independent parameters.  This statistical independence is essential for 
statically sound uncertainty propagation and its quantification.  However, if the hyper-
parameters are in fact, correlated, this must be considered in their combination to retain 
the appropriate statistically base uncertainty propagation. 
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In forecasting structural reliability or probability of failure to be more specific, the primary 
forecast hyperparameters include operational wave environment the ship will operate in, 
the quality of the analytical prediction of loading, and the initial quality of welding at the 
time of construction.  Initially (i.e., in design), none of these three major parameters are 
known with certainty; however, there may be relevant evidence from similar applications or 
other prior knowledge that may be useful to guide the uncertainty analysis, narrow the 
range of uncertainty in the forecast, or perhaps provide insights in “what-if” scenarios.    

Wave Environment, Design wave environment is assumed to dominate the prediction so 
is weighted most highly at the beginning of the design life; however, may have some 
considerations for prior information if known.  As time progresses, this information 
becomes clearer if measurements are made, and the weighted probability can be adjusted 
accordingly. 

Construction and Weld Quality, is not known at the time of construction with any 
quantified certainty so that we may assume a wide range of possibilities.  As time 
progresses, it becomes increasingly clear if the weld quality is an issue based on the 
number of cracks that may or may not have appeared early in the service life.  This is 
somewhat correlated with stress application; however, they are considered qualitatively 
independent in applications where loading is near design values.  

Stress Prediction, accuracy is reported to be in the 20% to 30% range (i.e., CoV) for most 
analytical hydrodynamic predictive techniques (see Stambaugh et. al., 2014b, Colette 2018, 
and Hegeman et. al., 2019).  The knowledge regarding stress experienced by the ship is 
assumed to improve in the future as measured data, and that information is used for 
validation of load and stress predictions.  Eventually, measured knowledge replaces 
predictions with measured data assumed here to be in the 5% to 10% CoV range near the 
EOSL. 

Although the various parametric forecasts used in the BHP predictions represent likelihood 
estimates, the weighted probabilities are not specifically conditional probabilities framed in 
the published Bayes equation (see eq. 33 and Appendix B) and used in many examples as 
specific conditional probabilities, they do represent the prior knowledge used to update the 
parametric predictions so do follow the general intent of the Bayesian inference approach 
where we update our probabilistic forecast based on prior probabilities in a BMA approach. 

In this application of BHPs, discrete probabilities represent the prior knowledge of 
weighted probabilities.  Although it is possible to develop statistical distributions of the 
BHP prior probabilities, at this time there is insufficient information to do so; therefore, 
limited justification for doing so based on limited data in terms of bias, scatter, and lack of 
knowledge about the statistical distribution.  However, the discrete probabilities represent 
real prior information to the extent that makes them useful in a forecast.   
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The BHPs may be chosen based on the knowledge of the Risk Analyst or Decision Makers.  
When prior knowledge is limited, the uniform distribution may be used in Bayesian (1763) 
perspective of uniform ignorance, maximum ignorance according to Jeffery (1957), or 
maximum information entropy as ascribed by Jaynes (1961). 

In the Risk-TOC application, this forecast approach intends to illustrate the impact of hull 
structure monitoring approaches in reducing uncertainty in probability of failure forecasts 
and resulting reduction in Risk over a range of time intervals. 

5.5.2 Markov Processes and Uncertainty Propagation 

Continuing the discussion on systems reliability, serviceability, and progressive failures in 
Section 5.5, propagating structural reliability on a systems-level over time involves a 
Markov process. 
 
According to Modarres (2006) and Ebeling (2010), a Markov process is a process that 
transitions from one state to another, and each state has the properties of independent 
probabilities.  A Markov process is a sequence or chain of events if: 
 

1) The outcome of each event is one of a set of discrete states, 
 

2) The outcome of an event depends only on the present state, and not on any past 
states. 

 
The probabilities from one state to another are called transition probabilities.  The 
transition process can remain in the state it is in, and this occurs with an initial 
probability.  Typically, an initial probability distribution specifies the starting state. 
Usually, this is done by specifying a particular state as the starting state.  This process is 
typically defined as an initial state of probabilities and is multiplied by a transitional set of 
probabilities for each possibility in the transition state.   
 
The Markov process is used in an example in Chapter 6.0 of this dissertation to determine 
the probability of crack growth over time given the ttc fatigue cracks shown in Figure 2.5 
that are predicted to grow through a transition in crack length as described by Lassen et. 
al., (2017), and the associated probability of detection.  The final product is the time-based 
probability where the fatigue cracks will grow undetected and potentially grow large 
enough to result in a brittle fracture.  Progressive failure and correlation of corrosion 
component failures may also be modeled as a Markovian process as described in general by 
Ayyub (2003) presenting an application in ship hull structural coating and corrosion.  This 
transition process is also associated with correlated progressive failures as they combine to 
transform total system failure.  Du et. al., (2017) propose examples of alternative 
approaches for reliability of complex structures with multi-parameter correlations. 
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5.6 Proposed Risk-TOC Approach 
 
The proposed Risk-TOC concept develops from the understanding that there is a trade-off 
between Risk and the cost to mitigate that Risk that influences SSLCM.  Furthermore, the 
decision process in SSLCM is unique as compared to prior proposals based on financial and 
economic based decision processes.   A new perspective is proposed here that relates 
specifically to SSLCM. 
 
The Risk-TOC approach is an overarching and intended for the evaluation of Risk and TOC 
in a framework to facilitate the assessment of all alternatives on a comparable Risk-TOC 
basis and quantified decision process.  The proposed Risk-TOC approach is a systematic 
method for evaluating all aspects of SSLCM depending on the information available to 
implement the approach. 

5.6.1 Risk-TOC Considerations and Implications 

Risk Analysis in SSLCM and related mitigations decisions involve trade-offs in Risk and 
TOC.  All else being equal (i.e., actions and interventions) maintenance elements of TOC 
typically increases with service life just as does Risk when structural degradation 
progresses from the effects of fatigue and corrosion.  The varying time effects on TOC 
include possible serviceability failure and related loss of availability when excessive 
maintenance is required.  Often, interventions are required to reduce both Risk and TOC in 
SSLCM.  The definition of TOC itself implies a total lifecycle perspective.  The Risk-TOC 
approach proposal presented here is that SSLCM is managed over time; therefore, so are 
both Risk and TOC.  This implies that Risk and TOC are evaluated at specific time 

intervals to evaluate different Risk and TOC mitigation strategies and RiskT and TOCT 

where T is a specific time in the SSLCM planning horizon.   

Examples of key points in time T and related implications include: 

1) Years where Risk mitigation by repairing failures exceed available maintenance 

budgets, 

2) Years to major events such as EOSL, 

3) 40 years with SLEP at 30 years or, 

4) 30 years with new construction (instead of SLEP) 

In these cases, both RiskT and TOCT will be very different at 40 years, given what 
happened at 30 years as a mitigation strategy.  For example, if a ship is in service for 30 

years and anew ship is built at 30 to replace it, RiskT will go down if the right mitigation 

strategy is used (i.e., SFA).  In this case, TOCT will increase over the time period by the 
cost of the ship and related acquisition costs.  However, if the ship’s service life can be 
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extended based on the improved design (with SFA) and quantified information to confirm 
this (HSM), the TOC will be reduced significantly, essentially prorating the extended life 
and the cost of a new ship saved.  This analysis is then repeated for additional years to 
determine when TOC is projected to be at least equal to the costs incurred and saved by 
replacement or Risk has risen to unacceptable levels.    

In principle, TOC is not limited to the costs associated with ship structure, but holistic total 
costs incurred by the owner over a period of time as described previously.  This may include 
more than one ship's life or not.  In practice, the TOC evaluations may be made as a net 
increase considering all the costs that change in a SSLCM setting.   

5.6.2 Risk-TOC Trade-Space 

The Risk-TOC approach is proposed in a fundamentally different way in the details of its 
execution than prior Cost-Benefit based approaches.  Although there are similarities with 
Cost-Benefit analysis, the executable definitions for development and decisions are 
fundamentally different being related to Risk Analysis rather than the more common 
Decision Theory based approaches.  

5.6.2.1 Prior Cost-Benefit Trade-Space Models 

Cost-Benefit trade-space models have been proposed to highlight cost-effective options and 
decisions concerning Risk.  In this context, Risk avoidance and related cost saving in 
management are counted as benefits.  The following discussion presents the results of a 
brief literature review revealed prior examples of Cost-Benefit analysis proposed to 
compare Risk mitigation scenarios.  They are presented here to highlight the underlying 
differences between the prior approaches and the Risk-TOC approach proposed in this 
dissertation. 
 
According to Ayyub et. al., (2000 & 2003), Cost-Benefit analysis is proposed for Risk 
management, where economic efficiency is used to determine the most effective means of 
expending resources.  This process compares the costs and benefits to determine the 
optimal value.  For example, the proposed cost of mitigation and cost of loss are balanced, 
and Risk equilibrium is found at their intersection is illustrated in Figure 5.7  This optimal 
value occurs when costs to control Risk are equal to the Risk cost due to the consequence 
(loss).  In the Cost-Benefit trade-off illustration, proactive maintenance costs and cost of 
reactive repair are compared as dependent variables of a performance function.  In this 
illustrative example, the more money that is spent on maintenance, the less money will be 
spent on repair costs.  Although illustrative, the concept lacks clarity on the constituents of 
total costs (including serviceability failure) and a decision process in considering Risk 
mitigation alternatives.   
 
This illustrated example works well for simple discrete component systems where 
parameters such as Mean Time Between Failure (MTBF) are well established for 
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component failures.  However, this simple approach is difficult to apply to more complex 
systems or comparisons of alternative Risk mitigation scenarios.  
 

 
Figure 5.7 - Illustrative example of Cost-Benefit trade-space in Risk Analysis 
proposed by Ayyub (2000 and 2003) 
 
 
 

 
Figure 5.8 - Illustrative example of Cost-Benefit trade-space in Risk Analysis 
proposed by Modarres (2006), Saydam (2013), Ebeling (2010) and similar in Hecht 
(2004), Straub et. al (2005) 
 
Hecht et. al., (2004) provides an illustrative example of Cost-Benefit analysis as in Figure 
5.8, where the Total Ownership Costs are compared against a maintenance “effectiveness” 
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parameter based on an undefined probability trade-space.  The illustration and related 
discussion by Hecht et. al., (2004) state the basic premise is Risk Analysis; however, they 
relate the Risk of failure to maintenance effectiveness, which is defined as a quantity 
between 0 and 1.  Hecht and others do not include the probability or consequences of failure 
in specific terms.   In this example, maintenance costs, inspection costs, and Risk of loss are 
all added together as Total Ownership Cost for a given Risk control scenario.  In this 
example, a loss is the economic cost of repair and not system loss.  The Risk of system loss 
is low due to the overly optimistic assumptions associated with Optimal Inspection 
approaches considered in the approach. 
 
Straub et. al., (2005) present a similar conceptual process to represent a Risk based optimal 
inspection where expected costs are traded against reliability with design, maintenance, 
and inspection as an opposing orthogonal axis.  It is not clear, in the proposed concepts for 
trade-space, why design and inspection are not included in the expected total costs and 
total life cycle cost in overall systems approach to Risk assessment. 
 
More recently, Spackova et. al., (2015) defined a Cost-Benefit trade-space for flood control 
that does trade-off invested cost against Risk for control scenarios; however, the decision 
process is more specific to individual mitigation strategies and not overall system 
optimization.  In this example, the benefits and decision processes are more in line with 
financial investment settings where Risk is loss of money, not assets, and people as 
consequences.  The decision process is very different when there is more than money to be 
considered as Risk exposure. 
 
In these illustrative examples, the total cost as the objective function is useful for 
illustrative purposes, as shown in Figures 5.7 and 5.8; however, in complex systems, the 
scenarios involve subsystem variables, and there are opportunities for optimization within 
each scenario.   The Risk-TOC approach is suitable for sub-scenario optimization and a 
systematic comparison of alternative scenarios, as discussed next. 
 
5.6.2.2 Proposed Risk-TOC Trade-Space Model 
 
In the context of the Risk-TOC approach proposed for SSLCM, the terms Cost-Benefit do 
not reflect the quantities of the application being considered and are not explicitly 
applicable to SSLCM.  In the works cited, the definitions of both cost and Risk are based on 
Decision Theory definitions of expected value and related expected utilities.  The definitions 
of the Cost-Benefit analysis are carried over from financial and economic settings based on 
Decision Theory.  In these settings, invested costs are compared to expected gain or loss of 
financial investment and a positive gain is a benefit, and negative benefit is a financial 
Risk.  As noted previously in this dissertation, the Expected Value and related Decision 
Maker’s preferences (and Expected Utilities) do not reflect the full extent of uncertainties 
and, therefore, Risks that might occur in the future.  
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According to Messac (2015),  

“one of the [defining] features of multi-objective optimization is that the solution to the 
problem is generally not unique as different trade-off levels may be desirable with each 
tradeoff yielding a different solution.  A set of solutions called a Pareto Optimal Solutions  
form the complete solution set [of decision alternatives] of the optimized problem. 

If we define the trade space of each objective function or alternative independently, ignoring 
the other objective set, we will obtain the point that corresponds to the minimum of the 
objective being minimized.  The minimum of each independent set points are called Pareto 
optimal solutions and non-dominated solutions.  By definition, Pareto optimal solutions are 
those for which any improvement in one objective will result in a worsening of at least one 
other objective.  That is a trade-off will take place.  “ 

In developing the Risk-TOC trade-space, there are discrete scenarios for Risk mitigation 
strategies where sufficient data is known for each scenario at this time.  In this case, the 
optimum is simply the scenario that provided the best trade-off between Risk and TOC as 
shown in the Risk-TOC plot examples (see Figure 5.9).  Where numerous scenarios are to be 
evaluated in parametric terms and related insights, evaluating the optimum Risk 
mitigation strategy becomes more complex.  In the more complex cases, multi-objective 
optimization and Pareto Frontier type optimization may be useful, especially in parametric 
sensitivity type analysis. 
 
The proposal here is that each scenario has an underlying Pareto frontier based on local 
sensitivities within the scenario, as illustrated in Figure 5.9  In Risk-TOC, the scenarios 
form a Pareto Frontier on a scenario and overall systems level as illustrated in Figures 5.9 
and 5.10 

Risk Analysis calculations are used to develop the Risk-TOC trade-space.  E(TOCα) (i.e., 

maintenance and inspection) as part of E(TOCα) T and are compared to E(Riskα) T 

(Loss) for various alternatives one may consider in SSLCM.   
 

In the conceptual Risk Analysis trade-space shown in Figures 5.9 and 5.10, the illustrative 
Risk scenarios are points, leading to the observation that the full collection of possible 
scenarios would represent a non-dominated Pareto frontier (see Messac (2015) for general 
approaches).  The Risk-TOC trade-space analysis provides a view of Risk and Cost 
consequences needed to compare and assess alternative Risk mitigation strategies required 
to facilitate decision making on the appropriate scenarios or CoAs. 
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Figure 5.9 Illustration of the proposed Risk-TOC trade-space for subsystem 
scenario analysis  
 

 

 
 
Figure 5.10 Illustration of the proposed Risk-TOC trade-space- systems Risk 
Analysis 
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Figure 5.11 - Relationship of serviceability failure and ultimate failures as part of 
TOC and Risk respectively 
 
Figure 5.11 shows the relationship of serviceability failure and ultimate failures as part of 
TOC and Risk respectively and the inclusion in the Risk-TOC trade-space.  This is a 
proposed definition of how to quantify serviceability and ultimate failure in a Risk-based 
approach.  Decision Theory based approaches typically include serviceability failures and 
their repair cost as consequences in Risk and do not consider the ultimate failure option 
because all serviceability failures are assumed to be found and repaired resulting in a low 
probability of system failure if considered at all. 
 
There are cases where total system performance parameters are important in the overall 
total system life cycle.  Total system performance includes mission effectiveness for military 
ships.  Profit and freight rates are examples of performance objectives for commercial ships. 
These systems parameters are affected by an increase in weight of structure and 
implications on payload and cargo capacity or increase in fuel needed to maintain a design 
speed.  The aspects of performance that are included in TOC proposed, including fuel 
consumption, so double counting should be avoided in the Risk-TOC analysis.  By 
definition, the minimum weight objective must be met within the Risk-TOC minimum 
objectives to provide the best trade-off in system safety and cost-effectiveness while meeting 
performance objectives.  More discussion on the aspects of performance objectives are 
discussed later in this dissertation in the examples in Chapter 6.0, Discussion in Chapter 
7.0, and Recommendations in Chapter 9.0.   



100 
 

5.6.3 Risk-TOC Decision Measures 
 
In SSLCM, Risks and costs are being trade-off instead of benefits and costs.  This is a 
fundamental difference in definitions of the Risk-TOC approach as compared to Decision 
Theory based approaches.  In contract to E(U) in Decision Theory, the Decision Makers 
should consider the less likely but higher consequence implications.  This decision process 
should include an evaluation of the uncertainties in the specific Risk scenario or set of 
scenarios.  In the decision process, Decision Makers should evaluate a number of options for 
quantifying probabilistic uncertainties of the system.  Specifically, Decision Makers should 

consider Value at Risk (V@Rα) and Conditional Value at Risk (CV@Rα) or similar 

information Entropy measures.   

Anderson et. al., (2014) assessed Risk in terms of maximum expected values such as V@Rα 

and CV@Rα.   

Where: 

α is a prescribed limit, typically confidence interval (CI) of the data or 

distribution if known. 

CVaRα = average value of the highest 1-α proportion of the distribution. 

As α =>1, the CVaRα approaches minimax criteria, MnMx.  In applications where the exact 

distribution is not known, the α values are estimated by simulation.  With conditional 

constraints, the CVaRα may be written as MnCnMx, according to Anderson et. al., (2014). 

In statistical analysis, a 90% to 95% range of CI is used to differentiate between extreme 
event probabilities and more common expected event probabilities.  The Decision Makers 
may also conduct a sensitivity analysis on this value to determine its impact on outcomes of 

the Risk calculation and E(VaRα).  Ultimately in the Risk Analysis context, α values are 

chosen to align with the Decision Maker’s Risk preferences and consequences at Risk (i.e. 
loss of ship and life).   

In the Risk-TOC decision trade-space, Decision Makers are interested in evaluating the 
efficacy of mitigation strategies.  Each mitigation scenario and milestone decision involve 
trade-offs and forms the Pareto optimal sets in this Risk-TOC trade-space.  Examples of 
these Risk mitigation approaches appear in Chapter 6 of this dissertation. 
 
Ultimately, the evaluation criteria are used by the Decision Makers to select scenarios that 
minimize the maximum Risk exposure.  This is also known as the MiniMax criteria (see 
Anderson et. al., 2014 and Savage 1970). 
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According to Savage (1970) 

“the minimax rule recommends the choice of such an act that the greatest loss that can 
possibly accrue to it shall be as small as possible.  A [possible outcome] satisfying the 
recommendations of the minimax rule will be called a minimax act, and the greatest loss 
that can accrue to a minimax act will be called the minimax value of the [objectivistic] 
decision problem.  It may well happen that [a solution] contains more than one act that is 
minimax for the problem, in which case, the minimax rule recommends, not a particular act, 
but only that the choice be narrowed to a set of minimax acts.” 

The MiniMax decision utility provides a perspective for the Risk cost-benefit analysis where 
the least cost, least Risk options available to Decision Maker following the minimax utility 
approach. 

In the Risk-TOC approach, an optimal decision (arguably preference) may be defined as the 

least TOC at least Risk minimizing both expected Riskα and expected TOCα.  Similar in 
concept to Savage’s minimax criteria, this is stated as: 

 Min(E(Riskα)T,E(TOCα)T) 
 

(34) 

These concepts may be used in quantifying the outcomes and optimums for decisions in 
more complex problems.  These and other decision criteria are worthy of further 
investigation as the scenario number and complexity in Risk scenarios increases. 

In summary, SSLCM requires key decisions related to: 
      

 TOC and related costs of E(TOCα)T  
 

 Availability & Economic Failure (from repairs of progressive serviceability 
failures) 

 
 Remaining Useful Service Life, End of Service Life. High value at Risk 

 
 Loss of Asset (Availability and EOSL) 

 
Currently, these decisions are made with limited, narrowly focused quantitative 
approaches, empirically-based evidence, and subjective information.  This provides the 
motivation for a more quantitative approach for making decisions when stochastic 
processes are involved, and imperfect models are used. 
 

5.6.4 Risk Based Value of Information 
 
Decision Theory defines VoI in terms of change in Expected Value or Expected Utility from 
discrete probabilities (i.e., Decision Trees), are not complete indicators of Risk or value of 
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information, because they do not reflect the range of Risk and uncertainty typically 
modeled using probability distributions as discussed previously.  That is: 
   

VoI in Decision Theory => Difference in E(V) or E(U)   (35) 
  
Figure 5.12, developed from Pozzi et. al., (2011) and Hubbard (2014), illustrates the 
relationship between the value of information derived from uncertainty analysis and 
information gain as continuous functions.  While illustrative in concept, the details of the 
scenario analysis of alternatives and Pareto Frontier analysis proposed herein and 
illustrated in Figure 5.10, the VoI in Risk Analysis is redefined in Risk and TOC terms.  

 

Figure 5.12 – Illustration of value of information defined as a continuous function 
and one scenario being evaluated (Pozzi et. al., 2011 and Hubbard 2014) 

Hubbard (2014) summarizes the VoI in Risk Analysis as: 

“Understanding how to measure uncertainty is key to measuring Risk.  Understanding Risk 
in a quantitative sense is key to understanding how to compute the value of information.  
Understanding the value of information tells us what to measure and about how much effort 
we should put into measuring it.  Putting all of this data in context of quantifying 
uncertainty reduction is central to understanding what measurement is all about.” 
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“All measurements that have decision-value must reduce the uncertainty of some quantity 
that affects some decision with economic consequences.  The bigger the EOSL, the higher the 
value of a measurement.  The difference between the EOSL before a measurement (perhaps 
based only on initial calibrated estimates) and the EOSL after a measurement is called the 
“Expected Value of Information (EVI).  In other words, the value of information is equal to 
the value of Risk reduction.” 
  
In contract to Decision Theory (discussed previously), the Risk Analysis based definitions 
of, VoI are related to reduction in costs and uncertainty quantified in the following terms: 

 VoIRT= (S1(E(Riskα)T)@(E(TOCα)T)) –(S2(E(Riskα)T)@(E(TOCα)T)) 
 

(36) 

Where VoI in Risk-TOC analysis is the difference in Value at Risk, Conditional Value at 
Risk, or Shannon Information Entropy for Scenarios 1 and 2. 

The proposed decision criterion is reasonable in concept and subject to further development 
and evaluations by researchers interested in pursuing this topic.  Risk Analysis based 
decision process definitions assume a particular preference of a Decision Maker (i.e., 
minimax-and related optimization approaches) is left to others to investigate. 

5.7 Prognostic Hull Structure Monitoring 
 
The uncertainty (and Risk) reduction is achieved by obtaining information either in 
knowledge/model (epistemic) or statistical uncertainty reduction by additional data 
collection (aleatory uncertainty reduction).  One approach for reducing both epistemic and 
aleatory uncertainty is by Hull Structure Monitoring (HSM).    
 
The following Sections present a contrasting comparison with the more commonly proposed 
Structural Health Monitoring (SHM) approach, Prognostic Hull Structural Monitoring 
(PHSM), its VoI, and related uncertainty reduction for Risk Analysis in general and 
SSLCM in specific. 
 
5.7.1 SHM vs Prognostic HSM 
 
The monitoring industries definition of Structural Health Monitoring (SHM) is based on a 
condition-based monitoring and maintenance approach in that structural system 
degradation is detected prior to system failure for reactive maintenance planning see 
Pegoretti (2018), Lynch, et. al., (2016), Richards, et. al., (2013) and Roach, (2016).  The SHM 
approach is based on assumptions that the component structural failure will manifest itself 
in the system response, typically a change in dynamic global vibration characteristics, as 
the structural failure progresses slowly over time and also has a significant (but safe) 
detectable influence on the structural response.  This is typically applied to redundant or 
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fail-safe structures where system degradation can be repaired prior to system catastrophic 
failure. 
 
The hypothesis of detecting damage by identifying a change in system response was tested 
for ships pre and post damage experienced on a US Coast Guard Cutter and reported by 
Hageman et. al., (2018).  The hull girder's first mode of vibration was measured with strain 
gauges as part of an ongoing hull structural validation effort summarized by Stambaugh et. 
al., (2014b) and (2019).  Their conclusion based on the measurements was the signal noise 
was higher than any measurable response pre and post significant hull damage.   The 
problematic noise wasn’t related to instrumentation; rather, it was produced by 
environmental and operational variables including ship speed, heading, wave conditions, 
and water depth.  All of these factors change the hydrodynamic added mass and damping 
and also introduce variability in measurements.  Interactions of these variables produce 
more than strain signal measurement noise.  Given this current limitation of not being able 
to detect the ship hull structure damage until it has become significantly weakened, it is 
not recommended that such a reactive approach be used for ship structures at this time. 
 
An alternate prognostic approach is proposed for hull structural monitoring where the hull 
response (strains) are used to infer future damage (i.e., cumulative fatigue or corrosion), 
budget consumption, and extreme load measurement for proactive maintenance planning.  
The prognostic approach is intended to reduce uncertainties in the analysis by updating the 
design profile as BHPs in a BMA approach based on measurements.  The resulting 
forecasted damage reliability and probability of failure are updated as described in Chapter 
2.0 and applications on Chapter 6.0 of this dissertation. 
 
5.7.2 Prognostic HSM in Maintenance Planning 

Prognostic HSM maintenance planning is a proactive approach where measurements are 
made to forecast damage, (i.e., in fatigue and corrosion) and plan repairs in a scheduled 
drydocking availability.  This is a less expensive proposition in comparison to the reactive 
maintenance associated with finding fatigue crack (typically because they leak water in or 
fuel out) after they occur or excessive corrosion damage.  In the worst case of reactive 
maintenance, the location and severity of damage may require an emergency drydocking, 
which is significantly more costly than maintenance in a previously scheduled drydocking 
availability.  In proactive maintenance, the regularly scheduled drydocking availability 
could be part of a mid-life availability or life extension modifications, both of which are 
more cost-effective if executed proactively.  Although SHM is intended to be a proactive 
planning approach, it is, in reality, a reactive approach to damage detection in the 
structural applicatoin.  Figure 5.13 shows a comparison of activities between proactive and 
reactive maintenance.  

In Figure 5.13, PHSM actions include collecting data, analyzing the data, and forecasting 
damage, Risk and further proactive actions required to mitigate the Risk.  This is in 
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contrast to alternative reactive approaches that collect date to infer damage that has 
already begun to occur or at least symptoms of the damage.  This is accomplished by 
detecting changes in response, assuming they are detectable at a level where Risk is still 
acceptably low.  It is possible to evaluate both prognostic and reactive approaches within 
the Risk-TOC trade-space.  

 

Figure 5.13 - Comparison of reactive and proactive monitoring and maintenance 
approaches 

5.7.3 Prognostic HSM in Uncertainty and Risk Reduction  

In the ship structural fatigue analysis process described in Chapter 2.0 of this dissertation, 
aleatory (random process) and epistemic (model and unknowns) uncertainties are included 
where data and models are used, and complete knowledge is lacking on the effects of the 
uncertainties associated with the total process.  In the stochastically based design 
approaches for determining loading history, the ship’s predicted operational profile and 
wave statistics are processed through specialized analysis programs to determine lifetime 
histograms of hull sectional forces such as vertical bending moments and resulting strain 
and stress histories known as Spectral Fatigue Analysis (SFA).  
 
For the random processes involved with ship structural loading, ship structural designers 
use the SFA process and generally consider each 30-minute time frame as independent and 
statistically stationary.  In operating 140 days per year at sea, that equates to over 6000 
independent stationary conditions per year.  In SFA predictions, the independent speeds, 
headings, seaways, load conditions are grouped into over 2000 stationary groups for annual 
and 30-year life estimates of the loading spectrum.  The number of variable conditions with 
random (aleatory and epistemic) uncertainties provides intuitive motivation for measuring 
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HSM and uncertainty reduction.  The initial assumptions the aleatory uncertainties are all 
based on prior experience, introducing prior information in a Bayesian context to be 
updated by measurements.  The uncertainties and updating process is discussed in more 
detail in later Chapters of this dissertation. 
 
The conventional approach to HSM includes measurements by strain gauges attached to 
the hull structure.  Recent PHSM on ships presented by Stambaugh et. al., (2014b, 2019) 
also highlights the benefits of collecting wave data, adding to the value of knowledge and 
information. 
 

 

Figure 5.14 - Illustration of structural reliability degradation and decision related 
to uncertainty reduction 

The first principals-based design approaches (primarily in SFA and DLA) provide a single 
estimate of maximum expected load or fatigue life without regard to the underlying 
uncertainties and initial assumptions.  Structural Reliability Analysis (SRA) offers 
additional steps in considering how the uncertainties manifest in failures on a systems-
level, as described in Chapter 2.0 of this dissertation.  A further refinement to this 
uncertainty forecasting is to consider how these forecasts will change given differences in 
the initial assumptions, such as significant wave heights encountered, operational profile, 
days at sea per year, accuracy of analysis tools, and actual quality of construction.  
Considering a range of uncertainties would provide a range of forecasts if the initial 
assumptions were weighted according to our state of prior experience, knowledge, and 
assumptions on the uncertainties involved if there is little or no prior knowledge.  This 
weighted sensitivity forecast is a BMA approach with BHPs as priors in forecasting 
structural reliability as discussed in Chapters 4.0 and 6.0 of this dissertation.  
Illustratively, the reliability forecasts and uncertainty resemble a distribution shown at the 
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end of the upper design reliability curve shown in Figure 5.14.   Essentially, there will be 
many forecasts based on an assumed likelihood of each forecast.  The next step in this 
Bayesian thought process is to estimate how the prior weighted BHP probabilities will be 
updated as time progresses, and information is gained.  For example, if hull structure 
strains and wave heights encountered are measured, the wave heights provide a significant 
amount of information for updating the accuracy of the analysis tools and for making 
forecasts.  This information gain reduces uncertainties and improves the basis for further 
forecasts.  This process can be updated over time to predict information gain and 
uncertainty reductions, making it possible to estimate the RoI, VoI, and what the Decision 
Makers might be willing to pay for the information if uncertainty is reduced by the 
measurement process(es).  The Risk-TOC trade-space is well suited to make these 
inferences on RoI and VoI of monitoring approaches.  Further demonstration of this process 
is presented in Chapter 6.0 of this dissertation. 

5.8 Risk-TOC Process Description 

With the definitions of Uncertainty and Risk presented (and referring back to Figure 5.14 
for decisions in SSLCM), we are now equipped to answer the following questions required to 
formulate the likely Risks facing the Risk Analysts (RAs) and Decision Makers (DMs). 

Fundamental Concepts Framing the Risk Definition include: 

1) RAs and DMs have identified a potential or probability for an adverse condition or 
hazard and cost associated with the hazard. (no hazard or no cost = no Risk) 

2) RAs and DMs need to decide whether to mitigate, avoid, or transfer a potentially 
adverse condition (in this case, structural performance issue). 

3) Different versions of the problem include either: 
a. There is some uncertainty, but conditions are ambiguous, or RAs and DMs 

are uncertain about the probabilities of the conditions. 
b. Adverse consequences occur with probability P, but RAs and DMs are unsure 

about the value of P. 
4) RAs and DMs have some information, but it does not determine the state of nature 

completely (aleatory), or there is some uncertainty in the application of a prior model 
of the (epistemic) uncertainty. 

5) The assessment of the hazard or its cost has an impact on avoiding or mitigating 
adverse consequences. 

a. What proactive mitigations are most cost-effective? 
b. What steps can be taken to mitigate the hazard, and at what costs? 
c. What are the costs and consequences of not taking mitigative or avoidance 

actions? 
6) Regarding information about the hazard and its mitigation. 

a. What is the best decision we can make, given the information RAs and DMs 
have? 

b. How much would more information be worth to reduce the uncertainty 
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c. Should the DMs expend the time and resources to get that information before 
choosing to avoid, mitigate, or transfer the hazard or consequences? 

The Risk Analysis and Risk Management process relationships proposed to address these 
questions and implications are illustrated in the flowchart in Figure 5.15  

Figure 5.15 shows the Risk-TOC process with monitoring and feedback.  This process 
includes an evaluation of multiple Course of Actions (CoAs) that are considered by those 
performing the Risk Analysis and making decisions.  The following list summarizes the 
steps in the Risk-TOC process applicable to SSLCM.  Implicit in these CoAs is 
considerations for Risk mitigation, including its reduction, transfer, sharing, contingencies, 
and acceptance and the need to obtain additional information that is cost-effective in 
reducing Risk. 

One of the unique features of the Risk-TOC process illustration is the flow of information, 
which is the fundamental ingredient to uncertainty and Risk reduction. 

 

 

Figure 5.15 - Risk-TOC process with monitoring and information feedback 
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Risk-TOC Approach for Ship Structure Life Cycle Management Includes: 

 Identify serviceability and catastrophic failure modes  

 Determine the components failures using reliability analysis (eqs. 7, 8) and expected 

number (or probability) of system failures as the product of probabilities of failure (Pf) 

and the number of components in correlated groups of components. (eqs. 9, 10) 

 Quantify uncertainties and Pf associated with failure modes on component and system 

levels including (but not limited to) fatigue and brittle fracture (PfBF) and corrosion and 

buckling induced progressive failure that have potential to result in ultimate limit state 

failure of the hull girder 

 Identify and quantify consequences ($C) of failure modes and associated costs in both 

LCC and $C associated with ultimate limit state failure 

 Quantify Expected RiskLoss = (Pf)*($C) of the system (eqs. 20, 21) 

 Evaluate Risk measures including conditional E(Riskα) (Sec 5.6.3) and Shannon 

Information Entropy (SIE) (eqs. 29) 

 Determine Expected TOC and conditional TOC (E(TOCα)) including costs to reduce or 

mitigate Risk including cost of serviceability failures (eq. 22) 

 Identify alternatives (scenarios and CoAs) for Risk reduction and mitigation including 

prognostic HSM and associated risk reduction by Bayesian Model Averaging (eq. 33) or 

equivalent uncertainty forecasting and add associated costs to TOC 

 Determine NPV for E(TOCα) if NPV is important to the application (eq. 26) 

 Compare E(Riskα) and E(TOCα) scenarios in the Risk-TOC space 

 Establish Risk tolerance and TOC constraints and compare to non-dominated Risk 

reduction and mitigation scenarios  

 Identify non-dominated alternatives and Min(E(Riskα),E(TOCα)) (eq. 34) 

 Determine RoI in Risk mitigative actions both short-term and long-term (eq. 28) 

 Communicate Risk, uncertainties, and consequences to Decision Makers 

 Make short-term decisions to reduce and mitigate Risk 

 Determine VoI and system RoI for future Risk reduction actions (eq. 35 for VoI) 

 Make long-term decisions and investments required to manage Risk-TOC 

 Take long-term actions including prognostic HSM to reduce uncertainties and Risk 

 Repeat process of updating (and reducing) both aleatory and epistemic uncertainties 

where beneficial according to Risk-TOC. 
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6.0 RISK-TOC VERIFICATION 

Verification of the Risk-TOC approach is conducted by using the data and experience from 
the decision processes involved with an SSLCM example presented by Stambaugh et. al., 
(2014b) and (2019) for a US Coast Guard Cutter.  The examples are representative of 
SSLCM process decisions and are used to validate the fundamental approaches to Risk 
Management proposed and presented in this dissertation.  Each example presented builds 
on the fundamentals of uncertainty quantification, propagation, and reduction described 
previously.  The proposed Risk-TOC approach is demonstrated in assessing Risk reduction 
alternatives leading to VoI and RoI type analyses showing the benefits of Risk reduction 
alternatives.  
   
The following case studies include examples of the Risk-TOC approach verification and 
include cases involving fracture, corrosion, and hull structure monitoring.  Collectively, the 
examples demonstrate the application of systems failure mode analysis, cost-benefit 
analysis, and Bayesian Model Averaging in forecasting the structural degradation due to 
fatigue loading.  The SN+FM Total Life approach described in Appendix B is also 
demonstrated within the fracture failure example.  Evaluation of Risk and TOC for various 
PHSM approaches is also demonstrated.  The HSM example is included to show the VoI 
and RoI estimates in the context of SSLCM. 

 
6.1 Risk – TOC and Ship Structure Life Cycle Management 
Decisions 
 
In efforts to manage the uncertainties in the fatigue analysis process, structural reliability 
approaches have been proposed for ship structure applications Ayyub et. al., (2014).  Figure 
6.1 presents a simplified illustration of degrading reliability in ship structure. The curves 
shown in Figure 6.1 represent trends in structural reliability defined as one minus the 
probability of failure (1-Pf).   This example illustrates conceptual relationships and 
fundamental considerations of Risk Management derived from examples presented by Hess 
(2015), Frangopol (2004), and extended to illustrate the cost and safety implications in the 
life cycle decision process.  In these illustrative curves, structural reliability is decreasing 
with time due to degradations in strength from causes such as fatigue and corrosion.  The 
degradations transitions through acceptable (green) marginal (amber) and unacceptable 
(red) reliability (set arbitrarily for illustrative purposes).  Relating to the reliability 
illustration in Figure 6.1 from Stambaugh et. al., (2019), key events and decisions 
influencing structural reliability include: 
 

1) The lowest curve represents the present practice of designing ship structure to 
prescriptive rules based on experience in empirically derived algorithms. 
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2) Early decision point to increase strength prior to predicted or observed progressive 
failures (generally fatigue cracking). 

 
3) Decision point on End of Service Life (EOSL) or high-cost Service Life Extension 

Program (SLEP). High repair cost in Emergency Drydocking (EDD) as needed or 
early EOSL without adequate time to plan for replacement. EOSL (typically an 
economic decision) with adequate plans in place for timely replacement. 

 
4) Repaired strength not equal to original (repair weld quality) based on the original 

design approach. 
 

5) Low-cost increase in strength in design and construction points 1 tom5. 
 

6) Remaining Useful Life (RUL) decisions supported by Hull Structure Monitoring 
(HSM) to reduce uncertainty in the EOSL decision. 

 
While simplified for illustrative purposes, these decision points are realistic and involve 
management of uncertainties and Risk in the life cycle management of the structural 
system at very high costs (on the order of millions of $US dollars for major ship asset 
classes).  The concepts of structural degradation and degrading structural reliability seem 
intuitively similar, and they are, dealing with the end results, is less intuitively obvious to 
the Decision Makers.   

 

Figure 6.1 - Illustration of major decisions in life cycle management 
of ship structure. 

 
In the context of structural reliability, the amount of desirable or undesirable reliability is 
assessed using a reliability index.  In structural reliability analysis applications in the civil 
industry and others, the desirable reliability is defined by a reliability index, β, discussed 
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by Melchers (1999), Ayyub et. al., (2014), and Frangopol (2004).  Here, β is related to the 
probability of failure as follows: 
 
 𝛽 = Φ 𝑃    

 

(37) 

The shortcoming of the β index is that the full implications of system Risk (Pf and $C) are 
not explicit, only relative to the prior user’s judgment as being acceptable or not.  The lack 
of explicit context of the structural reliability index β is a limiting constraint of the process.  
Minimal work has been conducted to benchmark β with regards to ship structures 
applications, let alone reliability-based applications in specific.  Furthermore, applications 
of β are most often limited to Optimal Inspection of individual structural components and 
extensions to systems analysis has not been made for more complex systems such as ship 
structures.  The Risk-TOC framework presented here is a step in the direction of that 
calibration. 

 
A Risk-based framework for the life-cycle management of ship structural systems is 
presented by Stambaugh et. al., (2014a) and Stambaugh et. al., (2017) builds on the 
structural reliability approaches developed by Ayyub et. al., (2014) and prior efforts by Hess 
et. al., (2002a, 2002b) and Hess (2003).  That is, the probability of failure is used to 
characterize Risk for decision making vs β indexing based decisions.  The Risks (in terms of 
costs and safety) associated with decisions in ship structural life-cycle management may be 
quantified as a function of uncertainty and costs for discrete, time intervals, as proposed by 
Stambaugh et. al., (2014a).  This approach may be used to evaluate the decision 
alternatives in fundamental Risk terms founded in definitions that are more commonly 
used for Risk communication to those who will be making decisions on large capital-
intensive projects.  Further work in the application of the systems approach to structural 
reliability and work on quantifying uncertainty in the fatigue design process and 
application of hull structural monitoring to help reduce the uncertainty in the life cycle 
decision process is ongoing in the Valid Joint Industry Project (JIP) (see Stambaugh et. al., 
2014b, 2019, Drummen et. al., 2014,2019, and Hageman et. al., 2014, 2019). 
 

6.2 Risk -TOC Estimates 
 
Risk and TOC estimates are presented in this Section as examples to illustrate the Risk-
TOC approach.  Others interested in using this approach are encouraged to use their own 
estimates for further investigations and applications of this approach. 
 
6.2.1 Risk Estimate  
 
In current SFA approaches, fatigue failure is defined on a component detail level as a 
through-thickness crack as observed from component welded structural details.  As a 



113 
 

practical matter, these cracks often leak as they extend beyond this through-thickness 
definition and are detected.  However, stable fatigue crack growth progresses relatively 
quickly.  The following examples provides insights into the critical nature associated with 
large cracks and the potential consequences of rapidly growing fractures.  

As presented previously, RiskLoss = Pf*CFailure, estimates for these quantities are provided 
in the following Sections along with and uncertainty reduction in the Pf calculation and the 
impact on uncertainty reduction of Risk as a result. 
 
6.2.1.1 Probability of Failure Estimate 
 
The examples that follow provide estimates of the probability of failure for loss of the ship 
due to fatigue, fracture, and corrosion.  Estimates are also provided for implications of Risk 
mitigation options and related decisions for SSLCM, including Risk Mitigations, Remaining 
Useful Life (RUL), Service Life Extension Program (SLEP), End of Service Life (EOSL), or 
new construction, etc. 
 

6.2.1.2 Loss Consequences Estimate 
 
The consequences used in the Risk calculation are described in Chapter 5.0 of this 
dissertation.  To summarize, the consequences of ship loss include loss or major repair of 
the structure if feasible, loss of life of the crew, salvage costs, environmental impacts, 
political implications (that impact finances), and loss of ship availability for significant 
periods of time. 
 
The loss of crew members is one of the more difficult losses to frame in financial or 
economic terms.  However, actuaries do provide insights into this critical loss as Value of 
Statistical Life (VSL) and provide estimated from $12M to $15M.  In ship applications, the 
costs of crew replacement are also a consideration with VSL costs on the range of 
$20M/crew member.   
 
Because of the nature of a catastrophic event, the entire crew may be lost in one event, a 
Risk-averse Decision Maker (conservative engineers and naval architects (including the 
author) may put a higher premium on such loss and political implications.  Mission or 
service loss (Ao) is also very high, depending on the ship type.  The estimated value of Ao 
shown in Table 6.1 results from societal benefits of annual costs benefits in the missions 
performed by US Coast Guard cutters.  Table 6.1 provides an example calculation of a 
possible range of consequences depending on the Decision Makers’ Risk aversion. 
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Table 6.1 – Consequence of failure estimates 

 

In the following Risk examples, a willingness to pay value is assigned to the consequences.  
In this case, the owner is willing to invest $15M to mitigate a Pf of 10e-6, and the resulting 
value at Risk is $1.5T($US) per ship.  This value represents a consequence adverse 
value/view of consequences, which falls in the high end of potential consequences of the loss 
of both ship and crew due to the potentially catastrophic nature of fracture in ship 
structure.  Stochastic models for Risk aversion and avoidance can be developed by Decision 
Makers in the context of the modes of failure being considered and decisions (i.e., max 
regret between Risk and TOC as described later in this dissertation discussion) made 
accordingly.  Making the consequence decisions in the Risk Analysis is a more informed 
approach for making decisions rather than assigning generic Risk utilities.  

6.2.2 TOC Estimate 

A TOC estimate is provided here to use in subsequent Risk-TOC examples.  The TOC 
estimate, in this case, is simplistic but representative in magnitude, for example purposes.  
This example includes an estimate for added fuel costs for weight additions that might 
result from the application of SFA and the implications on operational costs expenditures 
and the overall TOC.  In this example, the added fuel costs are negligible additions to 
operational costs.  Estimates are provided for the increase in costs (i.e., investments) for 
including SFA in a design.  Full implementation of the Risk-TOC process would consider 
uncertainties in this estimate, which will be left to those with more knowledge of those 
uncertainties.   

Table 6.2 provides an estimate of TOC with and without SFA.  In the TOC without SFA, 
the estimated cost of a new ship is included as if there were a decision that repair costs will 
exceed available budgets and financial losses are excessive, and a new ship is needed, in 
this case, the “Do-Nothing” approach includes a zero Remaining Useful Life (RUL) decision 
has been made. 

 

 

0 Crew 2 Crew 120 Crew 120 Crew 120 Crew 120 Crew
x1 x10 x100 x1000

Ship Repair/Replace 50 250 1100 1100 1100 1100
Crew 0 240 2400 24000 240000 2400000
Salvage 0 0 1000 1000 1000 1000
Environment 50 100 1000 1000 1000 1000
Political 50 240 2400 24000 240000 2400000
Mission Loss 2000 2000 4000 4000 12000 160000
Total Loss 2,150        2,830        11,900      55,100      495,100    4,963,100 

Range of Consequence Loss Estimate ($M)
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Table 6.2 – Example Total Ownership Cost estimates used in Risk Analysis 

 

6.3 Risk -TOC Evaluation of Serviceability and Ultimate Failure  

The following example provides insights into the benefits of Risk-TOC analysis for 
serviceability and ultimate failures in ship structure. 

To follow the example follows the reliability analysis shown in Figures 2.4 and 2.5, 
assumptions on a few basic probabilities and costs include: 

 65% of the cracks will be found and repaired dockside, 33% will be found and 
repaired in dry dock (DD), and 2% will require an emergency dry docking (EDD) 
because they leak or otherwise affect operational availability.   

 Repair costs are $5K dockside, $10K in planned DD and $500K in EDD 
 The ships in this example have expected levels of availability (Ao), and there are 

costs associated with maintaining the required levels of availability.  For the cost of 
reduced of ship availability for service, a willingness to pay basis equal to the value 
of the ship is prorated by dividing by the number of days in its expected service life 

Operations costs Wo/SFA W/SFA

$M $M
Fuel 8$M/yr for 30 yr
Fuel Add 240 0.50% 0 1.2
Unplanned Maintenance
Crack Repair 2 0.25
EDD(2) 4 1
Availability Loss

0.548 $M/day 100 54.8 0.27
Total Added O&E 60.8 $M 2.7 $M

TOC Calculation Wo/SFA W/SFA

$M $M
R&D 2 3
Acquisition 650 655
Operations Cost 2470 2412
Midlife 20 15
SLEP 0 20
New Ship @ 30 Years 750 0
Disposal 20 0
TOC 30 years 3912 $M 3105 $M
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and apply that to the number of days in drydock, minimum of five days for this 
example.   

Downtime for dockside repairs extended dry-docking (if that is when damage is discovered), 
and EDDs all have a significant impact on mission availability and Operation and 
Maintenance costs.  Time out of service can be related to the cost of the availability of the 
asset.  For example, a ship valued at $500M and a 30-year target service life results in 
approximately $50K/day loss if the ship is not able to operate.  This cost is incurred in 
addition to repair costs.  Additional costs and associated consequences occur if other assets 
are not able to fill the Ao gap.  Other economic and societal costs may be impacted as well if 
the ship is not able to fulfill its intended function. 

The results in Table 6.3 show a combination of the probability of an Emergency Dry 
Docking (EDD) and loss of availability for a single ship and twelve ships.  In this example, 
the potential costs incurred between 15 and 20 years becomes prohibitive.  In many cases in 
the commercial shipping industry, the ships are often sold if this amount of fatigue damage 
is occurring with associated cost and perceived Risk implications, especially if they have 
provided the owners with a sufficient return on investment.  While illustrative, the example 
clearly shows the EDD costs dominate the overall impact of the LCC if they are required.  
In Naval ships, Total Ownership Cost (TOC) impacts are much more severe, along with loss 
of asset availability.   

To continue this Risk Analysis example, we will assume that: 

 1% of the cracks will grow to 250mm undetected (i.e., either don’t leak or are not in 
a location to leak)  

 The probability of a severe brittle fracture for a 250mm crack is 10e-4 according to 
Sumpter et. al., (2004) 

 The owner is willing to invest $15M to mitigate a Pf of 10e-6, and the value at Risk 
is $1.5T per Cutter (in Table 6.3) as a Risk-averse attitude given the potential 
consequences of failure.  

The results presented in Table 6.4 show the combination of Value at Risk for the probability 
of severe consequences of brittle fracture and are significant.  Few shipowners are willing to 
self- insure the costs at Risk.  This example is illustrative and considers the total Risk from 
loss of life, and the government-owned asset based on a willingness to pay basis, both are 
difficult to assign a cost value to and are truly priceless to many Decision Makers as 
discussed in Section 6.2.1.2.  
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Table 6.4 – Risk of brittle fracture and cost mitigations 

  
PfBF 

 

 
$Consequences 

(Total Loss) 

 
$@Risk 

 
$Mitigation 

(SFA) 

 
RoI 

E(PfBF) 250mm 
Crack 

 
No 

SFA 
 

 
.000001 

 
.0001 

 
$1.5T 

 
$205M 

 
$2M 

 
~100:1 

 

This example provides valuable insights into the decision process that is often made based 
on intuitive experiences and perceived Risks.  Although the Expected Value E(V) is low, 
there is a significant amount at Risk with a probability of failure by Brittle Fracture (PfBF) 
of 10e-4 for a 250mm fatigue crack.   Naval ship operators understand the Risk associated 
with a major fracture event resulting from fatigue failures in qualitative terms.  This 
fracture example provides quantified justification for mitigating actions such as SFA in the 
design of the ship structure and hull structure monitoring through service life.  Operator 
guidance should be considered as a Risk-mitigating action depending on the mission or 
service requirements.  Sumpter et. al., (2004) examined the PfBF for commercial ships.  
This following example examines PfBF in a Naval ship in more detail. 

6.4 Risk-TOC Analysis of Fracture in Ship Structure 

Chapter 2.0, Figure 2.5, shows an example where the number of fatigue failures are 
predicted over the 40-year service life.  This is based on a definition of failure of developing 
a through-thickness crack and Risk associated with this type of failure.   

Given the number of fatigue cracks expected to grow to through-thickness cracks shown in 
Figure 2.5, the questions framing the hazard definition include, how fast will these cracks 
grow, how many will not be detected and of that subset, what is the probability of brittle or 
unstable fast fracture?  The following Sections provide exploratory work addressing these 
questions to highlight the hazard posed by fast fracture in quantitative terms.  This work is 
exploratory in nature and should be subject to further investigations needed to quantify the 
hazards and Risks. 

6.4.1 Sub-critical Fatigue Crack Growth Rate 

The following example of a fatigue crack growth calculation is presented next to illustrate 
the impacts of initial flaw size further discussed in the SN+FM Total Life approach 
presented in Appendix C and the impact of crack growth rates and implications of not 
finding the cracks by Optimal Inspection as discussed in the formulation of the SSLCM 
problem. 
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A crack grown estimate was made using the Linear Elastic Fracture Mechanics (LEFM) 
approach and the following assumptions and parameters: 

• LEFM with C = 4.9e-12, m = 3.1 mean values from DNV (1984) 

– 𝑑𝑎 𝑑𝑁 = 𝐶 ∆ 𝐾⁄  

• Elliptical flaw in plain plate with: 

– Ki = 1.12σ√(πa/Q) 

• Where: 

– σ  = Stress range with a transverse butt weld notch factor is applied from 
Stambaugh et. al., (1994) 

– Q = 1+1.464(a/c)1.65 

– a/c = 2/2.5 and L=2C 

In this example, annual wave height probabilities are from, Stambaugh et. al., (2014b and 
2019).  Loading predictions are from Sikora et. al., (1983).   The stress range for a 30 year 
lifetime applied as annual loading and length updated in 30 increments.  The resulting 
crack length sensitivity for 0.001mm-1mm initial flaw sizes is shown in Figure 6.2 

 

Figure 6.2 – Fatigue crack growth rate sensitivity to initial flaw size 
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The results of the crack growth prediction are shown in Figure 6.2.  An effective initial flaw 
size of .002mm was back-calculated from S-N curve data for a transverse butt weld and a 
damage ratio of one, then forward calculated using Fracture Mechanics using the load 
history estimated for the ship in increments of one year.  Initial flaw sizes of 1.0mm, 
0.1mm, 0.01mm, and 0.001mm are shown for comparison to the initial effective flaw size of 
0.002mm.  The length required to produce a through-thickness crack (assuming a 2.5:1 
aspect ratio) is shown along with the current acceptance criteria for weld flaws in new 
construction.  The dashed lines in Figure 6.2 represent the effects of time for cracks to 
initiate as discussed further in Appendix C.  Two important observations are apparent from 
this information.   

1) Cracks grow very rapidly after they reach through-thickness and into the 100mm 
length in less than a year or two, leaving little time for detection before they could 
reach a critical size.  
 

2) The flaw size inspection acceptance criteria used in construction are very high 
relative to the initial flaw size.  The PoD (typically 90% for a 1mm flaw) is 
relatively high, increasing the probability of their existence given the potential 
number of them in ship structure.  The impact of this crack length is considered in 
the following example. 

6.4.2 Markov Chain and Probability of Detection 

The fatigue crack growth rate calculations and rates shown in Figure 6.5 show fatigue 
cracks grow rapidly within a year and could grow 100mm well within a five-year time-
frame.  The answer to the probability of fracture question involves estimating how fast 
these cracks will grow in a five-year time interval, what is the probability they will not be 
found (1-PoD), and what is the probability of fracture if they grow undetected?  

The rate of fatigue crack growth and transition in probabilities associated with crack length 
states implies a Markov process model and probability chain.  The transition probability is 
related to PoD and 1-PoD to calculate the time-varying number of fatigue cracks not 
detected and reaching each length increment.  This can also be performed using fracture 
mechanics calculations to determine growth rate from initiation; however, the current 
estimates of fatigue crack growth rates are used to provide a conservative estimate of the 
number of cracks reaching each incremental length (100mm) in a five year time period 
given the estimated crack growth rate.  

To determine the probability of detecting a crack growing over time, a Markov process 
approach discussed in Chapter 5 was used to estimate the probability of a crack progressing 
through ranges of five year periods along with the probability of detection Bayesian prior 
conditional probabilities.   
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In the Markov process model, the crack grows through the plate as a random walk 
phenomenon which respects the mean value and scatter (statistical uncertainty) in time to 
reach chosen crack depths that are designated damage states.  The time statistics to arrive 
at the various damage states were derived from the fracture mechanics calculations shown 
in Figure 6.2.  The initial state is the through-thickness crack and number of cracks shown 
in Figure 6.2.  The probability the crack will be in each state (five-year period) is assigned 
as one (certainty) for this example based on inspection of the mean crack growth rates 
shown in Figure 6.2.  As a practical matter, the time spent in each time interval is random 
based on the actual loading encountered and is not known apriori.  Knowledge of the 
encountered loading is required to fully assess the time spent in each time interval.  If this 
knowledge is obtained through measurements, the need and timing of focused inspections 
can be determined and proactive maintenance planned.  

The probability of non-detection values (1-PoD) values calculated from the PoD values 
shown in Figure 6.2.  The results of the probability of nondetection are shown in Table 6.6 
along with associated high probabilities of cracks growing to 250mm in length because they 
are difficult to detect visually.  NDT inspection to find fatigue cracks in thousands of details 
is not cost-effective due to the kilometers of welding and thousands of welded structural 
details in ships.  The results of these calculations indicate that PoD statistical data is 
needed to fully characterize the Risks associated with finding cracks as they grow in ship 
structure, especially the ships that were not designed with SFA.   

Table 6.5 – Probability of cracks growing and not detected 

 

Crack Length Years 5 10 15 20 25 30 40

TTC Nttc/Pttc 0.2 7 12 34 81 138 183

PnDetect 0.35 0.35 0.35 0.35 0.35 0.35
PnRepair 0.05 0.05 0.05 0.05 0.05 0.05

150mm N150/P150 0.07 2 4 12 30 51

PnDetect 0.13 0.13 0.13 0.13 0.13
PnRepair 0.05 0.05 0.05 0.05 0.05

250mm N250/P250 0.01 0.34 1 2 4

PnDetect 0.06 0.06 0.06 0.06
PnRepair 0.05 0.05 0.05 0.05

350mm N350/P350 0.001 0.021 0.036 0.106

PnDetect 0.02 0.02 0.02
PnRepair 0.05 0.05 0.05

450mm N450/P450 0.00001 0.00045 0.00076

Nttc/Pttc = Number of through thickness cracks or Probability of through thickness cracks
PnDetect = Probability of non-Detection (=1-Probability of Detection)
PnRepair = Probability that a crack will not be properly repaired and initiate a new crack
N150/P150 = Number of 150mm cracks or Probability of a 150mm crack
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The full Risk assessment, including the randomness in load, strength, and the probability 
of detection, is lacking, often leading to inappropriate approaches for mitigation, including 
Optimal Inspection based approaches. 

6.4.3 Probability of Fracture Example 

Given the relatively high probabilities and numbers of fatigue cracks for the example 
described above, what is the probability they will be large enough to cause an unstable 
fracture, and at what loading conditions?  We will now look at the probability of failure 
associated with the growth of these relatively long fatigue cracks. 

According to Sumpter et. al., (2004), fracture mechanics based material toughness provides 
an index of the severity of loading at a crack tip.  The commonly used fracture mechanics 
parameter is the elastic stress intensity factor.  
 
Critical values of K refer to the condition when a crack extends in a rapid (unstable) 
manner are given as: 

  (38) 
 

   
(39) 

 

Here,  

Sc is the nominal applied stress at crack instability, 

 and ac is the crack length at instability for a through-thickness crack. 

KIc is the critical stress intensity and related to fracture toughness depending on the 
material, temperature, strain rate, environment, and thickness. Stress intensity is 
usually expressed in units of MPa√m. 

According to Sumpter et. al., (2004), fracture mechanics based material toughness is 
measured using a fatigue pre-cracked specimen instrumented to measure load and 
displacement at failure.  The toughness can be expressed in terms of a critical value of the 
elastic stress intensity factor, Kc; however, in a small specimen where plasticity precedes 
failure, the toughness is best derived from the J-integral.  When expressed in stress 
intensity units, this toughness is designated KJc.  The value of KJc is dependent on loading 
rate and temperature, as well as material properties. 
 
Further to Sumpter et. al., (2004), there is typically a considerable amount of scatter in the 
measured cleavage fracture toughness even from specimens taken out of the same material 

𝐾𝐼𝑐 = 𝑆𝑐√πa𝑐 

𝑆𝑐 =
𝐾𝐼𝑐

√π𝑎𝒄
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and tested under the same conditions.  This reflects the local variations in cleavage stress 
within the steel.  Failure of a fracture mechanics specimen depends on metallurgical 
conditions immediately ahead of the fatigue crack tip.   
 
The master critical stress intensity curve approach developed by Sumpter et. al., (2004) 
uses a mean line to describe the variation in toughness across the brittle to ductile 
toughness transition, combined with a Weibull distribution to describe the variation 
in toughness present at each temperature.  The mean of the test data with 1% and 
0.1% lower bounds were found from the Weibull distribution.  KIc values are in the 
150 MPa√m range for -10 degrees Centigrade. 

For comparison to Sumpter et. al., (2004), mean values of KIc values 150 MPa√m were 
obtained from Ramsamooj et. al., (2002) used a CoV varying between 0.09 and 0.12 without 
specifying a suitable probability distribution for modeling this random variable. 
 
Also, for comparison to Sumpter et. al., (2004), a factor of 0.6 on Kic is recommended by 
Rolfe and Henn (1993) to account for the effects of stiffeners and elastic-plastic effects in 
the KIc and this was used here.  This is consistent with KJc values provided by Sumpter for 
a KJc of 300 MPa√m/s.   

The example calculation of fatigue crack size required to initiate a fast fracture presented 
here uses the following relationships based on the prior discussion: 

 𝐾𝐽𝑐~2𝐾𝐼𝑐 
 

(40) 

 
𝑆𝑐 =

2𝐾𝐼𝑐

√πa𝑐
 

 

 
(41) 

The probability fracture was estimated for the example fatigue cracks (shown in Figures 2.4 
and 2.5 and further forecast as a Markov process shown in Table 6.6) by using a Load-
Strength probability approach.  This approach is described by Ayyub et. al., (2014) and 
Melchers (1999) among others.  The probability of extreme loading was estimated using the 
approach developed by Sikora et al. (1983).  As described previously, the probabilities 
associated with the Strength were estimated using fracture mechanics approaches 
presented by Rolfe et. al., (1993) and Sumpter et. al., (2004).  The Stress Intensity KIc is for 
a through-thickness crack as presented by Rolfe et. al., (1993) using LEFM with a 60% 
factor for ductility.  The statistical distribution and scatter of K1c were assumed to be 
normal with a CoV of 15% by inspection of the data provided by Sumpter et. al., (2004).  
Statistical quantification of the uncertainties of fast and brittle fractures are areas of much-
needed work in addition to the visual PoD or other PoD approaches. 

The resulting probability of brittle fracture (PfBF) is estimated given the probability 
distributions of loading stress and response stress using an interference reliability 
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approach for a specific event.   If the distributions for both the load (stress) and the 
strength both follow a Normal probability distribution, then the reliability (R) of a 
component can be determined by equations 3 and 4 in Chapter 2.0. 

A Normal probability function was used for the calculations of material response based on 
inspection of the work published by Sumpter et. al., (2004) and Rolfe et. al., (1993).   The 
estimate of the probability of brittle fracture is useful for the illustrative purposes herein.   

 
Figure 6.3– Illustration of the Load-Strength interference calculation 

The probability of failure P(Z) can be determined from a Z table or a statistical text (i.e. 
Walpole et. al., 2014), as shown in Figure 6.3 and results in Table 6.6  

The resulting probability of failure calculations are shown in Table 6.6 for maximum 
annual load and in Figure 6.4 for the design load, maximum annual, maximum operational 
(SAR), and maximum load in 40-years given the environmental loading histories. 

Table 6.6 - Probability of fracture calculation results for annual maximum load 

 

100 150 200 250 300 350 400 500
Direct 

Calculation
2.10E-07 1.44E-06 6.57E-06 2.29E-05 6.60E-05 1.64E-04 3.63E-04 1.36E-03

Monte Carlo 
1e6 Simulations

Crack Length (mm)

3.36E-04 1.31E-032.00E-06 2.00E-06 9.00E-06 2.30E-05 5.00E-05 1.60E-04
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Figure 6.4 – Estimated probability of failure for various loading conditions and 
crack lengths 

In Figure 6.4, loading considered is from the standard design wave, a typical Search and 
Rescue environment, maximum estimated annual load, and the maximum expected lifetime 
(30 years) load based on the approach developed by Sikora et al. (1983) and the operational 
environment presented by Stambaugh et. al., (2014b). This example is for a specific crack in 
a component, but has system implications as discussed in Section 2.2.4 
 
In this example, the PfBF shown in Figure 6.4 is consistent with 10-4 for a 250mm crack 
found by Sumpter et. al., (2004).  Longer cracks produce higher PfBF and unacceptable 
Risk.  However, given the consequences of the failure and potential to lose the ship and 
crew, the 10-4 probability of failure and Risk (PfBF · $C) are very high, indicating a lower 
level of Risk may be desirable, and methods of finding fatigue cracks before they reach 
100mm might be desirable.   The Risk mitigation strategies proposed herein and by 
Stambaugh et. al., (2014a) are beneficial in reducing Risk to an acceptable amount through 
the life cycle. 
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6.5 Risk – TOC and Evaluating HSM as a Risk Management 
Approach 

Two approaches for HSM, conventional strain gauge, and a more advanced Acoustic 
Emission (AE) approaches are presented next and evaluated as CoAs in the Risk-TOC 
approach. 

6.5.1 Risk - TOC Analysis of Conventional HSM 

This SFA design approach described in Chapter 2.0 is particularly beneficial because fatigue life 
is proportional to the third power of stress (FL~σ3) and returns a lifetime benefit for minimal 
initial investments during design.  However, initial design conditions may vary based on 
operational experience, and Hull Structural Monitoring (HSM) is used to reduce further 
uncertainties that may be included in the load predictions and actual environments encountered.  
The following discussion shows how the HSM reduces uncertainty and associated Risk in the 
following example. 

 

Figure 6.5 - Illustration of structural reliability as a function of time with SFA 
and HSM 

Figure 6.5 expands on the example shown in Figure 6.1 and shows an illustrative 
comparison of time-dependent reliability for SFA and “Do-Nothing” approach.  To 
summarize this example, the investment of conducting SFA early in design is minimal 
compared to the Risks of the “Do-Nothing” approach, as it is known in Risk Analysis and 
decision theory.  Furthermore, the practicality of Optimal Inspection as a mitigation 
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strategy is equivalent to the “Do-nothing” approach that is shown to be high Risk in the 
preceding examples.   

The distinct advantages of implementing SFA into a design have been presented.  The 
benefits of Risk Analysis and related decision theory are beneficial in combination with the 
SFA approach.  For example, if we choose to implement an SFA approach, what are the 
remaining uncertainties in the SFA based service life forecasts, and how do we mitigate 
these uncertainties?  What is at Risk from these uncertainties, and how do they change in 
the future as information becomes available? 

The aleatory uncertainties of the SFA approach included in this example are the wave 
environment, structural load prediction in the wave environment and the initial quality of 
the welding discussed in Chapters 5.0 and 6.0   One way to mitigate uncertainties in these 
quantities is to obtain measurements on the ship in service with an HSM system.  However, 
what should we measure and how much should we invest in the HSM system is related to 
the Value of Information gain.  While the probability of fatigue failure is much reduced 
with SFA and S-N structural fatigue design, there is sufficient residual uncertainty to 
consider further analysis and actions to mitigate the Risks of this future uncertainty.   The 
potential for service live extension is considered in this Risk Analysis example.  The related 
question is, how confident are the Decision Makers in the SFA approach based forecast to 
justify investing in structure upgrades (or not) associated with a Service Life Extension 
Program (SLEP)?  For example, if it will take $15M to upgrade the structure to extend the 
service life based on initial design assumptions, what part of that is at Risk based on the 
range of uncertainties in the SFA and mitigation strategies?  The BMA and Risk Analysis 
approaches are proposed for assessment of Life Cycle Cost related decisions as follows. 

The structural reliability forecasting with BMA with BHPs include: 

• Fatigue Life Reliability Predictions 

– Spectral Fatigue Analysis (Sieve, et. al., 2000) 
– Load Predictions (Sikora et. al., 1983) 
– S-N curves (AASHTO - Sieve, et. al., 2000) 
– Miner’s (1945) Cumulative Damage (CoV=0.30) 
– Pf from Reliability Calculations (Ayyub et. al., 2014) 

• Bayesian Prior probabilities for environment, load prediction, and weld quality 

• Latin-Hypercube Sampling described in Section 5.5.1.2 

• Calculate expected mean and variance 

  E(V) = ∑ 𝑓, , (Benv 𝑖, 𝑗, 𝑘 Bload 𝑖, 𝑗, 𝑘 Bqlty 𝑖, 𝑗, 𝑘 Pf30 𝑖, 𝑗, 𝑘)    (42) 

  E(Vsdv) = ∑ 𝑓, ,  (( Benv 𝑖, 𝑗, 𝑘 Bload 𝑖, 𝑗, 𝑘 Bqlty 𝑖, 𝑗, 𝑘 Pf30 𝑖, 𝑗, 𝑘)- Ev)2   (43) 
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Where Benv, Bload, and Bqty are Bayesian priors for wave environment, loading accuracy, and 
weld quality respectively.  The subscripts i,j, and k are specific priors in the Latin-
Hypercube sampling.  Pf30 is the probability of failure at 30 years of service life. 

For this example, the wave environment, load prediction, and construction quality are 
considered as dominant aleatory uncertainties in the SFA calculation.  While these three 
dominant uncertainties are not an exhaustive set and do not produce an absolute value of 
Risk, they do provide valuable insights for the uncertainties we must be able to quantify 
and resolve in order to mitigate their effects on Risk in question (i.e., to SLEP or not to 
SLEP). 

Typically, marginal probability distributions of significant wave heights encountered in the 
area of operation form a prior perspective in the SFA process.  This prior experience will 
vary depending on the specifics of the area of operation.  While there may be a dominant or 
preferably conservative (based on Scatter diagrams i.e. Bales-Lee and Classification Society 
Global Wave Statistics), the significant wave height (Hs) used in the design, there may be 
others that are possible/probable for forecasting applications.  Weighting the Hs in 
probabilistic terms is a form of BMA with hyper priors.  Initially, the weighting may 
represent a worst-case, conservative perspective.  The BMA weighting may even maximize 
our state of uncertainty, or in a Bayesian perspective of uniform prior expectations.  The 
marginal probability distribution of significant wave height (Hs) priors may be updated as 
the specific ship progresses through its service life if the information is known or collected 
either by an onboard system or post-analysis as in a virtual setting using hindcast 
databases (i.e., WW3 and Copernicus). 

For the SFA calculations, a range of three environments are considered including that used 
in design (BLNP), one from experience of an prior but similar High Endurance Cutter 
(WHEC) and another from five years of measured data from the Fatigue Life Assessment 
Program (FLAP) presented by Stambaugh et. al., (2014b). The latter two cases reflect heavy 
weather avoidance practiced by the operators.  The marginal probabilities of the Hs 
examples are shown in Figure 6.6. 
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Figure 6.6 – Significant wave height probability density used as hyper-priors 

An example sensitivity analysis of Hs is presented based on the results of the reliability 
analysis and updating of the initial reliability estimates shown in Figures 2.4 and 2.5   In 
this example, the number of expected fatigue cracks occurring based on varying 
assumptions/priors are shown in Figures 6.7, 6.8, and 6.9 for the following: 

Figure 6.7 - Design Priors for Hs (SFA=0.8, Prior Ops=0.15, HSM5=0.05), 

Figure 6.8 - Uniform Priors for Hs (SFA=0.333, Prior Ops=0.333, HSM5=0.333), and 

Figure 6.9 – HSM-5 Updated Priors for Hs (SFA=.01, Prior Ops=0.3, HSM5=0.69). 



130 
 

 

Figure 6.7 - Design priors for Hs (SFA=0.8, Prior Ops=0.15, HSM5=0.05) 

 

Figure 6.8 - Uniform priors for Hs (SFA=0.333, Ops Prior=0.333, HSM5= 0.333) 
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Figure 6.9 - HSM updated priors for Hs (SFA=.01, Ops Prior=0.3, HSM5=0.69) 

In this example, the design hyper prior is assumed to be conservative in the initial fatigue 
design process (SFA), the uniform hyper prior is used to provide insights into a possible 
scenario where we lack full knowledge of the priors (i.e., uniform prior as Bayes and others 
have proposed in this case) and as HSM-5 hyper prior when partial information is included 
but weighted according to our beliefs based on prior experience.  A significant observation 
from inspection of the results in this example is the dominance of the number of details on 
the number of failures expected, and to a lesser extent, the assumed Hs priors.  In other 
words, the number of structural details (system components) has a significant effect on the 
number of fatigue failures in the collective systems analysis shown. 

Table 6.7 shows the setup of the initial BHPs for the nine combinations in the analysis used 
in the BHP calculations of structural reliability for additional hyper priors.  The structural 
reliability and resultant probability of failure predictions were made for each of the 27 
initial permutations and follow on combinations of the uncertainty parameters.  The 
reliability prediction, according to Ayyub et. al., (2014) and Stambaugh et. al., (2014b and 
2019) discussed in Chapter 2.0, was used to determine the time-varying probability of 
failure.  The results of the reliability calculations (1-Pf) are shown in Figure 6.10.   

The uncertainties in the load prediction were considered as a range of Coefficient of 
Variation (CoV) for the load prediction approach and included 10%, 20%, and 30%.   



132 
 

The weld qualities of good, bad, and ugly represents a range of initial defects from 
0.001mm, 0.01mm, and 0.1mm, respectively (see Figure 6.2 and related discussion).  This 
was represented in the SFA by S-N categories of AASHTO D, E, and F respectively for 
calculation convenience.  A crack growth prediction could be used with a range of flaw sizes 
shown in Figure 6.2. 

Table 6.7 –Bayesian Hyper Prior parameters used in the Bayesian Model 
Averaging forecast of structural reliability estimates 

 

  

Design
Environment Loads Weld Quality

Bales-Lee WHEC FLAP COV-10% COV-20% COV-30% Good Bad Ugly
0.8 0.15 0.05 0.1 0.5 0.4 0.333 0.333 0.333

HSM-5
Environment Loads Weld Quality

Bales-Lee WHEC FLAP COV-10% COV-20% COV-30% Good Bad Ugly
0.3 0.4 0.3 0.1 0.7 0.2 0.333 0.333 0.333

HSM-10
Environment Loads Weld Quality

Bales-Lee WHEC FLAP COV-10% COV-20% COV-30% Good Bad Ugly
0.1 0.6 0.3 0.05 0.9 0.05 0.45 0.45 0.1

HSM-30
Environment Loads Weld Quality

Bales-Lee WHEC FLAP COV-10% COV-20% COV-30% Good Bad Ugly
0.1 0.8 0.1 0.95 0.049 0.001 0.599 0.4 0.001
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In the Bayesian Model Averaging (BMA) approach, each Bayesian Hyper Parameter (BHP) 
is multiplied by the probability of failure in 30 years (Pf30).  The range of the BHPs and 
Pf30 product histogram provides the statistical distribution of the uncertainties of the 
parameters considered, as illustrated in Figure 6.10. 

Initially, the BHP for weld quality is uniformly distributed, reflecting our lack of knowledge 
related to weld quality in construction (see Figure 6.2 and related discussion).  Over time, 
more information is gained about the weld quality in service by the presence of fatigue 
failures early on (i.e., larger flaws will fail early), as shown in Figure 6.2.  If no failures are 
observed early on, either the weld quality was good, or the ship did not experience 
significant loading relative to its capacity. 

Table 6.8 also shows the transition of BHPs with the assumed benefits of an HSM as a 
mitigation strategy.  HSM-5, HSM-15, and HSM-30 represent time frames for the HSM 
considered in the evaluation of options.  As time progresses, additional information is 
gained, the resulting uncertainties are reduced and calculated the following equations as: 

  E(TOCSLEP)30 = f ((Pf30)x($15M SLEP))     (44) 

 E(VaR95)30 = f ((PfBFxPf95)30)x($1.5T LOSS))    (45) 

The results of this BHP Risk calculations are shown in Table 6.8, along with a summary of 
the Risk of brittle fracture.  The Expected Value of PfBF30, and Value at Risk (V@R95) 
PfBF30 at 95% Confidence Interval CI are shown in Table 6.8   The product of 95% CI and 
$1.5T and PfBF (0.0001) provides an estimate of the Expected Value at Risk (VaR95) when 
time is equal to 30 years in this example.  The product of 95% CI and $15M provides an 
estimate of the SLEP exposure or E(TOCSLEP).   The $HSM is the life-cycle cost of an HSM 
for the specified timeframe.  The RoI is the net change in E(TOCSLEP)30 is divided by the cost 
of the mitigation action ($HSM).   

The benefits of the HSM are evident in reducing the overall uncertainty and Risk as 
indicated in Table 6.8.  The highest RoI from an HSM system represents the maximum VoI 
that a Decision Maker should want to invest in an HSM to mitigate (reduce) the remaining 
Risk (uncertainty and consequences).  
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Table 6.8 – Risk and RoI/VoI of Risk Mitigation strategies 

 
 
 

PfBF30  
V@Risk95 

Loss 
 

 
E(TOC) 

SLEP  

 
Mitigation 

HSM 

RoI/VoI 
 

E(V) 95% CI E(SIE) V@Risk
95 

TOCSLEP 

SFA 
Design 

.2654 .3783 7.46E-02 
 

$9.6M $8.7M $4M 4:1 200:1 

HSM 5 
years 

.0784 .1171 2.60E-02 
 

$3M $4.7M $2.50M 3:1 2:1 

HSM 15 
years 

.0359 .05 1.37E-02 
 

$1.3M $4M $1M 8:1 5:1 

HSM 30 
years 

.0017 .0023 9.29E-04 
 

$0.06M $3.5M $1.75M 6:1 3:1 

 

In Table 6.8, SFA RoI is relative to “Do-Nothing”.  RoI for HSM is relative to SFA in design.   

The calculation of Expected SIE as E(SIE) described in Chapters 4.0 and 5.0 is shown along 
with E(V@R95) results in Table 6.8 for a selection of SSLCM scenarios.  This example is 
useful to show there is a reduction in entropy for increased duration of monitoring, which is 
both verification of the intuitive intent of monitoring and insightful.  The most significant 
reduction in information entropy occurs after thirty years of monitoring, indicating a 
significant gain in information and a reduction in uncertainty.  One of the benefits of 
calculating E(SIE) is that it is independent of formulaic distribution definitions.  This 
feature is beneficial for evaluating the combine probability estimates of Risk with limited 
data, limited scenarios, and that do not produce detailed information for distribution fitting 
evaluations.  When used in combination with E(V@R95) estimates, E(SIE) provides an 
alternate means of confirming uncertainty reduction and provides a check that the 
calculations are reasonable by producing similar relative results. 

The relative E(SIE) will be very useful as the number of uncertainties, and multi-
dimensional uncertainties of Risk and TOC are included.  The application of information 
entropy is an area for future research for more complex evaluations of Risk-TOC involving 
more CoAs and broader analysis of uncertainties. 

The resulting Risk-TOC data is presented in Figures 6.11 and 6.12, reflecting the influence 
of new ship and SLEP decisions in the Risk-TOC trade-space. 
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Figure 6.11 – Example of the Risk – TOC trade-space for a new ship decision 

The Risk-TOC trade-space examples illustrate the significant reduction of Risk and TOC 
given the application of SFA in a design. In this case, the information gain includes the 
uncertainties inherent in SFA (as we know it and variations thereof) and its possible 
impact on a new construction decision if a zero RUL decision.   A later example shows the 
same estimate with a SLEP assuming a positive RUL decision.  In this case, the “Do-
Nothing” approach has been removed due to its significant influence on the scale of results.  
The implications of this scaling magnitude are shown in Table 6.8 for significant RoI 
(~800:1) of SFA relative to the TOC of the “Do-Nothing” approach. 
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Figure 6.12 – Example of the Risk – TOC trade-space for a SLEP decision 

In addition to service life extension costs and Risk shown in Table 6.8, the estimated Risk 
can be compared to total ownership cost (TOC) increases in a Risk-TOC trade-space.  
Figures 6.11 and 6.12 show the Risk and TOC the trade-space as described in Chapter 5.0  
The increase in Risk and TOC examples obtained from Tables 6.3, 6.4, and 6.8.  In this 
comparison, Risk is calculated for 30 years, as shown in Table 6.4.  The V@R95 shown in 
Table 6.8 with a factor for fatigue crack non-detection (very conservatively at 10%).  The 
TOC increase is estimated based on the LCC in Table 6.5, and the cost of Risk mitigation 
for the specific option shown in Table 6.9  As discussed previously, the HSM and their 
BHP’s options are updated based on the gain of knowledge resulting from measured 
information and occurrences of failures or not. 

Each Risk mitigation scenario shown in Figure 6.12 has its individual trade-space, and 
local optimization is possible to identify benefits from improvements in the individual 
options, as illustrated in Figure 5.10.  The individual Risk mitigation options may be 
updated from both new types of measurement approaches and increased knowledge to 
reduce uncertainties.  For example, updated maintenance-related action options could also 
include improvements in the SFA process and quality and quantity of HSM.  Future 
improvements in the SFA could be obtained from updates based on the measured HSM 
data and a validation process.  Similarly, new approaches for inspection could be developed 
and considered in this trade-space, and corresponding RoI estimated.  The “Do-Nothing” 
approach represents the potential for much higher Risk consequences associated with a 
potential total loss.  Risks associated with this worst-case scenario are less tangible but are 
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significant as shown in the simple examples shown herein.  Quantified improvements in 
inspection approaches will yield quantified improvements in both Risk and TOC, 
particularly if combined with the SFA and HSM options and targeted inspections based on 
projected crack growth rates. 

6.5.2 Risk - TOC Analysis of Acoustic Emission HSM  

As discussed in Chapter 2 and Figure 2.5, an important question to be answered is how 
long (length and time) cracks grow undetected, and what is there PoD or, more precisely, 
non-detection (1-PoD)?  A literature search provided example PoD data for bridges and 
offshore structures (see Madsen et. al., 1991 and many more).  However, there are few 
sources for PoD data for visual inspection of ship structures.  Two sources of visual PoD 
data are by Demsetz (1999) and Takahashi (2007), with results shown in Figure 6.13 along 
with PoD data from Madsen et. al., (1991) for offshore platform and bridge NDT inspection.  
Similar PoD curves ara available from DNVGL (2017) for offshore structures.  

Figure 6.13 shows there is a probability that fatigue cracks up to 500mm in length will not 
be detected by visual inspection.  Based on the author's experience (Stambaugh et. al., 
1987), cracks in shell and tank plating often leak when reaching the 100mm range; 
however, this effect on crack detection has not been quantified in terms of PoD.  More work 
is needed in the area of PoD development for ship structures, and the Risk-TOC framework 
is proposed for their further evaluation of investments in this regard.   

The NDT inspection for all structural welds including welded structural details in the 
primary structure of ships is cost-prohibitive in addition to significant losses in operational 
availability Ao.  The PoD data for ships is very sparse, and any extrapolation is difficult; 
however, the data is used to illustrate the probability of fracture example.   

In addition to the excessive cost of inspecting ships with NDT and limitations of visual 
inspection PoD, Figure 6.13 shows a photograph of the inside of a US Coast Guard Cutter 
with insulation covering the vast majority of the interior of the primary hull structure.  
This is a good example where visual inspection and NDT will not be cost-effective.  
Insulated structure is common in the primary hull girder above the bottom of US Coast 
Guard Cutters and Naval ships. 

In addition to the difficulties and challenges in inspecting ship structure, the PoD estimates 
are shown in Figure 6.13 indicate cracks can easily grow undetected to 250mm in length.  
The PfBF for a fatigue crack 250mm in length is unacceptable levels 10-4 as described by 
Sumpter et. al., (2009) and evaluated in prior sections.   This example shows that cost-
effective inspection mitigation strategies are desirable to help mitigate the Risks discussed 
herein.   
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Figure 6.13 – Probability of Detection for fixed structures and ships 

PHSM is often used to assess lifecycle conditions.  This monitoring is often accomplished by 
strain gauges (see Stambaugh et. al., 2014b) with other approaches, including AE as an 
example (Stambaugh 2014c) that are based on finding fatigue cracks in early stages of 
growth.  The Acoustic Emission (AE) crack PoD is presented data by Hossain (2013) for 
comparison.  Acoustic Emission data (at AE 75 Mpa) are shown in Figure 6.13 for 
comparison to other sources of PoD data; additional discussed on this topic is presented 
later in this dissertation.   
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Figure 6.14 –Inside view of a US Coast Guard Cutter showing insulated primary 
hull girder structure – relevant to PoD of NDT and difficulties for visual or NDT 
inspection 

Given the cost, difficulties, and limitations of both NDT and visual inspection in ships 
described above, it is interesting to consider the use of AE fatigue crack growth detection, 
as discussed by Stambaugh et. al., (2014b) and Drummen et. al., (2019). 

The probability of detecting fatigue cracks is related to stress intensity, as presented by 
Hossain (2013).  In the work described here, the stress intensity is translated to crack 
length for a given nominal stress (range) is by LEFM and presented in Figure 6.13 as 
AE75Mpa given a stress intensity calculated at 75Mpa stress and stress intensity shown in 
Figure 6.13 and number of stress cycles exceeding 2000 as recommended by Hossain.  This 
is a nominal stress associated with most probable loads.  The PoD improves when operating 
in higher wave heights producing higher hull girder loading and resulting stress 
intensities. 

Results presented in Tables 6.9 and 6.10 show the potential benefit of AE monitoring by 
lowering the number of cracks growing to longer lengths and lower probabilities they will 
reach critical crack lengths.  For example, the probability of a fatigue crack growing to 
250mm is 10e-5 in 40 years with AE and significantly higher without AE, as shown in Table 
6.9. This example is shown in Figure 6.15 Risk-TOC trade-space for illustrative purposes.  
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There is a need for additional verification of fatigue crack PoD for AE technology in ship 
structure to fully evaluate this approach for ship structural Risk Management; however, 
this Risk-TOC example provides evidence the investments will likely provide a positive RoI.  

Table 6.9 – Probability of fatigue cracks growing to various lengths, AE example 

 

 

 

 

 

 

 

 

Crack Length Years 30 35 40 45 50 55 60

TTC Nttc/Pttc 0.2 7 12 34 81 138 183

PnDetect 0.05 0.05 0.05 0.05 0.05 0.05
PnRepair 0.05 0.05 0.05 0.05 0.05 0.05

150mm N150/P150 0.01 0 1 2 4 7

PnDetect 0.01 0.01 0.01 0.01 0.01
PnRepair 0.05 0.05 0.05 0.05 0.05

250mm N250/P250 0.0001 0.0037 0.0063 0.0185 0.0445

PnDetect 0.001 0.001 0.001 0.001
PnRepair 0.05 0.05 0.05 0.05

350mm N350/P350 0 4E-06 7E-06 1.9E-05

PnDetect 0.001 0.001 0.001
PnRepair 0.05 0.05 0.05

450mm N450/P450 0 0 0

Nttc/Pttc = Number of through thickness cracks or Probability of through thickness cracks
PnDetect = Probability of non-Detection (=1-Probability of Detection)
PnRepair = Probability that a crack will not be properly repaired and initiate a new crack
N150/P150 = Number of 150mm cracks or Probability of a 150mm crack
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Figure 6.15 – Relative Risk and TOC management approaches Including the AE 
example with the do-nothing scenario 

 

Figure 6.16 – Relative Risk and TOC of management approaches Including the AE 
example without the do-nothing scenario 
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Figure 6.16 shows the same scenarios as Figure 6.15, except the “Do-Nothing” scenario is 
removed for clarity of scale.  This difference between Figures 6.15 and 6.16 shows the 
magnitude of Risk and TOC dominance associated with the “Do-Nothing” approach vs. the 
mitigation strategies. 

6.6 Risk – TOC Analysis of Corrosion in Ship Structure 

In the context of a structural system, local panel corrosion could potentially aggregate to 
weaken the structure globally if not undetected or not repaired if detected as deferred 
maintenance.  The Risk associated with these events are evaluated here in the Risk-TOC 
approach. 

The corrosion and fatigue Risk-TOC estimates are shown in Table 6.11 and trade-space in 
Figures 6.17 and 6.18 for illustrative purposes.  The fatigue management approaches are 
from Figure 6.16 and include, from top left to bottom right, “Do-Nothing”, Fatigue Design 
(SFA), Hull Structural Validation, and Long-Term Hull Structural Monitoring.  The 
corrosion Risk Management options include: 

 Visual Inspection every year,  
 Visual Inspection every other year,  
 Visual Inspection and spot UT testing every five years,  
 Visual and UT inspection mid and end life,  
 Visual and UT inspection every (five years) planned Dry Docking, and  
 Visual and UT inspection every other (ten years) planned Dry Docking.   

The probability of corrosion detection values, maintenance, and the probability of loss are 
subjective Bayesian prior probabilities based on the author's experience with maximum 
corrosion rates observed in US Coast Guard Cutters.  Additional work is needed in this 
area to substantiate this information.  The estimated LCCM costs, consequences, and 
associated Risks are presented in Table 6.11, Figure 6.17, and 6.18 as an example range 
corrosion damage.  The trends presented in Table 6.11 and Figures 6.17 and 6.18 appear to 
be realistic, indicating the Visual Inspection and UT measurements every drydocking 
provide the most cost-effective approach to managing corrosion in this example.  This 
illustration demonstrates the Risk-TOC trade-space approach applied to corrosion in 
SSLCM and facilitates LCCM decisions depending on the severity of corrosion. 
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Figure 6.17 – Risk-TOC trade-space with fatigue and corrosion risk control 
scenario’s  

 

Figure 6.18 - Relative Risk-TOC trade-space with fatigue and corrosion risk 
control scenario’s  
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Figure 6.18 is the same as Figure 6.17 with corrosion scenarios of Risk-TOC from Table 
6.11 added and E(δTOC95)30 shown for clarity of scale and impact of the scenarios. 

Figure 6.18 shows an interesting area between $0.5M and $10M for Risk and $1M and 
$10M for TOC.  There are many Risk control options from SFA in design to HSM and 
corrosion inspection results that could provide acceptable values of Risk based on the 
preferences and perceived utilities of the Decision Makers.  The differences in TOC produce 
a substantial difference in RoI of each option, justifying the investments by Decision 
Makers.  In this example, the Risk-TOC framework is used to evaluate alternatives Risk 
Management options, technology investments, and the potential RoI that isn’t as readily 
evident in any other type of analysis (i.e., Component Reliability, Optimal Inspection, β 
based).  

While less developed in detail than the fatigue reliability examples, the corrosion example 
is illustrative of the Risk-TOC approach and serves as a starting perspective for further 
research and development and refinements of the approach relative to corrosion in ship 
structure.  

6.7 Risk - TOC and Evaluation of End of Service Life 

Given the definition of Risk and TOC proposed herein, it is possible to quantify the benefits 
of service life planning efforts for SSLCM.  These include establishing an EOSL definition 
and how to manage minimum TOC at required availability levels during design through 
service life. 

The TOC implications of this time-dependent fatigue reliability degradation from fatigue 
are significantly different than if fatigue is considered early in the ship’s life cycle during 
design and construction, as shown in Figure 6.1  Additionally, the ability to extend the 
EOSL of a ship produces significant savings in TOC, not only from a maintenance 
avoidance standpoint but significant cost savings from not having to acquire a new ship 
because the structural life is less than planned.   In this example, if the cost to sustain 
required availability levels and safety exceed available budgets, the EOSL is reached.  If 
this economic failure occurs prior to the design service life, the TOC increases by the cost of 
a new ship required replacing it or other related options required to meet service/mission 
availability (Ao) obligations.  Conversely, extended service life saves the cost of a new ship, 
prorated in time after expected design service life.  There are often other considerations 
involved in the EOSL decisions, including funding available to buy a new ship or other 
political considerations.  However, the decisions related to EOSL are a matter of TOC and 
Risk from a technical viewpoint.  Therefore, Risk -TOC applied in design proactively will 
have a significant impact on service life and replacement.  There are proactive measures 
that can be made early RD&TE, design, and construction phases with a significant impact 
on Risk and TOC.  Significant cost savings can be realized by using the Risk-TOC approach 
early in the design phase, providing adequate buckling and corrosion margins, in addition 
to addressing corrosion prevention, as proactive measures to minimize both Risk and TOC.  
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The overall goal is to achieve minimum TOC and Risk at required Ao, as shown in Figure 
6.19 at the maximum EOSL.  See Chapters 7.0 for an additional discussion of EOSL and 
SLEP decisions.  

 

Figure 6.19 – Illustration of RISK - TOC trade-off space for determining EOSL 

For the scenarios illustrated in Figure 6.19, both TOC and Risk increase from corrosion, 
local buckling, and fatigue cracking.  In either case, the objective is to minimize their Risk 
and TOC based on quantified impacts of the actions.  In Figure 6.19, fatigue failure related 
Risks and TOC are shown to exceed the maximum economic TOC.  Ships with extensive 
fatigue cracking become very expensive to repair through their service life; thereby, 
increasing TOC significantly and implies shorter EOSL.  Risk also increases as the cracking 
becomes more widespread throughout the ship.  In any case, if the Risk exposure is deemed 
too high and the ship is too costly to repair, the useful service life is not adequate as 
characterized in the Risk-TOC trade-space.  Proactive actions early in the ship’s life cycle 
often provide the minimum Risk and TOC, as discussed in prior examples.  The objective is 
to determine the combination of the minimum combination of Risk and TOC for a given 
design.  This process will be applicable throughout the ship’s life from RD&TE to disposal. 

What becomes clear from this discussion is the definitions of RUL and EOSL are not 
discrete numbers, and their quantification is possible in the Risk-TOC approach.  They are 
both subject to uncertainties in Risk and TOC that must be considered over an expected 
lifetime experience.  In current SSLCM practice, RUL and EOSL are often decided based on 
reactive experiences (i.e., repair of fatigue cracks and corrosion become prohibitive 
especially if the result in EDDs).  Proactive Risk-TOC planning is supported by the 
probabilistic determination of these important SSLCM events.  
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7.0 DISCUSSION AND IMPLICATIONS 
 

Broader Implications 
 
The prior Chapters of this dissertation present theory and verification of the proposed Risk-
TOC approach for management for SSLCM.  This Chapter presents the major findings and 
broader implications of the Risk-TOC approach developed as part of the research presented 
in this dissertation. 
 
Topics for discussion related to the findings and implications from the research conducted 
include:  
 

 Risk Definitions 
 Systems Analysis in the Risk-TOC Approach 
 Risk-TOC trade-space Analysis of Alternatives (AoAs) and Course of Actions (CoAs) 

for Risk Management 
 Return on Investment Considerations 
 Total System Performance 
 Sustainability 
 Hull Structural Monitoring and Risk (Uncertainty) Reduction 

 
7.1 Risk Definitions 
 
Definitions of Risk used in Risk Analysis and SSLCM are presented in this Section to 
contrast them with definitions used in Decision Theory-based LCM. 
 
7.1.1 Risk and Related Uncertainties 
 
Uncertainly definitions are often “elusive” due to a large number of parameters, variables, 
and their associated complexities.  Therefore, concepts of uncertainty and related 
definitions are emphasized through-out this dissertation to illustrate the fundamental 
implications of uncertainty in Risk quantification and its reduction (in terms of both 
uncertainty reduction and consequence reduction).  As described in Chapters 2.0, 3.0, and 
4.0, uncertainty concepts and definitions are a fundamental part of understanding, 
managing, and communicating Risk; therefore, it is essential to understand and quantify 
uncertainty in order to plan for potential consequences of a failure either minor or 
catastrophic.   

Historically uncertainties are quantified using probabilities, and there are many views on 
this as discussed in Chapter 2.0 and Appendix B and summarized in Figure 4.1.  With Risk, 
uncertainties are defined by probabilities. 
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This quantified measure of uncertainty in the hull structural loading and response becomes 
the characteristic of Risk with significant investments involved in SSLCM decisions and 
management and how the Decision Maker may quantifiably determine Risk has been 
reduced.    

Given the fundamental definition of Risk as (Pf*$C) and a clear definition of Pf as 
representative of uncertainties proposed in this dissertation, it is possible to communicate 
the Risk to others in more common terms understandable by those making the decisions.  

7.1.2 Risk-TOC vs Decision Theory 
 
In the design and engineering of complex structures, there are multiple ways to view and 
manage and mitigate uncertainty and Risk.  This is also true for SSLCM.  Key differences 
between Decision Theory and Risk Analysis and Management are presented in Section 3.1 
of this dissertation to highlight these differing viewpoints and their implications on 
SSLCM.  
 
The quantification of uncertainty with probabilities in Risk Analysis proposed in this 
dissertation differs in Decision Theory.  Proposed approaches to general LCM based on 
Decision Theory and Optimal Inspection scheduling alternatives presented in Chapter 3.0 
are based discrete probabilities, calculated expected value, and often hypothetical 
personalized expected utility in the decision process related to a single maintenance 
strategy.  In Decision Theory, E(V) and E(U) are calculated as the probability-weighted 
mean of expected outcomes that are narrowly focused on making the “most probable” 
successful decision without considering the effects of the range of possible outcomes needed 
for a fully informed decision on the range of Risk outcomes.  
 
The order of magnitude in Risk-TOC calculations and shown in the Figures in Chapter 6.0 
show non-linearity in Risk and the significant magnitudes of TOC involved in the decision 
processes.  This non-linearity is similar to Prospect Theory; however, it is a quantified 
perspective and not based on personal preferences on Risk.  Although the Decision Theory-
based approaches reflect the hypothetical preferences of the Decision Maker, the Risk-TOC 
approach provides quantified information without personal preferences.  Therefore, the 
Risk-TOC approach is most useful for making informed decisions with any preferences 
being those of the Decision Maker(s).  Each entity involved in Risk-based decisions then has 
an opportunity to apply quantitative utilities based on the application. 
 
The formulations of E(V) and E(U) used in Decision Theory lack focus on the range of 
outcomes for decision making and is known as the “Flaw of Averages” attributed to Savage 
(2012).  This is in contrast to the approach in Risk Analysis where the range of 
uncertainties is considered including E(V) and E(VaRα) based on a specific Risk tolerance 
limit of the Decision Maker or overall Risk reduction by information theory-based 
approaches.  Savage (2012) and Hubbard (2009) discuss the transition from Decision 
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Theory to Risk Analysis by representing decision outcomes by distributions of uncertainty, 
where appropriate, and Monti Carlo simulations.  The results of this analysis are examined 
at the confidence intervals and other Risk measures in addition to the expected values, as 
discussed extensively in this dissertation. 
 
Furthermore, in Decision Theory based Optimal Inspection proposals, Risk is defined as a 
product of a discrete probability of a failed structural component being detected and repair 
costs being calculated for form an E(U) without Risk of total system (or near-total) loss 
being considered explicitly.   
 
In contract, implementing the Optimal Inspection approach to complex (yet non-redundant) 
structure results in very high Risk (not finding a crack) TOC (direct and indirect 
availability - Ao costs) of inspections and repair of serviceability failures. 
 
In the Risk-TOC approach, maintenance costs and serviceability failure repairs are added 
to TOC and Risk of a major system loss or total loss at worst.  In contrast to Decision 
Theory based Optimal Inspection scheduling approaches, the Risk-TOC approach includes 
numerous decision options for Risk mitigation that are compared on the basis of cost 

E(TOCα)T the Expected Risk E(Riskα)T 
 
These fundamental differences in Risk definitions, analysis, and management are 
particularly important when considering the scale of the system complexity in ship 
structure.  In Optimal Inspection, one or few structural details are included in the optimum 
inspection schedules.  In contrast, the Risk-TOC scales to more complex structures.  The 
scaling process includes the magnitude of the problem in terms of Risk and TOC in as 
quantified terms as the Risk Analyst has available or data needs to obtain the supporting 
data (e.g., Prognostic Hull Structure Monitoring). 
 
Ultimately, Decision Theory based Optimal Inspection as failure monitoring, reactive 
approaches are fundamentally high Risk in complex structures; therefore, there is a need 
for a proposed Risk-TOC SSCLM approach as presented in Chapter 5.0 and examples in 
Chapter 6.0 
 

7.2 Systems Analysis in the Risk-TOC Approach 
 
In ship structure, the interactions and correlations between structural load and response 
are important in system analysis, as has been presented in this dissertation.  The analysis 
of component level correlations is presented in Appendix A, and implications on the systems 
analysis of fatigue and corrosion failures in ship structures are described in Chapter 2.0.  
The implications of the system definition lead to a new understanding of systems 
reliability, failure progression, and related fundamental Risks.   
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7.2.1 Component Level Correlations 
 
Complex structures in many industries, civil in particular, are purposely constructed of 
individual members forming independent load paths.  In these systems, terms such as 
series and parallel are used to characterize the system behaviors in failure progression.  
However, ship structure is continuously welded with no duplicative redundancy in 
individual members, load paths, and the concepts and terms of series and parallel do not 
apply to complex ship structural systems.  Failure happens to the entire structure as a 
whole, either progressively or catastrophically.  Neither case is desirable and very high 
Risk, as shown in the examples provided.  In ship structures, there must be sufficient 
reserve strength designed in for the intended service life; however, the current approach for 
providing reserve strength is empirically based.  The Risk-TOC approach proposed in this 
dissertation provides a means for comparative analysis to develop these concepts for ship 
structure applications. 
 
7.2.2 Systems Level Implications of Component Correlations 

 
The component-level failures in ship structure are generally uncorrelated independent 
events initially.  In complex structures, component failures become increasingly correlated 
in complex manners as failure progresses.  For example, areas of corrosion are independent 
locally until they become extensive spatially to weaken the structure until they fail in a 
collective manner, further weakening to become critical and possibly precipitating the 
ship’s hull girder collapse.   

Increasing numbers of progressive serviceability failures increases their correlation while 
reducing reserve strength, safety.  These considerations are addressable within the Risk 
and uncertainty approach defined in this dissertation in terms of quantified probabilities, 
consequences, and the combined relative Risk.  These quantities also provide insights into 
reserve strength in relative Risk terms. 

7.2.3 Bayesian Network Models 

Bayesian Network models are very useful when there are numerous variables in a network 
that have conditional correlations.  Medical diagnosis is one example where Bayesian 
Networks are used to combine a number of conditional possibilities of diagnosis give 
evidence of symptoms presented by a patient.  Bayesian Networks have been proposed 
(Straub et. al., 2010 and Groden et. al., 2013) in very narrowly defined applications with 
specific types of implementations (i.e., fatigue crack growth estimates), that are defined 
using statistical process model-centric with random hyper-priors.  Kim et. al., (2016) have 
proposed Bayesian Network models for corrosion rate prediction in a cargo ship using hyper 
priors.  

Bayesian Networks were investigated in the possible application as part of the Risk-TOC 
and found to be too specific in their development as data analysis tools rather than Risk 
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analysis tools.  Ship structural reliability analysis and Risk Analysis applications involve 
physical modeling of processes that must be reduced to statistical distributions to fit 
Bayesian Network models.  The Bayesian Networks are not able to model time-varying 
changes and must rely on Markovian processes, as discussed herein.  This transformation 
of physical modeling to stochastic modeling becomes difficult if not formidable considering 
the large numbers of structural details in ship structures to be analyzed and interconnected 
with conditional probabilities and correlations.   Therefore, the Bayesian Network approach 
is difficult to use in current SSLCM applications.  However, Bayesian Networks may 
provide insights into overall uncertainties and correlations in the reliability processes for 
those interested in pursuing this and related to the SSLCM problem.  The Bayesian 
inference will likely be useful as a component of the physics-based approaches, such as 
embedding the Bayesian Network process within the physical model approach.  This 
approach is a likely way forward to advance this the benefits of the Bayesian Networks in 
reliability and Risk analysis of complex ship structures.  Bayesian Networks may also be 
used to evaluate the effects of complex correlations and Markovian processes in progressive 
failure in complex structural systems, many of which are unquantified to date.  Bayesian 
Model Averaging provides insightful forecasting of structural reliability with stochastic 
variables and hyperparameters, as demonstrated in the examples in Chapter 6.0.    
 

7.3 Risk-TOC and Risk Management 

The Risk-TOC approach proposed is scalable to full ship analysis (as demonstrated in the 
examples in Chapter 4.0 of this dissertation) and well suited to analyze and manage Risk in 
all phases of SSLCM (including R&D, Design, Acquisition, Construction, Maintenance, Mid 
and EOSL, and Disposal).  The Risk-TOC approach is developed and verified how to 
quantify Risk and TOC of mitigation options through real applications in this dissertation.    
 
7.3.1 Risk Management Strategies  

Risk Management strategies include Risk acceptance (contingencies), avoidance (design), 
mitigation (HSM, not OI), transfer (insurance), sharing (government institutions).  The 
Risk-TOC trade-space approach is suitable for evaluating these approaches.  The 
relationship of these Risk Management strategies is shown in the diagrammatic format in 
Figure 5.15 

7.3.2 Risk-TOC AoAs and CoAs 

The Risk-TOC analysis provides a unique opportunity to compare of Risk Management 
Strategies in a common framework to facilitate AoAs.  The resulting impacts on both Risk 
and TOC are estimated, and decisions are made in relative terms if not absolute terms 
given the known information on both Risk and TOC. 
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In the early development of the Risk-TOC process proposed herein, there are a limited 
number of scenarios in the Risk Management example provided, largely because they 
require considerable resources to fully evaluate each variant systematically through the 
Risk Analysis process.  This number of Risk mitigation alternatives will likely increase as 
the Risk-TOC process is more automated and implemented.   
 
As a practical matter, any number of alternatives and solutions are possible within the 
Risk-TOC trade-space. Therefore, multi-parameter and Pareto Frontier type optimizations 
may be developed for each Risk mitigation alternative.  In this more involved case, each 
scenario will be subject to a Pareto analysis as a subsystem and then compare using the 
overall scenario analysis comparison of alternatives in the Risk-TOC trade-space.   Multi-
parameter optimization is also possible.  Further, development is required, when multi-
parameter analysis of Risk-TOC alternatives, especially if the range of uncertainty is to be 
considered.  In this case, information entropy will likely be useful to quantify the full range 
of uncertainties.  Discrete CoAs are presented in the Risk-TOC examples for verification 
purposes.  It is likely that future applications will include more CoAs as the applications 
and data are more fully developed.   
 
The proposed Risk-TOC decision criteria Min[E(Riskα)],[E(TOCα)] is relatively basic but 
fundamentally correct and useful to build on.  Increasing the number of CoAs will also 
require more data to obtained/develop the stochastic characteristics (i.e., distributions and 
parameters) in both Risk and TOC.  This increase in required data will also be necessary 
for automated Pareto Frontier type analysis.  This will ultimately occur in the future based 
on big data analysis.  Joint entropy or similar criteria will suit the complexity in the joint 
distributions of Risk and TOC as the number of CoAs and Pareto Frontier are developed 
within the Risk and TOC trade-space. 
 
Given the concept of subsystems of Pareto Frontiers illustrated in Figures 5.9 and 5.10, and 
developed in Chapter 6.0, the Decision Maker will assess the scenario that meet their 
decision perspectives and requirements.  The Decision Maker’s considerations may be 
either based on stakeholder consensus, budget constraints, or institutional guidance on 
acceptable Risk.  The Decision Makers will also like to consider the “optimum” trade-off 
between Risk and TOC.  This investigator hypothesizes a Decision Maker will choose the 
minimum of both Risk and TOC.  The hypothesis is proposed because, within the Risk-TOC 
approach, the Decision Makers primary objective is to minimize the Risk exposure within 
the available budget and their associated constraints.  If the optimum Risk exposure is too 
expensive, or the minimum Risk is still not institutionally acceptable, the Decision Makers 
will likely consider other investments to reduce both Risk and TOC.  This may require 
gathering additional information to reduce uncertainties (i.e., by HSM).  The RoI and VoI, 
are then calculated as improvements in Risk-TOC.  If a satisfactory combination of Risk 
and TOC are not found, the Decision Makers will investigate implementing a new scenario 
or collecting more information in quantifiable terms.  Each Pareto frontier of CoAs 
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individually and collectively may reflect the state of the art in practice; however, new 
investments in technologies may be evaluated to lower both Risk and TOC, thereby 
lowering the state of the art floor to the Pareto Frontiers. 
 
Given the fundamentals of Risk Analysis (and uncertainty reduction) approaches discussed, 
it is relatively straight forward to obtain important findings regarding the immense 
magnitudes of costs involved in SSLCM. 
 

7.4 Return on Investment Considerations 
 
The Risk-TOC approach provides a means of comparing ship structural management 
approaches and guiding related decisions based on their relative TOC and Risk.  The 
relative return on investment is determined by the change in TOC for the options of Risk 
management being considered. 
  
An inherent natural RoI is created by the structural fatigue process where fatigue failure is 
proportional to the third power or fifth power of stress range (i.e., σ3 or σ5).  In the context 
of the SSLCM applications described herein, RoI is determined by the total monetary 
benefits divided by the initial investment.  This conclusion applies to both success (survival) 
and failure producing a large range between success and failure of the structure and a 
significant natural RoI.  One of the most difficult aspects of ship structural designers 
relying solely on class rules and SFA is that it is impossible to achieve the exact fatigue life 
due to the numerous uncertainties in the fatigue analysis process (see Colette 2018).  In 
semi-probabilistic approaches (i.e., Sieve et. al., 2000, ABS 2017) are intended to be on the 
conservative side as an engineering approach, and the conservatism is beneficial; however, 
these approaches do not account for many uncertainties in the process or the systems level 
failure.  In fact, designing to minimum criteria in the fatigue design space of wave height 
probabilities, loads prediction, fatigue response, and construction tolerances will ultimately 
lead to the “Flaw of Averages.”  (Savage 2012) or worse leading to the inadequate design of 
these complex systems.   
 
The good news related to this natural RoI is that the effort required to be slightly 
conservative (i.e., added structural analysis and structural details with minimum stress 
concentration factors and minimum welding) is very cost-effective because small 
investments produce very large returns on fatigue life with confidence bounds in a 
reliability process setting.  This natural RoI provides significant incentives for conducting 
reliability and Risk Analysis.  The investments for conducting a reliability analysis and 
quantified Risk Management should be viewed as insurance against high costs and 
contingency costs analysis.  The proportional relationships between fatigue life and 
uncertainties include the following: 
 

𝐹𝐿~(𝑆𝑇𝑅𝐸𝑆𝑆 ) ∗ 
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𝑅𝑖𝑠𝑘~(𝑆𝑇𝑅𝐸𝑆𝑆 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠)  
 
𝑅𝑒𝑤𝑎𝑟𝑑~(𝑆𝑇𝑅𝐸𝑆𝑆 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠)  
 
𝑅𝑜𝐼~(𝑆𝑇𝑅𝐸𝑆𝑆 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠)  
 
𝑉𝑜𝐼~(𝑆𝑇𝑅𝐸𝑆𝑆 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠)  
 
* Exponent is 3 at midcycle fatigue, 5 at low cycle fatigue, 
and Ꝏ (infinite) at stress ranges less than the fatigue limit  
 

One example of a high return on small investment results from fatigue life being 
proportional to STRESSrange to the third power.  This can be seen from fatigue response 
being plotted on a log scale Risk-TOC plots in Chapter 6.0.  In this example, small changes 
in stress (via design or HSM operator guidance) produce very large increases in fatigue life.   
In this example the RoI from HSM is so large that NPV (given the current difference 
between inflation and discount rate) is almost irrelevant given the relative magnitude of 
Risk and TOC alternatives; however, NPV is easy to include for more detailed AoAs with 
many uncertainties, similar cost alternatives or efficient frontier based solutions.  For 
example, refinement of options (i.e., number of sensors in an HSM) are considered, then 
NPV will become more important and still within the Risk-TOC approach for overall 
evaluation and AoA and provides a framework SSLCM Furthermore, commercial 
investment opportunities and expected rates of return might be used instead of the discount 
rate.  In any case, any financial analysis relevant to the user’s problem can be easily 
incorporated into the Risk-TOC approach 

 
Given the current state of SSLCM and the possibilities of significant savings, the Risk-TOC 
approach is a powerful approach in assessing SSLCM approaches and related management 
decisions.  The following benefits may be evaluated using the Risk-TOC approach. 

 
 Defining and quantifying investment opportunities in what if mitigation strategies.  

This is illustrated in the applications and Risk-TOC analysis in Chapter 4.0 
 

 Framework for assessing/estimating RoI of approaches to improve SSLCM decisions 
including RUL, SLEP, E(TOC+), E(TOCα)T 

 
 System TOC and implications for AoA decisions including+ weight+ fuel (minor) – 

repair costs in terms of raw materials, resources, and energy involved in terms of 
environmental impacts can be quantified in uncertainty and terms if data is available of 
course. 
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 The lack of long-term planning results in the least favorable RoI defining the proverbial 
“penny wise and pound foolish” in quantified terms.  This is especially true for fatigue 
and corrosion in ship structures. 

 
7.5 Total System Performance  

The Risk-TOC approach is applicable to short-term, long-term, and total ship systems 
design and assessments.  The discussion that follows provides a unique perspective for 
every timeframe applicable to SSLCM and total ship system design. 

 
7.5.1 Short-Term Approaches for SSLCM 
 
The following Section presents a discussion on the short-term implications of SSLCM 
approaches (i.e., profit-focused objectives) based on the Risk-TOC approach. 

 
7.5.1.1 Short Term Design Objectives 
 
There is a common perception that an increase in safety necessarily influences performance 
and TOC.  This perception is not founded in Risk-TOC type analysis and is considered an 
“urban myth” based on the convenience of the often-stated simplistic minimum weight 
objective.  For the considerations of fixed design (i.e., all else being equal) SSLCM, the Risk-
TOC objectives provide dominant objectives as a trade-space for decision making.  
 
For example, the minimum structural weight design objective is not cost-effective in the 
long-term and has significant effects on Risk and TOC, especially fatigue cracking and 
potential losses in LCM, as shown in the application Sections of this dissertation.  Saving 
weight in construction is a very short-term RoI perspective.  Saving LCC is longer-term RoI 
and long-term profitability and sustainability.  The primary reasons ships are sold early in 
their service lives are typically economical obsolescence due to changes in trade routes, the 
cost of fuel, or other factors that occur prior to significant structural failures.  However, this 
approach is NOT economical, nor is it environmentally sustainable.  More discussion on 
sustainability is presented in a later Section on the long-term implications of the Risk-TOC 
approach. 

 
It is entirely possible to achieve a minimum weight design objective that is safe and cost-
effective with the Risk-TOC trade-space.  By definition, the minimum weight objective must 
be met within the Risk-TOC minimum objectives to provide the best trade-off in system 
safety and cost-effectiveness while meeting performance objectives.  In other words, the 
performance objective can dominate the cost objective, if that is the Decision Maker’s 
preference; however, it should not dominate safety objectives or sustainability objectives if 
they are also important objectives to the Decision Maker(s).  In either case, the trade-off is 
still in the Risk-TOC trade-space. 
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From a perspective of the alternate hypothesis (to the minimum weight urban myth 
theory), it is possible to add a performance objective dimension if the Decision Maker 
believes that it will be significantly affected by Risk-TOC based decisions for SSLCM. 
 
7.5.1.2 Short Term Profit Implications 
 
In a commercial ship industry application of the Risk-TOC approach, short-term profit 
could be considered as a third dimension in Risk-TOC trade-space.  However, in the Risk-
TOC context, profit as a relatively short-term goal/constraint and as an independent 
variable dominates the decisions based on the sole purpose of short-term gains.  This is at 
total odds with long term sustainment objectives quantifiable in the long-term based Risk-
TOC approach.  Additionally, the owners and operators are focused on short term profit.  
They are not responsible for long-term Risk because they have transferred it to insurance 
companies based on certification by classification societies.  In commercial ship 
applications, there is no long-term incentive to reduce Risk or TOC.  In the long-term, 
minimum Risk and TOC provides maximum profit (by definition).  However, commercial 
ship profit objectives focus on recovering the owner’s initial investment over a five to ten-
year period.  Thereafter, the ships are sold to other owners less concerned with decisions on 
structural LCM and service life are further driven by short term goals.   
 
The short-term profit approach to SSLCM is not sustainable for institutions (i.e., 
governments and public funding) that are self-insured, operate assets for the long-term, 
and must take both financial; therefore, technical Risks assumption.  Additionally, because 
short-term profits are not required, and Risks are assumed, the institutions are more likely 
to consider the longer-term TOC.  From a sustainability perspective, the goals of reduced 
Risk and TOC maximizes long-term sustainability. 
 

7.5.2 Long Term Implications of RUL and EOSL 
 
The TOC calculations and CoA examples shown in Chapter 6.0 of this dissertation include 
both expected costs incurred from maintenance, either as a cost increase or deduction 
depending on the specifics of the application.  These maintenance costs incurred or saved 
are largely resulting from the costs avoided by preventative maintenance or, conversely, the 
costs incurred from inadequate design, manufacturing, deferred maintenance.  The added 
maintenance costs from inadequate design, manufacturing, and deferred maintenance 
typically include unplanned maintenance activities and potentially an emergency 
drydocking.  The emergency drydocking produces high costs in the tens of millions of 
dollars, depending on how long the ship is in service.   
 
One of the most common arguments for adding structural weight is that it will increase fuel 
cost to transport the additional weight over the lifetime of the ship.  This objection for 
increased structure must be evaluated on a case by case basis; however, for military ships, 
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the added fuel cost is negligible in comparison to cost saved over the life of the ship, from 
both fatigue and corrosion.  Risk-TOC focused structural design, and proactive maintenance 
can be optimized for longevity minimizing weight impact at all.  Furthermore, there is 
substantial RoI in any case of increased accuracy and fidelity of design tools and 
approaches.  In practice, failures affecting serviceability must be repaired to achieve 
expected levels of operational safety and will result in increased TOC.  In addition to the 
practical failure limits defining serviceability, the economic considerations often define 
service life or the EOSL.  However, the failure limits frame the definition of service life in 
the context of TOC. 
 
Given the range of uncertainties involved in Risk and TOC, it should be no surprise that 
RUL and EOSL are not discrete numbers as preferred by many Decision Makers.  Rather 
RUL and EOSL are processes that transition over time, reaching either a threshold in TOC 
or Risk or both.  The benefits of evaluating both Risk and TOC in the framework proposed 
that planned replacements can be made with a quantified basis.  One of the primary 
benefits of PHSM includes supporting information to reduce uncertainties (i.e., in fatigue 
life) associated with EOSL decisions.  This also applies to RUL considerations. 
 
The Risk-TOC approach provides the Decision Maker with a means to quantify the full 
scope of uncertainties involved in SSLCM and evaluate the benefits, cost, and Risks 
associated with SLEP and EOSL decisions. 
 

7.5.3 Risk-TOC and Total Ship Life Cycle Performance 
 
Although the Risk-TOC approach proposed in this dissertation addresses the primary hull 
structure, is may also be considered for a holistic approach to the entire ship design process 
and total ship TOC.  In this holistic design approach, TOC and Risk could extend beyond 
the hull structure to include key performance metrics, reliability, and availability.  In this 
application, the uncertainty is a monetized component of Risk.  Dorrey et. al., (2015) 
addresses monetizing Risk in a Decision Theory approach.  The Risk-TOC approach 
monetizes uncertainty in broader terms of Risk and discussed extensively in this 
dissertation.   This holistic approach to Risk-TOC could form a basis for future research and 
development efforts.  
 
Performance requirements are important in initial requirements analysis and development 
where performance trade-offs are made in trade-space trade-offs.  In this case, the major 
considerations may include the number of crew and their performance, high-speed, and 
seakeeping as examples.  As the design matures, the decisions within the Risk-TOC trade-
space become more restrictive, and the Risk-TOC trade-space considerations dominate the 
SSLCM decision process. 
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7.6 Sustainability of Ship Structure 
 
The current commercial approach to Risk Management is for operators/owners to transfer 
Risk to class and insurance companies.  This reduces the incentive to favor short term 
profits and not long-term Risk Management strategies to increase long term profits and 
long- term sustainability.  Ship Classification Societies have limited incentives to reduce 
long- term Risk, TOC, or sustainability without outside societal influences and initiatives. 

This is in contrast to government institutions that do not transfer Risk and have far 
different goals to Risk Management, including Risk avoidance, both minimizing TOC at 
maximum service life and thus maximize sustainability.   

It is proposed here that sustainability be defined in terms of resource allocation and 
consumptions include the economics associated with the sustainability of energy and 
entropy with minimum TOC as a good starting point for future work in this area.  Risk-
TOC provides the fundamental basis for long-term decisions.  This illustration (and 
hypothesis) is further developed by testing data in the context of sustainability. 
 
Given budget-constrained economic conditions and aging legacy fleets, there appears to be 
an outdated perception that the added cost of preventative measures (i.e., additional 
structure) will lead to increased structural weight, resulting in higher fuel costs and no 
payoff in LCC savings.  This antiquated design philosophy is based on the time-honored 
approach of estimating shipbuilding costs by the pound of steel used in construction.  
However, with the current capabilities available to predict loads, structural response, 
probabilistic reliability, HSM, and cost implications, this may no longer be the case.  In 
commercial applications, Gratos and Zachariadis (2005) found by using LCC analysis, the 
statement “carry cargo, not steel” does not stand up to scrutiny in any foreseeable economic 
environment.  Gratos et al. (2009) states,  
 
“ships built with corrosion allowances, which are truly adequate for the ship’s design life, 
when all factors have been taken into account, have a lower Life Cycle cost per annum (AAC) 
for the maintenance of the integrity of their structure. This, despite the fact that they would 
carry a slightly smaller quantity of cargo and, therefore, their income over time would be 
marginally less. This appears to be a general truth regardless of the inflation environment. 
Furthermore, these ships are more reliable performers having a lower average annual 
downtime. A side benefit of such construction would be greater safety since it is accepted that 
steel renewals do not always restore the effectiveness of the ship’s structure. In addition, the 
increased scantlings serve as a much-needed safety margin for hull strength and fatigue."   
 
Preventative measures and their TOC implications warrant a closer look in all phases of a 
ship’s life cycle.  Keane et. al. (2017) discuss the importance of TOC reduction in military 
ships.  
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Minimizing Risk-TOC will be a valuable decisional approach for optimum long-term 
profitability and maximum sustainability.  Risk-TOC with profit and sustainability 
considerations requires trade-offs in societal values that are voluntary based on perceived 
value or societal emphasis required to achieve sustainable industries.  Risk-TOC provides a 
reasonable approach to inform long term decisions.  The Risk-TOC framework presented in 
this dissertation is well suited for evaluating the effectiveness of long term sustainability 
management strategies; however, details of their inclusion is recommended for future 
research. 

 
7.7 Prognostic Hull Structural Monitoring  
 
Hull structural health monitoring has multifaceted benefits in providing feedback on design 
assumptions, operator guidance, and provide valuable information on the ability to extend 
the hull’s service life.  It is possible to assess the RoI of implementing an HSM system using 
the Risk-TOC approach.  
 
7.7.1 SHM vs. HSM 
 
In many industries, the long-term structural monitoring is termed Structural Health 
Monitoring (SHM).  Although the name Structural Health Monitoring seems generic on the 
surface, a closer look at the literature (Pegoretti 2018, Lynch, et. al., 2016, Richards, et. al., 
2013 and Roach, 2016) reveals that SHM applies to an approach for detecting structural 
failure in a specific structural member consisting of multiple independent load paths.  
Often, the failure is detected by a reduction in load carry capacity, and failure of that 
member is inferred.  Detecting a change in vibratory response has been proposed for 
detecting a change in structural response due to partial or complete failure.  Given these 
approaches have been applied successfully to redundant structures, modern ships do not 
have any structural redundancy in the sense of multiple independent load paths that are 
able to carry the load if one member fails.  Modern ships are welded monocoque structures.  
Although there is often an unquantified measure of reserve strength in ships, there is no 
structural redundancy.  This is very critical when there is a potential for fast fracture to 
occur.  In regard to monitoring approaches for ships, the author is proposing an alternate 
prognostic approach for SSLCM as contrasted to the monitoring of redundant structures.   

In the context of the work presented in this dissertation, PHSM forms a proactive approach 
for measuring structural response and forecasting the probability of failure in the future.  
The prognostic HSM approach is in direct contrast to SHM that is used to measure and 
detect a failure in progress.  As a reactive approach, SHM results in much higher Risks in 
ship structural applications for reasons similar to Optimal Inspection described previously.  
 
As described previously, long-term monitoring is required to track independent hyper-
parameters and to quantify the uncertainties in prognostic forecasts.  Long-term fatigue 
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damage assessments are a cost-effective approach for life cycle management as presented 
by Stambaugh et. al., (2014b and 2019).   
 
The differences between HSM and SHM, as defined here, are analogous to the medical 
profession and differences between proactive preventative care and reactive care to 
diagnosed illness and disease.  PHSM is a proactive approach, and SHM is a reactive 
approach.   
 
7.7.2 HSM VoI in Prognostic Applications 
 
The basics of an HSM are well defined by Kaminski et. al., (2010) and Collette et. al., 
(2013), including the structural sensing devices, recording equipment, and data storage.  
The traditional sensing equipment typically includes strain gauges that record the response 
of the structure and fatigue damage is calculated as given by Drummen et. al., (2014 and 
2019).  The number of sensors can be minimized with calibrations from Finite Element 
Models (FEM).  The data reduction can be accomplished onboard or ashore. 

Hull Structural Monitoring, when initiated early in the ship’s life, will provide significant 
reductions in both TOC and Risk.  Uncertainty propagation and reduction, as illustrated in 
the examples presented in Chapter 6.0, reflect the importance placed in this dissertation on 
the definition of uncertainty and how it is quantified, in order to show the benefits of 
reducing uncertainty by gathering additional information. 
 
For example, an HSM system provides measured information on the fatigue load history 
such that proactive measures can be made to extend the ship's service life by proactive 
maintenance limiting damage rather than reactive maintenance after the fact.  The cost of 
unplanned maintenance from an emergency dry-docking often exceeds available 
maintenance budgets and losses from reduced Operational Availability (Ao) are incurred. 
The value of HSM can also be gauged by having quantified information on the remaining 
fatigue life (if any) as the ship approached its EOSL.  If the measured fatigue damage is low 
and a SLEP is possible, the TOC savings are on the order of the cost of a new ship minus 
the cost of the SLEP, or prorated fraction there-of.  The TOC savings associated with HSM 
are in the millions of dollars for a single ship and in the billions of dollars for a class of 
ships based on the quantified ability to extend the service life, replacement cost of the asset, 
cost of the SLEP, and the number of years associated with the service life extension.  These 
examples highlight the enormous benefits from minimal proactive HSM investments, given 
the major TOC investments involved in ship assets.  These TOC savings form a basis for 
estimating cost savings associated with HSM, value of information, and RoI calculations. 
 
7.7.3 Long-Term Prognostic HSM and Implications 
 
In ship structural design, the SFA, and extreme loads estimates, annual wave probabilities 
are used to infer load histories.  In reality, the wave loading profile is not a stationary 
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process; it is built up of a probabilistic summation of individual independent stationary load 
probabilities given a specific set of assumed operational and wave environmental profiles.  
The SFA approach is a good approximation to the lifetime loading for initial design; 
however, it does not reflect the actual occurrences of influential loading from the random 
occurrences of the loading.  In other words, load magnitude, frequency, and sequence all 
matter within the lifetime experience of the ship’s structure and has a significant effect on 
crack growth.  All of these factors have a significant influence on fatigue and extreme 
loading as compared to the annual wave expectations.  The effects of heavy weather on 
crack growth has also been reported by Hodapp et. al., (2013). 
 
The structural loading history and independent hyperparameters (e.g. environmental and 
ship operator influence (or not) by avoiding heavy weather) are important considerations in 
fatigue crack growth.  The exact loading and magnitude sequencing cannot be known a-
priori because the loading is a non-stationary process over the long-term; therefore, the 
time that a crack will grow in the storms cannot be known a-priori.  Furthermore, crack 
growth rates are very high in conditions with high wave heights and producing high 
stresses in the hull structure.  Crack growth is proportional to the square of stress intensity 
and is intern directly proportional to wave heights encountered.  The fact that cracks grow 
fastest in heavy weather and storms also plays an important role in assessing Risk of 
fracture, given a crack exists, as shown in the example Risk-TOC application.  This implies 
the ship structure should be monitored and inspected after a heavy weather event because 
those conditions drive crack growth.  In the context of LCM planning, the load histories are 
circumstantially related to heavy weather events and a lesser extent, the degree of heavy 
weather avoidance being practiced by the ship operators.  This weather focused inspections 
can be supported effectively by HSM results to further focus inspections in critical areas as 
determined by the systems analysis.  This weather-related inspection is in contrast to 
proposed LCM approaches based solely on Optimal Inspection scheduling at fixed intervals.  
The fixed interval sampling of the highly random non-stationary process is, in fact, a 
randomized sampling process, not as assumed by Optimal Inspection for sole LCM 
processes proposed at all.   
 
Irrespective of the limited quantified benefits of inspection approaches, they appear to have 
provided limited qualitative benefits when cracks have reached lengths where they either 
leak or are very large and visually obvious (and high Risk as shown in Chapter 6.0).  In 
practice, ships are inspected for both corrosion wastage and fatigue cracks.  There appears 
to be a correlation and symbiotic benefit between corrosion inspections and finding large 
fatigue cracks that form part of the qualitative, prescriptive approach for designing and 
maintaining ship structures.  This approach benefits from modern steels with enough 
toughness to limit the most catastrophic fractures and leak-before-break approach 
suggested by Moan (2018).  More research and development will likely be beneficial in 
providing cost-effective with quantifiable benefits of inspection approaches for ship 
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structure.  The Risk-TOC approach does provide a means for assessing new or emerging 
technologies as to their effectiveness and RoI.   
 
7.7.4 Evaluating Long Term Monitoring Alternatives 
 
The examples presented in Chapter 6.0 of this dissertation show the cost benefits of HSM 
in lowering both Risk and TOC.   The RoI is derived based on the initial cost and 
uncertainty and Risk reduction for the examples shown.  The Risk-TOC approach applies to 
the evaluation of other HSM approaches as well, including Virtual Hull Monitoring, relying 
on determining wave height post-deployment/voyage from a database (i.e., NOAA Wave 
Watch III (2019) and Copernicus Marine Environment Monitoring Service (2019).  
Combinations of approaches may be evaluated, as well.  Table 7.1 from Stambaugh et. al., 
(2019) provides a qualitative comparison based on the author’s experience.  In Table 7.1: 

 
 FDS is a passive Fatigue Damage Sensor that is spot welded near structural details 

(see Kaminski et. al., 2010). 
 

 Strain Gauge (Ad Hoc Wave) refers to hull structural strain measurements with 
conventional strain gauges and obtaining wave height data on an as-available basis 
via dedicated trials with wave buoy, local wave buoys, or similar approaches. 

 
 Strain Gauge (SAWB/Radar) refers to the measurement of hull structural strains 

and either inferring or measuring local wave height continuously with real-time or 
post data analysis. 

 
 Strain Gauge (Satellite Wave) refers to the measurement of hull structural strains 

and either inferring local wave height continuously from a database with post data 
analysis. 

 
 Vship (Satellite Wave) refers to the measurement of hull structural strains and 

either inferring local wave height continuously from a database with post data 
analysis. 

 
Each HSM option has a trade-off between cost and accuracy.  Quantitation of the cost-
benefit (i.e., accuracy) of these approaches awaits specific applications of the Risk-TOC 
approach. 
 
Monitoring a complex structural system involves Vship via analytics, including FEA 
models, because it is not cost-effective or even possible to monitor 100% of the structure.  
The number of monitoring sensors becomes a trade-off between accuracy and Risk (i.e., 
uncertainty) reduction.  This trade-off is best made in the context of Risk and TOC.  
 
For the AE and Vship examples, subsystem optimization is conducted in the context of the 
Risk-TOC trade-space.  The subsystem optimization (illustrated in Figure 5.9) provides a 
means for evaluating the effectiveness of resource investments 
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Table 7.1 shows an accuracy category for Operator Guidance.  This option has not been 
discussed herein as a Risk mitigation strategy; however, it is certainly possible to assess 
the implications of this approach in the context of Risk and TOC.  Assessing the Operator 
Guidance CoA is complicated by the uncertainties of both policy of setting the operational 
limits or Risks and the human in the loop (operators at least for the short term) 
interpretations of the prescribed limits or guidance.  In other words, implementing operator 
guidance has potential for misinterpretations; however, it is a worthy goal to pursue with 
benefits in reducing TOC and Risk. 

 
Table 7.1 Example Considerations in evaluating HSM alternatives 

 

 

7.7.5 Fleet Perspectives  

A systems structural reliability approach has been proposed herein for a single system, and 
there is no reason to believe it cannot be extended to fleet applications.  This also implies 
that the Risk-TOC approach can be extended to fleet applications also.  Fleet systems 
analysis will provide valuable insights into life extension strategies associated with 
homeport rotations or trade routes as necessary to level the fatigue load among the fleet.   
However, the details of this effort are left for other researchers to consider. 

7.8 Human Error and Risk 

The aspects of human error have not been considered explicitly in this Risk quantification 
approach but do exist in all aspects of design, analysis, construction, and operation.  Any 
one of these options are possible to consider within the Risk-TOC approach as deemed 
necessary by the Risk Analysts and Decision Makers.  This is particularly important when 
considering prescriptive and direct analysis approaches that are not fully validated for all 
types of ships.  Furthermore, analysis tools are not currently able to adequately predict 
slamming impact-related fatigue loading in higher speed ships and boats, and 
underprediction of loading is common. 

Fatigue Damage 
Sensor (FDS)

Strain Gauge                   
(Ad Hoc Wave)     

Strain Gauge    
(SAWB/Radar)

Strain Gauge    
(Satellite Wave)

VShip                                 
(Satellite Wave)

Real Time Guidance N/A High High High Moderate/Low 
Validation Low Low/Moderate Moderate High Low
Life Cycle Maintenance Low High High High Moderate
Remaining Useful Life Low High High High Moderate

Planning Low High High High High 
Hardware Low Moderate Moderate Moderate Low
Installation Low High High High Low
Maintenance Low Moderate Moderate Moderate Low
Data Collection Moderate Moderate Moderate Moderate Moderate
Data Analysis Low Low Moderate High Moderate/High

Cyber Security Low High High High Low

Ship Location Low Low Low High High 
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One all too common example of human error in the structural design engineering, in 
general, is discussed by McRobie (2004) as: 
 
“Loosely speaking, structural engineering involves “loads versus strength”. It is a failure of 
our system of educating structural engineers that the strength side of this dichotomy is 
usually given so much pre-eminence. It would be a caricature to suggest that designers expect 
to look up loads in a code of practice, and then invest many man-hours in detailed finite 
element analysis of the structural behaviour under those loads. Sometimes, though, this 
caricature does not seem to be so far from the truth. Structural behaviour is often calculated 
to assumed accuracies of a few percent. Although codes may dictate specific figures for what 
a structure “should” be designed for, the reality of what a structure may subsequently 
experience is far more intangible. Ultimately, structural design is a question of the 
management of uncertainty, and the greatest uncertainties are usually in the loads. If 
structural engineers wish to be involved in the design process as decision-makers rather than 
as mere service-providers, then they need to engage with this process of assessing the 
possibilities that may occur to their structure. There is a three-stage hierarchy: 1) How does 
a structure behave, given a load environment, 2) What is the nature and physics of that load 
environment, and 3) What is the chance that such a load environment will occur? Improved 
modelling only addresses the first two stages: fully coupled fluid-structure interaction CFD 
simulations of long-span bridge aeroelasticity; explicit finite-element simulations of aircraft 
impact events; computational models of crowd behaviour; - none of these address the 
question ”which storm/ aeroplane/ crowd/flood/ earthquake/ terrorist/ incident/ 
accident/ tsunami/ volcanic event etc. Again, to caricature the process, someone will 
pick a scenario, and the structural engineer will then try to design a structure 
that just satisfies that criterion, usually to a remarkably inappropriate degree of 
[presumed]accuracy.” [Emphasis added by author] 
 
“Until such time as the Bayesian perspective is the norm, designs will be built which await 
not-to-be-quite so- unexpected surprises; engineers will have the easy excuse at the ready; 
clear thinking and coherent debate will be absent, and the rationale behind engineering 
decisions will be obscured by the myth of objectivity and the frequentist language inherited 
from historical scientists who had very different aims. Frequentist methodologies are the 
wrong approach to the decisions that engineers need to make, decisions that involve 
assessments of abstract future possibilities based on incomplete and abstract information.” 
 
This quoted statement is fully applicable to the current state of ship structural analysis. 

The human error aspects in design, construction, and operation are important in any 
engineering analysis in general, Risk Analysis in specific, and further research is 
recommended in this area. 

7.9 Risk-TOC Reserve Strength Robustness and Resilience 

When Risk Analysts and Decision Makers plan for the known unknowns (i.e., 
uncertainties), they will be positioned to evaluate and respond to rare(r) events (unknown-
unknowns).  This planning reduces vulnerability (increasing resilience) even if the hazard 
is uncertain.  This is implied by Krugman (2006): 
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According to Paul Krugman, NY Times, 3/3/06  

“If good luck happens when preparation meets opportunity, bad luck is what happens when 
lack of preparation meets a challenge”. 

In general, luck is more likely when you plan, prepare, and position for success and 
opportunity (Also Known As upside Risk or Opportunity Management) 

Resilience and robustness are also important aspects of Risk Management, and further 
efforts in this area in the shipping industry will benefit from the fundamental Risk-TOC 
approach presented herein. 

There are many definitions of resilience in the literature, and many relate to reserve 
capacity in terms of robustness (Yodo et. al., (2016) and Wolinski (2013)).  A new definition 
is proposed based on the reliability and failure limit states discussed in Section 2.1.4, as a 
transition from serviceability failure to progressive failure and ultimate collapse failure.  
This definition of reserve strength can be characterized by total changes in system Risk.  
For example, the author’s proposed Risk based definition of robustness is: 

 

𝑅 =
𝑅

𝑅
 

 
(46) 

Where RR is the total Risk based Robustness, and Rui is the Risk of ultimate failure, i, 
and Rsi is the Risk of serviceability failure i. 

In this example, the transition of risk also involves the transition of reserve strength as 
calculated from structural reliability approaches.  The transition of reserve strength and its 
implications on resilience depend on the severity of the hazard and extent of recovery 
actions required to restore capability over a period of time as the transition of the reserve 
strength, amount of robustness, and mitigative actions.  In this process, the hazard 
definition and amount of robustness provided are key ingredients in the amount of failure 
that occurs and the amount that has to be restored over a period of time.  In short, planning 
and preparation in all aspects of the hazard estimation, reserve strength, robustness, and 
recovery actions are all topics to be considered in the Risk-TOC approach. 

In theory, when Risk planning, mitigation planning has taken place, and contingencies 
have been considered.  This planning also has implications in resilience in “avoiding” or 
minimizing unexpected occurrences, or infamous Black Swans (Hajikazemi, et. al., 2015).  
The examples of RoI included here also provide a perspective on upside Risk or opportunity 
costs savings.  A corollary to Risk planning is upside Risk is what happens when planning 
meets opportunity.  Both implications of Risk planning and upside Risk are areas to 
develop in further research. 
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8.0 CONCLUSIONS 

In the design and engineering of complex structures, there are numerous ways to view and 
solve problems, and this is also true for Ship Structure Life Cycle Management (SSLCM).  
The Risk-TOC framework is general enough to allow further development and integration 
of existing approaches and new technologies as they become available.  The Risk-TOC 
approach presented in this dissertation is developed to provide designers and engineers 
with an overarching framework to evaluate SSLCM objectively, quantitively addressing 
uncertainties for Risk Analysis and Risk Management, and to stimulate further discussion 
and development of Analysis of Alternatives (AoAs) and Course of Actions (CoAs).  The 
Risk-TOC framework provides an approach for evaluating SSLCM alternatives from 
feasibility development to disposal.  The Risk-TOC general framework also provides a 
quantitative means for comparing the effects of different failure modes (i.e., corrosion and 
fatigue cracking) on the structural system.  This approach also provides information for the 
Decision Makers to quantify uncertainties required to make cost-effective decisions to the 
extent possible with available information. 

 
8.1 New Research Perspectives 

 
The research presented in this dissertation began with the goal of understanding how to 
make quantified Risk-based decisions for complex SSLCM system.  In reviewing prior 
Decision Theory-based approaches for SSLCM, many fundamental issues were identified 
along with their underlying assumptions in the approaches that did not match the realities 
of the decision making processes or the full range of Risks.  It became clear there was a 
need to review the fundamental assumptions and start over with basic definitions of 
uncertainty and Risk in the context of the ship's structural system (Chapter 2.0 and 
Appendix A) as compared to other structures.  In reviewing the decision processes for 
SSLCM, it also became clear there is a trade-off between Risk (safety) and Cost when in 
making decisions.  Therefore, the new perspectives resulted in further investigation into 
the fundamental definition of systems failure and its implication for Risk Analysis and Risk 
Management.  This investigation resulted in the Risk-TOC approach for SSLCM.  The 
extension of this process is the incorporation of Prognostic Hull Structural Monitoring and 
its role in SSLCM. 
 
The Risk-TOC approach is intended to be a foundational approach for further development.  
The Risk-TOC approach, as described, will be useful in this context of tailoring approaches 
in technology transfer from other industries as well.   
 
Key topics of this research presented in this dissertation include: 
 

 Analyzed measured hull strain data and found correlations and independencies 
required to perform a systems correlation analysis for thousands of structural 



169 
 

details (typical of ship structures), not just one or few structural details as proposed 
by others.  

 
 Introduced a new concept for systems-based analysis of complex ship structure 

applicable to transitions in serviceability failure, progressive failure, to the ultimate 
strength of the primary hull girder and subsequent failure modes of fatigue, 
fracture, buckling, yielding, and watertight integrity. 
 

 Developed and demonstrated an approach on how to compare individual alternative 
Risk Management approaches in a Risk-TOC trade-space. 

 
 Proposed and demonstrated an approach on how to propagate independent 

uncertainties with BHP and evaluate uncertainty related to Risk.  Benefits of PHSM 
are shown as an effective Risk Management approach in reducing uncertainty and 
Risk by the BHP approach.  
 

 Developed and demonstrated an approach for making optimal decisions in the 
proposed Risk-TOC context.  The proposed best decision approach is the minimum 
combination of both Risk and TOC within the constraints of the Decision Makers 
budget and safety expectations, typically intuitionally based when decisions are 
being made in public settings.  Min(E(Riskα)T],(E(TOCα)T) 
  

 Developed and demonstrated an approach how resulting systems reliability, 
Probability of Detection (PoD) and Optimal Inspection (IO) leads to high Risk 
approach for managing SSLCM and an improved approach to schedule inspection 
(i.e., after encountering a heavy weather storm) 

 
 Discussed insights from the results of example applications of the Risk-TOC 

approach and recommendations to extend the Risk-TOC approach for SSLCM, 
including decisions that affect environmental sustainability. 

 
 Proposed a new hybrid SN+FM Total Life approach as a simplified approach (vs 

initial flaw-based Fracture Mechanics) for estimating the time for fatigue cracks to 
reach a critical size and related Risk.  This approach is intended to be useful in 
preliminary assessments of total failure estimates in Risk-TOC analysis and to be 
useful as a starting point or point of comparison for further research on this topic. 

 
The following conclusions are drawn from these new research perspectives. 
 
8.2 Research Conclusions 
 
The Decision Theory and Optimal Inspection based Risk Management approaches proposed 
for ship structures are based on those developed for civil and offshore structures with 
numerous assumptions that are not applicable to ship structures.  The misapplied 
assumptions include complete disregard for the number of welded structural details, 
kilometers of weld, probability of detecting fatigue cracks, and the total lack of redundancy 
in ship structures.  Those misapplying Decision Theory and Optimal Inspection based Risk 
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Management approach often state the benefits of redundancy in ship structure.  This is a 
complete misunderstanding of the structural characteristics of ship structural failure from 
unstable fast fracture along with numerous other assumptions that are not applicable to 
ship structures.  Although ships are constructed using many structural members; 1) there 
are no independent load paths between them, 2) there is little reserve strength when fast, 
unstable, brittle fracture occurs, and 3) Decision Theory and Optimal Inspection based Risk 
Management approaches do not explicitly consider the Risk of catastrophic failures in ship 
structural system.   

Furthermore, Decision Theory and Optimal Inspection based Risk Management approaches 
are: 

1) Based on discrete probabilities and not based on the realities of the continuous 
probabilities, 

2) Based on expected value or expected utility and, 
3) Lack clarity in the full range of uncertainty required for a full Risk assessment and 

related decisions. 

The Decision Theory and Optimal Inspection based Risk Management approach definitions 
of uncertainty use discrete probabilities that are rarely discrete in complex structural 
systems because the natural probabilities occurring over time are typically continuous and 
not discrete events as modeled by classical Decision Theory. 

The Decision Theory and Optimal Inspection based Risk Management approach proposed 
for ship structure produces Risky conditions when considered in the context of the realities 
of random non-stationary hull structural loading, probability of failure, probability of not 
detecting failure, and cost of the approach and consequences if failure does occur.   

The Risk-TOC based SSLCM proposed considers the likelihood of brittle fracture when 
fatigue failures are probable based on an analysis of the stochastic nature of SSLCM over 
the service life.  

This dissertation builds on the fundamentals of systems reliability and Risk Analysis that 
are unique to ship structural components and system, including a correlation analysis of 
the system loading, serviceability definition, failure progression processes, redundancy, and 
definitions for RoI and VoI within the Risk-TOC framework.   
 
The Risk-TOC approach provides tangible and relatable benefits of understanding 
uncertainty in Risk terms.  The Risk-TOC approach provides a more informed perspective 
than Reliability and relative Beta (β) parameters proposed in many civil industries that do 
not quantify the uncertainty in the processes associated with SSLCM.  Reliability Beta (β) 
based approaches have no quantified way of comparing the financial impact of uncertainty 
or its propagation.  The Risk-TOC approach is a quantified basis for comparison given the 
magnitude of sums of money at Risk (i.e., significant Risk exposure).  The Risk and TOC 
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framework quantifies and monetized uncertainties and facilitates Risk Analysis of 
alternatives in uncertainty and Risk reduction in terms of RoI and VoI.  Monetizing 
uncertainty provides an objective base for decisionmakers to apply their utilities and make 
informed decisions.   
 
The Risk-TOC approach provides a framework for making informed decisions for SSLCM.  
Further conclusions that are drawn from the demonstration and verification of the Risk-
TOC approach include: 
 

• Assessing fatigue failure and its life cycle management alternatives using Risk 
Analysis provide a basis for making decisions involving estimates of statistical 
uncertainty, the costs to mitigate the uncertainties, and assess related 
consequences. 

• Management of ship structural reliability by visually detecting fatigue cracks and 
repairing them is potentially high Risk for a ship with thousands of structural 
details.  Application of SFA is a safe life approach for SSLCM, and PHSM is useful 
in quantifying RUL and EOSL for major SSLCM decisions. 

• The Bayesian Model Averaging (BMA) based approach with Bayesian Hyper 
Parameter (BHP) perspectives provide valuable insights into stochastically 
quantified uncertainties, their reduction, and the VoI evaluations of perspective 
Risk mitigation strategies.  

• Redundant Structures benefit from Structural Health Monitoring (SHM), while non-
redundant structures benefit from Hull Structure Monitoring (HSM).  SHM is a 
reactive approach, and HSM is more proactive in forecasting maintenance needs. 

• Reliability-based analysis and PHSM reduces uncertainties in failure forecasts 
needed to quantify Risks associated with SLEP and EOSL decisions that involve 
significant capital expenditures and result in high Return on Investments that also 
result from Fatigue Life being proportional to the third power of stress (FL 
~Stress3). 

• A discussion Chapter presents a full range of implications from short-term profit 
motivations to long-term environmental and industrial sustainability. 
 

Ship structural design has evolved based on structural engineering principles with a 
prescriptive rule-based elements derived from empirical factors.  This approach has 
produced a damage tolerant structure with empirical safety factors that have not been 
fully characterized in Risk terms.  Currently, analytical approaches based on physics-
based hydrodynamic predictions of the hull loads and high- fidelity Finite Element 
Analysis have been applied without the benefits of the empirical elements and have 
resulted in failure when uncertainties have not been fully quantified, as discussed in 



172 
 

this dissertation.  There is a significant need to correlate the new analytically based 
approaches with measured information (HSM) to reduce the uncertainties and Risks 
that have been empirically included in the prescriptive rules.  The Risk-TOC approach 
provides a framework to evaluate the new approaches and their related uncertainties. 

  



173 
 

9.0 RECOMMENDATIONS  
 
In the process of developing the fundamentals of systems reliability, uncertainty 
propagation, and Risk-TOC trade-space, it became apparent there are numerous areas for 
further data collection and refinement.  The research presented is based on fundamental 
considerations and is subject to verification, further development of the Risk-TOC 
approach, and additional applications.  Additional research is recommended to improve the 
Risk-TOC processes including: 
 

 The decision criteria based on Expected Value E(V) used in Decision Theory are 
subjective discrete values and do not reflect the continuous processes associated 
with SSLCM.  There is a need to consider a wide range of uncertainties associated 
with Risk in complex systems.  It is recommended that other researchers and 
engineers revisit the decision philosophies (i.e., Savage 1970, MiniMax) and the 
proposed Min(E(Riskα)),(E(TOCα)) based on the Risk application where loss aversion 
is in play vs loss with potential gain as in the financial and economic applications.  
  

 The Bayesian Model Averaging (BMA) and Bayesian Hyper Parameters (BHP) 
approach proposed for reliability forecasting is based on limited amounts of data on 
the hyper-parameters and full characterization of them.  Additional research is 
recommended to further develop the BHP approach with statistical parameters and  
probability functions.  The BHP and alternate approaches for reliability forecasting 
will be useful in the further development of uncertainty forecasting in the SSLCM 
context. 
 

 Risk associated with human error (accidental or unintended based on ignorance) in 
structure failure, PoD of fatigue cracks, and fracture failure requires further 
consideration in Risk Analysis of SSLCM. 

 
 In the context of Risk-TOC, VoI, and design of experiments are key areas that will 

benefit from additional research and decision-making processes for instrumentation 
selection and SSLCM related implications.  

 
Additional research was identified in the process of developing the Risk-TOC approach in 
general and include: 
 

 The structural reliability approach presented by Ayyub et. al., (2014) was used to 
develop a probability of failure estimates that include the dominant uncertainties in 
loads and responses.  Most of this work was based on prior efforts in structural 
reliability by Hess et al., (2003), Hess et al., (2002a), Hess et al., (2002b) and at the 
Office of Naval Research (ONR) for the structural reliability response and 
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Stambaugh et. al., (2014b and 2019) and Hageman et. al., (2014 and 2019) for the 
structural reliability loading.  There is continuing research in this area sponsored by 
ONR and highly recommended based on the potential economic implications of Risk-
TOC.  Further research in identifying and quantifying uncertainties is 
recommended along the lines recommended herein and by Collette (2018) and Moan 
(2018).  The systems reliability, updating, and Risk-TOC framework are intended to 
be useful guidance in these future efforts. 
 

 Acquire and quantify the Probability of Detection (PoD) data for ship inspections 
during construction and in-service that is compatible with fatigue, design 
approaches.  This effort should consider related benefits of hull structural 
monitoring. PoD, for random field modification and additions, should be investigated 
along with quality tracking in construction.  The in-service inspections should 
include consideration for the relationship between ship inspections scheduling and 
encountered heavy weather.   
 

 Investigate and quantify the uncertainties related to catastrophe theory or outlier 
events will be beneficial as an extension to the total system Risk-TOC process for 
analysis and decisions.  

 
 Quantify the systems approach to progressive failure of both corrosion, local 

deformations, and buckling that correlate spatially and temporally, as was shown in 
this dissertation for fatigue cracking.  It is envisioned that the correlation will 
resemble the Markov processes shown for fatigue cracking to fracture transition. 

   
 Quantify the uncertainties in fracture failure prediction and related aspects 

required for a full Risk Analysis of ship structure.  Fracture in the hull structure 
remains the elephant in the room and source of ignorance on the full Risk 
assessment of ship structures.  Related to this, Bayesian updating of structural 
reliability of extreme events using measured and censored data will be useful. 
Additional refinements are recommended for the SN+FM Total Life approach for 
practical estimates of the implications of fatigue crack growth and its relationship to 
fracture predictions in Risk Analysis 
 

 A systems structural reliability approach has been proposed for a single system, and 
there is a reason to believe it can be extended to fleet applications.  This finding also 
implies that the Risk-TOC approach can be extended to fleet applications also. Fleet 
systems analysis will provide valuable insights into life extension strategies 
associated with homeport rotations or trade routes as necessary to level the fatigue 
load among the fleet.   However, the details of this effort are left for others to 
consider and progress. 
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Many processes in ship design in general and ship structural design in specific are based on 
empirical formulations, including calm water and quasi-static approaches where results are 
treated as deterministic.  However, the majority of ships and boats operate in a random 
seaway, the structural material responses are random, and the models are imperfect (i.e., 
linear assumptions for simplicity).  This reality leads to many instances where failure is 
treated with an amount of surprise and Root Cause Analyses (RCA) are lacking.  As a 
result of this situation, there is a need for a text or similar reference works on statistics for 
Naval Architects in general and ship structural designers in specific.  Related 
recommendations include: 
 

 Statistics course(s) and texts to provide a fuller understanding of statistic history 
and philosophy with required reading to include: “Flaw of Averages” by Savage 
(2012), “Willful Ignorance,” by Wiesberg (2014), and “Signal and the Noise” by Silver 
(2015) 

 

 Statistics course(s) and texts on Bayesian updating that reflects the original 
philosophy of Reverend Bayes and not specific to conditional probabilities and 
examples borrowed from the medical fields as examples.  The majority of SFA 
analysis relies on prior information (e.g., sea conditions, speeds, headings, and 
loading) that are subject to updating throughout the ship’s life with PHSM for useful 
forecasts of structural condition, RUL and EOSL determinations, and decisions 

 
Additional research and development are recommended for the integration of the Risk-TOC 
approach Risk and TOC for ship design process applications to the monetization of 
uncertainties in the processes.   This holistic approach will be highly beneficial to apply 
quantitative Risk Analysis and Risk Management through the entire SSLCM.  The basics 
of the Risk-TOC could form a foundation for further work in this emerging area.  The 
application of this holistic Risk-TOC approach should include industrial and environmental 
sustainment investigations with implications and benefits for the role and evolution of ship 
classification and regulatory requirements. 
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Appendix A  
 
Statistical Correlation of Structural Component 
Loading 
     
A.1 Introduction 

Estimating the fatigue reliability of large complex systems of numerous fatigue sensitive 
structural details requires knowledge of how the probability of failure or each detail relates 
to the other on a systems level.  This system reliability estimation depends on the amount 
of statistical correlation between the critical structural details in the system on both the 
load and resistance part of the reliability calculations.  Assuming the levels of correlation 
associated with structural detail construction are covered in the assignment of fatigue 
classification, the resulting levels of structure correlation is dominated by the encountered 
loading.  In the loading predictions, if the details are correlated, they experience similar 
load histories, and the probability of failure is calculated as independent events as 
described by Walpole (2012) and Ayyub (2003).  In the case of failure being defined as an 
independent event, the system probability of failure is determined by the minimum 
probability of failure calculated.  The objective of this investigation is to determine the 
statistical correlation of measured strains occurring in a naval frigate type hull girder 
structure and local details in response to wave induced hull girder bending. 

A.2 Approach 

According to Walpole (2012), Pearson's correlation coefficient (r) is the covariance of the two 
variables divided by the product of their standard deviations written in simplified form as: 

 
𝑟 =

𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

[𝑛 ∑ 𝑥 − (∑ 𝑥) ] [𝑛 ∑ 𝑦 − (∑ 𝑦) ]

 
(A-1) 

 

Here x and y are time-ordered pairs in the time history, and n is the number of samples. 

Pearson's correlation coefficient (r) is a measure of the linear association of two variables. 
The values of the correlation coefficient vary from +1 to –1. Positive correlation coefficients 
indicate the paired variables are increasing or decreasing together. Negative correlation 
coefficients indicate the paired values are varying in opposing magnitudes.  The positive 
correlation typically indicated variables in-phase and negative correlation as out of phase.  
Values of correlation coefficient close to zero indicate a low association between variables, 
and those close to –1 or +1 indicate a strong linear association between two variables.  
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A correlation analysis also benefits from a graphical representation of the relation of data 
pairs using a scatter diagram where the time-ordered pairs are plotted together on 
opposing axes.  The resulting graphic provides additional information on linearity and 
graphic representation of the amount of scatter about a mean line.  The less scatter, the 
higher the correlation of the two variables, both positive and negative, often depending on 
their phase relationships in time histories and noted in the following example of measured 
strain data in a ship structure in a seaway. 

The measured strain time history data from the FLAP/Valid Program, as presented by 
Stambaugh et. al., (2014) and Drummen et. al., (2014), were used to determine the level of 
statistical correlation between various structural details on from different locations over 
two transverse sections of the ship.  Three sets of test data were analyzed from head (Test 
90) and bow quartering (Test 89) seas of 2.7-meter significant wave height and head seas 
(High Latitude) in 4.6-meter significant wave height.  Ship speed is approximately 10 knots 
in all cases.  Strains were sampled at 200hz, and the sample sizes are nominally 30 minutes 
in length.  The “S” strain gauges were conventional resistance gauges bonded to the steel 
structure.  The “L” strain gauges are long base strain gauges with Linear Variable 
Displacement Transducer (LVDT) sensors approximately one meter in length welded to the 
deck at each end, 

The strain data sensor names and locations included in this investigation are: 

F47S1 – Frame 47 – Axial strain - 02 Level Starboard at stress concentration 

F47S2 – Frame 47 – Axial strain - 02 Level Port at stress concentration 

F47S3 – Frame 47 - Axial strain -02 Deck - Starboard 

F47S4 – Frame 47 - Axial strain - 02 Deck - Port  

F47S5 – Frame 47 - Axial strain - Bottom - Starboard 

F47S6 – Frame 47 - Axial strain - Bottom - Port  

The 47S1-6 gauges provide a good representation of hull girder axial strains and relatively 
highly loaded local details for this section near midship. 

F47L1 – Frame 47 – Axial strain – First Platform – Port 

F47L4 – Frame 47 – Axial strain - 01 Deck – Starboard 

The F47L gauges are long base strain gauges located on opposite corners of the hull girder 
section at Frame 58 just aft of midship. 

F58S13X – Frame 58 – Axial strain – 01 Deck – Starboard 

F58S14Y – Frame 58 – Transverse strain – 01 Deck – Starboard 
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The F58S13X and F58S14Y gauges are conventional resistance strain gauges with X-axis 
being oriented in the longitudinal axis relative to the ship and Y being oriented orthogonal 
to the longitudinal X-axis as part of a rosette. 

Figure A.1a Shows an illustration of the cutter’s inboard profile with locations of frames 
and decks for reference. 

 

 

Figure A.1 Illustration of the cutter’s Inboard Profile with frame and deck 
locations. 

The statistical correlation tests included preparation of XY plots and Cross-Correlation 
calculations and plotted results of time series data are from the Time Series Tools in 
MatLab software (2012). 

The correlation calculations for two time series indicate the amount of linear correlation 
coefficient with 1 being highly correlated and 0, not correlated at all, as described by 
Walpole (2012).  Negative cross-correlation indicates out of phase correlation.  The XY plots 
provide a visual perspective on the amount of cross-correlation between the data sets. The 
time lags are in the sample point scale. 

A.3 Results 

The first set of test results are shown in Figures A.2 and A.3 for XY and cross-correlation 
tests of the two local detail gauges both port F 47S2 and starboard F47S1 axial strain 
gauges.  The structure isn’t symmetrical; therefore, there is a small degree of offset between 
the gauge response; however, the level of statistical cross-correlation is very high, above 
0.95 

The second set of test results are shown in Figures A.4 and A.5 for the 02 deck F47S4 and 
bottom F47S6 axial strain gauges.  In this test, the level of statistical correlation is high, 
above -0.94 for the hull girder strains at this transverse section.  Negative cross-correlation 
reflects the opposite hull girder loading with the F474 gauge being in tension when the 
F47S6 gauge on the bottom is in compression and reversed when the load is reversed and 
180 degrees out of phase. 
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The third set of test results are shown in Figures A.6 and A.7 for the local detail 47S1 and 
bottom strain gauge 47S6.  The level of statistical correlation is high, above -0.98 for the 
hull girder strains at the far extremes of this transverse section.  As with the previous 
comparison, a negative correlation value reflects the opposite hull girder loading with the 
F47S1 gauge being in tension when the F47S6 gauge on the bottom is in compression, and 
the strains are reversed when the load is reversed. 

The fourth data set compares strain measurements from the 47Ll and 47L4 long base 
strain gauges shown in Figures A.8 and A.9 for Test 90 conditions.  The 47Ll and 47L4 
gauges are on opposite top and bottom of the hull girder, where the loading is experiencing 
reverse directions of compression and tension for each wave encounter cycle.  The cross-
correlation is on the order of -0.9 

The fifth data set is for the same strain gauges as the previous set; however, in higher wave 
heights.  Comparisons are shown in Figures A.10 and A.11  The level of cross-correlation in 
this condition is over -0.95 indicating a slightly higher level of correlation than the lower 
sea condition of Test 90. 

The sixth data set compares to adjacent orthogonal strain gauges that are part of a rosette 
configuration with 58S13X measuring longitudinal bending strain and 58S14Y measuring 
strains in the transverse orthogonal direction.  Additional cross-correlations are shown in 
Figures A.12 and A.13 for the High Latitude conditions.  In the comparison, the level of 
correlation is on the order of -1, indicating a very strong negative correlation with the 
orthogonal strains being out of phase in the principal strain plane. The bow quartering sea 
condition produces high biaxial strain in the structural detail.  The high degree of bi-
directionality shown in the XY plot is striking, indicating a very consistent dominant 
direction of principal strain variation.   Additionally, the level of principal strain is higher 
than the axial strain level indicating fatigue damage calculations based on axial stress will 
be non-conservative.  

A.4 Conclusions 

The results of these data set comparisons do indicate a very strong statistical correlation for 
measured strains in the hull girder and local details.  Therefore, it can be concluded the 
level of statistical correlation is high and well within the accuracy of structural reliability 
calculations.  

Local structure response from slamming or hull side wave impacts are subject to further 
investigation to determine their level of correlation for ships where this type of loading is 
common but are not directly relevant to longitudinal hull girder strength and can be 
handled as a special evaluation in addition to longitudinal strength on a systems level. 
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Figure A.2 - Test 90 XY plot of F47S1 and F47S2 strain measurements 

 

Figure A.3 – Test 90 Cross-Correlation plot of F47S1 and F47S2 strain 
measurements 
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Figure A.4 - Test 90 XY plot of F47S3 and F47S6 strain measurements 

 

Figure A.5 – Test 90 Cross-Correlation plot of F47S3 and F47S6 strain 
measurements 
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Figure A.6 - Test 90 XY plot of F47S1 and F47S6 strain measurements 

 

Figure A.7 – Test 90 Cross-Correlation plot of F47S1 and F47S6 strain 
measurements 
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Figure A.8 – Test 90 XY plot of F47L1 and F47L4 strain measurements 

 

Figure A.9 – Test 90 Cross-Correlation plot of F47L1 and F47L4 strain 
measurements 
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Figure A.10 – High Latitude Deployment XY plot of F47L1 and F47L4 strain 
measurements 

 

Figure A.11 – High Latitude Deployment Cross-Correlation plot of F47L1 and 
F47L4 strain measurements 
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Figure A.12 – Test 89 XY plot of F58S13X and F58S14Y strain measurements 

 

Figure A.13 – Test 89 Cross-Correlation plot of F58S13X and F58S14Y strain 
measurements 



198 
 

A.5 References 

Ayyub, B., (2003), “Risk Analysis in Engineering and Economics”, Chapman & Hall,  

Stambaugh, K., Drummen, I, Cleary, C., Sheinberg, R., Kaminski, M., (2014) “Structural 
Fatigue Life Assessment and Sustainment Implications for a new class of US Coast Guard  
Cutters”, Ship Structures Committee Symposium. 
 
Drummen, I., Schiere, M., Dallinga, R., Thornhill, E., Stambaugh, K., (2014), “Full Scale 
Trials, Monitoring and Model Testing Conducted to Assess the Structural Fatigue Life of a 
New US Coast Guard Cutter”,  Ship Structures Committee Symposium. 

MatLab Software, (2012) “Time Series Toolbox”.  

Walpole, R., Myers, R., Myers, S., Ye, K., (2012), “Probability and Statistics for Engineers 
and Scientists”, Prentice Hall  

  



199 
 

Appendix B 
 
A Search for Bayesian Updating 
 
Bayes Theorem has a long and interesting history that transcends the simple equation and 
applications currently attributed to it.  The fundamental philosophies proposed by 
Reverend Bayes lead to a deeper understanding of the uncertainties surrounding relative 
frequency and prior probabilities used in the analysis of complex systems.  A literature 
review on the history of Bayes Theorem is presented here to summarize and highlight the 
important aspects of Bayes philosophy as it relates to the treatment of uncertainties 
characterized by probabilities used in Risk Analysis.  Very few modern introductory-level 
texts on statistics discuss this fully.  The objective of this summary is to inspire other 
researchers and engineers to investigate the applications of Bayesian perspectives in 
characterizing and forecasting uncertainty using probabilities and statistics in Risk 
Analysis and the marine field.  

As described by Weisberg (2014), games of chance were common through history back to 
ancient times.  The games of chance of that time were based on dice type features with a 
countable reference set of outcomes.  In the time of Bayes, with advances in physics and 
mathematics developing rapidly, these games of chance and derived odds ratios were being 
understood as a means of quantifying uncertainties in the observable world.   New 
terminology (i.e., probability) was developing along with a shift in thinking of how the 
uncertainty is characterized.   The new approaches used to characterize uncertainty with 
the mathematics involved observations and counting frequencies in terms of the odds ratios 
as new thinking about probabilities developed.  Even the definition of probability in earlier 
times was purely qualitative, similar to our use of the term uncertainties, but with 
qualitative weighting, in thought only, i.e., “that an event will probably happen” without 
any quantified reference.  The shift in thinking about uncertainty left out a very important 
aspect of the former counted odds ratios, namely the reference set definition.  In the 
observational characterization of uncertainty outside of games of chance and countable 
odds ratios, a reference set is most often an infinite number of random values.   Later, 
concepts of probability distributions developed without regard to the definitions associated 
with a fixed or countable reference set.  This transition to probabilities without a reference 
set began a philosophical debate initiated by Bayes that continues today. 

B.1 Bayes and Updating Prior Beliefs 

Reverend Thomas Bayes was an eighteenth-century British mathematician, and 
Presbyterian minister whose most famous contribution to statistics would not be published 
until after he died.  Bayes (according to Reverend Price, a close friend of Bayes, who 
published Bayes writings posthumously 1740s) understood the lack of underpinning of the 
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reference set and how to deal with this shift became a thesis in his now-famous works and a 
basis for statistical inference.   

According to Hubbard (2014):  

“Most Students of probability and statistics do not realize that Reverend Bayes derived [his 
thesis sic.] not for statistics, but in order to solve a particular philosophical problem of great 
importance.  Here is how he stated this problem:” 

“Given the number of times in which an unknown event has happened and failed: 
Required the chance that the probability of its happening in a single trial lies 
somewhere between any two degrees of probability that can be named.” 

 “Bayes was after big game, nothing less than a general solution to the problem of induction 
– how can we generalize based on past experience.” 

“We quantify this initial uncertainty and the change in uncertainty from observations by 
using probabilities.  This means that we are using the term “probability” to refer to the 
personal state of uncertainty of an observer or what some have called a “degree of belief.”     

Bayes’ theorem, describes how new information can update prior probabilities.  “Prior” could 
refer to a state of uncertainty informed mostly by previously recorded data, but it can also 
refer to a point before any objective and recorded observations.  At least for the latter case, 
the prior probabilities are [referred to as] subjective.” Although priors may be subjective by 
name, they may also be quantitative probabilities. 

According to Price’s published account, Bayes’ had four prominent points in his work, 
namely; 

1) Random characterization of uncertainty in terms of probabilities is relative to the 
observer, 

2) The observer may or may not have prior knowledge of uncertain events, 
3) If no prior knowledge is available, equal likelihoods are possible/probable, 
4) The observer may update their prior knowledge as new observations are obtained. 

At that time, the equation of conditional probabilities currently used today had not been 
part of the thought process presented by Bayes and Price.   

According to Morris (2017), Bayes proposed a new paradigm on concepts of inductive 
reasoning that can be summed up as follows:  

An Initial Belief + New Evidence = A New, Updated Belief. 

Bayes became consumed with figuring out the approximate probability of a future event he 
knew nothing about except its past, that is, the number of times it had occurred or failed to 
occur. 
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According to Hubbard (2014): 

“What seems clear is that Bayes’s mathematical development required that prior and inverse 
probabilities be considered in some senses comparable.  As a result, it became permissible to 
think about the probabilities of a probability! 

Particularly controversial has been the assumption of a uniform prior probability 
distribution for the probability of interest, p.  The idea that we can represent complete 
ignorance about p by assuming all possible values to be equally likely is something called 
Bayes’s Postulate, but more often principle of insufficient reason or (following Keyenes) the 
Principle of indifference.  Bayes himself expressed reservations about this seductively simple 
solution.  It had the huge advantage of allowing a composition of inverse probabilities.  
However, it seemed too facile.  How can pure ignorance do so much?  This question continues 
to haunt statistical theory to the present day.” 

In the years that followed Bayes’ death and the publication of his work by Reverend Price, 
Pierre-Simon Laplace recreated Bayes’ inference and developed the equation more 
commonly known today.  Where the Bayesian paradigm transformed to : 

posterior information = prior information + data information 

More formally to: 

p(θ|y) ∝ p(θ)p(y|θ),        (B-1) 

where ∝ is a symbol for proportionality, θ is an unknown parameter, y is data, and p(θ), 
p(θ|y) and p(y|θ) are the density functions of the prior, posterior and sampling 
distributions, respectively. 

Laplace used the equation to infer the mass of Saturn based on orbital physics and 
uncertainty from observational measurement error.   

According to Weisberg (2014), concepts of prior knowledge and probability updating based 
on new observations were proposed because of this key understanding of the importance of 
the perspectives of the observed probabilities.  These basic concepts were later reformulated 
into a basic equation by Laplace; however, his equation does not relay the original thinking 
about the uncertainty that Bayes was struggling with and proposed in his draft thesis 
manuscript later presented by Price.   

As early science developed after the postulation of Newton's Laws, scientists began to think 
that all measurable phenomena would be based on similar mathematical laws, and this 
included the application of statistics.  The new sciences set up conflicts of interpretation of 
statistics as systems became more complex and ambiguous. 

According to Weisberg (2014), Ronald Fisher, the statistician who developed and promoted 
the concepts of statistical significance testing,  
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“was aware that mathematical probability depends on what I have called willful ignorance.  
Like Laplace, he perceived that probability has an “as-if” character that is relative to our 
limited knowledge (of complex random events).  However, methods based on this useful 
expedite (of statistical significance) soon took on a life of their own.  Statistical methodology 
transcended from helpful technology to aid scientific reasoning into a central aspect of 
scientific practice.  Statistical significance in particular came to play a dominant role.” 

“For example, suppose that a material scientist is studying the response of a new metal alloy 
to various kinds of stress.  He is performing an experiment in which measurements are 
obtained using sophisticated instruments.  Under each specified set of conditions, multiple 
measurements are made.  The outcomes of the measurements can vary slightly because of 
subtle unknown factors.  However, this variability is essentially random; the individual 
observations are like indistinguishable draws from a metaphorical lottery.”  (However, 
without a reference set definition). (Additions by the author) 

The example of a controlled experiment involves more complex uncertainties when applied 
in the real world with random inputs and other uncontrolled or unknown/unquantified 
random factors.  Levels of correlations and prior knowledge are important in contextual 
applications.  Further to Weisberg (2014), 

“When efficacy is highly context-dependent, an overall probability in a general population of 
patients is not meaningful.  There is simply too much ambiguity about the context.  Only if 
ambiguity can be resolved satisfactorily for our purposes can we move into the realm of 
doubt.  Then we may be able to conceive of a metaphorical lottery in which some fraction of 
“chances” favor the events of interest.   With respect to a particular reference class, the degree 
of evidence for occurrence of an event could be represented on a scale between zero 
(impossible) and one (certain).” 

The statistical inference aspects of Bayes theorem as proposed by Bayes were further lost 
and were accused of being an error by Fisher (1935) who believed that large numbers of 
samples could overcome the fundamental difficulty/problem of no fixed reference set (and 
associated attempts at definitions of statistical significance), and became known as a 
frequentist perspective.  The lack of fixed reference and loose interpretations of “statistical 
significance” and related measures that were found difficult to define by others Weisberg 
(2014) 

Savage (1954 and 1971), Jaynes (1957), and Weisberg (2014) further exposed the fallacy of 
the frequentists perspective and propose the personal perspective of uncertainty in 
probabilities and mathematical statistics and the importance of reference set(s) and not 
having one for maximum uncertainty characterization.  The works of Savage (1971) and 
Jaynes (1957) provided a foundation of more informative works and broader perspectives of 
uncertainty and maximum ignorance associated with the prior (i.e., maximum entropy) that 
Bayes had struggled with (i.e., uniform prior) many centuries ago.  
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Jaynes (1957) built on the concept of entropy and proposed a method for assigning probabilities 
based on partial information. Jaynes called it maximum entropy principle and is stated from his 
original paper as follows: 
 
“In making inferences on the basis of partial information, we must use that probability 
distribution which has maximum entropy subject to whatever is known. This is the only unbiased 
assignment we can make; to use any other would amount to arbitrary assumption of information, 
which by hypothesis we do not have.” 
 

B.2 Bayes Theorem as We Know it Today 
 
The current form of Bayes Equation is written as: 
 
P(A)=P(A|B)P(B)+P(A|~B)P(~B)  Weighted sum conditional probabilities 

Flip the conditional probability P(B|A) to P(A|B) 

General form of Bayes Theorem is: 

 
𝑷(𝑨|𝑩) =  

𝑷(𝑨)𝑷(𝑩|𝑨)

𝑷(𝑩)
 

 

(B-2) 

This simple equation has interpretations that include P(B|A) is a conditional statement, 
and P(B) is a marginal distribution.  Others define likelihoods, priors, and posteriors, all in 
specific applications associated with conditional probabilities. 

In contrast to Bayes ideas on updating based on experience, Bayes equation (as presented 
by Laplace) is often interpreted in terms of discrete probabilities in simple examples of 
conditional probabilities and Ven diagrams for concepts of uncertainty ranges, and then 
again characterized, by discrete probabilities; however, real uncertainties are most often 
characterized by observed probability and inferred or assumed formulaic distributions of 
various types from different processes that must be predicted and then combined to form a 
forecast of uncertainty over time.  This forecasting process that combines uncertainty must 
recognize the limited nature of the uncertainties in lack of reference set, and prior 
knowledge may be used as a perspective with updating based on new information being 
gained.  This approach to forecasting is in the true Bayesian perspective as originally 
intended. 

Moving forward with analyses that are based on limited information on the behavior of 
complex systems, the application of Bayesian philosophies, especially limited experience 
and limited resources, becomes essential for dealing with the uncertainties associated with 
the complex systems.  For example, the application of fatigue failure of a class of structural 
details subject to constant amplitude loading to ship structural details subjected to a highly 
random environment.  These examples imply a Bayesian inference, whether intended or 
not.  



204 
 

B.3 Discussion 

The various perspectives of Bayes theorems are equally important in characterizing 
uncertainty in Risk assessments in ship structures because of the vast amount of 
uncertainties involved, including random loads from a random seaway (aleatory 
uncertainty) and their modeling (epistemic uncertainty) to the similar randomness of the 
structural material response and modeling.  We have limited data in any real application, 
and design is all based on prior knowledge.  This prior knowledge can and should be 
updated based on new observations and measurements.  However, the approaches for doing 
this updating are not clearly defined by the equation attributed to Bayes currently in 
fashion. 

In collecting data to support a reliability analysis for ship structures, we find that the data 
is rarely of sufficient quantity that would support a frequentist’s requirements for sufficient 
data quantity as is typical for aircraft, spacecraft, nuclear power plant, or even production 
run of light bulbs in the extreme.  In reliability and Risk Analysis of ship structure, we 
most often use prior data of similar structures (S-N curves) or smaller data samples 
(Stambaugh et. al., 2014) that we can use to support analysis and major decisions using 
best information available and collect more data in efforts to reduce uncertainty and 
assessment of Risk in a VoI context (see Hubbard 2014).  With this approach, what-if 
scenarios in a future predicted state, reflects a Bayesian perspective to use prior and 
current knowledge and update our beliefs as we collect more data, analyze the value of this 
information/data a-prori in the design of experiments in VoI context, and post data 
collection for updating our beliefs in formal or informal Bayesian context. The prior 
probabilities may be updated in a pre-posterior manner from what-if scenarios, then re-
evaluating the change in uncertainty and Risk to quantify the value of information of the 
uncertainty reduction.  It follows that the return on investment may also be quantified 
based on the updating. 
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Appendix C 
 
SN+FM Total Life Approach for Forecasting Critical Crack Life 
in Ship Structures 
 
The Risk-TOC approach proposed in this dissertation reflects the realities and Risks 
associated with the brittle fracture (Stambaugh et. al., 1987, Ship Structures Committee 
Website), given a crack is present and that the crack will grow undetected.  There are a 
number of approaches developed to estimate and predict fatigue crack initiation and crack 
growth given a loading spectrum (Beghin 2006 and Sieve et. al., 2000).  Two 
fundamental underlying approaches include: 1) the cumulative damage based on Stress-
Number (S-N) of cycles to failure (generally through-thickness crack) from fatigue test data 
on welded specimens and 2) linear elastic Fracture Mechanics (F-M) based on fatigue test 
data of the growth of stable fatigue cracks, given a crack or notch exists in a structure.  In 
order to predict the crack growth from initiation to fracture, a hybrid approach is 
presented, building on the strengths of two generally accepted approaches for predicting 
crack initiation and propagation.  The following Sections provide a brief overview of the S-N 
and F-M approaches and how they are used together to predict the probability a crack will 
grow to a size needed for a brittle fracture to occur and how to assess them in the context of 
a reliability based approach presented in Chapter 2.0 of this dissertation.  Other variations 
of the S-N and F-M approaches may be used; the basic versions are discussed for 
illustrative purposes and how they are used in the context of the Risk-TOC approach 
presented in Chapter 6.0 applications of this dissertation.  
 
C.1 Cumulative Damage Summation Approach 

 
The S-N cumulative damage estimate for fatigue life (Miner 1945) is, in effect, a point 
calculation for fatigue life based on experimental test data for welded structural details.  
The test specimens are typically welded joints of various configurations representing a set 
of structural details that are assumed to be of good (but unquantified) weld quality and 
good weld profile geometry.  The predicted or measured fatigue loading and number of 
cycles are compared to the loading and number of cycles to failure of a number of test 
specimens, as illustrated in Figure C.1.  In the S-N approach, the fatigue failure is 
determined to have occurred when a visible fatigue crack appears on the surface of the test 
specimen and in the as-built structure.  In most cases, the crack is visible on the surface 
when it becomes a through-thickness crack.  In the context of fatigue life and number of 
loading cycles, the difference between visible crack and through-thickness crack is 
relatively small.   

The methods relating the stress level and number of load cycles, S-N curves, are used to 
predict the number of cycles to failure at a single stress level.  The S-N curves conveniently 
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display basic fatigue data on a plot of cyclic stress level versus the number of cycles to 
failure. Analytical representation of S-N curves [Beghin 2006] are given in the form: 
 

 
 

 
(C-1) 

where b and k are material parameters estimated from test data obtained using 
standardized test specimens that are intended to be representative of those used in service 
structures and: 
 

A = intercept of the S-N curve 

B = slope of the log-log S-N curve 

S = stress range 

Si = stress range of the ith stress range block of a stress range histogram 

Ks = fatigue stress concentration or uncertainty factor 

Ni = fatigue life, or number of loading cycles expected during the life of a 

detail due to Si 

The S-N approach uses the Miner’s cumulative damage approach (1945) for fatigue life 
estimates and is used to predict the cycles to failure under constant and variable amplitude 

loading.  The Miner approach is based on the premise that the damage fraction ∆i at any 

stress level Si is linearly proportional to the ratio of ni, the number of cycles of operation 

under this stress amplitude to Ni, the total number of cycles that would produce a failure 
at that stress range level.  The accumulated damage fraction is computed as: 
 

∆ =
𝑛

𝑁
 

 

 
(C-2) 

Where ni >N  is typically associated with an acceptable level of failure depending on the 
reference number of cycles to failure.  The reference failure limit of two standard deviations 
is typically used in the design of structural details (Beghin 2006) and the mean and 
coefficient of variation in structural reliability analysis, as discussed in Chapter 2.0 of this 
dissertation.  If the stress range is changed, a new partial damage is calculated for this new 
amplitude level, where the appropriate Ni is found form the S-N curve.  The total 
accumulated damage D is then given by Miner (1945). 
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𝐷 =
𝑛

𝑁
 

 

 
 
(C-3) 

and failure is estimated to occur when Dt >1. The main deficiencies with linear damage rule 
used are its load level independence, load sequence independence, and lack of load 
interaction accountability, especially important in fatigue life forecasts.  However, the S-N 
approach is generally accepted for modeling the initiation phase, and uncertainties may be 
addressed in the context of reliability analysis. 
 
C.2 Fracture Mechanics Approach 

One of the most often used fatigue crack propagation models is based on the Paris equation 
(Paris and Erdogan 1960).  This equation is an empirical formulation that relates the 
cyclic crack growth rate to stress intensity factor range, as follows: 
 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)  

 

 
 
(C-4) 

where a [mm] is crack depth, N is the number of load cycles at a specific ΔK [MPa√m] 
stress intensity factor range, i.e., Kmax - Kmin, whereas C and m are material and 
environment specific constants.  The exponent m is dimensionless, whereas the dimension 
of the parameter C is such that its product with (ΔK)m is the length (i.e., mm).  The Paris 
equation assumes that the crack growth depends only on the stress intensity factor range.  
It also assumes that the stress range is constant and that it is small enough so that the 
linear elastic properties of the material are applicable and that the crack growth rate is 
independent of the previous load history.  The Paris equation describes crack growth only 
at intermediate values of fatigue crack growth curve, see Region II in Figure C.2. Region II 
represents the intermediate crack propagation zone where the length of the plastic zone 
ahead of the crack tip is long compared with the mean grain size, but much smaller than 
the crack length, whereas Region I is where the stress intensity factor range threshold is 
below which fatigue cracks do not propagate consistently in the same manner as Region II 
and Region III is characterized by rapid and often unstable crack growth just prior to final 
failure. Failure occurs when the stress intensity factor exceeds the critical fracture 

toughness of Kcr at acr and Tcr illustrated in Figure C.2. 
 
In the F-M approach to fatigue life estimates, the initial flaw or crack is assumed to exist in 
every weld and grows according to the Paris Law illustrated in Figure C.2.  However, the 
weld flaw size has many uncertainties associated with it, including shape, size, orientation 
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relative to the applied loading, to name a few.  All of these characteristics of the initial 
defect affect the time for the crack nucleation to be established and growth process to begin 
initially, before it grows at a rate associated with the Paris Law (da/dN and dKf) as 
illustrated in Figure C.2  Therefore, in F-M approaches, the fatigue notch and crack are 
manufactured into a test specimen, and the crack growth is observed for a range of loading 
and number of cycles.   

For fatigue life estimates where initial conditions must be considered, crack initiation in 
Region I is not fully quantified in physical or statistical terms for early life crack growth 
analysis (see Annis 2003).  Most flaws require some time for an actual crack to develop, and 
this time is highly variable and random in nature (aleatory uncertainty). 
 
The time in the initiation phase of fatigue life can be substantial and result in overly 
conservative fatigue life predictions by the F-M approach is all cracks are generally 
assumed to begin growing at time equals zero (t = 0).  Or a delay period is developed based 
on empirical data as proposed by Straub and Sorenson (2005).   For example, there is an 
initial nucleation time for fatigue cracks to grow from a flaw that depends on loading 
magnitude and loading sequence.   

For crack initiation, the F-M approach must characterize the uncertainties of weld 
geometry and quality by statistical approaches that are inherent in “representative” welded 
details of the S-N approach.  This is a major effort in accurately predicting fatigue life from 
the F-M approach of welded details.  In the end, similar uncertainties exist to predict 
fatigue life from both the S-N and F-M approaches to the through-thickness crack that 
determines fatigue life for most practical applications of fatigue life estimates. 

The problem in using a crack growth model is that the initial crack size is not known. This 
problem was addressed by the introduction of an Equivalent Initial Flaw Size (EIFS) in the 
aircraft and civil structure industries (Iyyer et. al., 2008, Cahuao 2006, and Sankararaman et. 
al., 2005).  The concept of EIFS was introduced to by-pass small crack growth analysis and to 
substitute an initial crack size in long crack growth.  However, the EIFS determined in this 
manner have a time lag based on the time it takes for crack nucleation.  The EIFS are back-
calculated from S-N data but do not match up with actual measured initial flaws due to the 
approach not predicting the initiation phase, as discussed above.  

According to Lassen (1997), the crack depth limit where F-M is applicable to the description 
of crack growth behavior is ao = 100mu-m.  Also, typical grain sizes in welded steel are in 
the order of 10-100mu-m.  Because the application of F-M is not reasonable at crack sizes 
less than the size of a typical grain, the initial crack size should be larger than 0.1mm.  
This seems to indicate that 0.1mm is a reasonable lower bound of the range where F-M is 
applicable. 
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Building on the strength of the F-M approach is best suited for fatigue crack growth given 
an actual crack has grown to through-thickness, vs from initiation as developed by Paris.  
The S-N approach is still the accepted practical standard for estimating fatigue life from 
crack initiation to through-thickness crack (TTc) considering the initial variables of the 
initial flaw, weld quality, and weld profile geometry.  Given the primary strengths of each 
approach, a combined approach is proposed using the S-N to predict the loading and time to 
occurrence of a through-thickness crack and transitioning to the F-M approach given a 
through-thickness crack has occurred and using the F-M approach is then used to predict 
the remaining life to critical crack size is proposed.   

C.3 SN+FM Total Life Approach 

In the context of predicting large crack growth for Risk Analysis of fracture failure, the 
uncertainties of using the F-M approach for the initiation phase of crack growth are 
replaced with the S-N approach, and the F-M approach is utilized given a crack has 
initiated and is growing to a length appropriate for the F-M based approach.  In this 
approach, the time it takes to develop a through-thickness crack (TTc) is predicted using 

the S-N approach and the time it takes to reach critical size (Tcr) is then predicted using the 
F-M approach give the probabilities (in Chapter 2.0 of this dissertation) have been 
predicted based on the empirical S-N curve approach.     
 
The S-N approach includes the uncertainties of crack nucleation from a flaw empirically, 
and not all small flaws produce growing cracks from first cycle experience as assumed by 
linear elastic fracture mechanics based approaches.  F-M approaches require extensive 
amounts of testing to determine the statistical nature of the physical parameters 
influencing crack initiation from a flaw using the F-M approach.   The strength of the F-M 
approach is predicting fatigue crack response given the existence of a growing crack.  This 
growing crack is the fundamental premise of the Paris Law (Paris and Erdogan 1960).   

Figure C.3 illustrates the relationship between the SN+FM Total Life approaches for 

fatigue crack length as a function of time.  In Figure C.3, the crack depth a is shown with 

initial crack length ao, through-thickness crack, att, the crack’s length increases rapidly to 

a length where the cracks typically leak in ship structures, al, and if they do not leak and 

are not otherwise detected, they will increase in length until they reach a critical length acr.  
An important feature of the illustration is the time for initiation, as captured by the S-N 
approach.  Also, the relatively short time between through-thickness crack, leaking crack 
length, and critical crack length is an important feature in predicting the time it takes for a 
crack to grow from through-thickness to critical size.  The hybrid SN+FM Total Life 
approach captures all of these aspects, using the proven benefits of each approach.  The S-N 
part of the SN+FM Total Life approach may be calculated with a structural reliability 
approach (Chapter 2.0 of this dissertation) to determine the associated probability of 
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occurrence of a through-thickness crack (TTc).   In turn, the probability of through-

thickness crack occurrence (TTc) is multiplied by the probability of non-detection (1-PoD) to 
determine the overall probability the crack will grow to a through-thickness length and not 
be detected in a given inspection period.  Given a non-detected growing fatigue crack, the 
probability of critical crack size is determined by a reliability approach and shown in the 
application example in Chapter 4.0 on Risk of brittle fracture in the Risk-TOC approach. 

In the resulting proposed combined, S-N and F-M approaches are approximately equal at 

the time the crack reaches through-thickness (att, Ttt), as illustrated in Figure C.3.  This 
approximate common point is a very useful interface between the S-N and F-M approaches 

and enables a hybrid approach between them in predicting fatigue crack growth from (att, 
Ttt) well within the applicable range of applicability of the F-M approach.  The definition of 
starting point for F-M estimates differs from prior approaches proposed by Straub (2003) 
and De Souza et. al., (2000), where the starting point is a back-calculated initial flaw, 
similar to the EIF approaches described previously. 

Reliability based approaches then can be used to estimate both the time to att of one (1) and 

the probability that acr will be reached.  The rapid growth of att to acr is the Risk most 

threatening to the structural integrity of the ship structure system, given att has occurred.  

Controlling time to att is within the structure designer’s scope to address if SSLCM and 
safety are important goals to the ship owners and SSLCM managers.  

From att, Ttt, the estimated time to acr, Tcr is relatively straight forward for performing 
Risk assessments involving brittle fracture as in the example Chapter 6.0 of this 
dissertation. 

C.4 Discussion on SN+FM Total Life Approach 

Although brittle fractures are rare in ship structures because of the successful evolutionary 
development of ship structural design processes, requirements, and material properties, 
most of which are ultimately empirically based, they have not been eliminated from 
occurring (Stambaugh et. al., 1987, SSC website, Sumpter and Kent 2004).  Furthermore, 
the Risk of critical crack length being reached in operation is not explicitly determined or 
even explicitly considered in any of the Optimal Inspection based approaches used in other 
industries, civil and offshore, in particular, and proposed for ship structures, as noted in 
Chapter 2.0 of this dissertation.  Probability of Detection (PoD) values are assumed in 
Optimal Inspection approaches high enough to detect all cracks less than an arbitrary 
threshold (i.e., 100mm).  This is not practical for ships, as described previously in Chapter 
3.0 of this dissertation. 

The fatigue life management approaches based on optimal inspection schedules proposed by 
others and summarized in Chapter 3.0 do not include a provision for cracks to grow to a 
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critical length required to initiate a fast-growing brittle type fracture.  Optimal Inspection 
based approaches assume the probability of detecting a fatigue crack is high enough that all 
cracks are found and repaired before they reach the critical length necessary for fracture to 
occur.  This does not reflect the realities of ship inspection approaches, PoD, their costs to 
implement, nor the ability to inspect the structure given availability schedules and 
accessibility to the structure.   

Although the SN+FM Total Life approach is not being proposed for design applications, it 
does provide a valuable perspective for Risk and Life Cycle Management (LCM) based 
decisions based on quantified analysis and Risk of catastrophic failure that is possible even 
likely given a brittle fracture has occurred.   The common definition of failure TTc for 
design is 2.3% and is still sound based on historical experience (Stambaugh et. al., 1987). 
The SN+FM Total Life approach presented in this Chapter is extremely useful in assessing 
Risks and decisions to mitigate significant Risks. 

 
Figure C.1 - S-N data used for fatigue crack initiation to through-thickness crack 
based on stress cycles to failure (Redrawn from Hughes 2010).   
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Figure C.2 – Illustration of the relationship between the F-M approaches for 
fatigue crack length over time.   

 
Figure C.3 - Relationship between the S-N+F-M Total Life approaches for fatigue 
crack length as a function of time.   



213 
 

C.5 References 
 

Annis, C., (2003), “Probabilistic Life Prediction Isn’t as Easy as it Looks”, Probabilistic 
Aspects of Life Prediction, ASTM STP-1450. 
 
Beghin, D., (2006), "Fatigue of Ship Structural Details" Technical and Research Report 2-
31, Society of Naval Architects and Marine Engineers. 

Cahuao, J., (2006) “Airframe Integrity Based on Bayesian Approach”, Phd Thesis, 
University of Maryland,  
 
De Souza, G., Ayyub, B., (2000) “Probabilistic Fatigue Life Prediction for Ship Structures”, 
Naval Engineers Journal. 
 
Iyyer, N., Sarkar, S., Merrill, R., Bradford, S., Phan, N., (2008), “Management of Aging 
Aircraft using Deterministic and Probabilistic Metrics”, 11th Joint NASA/FAA/DoD 
Conference.  
 
Lassen, T., (1997), “Experimental Investigation and Stochastic Modeling of the Fatigue 
Behaviour of Welded Steel Joints”, Phd Thesis, AUC, Denmark.  

Miner, M., (1945), “Cumulative damage in fatigue”, Journal of Applied Mechanics, Vol. 67.  
 
Paris, P., Erdogan, F., (1960), “Critical Analysis of Crack Propagation Laws”, Journal of 
Basic Engineering, Vol. 85,  
 
Sankararaman, S., Ling, Y., Shantz, C., and Mahadevan, S., “Uncertainty Quantification in 
Fatigue Damage Prognosis” Department of Civil and Environmental Engineering, 
Vanderbilt University  
 
Ship Structures Committee website 
http://www.shipstructure.org/case_studies/ 
 
Sieve, M., Kihl, D., and Ayyub, B., (2000), “Fatigue Design Guidance for Surface Ships”, 
NSWCCD-65-TR-2000/25, Naval Surface Warfare Center, Carderock Division, West 
Bethesda, Maryland, November  

Stambaugh, K., Wood, W., (1987),  “Ship Fracture Mechanisms Investigation”, Ship 
Structure Committee, SSC-337. 
 
Straub , D., Faber., M., (2005), “Risk Based Inspection Planning for Structural Systems”., 
Structural Safety.  

Sumpter, J., Kent., J., (2004), “Prediction of Ship Brittle Fracture Casualty Rates 
by a Probabilistic Method”, Marine Structures 17. 

  



214 
 

Nomenclature 

Abbreviations 

Ao  Operational Availability  

ABS  American Bureau of Shipping 

AASHTO American Association of State Highway and Transportation Officials 

AE  Acoustic Emission 

AoAs  Analysis of Alternatives 

BHP  Bayesian Hyper Parameters  

BLNP  Case study fatigue design environments 

BMA  Bayesian Model Averaging  

CoAs  Course of Actions  

CoV  Coefficient of Variation  

DOD  US Department of Defense 

DD  Drydocking 

DMs  Decision Makers 

EDD  Emergency Dry Docking 

EIFS  Equivalent Initial Flaw Size 

EOSL  End of Service Life 

FDS   Fatigue Damage Sensor 

FLAP  US Coast Guard Fatigue Life Assessment Program 

F-M  Fracture Mechanics 

FPSOs  Floating Production Storage Offshore 

GAO  US Government Auditing Office 

Hs  Significant Wave Height 

HSM  Hull Structural Monitoring  
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JIP  Joint Industry Project 

LEFM  Linear Elastic Fracture Mechanics 

LCC  Life Cycle Cost 

LCM  Life Cycle Maintenance 

MTBF  Mean Time Between Failure 

NDT  Non-Destructive Testing 

NL-FEA Non-Linear Finite Element Analysis 

NSWCCD US Naval Surface Warfare Center Carderock Division 

IO  Optimal Inspection 

OM  Operation and Maintenance  

PfBF  Probability of Brittle Fracture 

PHSM  Prognostic Hull Structure Monitoring  

PoD  Probability of Detection 

RAs  Risk Analysts 

R&D  Research and Development 

RoI  Return on Investment 

RBI  Risk Based Inspection  

Risk-TOC Risk-TOC trade-space approach for Risk related decisions 

RUL  Remaining Useful Life 

SAR  Search and Rescue mission 

SAWB  Ship as Wave Buoy 

SCF  Stress Concentration Factor 

SHM  Structural Health Monitoring 

SLEP  Service Life Extension Program 

SFA  Spectral Fatigue Analysis 

SIE  Shannon Information Entropy 
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SLS  Service Limit State  

S-N  Stress-Number of Cycles 

SRA  Structural Reliability Analysis 

SSLCM Ship Structure Lifecycle Management 

TOC  Total Ownership Cost 

U  Uncertainty 

ULS  Ultimate Limit State 

UT   Ultrasonic Thickness  

Valid Joint Industry Project organized around validating the fatigue design 
approach used for the US Coast Guard National Security Cutters 

VoI  Value of Information 

WHEC  US Coast Guard High Endurance Cutter 

 

Equation Symbols 

a  Crack length 

a1  Corrosion strength reduction factor 

a2  Non-linear corrosion strength reduction factor operating on a1 

acr  Crack length at instability for a through-thickness crack. 

ac  Crack length 

A  Intercept of the S-N curve 

B  Slope of the log-log S-N curve 

C  Consequence 

$C  Consequence in currency (dollars) 

Ci  Individual Consequence i 
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CLCC  Life Cycle Costs 

Cm  Cost of maintenance 

Cmp  Cost of preventative maintenance 

Cna  Cost of non-availability 

Co  Initial investment 

Ct  Total of cash flows  

CI  Confidence Interval 

CVaR  Conditional Value-at-Risk  

d  Discount Rate 

E(V)  Expected Value  

E(U)   Expected Utility 

E(Riskα) T Expected Value of Risk at Confidence Interval α and Time T 

E(SIE) Expected Shannon Information Entropy 

E[TOC] Expected Value of TOC 

E[TOC]NPV Net Present Value of Expected Value of TOC 

E(TOC) So Expected Total Ownership Cost for Risk mitigation scenario (o) at time T 
 
E(TOC) Si Expected Total Ownership Cost for Risk mitigation scenario (i) at time T 
 

E(TOCα) T Expected Value of TOC at Confidence Interval α and Time T 

F  Final forecast in Bayesian Model Averaging 

g(t)  Limit state performance function including ship specific loading 

H(X)  Information entropy 

i  Integration limit equals 1 to n and n is equal to the total number in the 
system being considered unless otherwise noted 

I  Inflation Rate 
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swL   Still-water loading random variable  

L(t)   Load at time t  

wL    Wave loading random variable 

KIc  Critical stress intensity 

KI  Stress intensity used in Fracture Mechanics 

KJc   Stress intensity toughness derived from the J-integral 

Kcr  Critical stress intensity factor 

ΔK  Stress intensity factor range 

N  Number of load or stress cycles  

Nc  Number of component structural details in the correlated group 

Nd  Number of structural component details  
 
Ndf   Expected Number of details that have failed (through thickness crack) 
 
Ndt  Total number of structural details or components considered in the system 
 
Ndu  Number of updated details or components 
 
Ni  Number of loading cycles 

NPV  Net Present Value 

PfBF  Probability of Brittle Fracture 

Pfc  Probability of failure for a specific component  

Pfs  Systems Probability of failure  

PfSu  Updated systems probability of failure  

Rc   Component reliability 

RR  Risk Robustness  

RS  System reliability 
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RSu  Updated systems reliability 

Rsi   Risk of serviceability failure i. 

R(t)   Reliability at time t  

RiskDT Risk definition used in Decision Theory 

RiskLoss  Risk of system loss 

RiskT   Risk at a specific time in planning horizon T 

Rui   Risk of ultimate failure i  

SR  Stress Range 

SRi  Stress range of the ith stress range block 

Sc  Nominal applied stress at crack instability 

Su  Ultimate strength  

s’  Standard deviation of a statistical distribution 

T   Service planning horizon Time 

Tcr  Critical Crack Thickness 

TOC  Total Ownership Cost 

TOCT  TOC at a specific time in planning horizon T 

TOC+  TOC extended to include SLEP and Ao  

ttc  Through thickness crack component failure 

TTc  Through thickness crack at system failure 

U  Uncertainty 

VaR  Value at Risk (V@R)  

VoIRT  Value of Information defined by Risk-TOC analysis 

Z   Reliability performance function of a component or system 

α  Confidence interval value 
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β  Structural reliability index with Φ-1 function 

µ  Mean value of a statistical distribution 

ξ  Effective discount rate  
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