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Abstract

E-mobility, in particular electric vehicles (EVs), play a crucial role in the energy transition. While businesses

are increasingly adopting EVs, there is still a lot of opportunity to grow. One aspect of this growth is the

way these vehicles are used by companies, especially when it comes to the logistics of EV charging. To

encourage companies to further reduce their carbon footprint by more efficiently utilizing EVs, this project

proposes a combined vehicle routing and charging model. These models can be used separately, as

well as together, allowing the charging model to be combined with any pre-existing routing engine. The

goal of this project is to show the benefits of allowing EVs to be charged between shifts during the day,

rather than exclusively overnight, as well as to show how such schedules can be made. Our results show

that giving vehicles the opportunity to charge between shifts can significantly reduce the costs associated

with fleet operations. If the fleet contains non-electric vehicles as well as electric ones, we also see a

significant reduction in the number of kilometers driven using fossil fuels. When sufficient chargers were

available, even when the vehicles had little time to charge, a feasible schedule could always be found.

Moreover, when more realistic charging intervals were used, most vehicles were even able to fully recharge

before the start of their next shift. Finally, we concluded that the set of chargers needed to find such a

feasible schedule can be relatively small, meaning that even without extensive additions to the charging

infrastructure, companies can still benefit from this policy change.
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1
Introduction

In order to reach the goal of limiting global warming to 1.5◦C agreed upon in the 2015 Paris Agreement

[1], avoiding the devastating consequences of more severe climate change impact, it is vital to accelerate

the energy transition. Not reaching this goal means that our climate becomes more extreme, risking an

increase of severe droughts, heatwaves and rainfall [2]. To make sure that this doesn’t happen, we need

to significantly reduce the global greenhouse emissions. According to Our World in Data [3], the sector

responsible for the second largest amount of greenhouse emissions in 2020 was transport. E-mobility is

therefore a crucial part of the energy transition. Electric vehicles (EVs) are a large part of e-mobility. This

thesis will focus on the use of EVs. While more and more companies are moving towards carbon-neutral

deliveries by means of EVs [4], there is still progress to be made. Not only in the range of the vehicles and

the accessible charging infrastructure, two of the largest disadvantages of electric driving, but also in the

way these vehicles are used. When more than a few EVs are in use, it becomes harder to efficiently route

and charge these vehicles.

A lot of research has already been done about these problems. A literature review about the Electric

Vehicle Routing Problem from 2021 [5] identified 136 papers studying this problem and its variations.

The problem of charging the vehicles at their depot is often overlooked however; the main focus in these

papers lies in charging the EVs on the road. While this problem is most certainly very interesting and

widely applicable, not every company wants to take this approach and instead prefers to exclusively charge

their vehicles at their depots. When an abundance of chargers is available, the problem of charging all

the vehicles overnight is not very challenging. But, when the number of EVs owned is larger than the

number of available chargers, this problem becomes more complicated. It might also be desirable to

charge vehicles during the day, for example between two shifts. While it might be possible to simply install

as many fast-chargers as there are EVs in order to avoid the charging problem, there is a serious price

gap between slower AC-charging ports and faster DC-charging ports. Installing fast chargers can easily

cost 30 times as much as installing slower chargers, the hardware of such a charger alone can cost as

much as a brand-new EV [6]. For that reason, it can really pay off to get creative with limited (fast-)charger

availability. Especially when there is only limited time between shifts to charge the vehicles, a simpler and

more secure solution is to assume vehicles do not get an opportunity to charge, and only use the range

belonging to a single fully charged battery. If it is possible to charge the vehicles during the day, it allows

them to drive more kilometers and complete more efficient routes, further increasing the impact caused by

replacing conventional vehicles by electric ones.

In this thesis, we design a combined routing and charging model, the goal of which is to create routing

and charging schedules allowing the EVs to be used as efficiently as possible. This model consists of a

separate routing and charging model, that can function both independently as well as together. The main

objective is to show by how much the routes improve if the vehicles driving them are allowed to charge

mid-day, instead of only overnight. We perform experiments both with fully electric fleets, and fleets that

also contain non-electric vehicles. For the latter, we do not only define success by the number of driven

kilometers, but also by the number of kilometers driven by EVs. Another indicator that we use to gauge

improvement is the number of EVs that are scheduled. To properly test the capabilities of this model, we

set up a few different cases, in which different model configurations and settings are tested. For these

tests, we used data from one of ORTEC’s clients consisting of a few routing instances. These instances,

1



2

slightly adapted and/or reduced, are solved by both our routing model, and one of ORTEC’s routing models.

This allows us to set a baseline on the performance of our model, guaranteeing the quality of our solutions.

This work is divided into four parts. The first part, containing the literature review, is split into four

chapters. After a short introduction in chapter 2, we talk about different modeling techniques that are used

when solving mathematical optimization problems, in particular electric vehicle routing. The next chapter

discusses the way the two different battery processes, charging and discharging, are typically modeled

in the context of electric vehicle routing. The last chapter of the literature review summarizes the found

results and explains how this work is able to contribute to the literature on this topic. Part II talks about

the model design. The first chapter of this part contains the information needed to build the model. The

details of this model are then given in the next chapter. Part III contains the part of the project in which the

performance of the model is tested an analyzed. We start this section by a chapter explaining the way

the tests are set up, and conclude by providing the outcomes of these tests. This leads us to part IV, the

closure, in which we draw our conclusions. We end with a discussion evaluating certain aspects of our

model and providing some ideas of future research.

Our results show that giving vehicles the opportunity to charge between shifts can significantly reduce

the costs associated with the fleet operations. We additionally see a large decrease in the proportion of

kilometers that were driven by non-electric vehicles, when those were part of the fleet as well. We also

conclude that in order to solve our instances, only a modest set of chargers is needed. This makes it

feasible for companies to make this adjustment to their EV planning without the need for extensive and

costly investments to their charging infrastructure.
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Literature Review
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2
Introduction

In this literature review we discuss the background that will be relevant for this thesis. We start with a

chapter on general modeling techniques. This begins with a section on Mixed-Integer Linear Programming

(MILP), so that we set a strong basis of this method. Much of the literature on the topic of electric vehicle

routing uses MILP formulations to express their models, and we will do the same, so understanding the

concept is important. We proceed by describing the different mathematical problems that are used for

route planning optimization. The first of these problems is the Vehicle Routing Problem (VRP), which is not

yet suitable for Electric Vehicles. This suggests the Electric Vehicle Routing Problem (EVRP) that does

take the limited range of EVs into account. There are various modifications of the EVRP that consider

additional assumptions or constraints that will also be discussed. The next part is about solution methods.

MILP problems can be solved directly using solvers such as CPLEX or Gurobi, but for more complicated

problems this might result in very long or even unworkable runtimes. For that reason, we will discuss

alternative methods as well.

The next chapter is about modeling the relevant battery-related technologies. When designing a model

within this research, it is important to have a clear view of the techniques that are used to accurately

model the critical behaviors of EVs: energy consumption and charging. We will describe how the behavior

of these processes are modeled, and how routing models incorporate this. The data necessary for an

accurate model is also discussed, as well as the impact that variation in different parameters or related

external factors have on the performance of the model.

We conclude by providing a summary of these contents and explaining the goal of our research. This

is finalized by discussing the academic and practical value of this research and how it contributes to the

available literature.

4



3
Modeling Techniques

This chapter gives a general overview of the ways to model vehicle routing problems. We start off with

a section discussing the broad mathematical background. The next two sections discuss the standard

vehicle routing problem and its variations, with focus on the variations that apply to EVs. We will also see

how these problems generally get solved.

3.1. Mathematical Modeling Method
In this section we will explain what Integer Programming (IP) is, in particular Mixed-Integer Linear Pro-

gramming, and how it can be used. This includes giving a definition with a small example, mentioning

a few common applications, and introducing some of the ways that can be used to solve these types of

problems in practice.

3.1.1. Definition
In short, Integer Programming is a branch of mathematical optimization to describe problems of which at

least some of the used variables are constrained to take only integer values. If all the constraints of such a

problem are linear, we speak of an Integer Linear Program (ILP). To be fully specific, we can define the

terms Mixed-Integer Programming (MIP) and Mixed-Integer Linear Programming (MILP) to respectively

mean IP and ILP such that at least some of the variables are not restricted to be integer. Many of the

problems that we come across in the literature are written as a MILP, or less frequently a MIP. Therefore,

it is critical to understand what it means when a problem is of this form.

Any type of IP can be defined by three things: A set of variables and their subsequent domains, a set

of constraints, and an objective function. In the case of a MILP, some of these variables must take integer

values, while other variables will be allowed to take rational values. Furthermore, the constraints and the

objective function will need to be linear. Note that for a MIP this final restriction does not need to hold.

The canonical form of an ILP is the following:

max
x

cTx

s.t.

Ax ≤ b,

x ≥ 0,

x ∈ Zn

(3.1)

Here, cT ∈ Qn, b ∈ Qm and A ∈ Qm×n. This is the most compact way of writing this problem. The

i’th row of A, together with the corresponding element bi signifies a linear constraint. In practice, when
presenting a problem of this type, the constraints are written in a more readable manner. A small example

of such a MILP is the following:

5
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min
x

5x

s.t.

x+ 2y ≥ 5,

y ≤ 1.4,

x, y ≥ 0,

x ∈ Z

(3.2)

Note that this is a MILP, since we did not restrict the variable y to take integer values. Upon inspection,
one could see that the solution to this problem is 15. We only want to minimize the value of x, and since
the first constraint tells us that x + 2y is bound from below, we would like to find as large a value of 2y
as possible. Since the value of y is bound from above, we could set y to be equal to its upper bound 1.4,
which leaves the constraint x ≥ 2.2 . This means x = 3, since x must be an integer.

Of course, most problems cannot be solved this easily and need much more advanced techniques.

Solving problems exactly might not be practically feasible for many practical problems, simply due to the

sheer size of the problems: the number of variables or constraints can grow exponentially fast. It is known

that Integer Programming is NP-hard [7], which means that while a solution can be checked in polynomial

time, it is typically assumed that it cannot be found in polynomial time.

One of the most famous combinatorial problems, that is, problems that aim to find an optimal object

from a finite set of objects, is the Traveling Salesman Problem (TSP). It asks for the shortest path to

visit a set of cities, where the distance between each city is known, before returning to the origin. This

problem can be written as an ILP, and illustrates how these types of problems can grow so quickly. The

Dantzig–Fulkerson–Johnson formulation, one of the stronger possible formulations [8], contains so-called

subtour elimination constraints [9]. These constraints ensure that the result of the TSP is a single route,

and not a collection of smaller routes covering all the cities. In order to do this, every single subtour needs

to be eliminated by an individual constraint. This results in a list of constraints that grows exponentially as

a function of the number of cities. This problem happens to be polynomially separable [10], which in this

case means that we do not need to simultaneously consider this entire set of constraints, and allows us to

solve this problem in polynomial time regardless. This is not the case for every problem however, and

other methods might be necessary to find solutions.

In the previous example, Integer Programming was used to find a route amongst a set of locations by

introducing a decision variable for each possible arc between locations and determining which subset of

arcs form a route. An extension of this is the Vehicle Routing Problem, which will be discussed in detail in

the next section. In general however, there are many other ways of applying types of Integer Programming.

To give a few common examples, decision variables can represent the number of products to be produced

under certain conditions, the locations to be partitioned in different territories, or possible time windows for

scheduling different time-constrained activities.

3.1.2. Finding Solutions
Generally, MILPs cannot be solved like we did with example problem (3.2). We can however use this

problem to illustrate how these problems usually get solved. In figure (3.1) the solution space of this

problem is depicted.

The red half-space depicts the first constraint x+ 2y ≥ 5, and the blue half-space depicts the second
constraint y ≤ 1.4. The intersection of the half-spaces that the constraints signify is the region that contains
all the feasible points. That means that in this case, any point within the overlap of the blue and red

half-spaces such that x is an integer, is a feasible solution. In figure (3.1), all the feasible solutions are
depicted by the black dashed lines. We however aren’t interested in just any feasible solution, the goal is

to find an optimal solution. That brings us to the objective function, in this example min 5x. The objective
function tells us what direction to optimize in. To find this direction, we simply take the gradient of the

objective function. Here, we find direction (5, 0), which means we are simply minimizing along the x-axis.
This has been depicted in the figure by means of an arrow. The first step to finding an optimal solution

is to relax the constraints that fix the decision variable(s) to be integer. The resulting problem is called

the Linear Programming (LP) relaxation. Unlike the MILP from before, this problem can often be solved



3.1. Mathematical Modeling Method 7

Figure 3.1: Solution space of problem (3.2).

efficiently, using either basic exchange algorithms such as the simplex method, or interior point algorithms,

such as the ellipsoid method. For very complicated problems, such as large instances of the TSP, the LP

relaxation will still be challenging to solve. There are ways of remedying this, which will be discussed later

in this section.

Solving the LP relaxation of a problem often gives infeasible solutions due to relaxing the integer-

restriction. They can however already give information on the original problem, since the objective value of

the LP relaxation acts as a lower bound for the objective value of the original problem (if it is a minimization

problem, otherwise it is an upper bound). In the example we will see that the LP relaxation has an objective

value of 12, while the objective value of the MILP is 15. The difference between these two values is called
the integrality gap, and represents the quality of the LP relaxation. If this gap is small, we call the LP

relaxation strong, as it closely represents the original problem.

In this example, it can be seen immediately that the red point (2.2, 1.4) in figure (3.1) is the optimal
value of the LP relaxation, as it is the left-most feasible solution. However, the x-value of this point is not
an integer, and therefore not feasible for our MILP. It is not always immediately obvious how to instead find

a solution for which x is integer. In this example it is easy to see that the blue point (3, 1.4) is the optimal
solution, since it is the nearest feasible solution, but without the picture one might have first tried to round

x down to 2, which would have given an infeasible solution. Were y also restricted to be integer, this would
have further complicated things, since that point would not have been feasible either. Instead, we find

the purple point (3, 1), that is even further away from the solution found by the LP relaxation. There are

roughly two categories of methods to algorithmically find the solution to the original MILP: exact methods

and heuristics. Both will be discussed below.

It should be noted that there is not always a unique solution. If instead of minimizing a function of x,
we had minimized y, we would have seen that there would be many solutions: each integer value above
4 on the x-axis would produce the same objective value of 0. If instead of minimizing a function of x we
had maximized this same function, we would have gotten an unbounded problem: the objective value

diverges to infinity, since there is no constraint that bounds x from above. Finally, it is also possible that

there is no solution at all: this happens when the half-spaces of the constraints do not overlap, or when

they do, the overlap does not contain any points satisfying the integer-restrictions. These possibilities

further complicate the solution of these kinds of problems.

3.1.3. Exact Methods
The methods of finding exact solutions to (M)ILPs can be divided into two categories: cutting plane methods

and variants of the branch-and-bound method.

Cutting Plane Methods

The idea of cutting plane methods is to improve the LP relaxation by adding in constraints to cut off

non-integer solutions, without cutting off a feasible mixed-integer solution. Solving this improved LP

relaxation should then return a solution with no, or less, non-integer values. This can be illustrated by our

previous example (3.2). Figure (3.2) depicts the solution space of the problem after adding a constraint

x ≥ 3, which is portrayed by the yellow half-space.
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Figure 3.2: Solution space of problem (3.2) with added cutting plane.

Solving the LP relaxation will now return any of the points on the red dashed line (the segment from

(3, 1) to (3, 1.4)) as an optimal solution. Any of these points is a feasible solution to the original problem,
and hence the cutting plane was effective. In practice, it might not be very easy to find cutting planes

that cut off the non-integer solutions that would have otherwise been found. The solution spaces of real

problems can be very high-dimensional polyhedrons, and cutting off one infeasible point might very easily

cause the LP relaxation to simply find another infeasible point. If instead of x ≥ 3 we had added any other
plane that did not completely cut off everything to left to that same red dashed line (i.e. the set of optimal

solutions), we would have still found an infeasible point. Had a plane cut off the entirety of that line, it

would not have been valid, as it would cut off all optimal solutions.

Cuts can both be added a priori, or as an iterative procedure. In the latter case, each time the LP

relaxation returns an infeasible solution, a cutting plane that cuts off that solution is added. There is not a

single method of finding cuts. In fact, Gomory, who originally proposed this method, was amongst those

who created different procedures for finding cutting planes. For this, refer for example to chapters 8 and 9 of

the textbook Integer Programming by Wolsey [11]. A generic method for finding cutting planes however is

the following: take a constraint, or (more likely) combine different constraints by way of addition, subtraction

or substitution, such that it contains both integer and non-integer values (variables or parameters). Then,

rewrite this so that all the integers are on the left side of the inequality, and the fractional parts are on

the right. This right part can now be rounded up or down depending on the direction of the inequality

sign, as the left part must be integer. As an example, consider the two first constraints of problem (3.2):

x+ 2y ≥ 5 and y ≤ 1.4. Subtracting the latter twice from the former, and then making a substitution, gives

the following inequality: x ≥ 5− 2y ≥ 5− 2.8 = 2.2. Rewriting this gives x ≥ 2.2. Since x is integer, this
must mean that x ≥ 3. This indeed returns the cut we found before, and have seen is valid.

Branch-and-Bound methods

Another method of finding exact solutions is the branch-and-bound method. This method also adds new

constraints to the model, but unlike the cutting plane method of cleverly cutting off non-integer solutions

outside of the convex hull, this method systematically enumerates, and eliminates, all possible solutions.

The broad idea is as follows: if one of the integer-restricted variables of the solution of the LP relaxation

is not integer, the value must either be below or equal to that value rounded down, or above or equal to

that value rounded up. In case of example (3.2), after the solved LP relaxation resulted in x = 2.2, we
conclude that either x ≤ 2 or x ≥ 3. The branch-and-bound method now creates two new problems, one in

which the first constraint is added, and one in which the other is added. Here, the first constraint results

in an infeasible problem, and the algorithm concludes that x ≥ 3 must hold. Since adding this constraint
resulted in a fully integer solution, the algorithm terminates.

In practice, this can take much longer, and the method will need to branch multiple times. If we once

again suppose that y also needs to be integer, the model can similarly try modifying the problem with the

x ≥ 3 constraint by adding either constraint y ≤ 1, or constraint y ≥ 2. An example of a slightly larger
application of the branch-and-bound method is given in figure 3.3. The original instance of the problem is

P0. We choose a variable to branch on, and hence create two new problems, P1 and P2, that contain an

additional constraint that respectively give an upper and a lower bound on this variable. There are four
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things that can happen. If the solution once more contains a non-integer variable, then we can repeat

the procedure and branch again. If the solution becomes infeasible, we prune (i.e. eliminate) this node,

because adding more constraints will never result in a feasible solution again. If the solution is feasible and

does not contain integer-restricted variables with non-integer values, then two things can happen. Either,

this solution has a better objective value than previously found feasible solutions, or its objective value is not

as good as that of other feasible solutions found before. If we conclude that a solution cannot be optimal,

this node is pruned. It is also possible to prune problems that do still have non-integer integer-restricted

variables, if the upper bound (for a maximization problem) of the objective value is worse than the best

currently found solution. This is for the same reason that we can prune infeasible nodes: adding more

constraints will never allow a sub-problem to have a better objective. To determine if a solution is optimal

or not, we need to search all of the other created branches, until all other nodes in the search tree are

pruned.

Figure 3.3: An example of a branch-and-bound tree, adapted from Lim and Yu [12] © 2024 IEEE.

This process can take a really long time, as problems may have very many integer-restricted variables,

and one can branch on the same variable multiple times. In the worst-case scenario, when no nodes get

pruned, the entire search space might get searched. That means we would essentially find the solution by

brute-force. For that reason, the performance of the branch-and-bound method cannot be guaranteed.

One thing that can impact performance is how the tree gets searched: the sooner a good-quality solution

that is feasible for the original (M)ILP is found, the more nodes can be pruned, resulting in a more rapidly

shrinking search space. A few possible methods of doing so are depth-first search, breadth-first search

and best-first search [13].

Just as important as the searching strategy could be the branching strategy, that determines what

variable to branch on. Common branching strategies are most infeasible branching, pseudo cost branching

and strong branching. Most infeasible branching simply chooses the variable with the most fractional value

(i.e. closest to 0.5), pseudo cost branching keeps track of the variables that have already been branched
on to predict which variable will have the greatest likelihood of success, and strong branching tests each

of the candidate variables to see which of them gives the most progress [14].

It is also possible to combine cutting plane methods with branch-and-bound, resulting in a method called

branch-and-cut. Here, extra cutting planes are added to the subproblems created by the branch-and-bound

method. So, instead of only adding a single bound on a variable, more extensive constraints might be

added. An example problem that greatly benefits from the branch-and-cut method is the TSP, as its

subproblems can be solved quite efficiently. It is also possible to only add cutting planes to the initial LP

relaxation, and then branch as usual. This method is instead called cut-and-branch.
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Column Generation

Column generation is a technique used to solve large linear programs. Instead of solving the entire LP,

only a subset of its variables is considered at first. All the other variables are fixed to 0. Since typically
most variables take value 0 anyways (consider for example the TSP, only a small fraction of the possible
arcs will be in the final tour), this is not an unrealistic starting point. Then, the algorithm determines what

variables are potentially able to improve the value of the objective function. Each variable has a reduced

cost value, that says by how much the objective function will improve if the corresponding variable is

increased by one unit. In case of a minimization problem, the variable with the lowest reduced cost will

bring the greatest improvement of the objective function and will thus will get a non-zero value. The task of

finding this variable is often called the (pricing) sub-problem. We will not go into detail on how to solve this,

but more information can for example be found in Chapter 11 of Wolsey’s textbook on Integer Programming

[11]. An example of a problem that benefits from this technique is the set partitioning model formulation of

the Vehicle Routing Problem discussed in section 3.2.1. It is also possible to combine this technique with

the branch-and-bound method mentioned earlier. This results in a method called branch-and-price, that

applies the branch-and-bound technique to the LP relaxation containing only a subset of its variables, and

adds variables back in further down the tree when needed.

3.1.4. Metaheuristics
As mentioned before, finding a solution to a (M)ILP is an NP-hard problem. When applied successfully,

the exact methods from before do return the optimal solution, but particularly hard problems could easily

be intractable. To still obtain a satisfactory solution, if any exist, heuristics must be used instead. Since

metaheuristics are more problem-specific, we will not cover these methods in detail. Metaheuristics are

typically some variation of a local search technique. Such a technique often succeeds the use of a greedy

heuristic that tries to find a good initial solution of the problem. The idea is that you start with an empty

solution and each round try to improve some facet of the problem, until the constraints are met and

a feasible solution is found. In case of the TSP, a greedy heuristic would add route segments until a

completed tour is found. Greedy algorithms can perform well, and are sometimes even optimal, but they

are often only used to find a starting solution. Local search heuristics will then try to find improved solutions.

To use a local heuristic, one needs to define a neighborhood of solutions that are in some way close to the

starting solution. The algorithm then searches this neighborhood for an improved solution. If it can find

one, a new neighborhood is defined and the process repeats. If there is none, then the current solution is

the found local optimum. In this section, we will not discuss any specific metaheuristics. This is because

the models designed for this project are only solved using exact methods. For completeness however,

appendix A contains an overview of the most commonly used metaheurisics.

3.2. Mathematical Problems
Now that we have provided sufficient mathematical background, we can go over the Vehicle Routing

Problem (VRP) that forms a base for most, if not all, of the vehicle routing algorithms currently in use. From

here on, we will look at the variation of the VRP that considers electric vehicles: the Electric Vehicle Routing

Problem (EVRP). There also exist many variations of the EVRP, that loosen some of the assumptions

posed on the EVRP to describe a more specific and complex problem. We will briefly discuss some of

these variations as well.

3.2.1. VRP
Definition

The VRP is a combinatorial optimization problem aiming to calculate an optimal route planning for a fleet

of vehicles needing to visit a predetermined set of destinations. Optimal can mean different things for

different instances of this problem: the objective function may contain for example the driven distance, the

projected duration, or most likely the total cost of a route planning. Just like how there are many variations

of the EVRP, the same holds for the VRP. However, since our main interest lies in the EVRP, we will keep

the treatment of VRP variations to a minimum.

The first VRP was introduced in 1964 by Clarke and Wright [15], who generalized the ”Truck Dispatching

Problem” of Dantzig and Ramser five years prior [16] to a linear optimization problem. From that point on,

VRP models have gotten much more complicated, trying to incorporate real-life complexities that involve

for example time windows for pickup and delivery, or time-dependent travel times [17]. Braekers et al. [17]
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describe the classical VRP or Capacitated VRP (CVRP) as follows: the CVRP constructs optimal delivery

routes in which each vehicle only travels a single route, where all vehicles have all the same characteristics

and emerge from a single depot. The goal is to find a set of routes such that each customer is visited

exactly once by a singular vehicle, the vehicles start and finish at the depot and the vehicle capacity is not

exceeded, while minimizing the total cost. Table B.1 in appendix B contains an overview of the variations

of the VRP that have been studied in the literature. It is outside of the scope of this literature review to

thoroughly describe each of these variations, but we do show how the capacitated VRP can be formulated.

There are three ways of doing this: using vehicle flow models, commodity flow models, and set partitioning

models [18]. Vehicle flow models make use of integer variables that are associated with the set of arcs.

When the costs of the solution directly relate to the values of each arc, this method is very convenient.

Commodity flow models are similar, but contain an additional set of integer variables that relate to the flow

on each arc. They represent the flow of commodities along the routes driven by the vehicles. The set

partitioning formulations on the other hand aim to find a minimum-cost collection of circuits that visits each

customer once. Note that not all of these formulations have to be modeled as an IP. It is also possible to

use dynamic programming [19] for this purpose, as can be seen in the work of Christofides et al. [20].

To illustrate the differences between these methods, we will give three different formulations: a vehicle

flow model formulation, a slightly more complicated commodity flow model formulation and a set partitioning

model formulation.

Vehicle Flow Model Formulation

There is not one single choice for each of the previously mentioned formulations. For example, for the

vehicle flow model one can use two-index variables xij , that take value 1 if a route visits customer i after
customer j and 0 otherwise [21]. Another option is to use three-index variables xijk that take value 1 if
vehicle k visits customer j immediately after customer i [18]. For simplicity, we will give the two-index
model formulation presented by Munari et al. [21].

Given a set of customers C, we create a set of nodes N = C ∪ {0, n+ 1} that include the depot as a
departure and a return location 0 and n+ 1. We define the set A to contain all the (directed) arcs between

each of the customers C, and the set A′ = A ∪j∈N (0, j) ∪j∈N (j, n + 1) to also include the arcs to and
from the depot and the customer. Then, we define the following decision variables:

xij :=

{
1 if a route contains arc (i, j) ∈ A′, i.e. visits node j ∈ N after node i 6= j ∈ N ;

0 otherwise.

yj ∈ Q≥0 : the cumulated demand on the route visiting customer j ∈ N .

Let CSTij be the cost associated with traveling on each arc (i, j), K the set of vehicles, DEMj the

demand of each customer j (where DEM0 = DEMn+1 = 0), and CAP the maximal capacity of a vehicle.

We then get the following formulation:

min
x

∑
(i,j)∈A′

CSTijxij (3.3a)

s.t. ∑
j∈C\{i}

xij = 1 i ∈ C, (3.3b)

∑
N\{h,n+1}

xih −
∑

N\{0,h}

xhj = 0 h ∈ C, (3.3c)

∑
j∈C

x0j = |K| , (3.3d)

yj ≥ yi +DEMjxij − CAP (1− xij) (i, j) ∈ A′, (3.3e)

DEMi ≤ yi ≤ CAP i ∈ N , (3.3f)

xij ∈ {0, 1} (i, j) ∈ A′. (3.3g)
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The objective function (3.3a) minimizes the total cost associated with the chosen routes. The first

constraints (3.3b) make sure that all customers are visited exactly once. The next constraints (3.3c) enforce

that if a vehicle arrives at a customer h, it must depart from there as well, guaranteeing a correct flow

of vehicles. Constraint (3.3d) fixes the number of routes to the number of vehicles available. Together,

constraints (3.3e) and (3.3f) make sure that the demand of each customer is met and that the capacity of

each vehicle is not exceeded. Since constraints (3.3e) force yj to increase at every customer (assuming
all customers have non-zero demand) this variable will act as an indicator of when each customer has

been visited. This will also avoid subtours, i.e. cyclic routes not passing through the depot.

There are different methods of imposing vehicle capacity constraints and subtour elimination constraints.

These constraints are in this model formulated by constraints (3.3e) and (3.3f) and were originally introduced

by Miller, Tucker and Zemlin [22] for the Traveling Salesman Problem. The advantage of these constraints

is that there are only O(n2) variables and constraints. This cannot be said about an alternative way of
imposing these constraints, one example of which is using the capacity-cut constraints as presented by

Toth and Vigo [23]:

∑
i∈S

∑
j∈S

xij ≥ r(S) ∀S ⊆ C, S 6= ∅. (3.4)

The term r(S) denotes the minimal number of vehicles needed to serve all customers in S. These
constraints simultaneously impose the connectivity of the solution, and the vehicle capacity requirements.

This is a consequence of making sure that a cut (C\S, S) defined by any set of customers S is crossed by

at least as many arcs as r(S). Together with the degree constraints (3.3b) - (3.3d) this implies that each
cut (C\S, S) is crossed just as often in both directions.

The number of constraints of the type (3.4), or any similar set of constraints, grows exponentially with

the number of customers. Therefore, the linear programming relaxation of this version of the vehicle flow

model can only realistically be solved for very small instances. To partially overcome this it is possible to

start only with a limited subset of these constraints, and to add them back in if needed with separation

techniques such as branch-and-cut [23]. When we do successfully find a solution to this relaxation, the

resulting lower bound does tend to be strong. This immediately shows the main disadvantage of using the

constraints we initially presented: the linear programming relaxation might be found easily, but the lower

bound it provides is in general significantly weaker than when using the capacity cut constraints (3.4) [24].

We clearly see a trade-off between the complexity of the model and the strength of the linear relaxation

[25].

Commodity Flow Model Formulation

The next formulation we give is a commodity flow model formulation. This particular formulation was

presented by Toth and Vigo [23], while originally introduced by Garvin et al. [26] and later extended by

Gavish and Graves [27], [28]. We will denote our graphs (C,A) and (N ,A′) in the same way as in the
vehicle flow model formulation. We will also choose decision variable xij the same. We get the following

set of decision variables:

xij :=

{
1 if a route contains arc (i, j) ∈ A′;

0 otherwise.

yij ∈ Q≥0 : the first flow variable associated with the arc (i, j) ∈ A′.

yji ∈ Q≥0 : the second flow variable associated with the arc (i, j) ∈ A′.

Note that the final two decision variables are closely related. If a vehicle travels from i to j, yij represents
the vehicle load, while yji represents the vehicle residual capacity along the arc, i.e. yji = CAP − yij .
This is swapped for the arc (j, i) ∈ A′, so for each arc it holds that yij + yji = CAP .

We do not need more parameters than we have defined in the previous formulation. However, we will
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define TDM :=
∑

j∈C DEMj so that we can express the total demand using a single parameter. This

results in the following formulation:

min
x

∑
(i,j)∈A′

CSTijxij (3.5a)

s.t.∑
j∈N

(yji − yij) = 2DEMi ∀i ∈ C, (3.5b)

∑
j∈C

y0j = TDM, (3.5c)

∑
j∈C

yj0 = |K|CAP − TDM, (3.5d)

∑
j∈C

yn+1,j = |K|CAP, (3.5e)

yij + yji = CAPxij ∀(i, j) ∈ A′, (3.5f)∑
j∈N

(xij + xji) = 2 ∀i ∈ C, (3.5g)

yij ≥ 0 ∀(i, j) ∈ A′, (3.5h)

xij ∈ {0, 1} ∀(i, j) ∈ A′. (3.5i)

Our objective function (3.5a) is exactly the same as in the vehicle flow model. Constraints (3.5b) require

that the sum over the inflow and the outflow in each customer is equal to twice their demand. The next set

of constraints force the commodity leaving the depot to be equal to the total demand (3.5c), the residual

load when leaving the depot to be equal to the difference between the total capacity of the vehicles and

the total demand (3.5d), and the residual load when entering the depot to be equal to the total capacity of

the vehicles (3.5e). These constraints make sure that the commodity flow variables incident to the depot

variables behave correctly. Finally, constraints (3.5f) impose that the degree of every customer node is

equal to 2 to make sure that each customer can only be visited once.

It has been shown by Baldacci et al. [29] that the linear relaxation of this MILP is stronger than that of

the vehicle flow model formulation from before, without the capacity cut constraints. Since we have already

seen that the linear relaxation of that formulation is known to be weak, this result is not unexpected [23].

Set Partitioning Model Formulation

The final formulation we are going to present is a set partitioningmodel formulation. In its simplest form, there

is only a single formulation, which was originally proposed by Balinski and Quandt [30] in 1963 and rewritten

by for example Munari et al. [21]. In this context, we consider the graph (C∪{0},A∪j∈N (0, j)) that contains
all customers, a single copy of the depot, and all possible arcs in between. We let H = {H1, . . . , Hq}
denote the collection of circuits of this graph starting at the depot and thus representing the entire set of

feasible routes, with q = |H|. Associated to each circuit Hj is a cost COCj , and we have binary parameter

V ORij such that

V ORij =

{
1 if a vertex i lies on route Hj ;

0 otherwise.

We then may present the decision variables and the model:

xj :=

{
1 if a circuit Hj is selected in the optimal solution;

0 otherwise.
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min
x

∑
Hj∈H

COCjxj (3.6a)

s.t.∑
Hj∈H

V ORijxj = 1 ∀i ∈ C, (3.6b)

∑
Hj∈H

xj ≤ |K| , (3.6c)

xj ∈ {0, 1} ∀Hj ∈ H. (3.6d)

The objective function (3.6a) minimizes the total cost associated with the chosen routes. The first

constraints (3.6b) enforce that every customer gets visited once on one of the chosen circuits. Constraint

(3.6c) then makes sure there can only be as many routes as there are vehicles available.

One may note that this formulation is much more succinct than the flow model formulations. This can be

explained by the fact that feasibility of a route has been taken care of when designing the set of circuits H
and thus does not require any constraints in the model. The benefit of such a model is that it could be very

easy to add further restrictions, such as time windows, to the model as this does not need to be formulated

as a constraint. This does lead to the main drawback of this method however: the number of feasible routes

can get exponential in terms of the number of customers. Only (very) small instances might be expected

to be solved analytically. A column generation approach to solve the linear programming relaxation of the

model, followed by a branch-and-price method to find optimal integer solutions, will generally be necessary

to find solutions to this model [21]. It should be said that the linear programming relaxation is typically

very strong [23], similarly to how we saw that the much larger vehicle flow model formulation also had a

significantly smaller integrality gap compared to the initial formulation.

3.2.2. EVRP
Definition

The EVRP extends the VRP by taking battery constraints and charging operations into account. Just

like the VRP, it finds a set of vehicle routes starting from and ending at a single depot that visit a set of

customer nodes. On top of that however, the routes that vehicles are allowed to take are limited by the

battery capacity of the vehicles and the available options for charging. According to Küçükoğlu et al. [5]

the basic assumptions for the EVRP can be summarized as follows:

• Each route has to start and end at a depot node.

• Each customer is serviced by exactly one vehicle.

• EVs can visit a charging station to recharge between visiting any two customers.

• Each charging station can be visited by multiple EVs.

• The location of each charging station and their traveling distances from any other node is known.

• The battery level of each vehicle must be kept between 0 and its capacity at all times.

• After visiting a charging station, the battery of a vehicle is fully charged.

Küçükoğlu et al. [5] also mention the most commonly used variations of the EVRP:

• Vehicle capacity restrictions, limiting the weight or volume capacity of a vehicle.

• Time-related restrictions:

– Time windows for nodes, restricting that a customer must be serviced within a given time window

and that each route must be completed within a certain time window.

– Duration time limits, stating that the total elapsed time for a route cannot surpass the set time

limit.

• Partial charging operations, allowing vehicles to only charge partially. Note that this is only relevant

when time-related constraints are used.
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The following restrictions have also been applied to EVRPs in the past:

• EVRP with Pickup and Delivery

• EVRP with Backhauls

• EVRP with Simultaneously Routing and Siting

• EVRP with Simultaneously Vehicle Recharging and Customer Service

• EVRP with Multiple Depots

The objective function components that are most commonly researched are total number of used

vehicles, travel distance and travel time. Other options that have been studied are the total number, or the

construction cost, of the used charging stations, total recharging cost or time, total energy consumption, or

some other operational costs.

There is also a difference in the the way the energy use is calculated. This can be done with linear

deterministic functions based on traveled distance, vehicle speed, vehicle load, road gradient, and more.

In the given model, the energy use is calculated as a factor of the distance between two nodes. It is also

possible to assign a single energy consumption value to an arc in the graph, or even to combine these

methods. Alternatively, stochastic functions can also be considered. Finally, most researchers make use

of fleets containing only one vehicle type, but it’s also possible to use heterogeneous fleets that contain

different types of EVs, and possibly even ICE vehicles. In section 4.1.2, this will be treated in more detail.

Basic EVRP

We start by giving a formulation for the most basic model, and then consider how to adapt this for the most

common different variations. This model has been taken from the work of Küçükoğlu et al. [5], which was

derived from several other papers on variations of the EVRP. We do need to introduce some additional

notation. For convenience, we give a complete list of the required sets, parameters and decision variables:

• 0, N + 1: Depot nodes

• F : Set of charging stations

• F ′: Set of dummy nodes to allow for multiple visits to the nodes in F

• C: Set of customers {1, . . . , N}
• C0 := V ∪ {0}: Set of customers and depot node 0

• CN+1 := C ∪ {N + 1}: Set of customers and depot node N + 1

• C′ := C ∪ F ′: Set of customers and charging stations

• C′
0 := C′ ∪ {0}: Set of customers, charging stations and depot node 0

• C′
N+1 := C′ ∪ {N + 1}: Set of customers, charging stations and depot node N + 1

• C′
0,N+1 := C′ ∪ {0} ∪ {N + 1}: Set of customers, charging stations and depot nodes 0, N + 1

• K: Set of vehicles

• LENij : Length, or traveling distance from node i to node j, ∀i, j ∈ C′
0,N+1

• ECR: Energy consumption rate of the vehicles per unit of distance

• V BC: Battery capacity of the vehicles

The decision variables and model formulation are then the following:

xk
ij :=

{
1 if vehicle k travels from node i to node j, lij > 0;

0 otherwise.

yki ∈ Q≥0 : battery level of vehicle k ∈ K on arriving at node i.
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min
x

∑
i∈C′

0

∑
j∈C′

N+1

∑
k∈K

LENijx
k
ij (3.7a)

s.t.∑
j∈C′

N+1

∑
k∈K

xk
ij = 1 ∀i ∈ C, (3.7b)

∑
j∈C′

N+1

∑
k∈K

xk
ij ≤ 1 ∀i ∈ F ′, (3.7c)

∑
j∈C′

xk
0j ≤ 1 ∀k ∈ K, (3.7d)

∑
i∈C′

0

xk
ij =

∑
i∈C′

N+1

xk
ji ∀j ∈ C′,∀k ∈ K, (3.7e)

ykj ≤ yki − (ECR · LENij)x
k
ij + V BC(1− xk

ij) ∀i ∈ C,∀j ∈ C′
N+1,∀k ∈ K, (3.7f)

ykj ≤ V BC − (ECR · LENij)x
k
ij ∀i ∈ F ′ ∪ {0},∀j ∈ C′

N+1,∀k ∈ K, (3.7g)

yk0 ≤ V BC ∀k ∈ K, (3.7h)

xk
ij ∈ {0, 1} ∀i, j ∈ C′

0,N+1(i 6= j),∀k ∈ K, (3.7i)

ykj ≥ 0 ∀j ∈ C′
0,∀k ∈ K. (3.7j)

The objective function aims to minimize the total traveled distance. Constraints (3.7b), (3.7d), (3.7e)

have the same function as constraints (3.3b), (3.3c) and (3.3d) respectively. The difference is that the

current model uses three-index decision variables, the extra index of which is used to indicate the vehicles.

Constraints (3.7b) make sure that all customers are visited exactly once by one of the vehicles. Constraints

(3.7d) limit the number of routes to the number of vehicles, and constraints (3.7e) guarantee a correct

flow of vehicles. The vehicle flow model of the VRP did not contain charging stations, so there are no

analogous constraints to constraints (3.7c) that ensure that each dummy charging station can be visited

only once. However, constraints (3.3e) and (3.3f) do resemble constraints (3.7f) and (3.7g). In the vehicle

flow model formulation these constraints took care of the customer demand, while in the basic EVRP they

model the battery demand of the routes. Additionally, constraints (3.7h) make sure that the battery of a

vehicle is fully charged after leaving the depot.

Again based on the work by Küçükoğlu et al. [5], we describe how to alter this model to obtain the

EVRP with partial charging, the capacitated EVRP, and the EVRP with time windows.

EVRP with a Partial Charge Policy

To allow vehicles to charge only partially, we need to introduce a new decision variable:

qi ∈ Q≥0 : battery level of the vehicle before departing node i ∈ F ′ ∪ {0}.

We may then introduce constraints (3.8) and (3.9)

ykj ≤ qi − (ECR · LENij)x
k
ij + V BC(1− xk

ij) ∀i ∈ F ′ ∪ {0},∀j ∈ C′
N+1,∀k ∈ K (3.8)

yki ≤ qi ≤ V BC ∀i ∈ F ′ ∪ {0} (3.9)

to replace constraints (3.7g) and (3.7h). The consequence is that at each charging station (or the

depot) the vehicle only gets charged up to value qi, which is fixed to be between the battery level upon
arrival of the charging station, and the maximal battery capacity.
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Capacitated EVRP (CEVRP)

If we want to restrict the weight or load capacity of the vehicles, we need to introduce a new parameter.

Just like in the VRP, let CAP be the weight/load capacity of the vehicle. We already defined DEMi to be

the demand of customer i ∈ C. Constraints (3.10)

∑
i∈C

∑
j∈C′

N+1

DEMix
k
ij ≤ CAP ∀k ∈ K (3.10)

make sure that the total capacity of each vehicle is not exceeded. These can simply be added to the

given formulation to gain the CEVRP.

EVRP with Time Windows (EVRPTW)

Adding time windows to the formulation is a slightly more complicated affair than the previous alterations.

For that purpose, we define new parameters:

• TRTij : Travel time from node i to node j ∀i, j ∈ C′
0,N+1

• ESTi: Earliest time to start service at node i ∈ C′
0,N+1

• LSTi: Latest time to start service at node i ∈ C′
0,N+1

• SETi: Service time at node i ∈ C0
• RCR: Recharging rate of the batteries

and a new decision variable

si ∈ Q≥0 : start time of service at node i ∈ C′
0,N+1.

We can then add the following constraint to the model:

si + (TRTij + SETi)
∑
k∈K

xk
ij ≤ sj + LST0(1−

∑
k∈K

xk
ij) ∀i ∈ C0,∀j ∈ C′

N+1; (3.11)

si+TRTijx
k
ij+RCR(V BC−yki ) ≤ sj+(LST0+RCR ·V BC)(1−xk

ij)∀i ∈ F ′,∀j ∈ C′
N+1,∀k ∈ K; (3.12)

ESTi ≤ si ≤ LSTi ∀i ∈ C′
0,N+1. (3.13)

These constraints track the duration of all operations, determine charging times and make sure the

resulting time windows are feasible, when either using a full or partial charging policy. Constraints (3.11)

ensure that the time windows when leaving customers are complied with, and the same holds for constraints

(3.12) for charging stations. If we allow partial charging, we use the variable qi to determine how long a

battery is charged for, instead of assuming it needs to be charged until full. Then, we should use constraints

(3.14) instead of constraints (3.12):

si + TRTijx
k
ij +RCR(qi − yki ) ≤ sj + (LST0 +RCR · V BC)(1− xk

ij)∀i ∈ F ′,∀j ∈ C′
N+1,∀k ∈ K. (3.14)

The last constraints (3.13) enforce the time windows of each of the nodes.

3.3. Solution Methods
As we have seen in section 3.1, there is not a single way to solve an Integer Program. For simpler or

smaller problems, using exact methods might be a good and accurate method of finding solutions. When

a problem becomes more complicated due to (very) large input data or added complexity, the running

time could become too big to find a solution in a practical amount of time. Then, it might no longer be the

desired method. Since Integer Programming is NP-hard, there is no guarantee that a solution will be found

in any reasonable amount of time. Instead, metaheuristics that try to approximate a solution are used for

such cases. This section will touch upon both of these solution methods to see how researchers solved

their version of the EVRP.
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3.3.1. Commercial Solvers
There is a small subsection of papers that to find solutions of their model depend on the use of commercial

solvers. The most popular of these are CPLEX and Gurobi. Basso et al. [31], Soysal et al. [32] and Kopfer

and Vornhusen [33] use CPLEX as their solution method, while Chen et al. [34] and Wang et al. [35] do

the same with Gurobi. Other researchers solve small instances of their model with commercial solvers,

while large instances can be solved with proposed metaheuristics. This is done for example by Xiao et al.

[36] and Lu et al. [37] with CPLEX, and Kancharla [38] and Froger et al. [39] with Gurobi.

3.3.2. Branch-and-Bound Approaches
Branch-and-bound and its variations are exact methods, and therefore are still only suitable for less

complicated problems. Nonetheless, there are a few papers that use such a method as a main solution

method. Lee et al. [40] use the branch-and-price approach, and Tahami et al. [41] use branch-and-cut.

More commonly these methods are combined, resulting in the so-called branch-price-and-cut method.

This is applied by for example Ceselli et al. [42], Munari et al. [43] and Costa et al. [44].

3.3.3. Heuristic Approaches
To solve larger and more complicated problems, exact solution method will no longer be sufficient. There

is a broad variety of methods one can use to solve variations of the EVRP, such as applying some of the

standard metaheuristic solution methods described in appendix A. As we do not discuss these methods

in the literature review itself, a discussion about the application of these methods by different authors

can be found in appendix C. That chapter additionally includes some examples of hybrid metaheuristic

approaches, and also mentions some alternative approaches that have been used to solve these types of

problems in the past.



4
Battery Modeling

This chapter discusses the different ways in which the battery of an electric vehicle has been modeled in

the literature. The first section considers the energy consumption of the vehicle battery while driving, while

the second section covers the opposite behavior: charging. We will describe how these components can

be modeled, and how important specific parts of the model are.

4.1. Energy Consumption
In this section, we discuss different ways of modeling the energy consumption of batteries, and how this

is impacted by different factors. As the battery is a critical element of the EVRP, in section 3.2.2 we

already saw a simple method of modeling the battery charging and discharging. Then, we used constraints

(3.7f) - (3.7h) to model the battery capacity in the same way customer demand was modeled before using

constraints (3.3e) and (3.3f), where we defined the energy demand to simply be the distance between two

locations multiplied by some energy consumption parameter. While these constraints do approximate the

battery level, there are many ways of improving this. Vehicle-specific factors such as the shape of the

car and how much extra weight it contains, as well as the behavior of the driver (e.g. at what speed is

driven, how often and quickly the vehicle brakes, etc.) and external factors such as the road incline and

temperature, all have a direct impact on how quickly a battery discharges. A single parameter value will

never be able to take all these complexities into account. Many research papers do approximate energy

consumption linearly [5], either as a function of distance, time, or vehicle load. Depending on the number

of parameters and their sophistication, linear approximations of energy consumption can get more or less

realistic.

4.1.1. General Model
The starting point for modeling the energy consumption of an EV is generally determining the mechanical

power. The way this is calculated is often credited to Barth et al. [45], that determined the engine

power demand of diesel trucks. This calculation is broken down neatly by Goeke and Schneider [46].

The mechanical power is the power PM in W needed to overcome the rolling resistance, aerodynamic

resistance and gravitational force. In order to express these forces, the following values are needed:

• m: Total vehicle mass in kg

• g: Gravitational constant in m/s2

• cr: Rolling friction coefficient (depends on tire pressure and road surface conditions amongst other
factors)

• θ: Gradient angle in degrees

• ν: Velocity in m/s

• cd: Aerodynamic drag coefficient

• ρa: Air density in kg/m3

• Af : Frontal area of the vehicle in m2

• a: Acceleration in m/s2

19
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The rolling resistance Fr (in N ) can be determined as

Fr = cr ·m · g · cos(θ). (4.1)

The aerodynamic drag Fa (in N ) is determined by

Fa =
1

2
· ρa ·Af · cd · ν2. (4.2)

Finally, the gravitational force Fg (in N ) is given by

Fg = m · g · sin(θ). (4.3)

In addition to the sum of these forces that add up to the traction force FT , Newton’s second law

FA = m · a is also included in the calculation. To go from a sum of forces to the power, these terms are

multiplied with the velocity ν. That results in the following total power demand:

PM =
(
m · a+

1

2
· ρa ·Af · cd · ν2 +m · g · sin(θ) + cr ·m · g · cos(θ)

)
· ν. (4.4)

As done by Barth. et al. [45], this power requirement still needs to be turned into demanded engine

power requirement. This transformation is done by dividing PM by the energy efficiency of transmission,

motor and power conversion εM and adding the engine power demand caused by running losses of the

engine and using vehicle accessories like air conditioning Pacc. That gives total power demand Pout in W :

Pout =
PM

εM
+ Pacc. (4.5)

An ability that diesel trucks do not have is regenerative braking. When driving downhill or decelerating,

the traction force FT may become negative and some of the energy can be transmitted back to the battery.

Asamer et al. [47] describe how to model this recuperated energy. In order to be able to recuperate any

lost energy, the vehicle does need to be driving at a certain minimal speed νmin. Sandrini et al. [48]

take νmin to be 15 km/h. As vehicles usually drive at much higher speeds, this limitation is not given
much attention in the studied literature on the topic. For even a moderately simplified theoretical model,

it however is an important consideration. We define εG as the efficiency of transmission, generator and

in-vehicle charger. With that, we can describe the regenerated energy after braking:

Pin =

{
0 if ν ≤ νmin;

FT · ν · εG + Pacc. otherwise
(4.6)

For vehicles that have a single motor powering two wheels, if the braking strength is below 0.2g, all
braking force gets allocated to the wheels connected to the electric motor. When braking harder, this

strength is allocated to all four wheels, and some of the energy is lost due to friction brakes [49]. However,

as the majority of deceleration is below that limit [47], this is an appropriate measure nonetheless.

Not all papers take regenerative braking into account. In part this is for simplicity, but it can also be

a deliberate choice for a different reason. An example of this is the work by Pelletier et al. [50], which

presents a robust MILP for the EVRP. Not accounting for an extra inflow of energy is a simple tool to make

a problem more robust, as this allows for a little more leeway for the driver when the predicted battery level

gets low.

In order to find the total energy demand E in J of a trip, we need to integrate the total power P over the

duration of the trip. At any moment in time,

P =

{
Pout if FT ≥ 0;

Pin if FT < 0.
(4.7)

If we define the duration of the trip by T and express the time with variable t, we may conclude that the
total energy demand is the following:

E =

∫ T

0

P dt. (4.8)
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By multiplying this result with 3.6 · 106, the unit of E becomes kWh. If we denote the total power demand
at the i’th timestep by Pi, where i is an integer ranging from 0 to d T

∆te for a fixed stepsize ∆t, then this
integral can be approximated by the function E =

∑
i Pi ·∆t. It is also possible to calculate the energy

consumption per unit of distance by dividing the total energy consumption of a trip by the distance of that

trip. The parameter ECR as defined in section 3.2.2 that described the energy consumption rate can thus

be derived from the general formula E
L , in which L is the length of a single trip.

Seeing how the energy consumption is expressed as a discretized integral, the main term of which can

vary greatly between only small moments of time, we need a way of breaking this down further. In 2019,

Basso et al. [51] presented a method of calculating the energy expenditure between road links between

two intersections. Each road link is split up in three parts, and the energy consumption is calculated for

each of them: an acceleration phase (e↑), a steady speed phase (e→) and a braking phase (e↓). In figure
4.1, these phases are illustrated. Note that a similar thing can be done if the start and/or end velocity is not

equal to zero. Hulagu and Celikoglu [52] illustrated this in more detail. Another paper that uses such an

approach to take acceleration and deceleration into account is the work of Pelletier et al. [50], although

they do not describe it nearly as thoroughly.

Figure 4.1: Speed curve from standing still to a complete stop with steady speed 50 km/h. Source: [51].

However the energy consumption of a vehicle is expressed, it is immediately clear that it cannot be

substituted directly into a vehicle routing model. Even with endless computational power, there is no way a

model will be able to account for the exact driving behavior of each driver in every situation. Therefore,

the need for making approximations arises. To learn what needs to be approximated, the next section

describes the way energy consumption in EVs has been modeled in the past. Section 4.1.3 will then

discuss methods to find suitable parameters.

4.1.2. Practical Models
This section will discuss how different papers studying different variations of the EVRP modeled energy

consumption previously. This can broadly be split into three categories: linear deterministic functions,

nonlinear deterministic functions and stochastic functions.

Linear Deterministic Functions

Using linear deterministic functions to approximate the energy consumption of an electric vehicle can be

done in a great many ways. We divide this in four different categories, ranging from very simple to quite

refined.

Single Energy Consumption Parameter We saw that the simplest way to model this was by using a

single energy consumption parameter that predicts the energy consumption solely based on the distance.

Papers that have used this method are for example written by Keskin and Çatay [53], Roberti and Wen

[54], and Chen et al. [34]. A computationally equivalent approach is basing the energy consumption not

on the distance, but on the trip duration. This method however isn’t very popular: Küçükoğlu et al. [5]

only identified 4 papers out of 136 publications that used this method. The most recent one of which was
published by Yang et al. [55]. A common factor amongst these papers is that the research interest is

purely computational, and realistic battery modeling is not the priority.

Energy Consumption Parameter per Vehicle If a model uses a mixed fleet, some of the modeled

coefficients may differ between the different vehicles. Therefore, it might not be reasonable to assume that



4.1. Energy Consumption 22

each vehicle spends the same amount of energy on each unit of distance. A simple way of extending the

previous method is by assigning different energy consumption parameters to different vehicles. This is

done for example by Hiermann et al. [56]. If the amount of time that a vehicle takes to charge is not (or

only slightly) constrained, a similar effect can be achieved by keeping the energy consumption rate the

same, but assigning different battery capacities to different vehicles, as done by Zhau and Lu [57].

Energy Consumption Parameter per Arc A slightly more involved, but still computationally ac-

ceptable approach is calculating the energy consumption parameter for every arc in the graph. This can

significantly boost performance if different trajectories differ greatly in terms of road type and incline. This

can be applied to homogeneous fleets, an example of which is the work of Barco et al. [58] that studies an

airport shuttle service scenario. It is also possible to consider a heterogeneous fleet, as done by Li et al.

[59].

Energy Consumption as a Function of the Vehicle Load More commonly, papers that opt for

a more realistic battery consumption model use a slightly more complicated but potentially much more

accurate approximation by taking the vehicle load into account. The difference in weight between an empty

and a fully loaded vehicle can be massive and might significantly impact energy expenditure. To implement

this linearly, the battery discharge will need to be modeled as a linear function of the vehicle load at a

given timestep. This is done by for example Futalef et al. [60] and Pelletier et al. [50] for a single vehicle

type. Kopfer and Vornhusen [33], and Goeke and Schneider [46] similarly used a fleet of heterogeneous

vehicles.

Nonlinear and Stochastic Functions

Energy consumption can be approximated fairly well with linear functions, since many important factors

do not vary between solutions. A consequence is however that the values of the decision variables (that

can vary between solutions) can only have limited impact on the energy consumption. For the modeling

variations discussed thus far this did not pose a problem, but when trying to incorporate the effect of the

state of charge (SoC) on the energy consumption rate, a linear approximation is not sufficient. Kim and

Chung [61] noticed that the SoC of the battery did have a measurable difference on the energy expenditure,

and proposed a model in which the energy consumption (in addition to the charging process) is a nonlinear

function of the SoC.

While most researchers assume the energy consumption to be deterministic, there are a few papers

that treat this stochastically. The reasoning for this is clear: accurately estimating the energy consumption

is a complicated and detailed task depending on a large multitude of factors that are impossible to take

into account exactly. To combat this, the uncertainty of the estimation is built into the model, that can in

turn optimize the problem in such a way that a solution is sufficient for the worst case scenario. A common

method for doing this is making a model robust, such as Pelletier et al. [50] did. They achieve this by using

the deterministic energy consumption estimation as the expected value, and adding a randomly distributed

uncertainty term. The probabilistic part of this term is derived from a carefully chosen uncertainty set,

designed in such a way that aims to reflect reality best. Soysal et al. [32] use a similar approach, except

that they make the assumption that the battery consumption is distributed normally.

A slightly different method to achieve the same goal was used by Basso et al. [62] in 2021. They

published a paper building on their previously designed model [51], adapting it to a stochastic model using

full Bayesian regression techniques. Just like the previous two methods, they were able to use a MILP

solver to find routing solutions. Another method expresses the uncertainty in energy consumption by using

fuzzy numbers: Zhang et al. [63] defines a fuzzy optimization model, based on uncertainty theory. The

resulting model however is not a MILP, so instead they propose their own algorithm.

4.1.3. Parameter Estimation
In the previous section, the different ways in which energy consumption was expressed in an EVRP were

discussed. In order to successfully implement this, it is necessary to use parameters that accurately

describe the situation. This section will examine how this can be done. Example values for the parameters

that are commonly not highly variable are given in table 4.1. Note that the values for some of these

parameters depend on the vehicle. As an example, the values related to the medium 75kWh edition of the

Citroën ë-Jumpy will be used.
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Table 4.1: Typically elementary model parameters.

Total vehicle mass (excluding driver) m 1, 988 - 3, 105 kg

Gravitational constant g 9.81 m/s2

Rolling friction coefficient cr 0.02

Aerodynamic drag coefficient cd 0.4

Air density ρa 1.127 - 1.164 kg/m3

Frontal area of the vehicle Af 3.81 m2

Less Variable Parameters The total vehicle mass of the electric truck is between 1, 988kg when
empty, and 3, 015kg when at max capacity, as presented by the manufacturer [64]. An estimate of the rolling
friction coefficient for car tires on asphalt is given by the Engineering Toolbox website [65]. Chowdhury et

al. [66] estimate the aerodynamic drag coefficient cd for this type of delivery truck to be around 0.4. The
Engineering Toolbox website gives values for the air density ρa for a wide range of temperatures. The
values in the table are for temperatures of 30◦ C to −10◦ C. The frontal area of the electric truck follows
from the dimensions of the truck given by the manufacturer [64]. The gradient angle θ depends entirely
on the driven road, so a single general parameter cannot be given. It is however information that can be

known in advance, and therefore not considered to be highly variable.

More Variable Parameters Other parameters depend on both the vehicle and factors such as temper-

ature, and are less trivial to estimate. These include the efficiencies of the different power conversions in

the vehicle εM and εG. The power demand of vehicle accessories Pacc can also be treated as a parameter,

and can be harder to estimate than the previous two terms, as this depends very much on the driver also.

Asamer et al. [47] solve this issue by considering an interval between 236 W and a maximum of 1266 W ,

choosing 450 W as the default value. Fiori et al. [67] assumed a value of 700 W , and also considered

situations with higher auxiliary power demands when the temperature outside is either very cold or very

warm. Basso et al. [51] also considered different options, one of which was 20 kW , much larger than the

other estimates. This is unrealistic for short trips in a regular vehicle, but it does approximate the auxiliary

power demand of large trucks with contents that need to be kept frozen.

Often, εM and εG are taken as constants. Barco et al. [58] and Yuan et al. [68] fix these values to

0.9, Wu et al. [69] use 0.95, Travesset-Baro et al. [70] use a much lower value of 0.69. Asamer et al. [47]
respectively consider values between 0.63 - 0.9 and 0.64 - 0.82 within their sensitivity analysis, but set a
baseline value of 0.9 and 0.8 respectively. Basso et al. [51] did not pick a single value, but used regression
analysis to find a function of the velocity describing the efficiency. These methods are however lacking, as

the range of a vehicle can differ greatly depending on temperature: differences of 36% of the median have

been observed during winter [71]. An approach that avoids this problem is to simply ignore these factors

and use big data to model the energy consumption rate directly, as done by Fetene et al. [72].

We can clearly see that there are many ways of choosing these parameters, and that there is not a

single approach that results in success. The same thing holds for the velocity and acceleration of the

vehicle. Unlike the previous terms, these values correlate strongly with the time. Whereas the weight of

the vehicle may differ only between stops, the speed and acceleration may differ anywhere on the route

and can depend on unpredictable factors. The end of section 4.1.1 described ways of breaking down

the energy consumption into smaller parts based on the acceleration and deceleration of the vehicles.

When using a speed profile, the velocity and acceleration are assumed known at all times, and the energy

consumption can be calculated. Hulagu and Celikoglu [52] created their own speed profiles, while Basso

et al. [51] referred to existing tools to simulate a driving cycle. Another option is to use data from driven

vehicles, like Fetene et al. [72] did, which can be very detailed and hence result in accurate outcomes.

The price of this accuracy however is flexibility; the resulting models will only be completely valid for the

vehicles and roads the data is sourced from.

Specific Effects

Up until now, this section explained how EV batteries are generally modeled. This is a very challenging

task, especially when the information available is limited. When estimating the energy consumption of
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vehicles, it can be very helpful to get an idea of how different relevant factors impact this process. This

section will discuss how differing conditions or modeling assumptions affect the battery consumption of an

EV.

Effect of Temperature and Weather Conditions The outside temperature can have an enormous

effect on the performance of the battery. Independent papers found a difference of 36% [71] and 34% [72]

of the predicted energy consumption between summer and winter. Fetene et al. [72] also calculated the

correlation between the energy consumption and the temperature, wind and precipitation. The temperature

is negatively correlated with the energy consumption, while the wind and precipitation have positive

correlation. Remarkable is that even when correcting for these factors, there is a positive correlation

between winter and energy consumption.

The sensitivity analysis performed by Asamer et al. [47] concluded that variance in the motor efficiency

εM can also have a significant impact on the performance of the model. Seeing how this efficiency is deter-

mined in part by temperature, this is no surprise. The experiments of Xie et al. [73] concertize this statement.

They compared the energy consumption under ambient temperatures (−20◦C,−10◦C, 0◦C, 25◦C, 45◦C).
With baseline temperature 25◦C, they found that colder temperatures can increase the energy consumption
by respectively 58.02%, 40.40% and 33.31%. At 45◦C, the energy consumption decreased by 1.93%. Iora

and Triboli [74] found similar results: compared to an ambient temperature of 20◦C, a temperature of 0◦C
and −15◦C, the range of the EV dropped with respectively 40% and 60%.

Donkers et al. [75] studied the impact of ambient temperature on energy consumption for different

speeds, and concluded that this effect mainly holds for lower velocities. When driving at 130 km/h, the
relative influence of the temperature is significantly lower. They also concluded that for higher temperatures,

the vehicles become more energy efficient. This confirms the results of Xie et al., although the negative

correlation between temperature and energy efficiency is not found for driving at a much lower speed of 30
km/h. A related result of Donkers et al. is that when the vehicles have to counteract strong headwind

speed, the energy efficiency plummets, in particular for high speeds: when driving at 130 km/h with a

headwind speed of 100 km/h, about three times as much energy is used compared to a windless scenario.
For lower speeds a similar factor is found, but due to the difference in energy consumption at different

speeds, the effect is stronger for high velocities.

Effect of Elevation Asamer et al. [47] also considered effects for different elevation profiles. Note-

worthy conclusions are that only when driving on a negative slope, does varying the recuperation efficiency

εG make a significant difference in the outcome. Variance of the total mass of a vehicle results in negligible

differences when driving on a flat or negatively sloped road, but when the road becomes hilly or positively

sloped, different values can make a large difference. Liu et al. [76] directly studied the impact of the road

gradient on the performance of the battery consumption model. They concluded that when elevation is

considered in the model, the resulting outcome is 5− 8% more accurate than without. Donkers et al. [75]

also studied the impact of the slope on the energy consumption, and found that a slope of 1◦ compared
to a completely flat road increased the energy consumption by about a third for vehicles driving at 130
km/h. This agrees with the simulation created by Genikomsakis and Mitrentsis [77]. When driving at 30
km/h, the effect was much stronger: Donkers et al. found that the energy consumption almost doubled.
Al-Wreikat et al. [78] did a similar study, and found that ascending roads with a slope of 1.72◦ increased the
specific energy consumption by 50%, while a descending road with that same slope, the specific energy

consumption decreased by 80% compared to a flat road. While this these differences seem large, practical

behavior can be different than these experiments. A case study performed in the mountainous region

Andorra by Travesset-Baro et al. [70] estimated that when accelerating and braking moderately, a 21.8%
drop in EV range is expected. With an aggressive driving style, this increases further to a 26.9% reduction.

Effect of Acceleration and Speed The link between speed, acceleration and energy consumption is

directly clear from the way that they are calculated, as the velocity is the only variable that appears as a

high-order term in the function for the total power demand (4.4). Consequently, driving at a high velocity

causes a disproportionate jump in energy usage. This phenomenon however is not explicitly researched by

much of the literature, since most researchers use predetermined driving profiles to base their experiment

on. Results varied between different cycles. One study that specifically investigated different driving cycles

was for example written by De Gennaro et al. [79]. To gain insight in the relationship between the velocity
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and the efficiency, we refer to papers that also use simulations to draw conclusions. It should be noted

that the acceleration and speed of a vehicle is a large descriptor of the driving style of an individual. The

next section will shortly discuss driving styles, and their effect on the electrical efficiency of the vehicle.

Basso et al. [51] considered the differences between using a detailed speed profile, versus taking the

average speed. They concluded that the difference in energy consumption was very large, in particular at

higher speeds (say, above 50 km/h) and shorter driving intervals (accelerating and breaking withing less
than 1 km). They expressed the relationship between the energy consumption estimated at an average

speed (eavg), and the energy consumed when accelerating and braking are considered too (e), by their
ratio

eavg

e . Figure 4.2 calculates this ratio as a function of the driven length, at multiple different speeds.

For example, when driving 600 meter with on average 60 km/h, there is roughly a factor 5 difference. Thus,
it is insufficient to simplify the model in such a way, especially when a driver needs to accelerate and brake

frequently on a route.

Figure 4.2: The ratio between the average energy use and the energy use over the entire cycle eavg/e for
different vehicle speeds and trip lengths d(m). Source: [51].

Mamarikas et al. [80] simulated the energy consumption as a function of the average speed. Up to about

40 km/h, the energy consumption in Wh/km rapidly decreases. From that point on however, it slowly

increases again. When vehicles are driving 140 km/h, the energy consumption is predicted to be roughly
equal to vehicles driving on average around 5 km/h (due to frequently stopping and re-accelerating).

Conventional ICE vehicles generally drive at optimal efficiency at a much higher speed than 40 km/h. Note
that if regenerative braking is kept out of the calculations, the simulation implies that driving at 80 km/h
is almost exactly as efficient as driving at 40 km/h, therefore in part explaining that difference. Another
simulation confirms that the recovered energy from regenerative braking is largest around roughly 20− 45
km/h. This is in line with our comment about equation (4.6) about νmin, which was given an example

value of 15 km/h.

Effects of Other Factors Fetene et al. [72] concluded that long trips (≥ 10 km) were more battery

efficient than short trips (≤ 2 km): on average short trips consume 40 Wh/km more than medium trips

and 57 Wh/km more than long trips. Duarte et al. [81] studied the effect of the battery SoC on energy use

of a full hybrid EV, and concluded that with lower SoC levels, the energy consumption was higher. These

outcomes illustrate the weakness of modeling the energy consumption as a function of (only) the distance.

Hulagu and Celikoglu [52] show that there is indeed a difference between a solution that aimed to find the

shortest paths, and a solution that aimed to be as energy efficient as possible.

Fetene et al. [72] also studied the difference in energy consumption between driving on highway roads,

versus driving on non-highway roads. Correcting for the different driving behaviors in both situations, they

found that this characterization was statistically insignificant. El Amrani et al. [82] on the other hand found

that EVs are more efficient on trunk roads than on highways. The sensitivity analysis of Asamer et al. [47]

concluded that the rolling friction coefficient does have a high influence on the model outcome. The rolling

friction coefficient depends on a lot of different factors, such as the tire, the tire pressure, the velocity,

road surface conditions, etc. Even when ignoring the difference amongst roads (to a reasonable degree),

it is still important to select this parameter carefully. Jonas et al. [83] also studied the different energy
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consumption efficiences at different roads, and concluded that a smart choice of road can potentially save

up to 46% of energy usage. However, they noticed the highest energy consumption on between interstate

roads and local roads, as these respectively allowed for high speeds and frequent traffic interruptions.

Unlike Fetene et al. however they did not correct for these differences in the driving profile.

Doyle and Muneer [84] modeled the energy consumption of both heating and cooling systems in EVs,

both during the daytime and nighttime. For heating, they found values for the energy consumption of

around 5 Wh/minute when the difference in temperature was around 10◦C − 15◦C, up to 55 Wh/minute
for a temperature difference of 24◦C. As a result, the heating accounted for up to 30% of the energy

consumption. On average, this came down to 18%. In the case of cooling, they found that when the

cabin was cooled at least 2◦C, a minimum of 3 Wh/minute was used. This number went up to almost 30
Wh/minute when the the desired temperature was 9◦C cooler than the outside temperature. On average

the cooling resulted in a 14% share of the total energy consumption. Fiori et al. [67] did a similar study, but

assumed a range for acceptable temperatures (17◦C − 24◦C) instead of heating the vehicle to the upper
end of this range, and cooling it to the lower end as in the previous work. Heating a vehicle up from −5◦C
resulted in a 10% to 32% increase in energy consumption, which agrees with the previous results. When

cooling the vehicle from 25◦C and 35◦C, the energy consumption increased with respectively 1% to 3%
and 3% to 11%. This difference can be explained entirely that the previous results assumed the vehicle to

cool to 17◦C, and therefore needed much more cooling.

Another factor that can be accounted for is driving style. Donker et al. [75] identified three driving styles:

eco-driving, normal driving and aggressive driving. These categorizations were made based on the use of

regenerative brakes, the speed, acceleration and deceleration. At high speed (130 km/h), the researchers
found a 17% increase in energy consumption for the aggressive driver, compared to the eco-driver. At

speeds below 30 km/h on the other hand, the eco-drivers used up to 5% more energy, which can be

explained by the higher energy consumption of the heating and cooling system in the vehicles.

One paper that explicitly researched the impact of different loads on the efficiency is the work of Mruzek

et al. [85]. They considered loads ranging from 50 kg to 250 kg, with steps of 50 kg, and found that with the
heaviest load, the energy consumption was 7% higher than with the lightest load. Moreover, the Depth of

Discharge (DoD) measured for each of these loads behaved linearly. This means that the assumption of

an energy consumption factor as a product of the added weight used in the energy consumption prediction

models appears to be realistic.

The final factor we consider in this section is that of congestion, for which Mamarikas et al. [80]

created a model. At low speeds, their simulation concluded that moving from a congested to a normal

scenario reduces energy consumption by 15%, while the other way around causes an increase of 6%.

At high speeds, we respectively see an increase of 2% and a decrease of 20%. Measures to reduce

congestion, such as mini roundabouts or other traffic calming methods, were also found to reduce the

energy consumption by 2% up to 28%.

4.2. Charging
This section will cover the different available charging techniques, and how these variations result in

different model formulations.

4.2.1. Charging Techniques
When calculating the energy consumption of an EV, the technology inside the battery is, at least with

the currently available battery technology, not crucial. For the charging behavior of an EV it could be

critical what charging system is used, in part due to the wide range of available options. Most commonly,

vehicle batteries use conductive (wired) charging. A logistically similar charging solution is using static

inductive (wireless) charging. To avoid the waiting time coinciding with in particular low-voltage charging,

another possible technique is using battery swapping. A method with even greater practical benefit is

using dynamic inductive charging. This comes down to making roads that contain coils under the asphalt,

transferring energy directly to the vehicle allowing it to charge while driving.

Dynamic Inductive Charging and Battery Swapping

Most of these methods are still very futuristic. There have been a few experiments of dynamic inductive

charging performed by Electreon [86], in which they electrified small stretches of roads up to 2 km long.
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The technology is immensely promising, but still under development, not to mention the huge investments

it requires. Until its implementation takes up speed, it does not make sense to consider this as a main

method of charging. It’s not even certain that this technology is feasible to apply broadly. If that does

happen, the model formulation will start to look different, as vehicles might arrive at a location with more

battery than when they left the previous location. The battery swapping technique has similar issues. The

main difference is that the implementation of this technique is further along: NIO, one of China’s largest

automakers, was operating as of May 2023 over 1360 battery swapping stations in China, and 13 in Europe

[87]. Despite that, there are still many practical hurdles to overcome before this method of charging can

become mainstream. Nevertheless, the EVRP with battery swapping has a moderate base of research.

To give a few examples: Chen et al. [34] and Raeesi and Zagrafos [88] studied a variation of this problem

with time windows. Soysal et al. [32] instead considered a pickup and delivery problem that used battery

swaps. Li et al. [89] does consider the standard EVRP, and focuses on the energy consumption and

carbon emissions. Finally, Meng and Ma [90] considered both battery swapping and traditional charging

stations in their research. The benefit of using battery swapping in a model is that it closely relates to the

full charging policy that is a part of the most basic EVRP variation as described in section 3.2.2. Due to a

lack of availability, we will not consider these methods of charging.

Static Inductive Charging and Conductive Charging

While static inductive charging is just like its dynamic counterpart still in development, there already are

companies offering inductive charging pads. A few big players are InductEV [91], WAVE Charging [92],

WiTricity [93] and Plugless Power [94]. Almost no EVs allow for for inductive charging out-of-the-box, but it

is possible to install systems that do make this possible. This means that as of yet, this technique, even if

available, is not accessible for the average EV driver. Static inductive charging can offer great benefits,

not only in convenience but due to a reduction in charging time as well. Unlike inductive phone chargers

that are known to lose a lot of energy due to heat, inductive EV chargers [95] can reach similar (or even

better!) efficiencies than conductive chargers [96]. It is therefore likely that the number of static inductive

chargers will grow over the coming years. Luckily, they can be modeled similarly to conductive chargers,

likely up to (some of) the parameter values, as both methods require the driver to visit a particular place

and wait. For that reason, this research will focus entirely on the most widespread method of charging:

conductive charging.

Conductive Charging Levels

Conductive charging can be based on multiple different technologies. Generally however it is split into

three categories: level 1, level 2 and level 3 charging [97]. Level 1 uses 120V AC charging, which makes it

suitable for household outlets in North America. It draws 1.4–1.9 kW power, making it the slowest method

of charging, needing roughly 8 to 16 hours to fully charge a small vehicle. European homes typically have

230V power supplies, and can thus make use of single-phase level 2 charging. This is achievable for

Americans too, by upgrading to a 240V power outlet. This charging level can provide 7.7–25.6 kW power

and charge a small EV in 4 to 8 hours. Level 2 charging also includes three-phase 400V AC charging,

which is suitable only for public installation. Level 3 charging is better known as DC fast charging. Level

1 and 2 convert AC power to DC using an on-board charger, only then allowing it to enter the battery.

DC fast charging omits this step: The power is converted from AC to DC off-board, charging the battery

directly. As this bypasses the on-board charger and the limitations that come with it, the battery can be

charged much more quickly. In fact, it’s possible to fully charge an EV in 15 minutes. A charging time of

30 minutes is however more realistic, since most vehicles cannot charge at the highest power: DC fast

charging can range from 50 kW to 350 kW [98]. As this is achieved by using voltages in the range of 400V
- 1000V , this is only suitable for commercial or specific public applications.

Clearly, the speed at which a vehicle can be charged depends greatly on the available charging

infrastructure, in addition to the capabilities of the vehicles themselves. The differences between levels

however go further than simply speed. The charging curve, describing how fast a battery is able to charge

at different levels of SoC, differs significantly between AC and DC charging, as illustrated in figure 4.3.

Thus, to accurately model the charging, it is crucial to know what kind of charger is used.
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Figure 4.3: Charging curve for AC and DC charging. Source: [99].

4.3. General Model
The type of chargers available are not the only variable when determining how to model the charging in

an EVRP. Restricting to conductive charging, Küçükoğlu et al. [5] identified four different policies: using

full, or partial charging, in addition to allowing a single, or multiple different charger types. They found 22

papers using the most complicated method: partial charging and allowing different charger types. Most

papers however limited themselves to allowing vehicles to only use a single type of charger.

Montoya et al. [100] were the first to introduce non-linear charging functions to the EVRP in 2017. As

they were the first to deviate from the (then) standard way of modeling charging, they had to argue how to

do it instead. This section is based in part on their reasoning.

A typical charging scheme used for rechargeable batteries is a constant current-constant voltage

(CC-CV) charging scheme [101]. As the name suggests, during the first (CC) phase the charging current

is kept constant, causing the SoC to increase linearly over time until the second phase. The CV phase

starts after the terminal voltage of the battery reaches a specified maximum, generally around 80% SoC.

From this point on, allowing the voltage to increase could cause serious battery degradation, due to the

rise in temperature amongst other factors [102]. Therefore, the terminal voltage is held constant, which

means that the current will exponentially decrease, as will the increase in SoC. This is illustrated in figure

4.4. CC-CV is not the only existing charging scheme; Hemavathi and Shinisha [103] describe a total of 8

charging schemes, exhibiting a large variety in possibilities. Since CC-CV is used often and the increase

of the SoC is moderately easy to approximate, we will only focus on this method.

While the shape appears to be easy to approximate, is it very complicated to model analytically. Not

only factors such as current and voltage determine the charging behavior, so do self-recovery [105] and

temperature [100]. As a result, the battery SoC is described using differential equations. These however

are very difficult to integrate into an EVRP model, instigating the need for approximations. Wu et al. [106]

for example describe the charging behavior analytically, but discussing these models is outside the scope

of this literature review. For completeness however, we do give a simplified time-discretized model, as

provided by Pelletier et al. [101]. Their model states that the battery level SOCk at a certain timestep k
can be determined as follows:

SOCk+1 = SOCk − ∆t

3600V BC
· ik. (4.9)

Here, ∆t is the length of the timestep, V BC is the capacity of the battery in Ah, and ik is the current in
A. During the CC phase, ik is constant, resulting in a linear function. For the CV phase however, this does

not hold. Instead, we calculate ik as follows:

ik =
VOC(SOCk)− VCV

R
. (4.10)
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Figure 4.4: Depiction of the CC-CV charging scheme. The x-axis depicts the time t, such that the CC
phase ends at t1, while the CV phase ends at t2. Here, i, u respectively represents the current and the

terminal voltage. Source: [104] © 2024 IEEE.

VOC(SOCk) is the open voltage of the battery, given as a function of the SoC. One way of expressing

this is as follows: VOC(SOCk) = a1e
−a2SOCk + a3 + a4SOCk + a5e

−a6
1−SOCk , of which parameters a1, . . . , a6

were experimentally determined and are given by Pelletier et al. [101]. VCV is the terminal voltage at the

moment the CV phase starts, and R is the internal battery resistance. According to the results by Wu et al.

[106], this value does not only depend on temperature, it also varies slightly based on the SoC. Clearly,

even this simplified model is not suitable for use within an EVRP.

Common Approximations

Montoya et al. [100] identified three methods of linearizing the charging function. The first of these is called

first-segment approximation. As the name suggests, in this approximation only the first segment, the CC

phase of the charging scheme, is considered. This is for example done by Bruglieri et al. [107] in their

research. When only charging up to 80%, this approximation is fairly accurate. More commonly however,

the entire charging duration is linearized. This is done for example by Keskin and Çatay [53]. Typically,

the calculations for the approximations are not given. Montoya et al. considered two options. Either, the

charging rate corresponds to the slope of the linear segment of the charging function, or the charging

rate is the slope calculated between the first and last measurement. This first approximation (L1) is too

optimistic, as in the final charging phase the charging rate is highly overestimated. The final approximation

(L2) has the opposite problem, as for the majority of the charging process it highly underestimates the real

charging rate. All of these approximations are pictured in figure 4.5.

Both of these methods have considerable drawbacks: either the vehicle charges for longer than

necessary, negatively affecting the quality of the solution, or the vehicle does not charge long enough.

In the worst case scenario this results in having a driver be unable to finish a route due to an overly

optimistic battery charge estimate. To improve these approximations, Montoya et al. [100] decided to

instead approximate the charging curve gi(yi,∆i) with a piecewise-linear function. yi denotes just like in
the basic EVRP model in section 3.2.2 the battery level arriving at node i, and ∆i stands for the time spent

charging at this node. Before doing so however, they rewrite this function to contain only the single index

m denoting the number of timesteps a vehicle is charged for. Now, gi(yi,∆i) = ĝi(∆i + ĝ−1
i (yi)). Based

on the data of Uhrig et al. [108], they approximated ĝ(m) with three pieces, for charging speeds 11kW ,

22kW and 44kW . These approximations respectively had average relative absolute error 0.90%, 1.24%,

and 1.90%, indicating high accuracy. Figure 4.6 shows their approximation for charging a 16kW battery

with a 22kW charger.

At the start of this section we argued that using a single approximation for both AC as well as DC

charging was insufficient. In most of the literature however, this distinction is not made. There could be

a few reasons for this. For one, AC charging is still the norm, and most often available. Secondly, not

all vehicles, especially those manufactured a few years ago, are able to use the fastest (DC) charging
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Figure 4.5: Linear approximations in the literature compared to real data. Source: [100].

Figure 4.6: Real data versus piecewise linear approximation of a 22kW charger charging a battery of

16kWh. Source: [100].

methods. Fast charging is also known to accelerate battery degradation [101], although this was likely not

a main decision factor. What could have played a role was that AC charging is much easier to approximate

(piecewise) linearly. Modeling AC charging behavior can already be tricky due to the changes in power

near the end of the charging cycle, but it still behaves mostly linearly. In figure 4.3 it can be seen that DC

charging behaves very differently. The constantly changing power output implies that on no part of the

SoC domain, a constant charging rate will provide an accurate estimate. If the same technique as shown

in figure 4.6 would be used, a much more complicated approximation would be needed. For that reason, a

completely different approach is likely necessary when modeling DC fast charging in the EVRP. As DC

fast charging is not a critical aspect of our research, we will leave the question on how to model this open.

4.3.1. Practical Models
This section will discuss how the different methods of calculating the charging behavior that were mentioned

in the previous section were applied in variations of the EVRP. The simplest option is to only allow vehicles

to charge overnight at the depot. When we do allow mid-route charging, we already saw that we can split
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the modeling choices into four categories based on using a full or partial charging policy, and using only

a single charging speed or allowing for multiple. We also saw that while many papers approximate the

charging behavior linearly, it can be done much more accurately using a piecewise linear function.

No Intermediate Charging

There are two ways of dealing with the limited range of an EV. Either, you make sure that the vehicle

returns before it runs out of battery, or you make sure to schedule a stop somewhere that allows the vehicle

to increase its range. The former option comes at the cost of being limited to shorter routes, but it does

reduce both the cost of electricity as well as the time worked by the driver. Xiao et al. [36] additionally

expect the range of vehicles to increase by so much that charging during the day is not necessary, therefore

choosing this approach. Erdoğdu and Karabulu [109] instead simplified the model in this way to be able to

study the relationship between their two objectives: minimizing the total distance, and the total energy

consumption. Abdallah et al. [110] also studied a version of the EVRP without charging stations, instead

focusing on the relationship between the range of a vehicle and the driven speed.

Full Charging Policy, Single Charging Method

The next simplest way of modeling charging is by demanding each vehicle leaves a charging station fully

charged, assuming homogeneous charging speeds. This can once more be split into two different methods.

Either a fixed amount of time is reserved for charging every single time, such as done by Lu et al. [37] and

Li et al. [111], or a fixed rate is used to determine how long it will take before the vehicle is fully charged,

such as Booth and Beck [112] did. Kopfer and Vornhusen [33] used the former method, although they

realized that the final 20% of the charging cycle takes disproportionally long, and decided to only charge

up to 80% on recharging stations.

Full Charging Policy, Multiple Charging Methods

In this variant of modeling the charging, the vehicles once more leave each charging station with a full

battery. This time however, there isn’t a single fixed charging rate or time. Küçükoğlu et al. [113] consider

two different charging rates, allowing both quick and very slow charging. Basso et al. [51] do not specify

the rates, but do allow each charging station to have a unique charging rate. Conrad and Figliozzi [114]

take a slightly different approach. Instead of having distinct charging stations, they define a subset of the

customers to function as charging stations. They also defined a single parameter γ that determines when

a vehicle is ’fully’ charged. For γ = 0.8, each vehicle leaves the customer with 80% battery, which takes

0.8 times the complete charging time that was determined for that location.

Partial Charging Policy, Single Charging Method

Using a partial charge policy, even when fixing a single charging rate, already allows for a lot more freedom

in the model. This method can be seen as the simplest option of the more advanced modeling choices.

Keskin and Çatay [53] apply this by solving the EVRPTW with a single charging rate. Goeke and Schneider

[46] also aim to solve the EVRPTW but now consider a mixed fleet of electric and conventional vehicles. A

similar problem is studied by Li et al. [59], that also considered simultaneous pick-up and delivery service.

A final example is the work by Yang et al. [55], studying the EVRP with mixed backhauls. While their

model formulation allows for a unique charging rate per charging station, they only experiment with varying

the charging rate for all stations at the same time.

Partial Charging Policy, Multiple Charging Methods

We can add slightly more detail to a problem when allowing for multiple charging methods. One way of

interpreting this is combining for example partial charging with battery swapping, which is exactly what

Mao et al. [115] did. As our focus however lies on conductive charging, and we assumed static inductive

charging could be modeled in the same way, we consider multiple charging methods to mean different

charging rates. Ceselli et al. [42] assumed that every charging station has a subset of different charging

technologies available, each with a different recharging speed and a recharging unit cost. Keskin and

Çatay used a similar setup, except that they assume that every charging station has every technology

available. One of these technologies in fact is level 3 charging (50− 100kW ), although just like the slower

methods they approximate the charging process linearly. An example of a slightly more complicated

variation of this version is the work by Chen et al. [116]. They do assume that the charging behaves

linearly with an inversely correlated cost function, but the whole problem is formulated as a stochastic

optimization problem with chance constraints. Similarly, Yao et al. [117] give vehicles the same freedom

of charging, but instead aim to model the EVRP together with monetary incentives.
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Non-Linear Charging

Every single paper that we’ve encountered that models charging in a non-linear way, references Montoya

et al. [100]. It may also be noted that there isn’t a single paper that uses a non-linear approximation for the

charging behavior, and chooses to model a full-charging policy. Once more can we differentiate between

using a single charging method, or allowing multiple options.

Single Charging Method Futalef et al. [60] used the method of Montoya et al. [100] to solve their

EVRP with capacitated charging stations with a genetic algorithm. Unlike Montoya et al. however, they

only used a single charging function, instead of multiple, for different speeds. Karakatič [118] used the

same approach to instead solve the multi-depot EVRPTW. Lee et al. [40] also uses a piecewise linear

approximation when modeling the charging when solving the EVRP, but this work set itself apart because

unlike Montoya et al. it aims to find solutions exactly, without using any form of heuristic. A side effect

of this newfound method is that instead of only allowing piecewise linear approximation functions, this

method will use any concave and non-decreasing function as a charging function.

Multiple Charging Methods Froger et al. [39] studied the same problem as Montoya et al. [100],

the EVRP with nonlinear charging. They introduced two new formulations that they showed are more

effective than the existing formulations. Kancharla and Ramadurai [38] extended the EVRP with nonlinear

charging from Montoya et al. by including load-dependent discharge. This different formulation, together

with enhanced solution methods, demonstrated better performance. Koç et al. [119] also extended the

formulation of Montoya et al., this time by considering shared charging stations. This variant assumes

that several companies jointly invest in charging stations that could offer charging at different speeds, and

tasks the model at finding optimal locations.

4.3.2. Battery Degradation
A discussion about modeling battery charging is not complete without mentioning battery degradation.

Different papers treat this topic differently. Some papers, in particular papers that strongly simplify the

charging aspect of the model, hardly, or not at all acknowledge this issue. One example is the work by Li

et al. [111] that assumes a constant charging time for every single charging operation. Other papers do

take the battery lifespan into consideration, albeit indirectly. Futalef et al. [60] tries to preserve the lifespan

of the modeled batteries by adhering to a so-called State of Health (SOH) policy. This policy consists of

constraining the SoC of the battery between fixed values, whenever possible. Here, they chose the lower

and upper bound to respectively be 38% and 82%. This does significantly impact the range of the EV, as

less than half the battery is allowed to be used. Seeing how models usually occupy the full (or a larger

interval of the) battery capacity, it seems like this price is too much to pay for many, as a severe reduction

of an already less-than-ideal range can be insufficient to perform the needed operations. Some papers

however go further than this, and add a battery degradation cost to the objective function, such as Barco

et al. [58] did. They modeled this cost as a sum of the degradation due to temperature, SoC and DoD, the

details of which are outside of the scope of this literature review.

4.3.3. Parameter Estimation and External Effects
Unlike the energy consumption, the difficulty with appropriately modeling the charging behavior does not

rely on finding and applying the right information. Instead, the arduous part of modeling the charging is

finding the actual formulation and particularly how to efficiently solve that formulation. Nonetheless, the

two processes do have in common that researchers that are mainly interested in the modeling, and less in

the applicability, simply choose a seemingly suitable parameter for both charging as well as discharging.

For more specific problems, it is likely known what charging methods are available. It should be known

how quickly a specific charger is able to charge a vehicle, and what the highest speed is that an individual

vehicle can be charged at. More specifically, the vehicle owner should know what technologies the vehicle

is compatible with. If this information is not known, there is no other information that could help find a better

approximation.

There are two ways in which this conclusion is insufficiently nuanced. Firstly, in section 4.3 a crude

battery charging model was provided, as modeling the entire charging cycle is very difficult to do analytically.

To properly approximate the final part of the charging cycle, more information is necessary. Montoya et al.

[100] and subsequent related papers made their piecewise linear approximation based on data from Uhrig
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et al. [108]. Froger et al. [39], Karakatiç [118], Kancharla et al. [38] and Koç et al. [119] appear to indeed

have mimicked this approximation exactly. Futalef et al. [60] on the other hand did not specify how the

parameters for their piecewise linear charging function were derived. Lee et al. [40] instead of a piecewise

linear function used a logarithmic function to simplify the charging behavior, derived in a similar way as

was done in section 4.3. This clearly requires some additional parameters, but as this method is to the

best of our knowledge applied in only a single paper, we will not elaborate.

Secondly, while the charging process does not vary as much as energy consumption does, there

are still external factors that can determine how quickly a vehicle charges. In section 4.3 we saw for

example that the charging behavior depends on the internal battery resistance, which in turn depends on

the temperature and even to some degree on the SoC. Lindgren and Lund [120] studied the effects of

different ambient temperatures on the charging efficiency, expressed as the self-weighted mean charging

power (SWMCP). According to them, the SWMCP is a more faithful expression than defining the charging

capability in terms of energy stored per unit time. They found that the SWMCP is 15% lower at −10◦C
compared to 20◦C. Figure 4.7 contains the values of the SWMCP for the entire range of researched

temperatures, both without standby options, and with battery thermal management in use. The difference

between these two circumstances is not very large, but it can be noticed that the variability is generally

larger in the first case. Based on these results, the modeling accuracy could be improved if in (very) cold

scenarios, the determined charging rate decreases by up to 15%.

Figure 4.7: Self-weighted mean charging power for 3.6kW charging at different ambient temperatures

with and without Battery Thermal Management, adapted from Lindgren and Lund [120].

It should be noted that it is not certain that these results can be extrapolated to faster charging

methods. Similar research has been done by Motoaki et al. [121], who instead studied the effects of cold

temperatures on 50kW DC fast charging. They found an even stronger effect for this type of charging. With

95% confidence, a 30-minute charging session at 0◦C was expected to result in a 22−36% decrease in SoC

compared to that same session at 25◦C. When a vehicle is charged with this technology, compensating

for a drop in temperature is thus even more important than for lower-speed AC charging.
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Contribution to the Literature

This final section will quickly summarize the contents of this literature review, and after that will explain

how this work aims to contribute to the existing literature.

5.1. Conclusion
In this literature review, we discussed the most commonly used methods of modeling different variations of

the vehicle routing problem and modeling both the charging and discharging behavior of an electric vehicle.

Chapter 3 defined Mixed-Integer Linear Programming, a broad method used to express and solve all kinds

of optimization problems, one of which is vehicle routing. We mentioned different solution methods, in

particular ways of solving these kinds of problems exactly, and glossed over the use of metaheuristics that

might not find an optimal solution, but could perform very well nonetheless. In the next section we introduce

the VRP, and its very broad group of variations. For this problem, we described multiple formulations

and already noticed that solving instances exactly might not be feasible. Continuing onto the EVRP, we

saw how the formulation of an instance of the VRP can be made suitable for electric vehicles, by adding

constraints that mimic the energy consumption and charging of the vehicle battery. We also saw how this

formulation can be adapted to a few different variations. Finally, this chapter explained different methods

that are used to solve these problems in the literature.

Chapter 4 contains two main sections, a part on modeling the energy consumption of a battery, and

a part on modeling the battery charging process. The first section first explains the general model that

is used to model energy consumption of a vehicle, specifically an electric vehicle. It then describes a

few different methods that EVRP formulations use to model the energy consumption. This ranges from

using a single energy consumption parameter, to using a nonlinear function of both vehicle-specific as

arc-specific properties. Next we discuss the parameters that need to be determined in order to calculate

the energy consumption according to the given model. Some of these are very easy to determine, such as

the gravitational constant or the frontal area of the vehicle, but the power efficiency parameters and an

applicable speed profile can be challenging. Finally, the effect of varying some of these parameters or

related factors is considered. There are many factors that can significantly impact the resulting prediction.

The most important factors to predict carefully are the temperature, the behavior of the driver (when the

driver speeds up and brakes, and how much heating or cooling is used) and the elevation (in particular

when driving through mountainous regions).

The next section discusses the methods that are used by researchers to model the charging process of

an EV. The section starts with an overview of the different charging techniques that are currently available

or in development. Then, we give a coarse model describing the charging method that is most commonly

used. As charging a battery is a highly non-linear process, even this simplified model is unsuitable for

implementation into a MILP. For that reason, this behavior is very often linearized. We describe three

methods that can be used for this purpose. Furthermore, we also describe a commonly used piecewise

linear approximation that can model the charging process with high accuracy. Next, multiple methods of

incorporating charging into the EVRP are provided. The simplest method is assuming vehicles will only

charge at the depot, discarding the need for charging stations, while the most complicated method allows

non-linear approximations for charging at different speeds. We quickly discuss battery degradation, and

finally comment on the used parameters and the effect of temperature on the charging process.
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5.2. Contributions of this Research
In this thesis, the goal is to create an algorithm that can calculate an optimal routing and charging schedule,

under the assumption that each vehicle will drive two (or more) shifts on the same day (that may consist

of multiple trips) and can only charge in between those shifts at a depot. We additionally assume that

the charging capacity is limited. To keep the settings realistic, we typically assume to have access to a

set of chargers larger than strictly necessary. Only occasionally are the limits of the available chargers

fully tested. This algorithm will be a combination of two separate algorithms: A scheduling algorithm that

assigns vehicles to both chargers and shifts, and a routing algorithm that creates routes based on the

energy levels of the vehicles.

To the best of our knowledge, such a variant of the EVRP has not been studied before. In the current

literature on electric vehicle routing, the charging needs outside of those during the driven routes are usually

not considered in this manner. There certainly are papers discussing EVRP variants with capacitated

charging stations in either of the ways described above. However, as these charging stations are generally

not located at the depot, they are much more spread out and will only need to facilitate a subset of the

vehicles. The nature of our variant is thus very different, as the charging possibilities are much more

restricted and therefore require more sophisticated scheduling than without those restrictions.

Additionally, this research applies to both industry as academic interests. One of ORTEC’s clients

wants to increase the number of electric vehicles in their fleet. Charging the vehicles during the day is

one way for them to use these vehicles in a more efficient manner. The models designed in this project

and the conclusions drawn from the results can therefore inform this company, and other companies in

similar situations, about the effects and practicalities of charging vehicles during the day in between shifts.

This problem is of academic interest as in this form, it is a new variation of the EVRP, introducing new

techniques and ideas about how EVs can be used in practical situations. In the discussion section, a few

extensions to the existing models are suggested. These extensions have little practical use, as their goal is

to find improved solutions when the set of available chargers is very limited. In reality, no company would

have installed less chargers than they expect to need. Trying to solve such complicated instances can

however be a very interesting mathematical challenge.
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Part II
Model Design
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6
Preliminary Work

This chapter contains everything that is needed to design our model. We will first discuss what technique

will be used to implement this model. The next thing to discuss is what data we have access to, and how it

applies to our problem. Finally, we will determine what our main objectives are. As we are not collaborating

directly with any clients, we can determine these ourselves.

6.1. Starting Model
To experiment with different options of modeling both the charging scheduling as well as the routing of EVs,

we need an engine that can solve both scheduling and routing problems. Initially, we considered three

different options. The first option was to use AIMMS [122], an advanced development environment for

building optimization based operations research applications, to design problems solving the scheduling

and routing problem separately. After implementing an initial version of each model, it would then allow us

to easily add or alter constraints in the model. It would also allow us to have some freedom to experiment

with the way in which the two separate models would interact. The downside of this method however is

that the model is solved using an exact solver, in this case Gurobi [123], which is not fine-tuned to the

characteristics of the (E)VRP. As a consequence, this only allows us to solve small problem instances.

In theory this does not need to be a limitation, but while studying the performance of the model, larger

problem instances and more complex objective functions allow for more interesting conclusions.

The second option we considered was directly working with OHD, ORTEC for Home Delivery. This is a

really powerful engine that ORTEC uses to solve real customer home delivery problems. Using this would

allow us to directly work with customer data. Because of that, it would give the most realistic outcomes,

meaning that we could directly see the true potential of the new algorithm. The price of a model that can

solve different problem variations all very efficiently is that it is very layered and complicated. It is therefore

not straightforward how to add new functionalities or subproblems and apply them correctly. As it is crucial

to be able to experiment with the model with at least some ease, we find that this option is not ideal for our

application.

Another possibility is using an open source state-of-the-art Python-based VRP model as a starting

point for the routing portion of the algorithm. An example of such a program is PyVRP [124]. While it is

unlikely to tackle problems with the same level of detail as OHD is able to, it is able to solve larger instances

than what an exact solver is capable of. Using Python for the scheduling part might also allow for better

performance and more freedom in implementing additional heuristics. Adding features or experimenting

with different formulations however might not be as trivial as it is when using AIMMS, but it is also nowhere

near as complicated as it would have been when using OHD.

While using PyVRP seems like the most balanced option, we decided to use AIMMS for the entirety of

the project. This is largely done due to practical reasons: the original model was created within AIMMS.

This does not only include the technical part of the model, but also contains an application that allows for

convenient initialization of different instances but more importantly displays the results in a pleasant and

organized manner. Moving towards a different platform would be a large time investment, which is not

guaranteed to pay off. The main downside of the use of AIMMS remains the limited input size for which

a reasonable feasible solution can be found. While the performance of PyVRP might not be attained, it
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is possible to improve the performance of the AIMMS model by pre-processing the model beforehand.

Therefore, we expect that this will not keep us from drawing interesting conclusions.

6.2. Client Data and Interests
While we are not collaborating with any clients directly, we did receive datasets from one of ORTEC’s

clients that makes use of the OHD software. Due to privacy reasons we cannot provide their name, so

from now on they will be referred to as ’the company’. These datasets contain information about their

depots, customers and vehicles. Half of these datasets contain tasks that need to be completed in the

morning, the tasks in the other datasets need to be completed in the afternoon. These shifts can be fulfilled

by either EVs, or conventional vehicles, both of which appear in the dataset. The EVs are only allowed to

visit customers in the city center, while the conventional vehicles exclusively visit customers outside of the

city center. This policy ensures that customers in the city center can always be visited, even last-minute,

as conventional vehicles are not allowed in the city center. Additionally, this causes the EVs to only drive

small trips and not run out of battery until the second shift of the day is completed.

When EVs are only a small part of the fleet, this policy is sufficient. If the share of EVs in the fleet

increases, assuming that the geographical distribution of the customers remains roughly identical, this

policy does become more troublesome. A solution would be to expand the set of customers that the

EVs can visit. As a consequence, the EVs will no longer be forced to exclusively drive very short shifts,

and therefore some kind of battery management is necessary. This could mean abiding by the battery

restrictions in some other way, for example by enforcing a maximal shift length. It is also possible to

improve performance by charging vehicles mid-day, which allows longer distances to be driven by the EVs.

We know that the company is looking to increase the number of EVs in their fleet, and at some point

needs to let go of their current EV policy. If the EVs are only allowed to drive up to half of their range

during a single shift, which is what happens if a vehicle is needed for two shifts a day without charging in

between, they are severely limited in the set customers that they are able to visit. Allowing vehicles to

charge between tasks would solve this issue, but this is no simple task when many vehicles but only a

limited number of chargers are available. For applications such as this, the design of a charging schedule

can greatly improve the ways in which the EVs are employed.

6.3. Model Objective Difficulties
A standard objective function for optimization models for the industry is heavily cost-based. That is

completely expected, but simply using cost as the main objective function is insufficient for this application.

That is because generally EVs are often still more expensive, in which case such a model will choose an

ICE vehicle over an electric one. This is not even the main disadvantage: even at a competitive price point,

EVs have a limited range and require significant down-time to refuel, which can be challenging when the

vehicles are expected to be on the road for most of the day.

The datasets that we have access to already contain a breakdown of the costs attached to the vehicles.

These costs are unknown for the vehicles the company intends to purchase, but based on the different costs

attached to the available EVs, and the purchasing cost of the new EVs, we are able to make estimations.

Despite that, we know very little about the meaning of these individual costs, and must therefore be

careful when drawing conclusions. The comparisons between fleets containing existing vehicles and fleets

containing new vehicles should in particular not focus on the financial picture.

6.4. Our Model Objective
This variation of the EVRP arose from a desire to make more use of an existing fleet of EVs. The primary

model objective should therefore be a measure related to the occupancy of the EVs. There can however be

secondary objectives, that can relate to the cost. A possible secondary objective could be to charge above

what is needed (but below what is allowed) as much as possible, providing the driver with as much leniency

as possible. Assuming the batteries do not discharge while not in use, such an objective does not lead to

increased energy use. To acknowledge the cost of used energy or the used EVs in general does however

contradict that previous objective. Other ways of extending the objective function of the model could be

adding battery degradation (or other heterogeneous costs attached to the use of different chargers) or

adding a cost for every time a vehicle is connected to, or disconnected from a charger. Different ways of
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extending the model are to introduce the option of adding new vehicles or chargers at a cost. This would

then allow the model to be used as a tool to determine which vehicles and chargers need to be acquired

such that the demand can be met, while the costs are kept as low as possible.

Summarizing this gives the following lists of terms that we assume are part of the objective functions

for both the routing and the charging model:

Routing Model (Minimization problem)

• The number of kilometers driven × cost per kilometer

• The vehicles that are used × cost per vehicle

• The trips taken by each vehicle × cost per vehicle

• The number of vehicle uplifts for each type × penalty per vehicle uplift per type

• The number of customers that do not get visited × penalty per customer

• The number of time-windows missed × penalty per time-window

• The amount of energy in kWh exceeding the battery levels of the used vehicles× the price per kWh
of additional energy used

Charging Model (Maximization problem)

• The number of shifts successfully scheduled × the incentive per shift

• The amount of energy in kWh contained in each of the batteries × incentive per kWh

• The amount of energy used in kWh × price per kWh

• The number of charging (dis)connections × penalty per charger (dis)connection

• The number of charger uplifts for each type × penalty per charger uplift per type

• The number of vehicle uplifts for each type × penalty per vehicle uplift per type

Note that not all costs, penalties and incentives need to be non-zero. As a matter of fact, we can

assume that either the second or the third term of the charging model should have no effect on the objective,

as they essentially contradict each other.
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Modeling Details

7.1. Charging Model
This section describes the first part of the complete charging-routing algorithm. We start by providing the

relevant notation and then give the initial model. This model assumes that each vehicle drove a shift, and

returns to the depot at a fixed time with a known battery level. This depot contains a set of chargers that

can each have a different charging speed. There is also another set of shifts planned for later that day,

each of those shifts requiring a certain amount of energy. This model then aims to assign as many shifts

as possible to the available vehicles. In order to be assigned to a shift, a vehicle needs to have been

sufficiently charged by the time this shift starts. The initial objective is to simply assign as many shifts as

possible. Later on we will assume all shifts need to be scheduled, instead judging the quality of a charging

schedule by the amount charged and the extra vehicles needed to achieve this.

As we saw in chapter 6, there are quite a few choices for terms in the objective function. Reducing

the number of charger (dis)connections, range anxiety and electricity costs all require some modifications

to the model. There are other extensions that do not relate directly to the objective function, such as

non-linear charging functions. These extensions will be discussed after the initial model has been given.

7.1.1. Initial Model
The sets, parameters and decision variables necessary for the initial model formulation are the following:

Sets:

• Ch: Chargers

• T : Timesteps

• S: Shifts

• K: Vehicles

Parameters:

• Y REk: Battery level of vehicle k after returning from the previous shift

• YMXk: Maximal battery capacity of vehicle k

• CCTc: Charger capacity per timestep in kWh

• ASTs,t:

{
1 If shift s ∈ S is active at timestep t ∈ T ;

0 otherwise.

• PST k
t :

{
1 If vehicle k ∈ K is driving a previous shift at timestep t ∈ T ;

0 otherwise.

• YMNk
s : Minimal battery level needed to drive shift s for vehicle k

• FTAs: The timestep t ∈ T that shift s ∈ S starts

Decision Variables:

xk
s :=

{
1 if vehicle k is assigned to shift s ∈ S;

0 otherwise.
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ykt ∈ R≥0 : battery level of vehicle k ∈ K at timestep t ∈ T .

akc,t :=

{
1 if vehicle k is assigned to charger c ∈ Ch at timestep t ∈ T ;

0 otherwise.

zkc,t ∈ R≥0 : amount charged at charger c ∈ Ch by vehicle k ∈ K at timestep t ∈ T .

We can then provide the formulation:

max
∑
s∈S

∑
k∈K

xk
s (7.1a)

s.t.

ykt = ykt−1 +
∑
c∈Ch

zkc,t−1∀k ∈ K ∀t ∈ T\{1}, (7.1b)

yk1 = Y REk ∀k ∈ K, (7.1c)

ykt ≤ YMXk ∀k ∈ K, (7.1d)

zkc,t = akc,tCCTc ∀c ∈ Ch ∀k ∈ K ∀t ∈ T, (7.1e)∑
k∈K

akc,t ≤ 1 ∀c ∈ Ch ∀t ∈ T, (7.1f)∑
c∈Ch

akc,t + xk
sASTs,t + ST k

t ≤ 1 ∀k ∈ K ∀t ∈ T, (7.1g)∑
c∈Ch

akc,t ≤ 1 ∀k ∈ K ∀t ∈ T, (7.1h)

xk
sYMNk

s ≤ ykFTAs
∀k ∈ K ∀s ∈ S, (7.1i)∑

k∈K

xk
s ≤ 1 ∀s ∈ S, (7.1j)∑

s∈S

xk
s ≤ 1 ∀k ∈ K, (7.1k)

xk
s ∈ {0, 1} ∀k ∈ K ∀s ∈ S, (7.1l)

akc,t ∈ {0, 1} ∀c ∈ Ch ∀k ∈ K ∀t ∈ T, (7.1m)

ykt ≥ 0 ∀k ∈ K ∀t ∈ T, (7.1n)

zkc,t ≥ 0 ∀c ∈ Ch ∀k ∈ K ∀t ∈ T (7.1o)

The initial objective function (7.1) simply aims to assign as many vehicles to shifts as possible. Con-

straints (7.1b) make sure that the battery level of a vehicle at a certain timestep (excluding the first) is

equal to the battery level of the previous timestep together with the amount that battery was charged in that

timestep. Constraints (7.1c) enforce that the battery level of a vehicle starts at the level it has upon return

from its morning shift. The next constraints (7.1d) limit the amount of charge that a battery can hold. This

value is determined both by a SOH policy determining a maximal SoC, and the battery capacity. Charging

the battery is regulated by constraints (7.1e), determining that a battery can only be charged whenever it

is connected to a charger, at a speed limited by the capacity of the charger. The next constraints (7.1f)

restrict that each charger can only be connected to a single vehicle at every timestep. Constraints (7.1g)

make sure that a vehicle can only be assigned to a single task. Either, it is connected to a charger, or it is

driving either the morning or the evening shift. Next constraints (7.1h) avoid the situation in which one

vehicle is charged by multiple chargers simultaneously. To assign shifts to vehicles, the vehicles need to

have enough battery left to complete the shift. This is taken care of by constraints (7.1i). As this model

does not penalize unassigned shifts, and instead rewards shifts that do get assigned, it is crucial to make

sure that multiple shifts do not get assigned to the same vehicle, or that multiple vehicles perform the same

shift. Constraints (7.1l) and (7.1j) impose this. The final constraints (7.1l) - (7.1o) enforce the binary and

non-negativity limitations placed upon the decision variables.
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7.1.2. Model Extensions
This section will expand upon the objective function alterations and model extensions that have been

designed. We start by discussing the two main choices of objectives: either minimizing the energy cost,

or maximizing the charging output. To end up with a usable charging schedule, it is critical to limit the

number charger (dis)connections, which is discussed after. Then, we will provide the adaptations required

to implement non-linear charging. Finally, some other minor modifications are suggested.

Objective Function Choices

There can be a variety of criteria that determine a good charging schedule, beyond scheduling all the

available shifts. The main choice to be made is, should vehicles be charged as much as possible, above

what is needed to complete their assigned shifts, or as little as possible, so that the energy costs are

minimized?

When costs are a main concern, what is optimal depends on the type of energy contract the fleet owner

has. If using electricity at night is priced at an off-peak rate, the latter choice seems obvious. In the end,

roughly the same amount of energy will be charged in both choices, the difference being the additional

energy depleted when the vehicles are not in use, that differs depending on the SoC of the vehicle. If

(possibly short-term) cost savings are not the primary concern, or energy is cheaper during for example

peak sun-hours, it might be better to charge the vehicles more during the day. This has several benefits,

as the vehicles will not return to the depot completely drained after their final shifts. This is beneficial for

the battery, as it is known that fully emptying batteries is bad for their SOH, but also for the drivers and the

logistical puzzle that is charging all vehicles overnight. Drivers are less likely to need to drive vehicles

that are expected to be fully empty on return, reducing range anxiety that drivers might have when it is

uncertain whether their vehicles will be able to finish the trip.

If the goal is to minimize energy costs between charging moments, this can be implemented by

subtracting a term
∑

k∈K

∑
c∈Ch

∑
t∈T zkc,t from the objective function, multiplied by the energy cost.

Otherwise, the maximal use of the chargers can be incentivized by adding the term
∑

k∈K

∑
s∈S ykFTAs

to

the objective function, possibly multiplied by a weighing factor.

Reducing Charger (Dis)Connections

With typical choices for the objective function, the result is that the solution could require a vehicle to

use a different charger, or disconnect entirely, at every available timestep. While this might result in a

very successful charging schedule, it can hardly be implemented as is. One way of dealing with this is

increasing the length of the used timesteps. This makes sure that chargers can be (dis)connected less

often, thus resulting in a less messy schedule. The downside of this however is that quite a bit of possible

detail, and possible good solutions, do get lost. There is also still no guarantee of coherence. Alternatively,

we can quantify the number of charger (dis)connections and minimize this number directly. In practice,

we will find that the quality of the schedules found with such an adaptation is quite good, only scheduling

two charging sessions in a single interval if absolutely necessary. The way in which this is done is adding

a penalty for every time that a vehicle is connected to, or disconnected from a charger. This could be

implemented by adding the following variables:

uk
c,t :=

{
1 if on the interval [t, t+ 1] a charger c ∈ Ch is disconnected from or connected to a vehicle k ∈ K ;

0 otherwise.

To make sure that these variables behave as expected, we will define T ′ to be the set of timesteps

excluding the final element and add the following constraints to the model:

uk
c,t ≥ akc,t − akc,t+1 ∀c ∈ Ch ∀t ∈ T ′ ∀k ∈ K, (7.2)

uk
c,t ≥ −akc,t + akc,t+1 ∀c ∈ Ch ∀t ∈ T ′ ∀k ∈ K. (7.3)

Constraints (7.2) and (7.3) make sure that when akc,t and akc,t+1 take different values, u
k
c,t cannot be 0.

To be exact, constraints (7.2) take care of vehicles disconnecting from chargers, while constraints (7.3)
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attend to vehicles connecting to chargers. It is also possible to only implement a single one of these

constraints, penalizing either connecting or disconnecting.

In order to minimize the number of charger (dis)connections, the value of these variables needs to be

minimized, which is done by adding their sum
∑

c∈Ch

∑
t∈T ′

∑
k∈K uk

c,t to the objective function.

Non-linear Charging

In section 4.2 we discussed the charging behavior of EV batteries. While this process is very non-linear,

we did see that it could be approximated fairly well with a piecewise linear function. Our initial model,

like most EVRPs found in the literature, uses a linear term to model the charging process. To improve

accuracy, we could extend the initial model by instead using a non-linear charging function. Based on

the work of Montoya et al. [100], we will choose two breakpoints for each charging speed. This could be

simplified to two breakpoints expressed as fractions of the battery capacity. Each of the three resulting

sections has a different charging speed for each of the charger types. Using this, the following sets and

parameters can be defined.

• B: The set of battery level intervals differentiating charging speed. Subsequently define B1,2 and

B2,3 to respectively be the first and second interval, and the second and third interval.

• CCIbNL,c: The charging speed at each interval b ∈ B for every charger c ∈ Ch

• YMIkb : The maximal charge of the battery per section b ∈ B for each vehicle k ∈ K

ωk,b
t :=

{
1 if the battery level of vehicle k ∈ K is in interval b ∈ B at timestep t ∈ T ;

0 otherwise.

αk,b
t ∈ [0, 1] : rational variable to determine the correct charging interval

γk,b
t,c :=

1
if the battery level of vehicle k ∈ K is in interval b ∈ B and the vehicle

is connected to charger c ∈ Ch at timestep t ∈ T ;

0 otherwise.

To make sure that these variables take the correct values, we need to add the following constraints:

ykt =
∑
b∈B

αk,b
t YMIkb ∀k ∈ K ∀t ∈ T (7.4)

ωk,b
t ≤ αk,b

t ∀k ∈ K ∀t ∈ T ∀b ∈ B1,2 (7.5)

αk,b
t ≤ ωk,b−1

t ∀k ∈ K ∀t ∈ T ∀b ∈ B2,3 (7.6)

γk,b
t,c ≤ ωk,b

t ∀k ∈ K ∀t ∈ T ∀b ∈ B (7.7)

γk,b
t,c ≤ akc,t ∀k ∈ K ∀t ∈ T ∀b ∈ B (7.8)

γk,b
t,c ≥ ωk,b

t + akc,t − 1 ∀k ∈ K ∀t ∈ T ∀b ∈ B (7.9)

∑
b∈B

ωk,b
t = 1 ∀k ∈ K ∀t ∈ T (7.10)
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cakc,t =
∑
b

γk,b
t,c CCIbNL,c ∀k ∈ K ∀t ∈ T (7.11)

Each of these are additional constraints, except for constraints (7.11) that replace constraints (7.1e).

Constraints (7.4) determine the values for αk,b
t . As αk,1

t = 1 will cause a larger model improvement than

αk,2
t = 1 and αk,3

t = 1 respectively (this respectively implies that ωk,1
t = 1, ωk,2

t = 1 and ωk,3
t = 1 which in

turn implies that might be possible to respectively set γk,1
t,c = 1, γk,2

t,c = 1, γk,3
t,c = 1, which implies that the

amount a vehicle is charged might become non-zero), αk,b
t will be set to the correct fraction. Constraints

(7.5) enforce that ωk,b
t can only be 1 if αk,b

t is 1. Constraints (7.6) on the other hand enforce that ωk,b−1
t will

be 1 if αk,b
t is 1. The next two sets of constraints (7.7) and (7.8) make sure that γk,b

t,c can only equal 1 if

both ωk,b
t and akc,t are 1 too. To enforce that γk,b

t,c will take value 1 in that scenario, constraint (7.9) is added.
Constraint (7.10) additionally makes sure that the energy level of a battery can be only in one of the three

different sections at the same time. Finally, constraint (7.11) ensures that the correct amount of energy in

charged whenever a vehicle is attached to a charger, therefore replacing constraint (7.1e).

Limited Power Grid Capacity

When a large number of vehicles need to be charged simultaneously from the same location, it could be

possible that the power demand is too high for the current power grid. It might not be possible to use all

available chargers at the same time. In that case, the model can place a limit on the total power output at a

given time. Defining CCTgrid to be the total available capacity of the power grid on an individual timestep,

this can be done for example with the following constraints:

∑
c∈Ch

∑
k∈K

akc,t ≤ CCTgrid ∀t ∈ T (7.12)

Constraints (7.12) are not relevant in every application. If all chargers can be occupied simultaneously

then these constraints are clearly unnecessary. In addition to that, if using a faster charger is in no way

more expensive than using a slower charger, and all-but-one of the available chargers can be used at the

same time, then the same goal can be achieved by simply eliminating the slowest charger. When higher

costs are attached to the use of faster chargers, this constraint does become relevant, as the model might

prefer to use a slower charger instead of a faster one. If a moderately broad variety of chargers is available,

the model could assign two slower chargers instead of a faster one, in turn allowing for more options than

would have been available had we simply removed the option to charge from certain chargers.

Variable Electricity Pricing

There are many different ways in which the price for electricity can vary. There can be a differing day- and

night-tariff, offering cheaper electricity during fixed nighttime hours. Or, the price of electricity might be

lowest when the total yield of solar and wind energy is highest. An alternative is that the price of electricity

does not depend on the time of use, but in part does depend on the maximal amount of electricity used

simultaneously. It is also possible to pay a different tariff over the first however many kWh, than over the
rest. While this last option will not impact the optimal charging schedule, the former two options could

result in very different optimal schedules.

There are also other situations in which charging can be more or less costly depending on other

circumstances. When the depot is generating renewable energy, for example by means of solar panels,

a limited amount of energy could be considered free during peak sun hours. One might also charge a

battery depreciation fee when using chargers with faster speeds. As faster charging, in particular DC

fast charging, is known to reduce overall battery-life, it is not unreasonable to charge a small fee when

using faster charging methods. Another way in which pricing can vary is when the purchasing costs of for

example solar panels or faster charging methods are included, when the model is used to help determine

if these investments will be worth it.

As long as the pricing depends linearly on the charger type and the time, one could subtract the following

term
∑

c∈Ch

∑
t∈T

∑
k∈K ECPc,tz

k
c,t from the objective function. Here, ECPc,t is the price per kWh for

each charger c ∈ Ch at every timestep t ∈ T . When the maximal amount of electricity used simultaneously

becomes relevant, one needs a different approach. Instead of limiting the power grid capacity as done
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by constraints (7.12), one could introduce a new variable that would take the place of the total available

capacity. This new variable will then need to be minimized in the objective function.

Battery Degradation

We already discussed one way of reducing the battery degradation of a vehicle. Apart from the adaptation of

asking a higher cost for using a faster charger, and the policy of only charging up to a certain percentage, one

could implement one more measure. Despite the longer charging time and increased battery degradation

of the final 20% we saw in section 4.3, fleet owners could want to charge past this 80% mark because this

allows a vehicle to visit more customers. In order to allow this, while being aware of the consequences of

doing so, one could charge an additional cost for charging past a fixed battery percentage.

In the previous section, we defined two breakpoints that in turn define three different charging intervals.

If either of these (or possibly both) breakpoints is chosen as the moment from which on a small penalty is

paid, then this is simple to implement when the model assumes non-linear charging. We would do this by

adding a term
∑

c∈Ch

∑
k∈K

∑
t∈T γk,b

t,c for some b ∈ B2,3 multiplied by a penalty to the objective function.

Vehicle-Route Restrictions

It could happen that some vehicles are not allowed to travel certain routes, due to restrictions in size or

emissions. The latter will of course mostly apply to ICE vehicles, but one can think of other reasons such a

restriction might be necessary. An example could be vehicles that have a different load capacity: shifts

designed with a larger vehicle in mind might not be able to be completed by smaller vehicles. Implementing

such a restriction can be done by changing the value of a single set of parameters. Parameters YMKk
s ,

that determine the minimal amount of energy that is needed for a vehicle k to drive a shift s, can be altered
such that vehicles are unable to be assigned to a shift. We do this by setting the the battery requirement

above the maximal battery capacity for that vehicle.

7.2. Routing Model
In this section the second part of the charging-routing scheme is is described. Since routing models for

EVs were discussed in detail in the literature review, we will not provide any further explanation for the

given model formulation. It should be noted that this model formulation originally allowed vehicles to visit

charging stations between visiting customers, something that is not allowed by our model assumptions.

For that reason, we only consider sets consisting of customer and depot nodes, as well as leave out

constraints regulating the visits to charging stations.

One thing to keep in mind is that in some instances, we also allow the model to use ICEVs instead of

only EVs. The main reason for this is that the company currently makes use of a fleet that consists of both

EVs and ICEVs, and mimicking this is necessary to obtain a fair comparison. Using only EVs to deliver to

a set of customers that are spread out widely will yield much worse routing outcomes than when a limited

amount of ICEVs are also used, to visit the furthest customers for example.

One can think of multiple ways of involving ICEVs in a model designed for EVs, especially as the focus

lies on the use of EVs. A few options are the following:

1. Consider a fleet only consisting of EVs. Whenever an EV cannot be assigned to a shift, an ICE

vehicle will drive that shift.

2. First schedule all the available EVs, and only afterwards schedule a set of ICE vehicles to visit all the

remaining customers.

3. Consider a mixed fleet of EVs and ICE vehicles, penalizing every ICE vehicle (or another metric

quantifying the use of an ICE vehicle) that the model requires in order to schedule every single

customer.

This first option is the simplest in regards to the EVRP formulation, although will be tricky to implement

in practice. Either we allow all vehicles to drive a small distance only, resulting in the poor solutions

predicted earlier. Or, we might allow the vehicles to drive longer distances, but risk the final solution

almost exclusively containing shifts that are too long to be driven by EVs. For that reason, this method

is insufficient. The second option requires the implementation of a second VRP model, but does result

in maximal EV use. The downside is however that the customers that are not visited by EVs might lie in

inconvenient locations, resulting in more kilometers driven overall due to a sub-optimal global solution. The
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third method uses only a single model, but it is more complicated than the standard EVRP model. Even if

we simplify the ICE vehicle to an EV with practically infinite driving range, we still need to implement a

suitable method for penalizing the use of those vehicles. Furthermore, the type and weight of the penalties

need to be determined. The datasets we are using contain among other values, costs per used vehicle

and driven kilometer by vehicle type. These costs are significantly higher for the ICEVs in the dataset, and

therefore already act like suitable penalties. For that reason, this method is the most appropriate.

This model already contains most of the necessary features, as this initial model is not the most basic

version of the EVRP. Despite that, there is a variety of alterations and extensions that were added to our

working version of the model, such as the penalties necessary when adding ICEVs to the fleet. To mimic

other features of the ORTEC routing algorithm, we also added the possibilities for restricting the maximal

shift duration, using multiple depots and allowing vehicles to take multiple trips. We also adapted the model

so that even when an instance turned out to be infeasible, a mostly correct solution would still be returned.

7.2.1. Initial Model
For the initial model, we simply used the Capacitated EVRP with Time Windows provided in section 3.2.2,

leaving out the constraints related to charging stations. Because of this, we do not need to provide new

notation, although for convenience we will repeat the used decision variables before giving the complete

formulation:

xk
ij :=

{
1 if vehicle k travels from node i to node j, LENij > 0;

0 otherwise.

yki ∈ Q≥0 : battery level of vehicle k ∈ K on arriving at node i.

si ∈ Q≥0 : start time of service at node i ∈ C′
0,N+1.

min
x

∑
i∈C0

∑
j∈CN+1

∑
k∈K

LENijx
k
ij (7.13a)

s.t. ∑
j∈CN+1

∑
k∈K

xk
ij = 1 ∀i ∈ C, (7.13b)

∑
j∈C

xk
0j ≤ 1 ∀k ∈ K, (7.13c)

∑
i∈C0

xk
ij =

∑
i∈CN+1

xk
ji ∀j ∈ C,∀k ∈ K, (7.13d)

ykj ≤ yki − (ECRkLENij)x
k
ij + V BCk(1− xk

ij) ∀i ∈ C,∀j ∈ CN+1,∀k ∈ K,

(7.13e)

yk0 ≤ V BCk ∀k ∈ K, (7.13f)∑
i∈C

∑
j∈CN+1

DEMix
k
ij ≤ CAP k ∀k ∈ K, (7.13g)

si + (TRTij + SETi)
∑
k∈K

xk
ij ≤ sj + LST0(1−

∑
k∈K

xk
ij) ∀i ∈ C0,∀j ∈ CN+1, (7.13h)

ESTi ≤ si ≤ LSTi ∀i ∈ C0,N+1, (7.13i)

xk
ij ∈ {0, 1} ∀i, j ∈ C0,N+1(i 6= j),∀k ∈ K,

(7.13j)

ykj ≥ 0 ∀j ∈ C0,∀k ∈ K. (7.13k)
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It should be noted however that in order to move from a homogeneous fleet to a mixed fleet, three

parameters have been vectorized. Each vehicle k ∈ K can now have a unique energy consumption rate

ECRk, battery capacity V BCk and load capacity CAP k. Another thing to keep in mind is that in later

applications, the vehicles may start their shifts with partially charged batteries. In that case, parameter

V BCk could be replaced with a parameter V BLk to denote the value of the battery level of that vehicle.

This distinction is not important currently, but it does become relevant in the next section.

7.2.2. Model Extensions
There are quite a few features that need to be implemented before this routing model can provide solutions

that are even moderately comparable with real routing schedules. For starters, to mimic the cost structure

of the real routing solutions, we need to introduce the ability to pay a cost for every kilometer driven, vehicle

used and customer visited. These functionalities can then be used to penalize non-electrical vehicles. In

real routing scenario’s, generated for the company, shifts can only have a certain duration. Vehicles can

also be stationed at different depots, might not be allowed to visit every single customer location, and

might be able to drive multiple trips during the same shift. These features were all important to implement,

and the way this has been done is described below. Finally, we explain how we ensured getting a feasible

solution, even if not all of the constraints are fully satisfied. This will not be applied in real settings, but

these outcomes can be useful as intermediary solutions that have potential to improve the quality of the

actual outcomes.

Penalizing ICE Vehicle Usage

There are three methods that we will use to penalize the use of non-electric vehicles. The first of these is

to penalize the scheduling of such a vehicle. So, if an ICE vehicle is scheduled, we pay the penalty. We

can also penalize the number of kilometers driven by such a vehicle, which acts as a stronger incentive

to use the available electric vehicles as much as possible. A final method is to penalize the number of

customers visited by the ICE vehicles, which has a similar effect.

To assign a penalty for every ICE vehicle that is used in the model outcome, one does not need to

introduce any new constraints. Instead, we find that introducing a new variable and adding a term to the

objective function is sufficient. This new variable is allowed to take binary values, and determines whether

or not a vehicle is used:

vk :=

{
1 if vehicle k is used;

0 otherwise.

We also need to introduce a new parameter. Instead of only focusing on the difference between

EVs and ICEVs, we define this parameter in a more general way. This is as other vehicles might also

be assigned a fee to be scheduled, which is modeled in the exact same way as an ICEV penalty. This

parameter is defined as follows:

• RCV k: The routing cost of vehicle k ∈ K

To make sure that the variable properly affects the rest of the model, we need to alter constraint (7.13c),

which limits the number of times that a vehicle leaves the depot to 1. If we alter this constraint to instead
say

∑
j∈C x

k
0j ≤ vk for every k ∈ K, we ensure that the vehicle can only leave the depot if this binary

variable has the right value. Adding a term
∑

k∈K RCV kvk to the objective function forces the model to
only allow necessary vehicles in the solution.

Penalizing each kilometer driven by a single vehicle is slightly simpler, as it does not require modifying

the set of constraints and variables that are used currently. The only thing we need to introduce is another

parameter that contains the cost of each kilometer per vehicle:

• RCKk: The routing cost per kilometer for vehicle k ∈ K

Note that here there is once again no structural difference between EVs and ICEVs; to differentiate

between the two, different parameter values need to be chosen. To implement this feature, we need to

multiply the objective function from the initial model formulation with this parameter. This results in the

following new objective:
∑

j∈CN+1

∑
k∈K RCKkLENijx

k
ij .
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To penalize the customers visited by non-electric, or any other set of vehicles, can be done similarly.

We once more introduce a new parameter:

• RCT k: The routing cost per task for vehicle k ∈ K

This functionality can be implemented by adding the term
∑

i∈C0

∑
j∈C

∑
k∈K RCT kxk

ij to the objective

function. We see that this is correct, as the term
∑

i∈C0
xk
ij expresses that a customer j is visited by vehicle

k.

Maximal Shift Duration

Implementing the maximal duration of a single shift, while a little tricky, can be done with very minor model

modifications. One might wonder however if it is necessary, seeing how EVs have a limited range, and

cannot drive for a very long time without charging regardless. To account for unfortunately scheduled

time-windows or the use of vehicles without a range restriction, we will include constraints that can enforce

this. The parameter MSDk ∀k ∈ K will define the maximal duration of a shift driven by a vehicle. We can

then define the following constraints:

si + SETi + TRTi,EDV kxk
i,EDV k − sj + TRTj,SDV kxk

j,SDV k (7.14)

≤ MSDk + 24 · 60 · (2− xk
i,EDV k + xk

SDV k,j) ∀i, j ∈ C,∀k ∈ K

Because we only keep track of the moment a vehicle starts its service at a client, the formulation of this

constraint is a bit more convoluted than one might have expected. In order to describe the duration of a shift,

we start by finding the moment when the final service i of a vehicle has ended and has driven to the depot
(siSETi + TRTi,EDV kxk

i,EDV k ). Next, we subtract the moment when the vehicle started driving, which is

the starting time of the first service j minus the traveling time to that customer sj − TRTj,SDV kxk
j,SDV k .

Subtracting the second term from the first gives the complete duration, which we then proceed to upper

bound by the given maximal duration. However, in advance we do not yet know which customers will be

the first and last visited by a vehicle. Therefore, we only want to apply this constraint if both xk
i,EDV k and

xk
EDV k,j are non-zero. This is done by adding a term 24 · 60(2− xk

i,EDV k + xk
SDV k,j). If either, or both, of

these variables are zero, then the fixed maximal shift duration is extended by an entire day (24 hours × 60
minutes) and essentially invalidates this constraint for those indices.

In section 3.2.2 wemention that duration time limits are one of the more common time-related restrictions.

That however does not mean that such a constraint can be implemented in the same way in different

problems. Lin et al. [125] for example also limited the total duration of a shift, by means of a more compactly

formulated set of constraints. Formulating this restriction in that same way however does not work for our

problem, because the existence of time-windows imply that sometimes the vehicles might be idle during

their routes. The formulation by Lin et al. did not have this possibility, which simplifies the way that the

total duration of a shift can be expressed.

Multiple Depots

To introduce multiple depots into the model, we need to re-evaluate the notation we introduced in the

beginning. Initially, we assumed there to be a single depot, which appeared twice in the set of locations,

in order to function as both the starting and ending point. To mimic this with multiple depots, we need

introduce a set of depotsD, in which each depot appears twice. We assume that we know what depot each

vehicle starts and ends at: let SDV k ∈ D denote the starting depot of a vehicle k ∈ K, and EDV k ∈ D
denote the ending depot of that vehicle. The sets of customers and depots now cannot be be written as

C0,N+1, C0 and CN+1 anymore. We still assume the subscript to indicate the depot(s) that are contained in

the set, resulting in expressions CD, CSDV k and CEDV k .

With these changes, we rewrite the EVRP as follows:
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min
x

∑
k∈K

∑
i∈C

SDV k

∑
j∈C

EDV k

LENijx
k
ij (7.15a)

s.t. ∑
k∈K

∑
j∈C

EDV k

xk
ij = 1 ∀i ∈ C, (7.15b)

∑
j∈C

xk
SDV kj ≤ 1 ∀k ∈ K, (7.15c)

∑
i∈C

SDV k

xk
ij =

∑
i∈C

EDV k

xk
ji ∀j ∈ C,∀k ∈ K, (7.15d)

ykj ≤ yki − (ECRkLENij)x
k
ij + V BCk(1− xk

ij) ∀i ∈ C,∀k ∈ K, ∀j ∈ CEDV k ,

(7.15e)

ykSDV k ≤ V BCk ∀k ∈ K, (7.15f)∑
i∈C

∑
j∈C

EDV k

DEMix
k
ij ≤ CAP k ∀k ∈ K, (7.15g)

si + (TRTij + SETi)
∑
k∈K

xk
ij ≤ sj + LSTD(1−

∑
k∈K

xk
ij) ∀i ∈ CD,∀j ∈ CD, (7.15h)

ESTi ≤ si ≤ LSTi ∀i ∈ CD, (7.15i)

xk
ij ∈ {0, 1} ∀i, j ∈ CD(i 6= j),∀k ∈ K,

(7.15j)

ykj ≥ 0 ∀k ∈ K, ∀j ∈ CSDV k . (7.15k)

Objective (7.15) only contains routes that start from the starting depot of a vehicle, and end at the

ending depot of that vehicle. Constraints (7.15b) only force the vehicle to have arrived at their ending

depot. The remaining constraints similarly replaced depot node 0 by the starting depot, and N + 1 by
the ending depot, for each vehicle. The term LST0 in constraints (7.15h) was replaced by LSTD, as we

assume that the opening and closing times of the depots are uniform. Without this assumption, these

constraints need to be reformulated.

Limiting Vehicle Type per Customer

It might not be possible for each vehicle to visit every customer. This will mainly happen if conventional

vehicles are no longer allowed in some city centers or other regions due to emission regulations. But it is

also possible that goods that need to be delivered to a certain customer are not suitable to be delivered by

certain vehicle types, for example when considering vehicle dimensions or (the absence of) temperature

regulating features. To make sure that such limitations can be implemented, we need to introduce a binary

parameter AV Ck
j for k ∈ K and j ∈ C that takes value 1 if a vehicle is allowed to visit a customer, and 0

otherwise. We can then include the following constraint:

∑
i∈C

EDV k

xk
ij ≤ AV Ck

j ∀k ∈ K, ∀j ∈ C. (7.16)

Allowing Multiple Routes Per Vehicle

Commonly, vehicles may be expected to drive multiple routes in a single shift. This is particular likely to

happen when the loading capacity of the vehicles is small, and can therefore only visit a small number of

customers before needing to head back. For simplicity, our model did not contain this functionality initially.

However, if we would like our model to be broadly applicable, this is a must. In the literature, this model

variation is generally expressed using the Set Partitioning formulation (as described in section 3.2.1) of the

VRP, such as done by Olivera and Viera [126]. As our model formulation is of a different type, we need to

find a different approach. There seem to be two possible methods. The first method we considered is to

allow the vehicles in the model to return to the depot multiple times before arriving at the ending depot.
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This does require quite some restructuring efforts: Firstly we need to define a set of depots which the

vehicles can visit to reload. These depots will need to be added as dummy depots, as many times as the

maximal number of allowed trips. After visiting a reloading depot, the vehicle should be at its maximal

loading capacity again. It is however not obvious how to implement this efficiently, if that is even possible.

It appears that the model needs to keep track of which customer is visited during each trip in order to

comply with the loading capacity constraints. As this is not an obvious task either, it is worth exploring

another approach. The second possible method is to effectively add different copies of the vehicles to the

model. This can be done by introducing an extra index to the variable xk
ij so that it instead becomes xkt

ij .

Here, t is an element of the set of trips, which will be denoted as R. To not complicate the model too much,
we will tightly limit the number of trips that vehicles can take, thus keeping the number of variables to a

minimum. In particular, we define MXT = |R|. This adaptation, together with the introduction of those
same dummy depots and one sets of constraints, are sufficient. These changes result in the following

model formulation:

min
x

∑
k∈K

∑
t∈R

∑
i∈C

SDV k

∑
j∈C

EDV k

LENijx
kt
ij (7.17a)

s.t. ∑
k∈K

∑
t∈R

∑
j∈C

EDV k

xkt
ij = 1 ∀i ∈ C, (7.17b)

∑
j∈C

xk1
SDV kj ≤ 1 ∀k ∈ K, (7.17c)

∑
i∈C

SDV kt

xkt
ij =

∑
i∈C

EDV kt

xkt
ji ∀j ∈ C,∀k ∈ K,∀t ∈ R,

(7.17d)

ykj ≤ yki − (ECRkLENij)x
kt
ij + V BCk(1− xkt

ij )
∀i ∈ CSDV kt,∀k ∈ K,

∀j ∈ CEDV kt,∀t ∈ R
,

(7.17e)

ykSDV k ≤ V BCk ∀k ∈ K, (7.17f)∑
i∈C

∑
j∈C

EDV kt

DEMix
kt
ij ≤ CAP k ∀k ∈ K,∀t ∈ R, (7.17g)

si + (TRTij + SETi)
∑
k∈K

xkt
ij ≤ sj + LSTD(1−

∑
k∈K

xkt
ij ) ∀i ∈ CD,∀t ∈ R∀j ∈ CD,

(7.17h)

ESTi ≤ si ≤ LSTi ∀i ∈ CD, (7.17i)∑
i∈C

xkt
ji ≤

∑
i∈C

x
k(t−1)
ij

∀j ∈ SV Dkt,∀k ∈ K,

∀t ∈ R \ 1
,

(7.17j)

xkt
ij ∈ {0, 1}

∀i, j ∈ CD(i 6= j),∀k ∈ K,

∀t ∈ R
,

(7.17k)

ykj ≥ 0 ∀k ∈ K,∀j ∈ CSDV k . (7.17l)

Here, the sets SDV kt and EDV kt respectively denote the starting and ending depots for each vehicle

for each trip. For t = 1, SDV kt = SDV k and EDV kt contains EDV k together with the first set of dummy

depot nodes that vehicle k may visit. When t = 2 and above, (assuming MXT > 2), SDV kt contains the

(t−1)’th set of dummy depot nodes that vehicle k may visit, while EDV kt still contains EDV k together with

the the t’th set of dummy depot nodes that vehicle k may visit. Finally, SDV kMXT equals the (MXT −1)’th
set of dummy depot nodes that vehicle k may visit and EDV kMXT = EDV k. When seen in the context of

constraints (7.17d), we see that a trip may end either at the ending depot, or a dummy depot. If a vehicle
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arrives at an ending depot, it cannot make further trips (since it can only visit an ending depot once due to

constraints (7.17b)), while arriving at a dummy depot allows another trip to start due to constraints (7.17j).

As the vehicle capacity is limited per trip due to constraint (7.17g), visiting a dummy depot allows the

vehicle to complete more deliveries, if the battery capacity allows it.

Allowing Incomplete routes

When routing vehicles that have a limited range, it can happen that the available vehicles cannot visit all

customers in a single shift. The range may be too short, but it could also happen that the time windows are

impossible to satisfy. Currently, if it turns out no solution exists that meets all the requirements, the model

will become infeasible and won’t provide any intermediary solution. However, it might be desirable to find

such an intermediary solution anyways. This could simply be because delivering to all-but-one customer is

better than not delivering to any. It is also relevant for future extensions whenever this model would be

applied iteratively. If a solution cannot be found in the first iteration, it does not mean that it cannot be

found in a later iteration. In order to find such solutions, it is critical that the routing model can provide

solutions that do not meet all requirements.

There are a few different ways to allow such solutions. One method is to allow a route to not contain

every single customer. For each customer that does not get visited, a hefty penalty is added. This can be

implemented by introducing a new variable and a new parameter:

mi :=

{
1 if customer i ∈ C does not get visited;

0 otherwise.

• PMTi: The penalty charged for not scheduling the task to visit customer i ∈ C

Then, we need to alter one set of constraints. In the standard model, constraints (7.15b) make sure

that every customer gets visited. To allow the model to not visit a customer, we can add the new variable

to the left side of these constraints

∑
k∈K

∑
j∈C

EDV k

xk
ij +mi = 1 ∀i ∈ C. (7.18)

If mi = 1, this constraint is satisfied, despite not visiting customer i. No alterations need to be made to
the other constraints. Replacing constraints (7.15b) by (7.18), and adding the term

∑
i∈C PMTimi to the

objective function thus has the intended consequences.

It could also be possible to loosen the time-window restriction for certain customers. This will not solve

infeasibilities regarding the range of the vehicles, but depending on the situation it could be desirable to

have a delivery arrive late or early, compared to the next day or not at all. Depending on the strictness of

the time-windows, two approaches can be chosen. Either, the time-window restriction can be removed

entirely, allowing the delivery to be scheduled at any moment during the day. Or, we can add penalties

depending on the size of the deviation. For simplicity, we will only provide an implementation for the first

approach.

For the first case, we require the introduction of a variable and a penalty constraint that allows us to

omit the restrictions of constraints (7.15i) entirely:

oi :=

{
1 if the time-window restrictions of customer i ∈ C can be ignored;

0 otherwise.

• PMWi: The penalty charged for not scheduling the task to visit customer i ∈ C in the provided time

window

Constraints (7.15i) must then be replaced by the following:

ESTi(1− oi) ≤ si ≤ LSTi(1− oi) ∀i ∈ CD. (7.19)

To further allow this model to provide infeasible solutions that are more informative about the reason

that an instance does not have any feasible solutions, we implemented one more measure. When vehicles
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do not start their shifts fully charged, it might be possible that their range is just slightly too small to complete

an efficient route. Giving the model freedom to allow a vehicle more energy use (up to the vehicle capacity)

for a penalty might turn infeasible instances into feasible instances, combined with an updated charging

schedule.

To do this, we need to introduce a new variable that determines the extra energy that the vehicle has

used above its provided SOC, and a parameter that appropriately penalizes this when unavoidable:

bk ∈ Q≥0 : the energy added on top of the existing level for a certain vehicle of vehicle k ∈ K.

• PERk: The penalty charged for exceeding the provided SoC of the partially charged vehicle k ∈ K

To implement this, we need to alter constraint (7.13f) to say yk0 ≤ V BLk + ok. Constraint (7.13g)
remains unchanged, meaning that the battery level of a vehicle will never exceed past its maximal capacity.

7.2.3. Pre-processing the model
When running larger instances of MILPs, it can be a good idea to prune variables wherever possible in

advance. This simplifies the problem that is going to be solved. In practice, this is done by shrinking the

index domain of the used constraints and variables. We decided to remove the following set of variables

from our model:

• The arc variables x for which the distance between two non-depot locations is larger than a small
factor above the mean of the distances from each location

• The arc variables x for which the distance is longer than the range of the corresponding vehicle

• The arc variables x ending at a location that a vehicle can never visit because the demand exceeds

the vehicle capacity

• The arc variables x belonging to vehicles and pairs of location that cannot be visited if the vehicle
only visits those two locations before needing to head back to the depot

To further shrink the size of the convex hull, we experimented with adding different constraints that

could speed up the model. In practice, these extra constraints only seemed to slow the model down.

7.2.4. Post-processing the model
In the previous section, we showed how to restrict the total shift duration time for each vehicle. This could

sadly not be done in a very concise manner, illustrating the secondary role that time has in this model

formulation. As a consequence, there is no obvious manner in which to ensure that the resulting schedule is

as efficient timing-wise as we might like. For a schedule to become usable, it might be necessary to modify

the timing of some scheduled tasks, in particular to reduce the total duration of the shift. Another critical

part of the schedules that has thus far been omitted are driver breaks. Scheduling breaks directly in the

VRP is generally considered quite challenging, which is why this was left out of the routing model. Coelho

et al. [127] try to solve one such problem. They mention a few different options of adding break-rules

directly into the VRP formulation, but conclude that this is too challenging to solve, and heuristics or other

methods are used instead. We use a similar approach, and add the breaks in after the routes have been

created.

Shift Duration Reduction

While analyzing the schedules that this routing algorithm generated, we found that shifts typically take

longer than necessary and often have idle time between customer visits. For longer instances this was

less significant, as the total duration of the shift was limited, but even then we saw that it was still desirable

to modify the starting times of some of the individual tasks in the shift. For this purpose, we implemented a

two-part algorithm. The order in which these parts are applied differs between the different types of shift

that we aim to schedule.

In this context, we mean to differentiate between ’early’ shifts and ’late’ shifts. The first shift of the day

is considered an early shift, and the last shift of the day is considered a late shift. If there are more than

two shifts during a single day, then either type can be assigned to the remaining shifts. The reason for

making this characterization is that early shifts can have their starting time moved forward with little benefit,

whereas moving back their ending time could result in more opportunity to charge the vehicles for the next
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shift. For late shifts, the opposite reasoning holds: moving the starting time forward will allow more time to

charge the vehicles, while moving the ending time back is unlikely to result in a similar benefit.

To fully make use of these differences between shifts, we treat both types differently. We aim to

schedule early shifts as early as possible, and late shifts as late as possible. This results in the most time

in between these two shifts. This difference is made by the order in which the parts of the algorithm are

applied. The first part of the algorithm tries to move each task forward as much as possible, while the

second part moves all tasks backwards. A compromise is also possible, in which only the tasks that directly

affect the starting or ending time of the shift are moved. The pseudocode of the algorithms is given below.

Part I

1. Either select:

(a) The final task of the shift, or

(b) The rightmost shift that when moved forward will no longer impact the ending time of the shift.

2. Move this task forward as much as possible, so that either it finishes at the end of its time-window, or

right before the next activity has been scheduled.

3. As long as another task is scheduled before the current task, choose this task and repeat step 2.

Part II

1. Either select:

(a) The first task of the shift, or

(b) The leftmost shift that when moved back will no longer impact the starting time of the shift.

2. Move this task back as much as possible, so that either it starts at the beginning of its time-window,

or right after the next activity has been scheduled.

3. As long as another task is scheduled after the current task, choose this task and repeat step 2.

For early shifts, we first run part II version (a) and then part I version (b). This results in an ending

time that is as early as possible, while the remainder of the activities are scheduled as closely together as

possible. For late shifts, we first run part I version (a) and then part II version (b). This time, the starting

time is as late as possible, while the rest of the activities are again scheduled as closely together as

possible. For shifts that are not clearly late or early, one can choose if starting earlier or later is preferred,

and choose the pair of algorithms accordingly.

Break Insertion

When drivers are expected to drive long shifts, it is crucial that they can take a break every so often. This

is not only important for driver well-being and safety, it is also a legal requirement. In the EU, drivers must

have a 45 minute break every 4.5 hours, which can be split into a break of at least 15 minutes and a break
of at least 30 minutes. On top of that, exceptions excluded, a driver may drive up to 9 hours a day. More
information can be found in the Driving and Resting Time Rules of the European Labour Authority [128]. As

argued before, we decided to not implement such break-rules directly into the formulation, and therefore

have to add these breaks in heuristically afterwards. As there is typically some idle time between customer

visits, and the time windows are not too short, we should always be able to add sufficient break time to the

schedules.

There are many ways of inserting the breaks into our schedules, as there is no single optimal moment

for each break to be scheduled. We will now describe the way we have approached this problem. First, we

find the number of breaks that need to be inserted into every shift. This depends on the total duration time of

each shift, which is only known after the shift duration reduction procedure has been applied. So, we apply

this procedure, calculate the total duration, and based on that find the number of breaks needed. As this

schedule contains less gaps than its predecessor, we will revert back to the initial schedule, and then insert

the breaks into the gaps at appropriate moments. We then apply the shift duration reduction procedure

again, now including the scheduled breaks. For our instances, this scheme has always functioned correctly,

but it might happen that there are insufficient gaps in the original schedule. To make sure that we scheduled

all necessary breaks, at the end of the procedure we will check that there are no breaks left to schedule

based on the previous calculations. If this is not the case, we should still insert the missing breaks manually.

The complete scheme is summarized below:
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1. Calculate the number of breaks that need to be inserted per shift.

2. Before applying the shift duration reduction procedure, insert the breaks.

3. Apply the shift duration reduction procedure.

4. Check if the breaks have been scheduled correctly, if not, correct.

7.3. Model Variations
This section will describe the relationship between the charging and the routing model, and how the two

interact. We first describe the simplest way these two algorithms can cooperate in order to determine the

optimal way of charging the vehicles, based on the scheduled routes. The second variation is very similar,

except this time we allow the schedules to be made back-to-back, and therefore incorporate information

about the energy levels after returning from their previous shifts in the charging model. Keep in mind

that we are still assuming the vehicles are fully charged before calculating the routes. If there is sufficient

opportunity to charge, that assumption is reasonable, but otherwise we risk our routing model providing

unrealistic routes. To reduce this risk, we will estimate the available energy in the vehicles after charging,

before the routes have been made. This is done in variation 3. We also introduce a final model variation

that closely resembles variation 2 and 3, except that this time we allow vehicle and charger uplifts.

7.3.1. Variation 1: Charging Scheduling Only
This first model variation calculates the routes and the charging schedule separately for only a single

charging instance. First, the vehicles are scheduled to visit a set of customers, both for two shifts during

the day. This gives us information about when the vehicles are available to charge, and how much energy

is needed. Based on this information, a charging schedule is made. This scheme is illustrated in figure 7.1.

Figure 7.1: Flowchart of the first model variation.

This model does have limited use. If there is an abundance of chargers available, in particular when

small instances are solved, finding a charging schedule is not a very challenging task. If on the other hand

the number of chargers or the allowed charging time are restricted, it is likely that not all vehicles can be

charged completely. In that case, it is not obvious which vehicles need to be charged, so that all shifts can

be assigned to the vehicles. When the opportunity to charge vehicles shrinks even further, this problem

becomes even more challenging, and requires the third variation to find feasible overall solutions.

7.3.2. Variation 2: Back-To-Back Routing and Charging Scheduling
This second model variation resembles the first in the sense that no functionalities have been added. The

only difference is that this variation runs multiple instances back-to-back. This model variation can be
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applied when there are more than two shifts during a single day, or in order to make a suitable overnight

charging schedule. The benefit of using this model variation instead of simply running the first variation

multiple times, is that information about the SoC of the vehicle batteries and the vehicle-shift allocations

are applied directly.

Due to the repetitive nature of this model variation, the flowchart of this model will naturally look slightly

different to that of the previous variation. To illustrate the workings of this variation, the following flowchart

is provided in figure 7.2 below.

Figure 7.2: Flowchart of the second model variation.

7.3.3. Variation 3: Routing and Charging Scheduling with Preliminary Battery

Estimates
As argued before, the solutions of the previous model variations will start to decrease in quality if there is

insufficient opportunity to charge the vehicles. Knowledge about the expected SoC of the vehicle batteries

can be incredibly valuable when calculating the routes these vehicles will have to drive. It can for example

make the difference between a set of routes that are all slightly too long for the available vehicles, and

hence to complete the shift an entirely new set of vehicles is needed, and a set of routes that uses an

extra vehicle (or possibly more), but the majority of the vehicles that have driven a first shift can also drive

a second shift.

The challenge with estimating the battery levels of the vehicles before a routing instance is that the

battery available before driving a shift depends both on the outcome of the charging and the routing model.

The starting time of the shift created by the routing model, assigned to a vehicle by the charging model,

directly impacts how much the vehicle can be charged before the shift starts. We first provide the flowchart

of this model variation in figure 7.3 to illustrate the altered scheme, and then explain the method used to

approximate the SoC of the battery before starting a shift.

Preliminary Battery Estimation

Up until now, we have assumed that all the vehicles start their shift with a full battery. If it is the first shift of

the day, we assumed that the vehicles have been charged completely overnight, but for later shifts that

day, this assumption no longer holds up. One way of getting an accurate battery estimation is to run the

routing algorithm under the assumption of fully charged vehicles, and then running the charging model.

The battery levels that this model found can then be used to run the routing model again. This is however
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Figure 7.3: Flowchart of the third model variation.

very time consuming, as we run the routing and charging model twice for all but the first routing instance.

There are a few alternative methods with which we can estimate the available energy before a shift in a

more efficient manner:

1. Assume that we charge each vehicle using the fastest charger during a period of time that is at most

as large as the time that vehicle will have available for charging.

2. Assume we charge each vehicle by the average total charger output. What we mean by this is that we

assume that each vehicle is charged by each of the chargers the same amount as all other vehicles.

3. Run the version of the charging model that maximizes charging output before the routing model,

without asking for a minimal amount of energy to charge a shift.

The first method is very simple, and mostly useful when there is little time available to charge, but

no large shortage of chargers. The second method, the details of which can be determined in different

ways, is most useful when the shifts are expected to have roughly equal length. The final method is more

computationally expensive, but can result in the most sophisticated upper bound. For all of these methods

it is crucial to be able to approximate the start times of the shifts as accurately as possible. When the

available charging time is overestimated, we might as well have assumed that the vehicles were fully

charged upon starting their second shifts. If we underestimate the time available to charge, we risk ending

up with poor outcomes of the routing model. To avoid both of these scenarios, we will run a very simplified

version of the routing model to gain some insight in the starting moments of the shifts. There is not a single

way of doing this, and more experimentation might be necessary to find the most accurate results, but the

routing instance we are running for this purpose operates under the following assumptions:

• Only consider the variables xk
ij , si and possibly vk.

• Only consider constraints (7.13b), (7.13c), (7.13d), (7.13h), (7.13i).

• The set of customers to visit is twice as large as the number of vehicles we expect to use, and

consists of the customers that need to be visited first according to their time windows.
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• Each vehicle in the set of vehicles expected to be used must visit at least one customer. We enforce

this by adding a term to the objective function penalizing vehicles that did not leave the depot.

This means that we only calculate the routes for the customers that need to be visited earliest, omitting

the range and demand restrictions from the model while making sure that all vehicles are used. This will

result in estimates for when the actual routing model will schedule the start of the shifts. These estimates

are then used as input for the preliminary charging model. The output of this model will finally yield the

battery estimates for the vehicles before the real routing instance is solved.

7.3.4. Variation 4: Routing and Charging Scheduling with Vehicle and Charger

Uplifts
A final variation of the presented models is the version that allows the vehicles and chargers to be uplifted

from the currently available set of vehicles and chargers. This version is particularly useful when companies

want to invest in new vehicles and/or chargers, but are uncertain about the details. The previous model

versions can also be used for this purpose, when for example a set of vehicles and chargers is made

available that is much larger than necessary. The set of used vehicles and chargers can then be seen as

an approximation of what is needed. A downside of this method is that the cost of these investments is

insufficiently considered. To solve this, a new model variation is proposed.

This variation can act as an extension of any of the previous three variations. To illustrate the flow of

this variation, we chose to adapt the flowchart of the second model variation. This flowchart is given in

figure 7.4 below.

Figure 7.4: Flowchart of the fourth model variation.

To uplift vehicles, the same mechanism is used as presented in section 7.2.2. Instead of assigning a

cost to ICEVs only, each vehicle k that can be uplifted is assigned a value RCV k. This value can be (a

fraction of) the purchasing price of the vehicle, but that is not necessary. As long as the uplifting costs for

different vehicles are proportionate and not so high that the model prefers an infeasible solution over a

feasible one containing uplifted vehicles, the exact numbers do not matter. Note that we can introduce this



change in both the routing as well as the charging model. To uplift vehicles in the charging model, a new

constraint is needed:
∑

s∈S xk
s ≤ vk for all vehicles k in the set of vehicles allowed to be uplifted. Just like

in the routing model, we also add a term to the objective function that increases the objective by the uplift

cost whenever vk is non-zero. Note that vk is both a variable that can be introduced into the routing and in
the charging model.

For charger uplifts, the same idea is used. Here, we do introduce a new variable, that determines

whether or not a charger is uplifted:

wc :=

{
1 if charger c ∈ Ch is used;

0 otherwise.

To be able to use this variable, we need to adapt constraint (7.1h) to only allow a charger to charge a

vehicle if it is either allowed or uplifted. This constraint will now look as follows:
∑

c∈Ch a
k
c,t ≤ wc for all

k ∈ K and t ∈ T . We once more add a term to the objective function that takes the value of the charger

uplifting cost whenever wc is non-zero for a vehicle that was not already owned.
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8
Tests

8.1. Baseline Assumptions
In order to accurately test the performance of our model, we need to know how the instances are solved

in practice. The data given by the customer contains only the load capacity of the vehicles, the battery

capacity of the electric vehicles is not included. With the current assumptions however, it is known that

the EVs will not run out of battery before arriving back at the depot. To be specific, the EVs used by this

customer will only deliver to their clients in the city center, while the ICEVs will deliver to the clients outside

of the city center. Due to the limited set of tasks in the city center, the EVs will automatically make only

short trips, allowing the vehicles to drive two shifts without charging during the day. To fulfill the objective of

our model, i.e. increasing the number of kilometers driven by an EV, we need to let go of this assumption.

To fairly compare the two situations (before and after allowing vehicles to charge during the day), we will

assume that EVs may visit customers outside of the city center. Now, it does become crucial to know more

about the battery capacity and energy consumption of the vehicles used.

To the best of our knowledge, the EVs that are currently in use are a customized version of the type

Volkswagen Crafter. The exact details of this customization are unknown to us, but what we do know is

that the maximal range of this vehicle is 200km. To be certain that the vehicles can complete their routes,

in particular during tougher circumstances, we will divide this range by 1.5, resulting in a vehicle range
of 133km. This is a typical reduction of the range for daily use, suggested by for example the The Royal

Dutch Touring Club ANWB [129].

It is also known that the customer is planning on expanding their fleet by purchasing new EVs of the

type Toyota Proace Electric. There exist different editions of this vehicle, both in form factor as well as the

size of the battery. The vehicle can either contain a 50kWh, or a 75kWh battery, and as of yet it is unclear

which of these variants, of what combination will be purchased. Additional uncertainty is added due to

the custom form factor. The standard configurations have a WLTP [130] range of up to 230km for the

smaller battery, and 330km for the larger one [131]. Due to the less aerodynamic shape of the customized

vehicle and the added energy-use from a necessary freezer compartment, these estimates of the range

are not fully accurate for the custom version of the vehicle. The WLTP estimates are based on ambient

temperatures near the European average, which is similar to the climate in the Netherlands [132]. This, in

addition to the fact that the Netherlands is very flat country, implies that the expected range of the vehicles

will not decrease much further due to environmental factors. Many other factors that influence energy

consumption, such as described in section 4.1.3, are highly variable or unknown to us, and therefore

cannot be used to improve the range estimation. The driving profile used in the WLTP estimates is also

quite varied, which does not allow us to make obvious corrections to the energy use. The only other factor

that we can correct for is the vehicle load. While the vehicle load keeps decreasing while the vehicle

completes more stops on its routes, for a large part of the trip the vehicle does contain a lot of extra weight.

To fairly account for this extra weight, and to be sure that in less-than-ideal circumstances the vehicles can

safely complete their route, we will similarly reduce this range, resulting in vehicle ranges of respectively

147km and 230km. Something else we know about these new vehicles is that their length is almost one

third smaller than the old ones. As this includes the length of the cabin, the loading capacity does not

decrease proportionally to this decrease in length. This is the only information we have about the size

difference between the old and new vehicles, so we will simply assume that the new vehicles have 50% of

the loading capacity of the old vehicles.
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8.2. Testing Methodology
In the previous section, the baseline assumptions were laid out. Using those assumptions, we can create

different instances that reflect realistic settings against which we can compare the outcomes of our own

model. These instances can then be solved using the OHD engine, which is how real instances of this

sort, in particular the datasets that we are using here, can be solved. There are two key differences

between the cases we can recreate, and the real cases. For starters, our exact routing model can only

solve very small instances exactly, and only slightly larger instances to within an acceptable optimality gap

in a realistic time-frame. Secondly, while our routing model does consider almost all of the information

the dataset provided, it does not take congestion into account. Doing so would require the travel times to

become time-dependent. This is impossible to achieve accurately with only minor modifications to the

model formulations, so we decided to ignore congestion factors all-together. Our model objective also

does not take the hourly rate of the drivers into account, for similar reasons. Luckily, this rate is uniform

per vehicle type. Removing the hourly cost, replacing it with a fixed cost per vehicle, should result in an

acceptable approximation for a schedule and cost-picture.

Due to both of these factors, we are inevitably dealing with simplified versions of real instances. While

leaving out congestion is relatively inconsequential in the larger picture, the modification of only using a

small subset of customer locations to visit is accompanied by several decisions. First of all, the size of the

subsets need to be determined. Secondly, we need to determine which of the customers will be included

in these subsets. Another question is what happens to the set of vehicles that can be used? Finally, we

need to determine which chargers are available for the vehicles to use. These questions are answered in

the next subsection.

8.2.1. Modifications related to instance-size
The first thing to determine when creating an instance is how many customers will need to be visited.

When only a small number of customers are visited, the instances can be solved to optimality in a small

amount of time, but are not very interesting to study and do not illustrate the full potential of the charging

model. If the routing model cannot find a reasonable solution within a reasonable amount of time due to

the size of the subset of customers to visit, then we cannot draw strong conclusions from those outputs.

To balance these two points, we decided to pick an instance size of 50. We have not solved instances

of this size to optimality, but after running these instances for up to two hours we did find solutions that

were good enough. The gaps for these instances typically ranged from around 3% to 12%, which did not

improve much after the first hour.

The next question to ask is which 50 customers to visit from each of the datasets. The difficulty of an

instance is not only determined by the number of customers to visit, but also their placement on the map.

The distance to the depot(s) and the amount of clustering can greatly impact how easily a solution can

be found. The demand of each customer can also determine the difficulty of finding an optimal solution,

although the default capacity of the vehicles is so large that this did never appeared as a bottleneck.

Because the OHD engine will solve the same instance as the exact routing algorithm, the difficulty

of an instance does not impact the value of the comparison. Ideally however we wish for instances that

somewhat reflect realistic settings, while not overburdening the routing model. For that reason, together

with the limited amount of time and resources available, we will only test a single instance per instance size

per dataset. Due to only minor importance of this selection, we will simply pick one of several uniformly

sampled sets that contains at least one but less than 10% ’outlier’ customer locations. By an outlier

customer location we mean customers that are further than 40% of the range of the currently owned EV

away from the main depot. In this case, that gives a distance of 54km.

In regards to the available vehicles for specific instance-sizes, we can simply allow access to the entire

available fleet. In the exact model, choosing an appropriate number of vehicles can benefit the performance

of the model, but when the solutions are found using OHD, this is of no concern. Practically, this means

that we have access to an abundance of EVs. As a consequence, due to their higher cost, ICE vehicles will

only be used if the vehicle range is too small to efficiently reach certain customers. As long as we account

for this behavior in the measure we use to determine performance, this is is preferable over artificially

introducing conventional vehicles. While this might be more reflective of the current situation, we actually

do not know what the appropriate proportion of EVs against ICEVs should be for our instances. Additionally,

deliberately adding conventional vehicles to the situation simplifies the accompanying charging problem,
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which is undesirable in particular for the smaller instances.

8.2.2. Modifications related to vehicle policies
As mentioned previously, we need to adapt the assumptions under which the model is operating currently.

This leaves some freedom to determine the new vehicle policies. The policy that most closely mimics

the real policy is to allow the EVs to drive up to half of their vehicle range for each session, so that the

vehicles can be equipped during both shifts. Alternatively, we can assume the vehicle drives as much as

needed, and is left with an almost empty battery for the shifts that come after. It is possible to combine

these policies, and split the allowed battery use between shifts in any other way imaginable, but this is

unlikely to be successful, as the number of possible routes a vehicle can drive does not increase linearly

with the allowed range.

Additionally, we know that this customer will have access to a larger and more varied fleet of EVs in

the future. It would be a waste not to use this information in our calculations, outside of illustrating the

vehicle investment functionality of the model. We know which vehicles will be purchased, but other than

that we have no information. It is therefore not at all obvious how to combine the new vehicles with the

current mixed fleet. A better solution is to keep the two separate, and run the same instances assuming

we only have access to the new vehicles. Only when testing the vehicle investment functionalities of the

model should we combine these two fleets.

There is also another question to be asked: what do we assume will be the starting battery level of our

vehicles? It is simple to assume they are fully charged, in particular if the shifts start in the morning and

the vehicles have had a chance to charge overnight. This is also necessary when we use model variation

1. When we want to run the instances back-to-back, we can use previous battery level information to

complicate the charging problem. This can also give interesting results, as it might not be possible to

charge all vehicles fully overnight, leaving the vehicles partially charged in the morning.

8.2.3. Remaining Parameters
In this section we broadly sketched the settings we would like to test. Some of the parameters that are

needed for these instances, such as vehicle properties, have been determined in section 8.1. Others, such

as the size of the instances, were chosen earlier in this section. There are also many parameters that we

leave unaltered from the datasets, related to the cost of using the vehicles. We did remove the hourly rate

from the dataset. To compensate for this, we did increase the cost per individual vehicle proportionally

to the hourly rate assigned to that vehicle. A final parameter that has until now been left undiscussed is

the price of energy per kWh. This price varies daily, even from moment to moment, so there is no single

correct choice. To not complicate matters further, we will choose a fixed price of €0, 42 per kWh, taken
from [133] in November 2023.

Another set of parameters that is as of yet undetermined is the cost per driven vehicle for the fleet

consisting of the two new types of EVs. In particular, we need to determine the cost of using each of those

vehicles. For the outcome of the routing model, the exact values are not relevant, as long as they are

sufficiently high and the difference in cost due to the different battery sizes between the two models is

appropriate. For that reason, we can deduce a daily cost from of the listed price for the standard form

factor for both vehicles. The listing price for the 50kWh model of the Toyota Proace Electric is €40.450,
while the 75kWh version costs €47.900. Our cost approximations for daily use might not reflect their true
expense, but will likely be proportioned reasonable correctly.

Mostly ignored thus far is the available charging infrastructure. We have no information about the

available chargers at the company, nor if they intend to extend their set of chargers, so we are left to make

assumptions. To us, it seems like a good estimate to have access to a total number of slower chargers

that is about equal to half of the vehicles we are expected to be used, and to add a set of fast-chargers

that can charge at least 10% of the vehicles simultaneously. This allows the company sufficient charging

opportunity to charge the vehicles overnight, and to charge some vehicles quickly if necessary. Another

point to consider is that chargers are typically installed in pairs, so for each type of charger installed, an

even number is preferred. The number of chargers needed will differ on a case-by-case basis, as we are

testing a variety of instances. As for all instances we have provided a baseline, the number of EVs used in

these baseline solutions will be used to determine the set of chargers we have access to.
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8.2.4. Scenarios
Ideally, we would consider every possible scenario for each dataset and all instance-sizes. Running a

routing instance, in particular of a larger size, can take a long time. Thus, we need to be selective about

which instances to use in our tests. To create an instance, we need to answer each of the following three

questions:

1. Which instance size is used? 50 customers, or more, if our routing algorithm does not need to solve

this instance?

2. Which vehicle fleet will be used? Do we choose a mixed fleet of conventional and currently owned

electrical vehicles, a fully electric fleet consisting of two new types of EVs, or a mixture of the two?

3. Which vehicle policy do we assume is used?

(1) Each routing instance, we allow half of the battery to be used. Then, it is guaranteed that

each vehicle can drive two shifts each day.

(2) Each routing instance, the vehicles are allowed to use their entire battery. If they cannot drive

another shift the next routing instance without charging beforehand, another vehicle will need

to be scheduled.

(3) Each routing instance, the vehicles are allowed to use their entire battery. To make sure that

these vehicles can complete other routes that same day, they will be charged before each

starting their next routes.

In the next section the different cases we will test are laid out. For each of those cases, a suitable set

of instances is created based on these options. In some cases, these instances are then solved under

different, case-specific, assumptions.

8.3. Experimental Cases
As this model has different possible applications, in order to accurately test the performance we need to

set up different experimental cases. For each case, different initial choices can be made. These cases

and initial values are created somewhat artificially, as described in section 8.2.

Quickly summarized, this model has the following features:

1. Solving the Vehicle Routing Problem

2. Determining a charging schedule

3. Determining an optimal set of vehicles to acquire

4. Determining an optimal set of chargers to install

Features 1 and 2 can be considered as standalone models. Despite the goal of this project not being

the design of a high-performance VRP model, the quality of the solutions should be evaluated. While for a

routing model we require data that is typically not too hard to obtain, the charging model requires solutions

from a routing algorithm. As our routing model currently forms the bottleneck of the model, ideally we would

equip a different routing model in order to test the capabilities of the charging model on its own. While

these two models can be executed separately, they can be combined, resulting in improved solutions for

both models. Feature 3 can be applied when using either, or both, of the algorithms. To use feature 4

however, the charging model needs to be involved. Overall, we can examine the performance of these

functionalities by studying four different cases:

1. Testing the VRP only

2. Testing the charging model with routing outcomes from OHD

3. Testing the combined vehicle routing and charging model

4. Testing the vehicle and charger investment functionalities

For each of these cases, we will discuss the goal of running the experiments, and which instances we

would like to test.
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8.3.1. Case I: VRP
The first set of tests we do is to evaluate the quality of the routing algorithm. As our algorithm is exact, the

quality of the solutions could outperform the quality of the routes generated by OHD, the heuristic that

is currently used to solve these instances. As we can tweak the settings of the instances run by OHD to

match the capabilities of our routing algorithm, the outcomes are likely to be similar with sufficient runtime.

However, due to practical reasons, we cannot let every routing instance run until an optimal solution is

found. The larger an instance, the poorer the quality will be upon termination after a fixed amount of time.

The difference between our outcome and the heuristic outcome for certain instances can be used as a

measure to determine how reliable the conclusions of case III and case IV are for those instances. If we

find a large difference, it is likely that the found outcomes do not reflect reality as much as we might like.

As the performance of the routing model is not our main interest, and the quality of these solutions are

mostly relevant when evaluating the performance of the combined model, the simplest approach is to test

the instances that will be used in later cases. So, for this case, we will run the same routing instances as

in case III.

8.3.2. Case II: Charging Schedule + External VRP
The next experiments we would like to perform are to gauge the performance of the charging model when

combined with routing solutions that are as realistic as possible. As our routing model is not needed for

this case, we are not as limited by the instance size as we would be otherwise. We therefore propose two

sets of experiments within this case. Firstly, we would like to test the performance of this model on the

complete datasets. This means that we test instances as closely related to the original as possible. The

only changes will be the fixed range, and the loosened vehicle-customer restrictions. Secondly, we would

like to test the model on a reduced subset of instances. Ideally, we would like to compare the performance

here to the performance of case III, but we believe that it is more valuable to test larger instances of

100 customers (generated in the same way as before), which cannot be solved efficiently by our routing
algorithm.

To keep the comparison to the original dataset as faithful as possible, we will assume that the original

split of electric and conventional vehicles are used. The goal is to compare policy (1) (see subsection

8.2.4) and policy (2) against policy (3) combined with the ability to charge vehicles in between. Additionally,

we would also like to test the behavior of the purely electric fleet. Using policy (1) for this fleet is possibly

infeasible due to the limited range of the EVs, so we will only use policy (2) to compare with policy (3)

instead.

8.3.3. Case III: VRP + Charging Schedule
This case tests the both algorithms simultaneously, which allows the largest variability in settings for us

to test. This means that it’s extra important to carefully select the instances. As our routing model will

need to solve these instances, an instance-size of 50 is used. We will compare the existing fleet, and the

new fully electric fleet, as we did before. We will also make similar policy comparisons as in case II. We

differ from case II however in the sense that we will test two versions of each of these instances: one in

which we have applied post-processing to optimize the starting and ending times of the shifts, and one in

which we did not. We also test model variation 3 for the mixed fleet, by assuming we have access to only

a single slow charger. This is not as interesting for the fully electric fleet, as those vehicles can drive larger

distances, requiring less vehicles overall.

8.3.4. Case IV: Vehicle and Charger Investments
In this case, we aim to illustrate the investment advice that our model can provide. This can be done

with model variation 4. While not built for this purpose, the OHD engine can be used to determine which

vehicles should be added to the fleet if the currently available vehicles are not sufficient. Using a subset of

50 customers, and assuming only two vehicles are freely available, while the remaining vehicles can be
scheduled at their full purchase cost, should provide a sufficient baseline. As we are including the option

to uplift as many chargers as possible, we are assuming that each vehicle can be fully charged before the

start of the next shift and therefore make use of policy (3).

Unlike before, in this scenario we do assume we have access to a fleet that contains both the currently

owned and the new vehicles. With the aim of phasing out the use of conventional vehicles, this fleet will
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consist of two of first type of EV that can be used at only a small cost, and a practically endless number of

the new types of EV that can be used at purchasing cost.



9
Results

In this chapter, we discuss the outcomes for each of the tests for each of the four cases. Each case

contains a group of instance types, which we will test for the four datasets. The performance of each of

the instances will be determined not only by the objective value, but also by the indicators of how many

vehicles are used, and how many kilometers are driven by EVs. For some instances we also provide the

routing and charging schedules, to properly illustrate the behavior of the models.

9.1. Case I: VRP
This first case aims to test the performance of our routing model, when compared to the OHD engine that

is currently used to solve the full-sized instances of our datasets. In this section we compare the results

from the instances with 50 customers under policy (3), as these are the instances we are mainly interested
in for case III. The instances studied in case II are too large to be run by our routing algorithm within a

reasonable time frame, and the routing instances of case IV operate under slightly different assumptions

and will be treated separately. This leaves us two sets of instances to compare, starting with the mixed

fleet.

9.1.1. Mixed fleet
Table 9.1 summarizes the routing solutions generated by the OHD engine. Here, the total cost refers to the

cost of each customer visit, each vehicle scheduled, and each kilometer driven by the scheduled vehicles.

The electricity cost is simply the cost of the energy used by the vehicles driving these routes.

Table 9.1: Routing outcomes for the mixed fleet with 50 customers, generated by OHD.

Dataset 1 2 3 4

Total Cost €2, 802.09 €3, 814.15 €4, 239.38 €2, 005.11

Number of ICEVs Used 3 3 3 2

Number of EVs Used 2 2 2 3

Percentage EVs 40% 40% 40% 60%

Total Kilometers Driven 543,758 541,200 648,242 533,074

Total Kilometers Driven by ICEVs 302,805 325,019 450,532 209,110

Total Kilometers Driven by EVs 240,953 216,181 197,710 323,964

Percentage of Kilometers Driven by EVs 44.3% 39.9% 30.5% 60.8%

Electricity Cost €37.95 €34.05 €31.14 €51.02

Next, we provide the routing solutions from our exact solver in table 9.2. These had up to an hour and

a half to solve, and terminated with a gap somewhere in between 3% and 36%.
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Table 9.2: Routing outcomes for the mixed fleet with 50 customers, generated by our routing model.

Dataset 1 2 3 4

Total Cost €353.76 €347.67 €1, 604.44 €1, 436.42

Number of ICEVs Used 0 0 1 1

Number of EVs Used 6 6 7 6

Percentage EVs 100% 100% 87.5% 85.7 %

Total Kilometers Driven 683,688 660,256 839,262 810,799

Total Kilometers Driven by ICEVs 0 0 152,485 129,318

Total Kilometers Driven by EVs 683,688 660,256 686,777 681,461

Percentage of Kilometers Driven by EVs 100% 100% 81.83% 84.05%

Electricity Cost €107.68 €103.99 €108.17 €107.33

In table 9.3, the routing outcomes of our routing algorithm are compared against the solutions of the

OHD engine:

Table 9.3: Comparison of the outcomes of our routing model and OHD.

Dataset 1 2 3 4

Cost difference -87.4% -90.9% -62.1% -28.4%

Difference in Total Vehicle Use 20% 20% 60% 40%

Difference in EV Use 300% 300% 350% 200%

Difference in Total Kilometers Driven 20.5% 18.0 % 22.8 % 34.2 %

Difference in EV Kilometers Driven 283.7 % 305.4 % 347.4 % 210.4 %

9.1.2. Fully Electric Fleet
Just as with the mixed fleet, table 9.4 summarizes the routing solutions generated by the OHD engine:

Table 9.4: Routing outcomes for the fully electric fleet with 50 customers for policy (3) generated by OHD.

Dataset 1 2 3 4

Total Cost €464.93 €444.46 €474.25 €504.01

Number of 50kWh EVs 6 6 5 7

Number of 75kWh EVs 0 0 1 0

Total Kilometers Driven 695,884 617,156 712,515 696,200

Electricity Cost €99.37 €88.13 €101.75 €99.42

Next, we provide the routing solutions from our exact solver in table 9.5. These instances again had up

one and a half hour to solve, and terminated with a gap somewhere in between 1% and 3%.

Table 9.5: Routing outcomes for the fully electric fleet with 50 customers for policy (3) generated by our
routing model.

Dataset 1 2 3 4

Total Cost €417.10 €403.34 €480.46 €353.78

Number of 50kWh EVs 4 4 4 3

Number of 75kWh EVs 1 1 2 1

Total Kilometers Driven 642,677 590,141 717,168 549,17

Electricity Cost €90.67 €83.33 €98.70 €77.10
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In table 9.6, the routing outcomes of our routing algorithm are compared against the solutions of the

OHD engine:

Table 9.6: Comparison of the outcomes of our routing model and OHD.

Dataset 1 2 3 4

Cost difference - 10.3 % - 9.2 % 1.3 % -29.8 %

Difference in Vehicle Use -16.7% - 16.7% 0 % -42.9%

Difference in Kilometers Driven -7.6% - 4.4 % 0.6% -21.1 %

9.1.3. Analysis
Before analyzing the difference between these two solutions, it should be noted that the output from these

solvers cannot be compared 1-to-1. The first reason for this is that our solver is exact, and the OHD engine

solves the instances heuristically. On top of that, our solver is allowed 90 minutes to find a good solution,
which was much longer than the OHD solver that spent only about 5 seconds on each of these instances.
The OHD engine was also built to be able to solve large instances well, which is a very different task

compared to solving small instances to optimality, and the same performance is not guaranteed, even if

similar approaches are used. Another difference is that our exact routing model does not consider timing

at all, apart from making sure the time-window constraints are satisfied. Post-processing is applied to

make the schedules workable (i.e. move the activities closer together, add breaks and reduce the total

duration time), which is done directly during the creation of the schedules by OHD. A final difference is that

to keep the complexity of our routing model lower, we essentially remove the cost for adding vehicles to

the model (which was added manually afterwards). This is not the case for the OHD engine. As a result,

slightly different problems are solved.

Analyzing these results, we find that the quality of the routing solutions generated by our routing

algorithm is quite high. The most remarkable difference between the two solvers is that our routing

algorithm avoids using conventional vehicles at all cost, only scheduling a non-electric vehicle twice in

the mixed fleet scenario, which was then only assigned a single customer. This is very different from the

solutions given by OHD, which uses about as much EVs as ICEVs. The result is that the OHD solutions

are more costly, but the vehicles drive less kilometers, on average 23, 9%. The routes from our routing

model however have a lower objective value, but the vehicles do drive much more kilometers overall, even

though almost all of them are by an electric vehicle.

For the fully electric fleet, the differences between the two solvers are less stark. We see that our

solver schedules the same number of vehicles, or one or two less. This also means a decrease in driven

kilometers for all but one of the datasets, with an average of 8%.

Overall, we conclude that the quality of our routing solutions are sufficient to use for our analysis. In

particular the routing solutions of the fully electric fleet resemble each other well enough. For the combined

fleet, the differences between the two solvers are more apparent, so more care should be taken when

drawing conclusions.

9.2. Case II: Charging Schedule + External VRP
The instances we are going to test for this case can be divided up into three categories. First, we want to

test the full-sized instances, that are altered only such that the vehicle-customer restrictions are loosened,

allowing electric vehicles to drive outside of the city center. Because of this, the EVs are now limited by the

range of (half) their batteries. Next, we run the same tests for an instance size of 100 customers. These
instances are not solved by our own routing algorithm due to its size, but they do illustrate the performance

of the routing model better than the full-sized, or the smaller instances. Finally, we are going to do these

same tests when considering a fleet of only EVs. When we have access to a mixed fleet, we compare

policy (1) and (3), and policy (2) and policy (3). When the fleet we are using is fully electric, we only make

the latter comparison. For policy (3) to be feasible, we need to make sure that all vehicles are sufficiently

charged. This is where the charging schedule comes in: if we can find charging schedules such that all

vehicles are charged as much as they need to, then we are sure that all the vehicles are able to finish their

routes.
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In total, there are three charging instances: charging during the day in between instance 1 and 2, and

3 and 4, and charging overnight between instance 2 and 3. For the full-sized instances we assume to

have access to 22 22kW chargers, and 4 50kW chargers. For the smaller instances, we assume to have

access to 4 22kW chargers, and 2 50kW chargers instead. This results in a total of respectively 26 and
6 chargers, which is roughly half of the scheduled EVs for each instance type. Each set of instances is
tested under two assumptions:

1. Charge only as much as necessary, or

2. Charge as much as possible

This first assumption finds the bare minimum amount of charging needed to be able to successfully

complete all routes. In the second assumption we assume that each vehicle is to be charged as much as

possible using the available chargers. This might not be the most cost-efficient method of charging when

considering individual instances, but it does provide the most leniency for the drivers and flexibility for

possible last-minute schedule changes. These costs are also closer to the total energy costs attached to

using the EVs during a shift. The charging costs under the first assumption only cover the bare minimum

to perform an extra shift during the day, and are hence not representative of the actual costs associated

with charging. These costs are also calculated for each of the instances. We mention in chapter 8 that we

had very little information about the used vehicles, so the expended energy per kilometer driven is merely

an approximation. This nevertheless gives an idea of the energy costs.

9.2.1. Full-sized datasets
When using the full datasets, we only consider the first and third policy. We start by comparing the routing

solutions from both policies without the interference of the charging schedule. These results are given for

policy (1) in table 9.7 and for policy (3) in table 9.8. It should be noted that for these two tables, the total

cost refers to a slightly different objective function than before. As argued in section 8.2, the hourly driver

rates were omitted from the reduced instances. Here, these are included.

Table 9.7: Routing outcomes for the full-sized dataset for policy (1) generated by OHD.

Dataset 1 2 3 4

Number of ICEVs 120 109 107 125

Number of EVs 54 54 54 54

Total Cost €210, 630.94 €196, 985.04 €181, 711.38 €193, 080.35

Number of ICEVs Used 87 76 74 91

Number of EVs Used 54 54 54 54

Percentage EVs 38.3% 41.5% 42.2% 37.2%

Total Kilometers Driven 7,205,817 7,071,046 6,480,972 6,601,080

Total Kilometers Driven by ICEVs 4,258,648 4,093,834 3,699,255 3,636,649

Total Kilometers Driven by EVs 2,947,169 2,977,212 2,781,717 2,964,431

Percentage of Kilometers Driven by EVs 40.1% 42.1% 42.9% 44.9%

Electricity Cost €462.94 €467.66 €436.95 €465.65
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Table 9.8: Routing outcomes for the full-sized dataset for policy (3) generated by OHD.

Dataset (Full-sized) 1 2 3 4

Number of ICEVs 120 109 107 125

Number of EVs 54 54 54 54

Total Cost €198, 706.13 €181, 567.60 €174, 894.32 €190, 776.03

Number of ICEVs Used 63 70 70 90

Number of EVs Used 54 54 54 54

Percentage EVs 45.1% 43.5% 43.5% 37.5%

Total Kilometers Driven 7,383,359 7,465,935 6,959,898 7,254,713

Total Kilometers Driven by ICEVs 3,802,684 3,514,501 3,482,845 3,363,816

Total Kilometers Driven by EVs 3,580,675 3,951,434 3,477,053 3,890,897

Percentage of Kilometers Driven by EVs 48.5% 52.3% 50.0% 53.6%

Electricity Cost €562.45 €620.69 €546.17 €611.18

Table 9.9: Comparison of the outcomes for policy (1) and policy (3) for the full-sized dataset.

Dataset 1 2 3 4

Cost Reduction €11, 924.81 €15, 417.44 €6, 817.06 €2, 304.32

Percentual Cost Reduction 5.7% 7.8% 3.8% 1.2%

Reduction in ICEVs Used 24 6 4 1

Percentual ICEV Use Reduction 27.6% 7.9% 5.4% 1.1%

Increase in Kilometers Driven by EVs 633,027 974,222 695,336 926,466

Decrease in Kilometers Driven by ICEVs 455,964 579,333 216,410 272,833

Percentual Increase of Kilometers Driven by EVs 21.5% 32.7% 25.0% 31.2%

Percentual Decrease of Kilometers Driven by ICEVs 10.7% 14.2% 5.9% 7.5%

Increase in Total Kilometers Driven 117,542 394,889 478,926 653,633

Percentage Point Increase of EV Kilometers 8.4% 10.1% 7.1% 8.7%

Percentual Increase of Kilometers Driven 2.5% 5.6% 7.3% 9.9%

Comparing policy (1) with policy (3), we see some great improvements. On average (over all datasets)

we see that moving from policy (1) to (3) results in a cost reduction of 4.6%. This cost reduction is explained

mostly by an increase of kilometers driven by EVs of on average 27.6% (against an average 6.3% increase

in total driven kilometers), in addition to an average 10.5% decrease of non-electric vehicles used. This

lead to an average decrease of kilometers driven by non-electric vehicles of 9.6%. We also see that on

average, the percentage of kilometers driven by EVs grows from 42.5% to 51.1%, an increase of 20.2%.

We may additionally note that the average driven distance for this policy is 69 kilometers, compared to 54
kilometers for policy (1). This is a significant increase, but as these vehicles are allowed to drive up to 133
kilometers during a single trip, it might be possible to see even larger improvements by scheduling the

vehicles even more.

In the next two tables, a summary of the charging schedule is provided for each of the two assumptions

mentioned above. Table 9.10 covers assumption 1, while table 9.11 covers assumption 2.
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Table 9.10: Charging outcomes for the routing pairs of the full-sized dataset under assumption 1.

Charging Instance 1 2 3

Chargers Used 0 2 4

Slow Chargers Used 0 0 1

Fast Chargers Used 0 2 3

Charger Operations 0 6 8

Total Electricity Used 0kWh 15.50kWh 22.52kWh

Total Electricity Price €0 €6.51 €9.46

Table 9.11: Charging outcomes for the routing pairs of the full-sized dataset under assumption 2.

Charging Instance 1 2 3

Chargers Used 23 22 26

Slow Chargers Used 19 18 22

Fast Chargers Used 4 4 4

Charger Operations 68 98 76

Total Electricity Used 1, 019.17kWh 1, 453.09kWh 1, 104.07kWh

Total Electricity Price €428.05 €610.30 €463.71

We see that under assumption 1, we need very little, or even no chargers to complete the two shifts.

That is because the vehicles in most of these datasets drive short distances (the average over all datasets

for this policy is 54 kilometers), and are able to drive two shifts using a full battery. At the end of the day,
all vehicle batteries will be mostly depleted. Assumption 2 does charge the vehicles as much as possible,

and as a result allows the vehicles to start the second shift with much more energy than before. When

comparing the cost of electricity that is necessary to drive the vehicles that are routed, and the cost of

electricity that is spent during the charging phase, we see that vehicles after charging are left with most

of the energy that they started with, on average. To be exact, we respectively charge 76.1%, 98.3% and

84.9% of the energy used in the shift right before its starting moment. Ideally, we want the second charging

instance to charge the vehicles fully. Here, despite the fact that not all chargers are occupied, this does

not happen. We expect that this happened as a consequence of terminating the model prematurely, and

in realistic instances, the vehicles should be able to be fully charged overnight with the current amount of

chargers.

9.2.2. Mixed Fleet, 100 Customers
Now, we move on to reduced datasets. These datasets contain 100 customers, and miss some time-

related factors, as described in section 8.2. We do however use the same fleet as before. We once

again summarize the outcomes of policy (1) in table 9.12 and policy (3) in table 9.13 below, followed

by a comparison between these two policies in addition to policies (2) and (3) in table 9.14. Policy (2)

closely resembles policy (3), with the exception that we are forced to use vehicles that have not been used

previously. This means that for this policy there is no separate set of routing solutions.
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Table 9.12: Routing outcomes for the mixed fleet with 100 customers for policy (1) generated by OHD.

Dataset (100 mixed) 1 2 3 4

Total Cost €12, 140.97 €11, 765.59 €11, 853.15 €11.853, 30

Number of ICEVs Used 8 8 8 8

Number of EVs Used 0 1 1 0

Percentage EVs 0% 11.1% 11.1% 0%

Total Kilometers Driven 902,005 859,889 887,892 855,690

Total Kilometers Driven by ICEVs 902,005 793,784 825,462 855,690

Total Kilometers Driven by EVs 0 66,105 62,430 0

Percentage of Kilometers Driven by EVs 0% 7.7% 7.0% 0%

Electricity Cost €0 €10.41 €9.83 €0

Table 9.13: Routing outcomes for the mixed fleet with 100 customers for policy (3) generated by OHD.

Dataset (100 mixed) 1 2 3 4

Total Cost €5, 839.97 €5, 389.69 €2, 226.18 €5, 455.40

Number of ICEVs Used 3 3 2 2

Number of EVs Used 5 5 6 4

Percentage EVs 62.5% 62.5% 75% 66.7%

Total Kilometers Driven 868,474 827,241 872,599 780,164

Total Kilometers Driven by ICEVs 336,582 298,321 210,505 352,395

Total Kilometers Driven by EVs 531,892 528,920 662,094 427,769

Percentage of Kilometers Driven by EVs 61.2% 63.9% 75.9% 54.8%

Electricity Cost €83.77 €83.30 €104.28 €67.37

Table 9.14: Comparison of the outcomes for policy (1) and policy (3) for the mixed fleet with 100
customers.

Dataset 1 2 3 4

Cost Reduction €6, 301.00 €6, 375.90 €9, 626.97 €6.397, 9

Percentual Cost Reduction 51.9% 54.2% 81.2% 54.0%

Increase in EVs Used 5 4 5 3

Decrease in ICEVs Used 5 4 6 6

Percentual EV Use Increase - 400% 500% -

Percentual ICEV Use Decrease 65.5% 65.5% 75% 75%

Increase in Kilometers Driven by EVs 531,892 462,815 599,664 427,769

Decrease in Kilometers Driven by ICEVs 565,423 495,463 614,957 503,295

Percentual Increase of Kilometers Driven by EVs - 800,1% 1060,5% -

Percentual Decrease of Kilometers Driven by ICEVs 62.7% 62.4% 74.5% 58.8%

The difference between policy (1) and policy (3) is even more pronounced for these instances, compared

to using the full dataset. On average, we find a cost reduction of 60, 3%, made possible by the introduction

of up to five EVs in each dataset. Seeing how under policy (1) none, or only a single EV is used, this is a

great improvement. We find that on average, this implies that the number of kilometers driven by ICEVs

decreases by 64.6%. When policy (2) is used, this difference is not expressed as a difference in cost or

driven kilometers, but by the additional vehicles that are needed to drive the routes as planned. We find

that five extra vehicles are needed, up to 100% more EVs than initially scheduled.
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It it also possible to compare the baseline results of policy (2) and policy (3), which is done in table

9.15. We study these instances case by case, and assume that we have access to the vehicles that are

scheduled in the first shift. To draw conclusions about the entire scenario, one can simply take the maximal

set for each vehicle type over all instance pairs.

Table 9.15: Comparison of the outcomes for policy (2) and policy (3) for the mixed fleet with 100
customers.

Charging Instance 1 2 3

ICEVs Used Policy 3 3 3 2

EVs Used Policy 3 5 5 6

ICEVs Used Policy 2 3 3 2

EVs Used Policy 2 10 10 9

Extra EVs Needed 5 5 4

Percentual EV Increase 100% 100% 66,7%

It should be noted that the second pair of instances, namely the late shift on the first day, and the early

shift on the second day, has a lot of time in between, which is typically used to charge the vehicles. In this

table we consider these pairs of instances individually, to see how many vehicles need to be added if we

do not get the opportunity to charge between the shifts. If we consider the bigger picture, that is, allowing

the vehicles to fully charge overnight, this instance pair does not require any additional vehicles.

Now we involve the charging schedules, and provide a summary for both assumption 1 in table 9.16 as

well as assumption 2 in table 9.17:

Table 9.16: Charging outcomes for the routing pairs of the the mixed fleet with 100 customers under
assumption 1.

Charging Instance 1 2 3

Chargers Used 4 3 4

Slow Chargers Used 2 1 2

Fast Chargers Used 2 2 2

Charger Operations 8 10 8

Total Electricity Used 115.69kWh 137.33kWh 115.21kWh

Total Electricity Price €48.59 €57.68 €48.39

Table 9.17: Charging outcomes for the routing pairs of the mixed fleet with 100 customers under
assumption 2.

Charging Instance 1 2 3

Chargers Used 5 1 5

Slow Chargers Used 3 0 3

Fast Chargers Used 2 1 2

Charger Operations 16 10 14

Total Electricity Used 199, 45kWh 198.35kWh 248.29kWh

Total Electricity Price €83.77 €83.30 €104.28

Comparing the cost of electricity that is needed to drive the scheduled vehicles, and the cost of charged

electricity during the charging phase, we see that vehicles can be charged fully before the start of their

next shift. When this is not the goal, we see that the vehicles still need to be charged on average past their
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halfway point. Unlike the full-sized instances that hardly require any charging between shifts, this shows

us that policy (3) does depend quite heavily on the opportunity to charge vehicles during the day, when the

option to schedule additional EVs exists.

9.2.3. Fully Electric Fleet, 100 Customers
Now, we run the same instances, except this time we make use of a fully electric fleet. As policy (1) is

not feasible for this fleet, we assume that the base policy would be policy (2). Table 9.18 summarizes the

results of policy (3), the comparison between the two policies is given in table 9.19.

Table 9.18: Routing outcomes for the fully electric fleet with 100 customers for policy (3) generated by
OHD.

Dataset 1 2 3 4

Total Cost €723.98 €714.81 €694.29 €701.34

Number of 50kWh EVs 8 8 8 8

Number of 75kWh EVs 1 1 1 1

Total Kilometers Driven 1,030,706 995,437 916,494 943,615

Electricity Cost €145.96 €141.00 €129.54 €133.45

To compare the situation with the charging schedule against the situation without the opportunity to

charge, we assume that unless a shift can be driven by one of the vehicles that was used previously, an

extra vehicle is used. We can only make this comparison when looking at pairs of instances. Because

each instance used the same set of vehicles, these vehicles are available for each instance pair.

Table 9.19: Comparison of the outcomes for policy (2) and policy (3) for the fully electric fleet with 100
customers.

Charging Instance 1 2 3

50kWh EVs Used Policy 3 8 8 8

75kWh EVs Used Policy 3 1 1 1

50kWh EVs Used Policy 2 12 12 12

75kWh EVs Used Policy 2 2 2 2

Extra EVs Needed 5 5 5

Percentual EV Increase 55.5% 55.5% 55.5%

As mentioned in section 9.2.2, this second charging instance is typically used to charge all the vehicles,

as the vehicles are stationary the entire night. These values simply show what would happen if these two

instances are scheduled closely together. If we consider these instances sequentially, we do not need

to add additional vehicles for this instance pair. Considering that each instance pair requires a total of

fourteen EVs, this does not impact the minimal fleet size needed.

We are slightly limited in the extent to which we can draw conclusions when compared to the previous

sets of instances, as we are unable to compare the outcomes from policy (3) against policy (1). We do see

from the outcome of policy (2) that not allowing the vehicles to charge will require a set of EVs that is 55.5%
larger than otherwise needed, increasing the fleet size from nine to fourteen to visit all the customers in

these instances.

The following tables summarizes the charging outcomes for each of the two assumptions. Table 9.20

covers the results using assumption 1, the results for assumption 2 are given in table 9.21.
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Table 9.20: Charging outcomes for the routing pairs of the fully electric fleet with 100 customers under
assumption 1.

Charging Instance 1 2 3

Chargers Used 2 2 3

Slow Chargers Used 0 1 1

Fast Chargers Used 2 1 2

Charger Operations 8 6 6

Total Electricity Used 143.45kWh 112.0kWh 102.33kWh

Total Electricity Price €60.25 €47.04 €42.98

Table 9.21: Charging outcomes for the routing pairs of the fully electric fleet with 100 customers under
assumption 2.

Charging Instance 1 2 3

Chargers Used 6 6 6

Slow Chargers Used 4 4 4

Fast Chargers Used 2 2 2

Charger Operations 26 24 22

Total Electricity Used 357.50kWh 339.19kWh 270.07kWh

Total Electricity Price €145.96 €141.00 €113.43

From these tables, we can see that for two of the three instance pairs, the used vehicles are able to

be fully charged before their next shift. The final pair is able to charge 85.0% of the energy used in the

previous shift, allowing the vehicles to still leave for the final routing instance mostly charged. If we are

only interested in charging the vehicles enough so that they can drive their next shift, we see that we only

require up to half as many chargers as otherwise: only two or three chargers are needed for this fleet

consisting of nine EVs to drive another shift that same day.

9.3. Case III: VRP + Charging Schedule
When using our exact routing model, we cannot solve large instances within reasonable time. For that

reason, we only solve instances of 50 customers, for both types of fleets. These are also the routing

instances that are tested in case I. The set of available chargers is determined in the same way as before,

resulting in the use of two or four 22kW chargers, depending on the fleet type, and two 50kW chargers. In

case II, we assume that vehicles start their shift with full batteries. This is done because those routing

solutions are calculated independently: no information about the shifts earlier that day is known when the

routes for the shift later that day are calculated. For that reason, we treated each of the charging instances

as independent and hence did not assume that the battery levels of the previous day carried onto the next.

Now that we are calculating the routes ourselves, we see them as consecutive events. For most of the

tests performed here, we still assume that the vehicles have access to a full battery when the routes are

calculated, and we hope that the vehicles can be charged sufficiently before they need to drive their shifts.

For the mixed fleet, we perform an additional test. In this test, we assume that we are not able to fully

charge our vehicles. To still find feasible routes, we will estimate the battery capacity of the vehicles before

calculating the routes for each instance (apart from the first instance, which we still assume starts with

a fully charged fleet). To properly illustrate this functionality, we will assume that a much smaller set of

chargers is available. This means that we know that not all vehicles can be charged sufficiently, so as a

consequence the routing algorithm will need to adapt.

9.3.1. Mixed fleet
In case I we discuss how the solutions of our routing model and the OHD engine differ for these datasets,

but we have not yet analyzed how our outcomes line up with the solutions calculated under policy (1).
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Here, we present a summary of our routing solutions when policy (1) is used in table 9.22, and follow that

by the table presented earlier that contains our outcomes for policy (3), repeated in table 9.23. These two

tables are then compared in the same way as in case II. Those results are given in table 9.24.

Table 9.22: Routing outcomes for the mixed fleet with 50 customers for policy (1) generated by our routing
model.

Dataset 1 2 3 4

Total Cost €2, 616.93 €3, 667.97 €3, 504.74 €3, 059.95

Number of ICEVs Used 1 3 2 2

Number of EVs Used 10 7 7 6

Percentage EVs 90.9% 70.0% 77.7% 75.0%

Total Kilometers Driven 866,604 795,628 712,223 639,694

Total Kilometers Driven by ICEVs 218,426 375,595 357,864 313,131

Total Kilometers Driven by EVs 648,178 420,033 354,359 326,563

Percentage of Kilometers Driven by EVs 74.8% 52.8% 49.7% 51.0%

Electricity Cost €102.09 €66.15 €55.81 €51.43

Table 9.23: Routing outcomes for the mixed fleet with 50 customers for policy (3) generated by our routing
model.

Dataset 1 2 3 4

Total Cost €353.76 €347.67 €1, 604.44 €1, 436.42

Number of ICEVs Used 0 0 1 1

Number of EVs Used 6 6 7 6

Percentage EVs 100% 100% 87.5% 85.7 %

Total Kilometers Driven 683,688 660,256 839,262 810,799

Total Kilometers Driven by ICEVs 0 0 152,485 129,318

Total Kilometers Driven by EVs 683,688 660,256 686,777 681,461

Percentage of Kilometers Driven by EVs 100% 100% 81.83% 84.05%

Electricity Cost €107.68 €103.99 €108.17 €107.33

Table 9.24: Comparison of the outcomes for policy (1) and policy (3) for the mixed fleet with 50 customers.

Dataset 1 2 3 4

Cost Reduction €2, 263.17 €3, 304.11 €1, 900.30 €1, 623.53

Percentual Cost Reduction 86.5% 90.1% 54.2% 53.1%

Reduction in EVs Used 4 1 0 0

Percentual EV Use Reduction 40% 14.3% 0% 0%

Reduction in ICEVs Used 1 3 1 1

Percentual ICEV Use Reduction 100% 100% 50% 50%

Increase in Kilometers Driven by EVs 35,510 240,223 250,588 270,848

Decrease in Kilometers Driven by ICEVs 218,426 375,595 205,379 183,813

Percentual Increase of Kilometers Driven by EVs 5.2% 36.4% 36.5% 39.7%

Percentual Decrease of Kilometers Driven by ICEVs 100% 100% 57.4% 58.7%

Reduction of Total Kilometers Driven 182,916 135,372 25,446 -41,767

Percentual Reduction of Total Kilometers Driven 26.8% 20.5% 3.7% -6.1%
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Unlike the two comparisons between these two policies in case II in section 9.2.1 and section 9.2.2,

we do not unambiguously find an increase or a decrease of the total number of kilometers driven. For

most instances this distance decreases, by up to 26.8%, but for the final instance we find that the decrease

in ICEVs used lead to more inefficient routes. This comparison also stands out from the others as the

number of EVs used decreases for half of the instances, and didn’t change for the others. From this we

conclude that more so than the OHD engine, our routing model tries to schedule as many EVs as possible,

no matter the range. When the range increases, less EVs might be necessary. This follows from seeing

that in one instance the number of EVs scheduled decreases by 40%, while for two others it does not

decrease at all. Despite the lower number of vehicles used, they do drive more kilometers on average:

we see an average increase of 29.5% of kilometers driven by EVs. What is not unexpected about these

results is the fact that for all the instances, the number of ICEVs used decreases, for some instances even

to exclusively scheduling EVs. As a result, we find a 79.0% decrease in kilometers driven by non-EVs.

The average cost reduction of 71% is also in line with our conclusions from section 9.2.2.

Sufficient Charging Capacity

As mentioned before, unlike in case II, only the first instance is assumed to have a fully charged fleet.

To distribute the charging load as evenly as possible, vehicles are be charged maximally during their

charging intervals. This avoids situations in which vehicles are minimally charged during the first charging

session, and need to be charged overnight from their completely drained state. Using these assumptions,

the charging outcomes can be summarized by the tables below. Table 9.25 contains the results for the

charging problem when no post-processing was applied. In table 9.26, the results of the same problem

are given, except this time post-processing was applied, increasing the length of the charging windows.

Table 9.25: Charging outcomes for the routing pairs of the mixed fleet with 50 customers, without
post-processing.

Charging Instance 1 2 3

Chargers Used 3 2 4

Slow Chargers Used 2 2 2

Fast Chargers Used 2 2 2

Charger Operations 10 12 12

Vehicles Added 1 1 0

Total Electricity Used 183.33kWh 279.00kWh 203kWh

Total Electricity Price €77.00 €117.18 €85.26

Table 9.26: Charging outcomes for the routing pairs of the mixed fleet with 50 customers, with
post-processing.

Charging Instance 1 2 3

Chargers Used 2 4 3

Slow Chargers Used 0 2 1

Fast Chargers Used 2 2 2

Charger Operations 12 12 10

Vehicles Added 0 2 0

Total Electricity Used 256.28kWh 247.69kWh 216.24kWh

Total Electricity Price €107.64 €104.03 €90.82

Comparing the energy used in the the charging schedule ran after the application of post-processing,

we see that for the first two instances 100% of the energy used in the previous shift is recuperated. The

energy costs for these separate instances aren’t identical; the first charging instance is short €0.04, which
is added in the next charging opportunity. During last the charging interval we are not able to charge all

instances fully before the final shifts start, instead charging 83.5% of the energy used in the previous shifts.
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When post-processing isn’t applied, resulting in shorter charging intervals, we find that the first and last

charging interval respectively charged 71.5% and 78.8% of the energy used in the previous shifts. This is

partly because there was insufficient opportunity to charge, but also in part because one of the shifts is

completed by a conventional vehicle, that cannot be charged. The middle, overnight, charging interval

does fully charge the vehicles before the morning shift. The difference between the sum of the energy

costs of the first two charging instances, and the sum of the energy costs of the first two routing instances,

is due to the conventional vehicle that drives a shift originally scheduled for an electrical vehicle.

Another remarkable thing is that while we do need to add (at least) two vehicles at some point during

this sequences of shifts, as the third set of routes contains eight shifts, two more than the six shifts of the

initial set of routes, this is done differently in both calculations. In the first table we see that a vehicle is

added during the first charging moment, as the shifts are planned too tightly. This is solved after applying

post-processing, in which case the extra vehicles are only added right before the number of shifts increases.

Insufficient Charging Capacity

To properly test model variation 3, we need to restrict the set of available chargers. Otherwise, the battery

estimates made would hardly affect the routing outcomes. In section 9.4 we will see that two 22kW chargers

are sufficient to charge the fleet used in case IV. We find that this is also sufficient for the mixed fleet in

case III, and therefore choose to only allow a single 22kW charger for this experiment. As a baseline, we

use the routes found by our model after post-processing was applied. If routes cannot be completed by

the vehicles that did not get to charge sufficiently, other vehicles will be scheduled. The total number of

vehicles scheduled in the different scenarios are given in table 9.27. The first two rows give the minimal

number of vehicles needed, according to the routes summarized by table 9.23. The next two rows contain

the number of vehicles that were scheduled by our charging model. Note that not all of these vehicles are

used every charging instance, they can also be left on standby, and be used to drive later routes.

The main scenario only allows the routing model access to the vehicles used by the original routing

instances, in addition to several ICEVs. Previously, we allowed the model access to the entire fleet of

over 160 vehicles, as only as many vehicles would be scheduled as needed. Here however, access to this
many vehicles means that the model would simply schedule vehicles that do not have a partially drained

battery. To avoid that, we need to limit the set of vehicles that the model may schedule. Limiting this set

too strictly will however result in infeasible solutions, which cannot be used in practice. The compromise

we used was to allow a fleet of seven EVs, expanded by several ICEVs. The idea was that these ICEVs

would only be used if none of the EVs had sufficient range (left).

Table 9.27: Number of vehicles scheduled per charging instance for different modeling scenarios

Charging Instance 1 2 3

Minimal number of EVs needed 6 7 6

Minimal number of ICEVs needed 0 1 1

Number of EVs scheduled for the Baseline Scenario 8 8 8

Number of ICEVs scheduled for the Baseline Scenario 1 1 2

Number of EVs scheduled for Main Scenario 3 4 4

Number of ICEVs scheduled for Main Scenario 3 3 3

We see that the number of vehicles scheduled in the baseline scenario is much higher than needed.

Overall, one ICEV and seven EVs are needed to complete all four routing instances, but due to the limited

charger availability, eight EVs and two ICEVs were scheduled, resulting in a total of ten used vehicles. The

main scenario, that makes use of the battery estimates, takes a different approach and schedules three

ICEVs, and four EVs in total. Now, only seven vehicles are necessary. It is not obvious to conclude which

of these schedules is better, as three of these seven vehicles are ICEVs. The reason for this behavior

is that in the first charging instance, three ICEVs were scheduled, as the only vehicles that this model

were allowed to add were vehicles used previously. These vehicles were then repurposed later on, driving

shifts that could have been driven by EVs, without the charging demand. We conclude that while model

variation 3 did fulfill its purpose by finding a feasible schedule when insufficient charging was available, this
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was not necessarily the outcome were were aiming for. Under different assumptions that would avoid the

immediate scheduling of three ICEVs, this model variation can still be very promising, but more experiments

are needed to confirm this.

9.3.2. Fully Electric Fleet
Just like in case II, for the fully electric fleet we compare the results formed under policy (3) with those that

follow from using policy (2). These results are presented in table 9.28. So, we do not present new routing

results, and directly start analyzing how many extra vehicles would be needed were this policy used.

Table 9.28: Comparison of the outcomes for policy (2) and policy (3) for the fully electric fleet with 50
customers.

Charging Instance 1 2 3

50kWh EVs Used Policy 3 4 4 3

75kWh EVs Used Policy 3 1 2 1

50kWh EVs Used Policy 2 8 7 6

75kWh EVs Used Policy 2 2 2 2

Extra EVs Needed 5 4 4

Percentual EV Increase 100% 66.7% 100%

We see that for two out of the three charging instances, none of the vehicles are able to drive a second

shift. The third instance is able to re-use two out of the five vehicles that are scheduled the previous

shifts. As this set of shifts finishes during the evening, they typically do get charged before the next shift

starts. For our conclusion this does not matter however, as we need a total of ten vehicles to successfully

schedule all the shifts in these instances.

The outcomes of the charging model, with (table 9.29) and without post-processing (table 9.30) are

given below.

Table 9.29: Charging outcomes for the routing pairs of the fully electric fleet with 50 customers, without
post-processing.

Charging Instance 1 2 3

Chargers Used 3 4 3

Slow Chargers Used 1 2 0

Fast Chargers Used 2 2 2

Charger Operations 10 12 12

Extra Vehicles Added 1 0 0

Total Electricity Used 162.83kWh 252.37kWh 225.73kWh

Total Electricity Price €68.39 €106.00 €94.81
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Table 9.30: Charging outcomes for the routing pairs of the fully electric fleet with 50 customers, with
post-processing.

Charging Instance 1 2 3

Chargers Used 3 4 3

Slow Chargers Used 1 2 1

Fast Chargers Used 2 2 2

Charger Operations 10 10 10

Extra Vehicles Added 0 1 0

Total Electricity Used 215.60kWh 194.33kWh 235.92kWh

Total Electricity Price €90.55 €81.62 €99.09

To compare these two tables, it is important to keep in mind that the first charging instance schedules

the same amount of shifts as available vehicles, the second charging instance has an extra shift to assign

(and hence requires an extra vehicle to be added) and the third charging instance has less shifts to assign

to the same amount of vehicles. This means that after post-processing, the quality of the charging solution

is quite good: it only adds an extra vehicle if there are too many shifts (charging instance 2), and is able to

charge the vehicles more when there are vehicles that will not be assigned a shift (charging instance 3). In

the schedules where post-processing is not applied, we see that we add a vehicle to complete the second

set of routes, when it was not strictly necessary. The reason for this is because the shifts are planned too

tightly, and would have overlapped if not for the use of an extra vehicle.

Studying the amount of energy left in the batteries after having charged, we find that when we do

use post-processing, there is sufficient time to charge, and we can fully charge the vehicles before every

charging instance. It may be noted that the energy costs as presented in the tables do not match up

exactly with the projected energy costs in section 9.1.2. The reason for this is that the two vehicle types

have a slightly different energy consumption, and shifts might not be completed by the same type of

vehicle that it was scheduled as initially. In the version where post-processing is not applied, the length

of the charging interval does impact the feasibility of full vehicles upon departure. The vehicles can be

charged fully overnight, but during the first and final charging opportunity this is not possible. We find that

respectively 75.4% and 96.0% of the energy used during the previous set of routes was charged before the

next shift started. The difference between these two values is explained by the fact that the third routing

instance contained an additional vehicle that does not need to be scheduled, and could hence be charged

for a longer amount of time. Because the vehicles can be charged fully overnight, such a schedule is still

sustainable, but the added tightness does make it more difficult to be able to assign vehicles to shifts in a

desirable manner, showing the main benefit of slightly bigger charging windows.

9.4. Case IV: Vehicle and Charger Investments
For this final case we test a single instance type. These instances contain 50 customers, and have access

to two of the currently owned EVs, and the ability to purchase vehicles of the new type with both the

smaller or the larger battery capacity. We also assume two 22kW chargers are available, with the option to

purchase either 22kW , 50kW or 150kW chargers. First we compare the outcomes of the routing algorithms,

and afterwards we discuss the conclusions of the charging model.

9.4.1. Routing
Both the OHD engine and the exact routing model can be used to draw conclusions about what vehicles to

purchase. This can even be done using the standard versions of both outcomes, when an abundance

of vehicles was available. In these outcomes however, the price of the vehicles has had a much smaller

impact on the choice of scheduled vehicles. When optimal solutions are not found, it is uncertain whether

the set of used vehicles is indeed optimal cost-wise, or not. For that reason, increasing the incentive of

the model to use cheaper vehicles can yield interesting results. We start with the solutions from the OHD

solver, which are provided in table 9.31:
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Table 9.31: Routing outcomes for the upliftable with 50 customers, generated by OHD.

Dataset 1 2 3 4

Total Cost €162, 061.00 €162, 053.69 €169, 519.50 €202, 519.18

Number of 50kWh EVs Purchased 4 4 3 5

Number of 75kWh EVs Purchased 0 0 1 0

Total Kilometers Driven 650,001 621,880 682,692 681,471

The outcomes of our own routing algorithm are summarized below in table 9.32.

Table 9.32: Routing outcomes for the upliftable with 50 customers, generated by our routing model.

Dataset 1 2 3 4

Total Cost €169, 506.71 €209, 951.12 €169, 545.03 €129, 554.16

Number of 50kWh EVs Purchased 3 4 3 2

Number of 75kWh EVs Purchased 1 1 1 1

Total Kilometers Driven 656,423 631,625 718,034 579,084

We see that unlike the fully electric fleet in case III in section 9.3.2, the OHD routing model significantly

outperforms our exact model. We even see that this variation of the model outperforms the version of case

I in section 9.1.2, driving less kilometers. The reason that our model performs worse, compared to both the

solutions from case I and the OHD solutions, is because this version is more complex than the standard

version. This was not accounted for in the allowed running time, as both models were terminated after 90
minutes. For all but one of the datasets, this version of the model used more EVs than the version in case

I, allowing us only to conclude that that version of the model performs better at the task of determining the

cheapest set of vehicles to purchase in order to visit all the customers within their time windows.

9.4.2. Charging
As is the case with routing, conclusions about which chargers to purchase can be drawn from the previous

iterations of the charging model, in particular when not all available chargers were used. This is even more

inaccurate than with vehicles however, as the differences between two vehicle batteries are much smaller

in both cost as well as modeling benefit compared to the difference between two types of chargers.

Unlike the previous cases, we are trying to find a set of chargers that is as cheap as possible, and can

charge all vehicles such that they can be used repeatedly. We see in section 9.2 that to charge vehicles

between shifts only enough to be able to drive the next shift, we don’t need very many chargers. We found

that for 100 customers, one to four chargers are sufficient. That however assumes that the vehicles started
the day with a full battery, and the vehicles do need to be charged up to that point overnight as well. In this

section we will analyze the set of chargers that is necessary to complete both of these tasks: charging

vehicles for their next shift, and charging them fully overnight.

A quick calculation shows that to charge six vehicles with 50kWh batteries fully, seven hours and two

22kW chargers are sufficient. If the total charging load is higher, when an extra vehicles is added (or

two vehicles have the larger 75kW battery) resulting in a 350kW charging load, those same two chargers

need a total of eight hours, which is available in all typical situations. This is the same conclusion that

follows if you allow the model to run between any of the evening shifts, and any of the morning shifts.

Figure 9.1 shows a possible charging schedule between the shifts from the second dataset, starting in the

afternoon, and the shifts from the first dataset, starting in the morning. While this implies that in theory,

charging overnight can be done very efficiently, employers might in practice prefer schedules that do not

require several charger connections and disconnections in the middle of the night. This means that in

its current state, the charging model is not a useful tool for determining the right set of chargers needed

for overnight charging. To do this properly, more information is needed about the logistical restrictions

regarding overnight charging.



Figure 9.1: Charging Schedule of time between the second and the first set of routes.

It is possible that more, or higher capacity, chargers might be needed to sufficiently charge the vehicles

during the day. For the shifts created by the OHD engine however, this turned out to not be necessary.

For both sets of early and late instances, two 22kW chargers were sufficient to be able to use the vehicles

for the next shift. We also considered the two other pairings of early and late shifts (instance 4 and 1, and

instance 3 and 2), and found the same result. Of this final example, we provide the charging schedule in

figure 9.2 to illustrate the behavior. We see that the charging windows are smaller, but as the charging

demand is also lower, we are still able to charge all batteries fully.

Figure 9.2: Charging Schedule of time between the third and the second set of routes.

When our own model is used, we found the exact same results: two 22kW chargers were sufficient for

both mid-day and overnight charging. Providing more details about the charging outcomes, or additional

charging schedules, will therefore not add to the conclusions that can be drawn.
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10
Conclusion

We start this concluding chapter by first summarizing the conclusions draw in each of the four cases that

are studied in chapter 9. Then, we can judge the performance and usefulness of the designed models.

10.1. Case I
The goal of the experiments in case I was to gauge how well our routing model performs, when compared

to ORTEC’s state-of-the-art routing model that would otherwise solve these routing instances. This case is

only of secondary importance, as the charging model is the main interest of this project. To make sure

that the routing solutions that were used to create charging problems with are of sufficient quality, these

comparisons were necessary. The results that we see for the two different fleet types are very different.

When using the mixed fleet, we found that the two models differ greatly. Our routing model chose to almost

exclusively schedule EVs, while the OHD solutions used a more evenly split fleet. This is fortunate for our

research, as it makes the routing problem more challenging for these smaller instances. But, we should be

aware that the OHD solver in its current state is more prone to scheduling vehicles without practical range

restrictions, than our exact model built with electrical vehicles in mind. When using the fully electric fleet,

the results are more comparable. Our routing model managed to find routes that are on average slightly

shorter, proving its quality. Therefore, we conclude that our routing model is fit to be used in our combined

routing-charging schemes.

10.2. Case II
In case II we instead focused on the charging model. We tested three different sets of instances: the

full dataset, a dataset of 100 customers driven by that same fleet, and the same 100 customer dataset
driven by a fully electric fleet. Each pair of routes was considered independently, and charging schedules

were made under both the assumption that the electricity costs should be as low as possible, and under

the assumption that the vehicles should be charged as much as possible. We analyzed the differences

between these instances and assumptions, and compared how the different policies described in section

8.2.4 affected the routing solutions found by the OHD solver.

When allowing the vehicles to use their complete range during the shifts (policy 3) instead of only half

(policy 1), we found an average cost reduction of 4.6% and a 9.6% decrease of the number of kilometers

driven by EVs for the full datasets. For the reduced datasets, this difference is more severe, finding

an average cost reduction of 60% and a reduction of 64.6% of non-electrically driven kilometers. Both

instances were allowed to schedule the same set of vehicles, so the large difference between the two

scenarios is explained mostly by the abundance of electrical vehicles to schedule for the reduced dataset.

Either way, this is a significant improvement in both cases. For the fully electric fleet, we instead compared

the results of policy (3) with policy (2), that is very similar to policy (3) except that when vehicles are unable

to drive a shift, another vehicles is scheduled. Here, we found that we needed a fleet that is 55.5% larger

than for policy (3) to complete the shifts. Making the same comparison for the mixed fleet of vehicles,

we found that by allowing the vehicles to be charged between shifts, the number of needed vehicles can

shrink by 33% up to 50%. Policy (3) assumes that the vehicles can charge during the day, so in order to

realize these improvements it is necessary to find feasible charging schedules.

Allowing each of the three instances types access to a realistic set of chargers, we saw that finding
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such a charging schedule was always possible. For all of these instances, it was possible to charge the

complete set of 5 to 54 vehicles enough for their next shift with four chargers (both 22kW and 50kW ). To

fully charge the vehicles between shifts both during the day and overnight, more chargers were needed.

At most, almost as many chargers as vehicles were used, but less than half the number of chargers as

there were vehicles was also enough to fully charge the vehicles overnight. These sets of chargers were

also able to charge the vehicles in most of the instances in the reduced scenarios fully during the day. In

case of the full-sized instances, over 70% of the energy used in the previous shift was recharged before

the start of the next shift later that day. Note that this does not mean that the numbers of chargers used in

these experiments are the minimum possible amount. We only conclude that a large set of high-capacity

chargers is not necessary to reap the benefits of charging the vehicles during the day between shifts.

10.3. Case III
The two models were finally combined in case III. The analysis we performed for this case is similar to that

of case II, as the cases are similar. What differs are the engines used to run the the routing instances,

the size of those instances and some assumptions about the relationship between the different instances

of the same type. In case II, we assumed that all charging instances are independent. In this case, we

use model variation 2 described in section 7.3.2, running the routing and charging instances back-to-back.

This means that we assume that the vehicles driven in all later instances are the same as the ones driven

in the first instance, with the exception of vehicles that are added later. We also tested model variation 3

for the mixed fleet, when an insufficient number of chargers was provided.

Moving from policy (1) to policy (3) also proved to be greatly beneficial for the instances of 50 customers
calculated by our routing model. We saw that the costs decreased on average by 71%, finding an average

decrease of 11.2% of the total number of vehicles driven. We additionally saw that the number of kilometers

driven by non-electric vehicles decreased by an average of 79.9%, meaning that most kilometers are

now driven by EVs. When using the fully electric fleet, moving from policy (2) to policy (3), we found that

almost no vehicles were able to drive a second shift without charging beforehand. This means that for

some individual instances we need to have access to twice as many vehicles to complete the shifts if no

in-between charging is allowed. Overall, due to the varying amounts of vehicles needed to complete each

set of shifts, the size of the fleet necessary to complete all the tasks decreased by 40% when allowing

mid-day charging.

While studying the charging schedules, we considered both the version with and without additional

post-processing. While post-processing will always be applied in realistic situations, if necessary, this

comparison was made mostly to show what happens when the charging windows are much tighter. We

found that with post-processing, all vehicles could be fully charged with four chargers or less for most of

the datasets. When the ending or starting times were not considered before creating the routing schedule,

the outcomes were worse but not impossibly so. For both the mixed as well as the fully electric fleet, at

some point an extra vehicle was needed because the routes were planned so tightly, that even without

any charging two shifts would be forced to overlap. For the end-result this did not matter however, as we

needed to use extra vehicles regardless, due to later instances that consisted of more shifts. For these

instances, we also found that the vehicles could not be charged fully before the start of second shift of the

day. It was however possible to recharge over 70% of the energy used during their shifts, which is still

the majority. This shows that even when shifts are planned close together, a lot can still be achieved by

charging the vehicles during the moments in between.

10.4. Case IV
In case IV we tried out the model variation designed to help determine the right number of vehicles and

chargers to purchase. When designing these features, the idea was that by allowing the model to add

extra vehicles and chargers at a cost, the solutions found might be more considerate of the costs attached

to these purchases. These predictions did not come true, and instead we found that the added complexity

of this variation of the routing model only resulted in worse solutions compared to the standard version

of the model, when given the same amount of time. The charging model did not have this same issue,

but its use can also be questioned in this application. The best set of chargers to install is not just the

cheapest possible option of charging the vehicles in theory, but should also factor in human error and

other unforeseen circumstances. This is something our model does not account for, making its use limited.
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One thing that we did learn from applying this model is that only a small number of slower chargers (about

one third of the number of vehicles used) are needed in order to find a feasible charging schedule for the

instances that we tested.

10.5. Overview
Overall, the main conclusion we can draw is that even when only a modest set of chargers is available,

there is still a lot to achieve by allowing vehicles to be charged between different shifts on the same day.

The exact financial benefits completely depend on each scenario, but in our case we found an average

reduction of 4.6% when there were no additional EVs to schedule, and up to 71% when this opportunity did

exist. More interesting is the reduction of kilometers driven by non-electric vehicles. This decreased on

average 9.6% for the full datasets, when there were no additional EVs to schedule, and up to 79% for the

reduced datasets, when this was possible.



11
Discussion

11.1. Summary
We start the discussion by providing a brief summary of our key results. In case I we found that our routing

model matches up well with ORTEC’s solver when only EVs were available, but when vehicles without

range restriction were also possible to add, our routing model did add a much larger proportion of EVs.

While analyzing the differences between the instances where vehicles were allowed to charge mid-day,

and instances where that was not possible, we found that the costs decreased by 4.6% up to 60%, and the

share of kilometers driven by non-EVs decreased on average 20% up to 64.6% depending on the instance.

Case III showed similar results, resulting in a cost reduction of 71% and a reduction of non-electrically

driven kilometers of 79%. We also proved that even when the charging windows were a lot smaller than

necessary, all shifts could still be completed with access to a reasonable set of chargers. Finally, case IV

taught us that the absolute minimal number of chargers needed for a feasible charging schedule is very

low: two 22kW chargers were sufficient for up to seven EVs.

11.2. Interpretations and Implications
In this research, we showed that vehicles can be equipped much more efficiently if they are allowed to be

charged in-between their shifts during the day, instead of only overnight. As a consequence, the cost as

well as the carbon footprint are reduced significantly. The difference this makes is remarkable, especially

when considering that the vehicles only need to be charged a little in order to be able to drive longer

distances for both shifts. When the charging windows are large enough, which is the case for the datasets

that have been used here, we even found that the vehicles can be fully charged after each shift, even

when there were twice as many vehicles as chargers. More importantly, the created model allows us

to quickly find such solutions, either having minimized the charging cost, or maximized the battery level

before departure.

We hope that this research encourages companies to further evaluate the part that electric vehicles

play in their business operations. Especially companies that already make use of a (partially) electric

fleet stand to benefit greatly from minor improvements in their logistical processes. If it is possible for the

vehicles to be stationary for up to a few hours in-between shifts, or even less than that with enough charger

availability, our charging model creates schedules that find the most efficient ways in which vehicles can

be assigned to both chargers and shifts.

11.3. Limitations and Considerations
This section will describe several limitations of the models we designed and other possible aspects that

need to be considered before applying them directly. The biggest limitation of the combined charging

and routing model is that it is a combination of two separate optimization models. Even if the separate

model pieces returned optimal solutions, we are not guaranteed to have found a global optimum. We

initially planned on iteratively applying our models, aiming to find improved solutions. We did not end up

(fully) implementing this idea, but do share some of our thoughts in the next section. The alternative would

be combining the two models into a single model, solving the entire problem in one go. Theoretically,

this could be a good idea and formulating such a problem should be possible, but trying to solve such a

problem exactly is not a simple task. In fact, problems based around this idea, such as the Multi-Period

87



11.3. Limitations and Considerations 88

EVRP [134] or the Generalized Periodic EVRP [135], have been studied already. There hasn’t been a

lot of research done on these variations however, and there are a few apparent downsides. Firstly, the

possibilities of including restrictions or adding freedom to the charging problem are quite limited. The level

of detail that our charging model can incorporate into the schedules is not seen in these variations, which

makes it easier to directly apply these schedules. We also see that these periodic EVRP variations are

solved exclusively heuristically. The quality of solutions found heuristically can be very high, but especially

due to the complexity of this problem, an optimal solution is not guaranteed. The same of course applies

to our dual-model algorithm, but as the charging model is solved exactly, and not complex enough to need

to be terminated prematurely, that part of the problem can be solved to optimality. There also already exist

very high performing solvers for routing instances. Combining these with this charging model might not

yield completely optimal solutions, but based on our experiments we have no reason to believe that directly

combining the two models will significantly boost the quality of our solutions. In fact, we would argue that

having the charging model separate from the routing model can be more efficient and practical, because

then a heuristic does not need to be designed and implemented from scratch. There is definitely value in

solving these problems simultaneously, but for our application that is not the most sensible approach.

A smaller limitation of this model can be seen in case IV in section 9.4 of chapter 9. We concluded

that when our goal is to determine which chargers should be purchased, our model in its current form is

not a suitable method. The reason for this is that it does not consider factors like allowing a charger to

(dis)connect to or from vehicles in the middle of the night, which are relevant when finding a schedule

that can realistically be applied. Another reason is that there are other factors that come into play when

a company determines to install new charging hardware other than the price of this hardware. Installing

several fast-chargers could be very desirable, granting the company freedom to quickly charge vehicles

in unforeseen circumstances. Our model would only have made this choice if scheduling all tasks was

impossible without such a charger due to its high price. We conclude that the charging model is better

suited for its original task: finding charging schedules.

We similarly found that the performance of model variation 3, tested in case III in section 9.3, does not

to live up to our expectations in the instances tested. While we still believe that this model variation can be

very valuable, its use is limited in situations that are too, or insufficiently, constrained. If the set of available

vehicles or chargers is too large, the solutions found for this variation do not differ from the solutions found

by the standard model variation. When the available set of vehicles or chargers is too strict, routes will

instead be driven by ICEVs, which was not the solution we hoped to find using this more sophisticated

model variation. Therefore, this model variation only has limited applicability.

Another way in which we can improve our model is to force the model to pick the cheapest possible

vehicle when the costs are not immediately of concern. In case IV in section 9.4 of chapter 9 we had no

issues, and found that the model only chose to uplift a more expensive vehicle if the route it drove could not

have been completed by a cheaper vehicle, but the same thing could not be said about case III in section

9.3. Here, due to the fact that the model did not need to pay for introducing a new vehicle to the solution,

sometimes shorter routes were assigned to more expensive vehicles. When giving the results, we instead

assigned those routes to a cheaper vehicle, resulting in a cheaper solution of exactly the same quality. In

practice, this is no problem, but it should be considered before adopting the schedules that follow from this

routing model. A consequence is however that we sometimes find small disparities between energy costs

in the charging problem, as the cheaper and more expensive vehicle do have a slightly different energy

consumption rate. But, seeing how this energy consumption rate is an estimate to begin with, realistically

the energy costs will differ regardless.

We would also like to comment on another factor that affects to what extent the exact output of this

model applies to the real situation. As mention earlier this section, the routing and charging model make

use of different time systems. The routing model will find continuous values for starting moments, rounded

down to minutes, possibly adapted by post-processing, while the charging model makes use of 10 minute

long timesteps. The length of these timesteps can of course be changed, but doing so will significantly

impact the complexity of the solutions. We currently assume worst-case rounding when the starting and

finishing times of shifts and vehicles are exported to the charging model, to make sure that all our schedules

are feasible. The downside of this is that in the worst case, the charging window of a vehicle could be

short by nearly 20 minutes compared to what it would be in reality, excluding better possible solutions.

A limitation that does significantly impact the quality of the routing solution is the fact that it is an exact
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model, and therefore cannot solve large instances. We solved this by tasking the model to only solve

instances of 50 customers and allowing a runtime of 90 minutes. Despite this, optimal solutions were never
found. We did manage to improve the performance of this model to some extent, as described in section

7.2.3, but this still had only limited effect. Other attempts to speed up the model proved fruitless. One thing

we attempted was to quickly find a good initial solution, but as that is not the most time-consuming part,

we halted those efforts. We also tried to add cuts to the formulation, but this did not end up improving the

run-time, so we also did not proceed with that approach.

11.4. Recommendations
In this section we want to provide some inspiration for further research. One thing that can be noted from

reading chapter 7 and chapter 8 is that not all modeling functionalities were tested. In fact, some of the more

interesting features were not applied during the tests. This was the case for the multi-trip version of the

routing model. Implementing this variation was necessary, as the routes calculated by OHD might contain

vehicles taking multiple trips, but we did find that for the cases tested by our routing algorithm this was not

needed. The battery capacity proved to be a larger bottleneck than the loading capacity of the vehicles.

For the charging model we did also not test all implemented features, the most noteworthy of which being

non-linear charging. The first reason for this is the additional complexity, that would have made performing

the experiments more costly. The second reason is that the non-linear charging functionality depends

on several parameters that describe the non-linear charging process of AC-chargers piecewise-linearly.

The set of chargers used in our experiments however also contains DC chargers. These chargers have a

different charging curve, seen in figure 4.3. This illustrates that for DC-charging different approximations

are necessary. There were also a few other smaller features that did not end up in the final experiments,

such as variable electricity pricing or vehicles leaving from multiple depots. It would be very interesting to

see how these different model variations behave and how they compare to their simpler counterparts.

Section 7.3 also explained and illustrated several different model variations that combined the charging

and the routing model. In three of the four described variations, the routing model and the charging model

only had limited interaction: the charging model got its input from previous routing and possibly charging

outcomes, but the routing models each ran independently. The third model variation does allow information

about the charging opportunities to impact the outcome of the routing model, but this is still rather limited.

Only routing instances that occur after a period of charging will be affected by this model, meaning that

information about later charging or routing opportunities cannot be used. At the beginning of the project,

we had several ideas about ways in which the charging and the routing model could interact more, in

order to find improved solutions. The main idea was to iteratively calculate the routing and charging model

multiple times, allowing information about for example the charging windows and battery requirements

of previous and future instances to affect the current instance. In figure 11.1, we illustrated what such a

scheme could look like for a single charging instance. This would of course get much more complicated

when more charging instances are calculated back-to-back.

The benefit of such a scheme could be that for difficult instances, routing choices in the early, as well

as the later, sets of shifts could be re-evaluated depending on the availability of the chargers and charging

needs of the vehicles. There are several different scenarios for which such options can be beneficial. Take

for example a scenario in which the vehicles driving the first shift of the day all return very late, resulting in

very short charging intervals. This might make it impossible for most of those vehicles to drive their next

shifts, requiring other vehicles, possibly non-electrical ones, to complete the shifts. In hindsight, a better

routing solution would be to instead create slightly more, shorter shifts. These shifts allow the used electric

vehicles to return sooner, which means that they can still drive the second set of shifts. Not only does this

mean that less shifts will have to be driven by conventional ’back-up’ vehicles, we also see that having this

ability to improve unfortunate shifts means that less vehicles are needed overall to be able to meet the

delivery demands.

We feel that these types of situations would be very interesting to study, and would have liked to do so

ourselves within this project. There was however limited applicability for such expansions in the cases that

we were studying. Since we were working with real data from a company, the idea was to assume realistic

instances overall. This means for example that we do have enough vehicles and chargers available to

always be able to visit the scheduled customers. A company is not going to be happy with solutions in

which not all customers are visited consistently, even if this means that less charging infrastructure is
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Figure 11.1: Flowchart of a possible model expansion.

necessary. That does not mean that such an expansion has no purpose. This expansion can be very

valuable when more challenging instances are encountered regularly. Both for this reason, as well as the

limited time available for this project, we decided to not develop this model variation.
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A
Metaheuristic Solution Methods for MILPs

A.1. Hill Climbing
The hill climbing heuristic is one of the simpler heuristics available, and can be seen as a local search

heuristic in its purest form. It starts from an arbitrary solution, possibly found using a greedy algorithm,

and then tries to improve the objective function of the problem, until it finds a local optimum. To avoid

getting stuck in a local optimum in order to find, or get closer to, the global optimum, one might vary on this

method by using several restarts, i.e. starting the algorithm from different initial solutions. The hill climbing

heuristic can be used on its own, but more often is simply a part of a larger metaheuristic. For a more

thorough discussion on local search heuristics, see for example section 12.2 of Integer Programming [11].

A.2. Variable Neighborhood Search (VNS)
Introduced by Mladenović and Hansen [136], variable neighborhood search is a metaheuristic that is closely

related to local search heuristics. The idea of VNS is to systematically change the neighborhood inside of

a local search algorithm. To start, several neighborhood structures (i.e. ways of defining a neighborhood)

are selected, and an initial solution is found. Every iteration of the algorithm, we cycle through each of

these structures. For every structure, a solution is generated at random somewhere in the neighborhood

of the previously found solution. Then, some local search method is applied that takes that randomly

found solution as its initial solution. If the obtained local optimum is better than the previous solution, this

solution becomes the new current solution, defining the end of the iteration. If not, then the found solution

is discarded and a new neighborhood structure is searched. The algorithm terminates when none of the

neighborhood structures resulted in an improved objective value.

A.3. (Adaptive) Large Neighborhood Search ((A)LNS)
Large neighborhood search is another metaheuristic that resembles local search heuristics, but approaches

problems in a slightly different manner. Instead of searching a neighborhood for an improved solution, it

uses a destroy method to destruct part of the current solution, and then proceeds to use a repair method

to return to a feasible solution. Re-visiting the TSP example, this could mean removing a subset of cities

from the route, and adding them back in using a repair heuristic. Typically, the neighborhood that is

destroyed gets determined with some element of stochasticity. This ensures that every iteration, the

algorithm destroys a different part of the solution. After a destroy and a repair operation, the newly created

solution can either be taken as the new solution, or it can be discarded. A simple way of making this choice

is discarding the solution if the objective value of the new solution is worse than the previous solution,

although this does not need to be the case, and some degree of stochasticity can be introduced here as

well. Adaptive large neighborhood search is an extension of LNS. Instead of using a single destroy and

repair heuristic for every iteration of the algorithm, ALNS considers a pool of heuristics to choose from.

Each of the destroy and repair heuristics in this pool is attached to a weight, the value of which varies based

on success of that particular heuristic. This allows ALNS to reach a more varied set of neighborhoods that

can be reconstructed in a way that was empirically proven to be most effective. For more information, refer

to the chapter written on this topic by Pisinger and Røpke [137].
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A.4. Tabu Search
Introduced by Glover [138], tabu search uses a more sophisticated manner of attempting to find a global

optimum over a local one. When a local optimum is found, this algorithm moves to a solution in the

neighborhood that has inferior objective value, but may lead to an improved local, or even global, optimum

later on. If applied without caution, this method will likely start cycling, and we will see the same solutions

repeatedly. To avoid this, a tabu-list is created and updated at every iteration, that keeps track of recently

found solutions that are forbidden (’tabu’) to be visited again. The tabu list does not need to be very large

to successfully escape local optima, and can thus be an efficient method for this purpose.

A.5. Simulated Annealing
Unlike the heuristics used before, simulated annealing is a probabilistic technique that randomly chooses

what solution to move to at every step. If a solution has a better objective value than the current solution,

it will move to that solution with probability 1. If the objective value of a proposed solution is worse than
the current value, the algorithm will move to that solution with some probability between 0 and 1 that is
reflective of how much worse the proposed solution is. To ensure that the algorithm converges in the long

run, the probability that a worse solution gets chosen slowly decreases the more iterations have been

done. Section 12.3 of Integer Programming [11] discusses this topic in more detail.

A.6. Genetic Algorithms
Genetic algorithms are slightly more complex than the previously mentioned methods, and form a subcate-

gory of methods called evolutionary algorithms. The idea is the following: instead of starting from a single

solution that updates every iterations, genetic algorithms use a set of solutions that are called a generation.

Every iteration, the fitness (i.e. the objective value) of each individual of the generation gets assessed.

The stronger individuals are, the more likely they are to impact the next generation. The next generation is

created using three rules: selection rules (what individuals are used to contribute to the next generation),

crossover rules (how to combine parent solutions to create child solutions) and mutation rules (how to

mutate a parent solution to create another child solution). More information can for example be found in

section 12.3 of Integer Programming [11].

A.7. Ant Colony Optimization
Another more complicated probabilistic technique is ant colony optimization. This method was inspired

by the behavior of ants finding routes between their nest and food sources, that find the shortest path by

preferring to follow trail pheromones that were deposited by ants that previously made the trip. Before this

algorithm can be applied, the problem that needs to be solved needs to be converted to a shortest path

problem. It can be applied directly to problems already of this nature, such as the TSP, and is commonly

used for routing based problems. The algorithm starts by sending out artificial ants from different (possibly

non-origin) nodes in the graph, that completely arbitrarily try to find paths, by visiting each new location out

of the set of unvisited locations with the same probability. While traveling along the nodes, the ants drop

pheromones. If a path contains pheromones, an ant is more likely to choose that route the next round. The

following iteration, the next horde of artificial ants again try to find a shortest path, but due to the dropped

pheromones, they are slightly more likely to take (parts of) the previously found paths. Every iteration,

some of the pheromones on the graph evaporate. The longer a route takes, the more time has passed

after the ant returns, and the more the pheromones dropped on that path evaporate. When a route is

short, the pheromones evaporate less quickly. So, the shorter and thus better routes are increasingly more

likely to be used, while longer routes slowly stop being used. Eventually, the route the ants choose will

converge to at least a locally, and possibly globally optimal route. For a more in-depth discussion, refer to

for example the article by Dorigo [139].



B
VRP Variations

Table B.1 provides an overview of the different VRP variations that have been studied in the litereature. It

contains three columns, containing a list of scenario characteristics, problem physical characteristics and

information characteristics, and has been based on the taxonomy of Braekers et al. [17]. In this paper,

the characteristics that differ from previous taxonomies (such as the taxonomy of Eksioglu et al. [140])

are discussed in detail, and should be referred to (possibly together with previous taxonomies) for more

information. A general remark however is that some of these blocks contain different options for a variation,

so for example load splitting may or may not be allowed. Other blocks introduce new concept that may or

may not apply to a single variation, for example with backhauls. A variation might contain the option to

offer backhauls which can be done in two different ways, but it could also not offer this option.
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Table B.1: Overview of the different VRP variations

Scenario Characteristics Problem Physical Characteristics Information Characteristics

Number of stops on route:

- deterministic

- partially probabilistic

Transportation network design:

- directed network

- undirected network

Evolution of information:

- static

- partially dynamic

Load Splitting:

- allowed

- not allowed

Location of addresses:

- customer on nodes

- arc routing instances

Quality of information:

- deterministic

- stochastic

- forecast

- unknown (real-time)

Customer service demand quantity:

- deterministic

- stochastic

- unknown

Number of points of origin:

- single origin

- multiple origin

Availability of information:

- local

- global

Request times of new customers:

- deterministic

- stochastic

- unknown

Number of depots:

- single depot

- multiple depots

Processing of information:

- centralized

- decentralized

Onsite service / waiting times:

- deterministic

- dependent

- stochastic

- unknown

Time window type:

- restriction on customers

- restriction on depot / hubs

- restriction on vehicles

Data characteristics:

- real-world data

- synthetic data

- both

- no data used

Time window structure:

- soft time windows

- strict time windows

- mixed

Number of vehicles:

- single vehicle

- limited number of vehicles

- unlimited number of vehicles

Time horizon:

- single period

- multi-period

Capacity consideration:

- capacitated vehicles

- uncapacitated vehicles

Backhauls:

- simultaneous pickups and deliveries

- either linehaul or backhaul

Vehicle homogeneity (capacity):

- similar vehicles

- load-specific vehicles

- heterogeneous vehicles

- customer-specific vehicles

Node/Arc covering constraints:

- precedence and coupling constraints

- subset covering allowed

- recourse allowed

Travel time:

- deterministic

- function dependent

- stochastic

- unknown

Objective:

- travel time dependent

- distance dependent

- vehicle dependent

- function of lateness

- implied hazard / risk related

- other



C
Heuristic Solution Methods for the EVRP

C.1. Common Metaheuristic Approaches
To be able to solve large instances of the EVRP, many researchers decided to use metaheuristics instead

of exact methods. Popular metaheuristics for the EVRP are (A)LNS, VNS, genetic algorithms and tabu

search [5]. Kancharla [38], Goeke and Schneider [46] and Pelletier et al. [50] used ALNS to solve their

problem instances. Li et al. [59], Xiao et al. [36] and Lu et al. [37] instead used VNS. Genetic algorithms

were used by Futalef et al. [60], Karakatič et al. [118] and Abdallah et al. [110]. Barco et al. [58] instead

of genetic algorithm used a related approach and created a differential evolution algorithm. Goeke [141]

used granular tabu search as their main solution method. Tabu search most often is combined with ALNS

or VNS, a few examples of which are given in the next section. Examples of papers using ant colony

optimization are written by Mao et al. [115] and Jia et al. [142].

C.2. Hybrid Metaheuristic Approaches
Due to the difficulty of the problem, researchers often use more than a single solution technique. A common

strategy is to split the algorithm up in a routing and a charging phase. Froger et al. [39], Montoya et al.

[100] and Koç et al. [119] for example solve this by considering the Fixed Route Vehicle Charging Problem

(FRVCP) as a subproblem of their respective EVRP variant, in combination with using an iterative search

heuristic. The FVRCP determines the charging operations necessary to complete the route that was

assigned to a vehicle. This subproblem can be solved both exactly and with a (greedy) heuristic. In general,

whenever charging stations are inserted into a solution it can be done heuristically or optimally. In addition

to solving this subproblem exactly, another optimal way of doing this optimally is using a labeling algorithm

based on dynamic programming. This algorithm has essentially the same goal as solving the FVRCP,

providing an optimal set of charging station insertions for a given route. This approach is used by Hiermann

et al. [56], Küçükoğlu et al. [113] and Roberti and Wen [54]. Hiermann et al. implemented this method in

combination with ALNS, Küçükoğlu et al. combined it with their hybrid simulated annealing/tabu search

algorithm and Roberti and Wen used it as the final step in a general VNS heuristic. Other combinations of

metaheuristics are for example used by Zhang et al. [63] that enhanced their ALNS algorithm with fuzzy

simulation, Li-ying and Yuan-bin [143] that combined ALNS with tabu search, and Ding et al. [144] that

combined VNS with tabu search.

C.3. Alternative Approaches
The methods that are given earlier are not the only ways in which one can solve such a problem; plenty of

researchers have gotten creative with their solution methods. Some researchers combined ideas from

known metaheuristics with other techniques. This applies for example to Li et al. [111], that designed

a mixed algorithm containing tabu-search, and Erdoğdu and Karabulut [109] that combined simulated

annealing with a constructive heuristic (i.e. a heuristic that starts with an empty solution, which it repeatedly

extends until a feasible solution is found) and a local search heuristic. Zhao and Lu [57] created a heuristic

approach based on ALNS which contains Integer Programming as a way of improving the heuristically

found solution. For a larger overview of the used metaheuristics and the alterations for solving variations

of the EVRP, refer to the literature review of Küçükoğlu et al. [5]. Other researchers used entirely different

methods. Yao et al. [117] used Benders Decomposition [145] as a way of splitting the problem into a sub-
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and master problem, while Yang et al. [55] used the Alternating Direction Method of Multipliers [146]. Yet

another possible approach is to define a two-part optimization scheme (often but not necessarily a routing

and charging stage) that splits the problem into two (MI)LPs, which then get solved iteratively using a

commercial solver or an algorithm such as Bellman-Ford [147]. This is done for example by Chen et al.

[116], Yao et al. [148], Basso et al. [51] in 2019 and Basso et al. [62] in 2021. A final approach we would

like to mention is the work by Schoenberg and Dressler [149], which used a multi-criterion shortest-path

search algorithm using contraction hierarchies [150] to apply an adaptive charging and routing strategy to

solve instances of their model.
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