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ABSTRACT
For steel flexures, complex geometries are required to reach

high support stiffness and limit axis drift over large ranges of
motion. These complex flexures are expensive and difficult to
manufacture. This paper presents a method of designing short,
polymer wire flexures with high support stiffness and modelling
their axis drift using a novel method, the arc method. The arc
method is validated against finite element methods (FEM) and
physical tests, showing at least a factor 10 lower error than ex-
isting pseudo-rigid-body models (PRBM) at 70° deflection, while
maintaining a simple modelling approach. The use of polymers
increases support stiffness of wire flexures by a factor 7800 with
respect steel at 70° deflection, even though the material stiffness
is substantially lower. This is due to the large allowed strain of
polymers increasing the possible diameter by a factor 110.

1 INTRODUCTION
The applications for compliant mechanisms range from the

hinge of a shampoo bottle to the highest precision mechanisms.
Flexures for precision applications are normally made from steel
or other metals because of their predictability [1]. Flexures for
consumer products are mostly made of polymer flexures, due to
their ease of manufacturing. The use of polymer flexures in pre-
cision applications is still a mostly unresearched field, as poly-
mers suffer from low repeatability and high creep. However, they
allow for very large strain compared to steel.

With steel flexures, because of their low allowed strain, com-
plex geometries are required to create high support stiffness over
large ranges of motion [2]. But these complex flexures are ex-
pensive to manufacture and difficult to clean. Contrarily, as poly-
mers allow for larger strain, using them for compliant joints al-
low thicker flexures for the same range of motion. This could
result in high support stiffness over a large range of motion with
simple geometries, such as the short wire flexure used as a two
degree of freedom (2DOF) small-length flexural pivot.

A problem with simple flexures such as the short wire is that
they exhibit axis drift when bending [3]. For rigid body joints,
the rotation point or axis is defined by the shape of the joint and
does not move when rotating. In more complex flexure designs,
axis drift can be mitigated to some extent [4]. However, axis drift
of a flexure has no influence on the repeatability of the flexure,
but can have an effect on the accuracy of the system if the amount
of axis drift is not known. The use of a feedback loop in the
control system can correct for low accuracy to some extent, but a
higher accuracy can then still decrease overshoot or settling time
of the system [5]. To mitigate the accuracy loss due to axis drift,
the feed-forward model of the system has to include this axis drift
of the flexure when calculating the outputs of the system.

To model the axis drift of a compliant joint Pseudo Rigid
Body Modelling (PRBM) or the Finite Element Method (FEM)
is commonly used. In PRBM, flexure joints are replaced by rev-
olute joints coupled with a torsional spring. PRBM does not
model any axis drift and thus introduces an error [6]. As steel
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(a) A TPU Flexure bent to 70°
showing circular deformation

(b) A schematic drawing of arc
method with the calculated end-
point positions

FIGURE 1: A TPU flexure and its arc method equivalent

wire flexures are mostly implemented for small deflection an-
gles, where the effect of axis drift is small, PRBM could still
offer high enough accuracy. However, if polymer flexures such
as researched in this paper allow for a large range of motion,
the error of PRBM increases. Multiple revolute joints per flex-
ure instead of one reduces the error but increases complexity.
Howell proposes a solution for this, an optimised single revo-
lute joint position per loading condition, called the characteristic
pivot [1]. For this method, however, the loading condition needs
to be known, and an angle error is introduced at the endpoint of
the flexure. FEM simulates the deflection of a flexure accurately,
but a separate simulation for each flexure and bend angle would
be required, resulting in large lookup tables, quickly increasing
complexity. A simple analytic model for wire flexures for a large
range of motion is not yet available.

This paper aims to develop a simple analytic model to accu-
rately model the axis drift of wire flexures used as 2DOF small-
length flexural pivots for a large range of motion. To increase
robustness and precision of the flexure, the use of polymers for
the design of wire flexures with high support stiffness for this
large range of motion is investigated.

The structure of this paper is as follows. In section 2, an
analytic model named arc method is developed for the axis drift
of wire flexures. In section 3, the support stiffness and differ-
ences between a steel and polymer wire flexure are investigated.
In section 4, the results for both of these methods are presented,
after which they are discussed in section 5. Finally, conclusions
are presented in section 6.

2 THE ARC METHOD
In section 2.1 a new simple way of modelling wire flexures

is proposed, the arc method, after which a technique for imple-
menting this method into kinematic models is given in section
2.2. Finally, it is compared to existing PRBM in section 2.3.
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FIGURE 2: The endpoint path (red) of a flexure with a fixed arc
length bending to ±360°, with some flexure positions drawn in
blue. The IC path drawn in black, with dotted lines showing IC
the position per flexure position.

2.1 Modelling Axis Drift With The Arc Method
The arc method uses three theories for cantilever beams to

model wire flexures. First, if a cantilever beam is bent by a mo-
ment on its free endpoint, the shape of the flexure follows a circu-
lar arc, as both the moment and area moment of inertia is constant
over the length of the flexure. Second, the neutral axis, which is
the axis that does not see any strain or longitudinal forces dur-
ing bending, does not change length. Third, as the cross-section
of a wire flexure is symmetric, the neutral axis lies in the centre
of the flexure. Thus, a wire flexure of length L bent by a mo-
ment to an angle φ can be modelled by a circular arc at its centre
line with a constant length L and an angle φ . This modelling
approach we call the arc method. Figure 1a shows a bent wire
flexure made from thermoplastic polyurethane (TPU), and its arc
method equivalent in figure 1b. Based on the radius of curvature,
which for an arc of known length is specified by R = L

φ
, the posi-

tions of the endpoint of an arc can easily be found, as also shown
in figure 1b.

Any external force deviates the flexure from this arc, as this
introduces compression, shear, and an unequal bending moment
over the length of the flexure. A high support stiffness can de-
crease this effect, as will be investigated in section 3. External
forces will not be taken into account in this section.

Figure 2 shows the path of the endpoint of the flexure for dif-
ferent deformation angles calculated with the arc method. Also
drawn in this figure is the centrode, or path of the instant centre
of rotation (IC) of this flexure. The IC is the point around which
the rigid body connected to the flexure pivots at each instant. The
IC must lie on the line perpendicular to the midpoint of the flex-
ure, as the flexure is symmetrical around this line. The IC can
then be determined by intersecting a line perpendicular to the ve-
locity vector of the endpoint with this middle line. The path of
the endpoint is known, and the velocity vector must always lie
tangent to the path. The migrating IC shows the axis drift of the
flexure.
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FIGURE 3: The definition of the virtual centre (VC) for a bent
flexure. This definition works both in 2D, as depicted here, and
in 3D. The VC always lies along the vector tangent to the base
of the flexure, depicted in this figure by the black arrow pointed
upwards.

2.2 Using The Arc Method For Kinematic Models
With an arc of known length in between each of the rigid

bodies, the kinematic model is fully defined and can thus be
solved. This means the kinematics of a complex, multi-flexure
system can be accurately modelled. To make this method easier
to implement, a virtual centre (VC) can be added to the system.
This centre is an intersection of the two tangent lines to each of
endpoints of the flexures, as can be seen in figure 3. It is im-
portant to note that this is not the same as the IC of the flexure,
which can be seen in figure 2. Using this VC to solve the system
changes the multi flexure model back into a more PRBM like
system, but implementing shifting rotation pivots. Two things
make this VC well suited for solving the system in comparison
to working with the arc method directly or using the IC. First, the
VC shifts along a single vector for every deflection angle, as it
always lies on the tangent at the base of the flexure. Second, the
point is easily calculated based on the deflection angle φ of the
flexure. Looking again at figure 3, the distance between the base
of the flexure and the VC is defined as R · tan φ

2 .
A drawback of using the arc method and VC however, is that

due to the shifting rotation pivots the distance between the pivots
is dependent on the deflection angle. This increased complexity
can result in a necessity for an iterative solver in some systems.

2.3 Comparing The Arc Method To PRBM
For PRBM methods with a single rotation pivot, three meth-

ods are found in literature. One has the pivot at the base of the
flexure, one centred on the flexure, one at a characteristic pivot
location based on the loading condition. Each draws a differ-
ent circle for the endpoint of the flexure, which are all depicted
in figure 4. To find the characteristic pivot, Howell matches the
path of the endpoint per loading condition to a circle to min-
imise the error [1]. For a flexure with an applied moment, a
circle with a radius of 0.7346 matches the path best. To then
match the deflection rate, an angle coefficient is used, in this case
1.5164. This means that for a flexure angle of 1.5164° degrees,
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FIGURE 4: The comparison between the arc method and three
PRBM approximations. One with the pivot at the base of the
flexure, one at the centre of the flexure and one at the character-
istic pivot. Flexure shapes for different deflection angles are also
shown in blue, as well as the characteristic pivot with angle co-
efficient in green. The angles for these are: 5°, 45°, 90°, 124.4°,
and 180°. 124.4° is the maximum angle for which Howell spec-
ifies a position error of less then 0.5% of the tip deflection.

the PRBM linkage has an angle of 1°. Figure 4 shows the green
lines modelled by the characteristic pivot with angle coefficient
almost intersecting the endpoints of the flexure modelled by the
arc method. However, the approximations necessary for the char-
acteristic pivot add complexity compared to the arc method. Next
to this, as the arc method describes the exact way a wire flexure
deforms due to a moment, the characteristic pivot is also less ac-
curate. The drawbacks of the characteristic pivot only increase
when the body connected to the flexure has to be modelled, as
the angle coefficient creates an angle error at the endpoint of the
flexure. This error can also be seen in figure 4, where the actual
flexure attachment in black has a different angle than the charac-
teristic pivot link in green.

3 SUPPORT STIFFNESS
Deflections caused by external forces can cause an error in

the prediction of the arc method. A high support stiffness de-
creases this error, increasing the robustness of the model. In sec-
tion 3.1, the support stiffness for a short wire flexure is defined,
after which the effect of material strain is investigated in section
3.2. The support stiffness is then modelled in section 3.3.

3.1 Defining Support Stiffness For A Wire Flexure
For a short wire flexure used as a 2DOF small-length flexu-

ral pivot, we define the support stiffness to be the following: The
stiffness against loading at the endpoint tangent to the flexure
while constraining its rotation, as is illustrated in figure 5. This
is based on the loading of a ball joint in its most common use, a
truss-like setup where a rod has a ball joint at either end, resulting
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FIGURE 5: Support stiffness F/δ of a bend short wire flexure,
where φ is the deflection angle of the flexure. Moment M1 is the
bending moment necessary for this deflection angle. Moment
M2 consists of the initial bending moment plus the constraining
moment to keep the angle φ when loading.

in a two force member. The rod can only be in pure compression
or tension, but the mechanism does input a certain deflection an-
gle on the ball joints. In such a system, the distance between
the two joints constrains the mechanism, so the deflection in this
direction, in line with the loading force, is investigated.

The loading force introduces three kinds of deformation
types in the flexure: compression, shear, and bending. Due to
these deformations, the deflection angle of the flexure changes.
This is not allowed, as the rotation of the endpoint of the flexure
is constrained by the attached system. This constraint results in
an additional moment at the endpoint of the flexure. For each of
these deformation types, linear beam theory prescribes an equa-
tion for its stiffness. These equations show that the support stiff-
ness is dependent on the diameter, length, material stiffness, and
Poison’s ratio. However, the maximum strain a material allows
also indirectly influences the support stiffness, as it defines the ra-
tio between thickness and length of the flexure for a given range
of motion.

3.2 Influence Of Strain On Flexure Geometry
The amount of strain in a flexure is dependent on the length,

thickness, and deflection angle of a flexure. For a bent flexure
as can be seen in figure 6, the following can be found. A thicker
flexure of the same length increases strain, as both the stress and
strain increases linearly away from the neutral axis of the flexure.
Contrarily, a longer flexure decreases strain, as the bend is spread
out over a longer distance. Therefore the length over radius ratio
of the flexure L/r is investigated, and how the amount of strain
that is allowed in a material limits this ratio.

When bending a flexure, the outer sides have the highest
amount of strain. The neutral axis for the wire flexure, which
is the axis which does not see any strain or longitudinal forces
during bending, lies in the centre of the flexure. This neutral
axis then also does not change in length during bending. From
this, the strain in the material at the outer sides can be found by

FIGURE 6: A bend wire flexure to angle φ . The undeformed
length of the flexure is L, which is still the case at the centre-
line. The elongated outside of the flexure has an length of Lmax,
while the compressed inside has a length of Lmin. The radius of
curvature is R, and the radius of the flexure itself is r.

rewriting the formula for strain:

εmax =
dLmax

L
=

Lmax −L
L

(1)

As the flexure forms a circular arc, the arc length of a flexure is
equal to Larc = Rφ . The Lmax of the flexure can be rewritten as:

Lmax = φ(R+ r) = L+ rφ (2)

Filling this into the equation 1 gives:

εmax =
L+ rφ −L

L
=

rφ

L
(3)

We define the maximum allowed strain as the maximum strain
before yielding. This maximum strain is given by εallowed =
YS/E. In literature, this strain is also called elongation at yield,
or elasticity percentage. Combining this maximum strain with
equation 3 results in equation 4. In this equation, only strain by
bending is taken into account. External forces can cause addi-
tional strain in the flexure, requiring either a thinner or longer
flexure. As this is dependent on the use case of the flexure, it is
not taken into account here.

L
r
=

φmax

εallowed
(4)

From equation 4 it can be seen that for a certain deflection
angle of the flexure, a material with a higher maximum strain
allows a larger diameter for the same length. This means that
materials that allow more strain but have a lower young’s modu-
lus can still result in a higher support stiffness. To test this the-
ory, a material that allows one of the highest amount of strain is
looked at, polyurethane [7]. Polyurethane can stretch up to 100%
without yielding, while for steel this is only about 0.5%. For the
tests in this paper, a 3D printable TPU is used with a maximum
strain of 55% [8], still a factor 110 larger than steel. This results
in a wire flexure with a diameter that is also 110 times larger,
or Dratio = 110. However, the Young’s modulus of TPU is a lot
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TABLE 1: Stiffness ratio of steel over TPU for each deformation
mode based on linear beam theory, showing the stiffer TPU, es-
pecially in bending. Dratio and Eratio are the ratio between two
materials’ diameter and Young’s modulus, respectively

Deformation mode Stiffness ratio equation TPU
Steel

Compression D2
ratio ·Eratio 1.6

Shear D2
ratio ·Eratio · 1+ν1

1+ν2
1.7

Bending D4
ratio ·Eratio 1.9×104

lower than steel, 26 MPa vs 200 GPa, respectively. This differ-
ence is approximately a ratio of Eratio = 1.3×10−4. Finally, the
Poisson’s ratio of steel is 0.28 and for TPU 0.4. The stiffness
differences for each deformation mode can now be calculated
based on the equations from linear beam theory, as is shown in
table 1. TPU is stiffer in each deformation mode, which results in
a higher total support stiffness of the flexure. How much higher
exactly is based on how each deformation mode influences the
total support stiffness of the flexure, as especially bending stiff-
ness is higher for TPU. To find the ratio between each of the
deformation modes, and how they change for different deforma-
tion angles, a model is made for the support stiffness of the wire
flexure.

3.3 Modelling Support Stiffness
A model for the support stiffness could be based on test-

ing in a tensile testing machine or modelling in a FEM program.
However, to create an understanding for how much a certain pa-
rameter influences the support stiffness, many parameter studies
would need to be performed. Instead, a model is created based
on linear beam theory, which can then be checked against FEM
programs. As stated in section 3.1, the force introduces com-
pression, shear and bending on the flexure. The contribution to
the support stiffness of each of the deformation types changes
for different deflection angles of the flexure. For very small de-
flection angles, the force almost solely introduces compression in
the flexure and thus the support stiffness will be dominated by the
compression stiffness, or limited by buckling. For large deflec-
tion angles, compression in the flexure decreases while bending
and shear increase. If the ratio between each of these aspects is
known, also the effect of each design parameter on the support
stiffness can be determined. This can be taken into account to
optimise flexure designs for high support stiffness.

To calculate these ratios, a finite element model is made.
The difference with a simulation in a FEM program is that the
model in this paper is specific to the calculation of support stiff-
ness, giving both more control and showing in more detail the
effect of each parameter on the support stiffness. The wire flex-
ure is split up in small elements along the flexure of size dθ , and

(a) The moment arm R ∗ (1 −
cosθ) and angle θ of the load-
ing force on an element along
the bend flexure.
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FIGURE 7: Support stiffness modelling approach

for each, the deflection from each contribution is calculated. In
this model, each element is approximated as a circular arc, sim-
ilar to Chen [9]. The amount of each deformation type changes
along the flexure. At the tip, the force is in line with the flexure,
resulting in pure compression. From figure 7a it can be seen that
at the base, the force has both an angle φ and a moment arm of
R∗ (1−cosφ), increasing deflection from shear and bending but
decreasing from compression. Any point in between at angle θ

has the force at this angle θ and a moment arm of R∗(1−cosθ).

Each deformation type has a different effect on a small ele-
ment. Compression changes the arc length of the element. Shear
shifts two elements with respect to each other. Shear is mod-
elled by rotating each element by its shear angle γ . The moment
caused by the force is added to the already existent bending mo-
ment in each element, changing the radius of curvature. It is not
taken into account yet, that the deflection angle is constrained
by the attached system. This adds an additional moment on the
flexure as is shown in figure 5. As only bending causes a change
in rotation of the flexure, the bending moment in each element
can be integrated over the length of the flexure, and added to the
endpoint of the flexure. To increase accuracy for large deforma-
tions, the model can be looped to include the effect of deflection
increasing the moment arm in the flexure, which in turn increases
deflection, as shown in figure 7b.

From this model can indeed be seen that the effect of com-
pression decreases while bending and shear increase. This is true
for every flexure, as it is coupled to how the force interacts with
the flexure, not the wire flexure geometry or material. However,
the ratio between compression, shear and bending do change
with different geometry or material constants, and so does the
total support stiffness of the flexure. The results for a TPU and
steel flexure are given in section 4.2
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FIGURE 8: The normalised error of endpoint calculated by the
different PRBM methods against the actual flexure deformation
calculated with the arc method plotted over the deformation an-
gle. The PRBM methods without an angle coefficient all have an
error of 1 at 360°, meaning a full flexure length of error. This is
because the arc method correctly predicts that the flexure shape
creates a loop at 360° deflection, having the endpoint and base
of the flexure touch, while the circle paths of the PRBM methods
rotate back to their starting position. Hence, a flexure length of
error.

4 RESULTS
In section 2 and 3, two models are developed for the short

wire flexure, for which the results are presented in this section.
The first model shows the axis drift and flexure shape of the short
wire flexure, of which the results are given in section 4.1. The
model is compared against PRBM, and checked against a FEM
program. Finally, the method is measured against a physical test
by deflecting a polyurethane wire flexure whilst measuring its
position and rotation. The second model shows the support stiff-
ness and the effects of different flexure parameters on this stiff-
ness. The results of this model are given in section 4.2. The
model is then checked by comparing the total support stiffness to
results from FEM programs.

4.1 Arc Method Results
The results of the arc model are checked against data from

COMSOL Multiphysics®. Both the 2D beam mechanics and the
3D solid mechanics interfaces are used. If a moment is placed on
a beam in the beam mechanics interface, the path of the endpoint
matches within 0.01% with the arc method over a deflection of
360°. The path for the 3D model of the steel flexure matches
within 0.1%. The 3D model of a TPU Flexure matches closely
for small deformations, but the error increases as the deflection
angle increases. For a deformation angle of 50°, the error is
1.9%.

In figure 8, the error of each of the PRBM methods with
respect to the arc method is calculated. Three PRBM methods
are compared, each with a different pivot location. These PRBM
methods can also be seen in figure 4. The error is calculated by
taking the distance between the endpoint of each method for a
given deflection angle. Figure 8 also shows that when the char-
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length of 25 mm. The rod has a length of 380 mm. A zoomed in
view of the red rectangle is given in figure 10

310 315 320 325 330 335 340 345

x [mm]

225

230

235

240

245

250

255

y
 [
m

m
]

PRMB base pivot

PRBM centre pivot

PRBM Characteristic pivot

MeasurementData

Arc method prediction

FIGURE 10: A zoomed in section from the red rectangle from
figure 9. Here the difference between the path of the three PRBM
methods and that of the arc method with respect to the measure-
ment data can be seen.

acteristic pivot PRBM is used with the angle coefficient, high
accuracy for modelling the endpoint is reached for angles up to
124.4°. Do note that this accuracy is for the endpoint of the flex-
ure, as the angle coefficient introduces an error for the attached
system as discussed in section 2.3. If the angle coefficient is not
used, the error is higher than that of the PRBM approximation
with centre pivot.

The arc method is tested against measurements done on a
TPU flexure hinge such as in figure 1a. Here the endpoint posi-
tion of a rod attached to the TPU Flexure is measured over a large
deflection range of ±70° as is shown in figure 9. In this figure,
the test data is shown, as well as the PRBM and arc method. A
zoomed-in view of this data can be found in figure 10, where the
differences between the methods can be seen in more detail.

The error of the measured data with respect to the arc
method is shown in figure 11. The maximum error is found at the
largest deformation angles, ≈ 0.4mm error at ±70°. The trend
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of the data shows however a drift in this error. While the arc
method matches for small angles, for large angles the measured
data is outside of the arc method prediction. However, to put
this error into perspective, it is compared against the error of the
different PRBM. The results of this comparison can be found in
figure 12. The smallest error of a PRBM method at these ±70° is
≈ 4mm, a factor 10 more. The PRBM method with characteris-
tic pivot shows larger error than the centred PRBM, even though
the path seems to match better as can be seen in figure 10, as the
deflection is also taken into account when calculating the error.

4.2 Support Stiffness Results
The support stiffness model from section 3.3 is used to

model the stiffness of a steel flexure and a TPU flexure over a
range of bend angles, as shown in figure 13.

Figure 13 also shows how at an deflection angle of 0° the
ratio between the support stiffness is 1.6, comparable to the dif-
ference in pure compression stiffness as stated in table 1. At
large deformation angles, this ratio quickly increases, to approx-
imately 7800 at 70°. To see what parameters affect this stiffness,
the contribution of each deformation type to the total compliance
of the flexure is investigated, which can be seen in figure 14.
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FIGURE 14: The contribution of compression, shear and bending
to the total compliance for a steel and TPU Flexure, plotted for
different deflection angles. The compliance of the steel flexure
increases due to the low bending stiffness to 10−2 at 70° The
compliance of the TPU flexure stays at 10−6.

Do note that figure 13 and 14 only show the instant sup-
port stiffness calculated by the support stiffness model, not tak-
ing into account the non-linear loading behaviour of the flexure.
Especially with the thin steel flexure, this behaviour causes a de-
crease in stiffness when the flexure is compressed. When the
loading force deforms the flexure, the moment arm of this force
is increased, which then increases deformation again. This be-
haviour is seen in figure 15.

The results of the support stiffness model are checked
against data from COMSOL MultiPhysics®. Both the 2D beam
mechanics and the 3D solid mechanics interfaces are used. The
models match within 0.1% with the data from the beam interface
for both TPU and steel, for a large deflection range as shown
in figure 15. The 3D steel flexure also matches with the sup-
port stiffness model. However, the deflection results from the
TPU flexure in the solid mechanics interface do deviate from the
support stiffness model at large deflections. The instant stiff-
ness does match within 0.1%, but as soon as the flexure starts
deforming, the error increases. This error ranges from 1% at a
compression force of 10 N giving a deflection of 0.1 mm, to 14%
at 100 N giving a deflection of 1.2 mm.
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FIGURE 15: The support stiffness behaviour of a steel wire flex-
ure during loading. On the left, the drop in stiffness for higher
loading forces, caused by the increased moment arm which is
shown the right.

5 DISCUSSION
5.1 The Arc Method

The measurement results show the arc method has higher
accuracy than the existing PRBM methods. However, figure 11
shows a mismatch between the predicted path by the arc method
and that of the flexure. At large deflections especially, the data
lies outside of the predicted curve by the arc method. For this
to happen, the flexure either has to increase in arc length or not
follow a circular arc. It is not likely that the flexure deviates from
the circular arc, as the bending moment, shape, and material are
the same over the length of the flexure. That means that the flex-
ure increases in arc length, thus elongates while deforming. This
could be caused by a difference in compression vs tension be-
haviour in the flexure. If the TPU used for the flexure is stiffer in
compression than it is in tension, a bending moment will cause
the flexure to elongate. A difference in creep or hysteresis be-
tween tension and compression could also be the cause, as this
gives the same effect as the difference in stiffness. The flexure
for the tests was 3D printed, which could also further introduce
non-linear material effects.

The measurement results also show the effect of the endpoint
angle error introduced by the angle coefficient for the character-
istic pivot. This method only works up to the endpoint of the
flexure, not taking into account any systems that attach to it. An
additional bend could be added to the endpoint of the flexure,
bending back to the original angle. However, this increases com-
plexity, as the distance between the PRBM pivots is now not con-
stant anymore, but changes for different deflection angles. Just
as with the arc method and VC, this can result in a necessity
for an iterative solver when solving a system with multiple flex-
ures. Another possible option is to match the angle coefficient
and characteristic pivot not for the flexure itself, but for the flex-
ure and attached rod together. This could work for a single joint,
but in systems with multiple joints this also increases complexity.
Based on this, two options arise for modelling flexure systems.

Of the less complex methods with a fixed single pivot, the PRBM
model with a centre pivot has the lowest error. If high accuracy
is required, the arc method has a tenth of the error of PRBM, but
a higher complexity due to the shifting pivot location.

5.2 Support Stiffness
The support stiffness model shows a large increase in sup-

port stiffness for the TPU flexure with respect to the steel flex-
ure, mainly because of the large increase in bending stiffness for
the TPU flexure. The deformation of the steel flexure is quickly
dominated by deformation due to bending. For the TPU flexure,
due to the larger diameter and thus high area moment of inertia,
the contribution to the deflection of compression and shear are
larger than that of bending.

The support stiffness model overall matches the results from
COMSOL Multiphysics® closely, only for large deflections of
the TPU flexure the error increases. This is likely caused by
the behaviour of the flexure at the attachment points and effects
like anticlastic curvature, which are not taken into account in the
support stiffness model, but are modelled in COMSOL Multi-
physics®.

5.3 Applications Of The Methods
Both the support stiffness model and arc method are now fo-

cused on the short wire flexure, but are not limited to only that
application. Using high strain materials such as polymers to in-
crease support stiffness can be applied to other flexure types, as
each of the deformation types is stiffer for TPU with respect to
that of steel. The exact increase in support stiffness is depen-
dent on the application, as the bending mode shows the largest
stiffness difference.

5.4 Material Assumptions
The TPU used in this paper was assumed to be a homoge-

neous material with linear material behaviour. Polymers also suf-
fer from high creep, which also was not taken into account in
this paper. The test samples used in this paper were 3D printed,
limiting the quality of material possible. Using injection mould-
ing could result in higher yield over Young’s modulus, result-
ing in shorter and thicker flexures, giving even higher stiffness.
Polymers have higher internal friction than steel, which com-
bined with the larger strain could result in heating of the flexures,
changing material constants. This large internal friction can also
act as internal damping, reducing the vibrations in the system.
Next to this, flexures from combinations of different materials
such as a steel core and polymer outside could even further in-
crease precision and accuracy of flexure systems.
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6 CONCLUSION
This paper presents a simple analytic model for the axis drift

of wire flexures for large ranges of motion. This model, named
the arc method, models the flexure as a circular arc, based on the
deformation by a pure moment. A virtual centre is defined to
more efficiently include the arc method in kinematic models, as
it simplifies the system to a single rotation point per deflection
angle of the flexure.

The arc method is validated by comparing it to FEM and a
physical test, both showing good agreement. Different PRBM
methods are also compared against the measurement data, show-
ing a factor 10 larger errors than the arc method at deflections of
70°.

Next to this, this paper shows how the use of polymers can
increase precision and robustness of a short wire flexure. The
diameter of a flexure is defined by the maximum allowed strain
and required deflection angle. Based on this, the large allowed
strain of polymers results in a larger diameter than steel for the
same bend angle.

The support stiffness model from this paper shows how
polymers increases support stiffness even though the material
stiffness is substantially lower than that of steel. This model
also shows the influence of the different deformation types on
the support stiffness of a bent flexure. This gives the possibility
to increase support stiffness by optimising the stiffness of each
deformation type.

The support stiffness model is validated by comparing it to
FEM showing a maximum error of 0.1% to the 2D beam inter-
face, and a matching instant stiffness for the 3D solid mechanics
interface.

To conclude, combining high support stiffness from poly-
mers with the arc method can result in flexures with high preci-
sion and accuracy while having a simple geometry such as a wire
flexure.
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